Horizon Cloud Administration Guide

For service level starting December 12, 2019
VMware Horizon Cloud Service
You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to
docfeedback@vmware.com
Contents

Administration of Your Horizon Cloud Tenant Environment and Your Fleet of Onboarded Pods
8

1 **Introduction to Horizon Cloud and Onboarding Pods to Become Cloud-Connected Pods**
12
High-Level Workflow When you are Onboarding an Existing Manually Deployed Horizon 7 Pod as Your First Pod to Your Horizon Cloud Tenant Environment
14
DNS, Ports, and Protocols Requirements When Using Horizon 7 Cloud Connector and a Horizon 7 Pod
17
High-Level Workflow for When Your Very First Cloud-Connected Pod is from Deploying into Microsoft Azure
19

2 **Getting Started Using Your Horizon Cloud Environment**
25
Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment
27
Service Accounts That Horizon Cloud Requires for Its Operations
36
Locating the Information Required for the Register Active Directory Workflow's NETBIOS Name and DNS Domain Name Fields
39
Horizon Cloud Support for Active Directory Domain Controllers That Have LDAP Server Signing Requirements
41
Log in to the Horizon Cloud Administration Console
42
Tour of the Horizon Cloud Administration Console
44
Add Administrators to Log in to Your Horizon Cloud Tenant Environment
46
Register Additional Active Directory Domains
47
Add Additional Auxiliary Domain Bind Accounts
53
Assign Administrative Roles to Active Directory Groups
54
Enabling or Disabling the Cloud Monitoring Service (CMS) for Your Horizon Cloud Tenant Environment
57
Join or Leave the Customer Experience Improvement Program
58
Remove the Active Directory Domain Registration
59

3 **Introducing the Cloud Monitoring Service’s Unified Visibility, Health Monitoring, and Help Desk Features Provided in Horizon Cloud**
62
Cloud Monitoring Service (CMS) and Horizon Agents Installer (HAI) Options
63
Health Visibility and Insights into Your Cloud-Connected Pods Provided by the Cloud Monitoring Service in Horizon Cloud
64
Horizon Cloud Administration Console's Dashboard Page - Overview Tab
64
Horizon Cloud Administration Console's Dashboard Page - Sessions Tab
68
Horizon Cloud Administration Console's Dashboard Page - Users Tab
69
Help Desk Features in Your Horizon Cloud Environment
71
Using the Console's Search Feature
72
The User Card in the Horizon Cloud Administration Console
72
Manually Upgrade the Horizon 7 Cloud Connector Virtual Appliance 77
Troubleshoot the Horizon 7 Cloud Connector Virtual Appliance Upgrade 80
Automated Upgrade of the Horizon 7 Cloud Connector Virtual Appliance 81

4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types 83
Deploying Pods Using the Capacity Page 89
 Deploying Horizon Cloud Pods into Microsoft Azure from the Capacity Page 89
Change a Cloud-Connected Pod's Associated Location, Name, and Description using the Horizon Cloud Administration Console 116
Removing Cloud-Connected Horizon 7 Pods from Use with Horizon Cloud 117
 Clear the Cloud-Managed Properties from a Horizon 7 Pod that was Offline During the Process to Disconnect it from Horizon Cloud 118

5 Introduction to Horizon Cloud Pods in Microsoft Azure 120
High Availability and Your Horizon Cloud Pod in Microsoft Azure 127
 Enable High Availability on a Horizon Cloud Pod in Microsoft Azure 130
Creating Desktop Images for a Horizon Cloud Pod in Microsoft Azure 131
 Create a Master Virtual Machine Automatically from the Microsoft Azure Marketplace and Pair it with Horizon Cloud 135
 Customize the Master Image VM's Windows Operating System 147
 Install NVIDIA Graphics Drivers in a GPU-Enabled Master Image 154
 Convert a Configured Master Virtual Machine to an Assignable Image 157
 Manually Build the Master Virtual Machine in Microsoft Azure 159
Using Microsoft Azure Disk Encryption with Your Farms and VDI Desktops 193
Using Data Disks with Virtual Desktops from a Horizon Cloud Pod in Microsoft Azure 196
 Setting Up a Data Disk for a Master Image VM 198
VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure 204
 Install the NSX Agent in the Master Image 207
 Firewall Rules Required in NSX Manager for Pod-Provisioned VMs 212
 Add the Required Forwarding Policy in NSX Manager for the Pod-Provisioned VMs 212
Managing VM Types and Sizes for Farms and Assignments 213
Farms in Horizon Cloud 214
 Create a Farm 215
 Managing Farms in Horizon Cloud 239
 Example of Farm Rolling Maintenance 246
Applications in Your Horizon Cloud Inventory 247
 Importing New Applications from an RDSH Farm Using Auto-Scan from Farm 248
 Manually Adding Custom Applications from an RDSH Farm 249
 Create a Remote Application Assignment 250
Creating Desktop Assignments in Horizon Cloud 252
 Types of Desktop Assignments 252
 Create an RDSH Session Desktop Assignment 254
Set Up a Certificate Template on the CA 432
Download the Horizon Cloud Pairing Bundle 435
Set up the Enrollment Server 436
Complete Configuring True SSO for your Horizon Cloud Environment 437
End User Connections to Desktops and Applications Provided by Your Horizon Cloud Environment 438
Enable Time Zone Redirection for RDS Desktop and RDS-Based Application Sessions 438
Multiple-Monitor Support for Desktops and Remote Applications Provided By a Horizon Cloud Pod in Microsoft Azure 439
Access Desktops and Applications 440

6 Setting Up and Managing End-User Assignments in Your Horizon Cloud Tenant Environment 446
System Requirements for Multi-Cloud Assignments 447
 Port and Protocol Requirements for Horizon Universal Broker 448
High-Level Steps for Setting Up Horizon Cloud Multi-Cloud Assignments (MCA) for Your Horizon Cloud Tenant 449
Understanding Brokering Methods for Multi-Cloud Assignments 452
 Comparing Horizon Universal Broker and Cloud Pod Architecture 452
 About Cloud Pod Architecture 458
 Feature Limitations of Horizon Universal Broker 458
Preparing Horizon 7 System Components for Horizon Universal Broker 459
 Install the Horizon Universal Broker Plugin on the Connection Server 460
 Configure Unified Access Gateway for Use with Horizon Universal Broker 462
Choose a Brokering Method 464
 Configure Horizon Universal Broker 466
Working with Sites for Multi-Cloud Assignments 474
 Configuring Sites for Horizon Universal Broker 475
 Configuring Home Sites for Horizon Universal Broker 476
Enabling a Cloud-Connected Horizon 7 Pod for Multi-Cloud Assignments 477
 Change a Pod to Managed State in a Horizon Universal Broker Environment 478
 Change a Pod to Managed State in a Cloud Pod Architecture Brokering Environment 479
 Change a Pod to Monitored State 480
Creating and Managing Multi-Cloud Assignments in Your Horizon Cloud Tenant Environment 481
 Prepare an Existing Desktop Pool for Multi-Cloud Assignments Brokered by Horizon Universal Broker 481
 Create a New Desktop Pool for Multi-Cloud Assignments 482
 Remove a Desktop Pool from Multi-Cloud Assignments Brokered by Horizon Universal Broker 484
 Worksheet for Creating a Multi-Cloud Assignment 485
 Create a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment 487
 Managing Multi-Cloud Assignments in Your Horizon Cloud Tenant Environment 491

7 About Menu Selections in the Administration Console 496
 About the Monitor Icon 497
8 Using the Filter Field in the Administration Console 530

9 Troubleshooting for Administrators of Horizon Cloud Environments 532

Required Administrator Actions When the Disk Size for a Farm or VDI Desktop Assignment is Increased 532

Cannot Successfully Log In at the First Login Screen of the Administration Console 533

Convert to Image Task Fails with Timeout Error Even After Addressing the Logged Microsoft Windows Sysprep Errors 533

For a Windows Server 2012 Image, Convert to Image Task Fails with Timeout Error 534

Notifications When the Primary Domain-Bind Account is Locked Out 535

New Farm Remains In Progress 535

Windows Error Message Appears When Trying to Connect to a Desktop from a Floating VDI Desktop Assignment 536

Give Feedback Menu Choice Does Not Work 536

Considerations For Using Nested Active Directory Domain Organizational Units 537

Horizon 7 Cloud Connector Known Considerations 538

Configure a CA-Signed Certificate for the Horizon 7 Cloud Connector Virtual Appliance 539

Update the Static IP for the Horizon 7 Cloud Connector Virtual Appliance 541

Set a Password Expiry Policy for the Horizon 7 Cloud Connector Root User 542

When Your Pod is Not Yet Upgraded to Manifest 1230 or Later, How to Configure the Ability for Domain Accounts to Remote Connect to the Imported Image 543
Administration of Your Horizon Cloud Tenant Environment and Your Fleet of Onboarded Pods

This Administration Guide explains how to use VMware Horizon® Cloud Service™ to administer the pods you have onboarded to the cloud service. Your overall Horizon Cloud tenant environment consists of the VMware-hosted cloud service and your pods deployed into their corresponding capacity environments and connected to the cloud service. To work with your tenant environment's fleet of cloud-connected pods and the desktop-as-a-service features that the service provides, you log in to and use the tenant environment's portal, known as the Horizon Cloud Administration Console.

This VMware service offers more than one deployment mode, as depicted above. This document applies when you are using the Horizon Cloud Administration Console to work with the following items:

- VMware Horizon® 7 pods that you installed on-premises and then connected to Horizon Cloud
- VMware Horizon 7 pods that you manually installed in your VMware Cloud™ on AWS SDDC and then connected to Horizon Cloud.
- Pods in your Microsoft Azure cloud capacity that you automatically deployed and configured using Horizon Cloud.

To find out more about all of the various Horizon Cloud deployment modes, see https://www.vmware.com/cloud-services/desktop.html.
For information about how VMware handles information collected through this product, click here: https://www.vmware.com/help/privacy.html

The information in this document describes how to use the Horizon Cloud capabilities after the cloud service is connected to one of the its supported environments: a VMware Horizon 7 pod in VMware Cloud, a VMware Horizon 7 pod on-premises, or a pod in Microsoft Azure. For information on how to connect a supported environment to the cloud service, see the Horizon Cloud Deployment Guide.

Important This document describes features available in the Administration Console for the current release of the Horizon Cloud Service working with the connected environments. When you have pods that are not yet updated to the currently supported release level, you will not see all of the features that this document describes when those features depend on the latest pod software level. Also, in a particular release, Horizon Cloud might include separately licensed features. The Administration Console reflects the elements related to such features only when your license includes use of such features. When you are not seeing a feature in the Administration Console that you are expecting to see, contact your VMware account representative to verify whether your license entitles your use of that feature.

Document Revision History

This document, Horizon Cloud Administration Guide, is updated with each release of the product or when necessary.

This table provides the update history.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 JAN 2020</td>
<td>Updated for:</td>
</tr>
<tr>
<td></td>
<td>- Information about the Horizon Universal Broker feature. This feature is now in Initial Availability for cloud-connected Horizon 7 pods. This feature is used with multi-cloud assignments. For the system requirements and detailed information, see the topic Chapter 6 Setting Up and Managing End-User Assignments in Your Horizon Cloud Tenant Environment and all of its subtopics that pertain to multi-cloud assignments for cloud-connected Horizon 7 pods.</td>
</tr>
<tr>
<td></td>
<td>- Addition of prominent Attention and Remember notes to the Automated Upgrade of the Horizon 7 Cloud Connector Virtual Appliance to point out that you will only see the corresponding options in the user interface if and only if your Horizon Cloud tenant account is enabled with the relevant capability, and you must explicitly request enablement of that capability by contacting your VMware representative. By default, those options are disabled for tenants unless you request access to that feature.</td>
</tr>
<tr>
<td>12 DEC 2019</td>
<td>Initial version, when the described features were deployed live into production. For features relating to pods in Microsoft Azure, those features correspond to the software at manifest version 1799 and later. For features related to cloud-connected Horizon 7 pods, those features correspond to Horizon 7 at version 7.11 and Horizon 7 Cloud Connector 1.5 and later. Upgrade your pods to the latest versions to see all of the features described in this guide.</td>
</tr>
</tbody>
</table>

Intended Audience

This document is intended for experienced IT system administrators who are familiar with virtual machine technology and datacenter operations.
Depending on your organization's needs and the type of pod you are working with, you might find it helpful to be familiar with these software products, software components, and their features:

- VMware Horizon 7
- VMware Cloud
- VMware Horizon® 7 Cloud Connector™
- VMware Unified Access Gateway™
- VMware Workspace ONE® Access™
- VMware Horizon® Client™
- VMware Horizon® HTML Access™
- Microsoft Azure and its Marketplace
- Microsoft Active Directory
- VMware Dynamic Environment Manager™

About the Screenshots Used in This Document

The screenshots typically:

- Show only that portion of the overall user interface screen that corresponds to the text at which point the screenshot appears, and not necessarily the full user interface.
- Have blurred areas where appropriate to maintain data anonymity.

Note Some screenshots are taken at a higher resolution than others, and might look grainy when the PDF is viewed at 100%. However, if you zoom to 200%, those images start to look clear and readable.

Horizon Cloud Community

Use the following communities to ask questions, explore answers given for questions asked by other users, and access links to useful information.

Contacting VMware Support

Contact VMware Support when you need help with your Horizon Cloud environment.

- You can submit a support request to VMware Support online using your My VMware® account or by phone.
- **KB 2144012 Customer Support Guidelines** provides details for getting support depending on the issue encountered.

- After you have configured at least one cloud-connected pod, you can submit a support request by logging in to the Administration Console and clicking > Support.

VMware Information Experience Glossary

VMware Information Experience provides a glossary of terms that might be unfamiliar to you. For definitions of terms as they are used in VMware technical documentation, go to http://www.vmware.com/support/pubs.
Introduction to Horizon Cloud and Onboarding Pods to Become Cloud-Connected Pods

Your overall Horizon Cloud tenant environment consists of the VMware-hosted cloud service and your pods deployed into their corresponding capacity environments and connected to the cloud service. When a pod, consisting of VMware software deployed into a supported capacity environment, is appropriately on-boarded, then it is a cloud-connected pod. When at least one pod is completely on-boarded into your tenant environment, you can on-board additional pods to make for a fleet of cloud-connected pods. To work with your tenant environment's fleet of cloud-connected pods and the desktop-as-a-service features that the service provides, you log in to and use the tenant environment's portal, known as the Horizon Cloud Administration Console.

Horizon Cloud
A control plane hosted in the cloud by VMware for the central orchestration and management of virtual desktops and applications.

cloud-connected pod
VMware software deployed into a supported capacity environment and on-boarded to the cloud control plane. Supported capacity environments are ones such as Microsoft Azure cloud or VMware Cloud™ on AWS or on-premises infrastructure. Each of these capacity environments provides for a specific pod type:

- Pod in your Microsoft Azure subscription
- Horizon 7 on-premises pod
- Horizon 7 in VMware Cloud on AWS

Depending on the type of capacity environment you are using, you can use the Horizon Cloud Administration Console for an automated pod deployment and connection to Horizon Cloud. For some of those pod types, even though they cannot be automatically deployed and configured, you can still on-board those pods to Horizon Cloud.

For a high-level overview of the pod-onboarding concept, see Deployment Guide.

VMware, Inc. 12
Horizon Cloud Control Plane

VMware hosts the Horizon Cloud control plane in the cloud. This cloud service enables the central orchestration and management of virtual desktops, remote desktop sessions, and remote applications for your users. The cloud service also manages your pods. The pods are physically located in your provided capacity environments. When you log in to the cloud service, you can see all of your pods and perform management activities across them, regardless of where they are physically located.

VMware is responsible for hosting the service and providing feature updates and enhancements for a software-as-a-service experience.

The cloud control plane also hosts a common management user interface called the Horizon Cloud Administration Console, or Administration Console for short. The Administration Console runs in industry-standard browsers. It provides IT administrators with a single location for management tasks involving user assignments and the virtual desktops, remote desktop sessions, and applications. The Administration Console is accessible from anywhere at any time, providing maximum flexibility.

Important The Administration Console is dynamic and reflects what is available at the current service level. However, when you have cloud-connected pods that are not yet updated to the latest levels of the pod's software, the Administration Console does not display those features that depend on the latest pod software level. Also, in a particular release, Horizon Cloud might include separately licensed features. The Administration Console dynamically reflects the elements related to such features only when your license includes use of such features.

When you are expecting to see a feature in the Administration Console and do not see it, contact your VMware account representative to verify whether your license entitles your use of that feature.

Pod Types You Can Connect to Horizon Cloud

This Horizon Cloud release provides for the following deployment types.

Note To connect a pod to Horizon Cloud or use the Administration Console for an automated deployment, your customer account must have the appropriate licensing. For licensing information, contact your VMware account representative.
Table 1-1. Pod Deployment Types

<table>
<thead>
<tr>
<th>Deployment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware Horizon 7 pod located in your on-premises infrastructure</td>
<td>Deploy the Horizon 7 Cloud Connector in your on-premises infrastructure and configure it to connect that pod to Horizon Cloud.</td>
</tr>
<tr>
<td>VMware Horizon 7 pod that you manually installed and configured in your VMware Cloud on AWS SDDC</td>
<td>Deploy the Horizon 7 Cloud Connector in your VMware Cloud on AWS SDDC and configure it to connect that pod to Horizon Cloud.</td>
</tr>
<tr>
<td>Horizon Cloud pod deployed by Horizon Cloud into your Microsoft Azure cloud capacity</td>
<td>Deploy the pod using the Horizon Cloud Administration Console's automated deployment wizard.</td>
</tr>
</tbody>
</table>

Important For production environments, ensure the VM models used for your farms and desktop assignments have a minimum of two (2) CPUs. VMware scale testing has shown that using 2 CPUs or more avoids unexpected end-user connection issues. Even though the system does not prevent you from choosing a VM model with a single CPU, you should use such VM models for tests or proof-of-concepts only.

This chapter includes the following topics:

- High-Level Workflow When You are Onboarding an Existing Manually Deployed Horizon 7 Pod as Your First Pod to Your Horizon Cloud Tenant Environment
- High-Level Workflow for When Your Very First Cloud-Connected Pod is from Deploying into Microsoft Azure

High-Level Workflow When You are Onboarding an Existing Manually Deployed Horizon 7 Pod as Your First Pod to Your Horizon Cloud Tenant Environment

This list is a high-level of the steps when you are onboarding your very first pod to your Horizon Cloud tenant environment and that pod is an existing manually deployed Horizon pod. A manually deployed pod is one that you manually installed and configured using either on-premises capacity or using VMware Cloud on AWS capacity. After these onboarding steps are completed for your very first cloud-connected pod, the subscription license is applied to that onboarded Horizon 7 pod and you can start using the cloud-hosted services that Horizon Cloud provides for that pod type, which include the Cloud Monitoring Service (CMS). At that point, you can also onboard additional pods.

The following diagram illustrates the overall flow.
Before beginning this workflow, you must have already installed and configured your Horizon 7 pod. For information about manually installing a Horizon 7 pod that you can use with this Horizon Cloud release:

- For manually installing pods using on-premises capacity, see the relevant installation information for the most recent version of Horizon 7 from the Horizon 7 Documentation page.

- For manually installing pods using VMware Cloud on AWS capacity, see the best practices guide for deploying Horizon 7 on VMware Cloud on AWS, available from the Horizon 7 on VMware Cloud on AWS product page.

You onboard an existing Horizon 7 pod to the cloud for two primary use cases: to activate a subscription license for that pod and enable your use of those cloud-hosted services that Horizon Cloud provides for this type of pod, such as the Cloud Monitoring Service (CMS). The CMS is one of the central services provided in Horizon Cloud. CMS provides for visibility, health monitoring, and help desk services with cloud-connected pods. For a high-level description of the process of onboarding a pod to the cloud control plane, see the Deployment Guide.

Caution Complete all of the steps below to fully connect your first pod to Horizon Cloud before you start deploying the Horizon 7 Cloud Connector with any subsequent manually installed pod you want to connect. Due to a known issue in this release, if you finish connecting more than one pod to the cloud using the Horizon 7 Cloud Connector before you complete the Active Directory domain registration and Super Administrators role assignment step at least once, the Active Directory domain registration step will fail. At that point, you will have to unplug all but one of your cloud-connected Horizon 7 pods before you can successfully complete the required Active Directory domain registration and Super Administrators role assignment step.

1. Fulfill the prerequisites, which includes obtaining a Horizon subscription license, such as the Horizon universal license. See the Horizon Cloud Deployment Guide.

2. Verify you meet the DNS, ports, and protocol requirements for connecting a Horizon 7 pod with Horizon Cloud. See DNS, Ports, and Protocols Requirements When Using Horizon 7 Cloud Connector and a Horizon 7 Pod.
If your environment requires use of a proxy server with the Horizon 7 Cloud Connector appliance, obtain the required proxy settings so that you can specify them when you deploy the appliance's OVF template.

Important If you plan to use Horizon Universal Broker with Horizon 7 Cloud Connector 1.5, and require using proxy settings, you must configure those proxy settings when you deploy the OVF template. Due to a known limitation, the Horizon Universal Broker will not pick up changes to proxy settings made in the Horizon 7 Cloud Connector appliance after the initial deployment process.

Due to a known issue, the system is not honoring any no-proxy host configuration that you specified in the initial OVF template deployment. To use a no-proxy host configuration with the Horizon 7 Cloud Connector appliance, you must configure it after the initial deployment process. See the topic About Configuring Proxy Settings and No-Proxy Hosts for Horizon 7 Cloud Connector in the Deployment Guide for more details.

Optionally log in to the Horizon Cloud tenant portal and configure additional administrators for your tenant environment.

Tip Even though you can complete the next steps to onboard the pod solely using the My VMware account that is the one initially associated with your tenant environment, it is prudent to configure additional administrators at the start of this process. If only a single My VMware account is associated with your tenant account and you lose access to the credentials, delays might occur because you'll have to open a service request with VMware to associate a new My VMware account with the tenant account. To prevent such delays, log in to the tenant portal at cloud.horizon.vmware.com with the initially associated My VMware account and then follow steps described in Add Administrators to Log in to Your Horizon Cloud Tenant Environment using the row in the General Setup section of the screen.

Deploy the Horizon 7 Cloud Connector virtual appliance into the pod's environment. See the Horizon Cloud Deployment Guide.
6 Log in to the Horizon 7 Cloud Connector onboarding portal and complete the onboarding steps that pair the connector with the pod’s Connection Server.

Tip When the connector and Connection Server are successfully paired, the Horizon 7 Cloud Connector onboarding portal will display a Congratulations message. At this point, VMware will activate your subscription license. The activation can take up to 48 hours. When the license is activated, you will see the message Connected to License Service in your standard Horizon 7 Product Licensing & Usage screen.

7 Optionally configure a CA-signed certificate for the Horizon 7 Cloud Connector virtual appliance. See the Configure a CA-Signed Certificate for the Horizon 7 Cloud Connector Virtual Appliance.

8 Complete the Active Directory domain registration workflow within the Horizon Cloud tenant portal, known as the Administration Console. See Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment.

Tip Completing the Active Directory domain registration workflow enables you to take advantage of all of the cloud-hosted services, such as the Cloud Monitoring Service (CMS). Until the pod’s Active directory domain is registered with your tenant environment, the portal blocks access to the Administration Console’s screens in which the CMS’s monitoring data gets displayed.

9 Give the Horizon Cloud Super Administrators role to an Active Directory group that includes that domain-join account as a member. See Assign Horizon Cloud Administrative Roles to Active Directory Groups.

You can find in-depth details on how to accomplish each workflow step in the topics that are linked from each step above or in the companion guide. See the Horizon Cloud Deployment Guide.

DNS, Ports, and Protocols Requirements When Using Horizon 7 Cloud Connector and a Horizon 7 Pod

When you are using the Horizon 7 Cloud Connector component with your Horizon 7 pod, you must configure your firewalls to allow the Cloud Connector to access the Domain Name Service (DNS) addresses it needs. In addition, your proxy settings require configured ports and protocols and DNS must resolve specific names as described in this topic. Then, after the Cloud Connector component is deployed and you have completed the steps to successfully connect the pod to Horizon Cloud, specific ports and protocols are required for ongoing operations between Horizon Cloud and the Cloud Connector.
As described in the *Deployment Guide*, the Cloud Connector component is used with Horizon 7 deployments to activate subscription licenses on Horizon 7 and enable use of cloud-hosted services with your Horizon 7 deployments.

Connectivity and DNS Requirements

The steps in the *Deployment Guide* for deploying the Cloud Connector include the step to use a browser to navigate to the Cloud Connector appliance’s IP address and a login screen will appear. To see that login screen requires Internet connectivity between the Cloud Connector appliance and the Horizon Cloud cloud control plane. The appliance establishes a connection to the Horizon Cloud cloud control plane initially using HTTPS, and then opens a web-socket, using outbound Internet port 443. For ongoing operations, the connection between the Cloud Connector appliance and Horizon Cloud requires that outbound Internet connection using port 443 open all the time. You must ensure the following DNS names are resolvable and reachable using the specific ports and protocols as listed in the following table.

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination (DNS name)</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Horizon 7 Cloud Connector | One of the following, depending on which Horizon Cloud control plane is specified in your Horizon Cloud account:
 - cloud.horizon.vmware.com
 - cloud-eu-central-1.horizon.vmware.com
 - cloud-ap-southeast-2.horizon.vmware.com | 443 | TCP | Horizon Cloud control plane.
 Used for the Horizon 7 Cloud Connector to connect with the control plane.
 - cloud.horizon.vmware.com is in the United States
 - cloud-eu-central-1.horizon.vmware.com is in Europe
 - cloud-ap-southeast-2.horizon.vmware.com is in Australia |
Ports and Protocols Required by Horizon 7 Cloud Connector Appliance

For ongoing operations between Horizon 7 Cloud Connector and Horizon Cloud, the ports and protocols in the following table are required.

Table 1-2. Horizon 7 Cloud Connector Ports

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon 7 Cloud Connector</td>
<td>Horizon Cloud</td>
<td>443</td>
<td>HTTPS</td>
<td>Used to pair the Horizon 7 Cloud Connector with Horizon Cloud and transfer data.</td>
</tr>
<tr>
<td>Horizon 7 Cloud Connector</td>
<td>Connection Server</td>
<td>443</td>
<td>HTTPS</td>
<td>API calls to Connection Server.</td>
</tr>
<tr>
<td>Horizon 7 Cloud Connector</td>
<td>Connection Server</td>
<td>4002</td>
<td>TCP</td>
<td>Java Message Service (JMS) communication between the Cloud Connector and the Connection Server</td>
</tr>
<tr>
<td>New version of the Horizon 7 Cloud Connector appliance</td>
<td>Existing version of the Horizon 7 Cloud Connector appliance</td>
<td>22</td>
<td>SSH</td>
<td>Listen for requests to start the upgrade process.</td>
</tr>
<tr>
<td>Web browser</td>
<td>Horizon 7 Cloud Connector</td>
<td>443</td>
<td>HTTPS</td>
<td>Listen for the initiation of the pairing process.</td>
</tr>
<tr>
<td>Horizon 7 Cloud Connector</td>
<td>Certificate Authority</td>
<td>*</td>
<td>HTTP, HTTPS</td>
<td>CRL or OCSP queries</td>
</tr>
<tr>
<td>Cloud Monitoring Service agent in the desktop or server VMs that are from the cloud-connected Horizon 7 on your network</td>
<td>Horizon 7 Cloud Connector appliance</td>
<td>11002</td>
<td>TCP</td>
<td>For the Cloud Monitoring Service agent on a server or desktop VM to send data to the Cloud Connector</td>
</tr>
</tbody>
</table>

High-Level Workflow for When Your Very First Cloud-Connected Pod is from Deploying into Microsoft Azure

This is a high-level list of the steps for using the wizard in Horizon Cloud to make your very first cloud-connected pod by deploying a pod into your Microsoft Azure capacity. After that first cloud-connected pod is fully deployed and you have completed the steps to register Horizon Cloud with the pod’s intended Active Directory domain, you can use all the features provided Horizon Cloud, especially for provisioning VDI desktops, RDSH session-based desktops, or RDSH-based remote applications to your end users from that pod.

For an overall introduction to pods in Microsoft Azure, see Chapter 5 Introduction to Horizon Cloud Pods in Microsoft Azure.
Perform the following steps when you are deploying your very first cloud-connected pod and you are using the wizard to deploy it into Microsoft Azure.

2. Perform the preparatory tasks outside of Horizon Cloud. See Getting Started with VMware Horizon Cloud Service on Microsoft Azure.

3. Verify you meet the DNS, ports, and protocol requirements for deploying the pod. See DNS Requirements for a Horizon Cloud Pod in Microsoft Azure and Ports and Protocols Requirements for a Horizon Cloud Pod at the September 2019 Release’s Manifest or Later.

4. Deploy the pod. See Getting Started with VMware Horizon Cloud Service on Microsoft Azure.

5. Register your Active Directory domain with the deployed pod, which includes providing the name of a domain-join account. See Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment.

6. Give the Horizon Cloud Super Administrators role to an Active Directory group that includes that domain-join account as a member.

 Important You must ensure that the domain join account you enter when registering the domain is also in one of the Active Directory groups to which you assign the Horizon Cloud Super Administrators role. The system’s domain-join operations depend on the domain join account having the Horizon Cloud Super Administrators role. See Assign Horizon Cloud Administrative Roles to Active Directory Groups

7. If you plan to use Workspace ONE Access with the pod or you plan to have Horizon Clients connecting directly to the pod (not through a pod gateway configuration), then perform these steps:
 - In your DNS server, map a fully qualified domain name (FQDN) to the pod's tenant appliance IP address
 - Obtain an SSL certificate based on that mapped FQDN
You will upload an SSL certificate to the pod that is based on the FQDN that you've mapped to the pod's tenant appliance IP address in your DNS so that connections that go to the pod will make trusted connections. Such connections include Horizon Clients, for your users that you give that mapped FQDN to, and the Workspace ONE Access Connector that is used when you integrate Workspace ONE Access with the pod. The Workspace ONE Access Connector must connect to the pod using an FQDN that is mapped to the pod's tenant appliance IP address.

Attention When you are integrating Workspace ONE Access with the pod, you must upload an SSL certificate to the pod and configure your Workspace ONE Access to point to the pod, not to the pod's Unified Gateway Access configurations.

However, bear in mind that when you have uploaded an SSL certificate based on your DNS-mapped FQDN, if you try to connect by directly typing that FQDN into a browser — not going through a properly configured Workspace ONE Access — that pure FQDN use will appear as untrusted connections to the browser. The reason is because simply loading that FQDN into a browser is a connection using HTML Access (Blast), and that is how HTML Access (Blast) behaves. As a result, when you load that FQDN into a browser, it displays the typical untrusted certificate error.

In the absence of having Workspace ONE Access, to have connections using HTML Access (Blast) — using a browser basically — avoid the displayed untrusted certificate error, you must put a gateway configuration on the pod and have those connections use the load balancer and Unified Access Gateway instances from that gateway configuration. If you do not want to expose your FQDN to the Internet, you can deploy an internal Unified Access Gateway configuration. This internal Unified Access Gateway configuration uses a Microsoft internal load balancer to which end users who are internal to your corporate network can make their connections.

8 Upload an SSL certificate to the pod directly, using the pod's summary page in the Administration Console, if you plan to have one or both of the use cases described in the preceding step. See **Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod**.

Tip If the only access use case you will ever want to support is where connections will go to the pod's Unified Access Gateway instances through the load balancer connected to those instances, then uploading the SSL certificate to the pod directly is superfluous. Still, performing step 6 above and this step 7 is a recommended practice, because it ensures that if you do one day give out that FQDN to users to enter in their Horizon Clients, those clients can have trusted connections. Performing step 6 and this step 7 also provides you the ability to one day more quickly integrate the pod with Workspace ONE Access because you would have the FQDN mapped and the SSL certificate already in place on the pod.

9 Import a master image. On the Imported VMs page, use the **Reset Agent Pairing** action to pair the new master image with Horizon Cloud. See **Creating Desktop Images for a Horizon Cloud Pod in Microsoft Azure**.
Depending on whether your master image is for provisioning VDI desktops or for RDSH-based session desktops and RDSH-based remote applications, perform one or more of the following steps as appropriate.

- In a master image for VDI desktops, install the third-party applications you want your end users to use in their VDI desktops, and configure other applicable customizations, such as setting desktop wallpaper, installing the NVIDIA GPU drivers (for GPU-enabled images), and so on. Also optimize the image for Microsoft Sysprep best practices, if not done as part of the import image process.
 - Install NVIDIA Graphics Drivers in a GPU-Enabled Master Image.

- In a master RDS-enabled server image for provisioning RDSH-based session desktops and remote applications, install the third-party applications you want to provide to your end users from that RDS image and configure other applicable customizations, such as setting desktop wallpaper, installing the NVIDIA GPU drivers (for GPU-enabled images), and so on. Also optimize the image for Microsoft Sysprep best practices, if not done as part of the import image process.
 - Install NVIDIA Graphics Drivers in a GPU-Enabled Master Image.

Convert that master image into an assignable image, also known as sealing or publishing the image. See Convert a Configured Master Virtual Machine to an Assignable Image.

To provision session-based RDSH desktops and remote applications from a published master server image:

a. Create a desktops RDSH farm to provide session desktops, and then create assignments to entitle end users to use those desktops. See Farms in Horizon Cloud and Create an RDSH Session Desktop Assignment.

b. Create an applications RDSH farm to provide remote applications, add the applications to your application inventory, and then create assignments to entitle end users to use those remote applications. See Farms in Horizon Cloud, Importing New Applications from an RDSH Farm Using Auto-Scan from Farm, and Create a Remote Application Assignment.

To provision VDI desktops from a published master VDI desktop image, create a dedicated or floating VDI desktop assignment. See Create a Floating VDI Desktop Assignment and Create a Dedicated VDI Desktop Assignment.

When a pod is deployed with a gateway configuration, you must create a CNAME record in your DNS server that maps the fully qualified domain name (FQDN) that you entered in the deployment wizard to the appropriate Azure load balancer resource that is configured in the pod for that gateway.

- For an external gateway enabled with a public IP address, map the FQDN that you entered in the deployment wizard to the gateway’s Azure load balancer resource’s auto-generated public FQDN. Your DNS server record maps that load balancer’s auto-generated public FQDN with the FQDN
that your end users will use, and which is used in the uploaded certificate. The following code line
demonstrates an example. You locate the ID to use from the pod's details page in the
Administration Console, after you have registered the Active Directory domain. If the external
gateway was deployed in its own VNet, use the ID that is displayed in the Deployment ID field.

| ourApps.ourOrg.example.com | vwm-hcs-ID-uag.region.cloudapp.azure.com |

- For an internal gateway or an external gateway without a public IP address, map the FQDN that
 you entered in the deployment wizard to the gateway's Azure load balancer resource's private IP
 address. Your DNS server record maps that load balancer's IP address with the FQDN that your
 end users will use, and which is used in the uploaded certificate. The following code line
demonstrates an example.

| ourApps.ourOrg.example.com | Azure-load-balancer-private-IP |

After the pod is onboarded and you can access the Capacity page in the Administration Console,
navigate to the Capacity page to see the vwm-hcs-ID-uag.region.cloudapp.azure.com value needed
to map your FQDN in your DNS.

For details on how to locate the load balancer's FQDN in the Administration Console, see Obtain the
Pod Gateway's Load Balancer Information to Map in your DNS Server.

15 When a pod is deployed to have RADIUS two-factor authentication for the pod's gateways, you must
complete the following tasks:

- If you configured an external gateway with RADIUS settings and that RADIUS server is not
 reachable within the same VNet as used by the pod, or within the peered VNet topology if you
 deployed the external gateway into its own VNet, verify, configure that RADIUS server to allow
 client connections from the IP address of the external gateway's load balancer. In an external
 gateway configuration, the Unified Access Gateway instances attempt contact with the RADIUS
 server using that load balancer address. To allow the connections, ensure the load balancer
 resource's IP address that is in that external gateway's resource group is specified as a client in
 your RADIUS server configuration.

- If you configured an internal gateway, or an external gateway and your RADIUS server is
 reachable within the same VNet as used by the pod, configure the RADIUS server to allow
 connections from the appropriate NICs that were created in the gateway's resource group in
 Microsoft Azure that must communicate with the RADIUS server. Your network administrator
determines the RADIUS server's network visibility to the pod's Azure Virtual Network and
subnets. Your RADIUS server must allow client connections from the IP addresses of those
gateway NICs that correspond to the subnet for which your network administrator has given
network visibility to the RADIUS server. The gateway's resource group in Microsoft Azure has
four NICs that correspond to that subnet, two that are currently active for the two Unified Access
Gateway instances and two that are idle and will become the active ones after the pod goes
through an upgrade. To support connectivity between the gateway and the RADIUS server both
for ongoing pod operations and after each pod upgrade, ensure the IP addresses of those four
NICs are specified as clients in the RADIUS server configuration.
For information on how to obtain those IP addresses, see Update Your RADIUS System with the Required Horizon Cloud Pod Gateway Information.

After the above workflow steps are completed, your end users can launch their entitled desktops and remote applications using your FQDN in the Horizon Client or with HTML Access.

You can find in-depth details on how to accomplish each workflow step in the topics that are linked from each step above or in the companion guide. See Getting Started with VMware Horizon Cloud Service on Microsoft Azure.
Getting Started Using Your Horizon Cloud Environment

Your overall Horizon Cloud environment consists of the VMware-hosted cloud service, your provided capacity, and VMware software deployed into that capacity and connected to the cloud service. When the VMware software installed in that capacity is appropriately configured and connected to the cloud service, that configured entity is now a cloud-connected pod. For such cloud-connected pods, you can use the Horizon Cloud Administration Console for visibility, health monitoring, and help desk services with those pods.

For an overall introduction to Horizon Cloud, see the Deployment guide for this service level.

To perform administrative tasks in the environment, you use the cloud-based Administration Console. This user interface provides an integrated view and centralized access to manage virtual desktops and applications for delivery to your end users. The Administration Console works in an industry-standard Web browser. For the list of supported Web browser types and versions, see the Release Notes.

Depending on the type of capacity you have access to, you can use the Horizon Cloud Administration Console for an automated pod deployment into that capacity and configure that pod for connection to Horizon Cloud. For some types of pods, even though they cannot be automatically deployed and configured, you can still connect the Administration Console to those pods that already exist, after performing some required connection steps.

Important The Administration Console is dynamic and reflects what is available at the current service level. However, when you have cloud-connected pods that are not yet updated to the latest levels of the pod’s software, the Administration Console does not display those features that depend on the latest pod software level. Also, in a particular release, Horizon Cloud might include separately licensed features. The Administration Console dynamically reflects the elements related to such features only when your license includes use of such features.

When you are expecting to see a feature in the Administration Console and do not see it, contact your VMware account representative to verify whether your license entitles your use of that feature.

Before you can perform administrative tasks on a Horizon Cloud pod, you must:

- Connect your first pod to Horizon Cloud. For details, see the Getting Started guide for this service level.
- Register at least one Active Directory domain and grant the Super Administrator role to at least one of your Active Directory groups.
Registering the domain involves providing both:

- A primary domain-bind account and an auxiliary domain-bind account, used by Horizon Cloud to perform lookups in the Active Directory. By providing an auxiliary domain-bind account when you first register the domain, you prevent locking your administrator users out of the Administration Console if the primary bind account becomes inaccessible.

- A domain-join account, used by Horizon Cloud in pod operations that require joining virtual machines to the domain, such as when importing an image from the Microsoft Azure Marketplace, creating farm server instances, creating VDI desktop instances, and so on.

Note In this release, the domain-join account is used by system operations primarily with pods in Microsoft Azure. Cloud-connected Horizon 7 pods do not make use of the domain-join account that you specify in the Active Directory domain registration steps. However, even when you have only cloud-connected Horizon 7 pods for your environment, it is prudent to complete the domain-join account step to ensure that the subsequent prompt to assign the Super Administrators role is activated. Assigning that role to an Active Directory domain group is a required step for all types of cloud-connected pods.

For the requirements on these domain-bind and domain-join accounts, see Service Accounts That Horizon Cloud Requires for Its Operations.

For details about the domain registration workflow, see Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment.

Afterwards, a best practice is to follow the recommended actions displayed in the Getting Started wizard.

Important Due to a known issue, when connecting Horizon 7 on-premises and Horizon 7 in VMware Cloud on AWS pods using the Horizon 7 Cloud Connector, unexpected results can occur if you do not complete the Active Directory domain registration process for the first pod before attempting to run the Cloud Connector cloud-pairing workflow for subsequent pods. Even though the Cloud Connector's cloud-pairing workflow allows you to run it for multiple pods prior to completing the first Active Directory domain registration with Horizon Cloud, if you have not yet completed the first domain registration before running that cloud-pairing process on the next pod, this domain registration process might fail. In that case, you will have to:

1 Use the Unplug action in the Cloud Connector's cloud-pairing workflow to remove the connection between each of the cloud-connected pods until you are down to a single cloud-connected pod.

2 Use the Administration Console to remove the failed registration, by following the steps in Remove the Active Directory Domain Registration.

3 Complete the first Active Directory domain registration process, related to that pod.

4 Re-run the Cloud Connector cloud-pairing workflow on the other pods.
After the first Active Directory domain is registered with Horizon Cloud for the pod's use, you can subsequently register additional Active Directory domains. Registering additional Active Directory domains provides for user-related management tasks that involve users in those domains, such as working with the help desk features. After the first Active Directory domain is registered, you can also configure additional auxiliary domain bind accounts and an auxiliary domain join account.

Important In this release, all pods must have line of sight to all of the cloud-configured Active Directory domains. When you register an Active Directory domain in the Administration Console, that domain is added to the set of cloud-configured Active Directory domains for your Horizon Cloud environment.

This chapter includes the following topics:

- Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment
- Log in to the Horizon Cloud Administration Console
- Tour of the Horizon Cloud Administration Console
- Add Administrators to Log in to Your Horizon Cloud Tenant Environment
- Register Additional Active Directory Domains as Cloud-Configured Active Directory Domains
- Add Additional Auxiliary Bind Accounts for a Cloud-Configured Active Directory Domain
- Assign Horizon Cloud Administrative Roles to Active Directory Groups
- Enabling or Disabling the Cloud Monitoring Service (CMS) for Your Horizon Cloud Tenant Environment
- Join or Leave the Customer Experience Improvement Program
- Remove the Active Directory Domain Registration

Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment

After your first successful pairing of your first pod with Horizon Cloud, you log in to Horizon Cloud at cloud.horizon.vmware.com to register an Active Directory domain with your Horizon Cloud environment. When the registration workflow is completed, that Active Directory domain is the first cloud-configured Active Directory domain in your Horizon Cloud customer account. The overall registration workflow is a multi-step process.
You should perform this Active Directory domain registration process immediately or shortly after cloud pairing your first pod with Horizon Cloud. A pod is cloud paired with Horizon Cloud either when pod deployment was initiated from Horizon Cloud, in the case of pods in Microsoft Azure, or initiated using the Horizon 7 Cloud Connector, in the case of Horizon 7 pods on-premises or in VMware Cloud on AWS. The overall steps of this registration workflow are:

1. Provide the Active Directory domain's name-related information, protocol-related information, and credentials of a domain-bind service account that Horizon Cloud can use to query that Active Directory domain. For information about what Horizon Cloud requires for that domain-bind account, see Domain Bind Account Requirements.

2. Provide the IP address for the DNS server that you want Horizon Cloud to use to resolve machine names, the organizational unit (OU) in which you want the pod's desktop-related virtual machines (VMs), and credentials of a domain-join service account that Horizon Cloud can use to join those desktop-related VMs. Such VMs include imported master VMs, farm server instances, and VDI desktop instances, and so on. For information about what Horizon Cloud requires for that domain-join account, see Domain Join Account Requirements.
3 Assign the Horizon Cloud Super Administrator role to an Active Directory domain group.

Important Please review the following points for your understanding of the registration workflow:

- You must finish the entire Active Directory registration process for the first domain you are registering before you can move to other pages in the Administration Console. Main services are locked until you finish these tasks.

- Also, due to a known issue, when connecting Horizon 7 on-premises and Horizon 7 in VMware Cloud on AWS pods using the Horizon 7 Cloud Connector, unexpected results can occur if you do not complete this Active Directory domain registration process for the first pod before attempting to run the Cloud Connector cloud-pairing workflow for subsequent pods. Even though the Cloud Connector's cloud-pairing workflow allows you to run it for multiple pods prior to completing the first Active Directory domain registration with Horizon Cloud, if you have not yet completed the first domain registration before running that cloud-pairing process on the next pod, this domain registration process might fail. In that case, you will have to:
 a. Use the **Unplug** action in the Cloud Connector's cloud-pairing workflow to remove the connection between each of the cloud-connected pods until you are down to a single cloud-connected pod.
 b. Use the Administration Console to remove the failed registration, by following the steps in [Remove the Active Directory Domain Registration](#).
 c. Complete the first Active Directory domain registration process, related to that pod.
 d. Re-run the Cloud Connector cloud-pairing workflow on the other pods.

- Although in this release pods the domain-join account that you specify in these steps is used solely with pods in Microsoft Azure, when you have only cloud-connected Horizon 7 pods for your environment, it is prudent to complete the domain-join account step to ensure that the subsequent prompt to assign the Super Administrator role is activated. Assigning that role to an Active Directory domain group is a required step for all cloud-connected pod types.

Important In the **Bind Username** and **Join Username** text boxes related to the domain-bind and domain-join accounts, provide the account name itself, such as *ouraccountname*, like the user logon name without the domain name.

Prerequisites

Ensure that the Active Directory infrastructure is synchronized to an accurate time source to prevent the domain-join account step from failing. Such a failure might require you to contact VMware Support for assistance. If the domain-bind step succeeds, but the domain-join step fails, you can try resetting the domain and then investigate whether you need to adjust the time source. To reset the domain, see the steps in [Remove the Active Directory Domain Registration](#).

Verify that your first pod is successfully deployed. The Capacity section of the Getting Started wizard indicates whether the first pod is successfully deployed by displaying a green checkmark icon (✔).
For the required primary and auxiliary domain-bind accounts, verify you have the information for two Active Directory user accounts that adhere to the requirements described in Domain Bind Account Requirements.

Caution To prevent accidental lockouts that would prevent you from logging in to the Administration Console to manage your Horizon Cloud environment, you must ensure that your domain-bind accounts cannot expire, change, or be locked out. You must use this type of account configuration because the system uses the primary domain-bind account as a service account to query your Active Directory domain to verify credentials to log in to the Administration Console. If the primary domain-bind account becomes inaccessible for some reason, the system then uses the auxiliary domain-bind account. If both the primary and auxiliary domain-bind accounts expire or become inaccessible, then you will not be able to log in to the Administration Console and update the configuration to use an accessible domain-bind account.

For the domain-join account, verify the account meets the requirements described in Domain Join Account Requirements. The domain-join account also must reside in an Active Directory group that you add to the Super Administrator role in the Administration Console. The Horizon Cloud roles can be assigned at a group-level only.

Caution This point is critical for system operations involving pods in Microsoft Azure. If the domain-join account you provide in the Active Directory domain registration's domain-join account step is not already in one of the Active Directory groups to which you can assign the Super Administrator role, create an Active Directory group for that account so that you can ensure the Super Administrator role can be assigned to that domain-join account.

Important For a pod in Microsoft Azure, this domain-join account must be in one of the Active Directory groups to which you grant the Super Administrator role. If the domain-join account is not in a group granted the Super Administrator role, system operations that involve joining the pod's virtual machines to the domain will fail, such as when importing master images or creating RDSH farms and virtual desktops.

Verify you have the Active Directory domain's NetBIOS name and DNS domain name. You will provide these values in the Administration Console's Register Active Directory window in the first step of this workflow. For an example of how to locate these values, see Locating the Information Required for the Register Active Directory Workflow's NETBIOS Name and DNS Domain Name Fields.

For future thinking, keep in mind that if you plan to later use the same Horizon Cloud customer account to connect other Horizon 7 pods or deploy pods into Microsoft Azure for one unified environment, those pods will need to have line-of-sight to this same Active Directory domain at the time you connect or deploy those pods.

Procedure

2. Log in using the My VMware credentials associated with the Horizon Cloud environment.
 - If you have not previously accepted the Horizon Cloud terms of service using those My VMware credentials, a terms of service notification box appears after you click the Login button. Accept the terms of service to continue.
The Administration Console opens and displays the Getting Started wizard.

If the Getting Started wizard is not displayed when you first log in, open it by clicking **Settings > Getting Started.**

3 In the Getting Started wizard, expand **General Setup** section if it is not already expanded.

4 Under Active Directory, click **Configure.**

5 In the Register Active Directory dialog box, provide the requested registration information.

Important Use Active Directory accounts that adhere to the guidelines for the primary and auxiliary domain-bind accounts as described in the prerequisites.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **NETBIOS Name** | ■ When the first cloud-connected pod in your customer account is a Horizon 7 pod, at this step, the system displays a selection menu that is populated with the names of all of the Active Directory domains that the Horizon 7 pod can see. Select the Active Directory domain that you want to register first.
 ■ When the first cloud-connected pod in your customer account is a pod in Microsoft Azure, at this step, the system displays a text box. Type in the NetBIOS name for the Active Directory domain that the pod can see. Typically this name does not contain a period. For an example of how to locate the value to use from your Active Directory domain environment, see *Locating the Information Required for the Register Active Directory Workflow’s NETBIOS Name and DNS Domain Name Fields*.
 Note Keep in mind that if you plan to use this same Horizon Cloud customer account to connect additional Horizon 7 pods or deploy pods into Microsoft Azure for one unified environment, those subsequent pods will need to have line-of-sight to this same Active Directory domain at the time when you connect or deploy those pods. |
| **DNS Domain Name** | ■ When the first cloud-connected pod in your customer account is a Horizon 7 pod, the system automatically displays the fully qualified DNS domain name for the Active Directory domain selected for **NETBIOS Name**.
 ■ When the first cloud-connected pod in your customer account is a pod in Microsoft Azure, the system displays a text box. Type in the fully qualified DNS domain name of the Active Directory domain you specified for **NETBIOS Name**. For an example of how to locate the value to use from your Active Directory domain environment, see *Locating the Information Required for the Register Active Directory Workflow’s NETBIOS Name and DNS Domain Name Fields*. |
| **Protocol** | Automatically displays LDAP, the supported protocol. |
| **Bind Username** | User account in the domain to use as the primary LDAP bind account. **Note** Only provide the user name itself. Do not include the domain name here. |
| **Bind Password** | The password associated with the name in the **Bind Username** text box. |
| **Auxiliary Account #1**| In the **Bind Username** and **Bind Password** fields, type a user account in the domain to use as the auxiliary LDAP bind account and its associated password. **Note** Only provide the user name itself. Do not include the domain name here. |
You can optionally provide values for advanced properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The default is LDAP -> 389. You do not need to modify this text box unless you are using a non-standard port.</td>
</tr>
<tr>
<td>Domain Controller IP</td>
<td>(Optional) If you want Active Directory traffic to use a specific domain controller, type the preferred domain controller IP addresses, separated by commas. If this text box is left blank, the system uses any domain controller available for this Active Directory domain.</td>
</tr>
<tr>
<td>Context</td>
<td>LDAP naming context. This text box is autopopulated based on the information provided in the DNS Domain Name text box.</td>
</tr>
</tbody>
</table>

The following screenshot illustrates the Register Active Directory window when your first cloud-connected pod is in Microsoft Azure. The fields have values for an example Active Directory domain with NetBIOS name of ENAUTO and DNS domain name of ENAUTO.com.

6 Click Domain Bind.

When the domain-bind step succeeds, the Domain Join dialog box appears and you can continue to the next step.

Important If the domain-bind step fails, but you proceed to add the domain-join account and the system goes ahead to the Super Administrators role step, the registration process is not fully complete, even if the system proceeded to the next step. If this situation occurs, follow the steps in Remove the Active Directory Domain Registration and then start again with step 4.
7 In the Domain Join dialog box, provide the required information.

Note
- You must complete the required fields in this step when doing this Active Directory domain registration process regardless of pod type. Even though in this release the domain-join account is primarily used for system operations involving VMs located in pods in Microsoft Azure, completing this step ensures the next required step of granting the Super Administrator role gets completed.
- Use an Active Directory account that adheres to the guidelines for the domain-join account described in the prerequisites.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary DNS Server IP</td>
<td>The IP address of the primary DNS Server that you want Horizon Cloud to use to resolve machine names. For a pod in Microsoft Azure, this DNS server must be able to resolve machine names inside of your Microsoft Azure cloud as well as resolve external names.</td>
</tr>
<tr>
<td>Secondary DNS Server IP</td>
<td>(Optional) IP of a secondary DNS Server</td>
</tr>
<tr>
<td>Default OU</td>
<td>Active Directory organization unit (OU) that you want used by the pod’s desktop-related virtual machines such as imported VMs, farm server VMs, VDI desktop instances. An Active Directory OU is of the form such as OU=NestedOrgName, OU=RootOrgName, DC=DomainComponent. The system default is CN=Computers. You can change the default to match your needs, like CN=myexample. Note For a description of nested organization names, see Considerations For Using Nested Active Directory Domain Organizational Units. Each individual entered OU must be 64 characters long or less, not counting the OU= portion of your entry. Microsoft limits an individual OU to 64 characters or less. An OU path that is longer than 64 characters, but with no individual OU having more than 64 characters, is valid. However, each individual OU must be 64 characters or less.</td>
</tr>
<tr>
<td>Join Username</td>
<td>User account in the Active Directory that has permissions to join computers to that Active Directory domain. Note Only provide the user name itself. Do not include the domain name here.</td>
</tr>
<tr>
<td>Join Password</td>
<td>The password associated with the name in the Join Username text box.</td>
</tr>
</tbody>
</table>
8 (Optional) Specify an auxiliary domain-join account.

If the primary domain-join account you specified becomes inaccessible, the system uses the auxiliary
domain-join account for those operations in pods in Microsoft Azure that require joining the domain,
such as importing image VMs, creating farm server instances, creating VDI desktop instances, and so on.

Note
- Use an Active Directory account that adheres to the same guidelines for the primary domain-join
 account described in the prerequisites. Ensure that this auxiliary domain-join account has a
different expiration time from the primary domain-join account, unless both accounts have **Never
 Expires** set. If both the primary and auxiliary domain-join accounts expire at the same time, the
 system's operations for sealing images and provisioning farm server VMs and VDI desktop VMs
 will fail.
- You can add only one auxiliary domain-join account for each Active Directory you register with
 Horizon Cloud.
- If you do not add an auxiliary domain-join account at this time, you can add one later using the
 Administration Console.
- You can update or remove this account later.
- The agent-related software on a desktop-related virtual machine — such as a sealed image, farm
 server instance, or VDI desktop instance — must be version 18.1 or later for the system to use
 the auxiliary domain-join account with that virtual machine.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary Join Username</td>
<td>User account in the Active Directory that has permissions to join systems to that Active Directory domain.</td>
</tr>
<tr>
<td></td>
<td>Important Only provide the account name in this field, such as ouraccountname, like the user logon name without the domain name. Entering slashes or at-signs will display an error.</td>
</tr>
<tr>
<td>Auxiliary Join Password</td>
<td>The password associated with the name in the Auxiliary Join Username text box.</td>
</tr>
</tbody>
</table>

9 Click **Save**.

When the domain-join step succeeds, the Add Super Administrator dialog box appears and you can
continue to the next step.

Important If the domain-join step fails, the registration process is not fully complete. If this situation
occurs, follow the steps in **Remove the Active Directory Domain Registration** and then start again with
step 4.
In the Add Super Administrator dialog box, use the Active Directory search function to select the Active Directory administrator group you want performing management actions on your environment using the Administration Console. This assignment ensures that at least one of your Active Directory domain's user accounts is granted the permissions to log in at the second Administration Console login screen now that the Active Directory domain is configured for this customer account.

Important To the Super Administrator role, add the Active Directory group which includes the domain-join account, as described in the prerequisites. If the domain-join account is not in any of the Active Directory groups that have the Super Administrator role, those system operations for pods in Microsoft Azure that involve joining virtual machines to the domain will fail.

Caution After assigning this Active Directory group to the Super Administrator role, never remove the specified administrator group from your Active Directory system or change its GUID as it appears in your Active Directory system unless you have added another administrator group to this Super Administrator role, as described in Assign Horizon Cloud Administrative Roles to Active Directory Groups. This Super Administrator role governs which of your AD user accounts can log in to your Horizon Cloud tenant account and perform administrative operations in the Administrator Console. If you remove the group from your Active Directory system or change its GUID in your Active Directory system, that change will not be communicated to the Horizon Cloud control plane, and Horizon Cloud's knowledge of that AD group having the Super Administrator role will be broken. If that group is the only group assigned to this Super Administrator role, none of your AD accounts that used to have Super Administrator access will be able to log in to your Horizon Cloud tenant account with the access to perform administrative operations, which will block you from the ability to assign the role to another AD group to regain administrative access. At which point, you'll have to contact VMware Support to assist you in recovering administrative access to your tenant account.

Click **Save**.

When you click **Save**, the system returns you to the login screen. Now that you have registered the pod with your Active Directory domain, the system requires you to log back in: first with your My VMware account and then with the Active Directory account credentials of a user that is in the Active Directory group to which you just assigned the Super Administrator role.

The following items are now in place:

- The Active Directory domain is configured in the cloud plane as the first cloud-configured Active Directory domain associated with this Horizon Cloud customer account.
- For a pod in Microsoft Azure, Horizon Cloud has the necessary domain-join account needed for those system operations involving joining desktop-related virtual machines to that domain. Also, the domain-join account has the required Super Administrator role, so that those operations operate properly.
- Management activities in the Administration Console are now available.
Sign in to the Administration Console to perform management tasks has two login screens: first a My VMware login to Horizon Cloud and then an Active Directory login using an account from the group with the super administrator role.

Users in the group to which you granted the Super Administrator role will be able to access the Administration Console and perform management activities when they use the associated My VMware account for the first login screen. To enable those administrators to use their own My VMware account credentials for the first login step, complete the steps described in Add Administrators to Log in to Your Horizon Cloud Tenant Environment.

User accounts from the registered Active Directory domain can be selected for assignments involving resources from pods in Microsoft Azure.

The Administration Console's help desk features can be used with user accounts from that registered Active Directory domain.

What to do next

From this point, you typically perform the following tasks:

- Add additional auxiliary bind accounts to this Active Directory domain configuration. If the primary and first bind accounts you specified become inaccessible, the system uses the next auxiliary bind account to connect to the Active Directory. Having auxiliary bind accounts avoids locking out your administrator users from the Administration Console in situations where the primary bind account is inaccessible in the Active Directory domain. See Add Additional Auxiliary Bind Accounts for a Cloud-Configured Active Directory Domain.

- Grant access to additional users to administer your environment. First add their My VMware accounts with associated Horizon Cloud roles, and then give their Active Directory accounts the appropriate Horizon Cloud role. See Add Administrators to Log in to Your Horizon Cloud Tenant Environment and Assign Horizon Cloud Administrative Roles to Active Directory Groups.

- Continue with the Getting Started wizard's steps. See About the Horizon Cloud Getting Started Wizard.

- Navigate to the Dashboard and other areas of the Administration Console to explore or perform other management tasks. See Tour of the Horizon Cloud Administration Console.

- If you have additional Active Directory domains with users to whom you want to grant management access to the Administration Console or end users to whom you want to give assignments, you can register those Active Directory domains also. See Register Additional Active Directory Domains as Cloud-Configured Active Directory Domains.

- Assign the demo administrator role to those users in this domain to whom you want to grant read-only access to the Administration Console. See Assign Horizon Cloud Administrative Roles to Active Directory Groups.

Service Accounts That Horizon Cloud Requires for Its Operations

Horizon Cloud requires use of two accounts in your Active Directory (AD) domain to use as service accounts. This topic describes the requirements that those two accounts must meet.
Horizon Cloud requires that you specify two AD accounts to use as these two service accounts.

- A domain bind account that is used to perform lookups in your AD domain.
- A domain join account that is used for joining computer accounts to the domain and performing Sysprep operations.

Note For pods in Microsoft Azure, the system uses this domain join account in operations that require joining virtual machines to the domain, such as when importing an image from the Microsoft Azure Marketplace, creating farm server instances, creating VDI desktop instances, and so on.

You use the Administration Console to provide the credentials for these accounts to Horizon Cloud.

You must ensure the Active Directory accounts you specify for these service accounts meet the following requirements that Horizon Cloud requires for its operations.

Important You must ensure that your domain bind and domain join accounts continue to have the permissions as described here on all the OUs and objects that you are using and expect to use with the system. Horizon Cloud cannot pre-populate or predict in advance which Active Directory groups you might want to use in the environment. You must configure Horizon Cloud with the domain bind account and domain join account using the Administration Console.

Domain Bind Account Requirements

- The domain bind account cannot expire, change, or be locked out. You must use this type of account configuration because the system uses the primary domain bind account as a service account to query Active Directory. If the primary domain bind account becomes inaccessible for some reason, the system then uses the auxiliary domain bind account. If both the primary and auxiliary domain bind accounts expire or become inaccessible, then you will not be able to log in to the Administration Console and update the configuration.

Important If both the primary and auxiliary domain bind accounts expire or become inaccessible, then you will not be able to log in to the Administration Console and update the configuration with working domain bind account information. If you do not set **Never Expires** on the primary or auxiliary domain bind accounts, you should make them have different expiration times. You will have to keep track as the expiration time approaches and update your Horizon Cloud domain bind account information before the expiration time is reached.

- The domain bind account requires the sAMAccountName attribute. The sAMAccountName attribute must be 20 characters or less and cannot contain any of the following characters: "\[]: ; | = , + * ? < >
At a minimum, the domain bind account must have read permissions which can look up AD accounts for all of the AD organizational units (OUs) that you anticipate using in the Desktop-as-a-Service operations that Horizon Cloud provides, such as assigning desktop VMs to your end users. The domain bind account needs the ability to enumerate objects from your Active Directory.

Important The typical default settings in Active Directory give a standard domain user account the ability to do that enumeration. However, if you have limited the security permission in your Active Directory, you must ensure that the domain bind account has read permissions for all the OUs and objects that you anticipate and expect to use with Horizon Cloud.

Domain Join Account Requirements

- The domain join account cannot change or be locked out.
- Ensure that you meet at least one of the following criteria:
 - In your Active Directory, set the domain join account to **Never Expires**.
 - Alternatively, configure an auxiliary domain join account that has a different expiration time than the first domain join account. If you choose this method, ensure that the auxiliary domain join account meets the same requirements as the main domain join account you configure in the Administration Console.

Caution If the domain join account expires and you have no working auxiliary domain join account configured, Horizon Cloud operations for sealing images and provisioning farm server VMs and VDI desktop VMs will fail.

- The domain join account requires the **sAMAccountName** attribute. The **sAMAccountName** attribute must be 20 characters or less and cannot contain any of the following characters: "/ \ [] ; : = , + * ? < >
- The domain join account needs the AD permissions in the following list.

Important Some of the AD permissions in the list are typically assigned by Active Directory to accounts by default. However, if you have limited the security permission in your Active Directory, you must ensure that the domain join account has these permissions for the OUs and objects that you anticipate and expect to use with Horizon Cloud.

The system performs explicit permission checks on the domain join account within the OU you specify in the Active Directory registration workflow (in the Default OU field in that workflow) and within the OUs you specify in the farms and VDI desktop assignments you create, if those farm and VDI desktop assignment **Computer OU** fields are different from the default OU in the Active Directory registration.

To cover the cases where you might ever use a sub-OU, a best practice is for you to set these permissions to apply for all descendant objects of the Computer OU. The AD permissions required on the domain join account are:

- List Contents [For Descendant Objects of Computer OU]
Caution Notice that the Reset Password permission is slightly different from the others. Reset Password permission is specifically For Descendant Computer Objects.

Although you can set Full Control instead of setting all the permissions separately, it is still recommended that you set the permissions separately.

Locating the Information Required for the Register Active Directory Workflow’s NETBIOS Name and DNS Domain Name Fields

This topic gives an example for how you can locate the information required for the Administration Console’s NETBIOS Name and DNS Domain Name fields. These fields are required in the workflow for registering your Active Directory domain with your Horizon Cloud environment.

When you begin the workflow for the Active Directory domain registration, the Administration Console displays the Register Active Directory window. The following screenshot shows the top portion of the window.

You can obtain the information required for the NETBIOS Name and DNS Domain Name fields from your Active Directory domain environment. For a typical Active Directory domain environment, the NetBIOS name is the one that appears in the Domain name (pre-Windows 2000) field as viewed in an Active Directory management tools interface, such as when using the Active Directory Users and Computers snap-in to the Microsoft Management Console (MMC). You can also obtain the DNS domain name from that same snap-in.

This topic describes one method for locating the required information using the Active Directory Users and Computers MMC snap-in. When that snap-in installed on a Microsoft Windows server with Active Directory Domain Services or Remote Server Administration Tools installed, you can open the snap-in by running dsa.msc.
Procedure

1. Open the Active Directory Users and Computers configuration window to where you can see the domain configuration.

 The following screenshot is an example of the window for an Active Directory domain that has a DNS domain name of ENAUTO.com.

 ![Active Directory Users and Computers](image1)

2. View the domain's properties by right-clicking the domain-name icon and clicking Properties.

 The following screenshots are examples.

 ![Active Directory Users and Computers](image2)
The domain's NetBIOS name is the name in the Domain name (pre-Windows 2000) field. Typically this name does not include a period (.). You provide this name in the Register Active Directory window's NETBIOS Name field.

The name at the top of the Properties name is the domain's full DNS name. Typically this name does contain a period, like in the name ENAUTO.com. You provide this full DNS name in the Register Active Directory window's DNS Domain Name field.

The following screenshot is the Administration Console's Register Active Directory window when registering the example ENAUTO.com domain shown in the preceding screenshots. This domain's NetBIOS name is ENAUTO and its DNS domain name is ENAUTO.com.

Horizon Cloud Support for Active Directory Domain Controllers That Have LDAP Server Signing Requirements

Horizon Cloud supports the use of Active Directory Domain Controllers that have the Domain controller: LDAP server signing requirements security policy setting set to Require signing.

Horizon Cloud uses secure Generic Security Services Application Program Interface (GSSAPI) LDAP binds, with both signing and sealing enabled. This feature provides both LDAP data integrity and privacy. This feature also gives Horizon Cloud pods the ability to connect to Domain Controllers that have the Domain controller: LDAP server signing requirements security policy setting set to Require signing.
Log in to the Horizon Cloud Administration Console

The Administration Console is a Web interface provided by the cloud service. You use an industry standard browser to log in to the interface. Some details of the login steps vary depending on the configuration of your specific environment.

Note Login authentication into the Horizon Cloud Administration Console relies on My VMware account credentials. If the My VMware account system is experiencing a system outage and cannot take authentication requests, you will not be able to log in to the Administration Console during that time period. If you encounter issues logging in to the Administration Console’s first login screen, check the Horizon Cloud System Status page at https://status.horizon.vmware.com to see the latest system status. On that page, you can also subscribe to receive updates.

You first log in using the My VMware credentials of a My VMware account that has access permissions to your environment. The windows that display after the My VMware login window vary depending on the state of the pods associated with the My VMware account.

Note If you have not logged in with the My VMware credentials and accepted the Horizon Cloud terms of service, a notification box about the terms of service displays after you click Login.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Window Displayed After the My VMware Login Window</th>
<th>What to Do Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>First pod not yet deployed or paired with the cloud plane.</td>
<td>Getting Started wizard and the Capacity section</td>
<td>Deploy a pod or pair an existing pod with the cloud plane. For detailed steps, see Horizon Cloud Deployment Guide.</td>
</tr>
<tr>
<td>At least one pod deployed and paired, but no Active Directory domain configured in the cloud plane.</td>
<td>Getting Started wizard and the General Setup section</td>
<td>Perform the Active Directory registration procedure and assign the super administration role to a group of users, as described in Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment.</td>
</tr>
<tr>
<td>At least one Active Directory domain configured.</td>
<td>Active Directory login window displaying the name of the configured domain.</td>
<td>Log in using credentials for an account in the domain.</td>
</tr>
<tr>
<td>Multiple Active Directory domains configured.</td>
<td>Active Directory login window with a domain selection list.</td>
<td>Select a listed domain and log in using credentials for an account in the selected domain.</td>
</tr>
</tbody>
</table>

Prerequisites

Verify that you have the credentials of a My VMware account that is associated with the environment.

When an Active Directory domain is already configured in the cloud plane for that My VMware account, verify that you have the credentials for an Active Directory account in that domain that has access permissions.

Procedure

2 Log in with your My VMware credentials.

The following screenshot illustrates the login screen, with credentials filled in.

![Welcome to VMware Horizon Cloud login screen]

If you have not previously accepted the Horizon Cloud terms of service using those My VMware credentials, a terms of service notification box appears after you click the **Login** button. Accept the terms of service to continue.

3 Depending on the options presented to you in the next window, complete the log-in sequence appropriate for your configured environment.

If the environment associated with the My VMware account has a cloud-configured Active Directory domain, the Active Directory login window appears and you must log in with Active Directory credentials.

The Administration Console appears.

Note If you mistype the Active Directory user name or password, the system re-displays the My VMware login screen. In this situation, you have to go through the My VMware login screen again to get to the Active Directory login screen and try again.
What to do next

If applicable, perform the Active Directory domain registration process to register your Active Directory domain with your Horizon Cloud customer account. See Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment. You must finish the entire Active Directory registration process before you can work with any other services.

Note The default time period for which an administrator can be logged in to the Administration Console is 30 minutes. After that time has elapsed, the authenticated session ends and the administrator must log back in. When you have at least one pod in Microsoft Azure, you can adjust this time in the General Settings page's **Session Timeout** section, by editing the **Admin Portal Timeout** value. When you have only Horizon 7 pods in your environment, you cannot change the 30 minutes default. See Edit General Settings.

Tour of the Horizon Cloud Administration Console

The Horizon Cloud Administration Console is the user interface for your single point of control for managing and monitoring your Horizon Cloud environment and your cloud-connected pods.

Navigation and Functional Areas

On the left side of the interface is the Navigation bar, providing a hierarchy for navigating to the main areas of the user interface. The following table describes each area starting with at the top of the bar.

<table>
<thead>
<tr>
<th>Category</th>
<th>Functional Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor</td>
<td>The Monitor category provides access to the unified dashboard, activity monitoring, reports, and notifications. For an overview of the pages in this category, see About the Monitor Icon and topics Health Visibility and Insights into Your Cloud-Connected Pods Provided by the Cloud Monitoring Service in Horizon Cloud, Activity Page, Reports Page, and Notifications Page.</td>
</tr>
<tr>
<td>Assignments</td>
<td>The Assignments category provides access to assignments and assignment-related actions and workflow. For an overview of the pages in this category and links to the various assignment-related workflows you can do with assignments, see About the Assignments Icon.</td>
</tr>
</tbody>
</table>
Inventory

The Inventory category provides access to desktop-as-a-service artifacts from your pods, such as imported base VMs, sealed images, farms, and applications. For an overview of the pages in this category and tasks you can do in them, see [About the Inventory Icon](#).

Note Most of this category’s pages are only applicable to pods in Microsoft Azure.

Settings

The Settings category provides access to pages that involve settings and configurations in your environment. For an overview of the pages in this category and the tasks you can do in them, see [About the Settings Icon](#).

Important The Administration Console is dynamic and reflects what is available at the current service level. However, when you have cloud-connected pods that are not yet updated to the latest levels of the pod’s software, the Administration Console does not display those features that depend on the latest pod software level. Also, in a particular release, Horizon Cloud might include separately licensed features. The Administration Console dynamically reflects the elements related to such features only when your license includes use of such features.

When you are expecting to see a feature in the Administration Console and do not see it, contact your VMware account representative to verify whether your license entitles your use of that feature.

For example, in this release, some areas of the Administration Console are applicable only for pods deployed in Microsoft Azure. When your cloud-connected pods consist only Horizon 7 pods deployed on-premises or with VMware Cloud capacity, those areas that are applicable only for pods in Microsoft Azure display a graphic and message. The following screenshot is a portion of what is displayed.

When your cloud-connected pods include both pods in Microsoft Azure and Horizon 7 pods, you might see an explanatory banner on various pages.

Upper Toolbar

In addition to the **Logout** action under the logged-in user name, the upper part of the Administration Console provides icons to access:

- **Notifications**. For more information, see [Notifications Page](#).
- The console's search feature to search users or VMs (). For more information, see Using the Console's Search Feature.

- Support-related information () such as what's new in the current service level, Web-based documentation, build information, sending feedback, and requesting support.

- Language selector, to display the Administration Console in its supported languages.

Add Administrators to Log in to Your Horizon Cloud Tenant Environment

When logging in to the Administration Console, the first login screen requires an existing My VMware account that is associated with your Horizon Cloud environment. To add other users in your company or organization as administrators to log in to that first login screen, you associate the users’ My VMware accounts with your environment. You also associate each My VMware account with the Horizon Cloud role that is appropriate for their job role.

You associate My VMware accounts with your environment using either the My VMware Accounts area in the Getting Started wizard or the General Settings screen.

In addition to the Horizon Cloud role associated with an My VMware account, a person's Active Directory user account should also have a Horizon Cloud role assigned through the Active Directory group to which they belong. The Horizon Cloud role assigned to the person's Active Directory account is what governs which Administration Console elements are accessible to a person after logging in with their Active Directory account at the Administration Console's second login screen. For details, see Assign Horizon Cloud Administrative Roles to Active Directory Groups.

Important Even though you can perform these steps before the My VMware accounts are created at vmware.com, the accounts must be created at vmware.com before they can be used to log in to the Administration Console. My VMware accounts are created using the registration process at https://my.vmware.com/web/vmware/registration.

Procedure

1. In the Administration Console, use one of these methods to associate My VMware accounts with your environment.
 - From the Getting Started wizard, click General Setup > My VMware Accounts > Add.
 - Click Settings > General Settings > Edit and scroll to the My VMware Accounts area.

 The list of My VMware Accounts already associated with your environment is displayed.

2. Add a row to the list by clicking the plus icon () that is visible by the list's bottom entry.

 A new row appears with fields for entering a first name, last name, the My VMware account ID, and selecting a Horizon Cloud role.
3 Make a row for each My VMware account you want to associate with your environment and enter the requested information in each row, including selecting a Horizon Cloud role.

The role defaults to Customer Administrator unless you select a different one.

4 Click **Save** to save the information to the system.

If all of the added My VMware account IDs exist at vmware.com, they can be used to sign in to the first Horizon Cloud login screen.

Important The steps you just completed do not create the actual My VMware accounts. My VMware accounts are created using the registration process at https://my.vmware.com/web/vmware/registration.

What to do next

If the added users’ Active Directory accounts are in Active Directory groups which do not yet have an associated Horizon Cloud role, complete the steps described in [Assign Horizon Cloud Administrative Roles to Active Directory Groups](#).

Register Additional Active Directory Domains as Cloud-Configured Active Directory Domains

You can optionally register additional Active Directory domains with your Horizon Cloud customer account. Registering the Active Directory domain adds that domain to the set of cloud-configured domains associated with that Horizon Cloud customer account. When the domain is in the set of cloud-configured domain, then you can use the Administration Console to work with users from that domain, such as in the help desk features or for desktop-related features from pods in Microsoft Azure.

Important In the **Bind Username** and **Join Username** text boxes related to the domain-bind and domain-join accounts, provide the account name itself, such as `ouraccountname`, like the user logon name without the domain name.

Prerequisites

Ensure that the Active Directory infrastructure is synchronized to an accurate time source to prevent the domain-join account step from failing. Such a failure might require you to contact VMware Support for assistance. If the domain-bind step succeeds, but the domain-join step fails, you can try resetting the domain and then investigate whether you need to adjust the time source. To reset the domain, see the steps in [Remove the Active Directory Domain Registration](#).
For the required primary and auxiliary domain-bind accounts, verify you have the information for two Active Directory user accounts that adhere to the requirements described in Domain Bind Account Requirements.

Caution To prevent accidental lockouts that would prevent you from logging in to the Administration Console to manage your Horizon Cloud environment, you must ensure that your domain-bind accounts cannot expire, change, or be locked out. You must use this type of account configuration because the system uses the primary domain-bind account as a service account to query your Active Directory domain to verify credentials to log in to the Administration Console. If the primary domain-bind account becomes inaccessible for some reason, the system then uses the auxiliary domain-bind account. If both the primary and auxiliary domain-bind accounts expire or become inaccessible, then you will not be able to log in to the Administration Console and update the configuration to use an accessible domain-bind account.

For the domain-join account, verify the account meets the requirements described in Domain Join Account Requirements. The domain-join account also must reside in an Active Directory group that you add to the Super Administrator role in the Administration Console. The Horizon Cloud roles can be assigned at a group-level only.

Caution This point is critical for system operations involving pods in Microsoft Azure. If the domain-join account you provide in the Active Directory domain registration's domain-join account step is not already in one of the Active Directory groups to which you can assign the Super Administrator role, create an Active Directory group for that account so that you can ensure the Super Administrator role can be assigned to that domain-join account.

Verify you have the Active Directory domain's NetBIOS name and DNS domain name. You will provide these values in the Administration Console's Register Active Directory window in the first step of this workflow. For an example of how to locate these values, see Locating the Information Required for the Register Active Directory Workflow's NETBIOS Name and DNS Domain Name Fields.

Caution When you register an additional Active Directory domain, ensure that all of your cloud-connected pods have line-of-sight to that domain. All of the pods the same customer account record need to be able to reach the same set of cloud-configured Active Directory domains that are registered with that account. All of the pods need to be able to reach the same Active Directory servers and the DNS configuration needs to resolve all of those cloud-configured Active Directory domains.

Procedure

1. In the Administration Console, select **Settings > Active Directory**.
2. Click **Register**.
3 In the Register Active Directory dialog box, provide the requested registration information.

Important Use Active Directory accounts that adhere to the guidelines for the primary and auxiliary domain-bind accounts as described in the prerequisites.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **NETBIOS Name** | ■ When you have cloud-connected Horizon 7 pods, at this step, the system displays a selection menu that is populated with the names of all of the Active Directory domains that the Horizon 7 pod can see. Select the Active Directory domain that you want to register first.
■ When your only cloud-connected pods are in Microsoft Azure, at this step, the system displays a text box. Type in the NetBIOS name for the Active Directory domain that you want to register. Typically this name does not contain a period. For an example of how to locate the value to use from your Active Directory domain environment, see Locating the Information Required for the Register Active Directory Workflow's NETBIOS Name and DNS Domain Name Fields. |
| **DNS Domain Name** | ■ When you have cloud-connected Horizon 7 pods, the system automatically displays the fully qualified domain name for the Active Directory domain selected for **NETBIOS Name**.
■ When your only cloud-connected pods are in Microsoft Azure, the system displays a text box. Type in the fully qualified DNS domain name of the Active Directory domain you specified for **NETBIOS Name**. For an example of how to locate the value to use from your Active Directory domain environment, see Locating the Information Required for the Register Active Directory Workflow's NETBIOS Name and DNS Domain Name Fields. |
| **Protocol** | Automatically displays LDAP, the supported protocol. |
| **Bind Username** | User account in the domain to use as the primary LDAP bind account. |
| **Bind Password** | The password associated with the name in the **Bind Username** text box. |
| **Auxiliary Account #1** | In the **Bind Username** and **Bind Password** fields, type a user account in the domain to use as the auxiliary LDAP bind account and its associated password. |
| **Note** | Only provide the user name itself. Do not include the domain name here. |

4 Click **Domain Bind**.

When the domain-bind step succeeds, the Domain Join dialog box appears and you can continue to the next step.
5 In the Domain Join dialog box, provide the required information.

Note Use an Active Directory account that adheres to the guidelines for the domain-join account described in the prerequisites.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary DNS Server IP</td>
<td>The IP address of the primary DNS Server that you want Horizon Cloud to use to resolve machine names. For a pod in Microsoft Azure, this DNS server must be able to resolve machine names inside of your Microsoft Azure cloud as well as resolve external names.</td>
</tr>
<tr>
<td>Secondary DNS Server IP</td>
<td>(Optional) IP of a secondary DNS Server</td>
</tr>
<tr>
<td>Default OU</td>
<td>Active Directory organization unit (OU) that you want used by the pod's desktop-related virtual machines such as imported VMs, farm server VMs, VDI desktop instances. An Active Directory OU is of the form such as OU=NestedOrgName, OU=RootOrgName, DC=DomainComponent. The system default is CN=Computers. You can change the default to match your needs, like CN=myexample. Note For a description of nested organization names, see Considerations For Using Nested Active Directory Domain Organizational Units. Each individual entered OU must be 64 characters long or less, not counting the OU= portion of your entry. Microsoft limits an individual OU to 64 characters or less. An OU path that is longer than 64 characters, but with no individual OU having more than 64 characters, is valid. However, each individual OU must be 64 characters or less.</td>
</tr>
<tr>
<td>Join Username</td>
<td>User account in the Active Directory that has permissions to join computers to that Active Directory domain. Note Only provide the user name itself. Do not include the domain name here.</td>
</tr>
<tr>
<td>Join Password</td>
<td>The password associated with the name in the Join Username text box.</td>
</tr>
</tbody>
</table>
6 (Optional) Specify an auxiliary domain-join account.

If the primary domain-join account you specified becomes inaccessible, the system uses the auxiliary
domain-join account for those operations in pods in Microsoft Azure that require joining the domain,
such as importing image VMs, creating farm server instances, creating VDI desktop instances, and so on.

Note

- Use an Active Directory account that adheres to the same guidelines for the primary domain-join
 account described in the prerequisites. Ensure that this auxiliary domain-join account has a
different expiration time from the primary domain-join account, unless both accounts have **Never Expires**
set. If both the primary and auxiliary domain-join accounts expire at the same time, the
system's operations for sealing images and provisioning farm server VMs and VDI desktop VMs
will fail.

- You can add only one auxiliary domain-join account for each Active Directory you register with
Horizon Cloud.

- If you do not add an auxiliary domain-join account at this time, you can add one later using the
Administration Console.

- You can update or remove this account later.

- The agent-related software on a desktop-related virtual machine — such as a sealed image, farm
server instance, or VDI desktop instance — must be version 18.1 or later for the system to use
the auxiliary domain-join account with that virtual machine.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Auxiliary Join Username** | User account in the Active Directory that has permissions to join systems to that
 Active Directory domain. |
| | **Important** Only provide the account name in this field, such as ouraccountname, like the
 user logon name without the domain name. Entering slashes or at-signs will display an error. |
| **Auxiliary Join Password** | The password associated with the name in the **Auxiliary Join Username** text box. |

7 Click **Save**.

At this point, if the domain-join step succeeds, the Add Administrator dialog box appears and you can
continue to the next step.
In the Add Super Administrator dialog box, use the Active Directory search function to select the Active Directory administrator group you want performing management actions on your environment using the Administration Console.

This assignment ensures that at least one of your Active Directory domain's user accounts is granted the permissions to log in at the second Administration Console login screen now that the Active Directory domain is configured for this customer account.

Important To the Super Administrator role, add the Active Directory group which includes the domain-join account, as described in the prerequisites. If the domain-join account is not in any of the Active Directory groups that have the Super Administrator role, those system operations for pods in Microsoft Azure that involve joining virtual machines to the domain will fail.

Click **Save**.

The following items are now in place:

- The Active Directory domain is one of the cloud-configured Active Directory domains associated with this Horizon Cloud customer account.
- For a pod in Microsoft Azure, Horizon Cloud has the necessary domain-join account needed for those system operations involving joining desktop-related virtual machines to that domain. Also, the domain-join account has the required Super Administrator role, so that those operations operate properly.
- After logging in to Horizon Cloud using your My VMware credentials, in the Active Directory login window, users in that Active Directory that have an assigned Horizon Cloud role can select the domain that corresponds to their Active Directory account.
- Users in the group to which you granted the Super Administrator role will be able to access the Administration Console and perform management activities when they use the associated My VMware account for the first login screen. To enable those administrators to use their own My VMware account credentials for the first login step, complete the steps described in **Add Administrators to Log in to Your Horizon Cloud Tenant Environment**.
- User accounts from the registered Active Directory domain can be selected for assignments involving resources from pods in Microsoft Azure.
- The Administration Console's help desk features can be used with user accounts from that registered Active Directory domain.

What to do next

From this point, you typically perform the following tasks:

- Grant access to additional users in this domain to administer your environment. First add their My VMware accounts with associated Horizon Cloud roles, and then give their Active Directory accounts the appropriate Horizon Cloud role. See **Add Administrators to Log in to Your Horizon Cloud Tenant Environment** and **Assign Horizon Cloud Administrative Roles to Active Directory Groups**.
- Assign the demo administrator role to those users in this domain to whom you want to grant read-only access to the Administration Console. See Assign Horizon Cloud Administrative Roles to Active Directory Groups.

Add Additional Auxiliary Bind Accounts for a Cloud-Configured Active Directory Domain

When you register the first Active Directory domain with your Horizon Cloud environment, one auxiliary domain-bind account is required in the configuration. Having at least one auxiliary domain-bind account prevents the situation of locking out your administrator users from the Administration Console if the primary bind account becomes inaccessible in the Active Directory domain. You can optionally configure additional auxiliary bind accounts for the cloud-configured Active Directory domains. Then if both the primary and first auxiliary bind accounts configured for a domain become inaccessible, the system uses the next auxiliary bind account to connect to that Active Directory domain.

Prerequisites

Verify that the Active Directory domain is one of your Horizon Cloud account's cloud-configured domains by navigating to Settings > Active Directory and seeing if the domain is listed on that page.

Verify that you have the user name and password information for the following accounts that are already configured in the Administration Console for the domain, because the user interface requires you confirm the existing passwords when performing this task:

- Password for the already configured bind account
- Password for the domain join account already configured in the user interface

Verify that you have the user name and password information for the bind account you are adding and that it adheres to the requirements described in Domain Bind Account Requirements.

Caution To prevent accidental lockouts over time, ensure that your domain-bind account meets the stated criteria, especially that the account password cannot expire, change, or be locked out. You must use this account configuration because the system uses this account as a service account to query Active Directory.

Procedure

1. In the Administration Console, click Settings > Active Directory.
2. Click the Active Directory domain for which you want to add the auxiliary bind account.
3. Click Edit next to the displayed domain bind settings.
4. In the Edit Active Directory dialog box, entering the password for the primary bind account.
 Entering the password here makes the Domain Bind button available to click to save the changes.
5. Expand the advanced properties and click Add Auxiliary Bind Account.
 A section for the auxiliary account information is added to the dialog box.
6 Type the account credentials.

Note In the field for the user name, only provide the user name itself, for example `ourbindaccount2`. Do not include the domain name here.

7 Click **Domain Bind**.

8 In any subsequent windows that appear, confirm the existing settings by clicking **Save** in each window.

 If the **Domain Join** window appears, type the password of the domain-join account before clicking **Save**.

The auxiliary bind account is available for the system to use if the primary an auxiliary bind accounts become inaccessible.

You can add multiple auxiliary bind accounts by repeating the steps. To change an auxiliary bind account's password or to remove it, use the corresponding links displayed in the **Edit Active Directory** window's advanced properties area.

Assign Horizon Cloud Administrative Roles to Active Directory Groups

Use the Administration Console's role-based access control to determine which administrative privileges are granted to which of your Active Directory user accounts. When logging in to the Administration Console, the second login screen uses the Active Directory account credentials. The system provides predefined roles that you can assign to your Active Directory groups.

Caution Keep in mind that the Super Administrator role governs which of your AD user accounts can log in to your Horizon Cloud tenant account and perform administrative operations in the Administrator Console, including the steps here to assign roles to your AD groups. If you have only a sole, single AD group assigned to the Super Administrator role, do not remove that administrator group from your Active Directory system or change its GUID as it appears in your Active Directory system until you have added another administrator group to this Super Administrator role. If you remove the group from your Active Directory system or change it such that its GUID in your Active Directory system changes, that change will not be communicated to the Horizon Cloud control plane, and Horizon Cloud's knowledge of that AD group having the Super Administrator role will be broken. If that group is the sole group you have assigned to the Super Administrator role, then none of your AD accounts that used to be able to log in with Super Administrator access level will be able to log in and perform administrative operations, including the operation to assign the role to an AD group to re-establish a set of AD accounts with Super Administrator access. At which point, you'll have to contact VMware Support to assist you in recovering administrative access to your tenant account.

These roles and their associated rights determine which management actions a user can perform using the Administration Console. The visibility of the Administration Console's features and elements is controlled by the role assigned to the person's Active Directory account. For example, a person in an Active Directory group that is assigned the **Help Desk Read Only Administrator** role can navigate to the
user cards for end users and view the information, but not perform operations on the desktops. A person in an Active Directory group that is assigned the **Help Desk Administrator** role can navigate to the user cards and perform troubleshooting operations as well as view the information. You must assign a role to your organization's appropriate Active Directory groups before the users in that group can log in to the Administration Console's second login screen and access management actions.

Important These Horizon Cloud roles can be assigned to groups only. The system does not provide a way for you to choose individual Active Directory user accounts for each role.

- It is critical to understand this point when it comes to the domain-join account when your cloud-connected pods are in Microsoft Azure. If the domain-join account that you registered for your initial pod in Microsoft Azure is not already in one of your Active Directory groups, create an Active Directory group for that account so that you can ensure the Super Administrator role can be assigned to that domain-join account. That domain-join account must be given the Super Administrator role so that those system operations that involve joining virtual machines to the domain will work properly for in pods in Microsoft Azure. For more details, see [Service Accounts That Horizon Cloud Requires for Its Operations](#).

- This point that the roles can be assigned only to groups and not individual accounts also means you must avoid assigning two roles to the same Active Directory domain group. The Super Administrator role is intended to grant all the permissions to perform all management actions in the console and the Demo Administrator role is a read-only role. If you give both of those roles to the same Active Directory group, all of the users in that group will not receive the permissions of the Super Administrator role. Their actions are restricted in the Administration Console, which might prevent availability of full management of your environment.

The following predefined roles are provided by default. The predefined roles cannot be modified.

Table 2-1. Horizon Cloud Role-Based Access Control Groups

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super Administrator</td>
<td>A mandatory role that you must assign to at least one group in your Active Directory domain and optionally to others. This role grants all the permissions to perform management actions in the Administration Console.</td>
</tr>
<tr>
<td></td>
<td>Important Ensure that the domain-join account that you specified when registering the Active Directory domain with the first pod is in one of the groups given the Super Administrator role. For the end-to-end success of operations involving images and domain join operations, that domain-join account must be granted this Super Administrator role.</td>
</tr>
<tr>
<td>Help Desk Administrator</td>
<td>A role that you can optionally assign to one or more groups. The purpose of this role is to provide access to the Administration Console so that your Active Directory groups with this role can work with the user card features to:</td>
</tr>
<tr>
<td></td>
<td>- See the status of end user sessions.</td>
</tr>
<tr>
<td></td>
<td>- Perform troubleshooting operations on the sessions.</td>
</tr>
</tbody>
</table>
Table 2-1. Horizon Cloud Role-Based Access Control Groups (continued)

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help Desk Read Only Administrator</td>
<td>A role that you can optionally assign to one of more groups. The purpose of this role is to provide access to the Administration Console so that your Active Directory groups with this role can work with the user card features to see the status of end user sessions.</td>
</tr>
<tr>
<td>Demo Administrator</td>
<td>A read-only role that you can optionally assign to one or more groups. Demo administrators can view the settings and select options to see additional choices in the console, but the selections do not change the configuration settings.</td>
</tr>
</tbody>
</table>

Prerequisites

Caution Prior to assigning roles to your existing Active Directory groups, review the user account membership in the Active Directory groups to ensure a user account receives only one of these Horizon Cloud roles. Create specific Active Directory groups if needed. Because these roles are assigned at the level of the Active Directory group, some unexpected results can occur if a user's Active Directory account belongs to two Active Directory groups and each group is assigned a different role. The Administration Console features are visible according to this precedence order:

1. **Super Administrator**
2. **Help Desk Administrator**
3. **Demo Administrator**
4. **Help Desk Read Only Administrator**

As a result of this precedence order, if a user's Active Directory account belongs to both Active Directory groups ADGroup1 and ADGroup2, and you assign the **Super Administrator** role to ADGroup1 and assign the **Help Desk Read Only Administrator** role to ADGroup2, the Administration Console will display all of the features according to the **Super Administrator** role, instead of the subset of features for the other role, because the **Super Administrator** role takes precedence.

Procedure

1. In the Administration Console, navigate to **Settings > Roles & Permissions**.
2. Select one of the predefined roles and click **Edit**.
3. Use the search box to search for and select an Active Directory group.
 - You must type at least three characters into the search box to have results appear.
 - The group is added to the set of selected groups.
4. Click **Save**.

What to do next

If you want to give the same users access for the Administration Console's first login screen, add their My VMware accounts using the General Settings page. See [Add Administrators to Log in to Your Horizon Cloud Tenant Environment](#) for information.
The Administration Console’s first login screen uses My VMware accounts, which are associated with the Horizon Cloud roles using the General Settings page. The second login screen uses Active Directory credentials, which are associated with the Horizon Cloud roles using this Roles & Permissions page.

Enabling or Disabling the Cloud Monitoring Service (CMS) for Your Horizon Cloud Tenant Environment

Before you can obtain the data that gives you the ability to monitor capacity, usage, and health within and across your tenant’s fleet of cloud-connected pods, the Cloud Monitoring Service (CMS) must be enabled. CMS is one of Horizon Cloud’s central services. The CMS is enabled at a tenant level, and its setting applies for all of the pods that are connected to that Horizon Cloud tenant. The enablement of CMS is one of the key things that provides all of the visual pod-related, session-related, and user-related data that gets presented in the Horizon Cloud Administration Console’s Dashboard page’s charts and graphs, the Reports page’s reports, and in the user cards for the help desk features.

The Cloud Monitoring Service (CMS) collects and stores session, application, and desktop data from cloud-connected pods for monitoring and reporting purposes. The data is presented in various Administration Console pages, as described in Chapter 3 Introducing the Cloud Monitoring Service’s Unified Visibility, Health Monitoring, and Help Desk Features Provided in Horizon Cloud.

Tip The CMS is typically turned on by default at your first use of your Horizon Cloud tenant. If you are not seeing visual data displayed on those pages in the Administration Console, first follow these steps below to confirm that the CMS is turned on in the General Settings page.

When the Cloud Monitoring Service is enabled for your tenant, you can also optionally choose to opt in or opt out of tracking user information related to your end users’ sessions. Typical information that CMS collects about user sessions includes the times they logged in, session durations, and average session length per user.

- When you opt in to the collection of user data, Horizon Cloud collects this information and maintains it for the duration of your use of Horizon Cloud. If you decide later that you do not want to collect user data, you can stop the collection and also delete any collected data by disabling the Session Data toggle.

- When you opt out of the collection of user data but leave the CMS enabled, Horizon Cloud collects session data for a limited period and hashes the user name to allow real-time administration while disabling historical and aggregated viewing of information. As a result, some reports, such as the User Usage report, are not available. In this case, the system also continues to collect other data related to applications and desktops in connected pods.
Disabling these toggles also deletes any data that was previously collected. Disabling the **Session Data** toggle by itself deletes the previously collected user-related data, and leaves the other types of collected data, such as the pod-level and session-related data. Disabling the **Cloud Monitoring Service** toggle deletes all collected data for the tenant.

Caution If you have cloud-connected Horizon 7 pods that are sending desktop data to vRealize Operations Manager, enabling CMS causes data to be sent to the Cloud Monitoring Service instead. To continue using vRealize Operations Manager to collect that desktop session data, disable CMS.

Prerequisites

Before you can enable the Cloud Monitoring Service for any of your cloud-connected Horizon 7 pods or pods in Microsoft Azure, you must have completed the pod onboarding steps for at least one pod. The onboarding steps are specific to the type of pod. See the workflow links in **Pod Types You Can Connect to Horizon Cloud**.

Procedure

1. Navigate to the Horizon Cloud Administration Console's General Settings page by clicking **Settings > General Settings**.
2. Scroll down the page to locate the Monitoring section.

 ![Monitoring Settings](image)

 - **Cloud Monitoring Service**: Yes
 - **Allow Data Collection**: Yes
 - **Session Data**: Yes

3. Click the pencil icon to change the Cloud Monitoring Service settings.

 - Use the **Cloud Monitoring Service** toggle to enable or disable all of the data collection for your tenant environment. When disabled, the CMS does not collect any data from your entire fleet of cloud-connected pods in that tenant environment.
 - Use the **Session Data** toggle to opt in or opt out of tracking user information related to your end users' sessions.

4. Click **Save** to save your changes.

Join or Leave the Customer Experience Improvement Program

The VMware Customer Experience Improvement Program (CEIP) provides information that VMware uses to improve its products and services, to fix problems, and to advise you on how best to deploy and use VMware products.
This product participates in the VMware CEIP. Information about the data collected through CEIP and how VMware uses it are in the Trust & Assurance Center at http://www.vmware.com/trustvmware/ceip.html.

The CEIP appears the first time you log in to the Administration Console after registering an Active Directory domain with your environment's Horizon Cloud customer account. You must then make a selection about the CEIP. You can change your selection to join or leave the CEIP at any time after that initial selection.

Procedure

1. Log in to the Administration Console.
2. Click ☑️ > CEIP.
3. Move the slider next to Join Customer Experience Improvement Program to No to leave CEIP or Yes to join.
 The default is Yes.
4. Click Save.

Remove the Active Directory Domain Registration

Immediately, or shortly after, your first pod is paired with your Horizon Cloud customer account, you register an Active Directory domain. When that registration process is complete, that domain is a cloud-configured domain for your overall Horizon Cloud customer account. All of the pods that you deploy from Horizon Cloud or connect to Horizon Cloud using the same customer account are also associated with that first cloud-configured Active Directory domain through the customer account record. All pods that share the same customer account record must have line-of-sight to the cloud-configured domains in that record.

In some situations, you might need or want to remove the Active Directory domain association from your customer account. Examples of such situations are:

- You deployed your initial pod in Microsoft Azure and started the domain-bind step. Then something went wrong and left the domain registration in an incomplete state. In this situation, some of the Active Directory domain information gets written to your Horizon Cloud customer account record in the cloud. However, because the information is incomplete, you find you cannot proceed to finish the domain registration using the Administration Console.

- You ran a proof-of-concept by deploying a pod in Microsoft Azure, registering a test Active Directory domain, and ran many of the workflows. Then you deleted that pod to start fresh and create your production pod with your production domain. However, because the initial test Active Directory domain is still a cloud-configured domain in your customer account, the system expects to associate that test Active Directory domain with your new pods.
You ran the Horizon 7 Cloud Connector's onboarding workflow for multiple Horizon 7 pods using this Horizon Cloud customer record, before logging in to the Administration Console to complete the Active Directory domain registration process. The Horizon 7 Cloud Connector's onboarding workflow creates a partial configuration in Horizon Cloud of the Active Directory domains known to the Horizon 7 pods' Connection Servers. That partial configuration is completed when you perform the initial Active Directory domain registration workflow in the Administration Console. Due to a known issue in this release, connecting multiple Horizon 7 pods to Horizon Cloud prior to completing the registration workflow in the Administration Console can cause the registration workflow in the Administration Console to fail. In this situation, you must undo the cloud pairing for all but one of those pods using the Unplug action in the connector's onboarding user interface and remove the partial Active Directory domain registration before attempting to register the domain.

The Administration Console displays the buttons for removing the Active Directory domain information when the following conditions are true.

- The Getting Started page shows that only one pod is deployed, or paired, in your environment or you have deleted all of your initial pods and no pods are visible on the Capacity page.

 Important If you have deleted all of your initial pods and you had a True SSO configuration, the button for removing the Active Directory domain information is not enabled. Before you delete your last pod, ensure that you remove any True SSO configurations from the Active Directory page in the Administration Console so that the system will enable the **Delete** button for the Active Directory configuration.

- If you have a pod in Microsoft Azure, that pod does not have any of the following items, such as:
 - Imported VMs listed on the Imported VMs page
 - Sealed images listed on the Images page
 - Farms listed on the Farms page
 - VDI desktop assignments, listed on the Assignments page
 - Utility VMs listed on the Utility VMs page
 - Any True SSO configuration shown on the Active Directory page
 - Any identity management configuration shown on the Identity Management page
 - More than one Active Directory domain shown on the Active Directory page

Procedure

- Perform one of the following steps in the Administration Console.
 - If you are resetting the domain because the domain-bind step or domain-join step of your first Active Directory domain registration workflow was not successfully completed, expand the General Setup section in the Getting Started page. In the Active Directory row, click **Delete**.
 - Otherwise, if the **Settings** menu is visible, you can navigate to the Active Directory page using **Settings > Active Directory**. Then click **Delete**.
The system logs you out of the Administration Console and presents its initial login screen.

What to do next

Log back in as described in [Log in to the Horizon Cloud Administration Console](#).
Introducing the Cloud Monitoring Service’s Unified Visibility, Health Monitoring, and Help Desk Features Provided in Horizon Cloud

The Cloud Monitoring Service (CMS) is one of the central services provided in Horizon Cloud. The CMS gives you the ability to monitor capacity, usage, and health within and across your fleet of cloud-connected pods, regardless of the deployment environments in which those individual pods reside. Whether a cloud-connected pod lives on-premises, in VMware Cloud on AWS, or in Microsoft Azure, the Cloud Monitoring Service obtains the capacity, health, and usage-related data from the pod and presents that data to you within the Horizon Cloud Administration Console. The Horizon Cloud Administration Console is your single pane of glass for working with your Horizon Cloud tenant's fleet of cloud-connected pods. The CMS feeds data into the various Dashboard page's tabs to help you see overall health and drill-down into the health, capacity, and usage metrics at various levels. The CMS also provides the data for many of the reporting views within the Administration Console's Reports page, as well as within the user cards, in which you perform help desk operations to support your individual end users.

Before you can use the Administration Console for all of the visibility, health monitoring, and help desk features that the CMS provides, you must have in your Horizon Cloud environment a minimum of the following:

1. One cloud-connected pod.
2. A completed Active Directory domain registration for at least one Active Directory domain to which that pod has line of sight.
3. The Super Administrators role assigned to at least one group in that Active Directory domain.
4. The Cloud Monitoring Service (CMS) enabled for your tenant environment. The Administration Console's General Settings page provides the switches for enabling or disabling the CMS for your Horizon Cloud tenant environment. The same switch controls the use of CMS for all of the cloud-connected pods in the same tenant environment. See Edit General Settings.
The types of pods that you can connect to Horizon Cloud are described in Chapter 1 Introduction to Horizon Cloud and Onboarding Pods to Become Cloud-Connected Pods. For the high-level steps needed to get useful cloud-connected pods that can leverage the Cloud Monitoring Service, see the suggested workflow for the pod type you want:

- **High-Level Workflow When You are Onboarding an Existing Manually Deployed Horizon 7 Pod as Your First Pod to Your Horizon Cloud Tenant Environment**
- **High-Level Workflow for When Your Very First Cloud-Connected Pod is from Deploying into Microsoft Azure**

Use the following topics and their subtopics to learn about the Administration Console and the unified visibility, health monitoring, and help desk features that the Cloud Monitoring Service provides.

This chapter includes the following topics:

- Cloud Monitoring Service (CMS) and Horizon Agents Installer (HAI) Options
- Health Visibility and Insights into Your Cloud-Connected Pods Provided by the Cloud Monitoring Service in Horizon Cloud
- Help Desk Features in Your Horizon Cloud Environment
- Manually Upgrade the Horizon 7 Cloud Connector Virtual Appliance

Cloud Monitoring Service (CMS) and Horizon Agents Installer (HAI) Options

Availability of user card and reports information depends on whether you have Cloud Monitoring Service (CMS) enabled and which options you selected when installing software using the Horizon Agents Installer (HAI).

To display historical session data, you should enable CMS and install the vRealize Operations Desktop Agent in HAI. To Show live session data, you should also install the Help Desk Plugin in HAI.

- **Historical session data refers to:**
 - Session information for logged off sessions over the previous seven days.
 - Performance trend data (CPU, memory, latency, disk trend) for active, idle, and disconnected sessions over the previous 15 minutes.

- **When live session data does not appear, you still see VM relative information and log in time breakdowns, but do not see:**
 - Client information.
 - User experience information.
 - Real-time performance trends.
Note If you have cloud-connected Horizon 7 pods that are sending desktop data to vRealize Operations Manager, enabling CMS causes data to be sent to the Cloud Monitoring Service instead. To continue using vRealize Operations Manager to collect that desktop session data, disable CMS.

Health Visibility and Insights into Your Cloud-Connected Pods Provided by the Cloud Monitoring Service in Horizon Cloud

The Horizon Cloud Administration Console provides the Dashboard page as your one-stop place from which you can get a visual sense of the overall health of your entire fleet of cloud-connected pods, as well as access real-time metrics and health information for all of the pods in your Horizon Cloud tenant environment. The data is provided by the Cloud Monitoring Service (CMS), which is one of the central services in Horizon Cloud. The Dashboard page is available from the Administration Console's Monitor icon.

Horizon Cloud Administration Console’s Dashboard Page - Overview Tab

Use the Dashboard page's Overview tab to get a snapshot health view for what is happening in your entire fleet of cloud-connected pods, and then optionally drill-down to see more details. The Cloud Monitoring Service (CMS), one of Horizon Cloud's central services, provides the data that you see on the Overview tab. The CMS obtains this data from all of the cloud-connected pods in your Horizon Cloud tenant environment and presents the data for your use.

Note The charts of session data depict historical data and trends only when the Cloud Monitoring Service feature is enabled for your Horizon Cloud environment. That feature collects and stores session, application, and desktop data from cloud-connected pods for monitoring and reporting purposes. When the Cloud Monitoring Service feature is disabled for your environment, historical data is not collected and therefore not available to display. In that case, the charts of session data you see are based on data from current sessions only. The Cloud Monitoring Service feature is enabled by default. If the feature is not enabled in your environment and you want to use the service to collect session data over time, you can enable the feature on the General Settings page. See Edit General Settings.

The following screenshot illustrates the Overview tab with four cloud-connected pods. The screenshot depicts two pods using Microsoft Azure capacity, one Horizon 7 on-premises pod, and one Horizon 7 pod using VMware Cloud on AWS capacity. The Horizon 7 on-premises pod is located in Paris, and is reporting two issues.
The system refreshes the information every few minutes. You can also refresh the page manually.

Important For pods deployed into Microsoft Azure, these reports do not reflect user-related data until an hour has passed from the time you deployed the pod or from the time you enabled monitoring user session information.

Global Footprint

The upper portion of the Dashboard page contains the interactive Global Footprint map, which has two view options: Issues and Session. This map visually depicts your pods’ geographic city locations and shows additional information when you hover on a location. The map supports the typical industry-standard map interactivity features, such as panning and zooming in or out to view the map at different scales. Zooming in for more detail is especially useful to see those pods which are clustered together at the same location. When you first display the map, the zoom defaults to a scale that will show all your connected pods in a single view.

When your environment has pods of different types, you can use the filter function at the bottom right of the map area to selectively show or hide pods of specific types.

Important The system uses the location information that is associated with the pod from one of the following ways:

- In the process of deploying and connecting the pod to Horizon Cloud, you specified a city name.
- For all pods, according to the city name specified for the pod’s associated location in its pod details.

To associate a location with an already onboarded pod, see Change a Cloud-Connected Pod’s Associated Location, Name, and Description using the Horizon Cloud Administration Console

The system uses its city lookup table to get the latitude and longitude coordinates associated with the specified city, and places the pod at those coordinates on the map.
Click on Issue or Session to the right of the map to select a view of the Global Footprint. Based on the view selected, the pod icons in the Global Footprint map depict health-related or session-related data. Hovering over the pod icons will show data relevant to the pods’ issues or sessions, depending on the view. The two views are described below.

<table>
<thead>
<tr>
<th>View</th>
<th>Description</th>
</tr>
</thead>
</table>
| Issue | When the Issue view is selected (as it is by default), the map has the title Global Footprint - Health. Each main visual icon represents the set of pods at that geographic city location along with the total number of pods there. Hovering over an icon displays a list of the pods at that location, along with an icon indicating the type of pod and a green dot indicating a healthy deployment or a red dot indicating an unhealthy deployment of that pod. Clicking on the **VIEW** link in that pod list opens the Global Footprint - Health page showing detailed information for issues reported for the pods at that location. The area to the right of the map shows the total number of current issues at the top and lists the top five issues below. Hovering on an issue in this area opens the pod information pop-up on the map for the location where the issue is occurring. Clicking on the **VIEW** link at the bottom of the issue list opens the Global Footprint - Health page showing detailed information for issues. On the Global Footprint - Health page, the list of issues displayed can be filtered by location and pod. There are also sort and filter functions for each column of information. The issue list window has multiple tabs:
 - The Total Issues tab lists all of the issues and details about each one, such as which pod has the issue, the pod type, and so on. For Horizon 7 pods, the pod name is a link that you can click to launch Horizon Administrator for that pod’s Horizon Connection Server.
 - The Delivery tab lists issues related to components of the pod itself, such as the Connection Server.
 - The Infrastructure tab lists issues related to non-pod components that are used with, connect to, or which underlie the pod, such as your Active Directory domain, NTP service, the Microsoft Azure service, and so on.
 - The User Experience tab lists issues related to user experiences. |
| Session (VDI & RDSH) | When the Session view is selected, the map has the title Global Footprint - Sessions. Each main visual icon represents the set of pods at that geographic city location along with the total number of sessions in those pods. This total includes connected, active, and idle sessions. Hovering over an icon displays a list of the pods with an icon indicating the type of pod and displays session data. If the Cloud Monitoring Service feature is enabled, the pop-up displays the session trend and session count details for the pods at that location. If you have disabled the Cloud Monitoring Service feature, the pop-up displays a pie chart of current sessions by session type and the session count details for the pods at that location. Clicking on the **VIEW** link under the list of pods opens the Global Footprint - Sessions page for that location. The area to the right of the map shows the total number of end-user sessions for your pods. This total includes connected, active, and idle sessions. It then lists the pods with the number of sessions for each. Hovering on a pod in the list opens the information pop-up on the map for the location where that pod is located. Clicking on the **VIEW** link at the bottom of the pod list opens the Global Footprint - Sessions page. The Global Footprint - Sessions page contains a chart for each session type showing sessions by status and a list of sessions with detailed information for each. The list of sessions displayed can be filtered by location and pod. There are also sort and filter functions for each column of information. |
Utilization

Pods Using Microsoft Azure Capacity

For your pods in Microsoft Azure, the Utilization graph displays those pods’ allocated capacity and their utilization of allocated desktops and RDS-based remote applications. Roll over the square to see the charted data. In the charted data, the overall capacity percentage is updated once an hour. The capacity percentages for the desktop and application sessions is updated every hour.

By default, the charted data is:

- The last 24 hours of data. One point corresponds to one hour.
- Data averaged over the pods in your environment within the last 24 hours, on an hourly basis.

The system’s definition of utilization is the number of active sessions divided by the maximum possible number of sessions \((\frac{\text{ActiveSessions}}{\text{MaxPossibleSessions}})\).

Cloud-Connected Horizon 7 Pods

For your cloud-connected Horizon 7 pods, the Utilization graph displays the maximum values for Average CPU, Memory, and Disk Usage. Roll over the square to see the charted data.

By default, the charted data is:

- The last 24 hours of data. One point corresponds to one minute.
- Data averaged over the pods in your environment within those 24 hours, on a minute-by-minute basis.

Sessions

This area shows the breakdown of active and idle sessions for all of your pods’ VDI desktops, RDSH desktops, and RDSH applications.

Connection Statistics

This area displays the breakdown of the protocols, Horizon client types, and forms of network access in use by end-user connections to all of your pods.

The Horizon Client chart includes a type labeled Other. The system labels a connection as Other when:

- The connection is using an older version of the Horizon Agent that cannot report the client type.
- The connection is using a VMware-certified Thin Client or Zero Client to access the desktops and applications in cloud-connected Horizon 7 7.7 pods.
Horizon Cloud Administration Console's Dashboard Page - Sessions Tab

Use the Sessions tab for working with detailed data about the end-user sessions delivered from your pods. The Cloud Monitoring Service (CMS), one of Horizon Cloud’s central services, provides the data that you see on the Sessions tab. The CMS obtains this data from all of the cloud-connected pods in your Horizon Cloud tenant environment and presents the data for your use.

Note: When the Cloud Monitoring Service feature is disabled for your environment, the Sessions tab does not appear. The Cloud Monitoring Service feature is enabled by default. If the feature is not enabled in your environment and you want to use the service to collect session data over time, you can enable the feature on the General Settings page. See [Edit General Settings](#).

The top of the Sessions tab shows total numbers for sessions and users. You can filter this data by time period, location, deployment type, pod, and pool. The rest of the tab contains several charts representing detailed information about the sessions in your environment, as described in the following table.

- Pointing to chart elements (trend lines, bars) displays numerical data.
- Clicking the **View** link in the bottom left of any of these charts opens a list page that shows a detailed breakdown of the chart data. These pages also indicate the status of each session or VM: green for normal, yellow for warning, or red for critical.

<table>
<thead>
<tr>
<th>Chart</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count by Session Status</td>
<td>Trend lines showing number of sessions over time by session status (Total Sessions, Active, Idle, Disconnected).</td>
</tr>
<tr>
<td>Resource Consumption</td>
<td>Use the drop-down menus in the upper right of the chart to select the resource (CPU, Memory, IOPS) and deployment type.</td>
</tr>
<tr>
<td></td>
<td>- When the deployment type is Microsoft Azure:</td>
</tr>
<tr>
<td></td>
<td>- The trend lines show resource consumption over time by session type (Total Sessions, Total Desktop Sessions, Total Application Sessions).</td>
</tr>
<tr>
<td></td>
<td>- To the right of the trend line chart is a bar showing the number of sessions per pod (if data for multiple pods is shown) or number of sessions per assignment (if data for a single pod is shown).</td>
</tr>
<tr>
<td></td>
<td>- When the deployment type is On-Premises or VMware Cloud:</td>
</tr>
<tr>
<td></td>
<td>- The trend line shows resource consumption over time for all sessions.</td>
</tr>
<tr>
<td></td>
<td>- To the right of the trend line chart is a pie chart showing resource utilization per pod (if data for multiple pods is shown) or resource utilization per assignment (if data for a single pod is shown).</td>
</tr>
<tr>
<td></td>
<td>Note: You can also see detailed information for resource consumption in the CPU Utilization, Memory Utilization, Disk IOPS Utilization charts.</td>
</tr>
<tr>
<td>CPU Utilization</td>
<td>Number of VMs with different levels of CPU utilization.</td>
</tr>
<tr>
<td>Chart</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Memory Utilization</td>
<td>Number of VMs with different levels of memory utilization.</td>
</tr>
<tr>
<td>Disk IOPS Utilization</td>
<td>Number of VMs with different levels of disk IOPS utilization.</td>
</tr>
<tr>
<td>Disk Latency</td>
<td>Number of VMs with different levels of disk latency.</td>
</tr>
<tr>
<td>Logon Duration</td>
<td>Number of sessions with different logon durations.</td>
</tr>
<tr>
<td>Latency (Blast)</td>
<td>Number of Blast sessions with different levels of latency.</td>
</tr>
<tr>
<td>Latency (PCoIP)</td>
<td>Number of PCoIP sessions with different levels of latency.</td>
</tr>
</tbody>
</table>

Horizon Cloud Administration Console’s Dashboard Page - Users Tab

The Users tab displays detailed information about your users and issues they are encountering. The Cloud Monitoring Service (CMS), one of Horizon Cloud’s central services, provides the data that you see on the Users tab. The CMS obtains this data from all of the cloud-connected pods in your Horizon Cloud tenant environment and presents the data for your use.

Customer Issues Included in the Data

There are three main types of issues included in the data displayed on the Users tab. If any of the following metrics are out of the acceptable range, it counts as a user having an issue:

<table>
<thead>
<tr>
<th>Issue Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency</td>
<td>Disc latency is outside acceptable range.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol latency or packet loss is outside acceptable range.</td>
</tr>
<tr>
<td>Slow Logon</td>
<td>Logon duration is outside acceptable range.</td>
</tr>
</tbody>
</table>

Data Filters

There are filters at the top of the tab that allow you to select the information displayed:

- Location filter - If you have multiple locations, you can select a single location to view. All locations are included by default.
- Deployment filter - If you have multiple deployment types, you can select a single deployment type to view. All deployment types are included by default.
- Pod filter - If you have multiple pods, you can select a single pod to view. All pods are included by default.
- Pool filter - If you have multiple pools, you can select a single pool to view. All pools are included by default.

Global Metrics

The following values appear in the box closest to the top of the tab.
Unique Users
Total unique users. This value includes active, idle, and disconnected sessions.

User Sessions
Total sessions. This value includes active, idle, and disconnected sessions.

Active Sessions
Total active sessions.

Issues
Number of users impacted by user experience related issues.

User Distribution
This bar chart shows the distribution of users impacted by issues across pods, pools, or assignments.

- If you have **All Pods** selected in the pod filter at the top of the tab, the chart shows users by pod. Clicking the bar for a pod changes the pod filter to select that pod. The tab then shows data only for that pod, and the User Distribution chart shows only users in that pod, broken down by pool.

- If you have a particular pool selected in the pool filter at the top of the tab, the tab shows data only for that pool, and the User Distribution chart shows only users in that pool.

Click the **View** link at the bottom left of the chart to show a list of the users included in the chart with information about issues being encountered.

Users by Consumption
List of users by consumption of resources.

- Use the drop-down menu in the top right of the chart to select a resource (CPU, Memory, or Disk IOPS).

- Placing the pointer on the value in the **Utilization by Sessions** column displays the utilization value.

- Click the **View** link at the bottom left of the chart to show a detailed list of the users included in the chart data. On the list page, there is an additional filter at the top of the page that allows you to select a particular resource (CPU, Memory, or Disk IOPS) to be shown. You can also click the value in the Sessions column to view session details for the user.

Issues
Bar chart showing the number of affected users broken down by type of issue (Latency, Protocol, Slow Logon).

Click the **View** link at the bottom left of the chart to show details for the issues included in the chart data.

- There is an additional filter at the top of the page that allows you to select a particular type of issue (Latency, Protocol, Slow Logon) to be shown.

- Clicking a bar for a particular issue type in the chart sets the issue type filter to that type, so that only those issues are shown.

- The list at the bottom of the page shows the values for the main metrics (Disc Latency, Protocol Latency, and Login Duration), and values for Bandwidth, Frame Rate, and Packet Loss.
Help Desk Features in Your Horizon Cloud Environment

The Administration Console provides a single pane to use for monitoring an end user's use of virtual desktops and applications and troubleshooting issues. After you configure the role-based access to the Administration Console for your help desk administrators, they can log in to the Administration Console and use the console's Search feature to look up users. For a particular user, the help desk administrator can then look up that user's sessions to troubleshoot problems and perform some specific desktop maintenance operations.

In your organization, you might have people in the role of helping your end users with any issues those end users might have when using their virtual desktops and remote applications provided by your environment. You might also have people who you want monitoring the end users' sessions or monitoring the desktop instances and farm server instances to identify issues that might potentially impact the sessions.

In the Administration Console, the following items support performing those help-desk-related tasks:

- Give your help desk workers' My VMware accounts to the Administration Console access list, with the appropriate help-desk-related role. The first login screen when logging in to the Administration Console uses My VMware account credentials. For the My VMware accounts, Horizon Cloud provides two predefined help-desk-related roles: Customer Helpdesk and Customer Helpdesk Readonly. You add your help desk workers' My VMware accounts using the Administration Console's General Settings page or the Getting Started page. For the steps, see Add Administrators to Log in to Your Horizon Cloud Tenant Environment.

- Give your help desk workers' Active Directory accounts the appropriate Horizon Cloud help-desk-related role. The second login screen when logging in to the Administration Console uses Active Directory account credentials. For the Active Directory accounts, Horizon Cloud provides two predefined help-desk-related roles: Help Desk Administrator and Help Desk Read Only Administrator. For the steps, see Assign Horizon Cloud Administrative Roles to Active Directory Groups.

 Note Horizon Cloud roles are assigned at the Active Directory group level. The help desk workers' Active Directory accounts must be in an Active Directory group to be granted the roles.

- The Administration Console's search feature. The help desk workers can use this feature to search for a specific end user or VM (desktop instance or farm server instance).

- The user card feature. Using a particular user's user card, help desk workers can examine that user's sessions to troubleshoot problems and perform some specific desktop maintenance operations. The operations available to the help desk worker depend on the help-desk-related role assigned that person's Active Directory account.
Using the Console's Search Feature

Use the Horizon Cloud Administration Console's search feature to locate a specific user or virtual machine (VM) by name in your environment.

Note In this release, the VM search is applicable only for VMs located in pods in Microsoft Azure.

You can search within either users or VMs. After selecting whether to search users or VMs, type into the search field. When you have typed at least three (3) characters in the search field, names that begin with those characters are displayed. You can continue typing in more characters to narrow down the results.

Note With the VMs search, you can search for RDS server VMs in farms and VDI desktop VMs that are located in your Horizon Cloud inventory.

When you see the one you are searching for, you can click it to get more details about the user or VM. The screen that is displayed depends on whether you clicked on a user or a VM:

- For a user, the card for that user is displayed. For details, see [The User Card in the Horizon Cloud Administration Console](#).
- For a VM, the system displays the screen on which you can locate that VM. For example, if you click on a VM in the results list that is an RDS server VM in a farm, the system displays the Servers tab of that farm's details page.

The User Card in the Horizon Cloud Administration Console

Use the Horizon Cloud Administration Console's user card feature as a dashboard to work with a specific user's assigned resources, such as that user's desktops.

Important To use the user card feature with a Horizon 7 pod, you must configure an event database for the pod's Connection Server after you have installed the Connection Server instance. The event database stores information about Horizon 7 events as records in a database rather than in a log file. See the Horizon 7 Installation guide for information about configuring an event database for events reporting.

You use the Administration Console's search feature to display the card for a specific user. See [Using the Console's Search Feature](#) for how to search for a user. When you click on a user in the search results, that user's card is displayed.
Use the tabs at the top of the user card to work with those items in your environment that are related to that user.

Note In this release, some tabs of the user card are applicable only for items provisioned by pods deployed in Microsoft Azure. When you do not have a pod in Microsoft Azure, those areas display a graphic and message that describes that page is available only when you have deployed a pod in Microsoft Azure. For an example of the displayed graphic, see [Tour of the Horizon Cloud Administration Console](#).

<table>
<thead>
<tr>
<th>User Card Tabs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions</td>
<td>Lists current and historical user sessions, aggregated from all of your cloud-connected pods. Provides actions you can perform on the listed sessions. For details about these actions, see Actions You Can Take on Sessions.</td>
</tr>
<tr>
<td></td>
<td>- By default, only current sessions are shown.</td>
</tr>
<tr>
<td></td>
<td>- For sessions provisioned from pods in Microsoft Azure, you can use the drop-down on the left to show historical data for up to seven days.</td>
</tr>
<tr>
<td></td>
<td>Note Since by default current sessions are shown, the Sessions tab will show a value of 0 at the top when there is no current session. When you adjust the display to show historical data, this number is updated to the number of sessions in the selected period.</td>
</tr>
<tr>
<td></td>
<td>Click on a session to open its dashboard. From a session's dashboard, you can monitor the user session for troubleshooting. See Working with the Session Dashboard.</td>
</tr>
<tr>
<td>Assignments</td>
<td>Lists the user's assignments.</td>
</tr>
<tr>
<td></td>
<td>Note URL redirection customization assignments are not listed in the user card.</td>
</tr>
</tbody>
</table>
User Card Tabs

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktops</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note The system assigns a VDI dedicated desktop to a user in one of two ways:
- You explicitly assign that specific dedicated desktop to this particular user, using the `Assign` action in the VDI dedicated desktop assignment's page
- The user claims the desktop from the set that is defined by the VDI dedicated desktop assignment to which that user is entitled. You can entitle a user to a VDI dedicated desktop assignment without explicitly assigning a specific dedicated desktop to that user. You entitle users using the assignment's `Users/Groups` area. Then when an entitled user launches a desktop from the set of desktops in that assignment for the first time, that user has claimed that VDI dedicated desktop, and the system permanently assigns that VDI dedicated desktop to that user.

On this tab, you can use the standard virtual machine (VM) action buttons to perform actions on the desktops' underlying virtual machines.

| Applications | Lists the user's entitled remote applications. |
| Activity | Displays the user's activity for selected time periods. |

Actions You Can Take on Sessions

The available actions you can take on a listed session vary based on the type of session, the pod type, and the permissions of the administrator.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
<th>Horizon 7</th>
<th>Horizon 7</th>
<th>Microsoft Azure</th>
<th>Microsoft Azure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VDI Desktop</td>
<td>Session-based Desktop</td>
<td>VDI Desktop</td>
<td>Session-based Desktop</td>
</tr>
<tr>
<td>Send Message</td>
<td>Send a message to the logged-in user.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>When sent, the message appears on the user's screen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote Assistance</td>
<td>Available for sessions from a Horizon 7 pod. Initiate a remote assistance session.</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Restart</td>
<td>Available for VDI desktop sessions. Restart the VM.</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Disconnect</td>
<td>Disconnect the session.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Working with the Session Dashboard

When you click on one of the active sessions listed on the user card’s Sessions tab, the dashboard for that session is displayed. This dashboard has tabs Details and Processes.

Details tab

The Details tab provides data about various session-related details that can be used to monitor the end user's session for troubleshooting purposes, such as CPU usage, memory usage, network latency, disk performance, and so on. Scroll through the dashboard and use the **Less** and **More** links to change how many details are displayed on the screen.

The following screenshot shows an example of some of the types of data and actions that are available in the session dashboard.
The User Experience Metrics area of the Details tab displays performance data and provides actions that super administrators and help desk administrators can use to troubleshoot issues in the session.

Note In the User Experience Metrics area, for a connected session from a pod in Microsoft Azure, a **Performance Data** menu appears on the right that you can use to select whether real-time or historical data is displayed. In this release, historical data is provided only for pods in Microsoft Azure.

Processes

The Processes tab lists the processes and applications that are running in the session and provides an **End Task** button to end a troublesome process or application.

When the Help Desk Feature is Not Installed in the Desktop or Farm VM

When a VDI desktop VM or farm server VM is based on an image that does not have the Help Desk feature installed, an information alert is displayed when you open the dashboard for a session connected to that VM.

In this case, the VM's data is not reported to Horizon Cloud. Because the usual data is not available, some of the dashboard areas appear blank or empty for such sessions, such as:

- Most of the data about the client and VM is unavailable.
- The User Experience metrics and charts are empty.
- The Processes tab is empty.
- Refresh icons are not clickable.
- Some of the action buttons, such as the **End task** button, are not displayed.

Manually Upgrade the Horizon 7 Cloud Connector Virtual Appliance

To obtain the latest Horizon Cloud features for your cloud-connected Horizon 7 pods, you upgrade those pods' Horizon 7 Cloud Connector virtual appliance to the latest version applicable to Horizon Cloud.

This documentation topic describes the steps to manually upgrade the virtual appliance within the vSphere environment in which it is deployed. If your Horizon Cloud tenant account is configured for automated upgrades of the Horizon 7 Cloud Connector, the appliance is automatically updated from the cloud plane when the VMware Operations team makes a new version available to your tenant account. For details, see **Automated Upgrade of the Horizon 7 Cloud Connector Virtual Appliance**.

Note Proxy SSL configuration is not supported during an upgrade of the Horizon 7 Cloud Connector virtual appliance.
Prerequisites

- Download the most recent version of the Horizon 7 Cloud Connector virtual appliance that is supported for the current Horizon Cloud release. For the version supported for this Horizon Cloud release, see the Release Notes at the Horizon Cloud documentation page.

- Verify that the new Horizon 7 Cloud Connector virtual appliance and the existing Horizon 7 Cloud Connector virtual appliance that needs the upgrade are in the same network so that the new virtual appliance can establish an SSH communication with the existing virtual appliance.

- Verify that the virtual appliance is powered on. It would be unusual if the appliance was powered off, because the Horizon 7 Cloud Connector must maintain a connection with the cloud control plane to ensure your Horizon subscription license remains active for the cloud-connected pod.

- Use vSphere Web Client to take a snapshot of the existing Horizon 7 Cloud Connector virtual appliance.

- Obtain the static IP address, DNS address, gateway address, and subnet mask for the Horizon 7 Cloud Connector virtual appliance.

- Verify that you have the My VMware account credentials that is valid to log in to your Horizon Cloud tenant account. As described in the onboarding information in the Deployment Guide, you use a My VMware account to log in to the Horizon 7 Cloud Connector onboarding and management portal. If the pod's associated Active Directory domain is already registered in your Horizon Cloud tenant to which the connector is paired, a second login screen will appear after you log in with your My VMware credentials. This second login screen requests the Active Directory credentials of an administrator that has the Super Administrators role in your Horizon Cloud tenant environment. If you see that second login screen, you will need the credentials for an Active Directory account in that domain that has access permissions. For a description of this login process, see Log in to the Horizon Cloud Administration Console.

- Add the FQDN of the vCenter Server to the /etc/hosts file on the Horizon 7 Cloud Connector virtual appliance. This FQDN is needed for these manual upgrade steps to work.

Important Version 1.0 of the connector appliance is no longer supported. If you are upgrading from version 1.0, you must login to the appliance's operating system and run the chage -E -1 -M -1 tomcat8 command in the Horizon 7 Cloud Connector virtual appliance after you have taken its snapshot.

```
root@example.com [ ~ ]# chage -E -1 -M -1 tomcat8
```

This command is required only when upgrading from Horizon 7 Cloud Connector version 1.0, and not for upgrading from later versions.
Procedure

1. In a Web browser, to log in to the Horizon 7 Cloud Connector onboarding and management portal, enter either the Horizon 7 Cloud Connector virtual appliance IP address or, if you mapped that IP to a FQDN in your DNS, enter that FQDN in the browser.

 Use your My VMware account credentials to log in. This step logs you in to your Horizon Cloud tenant account, as described in the onboarding process in the Deployment Guide. A successful login verifies that the existing Horizon Cloud connection was successfully configured with the cloud-connected pod's Connection Server. If your Horizon Cloud tenant has a registered Active Directory domain, a second login screen will appear. If that happens, enter the appropriate Active Directory credentials, as described in Log in to the Horizon Cloud Administration Console.

2. Deploy the latest version of the Horizon 7 Cloud Connector virtual appliance as described in steps 1 through 8 of Connect Horizon Cloud Service with an Existing Horizon 7 Pod to Use Horizon Subscription Licenses or Cloud-Hosted Services or Both.

3. Log in to the onboarding portal for the Horizon 7 Cloud Connector appliance that you just deployed in step 2 using its IP address in your browser.

 Log in with your My VMware credentials as described in step 1 above. If your Horizon Cloud tenant account has a registered Active Directory domain, the Active Directory login window appears and you must log in with the appropriate Active Directory credentials.

4. Connect the latest version of the Horizon 7 Cloud Connector appliance that you just deployed with the appropriate Connection Server instance.

 The previous version of the Horizon 7 Cloud Connector is connected to the cloud-connected pod's Connection Server instance. In the Connect to Horizon 7 Connection Server box, enter the FQDN of the Connection Server, and click Connect.

5. If the display requests verification of the thumbprint certificate, click the check box to verify the thumbprint certificate for the Connection Server.

 Note This verification is skipped if the Connection Server has a valid Root CA certificate.

6. Enter the domain name, user name, and password for the Connection Server and click Connect.

 Note For better auditing of Horizon 7 Cloud Connector actions, use a unique user name and password for the Connection Server.

7. When upgrading to Horizon 7 Cloud Connector version 1.5, enable the Enable SSH on Cloud Connector toggle.

 Enabling SSH provides for the new connector appliance to communicate over SSH with the existing one for the upgrade process. When the upgrade is complete, you can disable this toggle.

8. Click Upgrade in the dialog box.

9. In the Old Cloud Connector address text box, enter the IP address of the earlier Horizon 7 Cloud Connector virtual appliance and then click Connect.
10 Click the check box to verify the thumbprint for the SSH connection.

11 Click **Upgrade**.

The new Horizon 7 Cloud Connector is now managing the cloud connection between the Horizon 7 pod and Horizon Cloud.

What to do next

If the previous instance of the Horizon 7 Cloud Connector virtual appliance used custom CA-signed certificates, configure a new CA-signed certificate for the upgraded virtual appliance. Certificates are not transferred from the previous virtual appliance to the new virtual appliance during a manual upgrade. For more information, see [Configure a CA-Signed Certificate for the Horizon 7 Cloud Connector Virtual Appliance](#).

Remove the old version of the appliance from your vSphere environment.

For future upgrades, if you want to be able to have automated upgrades of the Horizon 7 Cloud Connector virtual appliance, instead of using these manual steps, see the information in [Automated Upgrade of the Horizon 7 Cloud Connector Virtual Appliance](#).

Troubleshoot the Horizon 7 Cloud Connector Virtual Appliance Upgrade

The earlier version of the Horizon 7 Cloud Connector virtual appliance is disabled only at the end of the upgrade process. If there is any upgrade issue, you can roll back the upgrade to the earlier version of the Horizon 7 Cloud Connector virtual appliance.

Note When you perform any troubleshooting task, do not unplug the latest deployed version of the Horizon 7 Cloud Connector appliance.

Procedure

1 If the upgrade fails and the earlier version of the Horizon 7 Cloud Connector virtual appliance is still accessible, you can continue to use this version of the virtual appliance. After you check the log files and verify the configuration information of the new Horizon 7 Cloud Connector virtual appliance, you can perform the upgrade task again.

2 If the upgrade fails and the earlier version of the Horizon 7 Cloud Connector virtual appliance is not accessible, perform these steps:
 a Power off the new Horizon 7 Cloud Connector virtual appliance.
 b Revert the existing Horizon 7 Cloud Connector virtual appliance to the virtual appliance snapshot taken prior to the upgrade. Verify that the Horizon 7 Cloud Connector virtual appliance is accessible from the Web browser and displays the paired status.
 c Perform the upgrade task to deploy the latest version of the Horizon 7 Cloud Connector appliance again. If the issue persists, contact VMware Support.
Automated Upgrade of the Horizon 7 Cloud Connector Virtual Appliance

You can have your pod configured to perform an automated upgrade of the Horizon 7 Cloud Connector virtual appliance. This configuration enables the Horizon Cloud operations team to run maintenance actions on the virtual appliance from the cloud control plane, as needed for successful service operations.

Attention The ability to configure this automated upgrade feature will only be visible to you if your Horizon Cloud tenant account is enabled to allow it. To gain access to this feature, you must explicitly request it by contacting your VMware representative or VMware support to enable it on your tenant account.

Automated upgrade of the Horizon 7 Cloud Connector virtual appliance is disabled by default and can be enabled by your VMware representative upon request. If this option is enabled, any errors related to the Horizon 7 Cloud Connector upgrade will appear along with any other upgrade errors, and can be resolved in the same way.

Note the following:

- There is a small amount of downtime during the upgrade when the IP address switch occurs. Normally this is less than a minute.
- Once the upgrade is enabled, upgrades will be force-deployed in customer environments.

Requirements for Automatic Upgrades

- Horizon 7 Cloud Connector appliance must be deployed with a static IP address.
- Minimum version of Horizon 7 Cloud Connector appliance is:
 - 1.3.0 for Horizon 7 pods on-premises.
 - 1.5.0 for Horizon 7 pods in VMware Cloud on AWS.
- The following limitations regarding software versions apply:
 - Version 1.3.0 can only be upgraded to 1.4.0.
 - All other versions can be upgraded to one or two versions higher. That is, version ‘n’ can be upgraded to either ‘n+1’ or ‘n+2’.
- There must be at least 50 GB of data store capacity available for deploying the new virtual machine.
- You must have entered vCenter Server settings and provided a temporary static IP address in the appliance onboarding user interface. See the configuration steps below.
- The ESXi host should be accessible from the Horizon 7 Cloud Connector appliance.
Configure the vCenter Server Settings in the Horizon 7 Cloud Connector Onboarding User Interface

Gather the appliance's static IP address, DNS address, gateway address, and subnet mask. After logging in to the Horizon 7 Cloud Connector onboarding user interface, click Configure Automatic Cloud Connector Updates. Then perform the following steps.

Remember As stated at the start of this topic, the ability to configure this automated upgrade feature is disabled by default and will only be visible to you if and only if your Horizon Cloud tenant account is enabled to allow it. You will not see any of these elements in the user interface if you have not explicitly requested it by contacting your VMware representative or VMware support to enable it on your tenant account.

1. Enter the FQDN of the vCenter Server, and click Get Certificate. After the certificate information appears, select I have verified the above certificate and would like to continue.

2. Under Horizon Cloud Connector vCenter Server Credentials, enter the user name and password for vCenter Server.

3. Under Additional Static IP Details for Cloud Connector upgrade, enter the static IP, gateway, subnet mask, and DNS information that you gathered for the Horizon 7 Cloud Connector virtual appliance.

4. Click Save.

Customer Actionable Errors

- Unable to contact vCenter. Please check vCenter is available
- Check to ensure cloud connector is online.
Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types

Horizon Cloud provides an environment in which you can have pods of varying types and deployed into various environments all connected to your single Horizon Cloud tenant environment. When the cloud-connected pods have onboarded to the cloud plane, they are listed on the Horizon Cloud Administration Console's Capacity page. The Capacity page is your one-stop place from which you can oversee and manage your entire fleet of cloud-connected pods — add more pods to your tenant environment, edit characteristics of your pods, and remove pods.

- Introducing the Horizon Cloud Administration Console's Capacity Page
- Pod-Level Actions Available on the Capacity Page
- Pod Details Page
- Health Statuses for Pods Displayed on the Capacity Page

Introducing the Horizon Cloud Administration Console's Capacity Page

The Capacity page gives you an overview of your Horizon Cloud tenant environment's fleet of cloud-connected pods, their status, and how they are doing in terms of utilization of their resources. From here you can also initiate pod-level management actions — such as starting a new pod deployment, editing characteristics of a pod, or removing a pod from your tenant environment. The Capacity page serves as an access point to drill down and examine the details of a specific pod. The Capacity page is available from the Settings icon in the Horizon Cloud Administration Console.

One way to think about how to use the Capacity page is that it provides access to the CRUD operations for the cloud-connected pods — the typical create, read, update, delete (CRUD) operations.

- Create operation — the Capacity page provides a New action for initiating the deployment of a new cloud-connected pod
- Read operation — on the Capacity page, you select the name of a listed pod to open a page that displays details about the pod.
- Update operation — the Capacity page provides an **Edit** action for changing the pod's editable characteristics. The specific characteristics you can edit for a pod depend on the pod's type, the pod's existing characteristics, and what sorts of changes are supported for that pod type and characteristics.

- Delete operation — the Capacity page provides a **Remove** action for removing the pod from your Horizon Cloud tenant's fleet of cloud-connected pods.

The Capacity page lists your tenant's fleet of cloud-connected pods, and reports the following information on the **Pods** tab.

Note If you have configured your environment for the use of multi-cloud assignments brokered by Horizon Universal Broker, the Capacity page also includes a **Sites** tab. For information about the features available from the **Sites** tab, see [Configuring Sites for Horizon Universal Broker](#).

Table 4-1. Per-Pod Information Columns on the Capacity Page

<table>
<thead>
<tr>
<th>Column</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Icon indicating the health status of the pod, such as online. For the meanings of the various statuses that might be displayed, see Health Statuses for Pods Displayed on the Capacity Page.</td>
</tr>
<tr>
<td>Pod</td>
<td>Displays the current name of the pod.</td>
</tr>
<tr>
<td>Type</td>
<td>Displays the pod's type, such as Microsoft Azure or Horizon 7.</td>
</tr>
<tr>
<td>Version</td>
<td>For a pod in Microsoft Azure, this column displays the software version from the pod's software manifest information. This number reflects the version of software binaries at which the pod is currently running. For a Horizon 7 pod, this displays the software version of the Horizon 7 Cloud Connector that connects the pod to Horizon Cloud.</td>
</tr>
<tr>
<td>State</td>
<td>This column displays the current state of the pod. The state's meaning depends on the pod's type, whether it is a pod in Microsoft Azure or a Horizon 7 pod.</td>
</tr>
</tbody>
</table>

pod in Microsoft Azure

A pod in Microsoft Azure always displays managed state on the Capacity page, because they are always manageable using the Horizon Cloud control plane. You can manage all aspects of the pod using the Horizon Cloud Administration Console, as well as leverage the console's [Chapter 3 Introducing the Cloud Monitoring Service's Unified Visibility, Health Monitoring, and Help Desk Features Provided in Horizon Cloud](#).

cloud-connected Horizon 7 pod

A cloud-connected Horizon 7 pod can have either monitored or managed state. Monitored state is the default state of a cloud-connected Horizon 7 pod after you first onboard it to Horizon Cloud. With a pod in monitored state, you can use those Horizon Cloud Administration Console features that provide for [Chapter 3 Introducing the Cloud Monitoring Service's Unified Visibility, Health Monitoring, and Help Desk Features Provided in Horizon Cloud](#).

If the cloud-connected Horizon 7 pod meets certain requirements, you can move that pod into managed state. A Horizon 7 pod in managed state means that in addition to the Administration Console features you can use for monitored pods, you can also create [Chapter 6 Setting Up and Managing End-User Assignments in Your Horizon Cloud Tenant Environment](#) (MCAs) that use resources from that managed pod and manage those MCAs using the Administration Console.
Table 4-1. Per-Pod Information Columns on the Capacity Page (continued)

<table>
<thead>
<tr>
<th>Column</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Displays the geographic location that is currently associated with the pod. To change a pod's associated location, use the Capacity page's Edit action to associate the pod with a different location. See Change a Cloud-Connected Pod's Associated Location, Name, and Description using the Horizon Cloud Administration Console.</td>
</tr>
<tr>
<td>Site</td>
<td>If you have configured your environment for the use of multi-cloud assignments brokered by Horizon Universal Broker, this column displays the name of the site that is currently associated with the pod. See Configuring Sites for Horizon Universal Broker.</td>
</tr>
</tbody>
</table>
| **Desktop & App Utilization** | In a Horizon Cloud environment, the desktop and application utilization percentage is a measure of end-user activity in terms of active in-use end-user sessions in use divided by the maximum number of potential sessions. Note In this release, the system reports desktop and application utilization only for pods in Microsoft Azure.

At the pod level, the Desktop & App Utilization column displays the percentage calculated according to the following:
1. Summing all the active desktop and remote application sessions connect to the pod.
2. Summing all the potential desktop and remote application sessions the pod is configured to provide, based on its configured farm server and VDI desktop assignment session maximums.
3. Dividing the first sum by the second sum and multiplying by 100 to get a percentage value.
As an example, given a pod in Microsoft Azure with:
- One desktop farm that is configured for only one server instance and 10 concurrent sessions per server (10 potential sessions from that farm).
- One applications farm that is configured for two server instances and 20 concurrent sessions per server (40 potential sessions from that farm).
- One active end-user connection, to a remote application from the applications farm
The percentage displayed for that pod in its Desktop & App Utilization column would be 2%, because there are 50 potential sessions (10 potential from the desktop farm and 40 potential from the applications farm), and 1 active session, so the calculation is \(\frac{1}{50} \times 100 = 2\% \). | |
| **Capacity Utilization** | In your Horizon Cloud environment, capacity utilization is a measure of how much of the pod's virtual CPU resources (vCPUs) are in use out of the total capacity potentially available for that pod's use out of the underlying capacity infrastructure into which that pod is deployed. Note In this release, the system reports capacity utilization only for pods in Microsoft Azure. The capacity utilization for a pod in Microsoft Azure is based on the Total Regional vCPUs quota of the subscription as a whole. All pods in the same subscription report the same capacity utilization.

As an example, for pods in Microsoft Azure, their vCPU capacity usage comes from your Microsoft Azure subscription's Microsoft.Compute Total Regional vCPUs quota. In addition to the vCPUs used for imported VMs, sealed images, farm server instances, and VDI desktop instances, each pod deployed in Microsoft Azure uses 4 vCPUs for its manager VM and 4 vCPUs for each of its Unified Access Gateway VMs out of your subscription's total regional vCPUs quota. | |
Pod-Level Actions Available on the Capacity Page

The specifics of the pod-level management actions you can perform from the Capacity page depend on the pod's type for the pod involved in the action — an on-premises Horizon 7 pod, a Horizon 7 pod located in VMware Cloud on AWS, or a pod located in Microsoft Azure. You can initiate pod deployments for those pod types that have automated deployment wizards available in your environment.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| New > pod type | Initiate deployment of a new cloud-connected pod. Use this action to deploy a pod after your initial one. The pod deployment process you use depends on the type of pod you want and what is supported for your use in the current Horizon Cloud service level. For details about these standard available pod deployment workflows,
 ■ For the workflow steps of deploying a new pod into Microsoft Azure, see Deploying Horizon Cloud Pods into Microsoft Azure from the Capacity Page.
 ■ For the workflow steps of newly cloud-connecting a Horizon 7 pod using the Horizon 7 Cloud Connector, see High-Level Workflow When You are Onboarding an Existing Manually Deployed Horizon 7 Pod as Your First Pod to Your Horizon Cloud Tenant Environment. |
| Edit | Select a pod and click Edit to change the pod's editable characteristics |
| Remove | Select a pod and click Remove to remove the pod from your Horizon Cloud tenant. Tip: The outcome of the remove workflow varies with the pod type.
 ■ For a pod deployed in Microsoft Azure, the remove workflow deletes the pod and all of its artifacts from your Microsoft Azure subscription.
 ■ For a Horizon 7 pod, the remove workflow disconnects the pod from the Horizon Cloud control plane, so that pod is no longer a cloud-connected pod. The pod's artifacts remain in the capacity environment in which they are deployed — in your on-premises infrastructure or in your VMware Cloud on AWS environment. For a Horizon 7 pod, the remove workflow gives the same result as using the Horizon 7 Cloud Connector Unplug action in the Horizon 7 Cloud Connector user interface. |

Pod Details Page

When you click a pod's name on the Capacity page, the pod's details page is displayed. The pod's details page provides information and actions you can perform on that pod. The types of detailed characteristics you can see for a pod depend on the pod's type. The types of actions you can perform on the pod depend on the pod's type and the current state of the pod. Some of the actions duplicate the workflows you can perform on the pod from the Capacity page itself, such as editing the pod and removing the pod from your tenant environment.
Table 4-2. Pod Details Page According to Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Details</th>
</tr>
</thead>
</table>
| Cloud-connected Horizon 7 pod, either an on-premises pod or one in VMware Cloud on AWS | The page has the following tabs: Summary and Audit Logs. For information about the Audit Logs tab, see Working with Audit Logs. You use the action buttons on the pod's Summary tab to perform those actions that the service currently supports for use on Horizon 7 pods.
- If the pod has monitored state and meets certain requirements, you can change it to managed state by clicking the Change State button. For details, see Enabling a Cloud-Connected Horizon 7 Pod for Multi-Cloud Assignments and its subtopics.
- You use the Edit button to modify the pod's editable characteristics. For details, see Change a Cloud-Connected Pod's Associated Location, Name, and Description using the Horizon Cloud Administration Console.
- You use the Disconnect button to remove the pod from your Horizon Cloud tenant environment. See Removing Cloud-Connected Horizon 7 Pods from Use with Horizon Cloud.
- You use the Launch Horizon Console button to open the Horizon 7 administration console in a new browser tab.
The number displayed in the Version No field reflects the version and build number of Horizon 7 Cloud Connector that is currently running on the pod. |
| Pod in Microsoft Azure | The page has the following tabs: Summary, System Activity, User Activity, and Audit Logs. For information about the Audit Logs tab, see Working with Audit Logs. You can the action buttons on the pod's Summary tab to perform those actions that the service currently supports for use on pods in Microsoft Azure.
- Edit some of the pod's properties. Not all of its properties are editable. The edit workflow is also used for changes to the pod's configuration beyond changing simple properties. As an example, you use the edit workflow to add a RADIUS two-factor authentication configuration to the pod's gateway settings or to add gateway settings to a pod that does not already have them. You also use the edit workflow to enable high availability for the pod. For a list of links to the management tasks for pods in Microsoft Azure, see Managing Your Pods Deployed in Microsoft Azure.
- Delete the entire pod, or delete the pod's gateway configuration.
- Upload an SSL certificate to the pod. For steps, see Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod.
- Download logs, using the More > Download Logs choice.
- If an update of the VMware pod software is available, schedule an update using the Schedule Update action. See Updating Your Horizon Cloud Pod.
The number displayed in the Version No field reflects the version of software binaries at which the pod is currently running. This version is sometimes called the pod's manifest number or the pod's build number. When an updated version of the pod software is available for your pod, the screen displays a message which contains the manifest number that is available to apply to your pod.
You can also edit the pod's subscription information from the pod's details page. See Update the Subscription Information Associated with Deployed Pods.
From the pod detail's page, you can also examine the level to which your pods are using your Microsoft Azure subscription limits. See Examine a Subscription's Current Usage of Your Microsoft Azure Limits. |
Health Statuses for Pods Displayed on the Capacity Page

The cloud monitoring service retrieves information from each of your pods and uses that information to indicate pod health on the Capacity page and in the Dashboard page. The meanings of the health statuses that are displayed in the Capacity page's Status column are listed in the following sections. On the Capacity page, you can hover your cursor over the status icon to view underlying details for the reported status.

Online
The pod has no health issues. The pod's connector service has Online status and all the pod's services are operational.

Ready
The pod has no health issues. You might see the Ready status briefly on the Capacity page when a pod is in transition to Online, such as when a pod deployment or update process is finishing.

Error
The pod has some critical health issues that you should address. Critical issues will affect the pod operating properly.

Warn
The cloud monitoring system has retrieved the health status from the pod and some issues exist. The pod can operate normally because these issues are not critical to pod operations.

Offline
The cloud monitoring system detects the pod has no connection service running.

- For a pod in Microsoft Azure, this status typically means that the pod manager VM is not running. This situation is rare, and usually happens when you manually shut down the pod manager using the Microsoft Azure portal or the Microsoft Azure cloud is having an outage.
- For a Horizon 7 pod, this status implies that there is no connectivity between the Horizon 7 Cloud Connector and Horizon Cloud. Check if the Horizon 7 Cloud Connector is operational and running.

Unknown
The cloud monitoring system cannot retrieve the health status from the pod. For a Horizon 7 pod, this status typically means the API call to that Horizon 7 pod cannot retrieve information, such as when the Horizon 7 Cloud Connector instance or the Connection Server instances are having issues and cannot provide the needed data.

This chapter includes the following topics:

- Deploying Pods Using the Capacity Page
- Change a Cloud-Connected Pod's Associated Location, Name, and Description using the Horizon Cloud Administration Console
- Removing Cloud-Connected Horizon 7 Pods from Use with Horizon Cloud
Deploying Pods Using the Capacity Page

When your Horizon Cloud customer account has its first cloud-connected pod and registered Active Directory domain, you can access the Capacity page in the Administration Console. Then you can use the Capacity page to start adding additional cloud-connected pods.

In the Administration Console, you open the Capacity page using Settings > Capacity. To add a pod, you click New > Pod, and then select the option for the pod’s capacity type.

- Microsoft Azure
- On-Premises
- VMware Cloud on AWS

What happens next depends on your selected capacity type and the features that your Horizon Cloud customer account is licensed to use.

- If you select Microsoft Azure, an automated pod deployment wizard opens. You run the pod deployment wizard to deploy the pod’s components into the Microsoft Azure cloud. For detailed steps, see Deploying Horizon Cloud Pods into Microsoft Azure from the Capacity Page.

- If you select On-Premises or VMware Cloud on AWS, an information box opens and describes the requirement to download and install the Horizon 7 Cloud Connector. To connect these pod types requires you to deploy that connector into your Horizon 7 infrastructure and configure the connector to communicate with your Connection Server and with Horizon Cloud. For detailed steps for connecting Horizon 7 pod after you have downloaded the Horizon 7 Cloud Connector, see the Connect Horizon Cloud with an Existing Manually Deployed Horizon 7 Pod topic in the Horizon Cloud Deployment Guide.

Deploying Horizon Cloud Pods into Microsoft Azure from the Capacity Page

After your Horizon Cloud environment gets its first cloud-connected pod, you can deploy additional pods from the Capacity page. To deploy a pod into the Microsoft Azure cloud, you run the automated deployment wizard from the Capacity page.

Caution The IP addresses mentioned in these steps are examples. You should use the address ranges that meet your organization’s needs. For each step that mentions an IP address range, substitute ones that are applicable for your organization.

The wizard has multiple steps. After specifying the information in a step, click **Next** to move to the next step.

Prerequisites

Before you start the pod deployment wizard, verify that you have the required items. The items you need to provide in the wizard vary according to the pod configuration options you want. See the list in Prerequisites for Running the Pod Deployment Wizard.
In addition to the items required by the configuration you want for an additional pod, your first cloud-connected pod must be completely deployed and the Active Directory domain-bind and domain-join steps completed before you can deploy additional pods. All cloud-connected pods within your customer account record share the same Active Directory information, and each cloud-connected pod must have line-of-sight to all of the cloud-configured Active Directory domains. For more information, see Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment.

Procedure

1. Start the pod deployment wizard in the Administration Console, by navigating to Settings > Capacity, clicking New > Pod, and selecting the Microsoft Azure option.

The Add Cloud Capacity wizard opens to its first step.
2 On the wizard's first step, specify the subscription to use for this pod by selecting the name of a previously entered subscription or entering new subscription information.

If you select an existing subscription, the step is populated with that subscription's information that was previously entered into the system.

Important If you are entering new information, you must ensure the subscription information you enter meets the subscription requirements described in *Prerequisites for Running the Pod Deployment Wizard*, especially that the service principal has the role permissions it needs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply Subscription</td>
<td>Select the name of a previously entered subscription or select Add New to enter new subscription information.</td>
</tr>
<tr>
<td>Subscription Name</td>
<td>When providing new subscription information, enter a friendly name so you can identify this subscription from other previously entered subscriptions. The name must start with a letter and contain only letters, dashes, and numbers.</td>
</tr>
<tr>
<td>Environment</td>
<td>Select the cloud environment associated with your subscription, for example:</td>
</tr>
<tr>
<td></td>
<td>- Azure, for the standard global Microsoft Azure cloud</td>
</tr>
<tr>
<td></td>
<td>- Azure - China, for the Microsoft Azure in China cloud</td>
</tr>
<tr>
<td></td>
<td>- Azure - Germany, for the Microsoft Azure Germany cloud</td>
</tr>
<tr>
<td>Subscription ID</td>
<td>Enter your cloud capacity subscription ID (in UUID form). This subscription ID must be valid for the environment you selected. For Microsoft Azure, you can obtain this UUID from your Microsoft Azure portal's Subscriptions area.</td>
</tr>
<tr>
<td>Directory ID</td>
<td>Enter your Microsoft Azure AD Directory ID (in UUID form). For Microsoft Azure, you can obtain this UUID from your Microsoft Azure Active Directory properties in the Microsoft Azure portal.</td>
</tr>
<tr>
<td>Application ID</td>
<td>Enter the application ID (in UUID form) associated with the service principal you created in the Microsoft Azure portal. Creating an application registration and its associated service principal in your Microsoft Azure Active Directory is a prerequisite.</td>
</tr>
<tr>
<td>Application Key</td>
<td>Enter the key value for the service principal's authentication key that you created in the Microsoft Azure portal. Creating this key is a prerequisite.</td>
</tr>
<tr>
<td>Use a Different Subscription for External Gateway</td>
<td>Enable this toggle when you want to deploy an external Unified Access Gateway configuration into its own subscription, separate from the pod's subscription. Using separate subscriptions for the external gateway gives your organization the flexibility to assign separate teams control over those subscriptions, depending on their area of expertise. It allows for more granular access control for which people in your organization can access the pod's assets in its subscription's resource groups and which people can access the gateway's assets. When this toggle is turned on, the fields for entering the gateway's subscription information are displayed. Specify the information in those fields as you did for the pod's subscription.</td>
</tr>
</tbody>
</table>

3 Proceed to the next step by clicking **Next**.

When you click **Next**, in the case where you added a new subscription, the system verifies the validity of all of the specified values and whether they are appropriately related to each other, such as:

- Is the specified subscription ID valid in the selected environment.
- Are the specified directory ID, application ID, and application key valid in that subscription.
Does the application’s service principal for the specified application ID have either the Contributor role or a custom role configured for the role operations that the pod deployer requires?

If you see an error message about checking values, at least one of the values is invalid either by not existing in your subscription or not having a valid relationship with another of the values. For example, if you specified a Directory ID that is in your subscription but you specified an Application ID value that is in a different directory, the error message will display.

More than one value might be invalid if that error message appears. If you see that error message, verify the subscription-related information that you collected and the configuration of the service principal.

4 In this wizard step, specify details such as the name of the pod, as well as networking information.

The following screenshot illustrates how this step’s Workspace ONE Access area looks when a Workspace ONE Access tenant was already created during an earlier pod deployment for this customer account. You can have the pod deployer create a Workspace ONE Access tenant only once for the same customer account. When the Workspace ONE Access tenant has already been created during a previous pod deployment, you cannot change the setting and the name of the existing tenant is displayed, as shown in the screenshot.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pod Name</td>
<td>Enter a friendly name for this pod. This name is used in the Administration Console to identify this pod from your other pods.</td>
</tr>
<tr>
<td></td>
<td>Note This name must be unique among your existing pods in your Horizon Cloud customer account. The name cannot match the name of one of the pods listed in the Capacity page.</td>
</tr>
<tr>
<td>Location</td>
<td>Select an existing city name or click Add to specify a new city. The system groups your pods according to city name, and depicts them on the Administration Console’s Dashboard page’s Horizon Global Footprint map.</td>
</tr>
<tr>
<td></td>
<td>When you click Add, start typing the name of a city. The system automatically displays world city names in its backend geography lookup table that match your entered characters, and you can choose a city from that list.</td>
</tr>
<tr>
<td></td>
<td>Note You must select a city from the system’s autocomplete list.</td>
</tr>
<tr>
<td>Microsoft Azure Region</td>
<td>Select the physical geographic Microsoft Azure region into which you want the pod to be deployed. The available regions are determined by the previously selected Microsoft Azure environment.</td>
</tr>
<tr>
<td></td>
<td>Consider choosing the region based on its proximity to the end users you intend to serve with this pod. Nearer proximity would provide lower latency.</td>
</tr>
<tr>
<td></td>
<td>Important Not all Microsoft Azure regions support GPU-enabled virtual machines. If you want to use the pod for GPU-capable desktops or remote applications, ensure that the Microsoft Azure region you select for the pod provides for those NV-series VM types that you want to use and which are supported in this Horizon Cloud release. See the Microsoft documentation at https://azure.microsoft.com/en-us/regions/services/ for details.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Description</td>
<td>Optional: Enter a description for this pod.</td>
</tr>
<tr>
<td>High Availability</td>
<td>Enable this toggle to deploy a pod that is configured with high availability. For details, see High Availability and Your Horizon Cloud Pod in Microsoft Azure. If you disable this toggle, the pod is deployed without high availability.</td>
</tr>
<tr>
<td>Virtual Network</td>
<td>Select a virtual network from the list. Only virtual networks (V Nets) that exist in the region selected in the Microsoft Azure Region field are shown here. You must have already created the VNet you want to use in that region in your Microsoft Azure subscription.</td>
</tr>
<tr>
<td>Use Existing Subnet</td>
<td>Enable this toggle if you have created subnets in advance to meet the pod’s subnet requirements. When this toggle is set to Yes, the wizard’s fields for specifying subnets change to drop-down selection menus. Important The wizard does not support using an existing subnet for one of the required subnets and also entering CIDR addresses for the other required subnets. When this toggle is set to Yes, you must select from existing subnets for all of the pod’s required subnets.</td>
</tr>
<tr>
<td>Management Subnet</td>
<td>When Use Existing Subnet is enabled, Management Subnet lists the subnets available on the VNet selected for Virtual Network. Select the existing subnet that you want to use for the pod’s management subnet. Important Select a subnet that has the Microsoft SQL service configured as a service endpoint for that subnet. This service endpoint supports the required communication between the pod manager VMs and the pod’s Azure Postgres database over the management subnet. Select an empty subnet, one that has no other resources attached to it. If the subnet is not empty, unexpected results might occur during the deployment process or pod operations.</td>
</tr>
<tr>
<td>Management Subnet (CIDR)</td>
<td>When Use Existing Subnet is disabled, in Management Subnet (CIDR), enter a subnet address range (in CIDR notation) for the deployer to create a subnet to which the pod and Unified Access Gateway instances will get connected, such as 192.168.8.0/27. For the management subnet, a CIDR of at least /27 is required. Caution When you do not select the wizard option to use existing subnets, the subnet must not already exist in your Microsoft Azure environment. If it already exists, you will get an error when you try to proceed to the next wizard step.</td>
</tr>
<tr>
<td>Desktop Subnet</td>
<td>When Use Existing Subnet is enabled, Desktop Subnet lists the subnets available on the VNet selected for Virtual Network. Select the existing subnet that you want to use for the pod’s desktop tenant subnet. Important Select an empty subnet, one that has no other resources attached to it. If the subnet is not empty, unexpected results might occur during the deployment process or pod operations.</td>
</tr>
<tr>
<td>Desktop Subnet (CIDR)</td>
<td>When Use Existing Subnet is disabled, in Desktop Subnet (CIDR), enter a subnet address range (in CIDR notation) for the deployer to create a subnet to which all of this pod’s VDI desktops and RDSH farm servers for end-user remote desktops and applications will get connected, such as 192.168.12.0/22. For the desktop subnet, a CIDR of at least /27 is required, and a CIDR of /22 is recommended. Important Ensure the range you enter is large enough to allow for accommodating the number of desktops you anticipate you will want this pod to provide. This desktop subnet cannot be extended after the pod is deployed. Caution When you do not select the wizard option to use existing subnets, the subnet must not already exist in your Microsoft Azure environment. If it already exists, you will get an error when you try to proceed to the next wizard step.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>NTP Servers</td>
<td>Enter the list of NTP servers you want to use for time synchronization, separated by commas. An NTP server you enter here can be a public NTP server or your own NTP server that you set up for providing time synchronization. The NTP servers you specify here must be reachable from the virtual network you selected in the Virtual Network field for the pod to use. In this field, you can specify each NTP server either by its numeric IP address or its domain name. When you provide a domain name in this field instead of a numeric IP address, you must ensure that the DNS configured for your virtual network can resolve the specified name. Examples of public NTP server domain names are time.windows.com, us.pool.ntp.org, time.google.com.</td>
</tr>
</tbody>
</table>

| Use Proxy | If you require a proxy for outbound Internet connectivity, enable this toggle and complete the associated displayed fields. The pod deployer requires outbound access to the Internet to securely download software into the Microsoft Azure cloud environment and connect back to the Horizon Cloud cloud control plane. To enable the pod to use your proxy configuration, you must provide the following information after enabling the toggle. |

- **Proxy** (required): Type the hostname or IP address for your proxy server.
- **Port** (required): Type the port number that is specified in your proxy server configuration.

If your proxy server configuration requires a user name and password for authentication, provide those credentials also.

<table>
<thead>
<tr>
<th>Use Proxy:</th>
<th>✅</th>
<th>☰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy:</td>
<td>proxy.example.com</td>
<td>☰</td>
</tr>
<tr>
<td>Port:</td>
<td>3128</td>
<td>☰</td>
</tr>
<tr>
<td>Username:</td>
<td></td>
<td>☰</td>
</tr>
<tr>
<td>Password:</td>
<td></td>
<td>☰</td>
</tr>
<tr>
<td>Verify Password:</td>
<td></td>
<td>☰</td>
</tr>
</tbody>
</table>

5 Proceed to the next step by clicking **Next**.

The following screenshot is an example of the next step when it is initially displayed.
To configure the pod with Unified Access Gateway and optionally RADIUS two-factor authentication, specify the information in this step for the configuration you want.

Complete the steps in the following topics:

- Specify the Horizon Cloud Pod's Gateway Configuration
- Specify Two-Factor Authentication Capability for the Pod

If you do not want any Unified Access Gateway configuration on this pod, move the Enable External UAG to No.
7 Click **Validate & Proceed**.

When you click **Validate & Proceed**, the system verifies the validity and appropriateness of your specified values, such as:

- Are the subnets valid and non-overlapping with other networks in the selected region within your subscription.
- Are there enough virtual machine (VM) and cores in your subscription’s quota to build out the pod.
- Is the certificate in the correct PEM format.

If you see an error message about overlapping networks, verify whether you have existing subnets using the same values already in your subscription.

If everything validates OK, the summary page displays.

8 Review the summarized information and click **Submit**

The system starts deploying the pod into your Microsoft Azure environment.

Deploying the pod can take up to an hour. Until the pod is successfully deployed, a progress icon is displayed for that pod. You might need to refresh the screen in your browser to see the updating progress.

Important When deploying additional pods in Microsoft Azure China cloud, the process can take longer than an hour to complete. The process is subject to geographic network issues that can cause slow download speeds as the binaries are downloaded from the cloud control plane.

What to do next

If you specified RADIUS two-factor authentication for the pod’s gateway configurations, you must complete the following tasks.

- If you configured an external gateway with RADIUS settings and that RADIUS server is not reachable within the same VNet as used by the pod, or within the peered VNet topology if you deployed the external gateway into its own VNet, verify, configure that RADIUS server to allow client connections from the IP address of the external gateway’s load balancer. In an external gateway configuration, the Unified Access Gateway instances attempt contact with the RADIUS server using that load balancer address. To allow the connections, ensure the load balancer resource’s IP address that is in that external gateway’s resource group is specified as a client in your RADIUS server configuration.

- If you configured an internal gateway, or an external gateway and your RADIUS server is reachable within the same VNet as used by the pod, configure the RADIUS server to allow connections from the appropriate NICs that were created in the gateway’s resource group in Microsoft Azure that must communicate with the RADIUS server. Your network administrator determines the RADIUS server’s network visibility to the pod’s Azure Virtual Network and subnets. Your RADIUS server must allow client connections from the IP addresses of those gateway NICs that correspond to the subnet for which your network administrator has given network visibility to the RADIUS server. The gateway’s resource group in Microsoft Azure has four NICs that correspond to that subnet, two that are currently
active for the two Unified Access Gateway instances and two that are idle and will become the active ones after the pod goes through an upgrade. To support connectivity between the gateway and the RADIUS server both for ongoing pod operations and after each pod upgrade, ensure the IP addresses of those four NICs are specified as clients in the RADIUS server configuration.

If you specified having a Unified Access Gateway configuration, ensure you set up the appropriate CNAME records in your DNS server according to the type of configuration you specified.

- For an external Unified Access Gateway configuration, map the FQDN that you entered in the deployment wizard to the pod's Microsoft Azure public load balancer's auto-generated FQDN.
- For an internal Unified Access Gateway configuration, map the FQDN that you entered in the deployment wizard to the pod's Microsoft Azure internal load balancer's private IP address.

See Obtain the Pod Gateway's Load Balancer Information to Map in your DNS Server for the steps to locate the load balancer information in the pod's details page.

Prerequisites for Running the Pod Deployment Wizard

Before you run the pod deployment wizard, verify that your environment satisfies these prerequisites. You must have the following items so that you can provide the requested values in the pod deployment wizard and proceed through the wizard.

Prerequisites for All Deployments

- When you add another pod, you can use the same subscription that you used before for your previous pods, or you can use a different subscription if required by your organization. If you plan to use a different subscription, you must perform the steps described in Horizon Cloud Deployment Guide to obtain the subscription ID, directory ID, application ID, and application key. You must ensure the subscription you use meets the requirements described in Horizon Cloud Deployment Guide, especially that the service principal has the appropriate role permissions. You can navigate to the getting started document online from here.
- Verify that you have a VNet in the region in which you want to deploy the pod and that the VNet meets the requirements as described in Horizon Cloud Deployment Guide.

Important Not all Microsoft Azure regions support GPU-enabled virtual machines. If you want to use the pod for GPU-capable desktops or remote applications, ensure that the Microsoft Azure region you select for the pod provides for those NV-series VM types that you want to use and which are supported in this Horizon Cloud release. See the Microsoft documentation at https://azure.microsoft.com/en-us/regions/services/ for details.

- Verify that your VNet is configured to point to a DNS that can resolve external addresses. The pod deployer must be able to reach external addresses in the Horizon Cloud control plane to securely download the pod software into your Microsoft Azure environment.
- Verify that the pod deployer's DNS, ports, and protocols requirements are met, as described in DNS Requirements for a Horizon Cloud Pod in Microsoft Azure and Ports and Protocols Requirements for a Horizon Cloud Pod at the September 2019 Release's Manifest or Later.
If you require use of a proxy for outbound Internet access, verify you have the networking information for your proxy configuration and the authentication credentials it requires, if any. The pod deployment process requires outbound Internet access.

Verify that you have the information for at least one NTP server that you want the pod to use for time synchronization. The NTP server can be a public NTP server or your own NTP server that you set up for this purpose. The NTP server you specify must be reachable from the virtual network you configured. When you plan to use an NTP server using its domain name instead of a numeric IP address, also ensure that the DNS configured for the virtual network can resolve the NTP server’s name.

If you do not want the deployer to automatically create the subnets it needs, verify that the required subnets have been created in advance and exist on the VNet. For the steps to create the required subnets in advance, see In Advance of Pod Deployment, Create the Horizon Cloud Pod's Required Subnets on your VNet in Microsoft Azure and When Using Existing Subnets for a Horizon Cloud Pod in Microsoft Azure.

Caution The subnets you manually create on your VNet in advance for the pod deployment must remain empty. Do not put any resources on these subnets or otherwise use any of the IP addresses. If an IP address is already in use on the subnets, the pod might fail to deploy.

Important When deploying additional pods after your first one, you cannot reuse an existing subnet which is already in use by an existing pod.

If you are going to have the deployer create the required subnets, verify that you know the address ranges you are going to enter into the wizard for the management subnet, desktop subnet, and DMZ subnet. The DMZ subnet is required when you want the external Unified Access Gateway configuration. Also verify that those ranges do not overlap. You enter the address ranges using CIDR notation (classless inter-domain routing notation). The wizard will display an error if the entered subnet ranges overlap. For the management subnet range, a CIDR of at least /27 is required. For the DMZ subnet range, a CIDR of at least /28 is required. If you want to keep the management and DMZ subnet ranges co-located, you can specify the DMZ subnet range similar to the management subnet with an IP specified. For example, if the management subnet is 192.168.8.0/27, a matching DMZ subnet would be 192.168.8.32/27.

Important The CIDRs you enter in the wizard's fields must be defined so that each combination of prefix and bit mask results in an IP address range having the prefix as the starting IP address. Microsoft Azure requires that the CIDR prefix be the start of the range. For example, a correct CIDR of 192.168.182.48/28 would result in an IP range of 192.168.182.48 to 192.168.182.63, and the prefix is the same as the starting IP address (192.168.182.48). However, an incorrect CIDR of 192.168.182.60/28 would result in an IP range of 192.168.182.48 to 192.168.182.63, where the starting IP address is not the same as the prefix of 192.168.182.60. Ensure that your CIDRs result in IP address ranges where the starting IP address matches the CIDR prefix.

If you are going to have the deployer create the required subnets, verify that subnets with those address ranges do not already exist on the VNet. In this scenario, the deployer itself will automatically
create the subnets using the address ranges you provide in the wizard. If the wizard detects subnets with those ranges already exist, the wizard will display an error about overlapping addresses and will not proceed further. If your VNet is peered, also verify that the CIDR address spaces that you plan to enter in the wizard are already contained in the VNet's address space.

Prerequisites When Deploying With a Unified Access Gateway Configuration

If you are planning to have the pod use a Unified Access Gateway configuration, you must provide:

- The fully qualified domain name (FQDN) which your end users will use to access the service. If you are going to deploy the pod with both the external and internal Unified Access Gateway configuration types and you want to use the same FQDN for both, you must determine how to route the incoming end-user client traffic to the appropriate load balancer. In this scenario, you need to set up the routing so that client traffic from the Internet is routed to the Microsoft Public Load Balancer and client traffic from your intranet is routed to the Microsoft Internal Load Balancer.

 Important This FQDN cannot contain underscores. In this release, connections to the Unified Access Gateway instances will fail when the FQDN contains underscores.

- A signed SSL server certificate (in PEM format) based on that FQDN. The Unified Access Gateway capabilities require SSL for client connections, as described in the Unified Access Gateway product documentation. The certificate must be signed by a trusted Certificate Authority (CA). The single PEM file must contain the full entire certificate chain with the private key. For example, the single PEM file must contain the SSL server certificate, any necessary intermediate CA certificates, the root CA certificate, and private key. OpenSSL is a tool you can use to create the PEM file.

 Important All certificates in the certificate chain must have valid time frames. The Unified Access Gateway VMs require that all of the certificates in the chain, including any intermediate certificates, have valid time frames. If any certificate in the chain is expired, unexpected failures can occur later as the certificate is uploaded to the Unified Access Gateway configuration.

- If you are deploying with an external Unified Access Gateway configuration, you must specify a DMZ (demilitarized zone) subnet. You can provide for this DMZ subnet by one of two ways:
 - Creating the DMZ subnet in advance on the VNet. With this method, you also have to create the management and desktop tenant subnets in advance. See the steps in In Advance of Pod Deployment, Create the Horizon Cloud Pod's Required Subnets on your VNet in Microsoft Azure.
 - Having the deployer automatically create the DMZ subnet during deployment. With this method, you must have the address range you are going to enter into the wizard for the DMZ subnet and verify that the range does not overlap with the ranges for the management and desktop tenant subnets. You enter the address ranges using CIDR notation (classless inter-domain routing notation). The wizard will display an error if the entered subnet ranges overlap. For the DMZ subnet range, a CIDR of at least /28 is required. If you want to keep the management and DMZ subnet ranges co-located, you can specify the DMZ subnet range the same as the management
subnet with an IP specified. For example, if the management subnet is 192.168.8.0/27, a matching DMZ subnet would be 192.168.8.32/27. Also see the important note in Prerequisites for All Deployments about ensuring the IP address range has a combination of prefix and bit mask that results in the range having the prefix as the starting IP address.

- If you are deploying with an external Unified Access Gateway configuration and you want to disable having a public IP address for the configuration's load balancer, you must specify an IP address that you have mapped in your DNS settings to the FQDN which your end users will use for PCoIP connections in their Horizon clients.

For more information about the PEM file considerations required by Unified Access Gateway, see Convert a Certificate File to the PEM Format Required for Pod Deployment.

Prerequisites When Deploying With an External Unified Access Gateway Configuration Using its Own VNet or Subscription Separate from the Pod’s VNet or Subscription

Along with the above prerequisites when deploying with a Unified Access Gateway configuration, these prerequisites are specific to the use case of deploying the external gateway in its own VNet or own subscription. Using its own subscription is a special case of using its own VNet, because the separate subscription must have its own VNet, because V Nets are scoped to a subscription.

- The VNet for the gateway must be peered with the pod's VNet.

- Verify that either the required subnets have been created in advance and exist on the VNet, or that the CIDR address spaces that you plan to enter in the wizard are already contained in the VNet's address space. Because the V Nets are peered, the deployer will not be able to expand the VNet automatically if you enter into the wizard CIDR address spaces that are not already contained in the VNet's address space. If that happens, the deployment process will fail.

Tip The best practice is to create the subnets in advance. For the steps to create the required subnets in advance, see In Advance of Pod Deployment, Create the Horizon Cloud Pod's Required Subnets on your VNet in Microsoft Azure and When Using Existing Subnets for a Horizon Cloud Pod in Microsoft Azure.

- If you are using a separate subscription for the external gateway, verify that you have the subscription information, as described in the Horizon Cloud Deployment Guide.

Prerequisites When Deploying With a Two-Factor Authentication Configuration

If you are planning to use the two-factor authentication capability, or use it with an on-premises two-factor authentication server, verify that you have the following information used in your authentication server's configuration, so that you can provide it in the appropriate fields in the pod deployment wizard. If you have both a primary and secondary server, obtain the information for each of them.

- IP address or DNS name of the authentication server
- The shared secret that is used for encryption and decryption in the authentication server's protocol messages
- Authentication port numbers, typically the 1812 UDP port.
Authentication protocol type. The authentication types include PAP (Password Authentication Protocol), CHAP (Challenge Handshake Authentication Protocol), MSCHAP1, MSCHAP2 (Microsoft Challenge Handshake Authentication Protocol, version 1 and 2).

Note Check your RADIUS vendor's documentation for the authentication protocol that your RADIUS vendor recommends and follow their indicated protocol type. The pod's capability to support two-factor authentication with RADIUS is provided by the Unified Access Gateway instances, and Unified Access Gateway supports PAP, CHAP, MSCHAP1, and MSCHAP2. PAP is generally less secure than MSCHAP2. PAP is also a simpler protocol than MSCHAP2. As a result, even though most RADIUS vendors are compatible with the simpler PAP protocol, some RADIUS vendors are not as compatible with the more secure MSCHAP2.

Specify the Horizon Cloud Pod’s Gateway Configuration

In this step of the wizard, specify the information required to deploy the pod with a gateway configured. Unified Access Gateway provides the gateway environment for a pod deployed into Microsoft Azure. When deploying the new pod, you can choose to have an external or internal gateway configuration, or both types on the same pod. You can also deploy the pod without any gateway configuration and decide to add one later after the pod is deployed. By default, when this wizard step displays, the external gateway configuration is selected.

External gateway configuration

The external Unified Access Gateway configuration gives the ability to provide access to desktops and applications for end users located outside of your corporate network. When the pod has this external gateway configuration, the pod includes an Azure Load Balancer resource and Unified Access Gateway instances to provide this access. In this case, the instances have three NICs each: one NIC on the management subnet, one NIC on the desktop subnet, and one NIC on the DMZ subnet. In the deployment wizard, you have the option to specify the load balancing type as either private or public, depending on whether you want a private IP or public IP address for the load balancer. If you disable the public IP toggle, then you must specify the IP address that you have mapped in your DNS server to the FQDN that your end users' Horizon clients will use for PCoIP connections to the gateway.
For an external gateway configuration, you also have the option to deploy the configuration into a VNet that is separate from the pod's VNet. The VNets must be peered. This type of configuration gives the ability to deploy the pod into more complex network topologies in Microsoft Azure, such as a hub-spoke network topology.

Note If you enabled the toggle for having the external gateway using its own subscription in the first wizard step, you must deploy the external gateway into its own VNet, the VNet that is associated with that subscription.

Internal gateway configuration

The internal Unified Access Gateway configuration gives the ability for end users located inside your corporate network to have trusted HTML Access (Blast) connections to their desktops and applications. If the pod is not configured with this internal gateway configuration, end users inside your corporate network see the standard browser untrusted certificate error when they use their browsers to make HTML Access (Blast) connections to their desktops and applications. When the pod has this internal gateway configuration, the pod includes an Azure Load Balancer resource and Unified Access Gateway instances to provide this access. In this case, the instances have two NICs each: one NIC on the management subnet and one NIC on the desktop subnet. By default, this gateway's load balancing type is private.

The following screenshot is an example of the step when it is initially displayed.
Add Microsoft Azure Capacity

Set up external and internal Unified Access Gateways (UAGs) for your pod.

External UAG
- **Enable External UAG?**
- **FQDN:**
- **DNS Addresses:**
- **Routes:**
- **Certificate:** [Upload]

Load Balancer
- **Enable Public IP?**
- **Type:** [Basic, Standard]

Networking
- **Use a Different Virtual Network?**
- **Virtual Network:** `vmw-hcs-net-0e333e5e-fb8b-4e6b-a0eb-9f811028b6d6`
- **Use Existing Subnet:**
- **Management Subnet (CIDR)?**
- **Back End Subnet (CIDR)?**
- **DMZ Subnet (CIDR)?**

2 Factor Authentication Settings
- **Enable 2 Factor Authentication?**

Internal UAG
- **Enable Internal UAG?**
Prerequisites

Verify that you have met the prerequisites described in Prerequisites for Running the Pod Deployment Wizard.

Important To complete this step, you must have the required fully qualified domain name (FQDN) which your end users will use to access the service and have a signed SSL certificate (in PEM format) based on that FQDN. The certificate must be signed by a trusted CA. A single PEM file must contain the entire certificate chain and the private key: SSL certificate intermediate certificates, root CA certificate, private key. For details, see Convert a Certificate File to the PEM Format Required for Pod Deployment.

Verify that all certificates in the certificate chain have valid time frames. If any certificate in the chain is expired, unexpected failures can occur later in the pod onboarding process.

This FQDN cannot contain underscores. In this release, connections to the Unified Access Gateway instances will fail when the FQDN contains underscores.

Procedure

1. If you want the external gateway configuration, complete the fields in the **External UAG** section.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable External UAG?</td>
<td>Controls whether the pod has an external gateway configuration. The external configuration allows access to desktops and applications for users located outside of your corporate network. The pod includes an Azure load balancer resource and Unified Access Gateway instances to provide this access.</td>
</tr>
<tr>
<td></td>
<td>Note Leaving the default enabled setting is recommended.</td>
</tr>
<tr>
<td></td>
<td>When this toggle is switched off, clients must either connect through Workspace ONE Access integrated with the pod or directly to the pod managers' load balancer, or they connect through an internal gateway configuration. In the case of clients connecting through Workspace ONE Access integrated with the pod or directly, some post-deployment steps are required. In this case, after the pod is deployed, follow the steps in Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod.</td>
</tr>
<tr>
<td>FQDN</td>
<td>Enter the required fully qualified domain name (FQDN), such as ourOrg.example.com, which your end users will use to access the service. You must own that domain name and have a certificate in PEM format that can validate that FQDN.</td>
</tr>
<tr>
<td></td>
<td>Important This FQDN cannot contain underscores. In this release, connections to the Unified Access Gateway instances will fail when the FQDN contains underscores.</td>
</tr>
<tr>
<td>DNS Addresses</td>
<td>Optionally enter addresses for additional DNS servers that Unified Access Gateway can use for name resolution, separated by commas. When configuring this external Unified Access Gateway configuration to use two-factor authentication with your on-premises RADIUS server, you would specify the address of a DNS server that can resolve the name of your on-premises RADIUS server.</td>
</tr>
<tr>
<td></td>
<td>As described in the Prerequisites for All Deployments, a DNS server must be set up internally in your subscription and configured to provide external name resolution. The Unified Access Gateway instances use that DNS server by default. If you specify addresses in this field, the deployed Unified Access Gateway instances use the addresses in addition to the prerequisite DNS server that you configured in your subscription's virtual network.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Routes</td>
<td>Optionally specify custom routes to additional gateways that you want the deployed Unified Access Gateway instances to use to resolve network routing for the end user access. The specified routes are used to allow Unified Access Gateway to resolve network routing such as to RADIUS servers for two-factor authentication. When configuring this pod to use two-factor authentication with an on-premises RADIUS server, you must enter the correct route the Unified Access Gateway instances can use to reach the RADIUS server. For example, if your on-premises RADIUS server uses 10.10.60.20 as its IP address, you would enter 10.10.60.0/24 and your default route gateway address as a custom route. You obtain your default route gateway address from the Express Route or VPN configuration you are using for this environment. Specify the custom routes as a comma-separated list in the form ipv4-network-address/bits ipv4-gateway-address, for example: 192.168.1.0/24 192.168.0.1, 192.168.2.0/24 192.168.0.2.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Upload the certificate in PEM format that Unified Access Gateway will use to allow clients to trust connections to the Unified Access Gateway instances running in Microsoft Azure. The certificate must be based on the FQDN you entered and be signed by a trusted CA. The PEM file must contain the entire certificate chain and the private key: SSL certificate intermediate certificates, root CA certificate, private key.</td>
</tr>
</tbody>
</table>

Specify the settings for this gateway's Microsoft Load Balancer.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Public IP?</td>
<td>Controls whether this gateway’s load balancing type is configured as private or public. If switched on, the deployed Microsoft Azure load balancer resource is configured with a public IP address. If switched off, the Microsoft Azure load balancer resource is configured with a private IP address. Important In this release, you cannot later change the external gateway's load balancing type from public to private, or from private to public. The only way to make that change would be to delete the gateway configuration entirely from the deployed pod and then edit the pod to add it back with the opposite setting. If you disable this toggle, the field Public IP for Horizon FQDN appears.</td>
</tr>
<tr>
<td>Public IP for Horizon FQDN</td>
<td>When you have chosen not to configure the deployed Microsoft Azure load balancer with a public IP, you must provide the IP address that you are mapping in your DNS to the FQDN that your end users’ Horizon clients will use for PCoIP connections to the gateway. The deployer will configure this IP address in the Unified Access Gateway configuration settings.</td>
</tr>
<tr>
<td>Type</td>
<td>Select the SKU to use for the Microsoft Azure Load Balancer that the deployer will use for this external gateway configuration. The choices are Standard or Basic. For a comparison of the two SKUs, see the Microsoft Azure documentation topic Load Balancer SKU comparison.</td>
</tr>
</tbody>
</table>

Specify the external gateway's networking settings.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a Different Virtual Network</td>
<td>This toggle controls whether the external gateway will be deployed into its own VNet, separate from the pod's VNet.</td>
</tr>
<tr>
<td></td>
<td>The following rows describe the different cases.</td>
</tr>
<tr>
<td></td>
<td>Note When you specified to use a different subscription for the external gateway in the first step of the wizard, this toggle is enabled by default. You must choose a VNet for the gateway in that situation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use a Different Virtual Network — Disabled</th>
<th>When the toggle is disabled, the external gateway will be deployed into the pod's VNet. In this case, you must specify the DMZ subnet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMZ Subnet</td>
<td>When Use Existing Subnet is enabled in the Pod Setup wizard step, DMZ Subnet lists the subnets available on the VNet selected for Virtual Network. Select the existing subnet that you want to use for the pod's DMZ subnet.</td>
</tr>
<tr>
<td>Important</td>
<td>Select an empty subnet, one that has no other resources attached to it. If the subnet is not empty, unexpected results might occur during the deployment process or pod operations.</td>
</tr>
<tr>
<td>DMZ Subnet (CIDR)</td>
<td>When Use Existing Subnet is disabled in the preceding wizard step, enter the subnet (in CIDR notation) for the DMZ (demilitarized zone) network that will be configured to connect the Unified Access Gateway instances to the gateway's Microsoft Azure public load balancer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use a Different Virtual Network — Enabled</th>
<th>When the toggle is enabled, the external gateway will be deployed into its own VNet. In this case, you must select the VNet to use and then specify the three required subnets. Enable the Use Existing Subnet toggle to select from subnets that you have created in advance on the specified VNet. Otherwise, specify the subnets in CIDR notation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important</td>
<td>Select empty subnets, ones that have no other resources attached to them. If the subnets are not empty, unexpected results might occur during the deployment process or pod operations.</td>
</tr>
</tbody>
</table>

In this case, the gateway's VNet and pod's VNet are peered. The best practice is to have the subnets created in advance, and not use the CIDR entries here. See [Prerequisites When Deploying With an External Unified Access Gateway Configuration Using its Own VNet or Subscription Separate from the Pod's VNet or Subscription](#).

- Management subnet - Specify the subnet to use for the gateway's management subnet. A CIDR of at least /27 is required. This subnet must have the Microsoft.SQL service configured as a service endpoint.
- Back-end subnet - Specify the subnet to use for the gateway's back end subnet. A CIDR of at least /27 is required.
- Front-end subnet - Specify the subnet for the front-end subnet that will be configured to connect the Unified Access Gateway instances to the gateway's Microsoft Azure public load balancer.

2 (Optional) In the External UAG section, optionally configure two-factor authentication for the external Unified Access Gateway.

Complete the steps in [Specify Two-Factor Authentication Capability for the Pod](#).
3 In the Internal UAG section, if you want the internal Unified Access Gateway configuration, switch on the Enable Internal UAG? toggle and complete the fields that appear.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Internal UAG?</td>
<td>Controls whether the pod has an internal gateway configuration. The internal configuration provides trusted access to desktops and applications for HTML Access (Blast) connections for users located inside of your corporate network. The pod includes an Azure load balancer resource and Unified Access Gateway instances to provide this access. By default, this gateway's load balancing type is private. The load balancer is configured with a private IP address.</td>
</tr>
<tr>
<td>FQDN</td>
<td>Enter the required fully qualified domain name (FQDN), such as ourOrg.example.com, which your end users will use to access the service. You must own that domain name and have a certificate in PEM format that can validate that FQDN.</td>
</tr>
<tr>
<td>Important</td>
<td>This FQDN cannot contain underscores. In this release, connections to the Unified Access Gateway instances will fail when the FQDN contains underscores.</td>
</tr>
<tr>
<td>DNS Addresses</td>
<td>Optionally enter addresses for additional DNS servers that Unified Access Gateway can use for name resolution, separated by commas. When configuring this internal Unified Access Gateway configuration to use two-factor authentication with your on-premises RADIUS server, you would specify the address of a DNS server that can resolve the name of your on-premises RADIUS server. As described in the Prerequisites for All Deployments, a DNS server must be set up internally in your subscription and configured to provide name resolution. The Unified Access Gateway instances use that DNS server by default. If you specify addresses in this field, the deployed Unified Access Gateway instances use the addresses in addition to the prerequisite DNS server that you configured in your subscription's virtual network.</td>
</tr>
<tr>
<td>Routes</td>
<td>Optionally specify custom routes to additional gateways that you want the deployed Unified Access Gateway instances to use to resolve network routing for the end user access. The specified routes are used to allow Unified Access Gateway to resolve network routing such as to RADIUS servers for two-factor authentication. When configuring this pod to use two-factor authentication with an on-premises RADIUS server, you must enter the correct route the Unified Access Gateway instances can use to reach the RADIUS server. For example, if your on-premises RADIUS server uses 10.10.60.20 as its IP address, you would enter 10.10.60.0/24 and your default route gateway address as a custom route. You obtain your default route gateway address from the Express Route or VPN configuration you are using for this environment. Specify the custom routes as a comma-separated list in the form ipv4-network-address/bits ipv4-gateway-address, for example: 192.168.1.0/24 192.168.0.1, 192.168.2.0/24 192.168.0.2.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Upload the certificate in PEM format that Unified Access Gateway will use to allow clients to trust connections to the Unified Access Gateway instances running in Microsoft Azure. The certificate must be based on the FQDN you entered and be signed by a trusted CA. The PEM file must contain the entire certificate chain and the private key: SSL certificate intermediate certificates, root CA certificate, private key.</td>
</tr>
<tr>
<td>Load Balancer Type</td>
<td>Select the SKU to use for the Microsoft Azure Load Balancer that the deployer will use for this external gateway configuration. The choices are Standard or Basic. For a comparison of the two SKUs, see the Microsoft Azure documentation topic Load Balancer SKU comparison.</td>
</tr>
</tbody>
</table>

4 (Optional) In the Internal UAG section, optionally configure two-factor authentication for the internal Unified Access Gateway.

Complete the steps in Specify Two-Factor Authentication Capability for the Pod.

When you have provided the required information associated with your selected options, you can click Validate & Proceed to continue to the wizard’s final step. See Complete the Step final steps in Deploying Horizon Cloud Pods into Microsoft Azure from the Capacity Page.
Specify Two-Factor Authentication Capability for the Pod

In the pod deployment wizard step for specifying its Unified Access Gateway configurations, you can also specify use of two-factor authentication for your end users' access to their desktops and applications through those gateway configurations. You can specify these two-factor authentication details after providing the Unified Access Gateway configuration details.

Prerequisites

For the external or internal Unified Access Gateway configuration for which you are entering the two-factor authentication details, verify that you have completed the fields for the Unified Access Gateway configuration in the wizard as described in Specify the Horizon Cloud Pod's Gateway Configuration. When configuring two-factor authentication to an on-premises authentication server, you also provide information in the following fields so that the Unified Access Gateway instances can resolve routing to that on-premises server.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Addresses</td>
<td>Specify one or more addresses of DNS servers that can resolve the name of your on-premises authentication server.</td>
</tr>
</tbody>
</table>
| Routes | Specify one or more custom routes that allow the pod's Unified Access Gateway instances to resolve network routing to your on-premises authentication server.
For example, if you have an on-premises RADIUS server that uses 10.10.60.20 as its IP address, you would use 10.10.60.0/24 and your default route gateway address as a custom route. You obtain your default route gateway address from the Express Route or VPN configuration you are using for this environment.
Specify the custom routes as a comma-separated list in the form ipv4-network-address/bits ipv4-gateway-address, for example: 192.168.1.0/24 192.168.0.1, 192.168.2.0/24 192.168.0.2. |

Verify that you have the following information used in your authentication server's configuration, so that you can provide it in the appropriate fields in the pod deployment wizard. If you have both a primary and secondary server, obtain the information for each of them.

- IP address or DNS name of the authentication server
- The shared secret that is used for encryption and decryption in the authentication server's protocol messages
- Authentication port numbers, typically the 1812 UDP port.
- Authentication protocol type. The authentication types include PAP (Password Authentication Protocol), CHAP (Challenge Handshake Authentication Protocol), MSCHAP1, MSCHAP2 (Microsoft Challenge Handshake Authentication Protocol, version 1 and 2).

Note Check your RADIUS vendor's documentation for the authentication protocol that your RADIUS vendor recommends and follow their indicated protocol type. The pod's capability to support two-factor authentication with RADIUS is provided by the Unified Access Gateway instances, and Unified Access Gateway supports PAP, CHAP, MSCHAP1, and MSCHAP2. PAP is generally less secure than MSCHAP2. PAP is also a simpler protocol than MSCHAP2. As a result, even though most RADIUS vendors are compatible with the simpler PAP protocol, some RADIUS vendors are not as compatible with the more secure MSCHAP2.
Procedure

1. **Switch on the Enable 2 Factor Authentication toggle.**

 When the toggle is enabled, the wizard displays the additional configuration fields. Use the scroll bar to access all of the fields.

 The following screenshot is an example of what is displayed after you switch on the toggle in the **External UAG** section.

 - **DMZ Subnet (CIDR):** 192.168.20.32/28
 - **DNS Addresses:** 192.168.0.15
 - **Routes:**
 - **Certificate:** ourOrg.pem
 - **Enable Public IP?**
 - **2 Factor Authentication Settings**
 - **Enable 2 Factor Authentication?**
 - **2 Factor Auth Method:** Add New Radius
 - **Name:**
 - **Properties**
 - **Display Name:**
 - **Display Hint:**

2. **Select your two-factor authentication method in the drop-down list.**

 In this release, RADIUS authentication is supported.

3. **In the Name field, enter an identifying name for this configuration.**

4. **In the Properties section, specify details related to the end users' interaction with the login screen they will use to authenticate for access.**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Name</td>
<td>You can leave this field blank. Even though this field is visible in the wizard, it only sets an internal name in Unified Access Gateway. This name is not used by Horizon clients.</td>
</tr>
<tr>
<td>Display Hint</td>
<td>Optionally enter a text string that will be displayed to the end users in the message on the end-user client login screen when it prompts the user for their RADIUS user name and passcode. The specified hint appears to the end user as Enter your DisplayHint user name and passcode, where DisplayHint is the text you specify in this field. This hint can help guide users to enter the correct RADIUS passcode. As an example, specifying a phrase like Example Company user name and domain password below for would result in a prompt to the end user that says Enter your Example Company user name and domain password below for user name and passcode.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Name ID Suffix</td>
<td>This setting is used in SAML scenarios, where your pod is configured to use TrueSSO for single sign-on. Optionally provide a string which the system will append to the SAML assertion user name that is sent to the broker. For example, if the user name is entered as user1 on the login screen and a name ID suffix of @example.com was specified here, the system sends a SAML assertion user name of user1@example.com to the broker.</td>
</tr>
<tr>
<td>Number of Iterations</td>
<td>Enter the maximum number of failed authentication attempts that a user is allowed when attempting to log in using this RADIUS system.</td>
</tr>
</tbody>
</table>
| Maintain Username | Enable this toggle to maintain the user's RADIUS username during authentication to Horizon Cloud. When enabled:
 - The user must have the same username credentials for RADIUS as for their Active Directory authentication to Horizon Cloud.
 - The user cannot change the username in the login screen.
 If this toggle is disabled, the user is able to type a different user name in the login screen.
 Note For the relationship between enabling Maintain Username and the domain security settings in Horizon Cloud, see the Domain Security Settings on General Settings Page topic. |

5 In the Primary Server section, specify details about the authentication server.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name / IP Address</td>
<td>Enter the DNS name or the IP address of the authentication server.</td>
</tr>
<tr>
<td>Shared Secret</td>
<td>Enter the secret for communicating with the authentication server. The value must be identical to the server-configured value.</td>
</tr>
<tr>
<td>Authentication Port</td>
<td>Specify the UDP port configured on the authentication server for sending or receiving authentication traffic. The default is 1812.</td>
</tr>
<tr>
<td>Accounting Port</td>
<td>Optionally specify the UDP port configured on the authentication server for sending or receiving accounting traffic. The default is 1813.</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Select the authentication protocol that is supported by the specified authentication server and which you want the deployed pod to use.</td>
</tr>
<tr>
<td>Server Timeout</td>
<td>Specify the number of seconds that the pod should wait for a response from the authentication server. After this number of seconds, a retry is sent if the server does not respond.</td>
</tr>
<tr>
<td>Max Number of Retries</td>
<td>Specify the maximum number of times the pod should retry failed requests to the authentication server.</td>
</tr>
<tr>
<td>Realm Prefix</td>
<td>Optionally provide a string which the system will place at the beginning of the user name when the name is sent to the authentication server. The user account location is called the realm. For example, if the user name is entered as user1 on the login screen and a realm prefix of DOMAIN-A was specified here, the system sends DOMAIN-A\user1 to the authentication server. If you do not specify a realm prefix, only the entered user name is sent.</td>
</tr>
<tr>
<td>Realm Suffix</td>
<td>Optionally provide a string which the system will append to the user name when the name is sent to the authentication server. For example, if the user name is entered as user1 on the login screen and a realm suffix of @example.com was specified here, the system sends user1@example.com to the authentication server.</td>
</tr>
</tbody>
</table>
In the Secondary Server section, optionally specify details about an auxiliary authentication server.

You can configure a secondary authentication server to provide for high availability. Enable the Auxiliary Server toggle and complete the fields as described in the Step Primary Server section.

In Advance of Pod Deployment, Create the Horizon Cloud Pod’s Required Subnets on your VNet in Microsoft Azure

If you are using a peered VNet, a best practice is to create the required subnets in advance of deploying the pod, to ensure that you have accounted for the address spaces your subnets need in the VNet prior to running the deployment wizard. Even when your VNet is not peered, instead of having the pod deployment process create the required subnets, you can create them in advance on your VNet.

Important Starting with the September 2019 release, both for pods newly deployed in this release and pods upgraded to this release, the pod’s management subnet must also support network communication with the pod’s Microsoft Azure Database for PostgreSQL service resource. Before deploying a new pod or upgrading an existing pod, the pod management subnet that you create must have the Microsoft.Sql service listed as a service endpoint. The deployment or upgrade process will check if the subnet has the endpoint and not proceed if the endpoint is not enabled on the subnet. For details, see When Using Existing Subnets for a Horizon Cloud Pod in Microsoft Azure.

When you create the subnets in advance, you must ensure their address ranges, in classless interdomain routing (CIDR) notation, adhere to the pod deployment wizard’s minimum requirements:

- For the management subnet, a CIDR of /27 or more is required. This subnet is for IP addresses used by the VMs involved in management activities of the pod itself.
- For the desktop tenant subnet, a CIDR of /27 or more is required. For production environments, a CIDR of /24 to /21 is recommended (256 addresses to 2048 addresses). This subnet is for IP addresses used for the RDSH server VMs and VDI desktop VMs on that subnet. The pod’s manager VM uses an IP address from this subnet. If the pod will have an internal Unified Access Gateway configuration, those Unified Access Gateway VMs also use IP addresses from this subnet. If the pod will have an external gateway configuration that is deployed using the pod’s VNet, that external gateway’s Unified Access Gateway VMs also use IP addresses from this subnet.

Important The VMs for your VDI desktops, the RDS images, and every server in the pod’s RDS farms consume these IP addresses. Because this desktop subnet cannot be extended after the pod is deployed, ensure you set this range large enough to accommodate the number of desktops you anticipate you will want this pod to provide. For example, if you anticipate this pod should provide over 1000 desktops in the future, ensure this range provides for more than that number of IP addresses.
If you are going to have an external Unified Access Gateway configuration deployed into the pod's VNet, you need a DMZ subnet, with a CIDR of /28 or more. This subnet is for IP addresses used by the Unified Access Gateway VMs' NICs to communicate with this external gateway configuration's load balancer. If you want to keep the management and DMZ subnet ranges co-located, you could specify the DMZ subnet range similar to the management subnet with an IP specified. For example, if the management subnet is 192.168.8.0/27, a matching DMZ subnet would be 192.168.8.32/27.

If you are going to have the external Unified Access Gateway configuration deployed into its own VNet, separate from the pod's, that VNet needs three subnets:

- A management subnet, of a CIDR of /27 more is required. This subnet is for IP addresses used by the VMs involved in management activities of the external gateway overall, such as the gateway connector VM.
- A back-end subnet, of a CIDR of /27 more is required. This subnet is for IP addresses used by the Unified Access Gateway VMs' NICs to communicate over the peered VNet with the pod's VNet.
- A front-end (DMZ) subnet, of a CIDR of /28 or more. This subnet is for IP addresses used by the Unified Access Gateway VMs' NICs to communicate with the external gateway's load balancer. If you want to keep the management and front-end subnet ranges co-located in this VNet, you could specify the DMZ subnet range similar to the management subnet with an IP specified. For example, if the management subnet is 192.168.8.0/27, a matching front-end subnet would be 192.168.8.32/27.

Important For each CIDR, ensure that each combination of prefix and bit mask results in an IP address range having the prefix as the starting IP address. Microsoft Azure requires that the CIDR prefix be the start of the range. For example, a correct CIDR of 192.168.182.48/28 would result in an IP range of 192.168.182.48 to 192.168.182.63, and the prefix is the same as the starting IP address (192.168.182.48). However, an incorrect CIDR of 192.168.182.60/28 would result in an IP range of 192.168.182.48 to 192.168.182.63, where the starting IP address is not the same as the prefix of 192.168.182.60. Ensure that your CIDRs result in IP address ranges where the starting IP address matches the CIDR prefix.

Prerequisites

Ensure your Microsoft region has the VNet that you plan to use for your pod. For details about setting up the VNet, see the *Horizon Cloud Deployment Guide*.

Ensure the address ranges you plan to use for the subnets do not overlap. The pod deployment wizard will display an error if the subnet ranges overlap.

Procedure

1. In the Microsoft Azure portal, navigate to the VNet for which you need to create the described subnets.
2. Click Subnets.
3 Click + Subnet.

The Add subnet screen appears.

4 Provide the information for the required fields.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Specify a name for the subnet.</td>
</tr>
<tr>
<td>Address range (CIDR block)</td>
<td>Type a CIDR for the subnet.</td>
</tr>
</tbody>
</table>

5 Click OK.

The subnet is added to the VNet.

6 Repeat steps 3 through 5 to add the remaining required subnets.

7 If you are going to deploy the external gateway in its own VNet, repeat the steps for that VNet's subnets.

Caution The subnets you manually create on your VNet in advance for the pod deployment must remain empty. Do not put any resources on these subnets or otherwise use any of the IP addresses. If an IP address is already in use on the subnets, the pod might fail to deploy.

What to do next

For the management subnets you created, enable the Microsoft.Sql service as a service endpoint. See When Using Existing Subnets for a Horizon Cloud Pod in Microsoft Azure. This service must be enabled on the pod's management subnet, and if you are deploying the external gateway in its own VNet, the service must be enabled on that gateway's management subnet also.

When Using Existing Subnets for a Horizon Cloud Pod in Microsoft Azure

Starting with the September 2019 release, both for pods newly deployed in this release and pods upgraded to this release, a pod's management subnet must also support network communication with the Microsoft Azure Database for PostgreSQL service endpoint. Before deploying a new pod or upgrading an existing pod, the pod management subnet that you create must have the Microsoft.Sql service enabled as a service endpoint. The deployment or upgrade process will check if the subnet has the endpoint and not proceed if the endpoint is not enabled on the management subnet. In addition to enabling that service endpoint, if you have firewall or network security group (NSG) rules on your management subnet, you must configure it to allow traffic for the Microsoft Azure Database for PostgreSQL service before deploying a new pod or upgrading an existing pod.

Important The December 2019 release introduces the feature to deploy the pod's external Unified Access Gateway configuration into its own VNet, separate from the pod's VNet. When using that feature, the management subnet in the external gateway's VNet must also adhere to this requirement to have the Microsoft.Sql service enabled as a service endpoint on that subnet.
The September 2019 release introduces use of the Microsoft Azure Database for PostgreSQL service as a required element of a Horizon Cloud pod in Microsoft Azure. As described in the Microsoft documentation, Microsoft Azure Database for PostgreSQL is a fully managed database-as-a-service offering. In a pod deployment or upgrade, a Microsoft Azure Database for PostgreSQL server resource is deployed in the pod's resource group, using the Single Server type of deployment. The deployment and upgrade processes also automatically add a VNet rule to the pod's VNet. This VNet rule restricts the Microsoft Azure Database for PostgreSQL server's traffic to the pod's management subnet. Communication between the pod and that Microsoft Azure Database for PostgreSQL server use the management subnet, which places some requirements on the pod's management subnet.

On the Management Subnet, Enable the Microsoft.Sql Service as a Service Endpoint

The VNet rule to restrict traffic for the deployed Microsoft Azure Database for PostgreSQL server to the management subnet requires the subnet to have the Microsoft.Sql service endpoint enabled. In the scenario where you have the pod deployer create the subnets, the deployer ensures the pod's management subnet has the Microsoft.Sql service endpoint enabled on the management subnet that it creates. However, when you create the management subnet yourself, you must ensure that management subnet meet these requirements before you deploy a new pod or upgrade an existing pod. The following screenshot is an example to illustrate where you enable the Microsoft.Sql service as a service endpoint on a subnet using the Microsoft Azure portal. After clicking on the subnet in the portal, in the Service endpoints section, use the Services drop-down list to select Microsoft.Sql, and then save.
You can use the Microsoft Azure portal to navigate to the management subnet and select Microsoft.Sql in the Services drop-down.

Ensure Your Firewalls or NSGs Allow for Pod Communication to the Microsoft Azure Database for PostgreSQL Service

As listed in [DNS Requirements for a Horizon Cloud Pod in Microsoft Azure](#), on the management subnet, you must configure your network rules for the management subnet to allow communication from the pod to the Microsoft Azure Database for PostgreSQL service. You must ensure your management subnets meet this requirement before you deploy a new pod or upgrade an existing pod.

If your firewalls or NSGs support using service tags to specify access, allow pod communication with one of the following:

- Global Azure SQL service tag: `Sql`
- Region-specific SQL service tag for the Azure region where the pod is deployed: `Sql.region`, such as `Sql.WestUS`
If your firewalls or NSGs do not support using service tags to specify access, you can use the host name of the database server resource that is created in the pod’s resource group. The server resource’s name follows the pattern *.postgres.database.azure.com.

For information about service tags in security groups, see the Microsoft Azure documentation topic at Service tags.

Change a Cloud-Connected Pod’s Associated Location, Name, and Description using the Horizon Cloud Administration Console

To change the geographic location, name, or description that the Administration Console displays for one of your tenant’s cloud-connected pods, use the Capacity page’s Edit action.

Tip The locations that the Administration Console displays are based on world city names. The system uses the cities’ geographic coordinates to place icons representing your pods on the interactive map on the Horizon Cloud Administration Console's Dashboard Page - Overview Tab. When you want to change a pod's associated geographic location to one that is not listed in the location-related drop-down list, you start typing the name of a city in the relevant entry field.

Procedure

1. In the Administration Console, navigate to the Capacity page by clicking Settings > Capacity.
2. Start the Edit Pod workflow by selecting the pod, and clicking Edit.
3. In the Edit Pod window, follow the guidance below depending on what type of cloud-connected pod you selected.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon 7 pod</td>
<td>Use the fields and controls in the wizard’s Pod Setup step to make your updates. If you want to change the pod's associated geographic location to one that is not listed in the Pod Location drop-down list, select New and click the drop-down list to get an entry box in which to start typing the location name you want. Click Next and then Save to save your changes to the system.</td>
</tr>
<tr>
<td>Microsoft Azure</td>
<td>Use the fields and controls in the Pod Details step to make your updates and save your changes to the system. If you want to change the pod's associated geographic location to one that is not listed in the Location drop-down list, click Edit, type the name of the location you want into the City Name field, and save it into the field.</td>
</tr>
</tbody>
</table>

4. Save your changes and exit out of the wizard, clicking Next as needed until you see the appropriate buttons to save and exit out of the wizard.
Removing Cloud-Connected Horizon 7 Pods from Use with Horizon Cloud

The business reasons for cloud-connecting a Horizon 7 pod to Horizon Cloud range from the simple use case of using a subscription license with that pod to leveraging all the cloud-hosted services that are supported for use with cloud-connected Horizon 7 pods. If you no longer have a need for those use cases, you can remove, or disconnect, the cloud-connected pod from use with Horizon Cloud by using the **Remove** button on the Horizon Cloud Administration Console's Capacity page. When disconnected from Horizon Cloud, that pod is no longer cloud-connected and you can no longer use a subscription license or use cloud-hosted services with that pod.

Tip In addition to the **Remove** action on the Capacity page, the pod's details page has a **Disconnect** action that gives the same result.

Prerequisites

Remove the pod from any assignments in which that pod is involved. See [Edit a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment](#).

If an on-premises Horizon 7 pod is offline or unavailable when you complete these steps and the system completes its activities to disconnect the pod, the system cannot communicate with the pod's Connection Server to clear out the appropriate cloud-management-related properties in the Horizon 7 global database. This property informs the Horizon 7 Connection Server that the pod is in-use with Horizon Cloud. In this situation, after performing the steps here, you must also manually edit the Horizon 7 global database to clear out the cloud-management-related properties.

Procedure

1. In the Horizon Cloud Administration Console, navigate to the Capacity page.
2. Select the pod that you want to remove from use with Horizon Cloud.
3. Click **Remove**.

 A notification message appears in the following cases:

 - If the pod is included in one or more assignments, a message appears stating that you cannot disconnect the pod. You must first disassociate the pod from any assignments before trying to remove it.
 - If the pod is offline or unavailable, a message alerts you that the pod will still retain its cloud-managed property in the Horizon 7 global database after the disconnection process. You can specify whether to proceed with or cancel the process.

If you proceed with the disconnection process, the pod is disconnected from Horizon Cloud, and the pod's name disappears from the pages in Horizon Cloud Administration Console.
What to do next

If you saw a notification message that the pod was offline or unavailable during the disconnection process, manually edit the Horizon 7 global database to clear out the pod's cloud-managed properties. See Clear the Cloud-Managed Properties from a Horizon 7 Pod that was Offline During the Process to Disconnect it from Horizon Cloud.

Clear the Cloud-Managed Properties from a Horizon 7 Pod that was Offline During the Process to Disconnect it from Horizon Cloud

If you use the Remove or Disconnect button in the Horizon Cloud Administration Console to remove a cloud-connected pod from use with Horizon Cloud, and the pod was offline or unavailable, you can still proceed to disconnect the pod from Horizon Cloud. In this case though, you must subsequently remove the pod's cloud-managed properties from the Horizon 7 global database, because the system could not automatically remove those properties when Horizon Cloud could not communicate with the pod. If left in place, the cloud-managed properties prevent you from renaming the pod or removing it from a pod federation.

Prerequisites

Disconnect the on-premises pod from Horizon Cloud. See Removing Cloud-Connected Horizon 7 Pods from Use with Horizon Cloud.

Procedure

1. Log in to the pod's Connection Server with domain administrator privileges.
3. Configure a connection to the Horizon 7 global database.
 a. In the console, right-click ADSI Edit and then click Connect to.
 b. In the Name text box, enter Horizon 7 Global Database.
 c. Select Select or type a Distinguished Name or Naming Context. In the text box, enter the following name information:

 \dc=vdiglobal,dc=vmware,dc=int

 d. Select Select or type a domain or server. In the text box, enter the following server information:

 localhost:22389

 e. Click OK.

 The connection to the Horizon 7 global database is established.
4. Expand the properties tree by navigating to Horizon 7 Global LDAP Database [localhost:22389] > DC=vdiglobal,dc=vmware,dc=int.
5 Clear the cloud-managed property from the pod.
 a Under DC=vdiglobal,dc=vmware,dc=int, navigate to OU=Properties and then OU=Pod.
 b Locate the target pod in the OU=Pod list, right-click it, and select Properties.
 The pod appears in the list with its Horizon Administrator or Horizon Console name.
 c Set the value of the pae-CloudManaged attribute to 0.
 Setting the value to 0 clears the cloud-managed property from the pod.

6 Clear the cloud-managed property from global entitlements.
 a Under DC=vdiglobal,dc=vmware,dc=int, navigate to OU=Entitlements.
 b Locate the global entitlement in the OU=Entitlements list. Right-click the global entitlement and select Properties.
 The global entitlement appears in the list with its Horizon Administrator or Horizon Console name.
 c Set the value of the pae-CloudManaged attribute to 0.
 Setting the value to 0 clears the cloud-managed property from the global entitlement.
You must have a subscription for cloud capacity in Microsoft Azure and then bring that subscription information to pair that cloud capacity with Horizon Cloud. After the pod is deployed in Microsoft Azure, you use Horizon Cloud Administration Console to create master images, farms and VDI desktops, assign use of desktops and applications to your users, as well as how to perform other administrative tasks. From a pod located in Microsoft Azure, your end users can securely access their desktops and applications from any device. You can choose where the desktops and applications reside, based on the location of the deployed pod.

For the overall introduction to Horizon Cloud, see Chapter 1 Introduction to Horizon Cloud and Onboarding Pods to Become Cloud-Connected Pods. For the suggested workflow of activities for a pod in Microsoft Azure, see High-Level Workflow for When Your Very First Cloud-Connected Pod is from Deploying into Microsoft Azure.

Horizon Cloud Pod Deployed in Microsoft Azure

You connect your Microsoft Azure subscription to Horizon Cloud to manage and deliver VDI desktops and RDSH-served desktops and applications. Setting up the environment involves deploying the pod into your Microsoft Azure capacity.
The pod deployed by Horizon Cloud into Microsoft Azure has a physical regional location in a Microsoft Azure cloud. In the pod deployment wizard, you select where to place the pod, according to the regions available for your particular Microsoft Azure subscription. You also select an existing virtual network (VNet) that the pod will use in your selected region. You have the option to deploy an external gateway configuration with the pod, with that external gateway's resources deployed either into the same VNet as the pod or into a separate VNet that is peered with the pod's VNet.

Note You preconfigure your Microsoft Azure environment with the pod VNet (and with the external gateway VNet if using that configuration option). You can either create in advance those subnets that the pod and external gateway configuration require, or let the pod deployer create the subnets during deployment. If you do not create the subnets in advance, the pod deployer creates the subnets as it deploys the required VMs and resources into your environment. If you choose to have the pod deployer create its required subnets, you have to know what IP address spaces you want to use for the pod's subnets before you start the deployment wizard. If you choose to create the subnets in advance, you must ensure they meet certain requirements before you start the deployment process. For details about requirements when you create the subnets in advance, see In Advance of Pod Deployment, Create the Horizon Cloud Pod's Required Subnets on your VNet in Microsoft Azure and When Using Existing Subnets for a Horizon Cloud Pod in Microsoft Azure.

Important This pod in Microsoft Azure is not a tenant. This pod does not adhere to the exact same set of characteristics that defines a tenant and which you would expect from a tenant. For example, even though a tenant would have a one-to-one mapping to an Active Directory domain and be isolated from other tenants, all of the Horizon Cloud pods in Microsoft Azure that are deployed using the same Horizon Cloud customer account record need to be able to reach the same Active Directory servers and the DNS configuration needs to resolve all of those Active Directory domains.

To do multi-tenancy, you would set up multiple Horizon Cloud customer account records. The Horizon Cloud customer account record, which is created when you registered with VMware to use the Horizon Cloud Service and is associated with your My VMware credentials, is more like a tenant. A Horizon Cloud customer account record is isolated from other Horizon Cloud customer account records. A single customer account record maps to multiple pods, and when someone uses any of the account credentials associated with that customer account record to log in to the Administration Console, the console reflects all of the pods that are mapped to that customer account record.

The pod deployment process automatically creates a set of resource groups in your Microsoft Azure capacity. Resource groups are used to organize the assets that the environment needs and creates, such as:

- VMs for the pod's manager instance (multiple VMs for a pod that is enabled for high availability)
- VMs for the Unified Access Gateway instances and their load balancers
- VM for the connector VM in the external gateway configuration when you deploy that configuration in a VNet separate from the pod's VNet
- VMs for the master RDS-enabled server images
- VMs for the master VDI desktop images
- VMs for the assignable (published) images that are made from the master images
- VMs for the RDSH farms that provide the RDSH desktops and remote applications
- VMs for the VDI desktops
- Additional assets that the VMs and the environment require for supported operations, such as network interfaces, IP addresses, disks, key vaults, Microsoft Azure Database for PostgreSQL server resource, and various items along those lines. The pod deployment process can create the required virtual subnets also, using the values you specify in the deployment wizard.

All of the resource groups created by Horizon Cloud in your Microsoft Azure environment are named using the prefix `vmw-hcs`.

Caution Do not manually modify or delete the pod-related resources using the Microsoft Azure portal except for:

- Manual creation of master images.
- Modifying farm and VDI desktop assignment network security groups as need to configure ports for your business circumstances.

Horizon Cloud automatically configures the pod-related resources to ensure the pod operates as designed. Do not manually change settings for the resources that are automatically created and deployed during workflows, assigned IP addresses or names, and so on. Do not manually power off VM instances directly using the Microsoft Azure portal. Do not manually delete the manager VM or Unified Access Gateway VMs. Do not manually delete NICs from the resource groups, especially from the Unified Access Gateway resource groups. If you change the generated settings or manually power off VMs or manually delete VMs or NICs that were created by the pod deployer, unpredictable results can occur and pod operations and pod upgrades might encounter failures.

The following diagram illustrates a deployed pod that is enabled for high availability and has both the external and internal types of Unified Access Gateway configurations. In this diagram, RG means resource group. The Unified Access Gateway instances in the external Unified Access Gateway configuration have NICs on the demilitarized (DMZ) network. When your pod has the external Unified Access Gateway configuration, your end users located in the Internet, outside your corporate network, can access their pod-provisioned virtual desktops and applications through that configuration. When your pod has the internal Unified Access Gateway configuration, your end users located in your intranet, inside your corporate network, can make trusted connections to their pod-provisioned virtual desktops and applications through that gateway. The pod deployment wizard provides the option to deploy the pod with both configurations up front. Alternatively, you can deploy the pod with only one gateway configuration or with none at all, and edit the deployed pod to add the non-chosen gateway configuration later.

You can also choose not to enable the high availability option in the deployment wizard, and then edit the deployed pod later to enable high availability on it. A new pod is always deployed with the Azure Postgres database and pod load balancer, even when you do not enable the high availability option in the wizard. Having those assets available allows for easy enablement of high availability on an already deployed pod. The second pod manager VM is only deployed when high availability is enabled on the pod.
Figure 5-1. Illustration of the Horizon Cloud Pod Architecture for a Pod with High Availability Enabled and Configured with Both External and Internal Unified Access Gateway Configurations
The following diagram illustrates the resources that are deployed when you choose the option to have the external gateway residing in its own VNet, separate from the pod’s VNet. The two VNets must be peered. This diagram also applies when you choose the option to have the external gateway’s resources deployed using a Microsoft Azure subscription that is different than the one used for the pod. Because VNets cannot cross subscriptions, choosing to deploy the external gateway into its own subscription is a subset of choosing the external gateway to reside in its own VNet.

Tip Deploying the external gateway configuration into its own VNet gives you the ability to deploy these Horizon Cloud pods into complex Microsoft Azure environments that use hub-spoke network topology in Microsoft Azure.

Figure 5-2. Illustration of the External Gateway’s Architecture Elements When the External Gateway is Deployed into Its Own VNet, Separate from the Pod’s VNet

Subscriptions and Number of Pods

Be mindful about the number of pods you deploy into a single subscription, especially if you plan to have each pod running at a large scale. Even though multiple pods can be deployed into a single Microsoft Azure subscription, whether all into one region or spread across multiple regions, Microsoft Azure imposes certain limits within a single subscription. Because of those Microsoft Azure limits, deployment of a large number of pods into a single subscription increases the likelihood of hitting those limits. Numerous variables, and combinations of those variables, are involved in reaching those limits, such as the number of pods, the number of farms and assignments within each pod, the number of servers within each pod, the number of desktops within each assignment, and so on.
If you plan to have pods running at a large scale, consider adopting the approach of having multiple subscriptions with those multiple subscriptions under one Microsoft Azure account. Microsoft Azure customers use this approach, and often prefer it, because it provides some benefits for ongoing management of the subscriptions. Using this approach, you would deploy a single pod per subscription, roll up those subscriptions in a single “master” account, and avoid the chances of hitting the Microsoft Azure limits that are imposed on a single subscription.

When You Have Existing Pods That Were Deployed Prior to This Current Horizon Cloud Release

As described in Updating Your Horizon Cloud Pod, VMware updates the Horizon Cloud software components periodically to include new features and bug fixes. The in-cloud management environment is updated on a weekly basis and the pod software components are typically updated on a roughly quarterly basis. The Horizon Cloud Service documentation page provides access to versioned Release Notes where the versions correspond to those quarterly releases, such as version 2.1 for the September 2019 release.

When you deploy a new pod, that pod is always created at the manifest version that is the latest one for the current in-production service environment. As an example, if you created a new pod in August 2019, that pod was deployed with software components that were current for Horizon Cloud as of that date. Depending on how long you have been using your Horizon Cloud environment, on a given calendar date, your overall Horizon Cloud environment might include some pods that are at the latest released version and some that are at an earlier released version which are not yet upgraded to the latest manifest.

Important In general, the content in this Administration Guide describes features, workflows, and behaviors that are available in the current in-production release and which are applicable when your pod is at the latest pod manifest version which was made available in this current release. The Administration Console is dynamic and will typically display messages when an area or action in the user interface requires upgrading the pod to use that feature. For a pod that existed prior to this release, some workflows might require different steps than are described in this Administration Guide. For a list of workflows in this release that are now different for pods at the latest manifest version, see the latest Release Notes document at https://docs.vmware.com/en/VMware-Horizon-Cloud-Service/index.html.

Microsoft Azure Terminology and References

The VMware Horizon Cloud Service on Microsoft Azure product documentation uses the applicable Microsoft Azure terminology as appropriate in the descriptions and task steps of the VMware Horizon Cloud Service on Microsoft Azure workflows. If the Microsoft Azure terminology is unfamiliar to you, you can use the following applicable references in the Microsoft Azure product documentation to learn more.

Note All capitalization and spelling in the citations below follow the same capitalization and spelling found in the linked-to articles in the Microsoft Azure documentation itself.
Useful Microsoft Azure References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Azure glossary: A dictionary of cloud terminology on the Azure platform</td>
<td>Use this glossary to learn the meaning of terms as used in the Microsoft Azure cloud context, for terms such as load balancer, region, resource group, subscription, virtual machine, and virtual network (vnet). Note The Microsoft Azure glossary does not include the term service principal because the service principal is a resource automatically created in Microsoft Azure when an application registration is created in Microsoft Azure. The reason why you create an application registration in your Microsoft Azure subscription is because that is the way you authorize Horizon Cloud as an application to use your Microsoft Azure capacity. The application registration and its companion service principal enable the Horizon Cloud cloud service acting as an application to access resources in your Microsoft Azure subscription. Use the next reference below to learn about applications and service principals that can access resources in Microsoft Azure.</td>
</tr>
<tr>
<td>Use portal to create an Azure Active Directory application and service principal that can access resources</td>
<td>Use this article to learn about the relationship between an application and a service principal in a Microsoft Azure cloud.</td>
</tr>
<tr>
<td>Azure Resource Manager overview</td>
<td>Use this article to learn about the relationships between resources, resource groups, and the Resource Manager in Microsoft Azure.</td>
</tr>
<tr>
<td>Azure VNet</td>
<td>Use this article to learn about the Azure Virtual Network (VNet) service in Microsoft Azure. See also Azure Virtual Network FAQs.</td>
</tr>
<tr>
<td>Azure VNet Peering</td>
<td>Use this article to learn about virtual network peering in Microsoft Azure.</td>
</tr>
<tr>
<td>Hub-spoke network topology in Azure</td>
<td>Use this article to learn about hub-spoke network topology in Microsoft Azure.</td>
</tr>
<tr>
<td>Microsoft Azure ExpressRoute Overview</td>
<td>Use this article to learn about Microsoft Azure ExpressRoute and how you can use it to establish connections between your on-premises networks, Microsoft Azure, and your Horizon Cloud pods.</td>
</tr>
<tr>
<td>About VPN Gateway Planning and design for VPN Gateway Create a Site-To-Site connection in the Azure portal</td>
<td>Use these articles to learn about how to configure VPNs in Microsoft Azure.</td>
</tr>
<tr>
<td>What is Azure Load Balancer?</td>
<td>Use this article to learn about the Azure load balancers that are deployed for a pod: the load balancer for the pod manager VMs and the load balancers for the gateway configurations.</td>
</tr>
<tr>
<td>What is Azure Database for PostgreSQL?</td>
<td>Use this article to learn about the Microsoft Azure Database for PostgreSQL service.</td>
</tr>
</tbody>
</table>

This chapter includes the following topics:

- High Availability and Your Horizon Cloud Pod in Microsoft Azure
- Creating Desktop Images for a Horizon Cloud Pod in Microsoft Azure
- Using Microsoft Azure Disk Encryption with Your Farms and VDI Desktops
- Using Data Disks with Virtual Desktops from a Horizon Cloud Pod in Microsoft Azure
- VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure
- Managing VM Types and Sizes for Farms and Assignments
Starting with the September 2019 Horizon Cloud release, a Horizon Cloud pod in Microsoft Azure supports high availability. When high availability is enabled on a pod, an additional pod manager VM is added to the pod. The high-availability-enabled pod has two pod manager VMs, with a Microsoft Azure load balancer between them and a Microsoft Azure availability set. This configuration enables the pod to continue to operate even if one manager VM experiences an issue. If one manager VM goes down, all traffic is automatically routed to the other manager VM without any manual intervention.

You can have high availability on pods created at this release level and pods that are upgraded to this release level's manifest version. For new pods, you can deploy the pod with high availability enabled from the start, or deploy the pod with high availability turned off and enable it later. For existing pods that are upgraded to this release level, the upgrade process does not automatically enable high availability on the pod. You can enable high availability on an upgraded pod after the pod upgrade process is completed and after you upgrade the agents on all of your image VMs, farm server VMs, and desktop VMs to this release level. The pod's details page reports whether high availability is enabled or disabled for that pod. For the steps to enable high availability on a pod where it is currently disabled, see Enable High Availability on a Horizon Cloud Pod in Microsoft Azure.
High Availability Design for a Pod in Microsoft Azure

In addition to having two pod manager VMs, the pod also has a Microsoft Azure load balancer resource, a Microsoft Azure availability set, and a Microsoft Azure Database for PostgreSQL server resource. This design provides for overall pod resiliency and fail over if one of the pod manager VMs experiences an issue or goes down.

Important A pod created new in the September 2019 release level is always deployed with a Microsoft Azure Database for PostgreSQL server resource, the Microsoft Azure load balancer, and availability set, even when you toggle off the High Availability option in the pod deployment wizard. Also, a pod created in a prior release and then upgraded to the September 2019 release level will also result in a pod with this new design: the Microsoft Azure Database for PostgreSQL server resource, the Microsoft Azure load balancer, and availability set, even though high availability is not automatically enabled in the upgrade process. Standardizing on this pod design for all pods with manifest versions 1600 or later allows for ease of enabling high availability on an already deployed pod. The second pod manager VM is only deployed when high availability is enabled on the pod.

These resources reside in the pod's resource group and you can view their details in your subscription when you log in to the Microsoft Azure portal. For information about identifying the pod's resource groups, see Resource Groups Created For a Pod Deployed In Microsoft Azure.

Microsoft Azure availability set As described in the Microsoft Azure documentation, a combination of a Microsoft Azure load balancer with availability sets provides the highest application resiliency. An availability set, or availability zone as it is sometimes referred to in the Microsoft Azure documentation, in each Microsoft Azure region is a combination of a fault domain and an update domain. By using an availability set, each of the pod's manager VMs is deployed on separate physical hardware within the same Microsoft Azure data center. The availability set enforces the manager VMs to reside on separate physical hardware. This separation of back end hardware minimizes the likelihood of both manager VMs experiencing downtime at the same time. Only if the entire Microsoft Azure data center goes down would both manager VMs be affected.

Microsoft Azure load balancer The deployed load balancer resource is connected to the pod's tenant subnet. This load balancer is used to route traffic to the pod's manager VMs according to the pod-deployer-configured health probe and rules. The manager VMs are added to this load balancer's back end pool. One manager VM assumes the role of the active broker for the end-user client connections to the pod-provisioned desktops and applications. The load balancer determines broker affinity based on the defined rules and health probe of the manager VMs in the back end pool. Based on the determined broker affinity, the load balancer routes all broker traffic seamlessly to the manager VM that is the active broker until a fail over occurs. Then the other manager VM becomes the active broker and the load balancer routes the brokering requests to that VM. When this fail over occurs, a notification is
sent to the Administration Console to inform you of this change in which manager VM is the active broker.

The pod load balancer sits between the end-user client connection requests and the pod's manager VMs. When the pod is configured with a gateway configuration (external or internal), traffic from the Unified Access Gateway instances routes to the pod load balancer, which routes that traffic to the manager VM that is the active broker. When the pod has no gateway configuration, and you have configured the pod for direct connections, such as over VPN, the end-user client connections go to the pod load balancer, which routes that traffic to the manager VM that is the active broker.

Microsoft Azure Database for PostgreSQL - Single Server

The pod has a Microsoft Azure Database for PostgreSQL server that uses the Single Server deployment option. Use of this server provides for centralizing data needed for pod operations and eliminates the need to use data replication across the manager VMs. In the current release, the following configuration is used:

- PostgreSQL version 10
- Memory Optimized
- Compute generation: Gen 5
- vCores: 2
- Storage: 10 GB
- Auto-growth: No
- Backup Storage: Locally redundant

See the Microsoft documentation for information about their Memory Optimized configuration:

- Pricing tiers in Azure Database for PostgreSQL - Single Server
- Pricing - Azure Database for PostgreSQL

Cost Impact in Your Microsoft Azure Subscription for Pods Created In or Upgraded to this Release Level

The elements required to support high availability in this release have some cost implications in your Microsoft Azure subscription. All pods created new at this release level and pods upgraded to this release level incur a cost for the managed Microsoft Azure Database for PostgreSQL server. A pod enabled with high availability additionally incurs a cost for running the additional manager VM. As of this writing, there are no costs for use of the Azure Load Balancer or availability set that are deployed for all pods created at, or upgraded to, this release level.

For pricing estimates of the Microsoft Azure Database for PostgreSQL configuration described above that is used in the current release, see https://azure.microsoft.com/en-us/pricing/details/postgresql/server/.
Enable High Availability on a Horizon Cloud Pod in Microsoft Azure

Starting with the September 2019 Horizon Cloud release, pods upgraded to that release’s manifest version and pods newly created at that release level provide the option to be enabled for high availability. If the pod at that manifest version has high availability disabled, you can enable high availability by following these steps.

As described in High Availability and Your Horizon Cloud Pod in Microsoft Azure, when a pod is enabled for high availability, it has two manager VMs. When the pod's details page says high availability is disabled, the pod has only one manager VM. Then, when you edit the pod to enable high availability on it, a second manager VM is deployed to the pod's resource group, and that VM is configured in the pod's Microsoft Azure load balancer and availability set.

Important Enabling the pod for high availability is a one-time action. After a pod is enabled for high availability, you cannot later revert the configuration and disable the feature on the pod.

Prerequisites

Verify you meet these criteria before editing the pod to enable high availability.

- The pod software must be at manifest version 1600 or later to be enabled for high availability. You can see a pod's manifest version by navigating to the pod's details page from the Capacity page.
- If the pod was upgraded from a manifest version earlier than 1600, before you can enable it for high availability, you must update the agents on all of the pod's image VMs, farm server VMs, and desktop assignment VMs to the September 2019 agent release level. For information about updating the agents using the Administration Console, see Updating the Agent-Related Software Used by Horizon Cloud and its subtopics.
- Ensure your subscription used by the pod has enough quota and cores to accommodate creation of the temporary jump box VM used for system configuration actions on Horizon Cloud pods. This jump box VM orchestrates the configuration update activity on the pod's resources, such as the pod's load balancer. The system deletes the jump box and its artifacts and resource groups when the configuration activity is finished.
- Ensure your subscription has enough quota and cores to accommodate creation of the additional pod manager VM.

Procedure

1. Navigate to the pod's details page from the Capacity page.
2. Click Edit.
3. In the High Availability section, switch on the toggle for Enabled.
4. Click Save & Exit.
5. Confirm the update.
The system creates a resource group for the jump box VM that orchestrates the activity to enable high availability on the pod and deploys the jump box VM. The jump box VM orchestrates updating the pod's configuration. On the pod's details page, the cluster status shows **Pending** state. When the configuration activity is finished, the cluster status shows **Ready** state. The overall process takes several minutes to complete.

Creating Desktop Images for a Horizon Cloud Pod in Microsoft Azure

Before you can start delivering desktops or RDS-based remote applications to your end users from your deployed pod, you must create at least one assignable desktop image. Creating this assignable image is a multi-step process: a master virtual machine (VM) must be created and paired with the cloud plane, then customized according to your organization's needs, and then converted into an assignable desktop image.

An assignable image is an image that has successfully completed the Horizon Cloud sealing process and Horizon Cloud can use it to provision RDS farms (in the case of RDS-enabled server images) or VDI desktops (in the case of non-server images). Other terms sometimes used to describe such images are sealed images and published images. Sealing an image is sometimes referred to as publishing the image or converting the image to a desktop.

Creating the image involves this high-level sequence.

First, Create a Master Virtual Machine (VM)

You create a master VM either using the automated wizard or manually.

- The recommended and standard way is to use the Import Desktop wizard's option to create the master VM using one of the supported VM configurations from the Microsoft Azure Marketplace. Using the wizard automates building the master virtual machine (VM) and configuring the VM to conform to the Horizon Cloud environment's requirements, including installing and configuring the appropriate agent-related software. The wizard also provides options for optimizing the VM, which can prevent Microsoft Windows Sysprep errors from occurring. From the Inventory page, start the Import Desktop wizard by clicking **Import** and then select the **From Marketplace** option. For steps, see [Create a Master Virtual Machine Automatically from the Microsoft Azure Marketplace and Pair it with Horizon Cloud](#).

 Important If your pod in Microsoft Azure is configured to use a proxy, you must create the base master VM using the alternative manual method, and not the automated Import Desktop method.
An alternative to the standard way is to use the Microsoft Azure portal and manually perform all of the steps that the wizard automates. For information about these manual steps see Manually Build the Master Virtual Machine in Microsoft Azure. In that manual workflow, you must manually run the Horizon Agents Installer (HAI) to install the required agent software that allows for the VM to be paired with Horizon Cloud.

Important If you use this alternative method, you are responsible for ensuring the resulting master VM conforms to the configuration required by the Horizon Cloud environment. Applying the same configuration that are described for the automated wizard’s **Optimize Windows Image** and **Remove Windows Store Apps** options is strongly recommended. Use of those configurations helps avoid Microsoft Windows Sysprep issues that might occur when the VM is later published as an image. See Deciding to Optimize the Windows Image When Using the Import Desktop Wizard and Deciding to Remove Windows Store Apps When Using the Import Desktop Wizard.

Second, Pair the Master VM with Horizon Cloud

Note For a pod that has a manifest version lower than 1600 and you run the automated wizard to create an image in that pod, the resulting VM is automatically paired with the cloud. In this case, the Imported VMs page will indicate the agent is in an active state. For this situation, you proceed with **Third, Customize the VM**.

When the pod is:

- Manifest version 1600 or higher (created after the September 2019 service release), whether you used the automated wizard or the manual method to create a master VM with the agent software on it, the resulting VM is not yet paired.
- Manifest versions prior to 1600, when you use the manual method to create a master VM with the agent software on it, the resulting VM is not yet paired.

For both of the above cases, the Agent Status column on the Imported VMs page will display Not Paired for the VM. The following screenshot illustrates a VM that is not yet paired with the cloud.

![Imported VMs](image)

In either of the above cases, you must explicitly pair the VM with Horizon Cloud. The specific steps to explicitly pair the VM depend on the manifest version of the pod in which the VM is located.

For a pod of manifest version 1600 or higher On the Imported VMs page, you use the **Reset Agent Pairing** action on the VM to explicitly pair the VM with Horizon Cloud. This process can take
several minutes. During the pairing process, the VM is restarted and its agent status changes from Not Paired to Unknown to Active. You have to refresh the page using the circular arrow icon to see the status changes.

For a pod of manifest versions lower than 1600

When the master VM was created manually, you explicitly pair the VM by following the steps in Manually Pair the Configured Virtual Machine with Horizon Cloud For Pods with Manifests Lower Than 1600.

The pairing process is completed when the Agent Status column displays Active and an agent version, such as 19.3.0. The following screenshot illustrates a VM after the pairing process is completed.

![Agent Status Screenshot](image)

Third, Customize the VM

When the pairing process completes and after refreshing the page, the VM's agent status shows as active, then you customize the master VM's guest Windows operating system (OS) with the third-party applications you want to provide to your end users, as well as configure any OS-level settings such as customized wallpaper, fonts and colors, drivers, and other such items. For steps, see Customize the Master Image VM's Windows Operating System and Install NVIDIA Graphics Drivers in a GPU-Enabled Master Image.

Important Starting with the December 2019 service release, the Import Virtual Machine wizard provides the option of either having the wizard-created VM joined to a specified Active Directory domain or not having the VM joined to the domain. Prior to the December 2019 service release, the wizard-created VM was always automatically joined to the domain. Your organization might also choose to join manually created VMs to a domain, to allow for domain admin accounts to log in and customize those VMs prior to sealing them.

If the base VM was joined to the domain in the creation process, then domain admin accounts can log in to the VM to customize it. However, when your pod has not yet upgraded to manifest version 1230 or later, and if your organization has a policy that prevents use of local administrator accounts on domain-joined VMs, you will not be able to log in to the master image to customize it until you configure the DaaS Direct Connect Users local group with those domain accounts you want used for customizing the image. Prior to pod manifest 1230, the agent software installed in a domain-joined VM prevented domain accounts from directly connecting to that VM. For details, see When Your Pod is Not Yet Upgraded to Manifest 1230 or Later, How to Configure the Ability for Domain Accounts to Remote Connect to the Imported Image.

Finally, Convert that Master VM to a Published Image

You use the New Image workflow in the Administration Console to convert that master VM to an assignable desktop image. For steps, see Convert a Configured Master Virtual Machine to an Assignable Image.
After the master VM is converted, the image’s Published status on the Images page indicates Horizon Cloud has sealed the image VM for use in the environment. When you see that the image on the Inventory - Images page displays the Published status, you can create:

- From an RDS-enabled Windows Server image, RDSH farms based on that image. You can create both types of farms from the same published RDS-enabled server image: desktop farms to provide session-based desktops and application farms to provide remote applications. When you have a farm, you can use it to make assignments to users. See Farms in Horizon Cloud.

- From a Windows client image, VDI desktop assignments based on that image. See Create a Floating VDI Desktop Assignment and Create a Dedicated VDI Desktop Assignment.

About the VMware Dynamic Environment Manager Agent Software and Creating Desktop Images in a Horizon Cloud Pod in Microsoft Azure

Starting with the July 2019 Horizon Cloud release, installation of the VMware Dynamic Environment Manager agent is incorporated into both the Horizon Agents Installer and the automated Import Desktop workflow. The VMware Dynamic Environment Manager agent component is also called the FlexEngine client component. The Horizon Agents Installer is the software package that installs the agent-related software in a new master image VM, when you run the Import Desktop workflow or manually create a master image VM. When you Create a Master Virtual Machine Automatically from the Microsoft Azure Marketplace and Pair it with Horizon Cloud, the Horizon Agents Installer runs behind the scenes to install the agents. When you Manually Build the Master Virtual Machine in Microsoft Azure, you download and run the Horizon Agents Installer as part of those steps.

The July 2019 Horizon Cloud release corresponds with the 19.2 version of Horizon Agents Installer. The VMware Dynamic Environment Manager files are installed into the resulting master image VM into file paths as described below.

For a pod with manifest version 1493 and later, when the base image VM is created in that pod using the automated Import Desktop workflow

This pod version is the first one in which the VMware Dynamic Environment Manager components are installed automatically into these base images by default. The resulting install file path is `C:\Program Files\VMware\Horizon Agents\User Environment`.

For a pod with manifest version 1493 and later, when the base image VM is created using the manual method

This pod version is the first one in which the Horizon Agents Installer has the option to install the VMware Dynamic Environment Manager components. If you choose to install that option when you run the Horizon Agents Installer in that manually created base VM, the resulting install file path is `C:\Program Files\VMware\Horizon Agents\User Environment`.

For a pod with manifest version earlier than

In this case, the automated workflow does not install the VMware Dynamic Environment Manager components by default into the resulting VM. For
1493, when the base image VM is created in that pod using the automated Import Desktop workflow or using the manual creation method, you have to manually run the standalone VMware Dynamic Environment Manager installer that you download from the Horizon Cloud Downloads page in https://my.vmware.com. In this case, the resulting install file path is C:\Program Files\Immidio\Flex Profiles.

Create a Master Virtual Machine Automatically from the Microsoft Azure Marketplace and Pair it with Horizon Cloud

For a pod in Microsoft Azure, you can use the Import Virtual Machine wizard to create the master virtual machine (VM) using an operating system image from the Microsoft Azure Marketplace. In the process, the VM is automatically configured with the elements and agent-related software required to conform to the Horizon Cloud environment's requirements. At the end of the creation process, the VM is listed on the Imported VMs page and you can take further actions on it, such as pairing the VM with the cloud plane, customizing the VM, installing additional drivers, and so on.

Important If your pod in Microsoft Azure is configured to use a proxy, you must create the base master VM using the alternative manual method, and not the automated Import Desktop method.

Pods of different manifest versions require different subsequent steps on the VM that results from the Import Virtual Machine wizard.

Pod manifests 1600 and later

Starting with pod manifest 1600, the automated workflow results in a VM that is not yet paired with Horizon Cloud. After the VM is created and listed on the Imported VMs page, you use the **Reset Agent Pairing** action on it to pair it with the cloud plane.

Pod manifests earlier than 1600

When the wizard creates a VM in a pod with a manifest earlier than 1600, the automated workflow pairs the VM with the cloud plane in the process. At the end of the process, the resulting VM is listed on the Imported VMs page with the agent in the active state.

By default, the system sets **Optimize Windows Image**, regardless of operating system, and **Remove Windows Store Apps**, for Windows 10 operating systems, to **Yes**. Keeping those toggles set to **Yes** is strongly recommended to help prevent you from encountering Microsoft Windows Sysprep issues that might occur when the VM is later published as an image.

Also by default, in the **Advanced Options** section, the wizard sets **Yes** to install those agent-related custom setup options that are both appropriate according to your other selections in the wizard and which are supported for use in the Horizon Cloud environment. If you want to change the default selections, expand the **Advanced Options** section in the Import Desktop - Marketplace window and set the toggles according to your needs.
As an example, the **3D support in RDSH** agent option is selected by default in the **Advanced Options** section when you have selected a Microsoft Windows Server operating system in the **OS** drop-down list. However, when you have selected a Microsoft Windows client operating system that **3D support in RDSH** agent option is not selected for installation. Because that option is only applicable for RDSH use, and RDSH farms only use server operating systems, the Import Image wizard automatically sets the appropriate **3D support in RDSH** setting based on your **OS** choice.

Tip Starting with the December 2019 service release, the Import Virtual Machine wizard provides the option of either having the wizard-created VM joined to a specified Active Directory domain or not having the VM joined to the domain at the end of the creation process. Prior to the December 2019 service release, the wizard-created VM was always automatically joined to an Active Directory domain that you specified in the wizard.

However, due to a known issue, if you are using the wizard with a pod of manifest earlier than 1600, you should enable the **Domain Join** option and have the wizard join the VM to a domain. Until the known issue is fixed, if you are using the wizard to create a VM in a pod with a manifest lower than 1600 and you disable the **Domain Join** toggle, the import VM process fails in the final steps of the process. For updated information about this issue, see the **Release Notes** for the December 2019 service release, linked from the **Horizon Cloud documentation page**.

Prerequisites

If you are creating an image with a Microsoft Windows 10 operating system, verify that you have valid licensing for that operating system. At this time, the Microsoft Azure documentation indicates that to legally run Windows 10 in Microsoft Azure, you must have licensing for Microsoft Windows 10, typically by purchasing an E3 or E5 license. Please verify licensing requirements and restrictions with your Microsoft Licensing distributor.

By default, this process installs the VMware Dynamic Environment Manager FlexEngine component in its typical mode. VMware Dynamic Environment Manager provides various options for achieving the persistence of end-user data, settings, and profiles of desktops provisioned by your pod. For more information, see the **Dynamic Environment Manager product documentation**.

Procedure

1. In the Horizon Cloud Administration Console, click **Inventory > Imported VMs** and then click **Import**.
2. In the Import Virtual Machine window, click **From Marketplace**.
3 Select the destination location and pod for the imported VM.

After you select a location, the choices in the Pod list are filtered to show the pods available in the selected location.

Important If you are planning to use this image for GPU-enabled desktops or remote applications, ensure that the selected pod resides in a Microsoft Azure region that supports GPU-enabled virtual machines (VMs). GPU-enabled VMs are only available in some Microsoft Azure regions. See Microsoft Azure Products by region for details.

4 Select the details for the base VM.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>Select the Microsoft Windows operating system to use for the image's underlying VM.</td>
</tr>
<tr>
<td></td>
<td>If you are going to use this image for VDI desktops, select one of the Windows 10 operating systems that are listed in the drop-down list. Do not select one of the server operating systems for a VDI desktop image.</td>
</tr>
<tr>
<td></td>
<td>If you are going to use this image for RDSH session desktops or RDS-based remote applications, select one of the listed server operating systems.</td>
</tr>
<tr>
<td></td>
<td>Note This drop-down menu takes a few moments to populate the entries.</td>
</tr>
<tr>
<td>Include GPU</td>
<td>Enable this toggle to specify a GPU-enabled VM for this master VM.</td>
</tr>
<tr>
<td></td>
<td>Important When enabling GPU, after the master VM is created, you must log into the VM's operating system and install the supported NVIDIA graphics drivers to get the GPU capabilities of the Microsoft Azure GPU-enabled VM. You install the drivers after the VM import process is completed.</td>
</tr>
<tr>
<td></td>
<td>If this VM is created in a pod at manifest 1600 or later, you usually install the drivers after using the Reset Agent Pairing action on the VM as described in Step 9 below.</td>
</tr>
<tr>
<td>Domain Join</td>
<td>Enable this toggle to specify that the resulting VM will be joined to one of Active Directory domains that are registered with your Horizon Cloud tenant as part of the automated process. When enabled, select the Active Directory domain from the drop-down list. The resulting VM will be joined to the selected domain. Domain administrator accounts in that domain will be able to log in to the resulting VM. When this toggle is disabled, the resulting VM is not joined to an Active Directory domain. Only the account credentials that you specify in Step 5 below can be used to log in to the resulting VM.</td>
</tr>
<tr>
<td>Enable Public IP Address</td>
<td>Enable this toggle to configure a public IP address for this master VM. When enabled, the VM gets both a private IP address and a public one. When this toggle is disabled, the VM is configured with only a private IP address in your Microsoft Azure environment.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Optimize Windows Image | By default, this toggle is enabled to create a master VM that meets VMware recommendations and best practices for optimizing a VM's Microsoft Windows operating system. This optimization includes adjusting default operating system services features to meet the best practices, such as:
 - Disabling physical desktop features that are irrelevant in a virtual environment, to provide more efficient VM performance.
 - Disabling certain Windows system services, such as Windows Update, so that control of that service is isolated to administrators instead of the end users.
 For more details, see [Deciding to Optimize the Windows Image When Using the Import Desktop Wizard](#).
 Important Keeping the default setting is strongly recommended to help prevent you from encountering Microsoft Windows Sysprep issues that might occur when the VM is later published as an image. |
| Remove Windows Store Apps | This toggle is visible only when OS is set to a Microsoft Windows 10 operating system. By default, this toggle is enabled to create a master VM that:
 - Disables the Windows Store Installer Service.
 - Removes Windows Store applications that come in the base Windows 10 operating system by default. These Windows 10 default applications are ones provided by AppX packages in the Windows 10 operating system.
 For more details, see [Deciding to Remove Windows Store Apps When Using the Import Desktop Wizard](#).
 Important Keeping the default setting is strongly recommended to help prevent you from encountering Microsoft Windows Sysprep issues that might occur when the VM is later published as an image. |
5 Provide administration details.

Note The user name and password you enter must meet the Microsoft requirements for acceptable user names and passwords for creating a VM in Microsoft Azure. For the list of requirements, see [username requirements](#) and [password requirements](#) in the Microsoft documentation.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Type the admin name that you want for the VM's local administrator account. This local administrator account is created in the VM during the process. This name will be used for the local admin account to access the VM's operating system, and also used during the convert to image process. This name can be a maximum of 15 characters in length, must not end in a period (".") and must not be one of the admin names that are not allowed when creating a VM in Microsoft Azure. Important Ensure you can remember this local administrator account information (this name and the password that you specify in the Password text box), or that you write it down so you can retrieve the information later. You will need these credentials when you want to add any third-party applications to this master image and when performing the New Image workflow to publish this master image to the system.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password that you want for that administrator account. The password must adhere to the Microsoft Azure password rules: - Must not be one of the admin account passwords that are not allowed when creating a VM in Microsoft Azure - Must be from 12 through 123 characters in length and meet three out of the following four complexity requirements: - Contain a lowercase character - Contain an uppercase character - Contain a digit - Contain a special character, such as (!@#$%^&*)</td>
</tr>
</tbody>
</table>
Option | Description
--- | ---
Verify Password | Re-type the password.

Windows license question
The intent of this license question depends on whether you are using a Microsoft Windows Server or a Windows 10 client operating system for this master VM.

- When the **OS** choice is set to a Microsoft Windows Server operating system, enable this toggle to specify both:
 - That you are eligible to use the Azure Hybrid Benefit (also known as Azure Hybrid Use Benefit or HUB) with the selected **OS** choice
 - That you want to apply that Azure Hybrid Benefit to this master image VM

When you enable this toggle, you must also check the check box that is displayed.

As described in the Microsoft Azure documentation, the Azure Hybrid Benefit is designed by Microsoft to save you money when you already have valid Microsoft Windows Server licenses. The Azure Hybrid Benefit FAQ is located in the Microsoft Azure documentation at https://azure.microsoft.com/en-us/pricing/hybrid-benefit/faq/. According to the Microsoft Azure documentation, when you have a Windows Server license with Software Assurance or a Windows Server subscription for the selected server operating system, you can use the Azure Hybrid Benefit for the virtual server instances that have those Windows Server operating systems.

- When the **OS** choice is set to a Microsoft Windows 10 client operating system for this master VM, Horizon Cloud sets the VM to use the Windows Client license type by default and you cannot change this setting. By design, Horizon Cloud sets the same license type on the VM that would be set if you manually used the Microsoft Azure portal and created the VM from the Azure Marketplace with the selected Microsoft Windows 10 operating system. At this time, the Microsoft Azure documentation indicates that to legally run Windows 10 in Microsoft Azure, you must have licensing for Microsoft Windows 10, typically by purchasing an E3 or E5 license. Please verify licensing requirements and restrictions with your Microsoft Licensing distributor.

6. **In the Name field, provide a name for the master VM and an optional description.**

Important Do not enter a name that was previously used for a master VM that has been converted into an assignable image in your Horizon Cloud environment. For example, if a master image was converted into an assignable image so that it is listed on the Images page, do not enter the same name here. Due to a known issue, the VM creation process fails silently if you reuse a name that is already listed on the Images page. The system will not create the VM in Microsoft Azure, however, an error message does not appear in the Administration Console.

The name must adhere to the following rules:

- It cannot contain an underscore character (_).
- It can have only alphanumeric characters and the hyphen.
- The name must start with an alphabetic character (not a number).
- The name cannot end with a hyphen (-).
Use the toggles in the **Advanced Options** section to customize the Horizon agent features that will be installed in the master VM.

When the option's toggle is enabled, the corresponding feature will be installed in the master VM.

Note In addition to the options you see selected in this wizard, the workflow process always installs the following key features by default.

- Horizon agent - HTML5 Multimedia Redirection. Redirects HTML5 multimedia content in a Chrome or Edge browser to the user's local system to optimize performance.
- Horizon agent - Horizon Performance Tracker. Monitors the performance of the display protocol and system resource usage.
- Horizon agent - vRealize Operations Desktop Agent. Collects activity-related data from user sessions in the desktop instance or farm server instances based on this image, and sends that data to the Horizon Cloud cloud monitoring service (CMS) for historical data collection and reporting.
- VMware Dynamic Environment Manager client components. Enables use of VMware Dynamic Environment Manager features with the desktop VMs and server VMs that are provisioned based on this image.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Flash MMR</td>
<td>Provides the ability to redirect Flash multimedia content that is streamed to the virtual desktop to stream directly to the client computer and decoded on the client system, to optimize performance. The client system plays the media content, offloading the demand on the virtual desktop.</td>
</tr>
<tr>
<td>3D support in RDSH</td>
<td>Applicable when the OS choice is set to a server operating system. Provides 3D graphics support to applications that run on a GPU-enabled RDSH server image.</td>
</tr>
<tr>
<td>MMR for Terminal Services</td>
<td>Provides the ability to redirect multimedia content that is streamed to the virtual desktop to stream directly to the client computer and decoded on the client system, to optimize performance. The client system plays the media content, offloading the demand on the virtual desktop.</td>
</tr>
<tr>
<td>Client Drive Redirection</td>
<td>Allows Horizon Client users to share local drives with their virtual desktops and RDS-based applications.</td>
</tr>
<tr>
<td>Skype for Business</td>
<td>Provides the ability to use the virtual desktops to make optimized audio and video calls with Skype for Business.</td>
</tr>
<tr>
<td>Webcam Support (Real-Time Audio Video RTAV)</td>
<td>Redirects webcam and audio devices that are connected to the users' client systems so that those devices can be used on the virtual desktop.</td>
</tr>
<tr>
<td>Smart Card</td>
<td>Not installed by default. Lets users authenticate with smart cards when they use the PCoIP or Blast Extreme display protocol.</td>
</tr>
<tr>
<td>Thin Print</td>
<td>Allows users to print to any printer available on their client computers, without installing additional drivers.</td>
</tr>
<tr>
<td>Scanner Redirection</td>
<td>Not installed by default. Redirects scanning and imaging devices that are connected to the users' client systems so that they can be used on the virtual desktop or RDS-based application.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>USB Redirection</td>
<td>Not installed by default. Gives users access to locally connected USB flash drives and hard disks in the virtual desktops and RDS-based applications.</td>
</tr>
<tr>
<td>Note</td>
<td>For guidance on using USB redirection securely, see the Horizon 7 Security guide and the Configuring Remote Desktop Features in Horizon 7 guide. The version 7.10 (September 2019) of those guides are at security guide and remote desktop features guide. For example, you can use group policy settings to disable USB redirection for specific users.</td>
</tr>
<tr>
<td>URL Redirection</td>
<td>Not installed by default. Allows Horizon Client to determine which URLs should be handled using the virtual desktop or application instead of using the users' client system, and open those URLs using the virtual desktop or RDS-based application.</td>
</tr>
<tr>
<td>Serial Port Redirection</td>
<td>Not installed by default. Redirects devices that are connected to the serial ports on the users' client systems so that they can be used on the virtual desktop or RDS-based application.</td>
</tr>
<tr>
<td>Geolocation Redirection</td>
<td>Not installed by default. Allows for sharing the client system's geolocation information with Internet Explorer 11 on the virtual desktop. This option results in the Horizon Geolocation Redirection option installed when the agent is installed in the master VM. Additional requirements are needed after the master VM is ready. For details, see the Horizon 7 topic System Requirements for Geolocation Redirection (version 7.10).</td>
</tr>
<tr>
<td>Help Desk</td>
<td>Provides the ability to collect real-time performance-related, detailed desktop and session metrics from live desktop sessions. Live sessions are sessions that are active, idle, or disconnected. Logged-off sessions are not in this set of live sessions. Those metrics can help you troubleshoot the health of the virtual desktops. Those metrics are used in the Administration Console's user card, which is part of the system's help-desk-related features.</td>
</tr>
<tr>
<td>Note</td>
<td>If you turn off this toggle, performance-related metrics from live user sessions in the desktop instances or farm server instances based on this image are not collected. As a result, real-time live user-session data will not be sent to the cloud monitoring service (CMS). As a result, such live user-session data cannot be reported in the user card for such sessions or within reports on the Reports page. For details, see The User Card in the Horizon Cloud Administration Console and Reports Page.</td>
</tr>
<tr>
<td></td>
<td>To collect historical session data, in addition to the vRealize Operations Desktop Agent that the Import Virtual Machine wizard installs by default, your Horizon Cloud environment must also have the CMS sessions feature enabled in the General Settings page. If the CMS sessions feature is disabled, historical session data will not be available to you in the Administration Console. To verify the CMS sessions feature's setting in your environment, see the Monitoring table row in Edit General Settings.</td>
</tr>
</tbody>
</table>

For extended details about the preceding agent-related options used for VDI desktops and RDS hosts, as well as about all of the Horizon agent features that are always installed by default, see Horizon Agent Custom Setup Options (for those options applicable to a VDI desktop) and Horizon Agent Custom Setup Options for an RDS Host in the VMware Horizon 7 product documentation.
8 Click **Import**.

The system begins creating and configuring the master VM. It can take approximately 45 minutes for the overall process to finish at its final point where:

- For pods of manifest 1600 and later, the VM is listed on the Imported VMs page with powered-on status (green dot) and with an agent status of **Not Paired**.
- For pods of manifests prior to 1600, the VM is listed on the Imported VMs page with powered-on status (green dot) an agent status of **Active**.

When the VM is initially instantiated in the Microsoft Azure cloud, its name appears on the Imported VMs page. Use the refresh icon to see the latest status of the VM on the page.

If the VM creation process fails, the system generates a notification about the failure and displays a **Failed** link in the Agent Version column. Clicking that link opens the Notification page where you can read the reason for the failure.

Important When creating an image in Microsoft Azure China cloud, the process can take up to two (2) hours to complete. The process is subject to geographic network issues that can cause slow download speeds as the binaries are downloaded from the cloud control plane.

9 If the VM is in a pod of manifest 1600 and later, after the automated process is finished and you refresh the page to see the resulting VM with its green powered-on dot and an agent status of **Not Paired**, use the **Reset Agent Pairing** action on the VM to pair it with Horizon Cloud.

Important Skip this step if you are using a pod of manifest earlier than 1600. In pods that are at versions earlier than this release, the automated wizard results in a VM that is paired with Horizon Cloud with the agent in active state. If you see the resulting VM has an agent status of **Active** and an agent version number like 19.2, the process is complete.

If your pod has manifest 1600 and later, after the automated process is finished, the resulting VM is not yet paired with Horizon Cloud. The VM's Agent Status column will display **Not Paired**, as illustrated in the following screenshot.

Select the VM and then click **More > Reset Agent Pairing**. The system pairs the VM with the cloud plane. This process can take several minutes to complete. During the pairing process, the VM is restarted and its agent status changes from **Not Paired** to **Unknown** to **Active**. Use the circular arrow icon to refresh the Imported VMs page to see the VM's current status.
The VM pairing process is completed when the Agent Status column displays Active and an agent version, such as 19.3.0. The following screenshot illustrates a VM after the pairing process is completed.

<table>
<thead>
<tr>
<th>Status</th>
<th>Name</th>
<th>IP Address</th>
<th>Agent Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lkwem1-1</td>
<td>52.247.222.84</td>
<td>Active (19.3.0)</td>
</tr>
</tbody>
</table>

What to do next

Customize the image’s Windows operating system, including configuring things like wallpapers and installing the applications you want the VM to provide to your end users. If you enabled a public IP address for the VM, you can connect to the created VM by using the IP address displayed on the Imported VMs page in an RDP client like Microsoft Remote Desktop Connection. For details, see Customize the Master Image VM’s Windows Operating System.

Note If your pod is configured to use a proxy, you are responsible for providing a way for the virtual desktop VMs and farm server VMs to be configured with the proxy.

If you selected Yes for Include GPU, you must log into the VM's operating system and install the supported NVIDIA graphics drivers to get the GPU capabilities of the Microsoft Azure GPU-enabled VM. You install the drivers after the VM is created and the Imported VMs page shows that the agent-related status is active. See Install NVIDIA Graphics Drivers in a GPU-Enabled Master Image.

If you want to use the features of NSX Cloud and its NSX-T Data Center components with the farm server instances or VDI assignment desktop instances based on this master image, you must log into the VM's operating system and install the NSX agent before publishing the image. See the topics VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure and Install the NSX Agent in the Master Image.

The import process installs the VMware Dynamic Environment Manager client components by default. The FlexEngine client component is installed using its typical mode. The installation path in the resulting VM is C:\Program Files\VMware\Horizon Agents\User Environment Manager. If you want to use VMware Dynamic Environment Manager with the desktop VMs and farm server VMs based on this image, configure a separate file server in your Microsoft Azure subscription that has at least SMB 2 enabled. Then configure VMware Dynamic Environment Manager using that file server. Also configure the GPO settings that are required when the FlexEngine is installed in its typical mode. For details, see the VMware Dynamic Environment Manager documentation topics in the Dynamic Environment Manager product documentation.

Deciding to Optimize the Windows Image When Using the Import Desktop Wizard

The Import Desktop wizard has an option for optimizing the Microsoft Windows operating system in the master virtual machine (VM). With that option selected, the image creation process results in a master VM that is optimized for Horizon Cloud. You can specify this option for both Microsoft Windows Server operating systems and Microsoft Windows 10 client operating systems.

The resulting settings depend on which Windows operating system is installed in the master VM.
All Windows Operating Systems

When the optimizing option is selected, the image creation process disables the Windows Update feature by:

- Adding a registry property to prevent automatic updates. The property's value is set to 1.

 Path: HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU
 Property name: NoAutoUpdate
 Property value: 1

- Stopping and disabling the wuauserv service. This system service is used by the Windows Update feature.

Windows 10 Operating Systems Only

When the optimizing option is selected, the image creation process disables these scheduled tasks, if present.

<table>
<thead>
<tr>
<th>In Task Scheduler > Task Scheduler Library</th>
<th>Task Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Microsoft\Windows\UpdateOrchestrator</td>
<td>Reboot</td>
</tr>
<tr>
<td></td>
<td>Schedule Scan</td>
</tr>
<tr>
<td></td>
<td>USO_Broker_Display</td>
</tr>
</tbody>
</table>

Deciding to Remove Windows Store Apps When Using the Import Desktop Wizard

The Import Desktop wizard has an option for removing Windows Store apps from the Microsoft Windows 10 operating system on the master virtual machine (VM). With that option selected, the image creation process results in a master VM that avoids many of the typical reasons for the image publishing process to fail. Use that option especially to reduce the risk of Sysprep errors from occurring during the publishing process.

The image creation process uses the Microsoft Windows 10 versions that are available in the Microsoft Azure Marketplace. As described in the Microsoft documentation at Understand the different apps included in Windows 10, Microsoft Windows 10 systems typically include installed Windows apps and provisioned Windows apps, installed in the directory c:\Program Files\WindowsApps. In addition to those apps that are pre-installed in that directory, after the operating system is up and running, Windows 10 will also silently automatically download from the Windows Store and install various Windows Store Apps that it calls suggested apps. Almost all of these apps can cause issues with the Microsoft System Preparation (Sysprep) utility. The publishing workflow depends on that utility. The Sysprep issues that typically result if these Windows apps remain in the VM's operating system are industry known, described in the following resources:

- VMware KB 2079196
- Microsoft KB 2769827
- Microsoft MVP article 615
Removing any pre-installed Windows Store apps and preventing Windows 10 from automatically and silently installing new suggested ones aims to reduce the risk of such Sysprep issues from occurring when you publish the image. These Windows apps exist as Appx packages in the operating system. When the option to remove Windows Store apps is selected, the image creation process makes the following changes in the master VM's Windows 10 operating system.

- Configures these registry values to disable the Windows Store automatic download and the Microsoft Consumer Experience.

<table>
<thead>
<tr>
<th>Registry Path</th>
<th>Property Name</th>
<th>Value</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\WindowsStore</td>
<td>AutoDownload</td>
<td>2</td>
<td>Disables automatic download of Windows Store apps</td>
</tr>
<tr>
<td>HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\CloudContent</td>
<td>DisableWindowsConsumerFeatures</td>
<td>1</td>
<td>Disables the Microsoft Consumer Experience</td>
</tr>
<tr>
<td>HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\ContentDeliveryManager</td>
<td>SilentInstalledAppsEnabled</td>
<td>0</td>
<td>Disables the automatic installation of suggested Windows Stores apps that Microsoft Windows will otherwise silently and automatically download and install</td>
</tr>
</tbody>
</table>

- Stops and disables the Windows Store Install Service (InstallService service).

- Removes the appx packages (files with extension .appx) that are installed in the VM's operating system. The image creation script runs the following commands:

 Get-AppxPackage -AllUsers | Remove-AppxPackage
 Get-AppxProvisionedPackage -Online | Remove-AppxProvisionedPackage -Online
Customize the Master Image VM’s Windows Operating System

After the master image virtual machine (VM) is created and you have paired it to Horizon Cloud, but before you convert it into a published image, you customize the VM’s guest Windows operating system (OS) to install and configure the things you want and need in the image.

Important If you created the master VM using the Import Desktop wizard and you specified one of the following configurations, the system optimized the VM according to VMware best practices:

- Windows Server operating system and **Yes** for the **Optimize Windows Image** toggle
- Windows 10 operating system and **Yes** for the **Optimize Windows Image** and **Remove Windows Store Apps** toggles

If you did not use those options in the Import Desktop wizard, or if you manually created the master image VM, in addition to following the steps in the topics below according to the master image’s specific operating system, you best also apply the following best practices before converting the master image to a published, sealed image. These best practices can help you avoid encountering issues that can typically occur during the sealing process, especially those related to the Microsoft Windows System Preparation (Sysprep) process.

To avoid known Sysprep errors from potentially occurring during the publishing process, prior to starting the publishing workflow:

- Manually configure the master image VM’s services and registry keys according to the same settings the system uses when the **Optimize Windows Image** and **Remove Windows Store Apps** toggles are set to **Yes**. For details, see Deciding to Optimize the Windows Image When Using the Import Desktop Wizard and Deciding to Remove Windows Store Apps When Using the Import Desktop Wizard.

- Remove the Microsoft Windows appx packages as described in VMware KB 2079196, Microsoft KB 2769827, and Microsoft MVP article 615. For Windows 10, run the appx package removal steps under all accounts, removing the same apps from each and every account. Do not delete accounts or profiles from the master image until you have run the appx removal steps for every account. For details about the package removal commands that the image creation process runs when you use the Import Desktop wizard’s **Remove Windows Store Apps** toggle, see Deciding to Remove Windows Store Apps When Using the Import Desktop Wizard.

- Download the VMware OS Optimization Tool (OSOT) fling and use it to optimize the master image’s Windows operating system. The OSOT is available at https://labs.vmware.com/flings/vmware-os-optimization-tool. You might also find helpful the information in the VMware Windows Operating System Optimization Tool Guide. Even though that guide is written in the context of other VMware virtual desktop products and includes mention of Windows operating system other than those supported in your Horizon Cloud environment, it provides details on how to use the OSOT.

Customize the Guest Windows Client Operating System of the Master VDI Desktop Virtual Machine

After the master image virtual machine (VM) for a VDI desktop is created and you have paired it to Horizon Cloud, but before converting it into a published image, you customize the guest Windows
operating system (OS) to install and configure all of the things you want to have in your end users' VDI
desktops. At this time, you install all of the third-party applications you want available in the VDI desktops.
Also at this time, you perform any other customizations in the Windows guest operating system, such as
installing special drivers required by your organization's needs, applying wallpaper, setting default colors
and fonts, configuring taskbar settings, and other such OS-level items.

After the Imported VMs page indicates that your master image virtual machine (VM) has its agent-related
status as active, you connect to it using your RDP software and install the applications into the underlying
Windows operating system.

Prerequisites

Verify the Imported VMs page indicates the agent-related status is active for the VM. To get that status for
a VM created in a pod at manifest 1600 and higher, use the Imported VMs page's Reset Agent Pairing
action on the VM. That action is located in the More drop-down list.

Obtain the VM's IP address as displayed on the Imported VMs page.

Note When using the Microsoft Remote Desktop Client as your RDP software to connect to the master
VM, ensure it is the most up-to-date version. For example, the default RDP software in the Windows 7
operating system is not at a high enough version. The version must be version 8 or higher.

Verify you have at least one of the following credentials (user name and password) to log in to the VM's
guest Windows operating system, according to how the master image VM was created.
<table>
<thead>
<tr>
<th>When the VM was created</th>
<th>How the VM was created</th>
<th>Credentials to use to log in</th>
</tr>
</thead>
</table>
| Prior to the December 2019 service release going live in production | Import Virtual Machine wizard, from the Imported VMs page. | Prior to the December 2019 service release date, the Import Virtual Machine wizard created VMs that were always automatically joined to the Active Directory domain that was specified in the wizard. To log in to such a VM, you can use one of the following:
- The credentials for the local administrator account that were specified in the wizard.
- The credentials for a domain account in that Active Directory domain. |
| After the December 2019 service release went live in production | Import Virtual Machine wizard, from the Imported VMs page. | Starting with the December 2019 service release date, the Import Virtual Machine wizard provides the option of either having the wizard-created VM joined to a specified Active Directory domain or not having the VM joined to the domain at the end of the creation process.
- If the VM was created with the wizard's Domain Join toggle enabled, you can use either the credentials for a domain account in the specified Active Directory domain or use the local administrator account that was specified in the wizard.
- If the VM was created with the wizard's Domain Join toggle turned off, you must use the local administrator account that was specified in the wizard. In this case, because the VM is not joined to the domain, the local administrator account is the only account that has access to log in. |
| In any service release | Manual preparation steps in Manually Build the Master Virtual Machine in Microsoft Azure. | Typically you do not need to join the VM to your Active Directory domain when you manually build the VM. To log in to that VM, use one of the following:
- The credentials for the local administrator account that was specified when the manually built VM was created in the Microsoft Azure portal.
- If you manually joined that VM to an Active Directory domain, the credentials for a domain account in that domain. |

Important Starting with pod manifest 1230 and later, domain accounts can direct connect to domain-joined image VMs that have the agent software installed. Prior to pod manifest 1230, the agent software installed in a domain-joined VM prevented domain accounts from directly connecting to that VM. However, if you have not yet upgraded your pod to a manifest of 1230 and later, before a domain account can direct connect to a domain-joined image VM that has the agent software installed, you must first perform the steps in When Your Pod is Not Yet Upgraded to Manifest 1230 or Later, How to Configure the Ability for Domain Accounts to Remote Connect to the Imported Image.
Procedure

1. Use the VM's IP address in your RDP software to connect to the Windows operating system.
 - If the master image VM was created with a public IP address, you can use that IP address in your RDP software.
 - If the master image VM has a private IP address, you must RDP into it by one of these two methods:
 - Using another VM in your Microsoft Azure subscription that does have a public IP address and doing an outbound RDP into the master image VM.
 - Use your VPN and RDP into the master image VM over your corporate network.

 Note To access a VM that is running the agent-related software components, the version of the Remote Desktop Client must be version 8 or later. Otherwise, the connection fails. Using the most up-to-date Remote Desktop Client is recommended.

2. Log in to the Windows operating system using credentials (user name and password) as described in the prerequisites here.

 When using the local administrator account credentials that were specified in the Import Image wizard when the VM was created, enter the username as `\username`.

 Note When the VM is a domain-joined VM, as described in the prerequisites here, and you want to use a domain account instead of the local administrator account, enter the user name as `domain \username` where `domain` is the name of the domain.

3. When you are logged in to the operating system, install the third-party applications or drivers that you want available for your end users to run in the VDI desktop environment.

4. In the operating system, install any custom drivers you want in the VDI desktops.

5. Make any customizations or configurations you want to have in the VDI desktops, such as add a custom wallpaper, set default fonts or colors or themes, adjust the taskbar default settings, and so on.

6. When you are done adding your finishing touches to the VM's guest operating system, sign out of the operating system.

What to do next

Follow the best practices to optimize the VM to prevent encountering sysprep or other errors during the process to convert the master image. See Customize the Master Image VM's Windows Operating System.

Convert the master image VM to an assignable image, using the steps described in Convert a Configured Master Virtual Machine to an Assignable Image.
Customize the Guest Windows Server Operating System of the Master Server Image Virtual Machine

After the master server image virtual machine (VM) is created and you have paired it to Horizon Cloud, but before converting it into a published image in Horizon Cloud, you customize the guest Windows server operating system (OS) to install and configure all of the things you want to have in your end users’ RDS desktops. At this time, you install all of the third-party applications you want available in the RDS desktops or available for assignment as remote applications. Also at this time, you perform any other customizations in the Windows guest operating system, such as installing special drivers required by your organization’s needs, applying wallpaper, setting default colors and fonts, configuring taskbar settings, and other such OS-level items.

After the Imported VMs page indicates that your master image virtual machine (VM) has its agent-related status as active, you connect to it using your RDP software and install the applications into the underlying Windows server operating system.

For Microsoft's best practices about installing applications directly on to an RDSH server, see the TechNet Magazine article Learn How to Install Applications on an RD Session Host Server.

Prerequisites

Verify the Imported VMs page indicates the agent-related status is active for the VM. To get that status for a VM created in a pod at manifest 1600 and higher, use the Imported VMs page’s Reset Agent Pairing action on the VM. That action is located in the More drop-down list.

Obtain the VM's IP address as displayed on the Imported VMs page.

Note When using the Microsoft Remote Desktop Client as your RDP software to connect to the master VM, ensure it is the most up-to-date version. For example, the default RDP software in the Windows 7 operating system is not at a high enough version. The version must be version 8 or higher.

Verify you have at least one of the following credentials (user name and password) to log in to the VM's guest Windows operating system, according to how the master image VM was created.
<table>
<thead>
<tr>
<th>When the VM was created</th>
<th>How the VM was created</th>
<th>Credentials to use to log in</th>
</tr>
</thead>
</table>
| Prior to the December 2019 service release going live in production | Import Virtual Machine wizard, from the Imported VMs page. | Prior to the December 2019 service release date, the Import Virtual Machine wizard created VMs that were always automatically joined to the Active Directory domain that was specified in the wizard. To log in to such a VM, you can use one of the following:
 - The credentials for the local administrator account that were specified in the wizard.
 - The credentials for a domain account in that Active Directory domain. |
| After the December 2019 service release went live in production | Import Virtual Machine wizard, from the Imported VMs page. | Starting with the December 2019 service release date, the Import Virtual Machine wizard provides the option of either having the wizard-created VM joined to a specified Active Directory domain or not having the VM joined to the domain at the end of the creation process.
 - If the VM was created with the wizard's Domain Join toggle enabled, you can use either the credentials for a domain account in the specified Active Directory domain or use the local administrator account that was specified in the wizard.
 - If the VM was created with the wizard's Domain Join toggle turned off, you must use the local administrator account that was specified in the wizard. In this case, because the VM is not joined to the domain, the local administrator account is the only account that has access to log in. |
| In any service release | Manual preparation steps in Manually Build the Master Virtual Machine in Microsoft Azure. | Typically you do not need to join the VM to your Active Directory domain when you manually build the VM. To log in to that VM, use one of the following:
 - The credentials for the local administrator account that was specified when the manually built VM was created in the Microsoft Azure portal.
 - If you manually joined that VM to an Active Directory domain, the credentials for a domain account in that domain. |

Important Starting with pod manifest 1230 and later, domain accounts can direct connect to domain-joined image VMs that have the agent software installed. Prior to pod manifest 1230, the agent software installed in a domain-joined VM prevented domain accounts from directly connecting to that VM. However, if you have not yet upgraded your pod to a manifest of 1230 and later, before a domain account can direct connect to a domain-joined image VM that has the agent software installed, you must first perform the steps in When Your Pod is Not Yet Upgraded to Manifest 1230 or Later, How to Configure the Ability for Domain Accounts to Remote Connect to the Imported Image.
Procedure

1. Use the VM's IP address in your RDP software to connect to the RDS-enabled Windows server operating system.
 - If the master image VM was created with a public IP address, you can use that IP address in your RDP software.
 - If the master image VM has a private IP address, you must RDP into it by one of these two methods:
 - Using another VM in your Microsoft Azure subscription that does have a public IP address and doing an outbound RDP into the master image VM.
 - Use your VPN and RDP into the master image VM over your corporate network.

 Note To access a VM that is running the agent-related software components, the version of the Remote Desktop Client must be version 8 or later. Otherwise, the connection fails. Using the most up-to-date Remote Desktop Client is recommended.

2. Log in to the Windows operating system using credentials (user name and password) as described in the prerequisites here.

 When using the local administrator account credentials that were specified in the Import Image wizard when the VM was created, enter the username as \username.

 Note When the VM is a domain-joined VM, as described in the prerequisites here, and you want to use a domain account instead of the local administrator account, enter the user name as domain \username where domain is the name of the domain.

3. When you are logged in to the operating system, follow these steps to install the third-party applications or drivers that you want available to run in the multi-user RDS desktop environment.
 a. In the Windows Server operating system, open a command prompt as an administrator by right-clicking the Start and clicking Command Prompt (Admin).
 b. In that command prompt, determine the server's current install mode of the server by issuing the command change user /query.

 The response Application EXECUTE mode is enabled indicates the server is in RD-Execute mode.
c) In that command prompt, switch the server into RD-Install mode by issuing the command `change user /install`.

As described in the Microsoft best practices document, RD-Install is a special install mode to install applications so they can run in a multi-user environment.

d) Install the third-party user applications you want to provide to your end users in their RDS desktops or as remote applications.

e) When you are finished installing the applications, return to the command prompt window and switch the server into RD-Execute mode by issuing the command `change user /execute`.

4) In the operating system, install any custom drivers you want in the RDS desktops.

5) Make any customizations or configurations you want to have in the RDS desktops, such as add a custom wallpaper, set default fonts or colors or themes, adjust the taskbar default settings, and so on.

6) When you are done adding your finishing touches to the VM's guest operating system, sign out of the operating system.

What to do next

Follow the best practices to optimize the VM to prevent encountering sysprep or other errors during the process to convert the master image. See Customize the Master Image VM's Windows Operating System.

Convert the master image VM to an assignable image, using the steps described in Convert a Configured Master Virtual Machine to an Assignable Image.

Install NVIDIA Graphics Drivers in a GPU-Enabled Master Image

If you created a master image VM with GPU, you must log into the VM's Windows operating system and install the supported NVIDIA graphics drivers to get the GPU capabilities of that VM. You install the drivers after the VM is created and the Imported VMs page shows the agent-related status is active.

- Obtain the NVIDIA GRID driver that is appropriate for the image's Windows operating system. See the Microsoft Azure documentation topic at Set up GPU drivers for N-series VMs running Windows.

Note In this release, when using a Microsoft Windows Server operating system, GPU is recommended for use only in Microsoft Windows Server 2016, due to an NVIDIA driver limit on the number of user sessions in Microsoft Windows Server 2012 R2. The master image VM must have been created with Microsoft Windows Server 2016.
Install the driver following the installation instructions in the Driver installation section of the Microsoft article Set up GPU drivers for N-series VMs running Windows.

Caution Install the NVIDIA GRID drivers listed on that Microsoft page and not other drivers.

Prerequisites

Verify the Imported VMs page indicates the agent-related status is active for the VM. To get that status for a VM created in a pod at manifest 1600 and higher, use the Imported VMs page’s **Reset Agent Pairing** action on the VM. That action is located in the **More** drop-down list.

Note When using the Microsoft Remote Desktop Client as your RDP software to connect to the master VM, ensure it is the most up-to-date version. For example, the default RDP software in the Windows 7 operating system is not at a high enough version. The version must be version 8 or higher.

Verify you have at least one of the following credentials (user name and password) to log in to the VM's guest Windows operating system, according to how the master image VM was created.
<table>
<thead>
<tr>
<th>When the VM was created</th>
<th>How the VM was created</th>
<th>Credentials to use to log in</th>
</tr>
</thead>
</table>
| **Prior to the December 2019 service release going live in production** | Import Virtual Machine wizard, from the Imported VMs page. | Prior to the December 2019 service release date, the Import Virtual Machine wizard created VMs that were always automatically joined to the Active Directory domain that was specified in the wizard. To log in to such a VM, you can use one of the following:
 - The credentials for the local administrator account that were specified in the wizard.
 - The credentials for a domain account in that Active Directory domain. |
| **After the December 2019 service release went live in production** | Import Virtual Machine wizard, from the Imported VMs page. | Starting with the December 2019 service release date, the Import Virtual Machine wizard provides the option of either having the wizard-created VM joined to a specified Active Directory domain or not having the VM joined to the domain at the end of the creation process.
 - If the VM was created with the wizard's Domain Join toggle enabled, you can use either the credentials for a domain account in the specified Active Directory domain or use the local administrator account that was specified in the wizard.
 - If the VM was created with the wizard's Domain Join toggle turned off, you must use the local administrator account that was specified in the wizard. In this case, because the VM is not joined to the domain, the local administrator account is the only account that has access to log in. |
| **In any service release** | Manual preparation steps in Manually Build the Master Virtual Machine in Microsoft Azure. | Typically you do not need to join the VM to your Active Directory domain when you manually build the VM. To log in to that VM, use one of the following:
 - The credentials for the local administrator account that was specified when the manually built VM was created in the Microsoft Azure portal.
 - If you manually joined that VM to an Active Directory domain, the credentials for a domain account in that domain. |

Important Starting with pod manifest 1230 and later, domain accounts can direct connect to domain-joined image VMs that have the agent software installed. Prior to pod manifest 1230, the agent software installed in a domain-joined VM prevented domain accounts from directly connecting to that VM. However, if you have not yet upgraded your pod to a manifest of 1230 and later, before a domain account can direct connect to a domain-joined image VM that has the agent software installed, you must first perform the steps in When Your Pod is Not Yet Upgraded to Manifest 1230 or Later, How to Configure the Ability for Domain Accounts to Remote Connect to the Imported Image.
Procedure

1. Use the VM's IP address in your RDP software to connect to the VM's Windows operating system.
 - If the master image VM was created with a public IP address, you can use that IP address in your RDP software.
 - If the master image VM has a private IP address, you must RDP into it by one of these two methods:
 - Using another VM in your Microsoft Azure subscription that does have a public IP address and doing an outbound RDP into the master image VM.
 - Use your VPN and RDP into the master image VM over your corporate network.

 Note To access a VM that is running the agent-related software components, the version of the Remote Desktop Client must be version 8 or later. Otherwise, the connection fails. Using the most up-to-date Remote Desktop Client is recommended.

2. Log in to the Windows operating system using credentials (user name and password) as described in the prerequisites here.

 When using the local administrator account credentials that were specified in the Import Image wizard when the VM was created, enter the username as `\username`.

 Note When the VM is a domain-joined VM, as described in the prerequisites here, and you want to use a domain account instead of the local administrator account, enter the user name as `domain\username` where `domain` is the name of the domain.

3. Install the drivers as described in the Driver installation section of the Microsoft article Set up GPU drivers for N-series VMs running Windows.

4. When the drivers are installed, restart the VM.

5. Reconnect to the VM, log in, and verify that the NVIDIA driver is installed and working in the VM.

 In the VM, open the Device Manager, expand Display Adapters, and verify the proper installation of the NVIDIA driver.

6. Sign out of the VM’s Windows operating system.

Convert a Configured Master Virtual Machine to an Assignable Image

To turn a configured master virtual machine (VM) into an assignable desktop image, use the Image page’s New Image workflow. A desktop image must display the Published status on the Images page before the system can use it for assignments.

Important If your pod in Microsoft Azure is configured to use a proxy, you are responsible for providing a way for the farm server VMs or VDI desktop VMs that are created using this image to be configured with the proxy.
Prerequisites

Verify that a configured master VM is available in the pod in which you want to create the assignable image.

Verify that the Imported VMs page indicates that the master VM is powered on (green status) and its agent-related status is active, as illustrated in the following screenshot.

![Screenshot of Import VMs page](image)

Verify you have the credentials of an enabled local administrator account in the master image VM. The system uses the local administrator account in the image sealing process, which converts the master image into the published state. Typically, the VM's only enabled local administrator account is the one that you named when you created the master image VM, as described in Creating Desktop Images for a Horizon Cloud Pod in Microsoft Azure and its subtopics.

Important Unless you manually added additional local administrator accounts to the base master VM, the VM's only local administrator account is the one you specified when you ran the Import Desktop wizard, or when you manually created the base master VM.

Procedure

1. In the Administration Console, click **Inventory > Images** and then click **New**.
2. Enter the required information.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Select the location associated with the pod where you have the configured master VM.</td>
</tr>
<tr>
<td>Pod</td>
<td>Select the pod that has the configured master VM.</td>
</tr>
<tr>
<td>Desktop</td>
<td>This field lists the VMs located on the selected pod that the system can convert to an assignable image. Select the one you want. After you make a selection, information about the selected VM is displayed, such as its status.</td>
</tr>
<tr>
<td>Image Name</td>
<td>This field is auto-populated with the image name associated with the Desktop selection.</td>
</tr>
<tr>
<td>Company Name</td>
<td>Type an identifying name. This name will appear in the virtual desktops that get created based on this image. The publishing process sets the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion \RegisteredOwner to this value. The name will appear in the About Windows dialog in those virtual desktops as the registered organization and owner.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Timezone</td>
<td>Retain the default.</td>
</tr>
<tr>
<td>Admin credentials for the desktop</td>
<td>Enter the credentials for the local administrator account that is enabled in the master VM. Usually the only enabled local administrator account is the one that was named when the master image VM was created.</td>
</tr>
<tr>
<td>Note</td>
<td>The publishing process includes running the Microsoft Windows Sysprep process. When the master image VM is a Microsoft Windows server operating system, the Sysprep process will reset the built-in administrator account password to this password that you type here. This password reset is done to secure the built-in administrator account after the Sysprep process has completed. The built-in administrator password is reset to the password you type here whether you specify the built-in administrator account or another local administrator account in this step.</td>
</tr>
</tbody>
</table>

3. Click **Publish**.

 The publishing process takes several minutes to complete. The page displays the **In Transition** status during this process. You can use the refresh icon to see the latest status.

If the process is successful, the image's status changes to **Published**.

Note When the master image VM in Published status, it is considered sealed in Horizon Cloud. Sealed images are those VMs that the system can use in RDSH farms for delivering session-based desktops and remote applications (in the case of RDS-enabled Windows Server operating systems) or use in VDI desktop assignments (in the case of Windows client operating systems).

If you find you need to change something in a sealed VM's guest Windows operating system, use the steps in the following topics, as appropriate for the situation:

- To update a sealed image with a Microsoft Windows Server operating system, see **Change RDS-Enabled Images Used for Farms**
- To update a sealed image with a Microsoft Windows client operating system, see **Change Images Used for VDI Desktop Assignments**

Images in Published status are not listed on the Imported VMs page. They are removed from the Imported VMs page when they reach Published state. At that point, those sealed VMs are available on the Images page.

If the publish operation fails, select **Monitor > Activity** and locate the failed job. Correct the problem, then retry the publish operation by selecting the check box next to the image, clicking **More > Convert to Desktop**. Then click **New**, enter the required information, and click **Publish** to publish the image.

Manually Build the Master Virtual Machine in Microsoft Azure

These steps are part of the alternative manual method for creating a master virtual machine (VM) for a pod in Microsoft Azure. Manually building a master virtual machine (VM) that conforms to the Horizon Cloud environment's requirements is a multi-step process. You perform most of these steps in the Microsoft Azure portal. You first create and configure a base VM, then install agent-related software...
components into that base VM, and then configure specific properties for those agent-related components.

Use these steps only if you do not want to use the automated Import Desktop wizard and instead want to manually build the master VM using the Microsoft Azure portal or if you have already manually built a VM using the Microsoft Azure portal and you want to use that VM for your master VM. The recommended automated way to build a master VM for a pod in Microsoft Azure is to use the Import Desktop wizard and its From Microsoft Azure Marketplace option. For details about using the automated wizard, see Create a Master Virtual Machine Automatically from the Microsoft Azure Marketplace and Pair it with Horizon Cloud.

Important If you have a VM in Microsoft Azure that you want to use as the master's base VM, you must ensure it conforms to the same criteria as when a base VM is created using the manual steps documented in Create the Virtual Machine Manually in Your Pod in Microsoft Azure. If the VM does not conform to the same criteria, Horizon Cloud cannot consume it to display in the Administration Console and use in the Convert to Image workflow. The following criteria are critical:

- Before installing the agent-related software, the base VM must have the **Storage - Use managed disk** setting set to **Yes**. If the base VM does not adhere to this setting, Horizon Cloud cannot consume this VM.
- The base VM must be in the same Microsoft Azure location as the pod where you want to use that base VM.
- The base VM must be put into a specific resource group in your Microsoft Azure subscription. This resource group is one that belongs to the pod where you plan to use that base VM. The resource group is named `vmw-hcs-podID-base-vms`, where `podID` is the pod's UUID identifier.
- The base VM must be connected to the same virtual network to which the pod is connected.
- The base VM must be connected to the pod's subnet named `vmw-hcs-podID-net-tenant`.
- The base VM must use an operating system currently supported for use in this Horizon Cloud release. Those operating systems are described in the steps in Create the Virtual Machine Manually in Your Pod in Microsoft Azure.
- Do not configure the base VM to use IPv6 IP addresses. The Administration Console will report an IP abnormal alert in the Desktop Health tab for VMs that are based on a master VM that uses IPv6 IP addresses.

To verify your base VM meets that criteria before you start to configure it further, log in to the Horizon Cloud Administration Console, navigate to the Inventory VMs page, and verify your base VM is listed on that page. If it is listed, then that base VM meets the above criteria and you can safely proceed with the remaining configuration steps starting with the topics listed in Prepare the Manually Created Master VM Prior to Installing the Agents.

Procedure

1. Create the Virtual Machine Manually in Your Pod in Microsoft Azure
2 **Prepare the Manually Created Master VM Prior to Installing the Agents**

When manually building a master virtual machine (VM) for your pod in Microsoft Azure, you must
perform several additional tasks to further prepare the base VM before installing the agent-related
software components. You perform these steps using the Microsoft Azure portal and connecting into
the new VM.

3 **Install the Agents and Pair the Manually Created Base Virtual Machine with Horizon Cloud**

Starting with the September 2019 service release, the steps to pair the manually created base VM
with the cloud plane have changed. Use one set of steps when your pod is at manifest version 1600
and higher and use the other set of steps when your pod is at a version lower than 1600.

Create the Virtual Machine Manually in Your Pod in Microsoft Azure

In the Microsoft Azure portal, you create a virtual machine (VM) with the Windows guest operating system
that you want to use for the VDI desktops, RDS-based session desktops, or RDS-based remote
applications. You create this VM using the same subscription that you used for the Horizon Cloud pod.

This VM must be created on the same Microsoft Azure VNet (virtual network) to which the pod is
connected. Also, this VM must be created in the resource group named `vmw-hcs-podID-base-vms`, where
`podID` is the pod's UUID identifier. Horizon Cloud automatically detects VMs located in that resource
group. Horizon Cloud will list those VMs on the Inventory screen in the Administration Console if they
have **Storage-Use managed disk** set to **Yes**.

For your master VMs, you can use Microsoft Windows VMs that are available in the Microsoft Azure
portal's VM catalog and which match the operating systems currently supported for use in this release of
Horizon Cloud. For the specific list of operating systems, see the Release Notes document for the current
in-production release.

Note The Import Image automated method of creating a master VM uses the following specific VM
families when it creates a master VM. Typically you would choose to use these same patterns when you
manually create a master VM. Because you will later choose the VM types for the actual RDSH servers
and VDI desktops when you create the farms and VDI desktop assignments, there are few reasons to use
VM sizes for the master VM that are larger than the ones that the Import Image process uses. Potentially,
you might want to try a larger size if you are going to load applications into the master VM and test them
out before sealing the master VM.

- Non-GPU Microsoft Windows Server operating systems: D2 V3 Standard type
- Non-GPU Microsoft Windows 10 operating systems: D4 V3 Standard type
- GPU-backed Microsoft Windows Server operating systems: NV6 Standard type
- GPU-backed Microsoft Windows 10 operating systems: NV6 Standard type

If the Microsoft Azure region in which the pod is deployed does not include the D2 V3 or D4 V3 Standard
types, the automated Import Image process will fall back to use the D2 V2 Standard (for server OSes)
and D3 V2 Standard (for Windows 10).
For details about the sizes for Windows virtual machines in Microsoft Azure, see the Microsoft Azure documentation at https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes.

Note The Microsoft VM types that support GPU acceleration, the NV-series types, are only available in some Microsoft Azure regions. To have GPU-based desktops or remote applications available from the pod, the pod must be in a Microsoft Azure region in which the specific NV-series VM types are available. See [Microsoft Azure Products by region](https://azure.microsoft.com/en-us/regions/) for details.

Prerequisites

Obtain the following information about the pod for which you are creating the VM. To see this information, open the pod’s details in the Horizon Cloud Administration Console by navigating to **Settings > Capacity** and clicking the pod’s name. Obtain from the pod’s Summary tab:

- The name of the virtual network to which your pod is connected. You must select the same virtual network when creating the VM.
- The pod’s ID for the pod for which you are creating the VM. The pod’s ID is an identifier in UUID form. You need this UUID to identify that pod’s resource groups in the Microsoft Azure portal, so that you know in which resource group to locate the VM.
- If the pod was deployed with a manually created subnet, obtain the name of the desktop (tenant) subnet. You must select that same subnet when creating the VM.

Procedure

1. Log in to the Microsoft Azure portal using the Microsoft Azure account associated with the subscription used to deploy the pod.

2. Navigate into the pod’s `vmw-hcs-podID-base-vms` resource group by clicking **Resource Groups** in the portal’s left navigation, locating that specific resource group, and then clicking its name.

 To list only the resource groups for a particular pod, on the **Resource groups** screen, type that pod’s ID into the **Filter by name** field.

3. In the screen for that `vmw-hcs-podID-base-vms` resource group, click **Add**.
4 Locate the Microsoft Windows operating system that you want to use.

Choose the operating system based on whether you want to provision VDI desktops or RDSH desktops or remote applications using this base VM. For the list of operating systems supported for use in the base VM, see the Release Notes document for the current in-production release.

Important If you want to have GPU-based RDSH desktops, select Microsoft Windows Server 2016. If you select Microsoft Windows Server 2012 R2 instead, an NVIDIA driver limitation will limit the number of end-user sessions you can have on each RDS desktop to a maximum of 20 sessions per desktop.

5 Click the one you want for the base VM.

6 In the new pane, if you see a menu for **Select a deployment model**, verify that the deployment model is set to **Resource Manager** and then click **Create**.

Note Typically that menu is displayed only when the selected operating system is a server operating system.

The portal displays the wizard steps for creating the virtual machine, open to the **Basics** step.

The following screenshot is an illustration of the displayed wizard steps when Windows 10 Pro N, Version 1809 was selected.
In the **Basics** step, complete the required fields and then click **Next: Disks** to save your values and go to the next step.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription</td>
<td>Keep the default setting of your subscription selected.</td>
</tr>
<tr>
<td>Resource group</td>
<td>Select the base-vms resource group for the pod from which you want to serve the virtual desktops and applications (vmw-hcs-podID-base-vms).</td>
</tr>
<tr>
<td>Virtual machine name</td>
<td>Give this VM a name of up to 15 alphanumeric characters.</td>
</tr>
<tr>
<td>Region</td>
<td>Select the region that matches the Microsoft Azure region in which your pod is deployed.</td>
</tr>
<tr>
<td>Note</td>
<td>If you want to have a GPU-based VM, the pod's Microsoft Azure region must have the NV-series VM types available. The NV-series types are not available in all Microsoft Azure regions.</td>
</tr>
<tr>
<td>Availability options</td>
<td>Keep the default (No infrastructure redundancy).</td>
</tr>
<tr>
<td>Image</td>
<td>Verify the selection matches the Windows operating system you want.</td>
</tr>
<tr>
<td>Size</td>
<td>Choose a size for the VM. If you want to choose according to the ones used by the system's automated Import Image wizard, those are:</td>
</tr>
<tr>
<td></td>
<td>- Non-GPU Microsoft Windows Server operating systems: D2 V3 Standard type</td>
</tr>
<tr>
<td></td>
<td>- Non-GPU Microsoft Windows 10 operating systems: D4 V3 Standard type</td>
</tr>
<tr>
<td></td>
<td>- GPU-backed Microsoft Windows Server operating systems: NV6 Standard type</td>
</tr>
<tr>
<td></td>
<td>- GPU-backed Microsoft Windows 10 operating systems: NV6 Standard type</td>
</tr>
<tr>
<td>Username</td>
<td>Enter a name for the VM's default administrator account.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter a password for the default administrator account, and confirm it.</td>
</tr>
<tr>
<td>Confirm password</td>
<td>The password must adhere to the password complexity rules that Microsoft Azure defines for the VM. Typically the password must be at least 12 characters long have three of the following: one lower case character, one upper case character, one number, and one special character that is not backslash () or hyphen (-).</td>
</tr>
<tr>
<td>Public inbound ports</td>
<td>If you want to be able to install the agents by connecting to the VM over the Internet using RDP, select Allow selected ports and select RDP (port 3389).</td>
</tr>
<tr>
<td>SAVE MONEY section</td>
<td>For Windows 10 operating systems, this section is set to use Windows Client License by default.</td>
</tr>
<tr>
<td>Already have a Windows license?</td>
<td>For Windows Server operating systems, select the appropriate choice, depending on whether you already have the appropriate Windows Server licensing.</td>
</tr>
</tbody>
</table>

The following screenshot illustrates some of the settings when Microsoft Windows 10 ProN, Version 1809 is the selected VM type.
8 In the Disks step, select either **Standard SSD** or **Standard HDD** for the **OS disk type**.

If this VM will be used for GPU-based virtual desktops or applications, select **Standard HDD** for the disk type. Otherwise, you can either keep the default **SSD** setting or select **HDD**, according to your needs.

9 (Optional) In the Disks step, if you want the virtual desktops or server instances that will be based on this base image to have data disks, use the **DATA DISKS** section to create and attach data disks to this base VM.

In the **Create a new disk** window, for the **Source type**, select **None (empty disk)**. For the other choices, you can keep the defaults or change them. You can customize the name of the data disk. When you have specified the required settings, click **OK**.

The following screenshot is an illustration of the **Create a new disk** window with its fields filled out.
When the disk is listed on the Disks step, you can optionally select a Host caching setting for the data disk. Typically you choose a setting according to what you think will work best for your intended use of the data disk.

10 In the Disks step, expand the ADVANCED section and confirm that the Use managed disks toggle is set to Yes.

Caution You must keep Use managed disk set to Yes. If the VM does not have Use managed disk set to Yes before you run the installer that installs the agent-related software components, Horizon Cloud cannot use this VM and you have to create another one.

The following screenshot is an illustration with one data disk specified.
11 Click **Next: Networking** to move to the next step.

12 In the **Networking** step, configure the virtual network and subnet settings as described below, and then click **Review + create** to save your entries and go to the review step.

Keep the default values for the other settings.

Important

- As described in the prerequisites section above, you must set the **Virtual network** to the same one that the pod uses.
- Do not alter the defaults for the other options in the Networking screen (such as no extensions). Keep the defaults for those options. Do not make changes other than what is mentioned in the following table.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual network</td>
<td>Click Virtual network and select the same virtual network to which the pod is connected.</td>
</tr>
<tr>
<td>Subnet</td>
<td>Click Subnet and select the one that is your pod's desktop (tenant) subnet. If the pod deployer automatically created the subnets when the pod was deployed, this subnet is named vmw-hcs-podID-net-tenant.</td>
</tr>
</tbody>
</table>

Create a virtual machine

Basics
Define network connectivity for your virtual machine by configuring network interface card (NIC) settings. You can control ports, inbound and outbound connectivity with security group rules, or place behind an existing load balancing solution. Learn more

NETWORK INTERFACE
When creating a virtual machine, a network interface will be created for you.

CONFIGURE VIRTUAL NETWORKS

- **Virtual network**
 - vmw-hcs
 - Create new

- **Subnet**
 - vmw-hcs
 - Manage subnet configuration

- **Public IP**
 - (new) 192.168.210.26
 - Create new

- **NIC network security group**
 - None
 - Basic
 - Advanced

- **Public inbound ports**
 - None
 - Allow selected ports

- **Select Inbound ports**
 - RDP

- **Accelerated networking**
 - On
 - Off
 - The selected image does not support accelerated networking.

LOAD BALANCING
You can place this virtual machine in the backend pool of an existing Azure load balancing solution. Learn more

- **Place this virtual machine behind an existing load balancing solution?**
 - Yes
 - No

After you click **Review + create**, a validation runs. When it passes, the wizard moves to the final step.

13 In the final step, review the summary and verify the settings, especially the resource group, virtual network, subnet, and **Use managed disks** is set to Yes.

The resource group and subnet names contain the pod's UUID (podID).
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource group</td>
<td>vmw-hcs-podID-base-vms</td>
</tr>
<tr>
<td>Use managed disks</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual network</td>
<td>The pod's virtual network.</td>
</tr>
<tr>
<td>Subnet</td>
<td>vmw-hcs-podID-net-tenant</td>
</tr>
</tbody>
</table>

Create a virtual machine

Validation passed

BASICS
- Subscription: HCS
- Resource group: vmw-hcs-podID-base-vms
- Virtual machine name: ia45manualwin10
- Region: West US 2
- Availibility options: No infrastructure redundancy required
- Username: ia4admin
- Public inbound ports: RDP
- Already have a Windows license?: Yes
- License type: Windows Client

DISKS
- OS disk type: Standard SSD
- Use managed disks: Yes
- Data disks: 1

NETWORKING
- Virtual network: vmw-hcs-192.168.21.0/26
- Subnet: vmw-hcs-192.168.21.0/26
- Public IP: (new) ia45manualwin10-p
- Accelerated networking: Off
- Place this virtual machine behind an existing No load balancing solution?:

MANAGEMENT

14 Start deploying the VM by clicking the Create button at the bottom of the pane.

Microsoft Azure starts deploying the new VM into the resource group. When the VM is deployed successfully in Microsoft Azure, the Horizon Cloud Administration Console's Imported VMs page lists the VM. The page shows the VM's agent state as Not Paired, because you have not installed the agent-related components yet.
What to do next

Fully deploying the VM can take several minutes. When the portal's dashboard indicates that the VM is created and ready, make a remote desktop connection to the VM's public IP address and continue configuring the base VM. Complete the steps in Prepare the Manually Created Master VM Prior to Installing the Agents.

Prepare the Manually Created Master VM Prior to Installing the Agents

When manually building a master virtual machine (VM) for your pod in Microsoft Azure, you must perform several additional tasks to further prepare the base VM before installing the agent-related software components. You perform these steps using the Microsoft Azure portal and connecting into the new VM.

Follow the steps in the topics below according to type of Microsoft Windows operating system that is installed in the VM.

Prepare the Master Server VM for Agent Installation

The following steps are those for preparing a manually created master server VM, which you will use for your pod's RDSH farms. You perform these steps prior to installing the Horizon Cloud agent-related software. Use the Microsoft Azure portal and connect into the new VM.

At a high-level, the steps to prepare the master server VM prior to actually installing the agents are:

1. Enable the RDS role.
2. Set the VM's local administrator account properties to **Password never expires**. By default, the created VM's local security policy has accounts set to a maximum password age of 42 days. Preventing this local administrator account's password from expiring prevents the possibility of not being able to use this local account at a later time. The Horizon Cloud image publishing workflow uses the VM's local administrator account and removes the resulting sealed VM from the domain. If you allow the account's password to expire, at a future point in time you might find you cannot log in to the VM using that account.
3. Download the Horizon Agents Installer to the VM.
Prerequisites

Complete the steps in Create the Virtual Machine Manually in Your Pod in Microsoft Azure. If you are using a base VM that you created in Microsoft Azure outside of those documented steps, ensure your base VM meets the criteria as listed in Manually Build the Master Virtual Machine in Microsoft Azure.

Caution Ensure that the VM was created with **Storage - Use managed disk** set to **Yes** and with the correct virtual network and subnet, as described in Manually Build the Master Virtual Machine in Microsoft Azure. Otherwise, this VM will be unusable in Horizon Cloud even after you configure it and install the agent-related components, and then you will have to recreate it from scratch.

To verify the VM meets that criteria before you spend time configuring it, log in to the Horizon Cloud Administration Console and navigate to the Inventory VMs page to see if the VM is listed. If it is listed, then the VM meets the above criteria and you can safely proceed with further configuration.

Procedure

1. In the portal’s dashboard, click the icon for the VM to open its overview page.
2. Click **Connect**.

 Depending on your browser settings, your browser downloads an RDP file or prompts you to save or run it.

3. Use that RDP file to open a remote desktop connection to the VM.

 Use the default user name and password that you specified in the VM creation wizard. Include a backslash (\) in front of the user name to log in without a domain.
4 Click **Yes** to the certificate warning in the Remote Desktop Connection screen.

Because this is the first login to the operating system, Windows displays a Networks prompt question on the right hand side. The prompt asks about automatically finding PCs, devices, and other items on the network.

The Server Manager automatically launches to its first-time configuration wizard.

5 Dismiss the Networks prompt on the right hand side of the screen by clicking **No**.

6 Enable the RDS role in the VM using the following steps.

Enabling the RDS role allows using this server VM in RDSH farms for providing session-based desktops and remote applications.

 a In Microsoft Azure portal, connect to the powered-on VM as described in **Step 2**.
 b In the Server Manager dashboard, click **Add roles and features**.

 ![WELCOME TO SERVER MANAGER](image)

 c Go through the wizard, selecting **Role-based or feature-based installation**.
 d On the **Server Selection** step, retain the defaults and click **Next**.
 e On the **Server Roles** step, select **Remote Desktop Services** and click **Next**.
 f On the **Features** step, retain the defaults and click **Next**.
 g Click to the **Role Services** step and select **Remote Desktop Session Host**.
 h Optionally keep the setting for the prompt about Remote Desktop Licensing Diagonoser Tools.
 i Start the process.

 The wizard starts installing the RDS role. When the screen indicates a restart is pending, close the wizard and close your RDP session.

 j In the Microsoft Azure portal, click **Stop** on the VM to power it off completely.
 k When the portal reflects the VM is completely stopped, click **Start** to power it on again.
 l Reconnect to the powered-on VM as described previously.

 When the wizard displays the Completion step and you see the success messages, click **Close** to close the wizard.
7 In the VM, set the VM's local administrator account password to **Password never expires**.

 One way to set the local administrator account password is to open Local Users and Groups by running `lusrmgr.msc` and updating the account properties.

8 To temporarily enable Internet Explorer to download the Horizon Agents Installer software, turn off the **IE Enhanced Security Configuration** for both administrators and users.

What to do next

To install the agent-related software components, complete the steps described in the topic that applies to your pod manifest version:

- **For Pods at Manifest 1600 and Higher, Install the Agent-Related Software Components in the Base Virtual Machine and Pair it with Horizon Cloud**
- **For Pods at Manifests Lower Than 1600, Install the Agent-Related Software Components in the Base Virtual Machine**

Note If you want to be able to log in to the VM using a domain account, you can optionally join the VM to your Active Directory domain. Otherwise you use the local administrator account to log in to the VM when installing the agent software and customizing the VM.

Prepare the VDI Desktop Master VM for Agent Installation

The following steps are for manually preparing a master VM that has a Microsoft Windows client operating system, prior to installing the agents. You perform these steps using the Microsoft Azure portal and connecting into the new VM.

At a high-level, the steps to prepare the master server VM prior to actually installing the agents are:

1 Set the VM's local administrator account properties to **Password never expires**. By default, the created VM's local security policy has accounts set to a maximum password age of 42 days. Preventing this local administrator account's password from expiring prevents the possibility of not being able to use this local account at a later time. The Horizon Cloud image publishing workflow uses the VM's local administrator account and removes the resulting sealed VM from the domain. If you allow the account's password to expire, at a future point in time you might encounter issues when publishing the image.

2 Download the Horizon Agents Installer to the VM.
Prerequisites

Complete the steps in Create the Virtual Machine Manually in Your Pod in Microsoft Azure. If you are using a base VM that you created in Microsoft Azure outside of those documented steps, ensure your base VM meets the criteria as listed in Manually Build the Master Virtual Machine in Microsoft Azure.

Caution Ensure that the VM was created with **Storage - Use managed disk** set to **Yes** and with the correct virtual network and subnet, as described in Manually Build the Master Virtual Machine in Microsoft Azure. Otherwise, this VM will be unusable in Horizon Cloud even after you configure it and install the agent-related components, and then you will have to recreate it from scratch.

To verify the VM meets that criteria before you spend time configuring it, log in to the Horizon Cloud Administration Console and navigate to the Inventory VMs page to see if the VM is listed. If it is listed, then the VM meets the above criteria and you can safely proceed with further configuration.

Procedure

1. In the portal's dashboard, click the icon for the VM to open its overview page.
2. Click **Connect**.

 ![Connect to VM](image)

 Depending on your browser settings, your browser downloads an RDP file or prompts you to save or run it.
3. Use that RDP file to open a remote desktop connection to the VM.

 Use the default user name and password that you specified in the VM creation wizard. Include a backslash (\) in front of the user name to log in without a domain.
4. Click **Yes** to the certificate warning in the Remote Desktop Connection screen.

Because this is the first login to the operating system, Windows might display a Networks prompt question on the right hand side. The prompt asks about automatically finding PCs, devices, and other items on the network. If the Networks prompt is displayed, dismiss it by clicking **No**.

5. In the VM, set the VM’s local administrator account password to **Password never expires**.

One way to set the local administrator account password is to open Local Users and Groups by running `lusrmgr.msc` and updating the account properties.

What to do next

To install the agent-related software components, complete the steps described in the topic that applies to your pod manifest version:

- **For Pods at Manifest 1600 and Higher, Install the Agent-Related Software Components in the Base Virtual Machine and Pair it with Horizon Cloud**

- **For Pods at Manifests Lower Than 1600, Install the Agent-Related Software Components in the Base Virtual Machine**

Note If you want to be able to log in to the VM using a domain account, you can optionally join the VM to your Active Directory domain. Otherwise you use the local administrator account to log in to the VM when installing the agent software and customizing the VM.

Install the Agents and Pair the Manually Created Base Virtual Machine with Horizon Cloud

Starting with the September 2019 service release, the steps to pair the manually created base VM with the cloud plane have changed. Use one set of steps when your pod is at manifest version 1600 and higher and use the other set of steps when your pod is at a version lower than 1600.

Follow the steps in the topics below according to the pod manifest version of the pod in which you manually created the VM. You can see the pod's manifest version by navigating to the pod's details page from the Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.

Caution When your pod is of manifest 1600 and lower, you must install the agent-related software using a version of Horizon Agents Installer that corresponds to your pod level. Otherwise the version-specific steps to subsequently pair the VM with the cloud will not work for you. As an example, when your pod has a manifest version between 1493 and 1600, install Horizon Agents Installer 19.2 into the base VM. When the manifest version is between 1273 and 1493, install Horizon Agents Installer 19.1 into the base VM.

For Pods at Manifest 1600 and Higher, Install the Agent-Related Software Components in the Base Virtual Machine and Pair it with Horizon Cloud

For a pod at a manifest higher than 1600, follow the steps described here to install the agent-related components that are required and appropriate for Horizon Cloud and pair it with the cloud plane. In the base virtual machine's Windows operating system, you run the Horizon Agents Installer. After rebooting the VM, you pair the VM with the cloud plane using the Administration Console.
Keep the following points in mind as you perform this task:

- The steps in this documentation topic are specifically for pods that are at manifest version 1600 and higher. Those manifest versions were first made available in the service's September 2019 release. If the pod is at a manifest version lower than 1600, use the steps in the following documentation topic instead: For Pods at Manifests Lower Than 1600, Install the Agent-Related Software Components in the Base Virtual Machine. You can check your pod's manifest version on the pod's details page from the Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.

Caution When your pod is of manifest lower than 1600, do not attempt to use these steps. The pairing mechanism changed for pod manifest 1600 and higher. If you attempt to use these steps for a manually created base VM located in a pod of manifest lower than 1600, the final pairing process will fail and you will have to uninstall the agent software and re-install it using a Horizon Agents Installer version that aligns with your pod manifest level.

- Installing a version of the Horizon Agents Installer into a Windows Server VM that is older than the version that aligns with your pod's manifest version can cause problems subsequently when you create RDS pools based on the image VM. In this situation, when you create a new RDS pool, the system can allow you to select HTML Access (Blast) as a protocol, but this selection will not be applied to the pool even though it appears to have been applied successfully. For the Horizon Agents Installer version that aligns with the manifest version 1600 or higher, see the Release Notes for the September 2019 release.

- The Help Desk Plugin option is installed by default. If you choose not to install this option, performance-related metrics from user sessions in the desktop instances or farm server instances based on this image are not collected. As a result, some data will not be available in the user card for such sessions. For details, see The User Card in the Horizon Cloud Administration Console.

- The vRealize Operations Desktop Agent option is installed by default. If you choose not to install this option, activity-related data from user sessions in the desktop instance or farm server instances based on this image is not reported to Horizon Cloud. As a result, data from end-user activity and other types of desktop activity will not be displayed in reports in the Administration Console.

- The Dynamic Environment Manager option is not enabled by default. Selecting that option installs the VMware Dynamic Environment Manager client component, known as the FlexEngine. Selecting that option installs FlexEngine using its typical mode. The typical mode requires a post-installation configuration step to configure the VMware Dynamic Environment Manager Group Policy. For VMware Dynamic Environment Manager usage information, see the Dynamic Environment Manager product documentation. VMware Dynamic Environment Manager provides various options for achieving the persistence of end-user data, settings, and profiles of desktops provisioned by your pod.

Note When the Dynamic Environment Manager option is selected for installation, its resulting installation path is C:\Program Files\VMware\Horizon Agents\User Environment Manager.
Prerequisites

Verify that the virtual machine (VM) is created and configured as described in [Create the Virtual Machine Manually in Your Pod in Microsoft Azure](#) and [Prepare the Manually Created Master VM Prior to Installing the Agents](#).

Verify that the pod in which this VM is created has a manifest version higher than 1600. The pairing steps in the following procedure apply when the pod has a manifest version of 1600 or higher. You can check your pod's manifest version on the pod's details page from the [Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types](#).

Procedure

1. Navigate to where you downloaded the installer and start it.

 Important If you want to use the URL redirection option with the desktops or RDS-based remote applications resulting from this base VM, you must use the command line to start the installer, adding the `VDM_URL_FILTERING_ENABLED=1` parameter to the command.

 However, if you do install the URL redirection option, do not install the options for either serial port redirection or scanner redirection. This Horizon Cloud release does not support use of the serial port redirection and scanner redirection options.

 For example,

   ```
   VMware-Horizon-Agents-Installer-x.y.z-build-x64.exe VDM_URL_FILTERING_ENABLED=1
   ```

 Where `x.y.z` and `build` match the numbers in the file name.

 After a few minutes, the installation wizard displays its Welcome screen.

 - For a VDI desktop image, the Horizon Cloud Endpoint Desktop image is displayed.
For a server image, the Horizon Cloud RDSH App image is displayed.

By installing you agree to the License Terms.

Cancel
2. Click **Configure**.

The wizard's next step displays. The following screenshot is an example of this step when running on a server image.

![VMware Horizon® Agents Installer v19.3.0](image)

Choose which features to install
- [] Dynamic Environment Manager
- [x] Real-time Audio-video
- [x] Virtual Printing
- [x] vRealize Operations Desktop Agent
- [x] Client Drive Redirection
- [x] Help Desk Plugin
- [] Horizon Performance Tracker
- [] 3DRDSH
- [] Device Bridge BAS Plugin
- [] USB Redirection
- [] VMware Virtualization Pack for S4B
- [] Scanner Redirection

3. Scroll down to see the feature options.

The following screenshot is an example of this step when running on a server image.
4 Select the check boxes for the features you want to install and click the arrow to move to the next step.

If the VM is a GPU-backed Windows Server operating system VM, select the 3DRDSH option.

Note If you do not install the Help Desk Plugin option, performance-related metrics from user sessions in the desktop instances or farm server instances based on this image are not collected. As a result, some data will not be available in the user card for such sessions. For details, see [The User Card in the Horizon Cloud Administration Console](#).

5 If prompted with a message about using USB redirection securely, click **OK**.

The final wizard step displays.

6 Click **Proceed with installation**.

The installer begins installing the components.

Note If a message displays asking for confirmation to install the VMware display adapters, click **Install**.

When all the components are installed, the wizard displays **Finish**. The following screenshot is an illustration of the list of installed components when running the installer on a server image and only selecting default options. The specific entries might vary depending on the operating system and options you select.
When the wizard signals it is finished, click **Finish**.

Click **Restart Now** to reboot the VM and have the configuration changes take effect.
9. When the VM is powered back on, use the **Reset Agent Pairing** action on the Horizon Cloud Administration Console's Imported VMs page to pair it with Horizon Cloud.

 a. Navigate to **Inventory > Imported VMs** and make sure that the VM has a green dot next to it that indicates the VM is powered on.

 Even though the agent software is installed on the VM, the VM is not yet paired with Horizon Cloud. The VM's Agent Status column will display **Not Paired**, as illustrated in the following screenshot.

 ![Imported VMs](image)

 b. Select the VM, and select **More > Reset Agent Pairing** to pair the VM with Horizon Cloud.

 Note The pairing process can take several minutes to complete. During the pairing process, the VM is restarted and its agent status changes from **Not Paired** to **Unknown** to **Active**. Use the circular arrow icon to refresh the Imported VMs page to see the VM's current status.

 The VM pairing process is completed when the Agent Status column displays **Active** and an agent version, such as **19.3.0**. The following screenshot illustrates a VM after the pairing process is completed. At this point, the base VM conforms to the Horizon Cloud environment's requirements to create an assignable image, also referred to as a sealed image.

 ![Imported VMs](image)

 What to do next

 If you joined the VM to your Active Directory domain, you can use domain accounts to connect to the VM to customize the image. If you did not join the VM to your Active Directory domain, you can use the local administrator account to connect to the VM to customize the image.

 Customize the image's Windows operating system, including configuring things like wallpapers and installing the applications you want this VM to provide to your end users. If you enabled a public IP address for the VM, you can connect to the created VM by using the IP address displayed on the Imported VMs page in an RDP client like Microsoft Remote Desktop Connection. For details, see **Customize the Master Image VM's Windows Operating System** and its subtopics:

 - For server operating systems: **Customize the Guest Windows Server Operating System of the Master Server Image Virtual Machine**
For Windows 10 operating systems: Customize the Guest Windows Client Operating System of the Master VDI Desktop Virtual Machine

Important It is strongly recommended that you optimize the image VM, including removing AppX packages from Window 10 images, as described in Customize the Master Image VM's Windows Operating System, Deciding to Optimize the Windows Image When Using the Import Desktop Wizard, and Deciding to Remove Windows Store Apps When Using the Import Desktop Wizard.

If you selected to install the Dynamic Environment Manager option, configure a separate file server in your Microsoft Azure subscription that has at least SMB 2 enabled. Then configure VMware Dynamic Environment Manager using that file server. Also configure the GPO settings. See the VMware Dynamic Environment Manager documentation topics in the Dynamic Environment Manager product documentation.

For improved security regarding the use of the Horizon Agent, configure your Active Directory server domain policy GPO (Group Policy Object) to disable weak ciphers in SSL and TLS protocols. For information about disabling weak ciphers when communicating using the SSL/TLS protocol, see the appropriate agent-related information in the VMware Horizon® 7 documentation set, such as Disable Weak Ciphers in SSL/TLS.

If you selected a NV-series VM type, you must log into the VM's operating system and install the supported NVIDIA graphics drivers to get the GPU capabilities of the GPU-enabled NV-series VM. You install the drivers after the VM is created and the Imported VMs page shows the DaaS agent is active. See Install NVIDIA Graphics Drivers in a GPU-Enabled Master Image.

After you are finished customizing the master VM, use the New Image workflow to convert the master VM to an assignable image. See Convert a Configured Master Virtual Machine to an Assignable Image.

For Pods at Manifests Lower Than 1600, Install the Agent-Related Software Components in the Base Virtual Machine

For a pod at a manifest lower than 1600, you first install the agent-related components that are required and appropriate for Horizon Cloud. You do this install by running the Horizon Agents Installer in the base virtual machine’s Windows operating system. After rebooting the VM, then you must manually pair the VM with the cloud plane.

Keep the following points in mind as you perform this task:

- The steps in this documentation topic are specifically for pods that are at manifest version lower than 1600. The manifest versions 1600 and higher were first made available in the service's September 2019 release. If the pod has a manifest version of 1600 or higher, use the steps in the following documentation topic instead: For Pods at Manifest 1600 and Higher, Install the Agent-Related Software Components in the Base Virtual Machine and Pair it with Horizon Cloud. You can check your pod's manifest version on the pod's details page from the Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.
For a Windows Server VM, installing a version of the Horizon Agents Installer that is older than the one suitable for your pod's manifest can cause problems subsequently when you create RDS pools based on the image VM. In this situation, when you create a new RDS pool, the system can allow you to select HTML Access (Blast) as a protocol, but this selection will not be applied to the pool even though it appears to have been applied successfully.

The Help Desk Plugin option is installed by default. If you choose not to install this option, performance-related metrics from user sessions in the desktop instances or farm server instances based on this image are not collected. As a result, some data will not be available in the user card for such sessions. For details, see The User Card in the Horizon Cloud Administration Console.

The vRealize Operations Desktop Agent option is installed by default. If you choose not to install this option, activity-related data from user sessions in the desktop instance or farm server instances based on this image is not reported to Horizon Cloud. As a result, data from end-user activity and other types of desktop activity will not be displayed in reports in the Administration Console.

The Dynamic Environment Manager option is not enabled by default. Selecting that option installs the VMware Dynamic Environment Manager client component, known as the FlexEngine. Selecting that option installs FlexEngine using its typical mode. The typical mode requires a post-installation configuration step to configure the VMware Dynamic Environment Manager Group Policy. For VMware Dynamic Environment Manager usage information, see the Dynamic Environment Manager product documentation. VMware Dynamic Environment Manager provides various options for achieving the persistence of end-user data, settings, and profiles of desktops provisioned by your pod.

Note When the Dynamic Environment Manager option is selected for installation, its resulting installation path is C:\Program Files\VMware\Horizon Agents\User Environment Manager.

Prerequisites

Verify that the virtual machine (VM) is created and configured as described in Create the Virtual Machine Manually in Your Pod in Microsoft Azure and Prepare the Manually Created Master VM Prior to Installing the Agents.

Verify that the pod in which this VM is created has a manifest version lower than 1600 and that you know what that version is. The following steps do not apply when the pod has a manifest version of 1600 or higher. You can check your pod's manifest version on the pod's details page from the Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.

Caution When your pod is of manifest 1600 and lower, you must install the agent-related software using a version of Horizon Agents Installer that corresponds to your pod level. Otherwise the version-specific steps to subsequently pair the VM with the cloud will not work for you. As an example, when your pod has a manifest version between 1493 and 1600, install Horizon Agents Installer 19.2 into the base VM. When the manifest version is between 1273 and 1493, install Horizon Agents Installer 19.1 into the base VM.
Procedure

1. Download the Horizon Agent Installer software that aligns with your pod's manifest version to the VM from www.vmware.com by logging in using your My VMware account and navigating to the product's software downloads page.

 One method to download the installer is to point the VM's Internet Explorer browser to the My VMware location in vmware.com. Log in using your My VMware account. Navigate to the VMware Horizon Cloud Service on Microsoft Azure downloads page by clicking View & Download Products, navigating to the VMware Horizon Cloud Service download components page, and selecting Go to Downloads for the VMware Horizon Cloud Service on Microsoft Azure choice.

2. Navigate to where you downloaded the installer and start it.

 Important If you want to use the URL redirection option with the desktops or RDS-based remote applications resulting from this base VM, you must use the command line to start the installer, adding the VDM_URL_FILTERING_ENABLED=1 parameter to the command.

 However, if you do install the URL redirection option, do not install the options for either serial port redirection or scanner redirection. This Horizon Cloud release does not support use of the serial port redirection and scanner redirection options.

 For example,

   ```
   VMware-Horizon-Agents-Installer-x.y.z-build-x64.exe VDM_URL_FILTERING_ENABLED=1
   ```

 Where x.y.z and build match the numbers in the file name.

 After a few minutes, the installation wizard displays its Welcome screen.

 - For a VDI desktop image, the Horizon Cloud Endpoint Desktop image is displayed.
For a server image, the Horizon Cloud RDSH App image is displayed.

By installing you agree to the License Terms.
3 Click **Configure**.

The wizard's next step displays. The following screenshot is an example of this step when running on a server image.

![VMware Horizon® Agents Installer v19.2.0](image)

Choose which features to install
- [] User Environment Manager
- [x] Real-time Audio-video
- [x] Virtual Printing
- [x] vRealize Operations Desktop Agent
- [x] Client Drive Redirection
- [x] Help Desk Plugin
- [] Horizon Performance Tracker
- [] 3DRDSH
- [] Device Bridge BAS Plugin
- [] USB Redirection
- [] VMware Virtualization Pack for S4B
- [] Scanner Redirection

4 Scroll down to see the feature options.

The following screenshot is an example of this step when running on a server image.
5 Select the check boxes for the features you want to install and click the arrow to move to the next step.

If the VM is a GPU-backed Windows Server operating system VM, select the 3DRDSH option.

Note If you do not install the Help Desk Plugin option, performance-related metrics from user sessions in the desktop instances or farm server instances based on this image are not collected. As a result, some data will not be available in the user card for such sessions. For details, see The User Card in the Horizon Cloud Administration Console.

6 If prompted with a message about using USB redirection securely, click OK.

The final wizard step displays.

7 Click **Proceed with installation**.

The installer begins installing the components.

Note If a message displays asking for confirmation to install the VMware display adapters, click **Install**.

When all the components are installed, the wizard displays **Finish**. The following screenshot is an illustration of the list of installed components when running the installer on a server image and only selecting default options. The specific entries might vary depending on the operating system and options you select.
8 When the wizard signals it is finished, click Finish.

9 Click Restart Now to reboot the VM and have the configuration changes take effect.

What to do next

Pair the configured VM with the cloud plane by following the steps in Manually Pair the Configured Virtual Machine with Horizon Cloud For Pods with Manifests Lower Than 1600

Manually Pair the Configured Virtual Machine with Horizon Cloud For Pods with Manifests Lower Than 1600

When manually creating a base VM in a pod with manifest lower than 1600, after running the Horizon Agents Installer, you must configure some DaaS agent properties in the VM to explicitly pair the VM with the pod before Horizon Cloud can convert the VM into an assignable image that can be used in Horizon Cloud.

Prerequisites

- From the pod's summary page in the Horizon Cloud Administration Console, obtain the pod's tenant appliance IP address. In the Administration Console, navigate to Settings > Capacity and click on the pod's name. On the Summary page, locate the Tenant appliance IP address property and note down that IP address.
- Verify that the agent-related components were installed in the base VM as described in For Pods at Manifests Lower Than 1600, Install the Agent-Related Software Components in the Base Virtual Machine.

Important When your pod is of manifest 1600 and lower, you must use a version of Horizon Agents Installer that aligns with your pod level. Otherwise these steps to pair the VM with the cloud will not work and the VM will fail to pair with the cloud. As an example, when your pod has a manifest version between 1493 and 1600, install Horizon Agents Installer 19.2 into the base VM. When the manifest version is between 1273 and 1493, install Horizon Agents Installer 19.1 into the base VM.

- In the base VM's Windows operating system, confirm that you can access the Keytool.exe file in C:\Program Files (x86)\VMware\Horizon Agents\Horizon DaaS Agent\service. Open a command prompt as administrator, navigate to C:\Program Files (x86)\VMware\Horizon Agents\Horizon DaaS Agent\service, and issue the command Keytool.exe -h. If the command returns information about running Keytool to import the bootstrap credentials, you have the required access.

Procedure

1. In the Microsoft Azure portal, connect to the base VM and log in to the VM's Windows operating system if you are not already connected.

2. Download the DaaS SSL bootstrap file from Horizon Cloud.
 - This file is used in the bootstrap process that allows the VM's operating system and the pod to pair with each other securely.
 - a. Point the VM's browser to https://cloud.horizon.vmware.com and log in with your credentials.
 - b. Click **Inventory > Images**.
 - c. On the Images page, select ... > **Download Bootstrap**.
In the download window, select the appropriate location, the corresponding pod, and enter and re-enter a password of 8-20 ASCII characters containing at least one each of the following: lowercase letter, uppercase letter, number, and symbol (!@#$%^&*).

Do not use non-ASCII characters in the password. Make a note of this password for future use.

Click OK to save the bootstrap file to a location in the VM.

The downloaded file is named `image_bootstrap.7z` by default. This file is used as input to the `Keytool.exe` utility.

3 Verify the setting of the DaaS agent's `EnableBootstrap` registry key is set to 1 (one), and not 0 (zero).
 a Run regedit.
 b In the Registry Editor, navigate to the `HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\VMware, Inc.\VMware DaaS Agent` entry.
 c Verify the value of the `EnableBootstrap` key is set to 1 (one).

 If `EnableBootstrap` key is not set to 1 (one), then modify the key to set it to 1 (one).

4 Create a registry key for the desktop manager address.
 a In the Registry Editor, navigate to the `HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\VMware, Inc.\VMware DaaS Agent` entry.
 b Add a new string value key named `DesktopMgrAddresses`.
 c Set the new key's value to the pod's Tenant appliance IP address value that you obtained from the pod's details page in the Administration Console.

5 Restart the DaaS agent service.

The DaaS agent waits for the bootstrap credentials to be imported in the next step.
6 Import the DaaS SSL bootstrap credentials.
 a Open a command prompt as administrator and navigate to C:\Program Files (x86)\VMware\Horizon Agents\Horizon DaaS Agent\service.
 b Run Keytool.exe using the downloaded DaaS SSL bootstrap file (image_bootstrap.7z) as an argument.

```
Keytool.exe -f absolute-path-to-bootstrap-file/image_bootstrap.7z
```

When prompted, enter the encryption password that you set when you downloaded the DaaS SSL bootstrap file.

Note Ensure that step 2 to add the registry key is completed before you run the Keytool utility. If the registry key does not exist, the Keytool command might fail with the message *Cannot find the file specified.*

The Keytool utility performs the bootstrap and moves the certificate to the cert folder. If you see a message that the file is successfully decrypted, this step is complete.

7 Close your RDP connection.

8 In the Microsoft Azure portal, click **Stop** on the VM.

9 When the portal indicates the VM is completely stopped, click **Start** on the VM.

What to do next

At this point, the base VM conforms to the Horizon Cloud environment's requirements to create an assignable image, also referred to as a sealed image. To confirm that this VM can be converted into a sealed image, in the Horizon Cloud Administration Console, navigate to **Inventory > Imported VMs** and check that an **ACTIVE** status is displayed in the **Agent Version** column for this VM.

If you joined the VM to your Active Directory domain, you can use domain accounts to connect to the VM to customize the image. If you did not join the VM to your Active Directory domain, you can use the local administrator account to connect to the VM to customize the image.

Customize the image's Windows operating system, including configuring things like wallpapers and installing the applications you want this VM to provide to your end users. If you enabled a public IP address for the VM, you can connect to the created VM by using the IP address displayed on the Imported VMs page in an RDP client like Microsoft Remote Desktop Connection. For details, see **Customize the Master Image VM's Windows Operating System** and its subtopics:

- For server operating systems: **Customize the Guest Windows Server Operating System of the Master Server Image Virtual Machine**
For Windows 10 operating systems: Customize the Guest Windows Client Operating System of the Master VDI Desktop Virtual Machine

Important It is strongly recommended that you optimize the image VM, including removing AppX packages from Window 10 images, as described in Customize the Master Image VM's Windows Operating System, Deciding to Optimize the Windows Image When Using the Import Desktop Wizard, and Deciding to Remove Windows Store Apps When Using the Import Desktop Wizard.

If you selected a NV-series VM type, you must log into the VM's operating system and install the supported NVIDIA graphics drivers to get the GPU capabilities of the GPU-enabled NV-series VM. You install the drivers after the VM is created and the Imported VMs page shows the DaaS agent is active. See Install NVIDIA Graphics Drivers in a GPU-Enabled Master Image.

If you selected to install the Dynamic Environment Manager option when installing the agent, configure a separate file server in your Microsoft Azure subscription that has at least SMB 2 enabled. Then configure VMware Dynamic Environment Manager using that file server. Also configure the GPO settings. See the VMware Dynamic Environment Manager documentation topics in the Dynamic Environment Manager product documentation.

For improved security regarding the use of the Horizon Agent, configure your Active Directory server domain policy GPO (Group Policy Object) to disable weak ciphers in SSL and TLS protocols. For information about disabling weak ciphers when communicating using the SSL/TLS protocol, see the appropriate agent-related information in the VMware Horizon® 7 documentation set, such as Disable Weak Ciphers in SSL/TLS.

After you are finished customizing the master VM, use the New Image workflow to convert the master VM to an assignable image. See Convert a Configured Master Virtual Machine to an Assignable Image.

Using Microsoft Azure Disk Encryption with Your Farms and VDI Desktops

When you create an RDSH farm or a VDI desktop assignment in your Horizon Cloud pod in Microsoft Azure, you can decide to whether to enable disk encryption. When you enable disk encryption for a farm or VDI desktop assignment, all disks for all of the virtual machines (VMs) in that farm or VDI desktop assignment are encrypted. You specify disk encryption when you create the farm or VDI desktop assignment, and you cannot change the encryption state after the farm or assignment is created.

The workflows to create a farm and a VDI desktop assignment include a toggle for enabling disk encryption. For details of those workflows, see:

- Create a Farm
- Create a Dedicated VDI Desktop Assignment
Create a Floating VDI Desktop Assignment

Note
- This release does not support having disk encryption for floating VDI assignments that use image VMs with attached data disks.

Performance Impact of Disk Encryption

The disk encryption feature is provided by the Microsoft Azure cloud's Azure Disk Encryption (ADE) capability. ADE uses the BitLocker feature of Microsoft Windows to provide encryption for the OS and data disks of the VMs in Microsoft Azure. In general, BitLocker imposes a single-digit performance overhead, so the encrypted VMs might have a noticeable performance impact. The downsides of VM encryption are that it might increase data, network, or compute resource usage, which can result in additional license or subscription costs. Instead of simply reading data from the disk and writing data to an unencrypted disk, the VM must unencrypt the data to read it, then encrypt the data to write it back to the encrypted disk. In this process, keys are read from the key vault in Azure, which increases the network usage, and CPU cycles are spent on performing the encryption. See Azure Disk Encryption FAQ and BitLocker Deployment and Administration FAQ in the Microsoft documentation.

The Encryption Key Vault

The key vault used for the pod's encrypted farms and VDI desktop assignments is created in the same Microsoft Azure resource group that contains the pod's manager VM. A single key vault is used for all of the pod's encrypted farms and desktop assignments. The system creates this encryption key vault when the first encrypted VM is created as a result of creating the associated farm or VDI desktop assignment. Until that first encrypted VM is created, you will not see this key vault in your pod's resource groups.

The system generates the key vault's name using the pod's ID, which is an identifier in UUID form. To adhere to Microsoft Azure naming rules, the system sets the key vault name by:

1. Taking the pod's ID.
2. Appending the letters kv to the beginning.
3. Removing any non-alphanumeric characters.
4. Truncating characters as needed to keep to a maximum length of 24.

The following screenshot illustrates the items in the pod's manager VM's resource group when that pod has an encrypted farm. The screenshot shows two key vaults: one is the key vault for the pod itself, created during pod deployment, and one is the key vault created when the first encrypted VM is created as a result of creating a disk-encryption-enabled farm or VDI desktop assignment. In the screenshot, you can see that:

- The pod's ID is e1c80e74–7f6f–434f–bd79–c1e3772f6c5a, in the pod's manager VM's name.
- The encryption key vault's name is kve1c80e747f6f434fbd79c1, determined by taking that UUID, adding kv to the beginning, removing the hyphens, and truncating the name to 24 characters.
Caution Do not delete any key vaults you see in the pod's manager VM's resource group. The encrypted VMs will not power on if the encryption key vault is deleted. The pod's manager VM will not power on if the pod's own key vault is deleted.

Creating and Deleting Encrypted VMs

An encryption secret is used for each encrypted VM. As a VM instance is created in an encrypted farm or VDI desktop assignment, a secret is created in the key vault. When a VM instance is deleted from an encrypted farm or VDI desktop assignment, the secret is removed from the key vault.

When you use the Administration Console to delete an encrypted farm or VDI desktop assignment, the system deletes the associated secrets from the key vault. When you delete the pod itself, the key vault for the encrypted VMs is also deleted.

Note Creation of an encrypted farm server VM or desktop VM takes approximately twice as long as creating a non-encrypted VM. As a result, the end-to-end time to complete creating a farm or VDI desktop assignment that has disk encryption enabled is approximately twice as long as creating that farm or VDI desktop assignment without disk encryption enabled.

Also, when an image VM has a data disk, additional time is needed for creating an encrypted farm server VM or desktop VM based on that image VM. Generally speaking, times for disk encryption of Windows Server VMs with data disks are shorter than for Windows 10 VMs with data disks. The longest times occur for Windows 10 operating systems with data disks of larger, terabyte sizes.

When Scheduling Power Management for Farms and VDI Desktop Assignments That Have Large Numbers of Encrypted VMs

The time to power on an encrypted VM and have the VM become ready to accept an end-user connection takes longer than for non-encrypted VMs. When the VM has a small number of cores, like the A1 size, the time can take approximately 12 minutes. With a larger number of cores, the time is shorter, approximately 6 minutes.
When you are using the system’s power management scheduling feature to have large numbers of VMs powered on in time to meet a predicted end-user demand, if the VMs are encrypted, you must consider the additional time it will take to have those VMs ready. The system powers on a maximum of 125 VMs concurrently. If your VDI desktop assignment or farm has more than 125 VMs, when a power management schedule says to power on the assignment or farm at 8 AM, the system starts powering on the VMs at 8 AM in batches of 125 at a time. When the VMs are of the smallest A1 size and are encrypted, this combination of 125 VMs per batch and the 12 minutes to be ready for connections gives an approximate time line that looks like:

- By 8:12 AM, 125 VMs are ready
- By 8:24 AM, 250 VMs are ready
- By 8:36 AM, 375 VMs are ready

As a result, if your VDI desktop assignment has 2,000 encrypted VMs of the small A1 size, the time it takes for having 100% of them powered-on and ready for end-user connections will be approximately 3.5 hours. If your goal is to have 100% of those encrypted A1 size desktops ready at 8 AM, you should consider setting the power management schedule to start at 4:30 AM.

For larger-sized VMs, the time to be ready is about half as long. So instead of 3.5 hours, an encrypted VDI desktop assignment of 2,000 encrypted VMs of a larger size like A4 would take 75 minutes to have 100% of them ready to accept end-user connections.

Similarly, an encrypted VDI desktop assignment that has less desktops will be ready faster than the large 2,000 pool size. For a pool of 500 encrypted desktops of the small A1 size, 100% of the pool will be ready in approximately 48 minutes. 500 VMs divided by 125 per batch makes 4 batches, then multiplied by 12 minutes per batch gives 48.

Using Data Disks with Virtual Desktops from a Horizon Cloud Pod in Microsoft Azure

With a data disk, you can provide data, applications, or extra storage for your end users. You can use data disks both with master image VMs automatically created by the Import Image wizard or master image VMs that you have manually created and paired with your Horizon Cloud environment. The system supports using data disks with session-based desktops and remote applications from RDSH farms, floating VDI desktop assignments, and dedicated VDI desktop assignments. However, because of the different nature of the assignment types, the use cases vary for each type.

Data Disks and Dedicated VDI Desktop Assignments

The dedicated VDI desktop assignment is the most common use case for data disks. Initially, each desktop VM in the assignment’s pool of VMs has the same data disk configuration and contents as for the original image VM on which the assignment is based. You might provide data and applications on the initial data disk that you want to give to all of the entitled end users. Each end user in a dedicated VDI
desktop assignment is assigned a specific virtual desktop. The assigned end user returns to the same virtual desktop each time they launch the desktop and log in. Because the data disk persists with that virtual desktop, the assigned end user can make changes to the data on the data disk and all of the user's changes are preserved between sessions.

Data Disks and Floating VDI Desktop Assignments

In a floating VDI desktop assignment, each virtual desktop VM is reverted to the initial state of the original image VM when an end user logs out of the desktop. Like in the dedicated case, initially each desktop VM in the assignment's pool of VMs has the same data disk configuration and contents as for the original image VM on which the assignment is based. Also as in the dedicated case, you might provide data and applications on the initial data disk that you want to give to all of the entitled end users. Each time an end user connects to a desktop from the pool, that end user is connected to a desktop with any data disks in their initial state.

Unlike the dedicated case, when the end user logs out of the desktop, the virtual desktop's data disks are reverted to the initial data disk configuration and contents. Any files the end user might have saved to those disks are lost when the user logs out.

Data Disks and RDSH-Based Desktop and Application Assignments

The main use case for using data disks with RDSH server VMs is to provide shared, read-only data or applications to all of the end users that you will entitle to use session-based desktops and remote applications provisioned from the RDSH farm. Any data disk that is attached to an RDSH server VM is available to all end users that connect to that server for their session-based desktops and remote applications. Also, because an end user might get connected to different server instances each time the end user logs in to use their entitled desktop or application, there is no guarantee a particular end user would be able to access data they saved to the data disk during previous sessions. As a result, using data disks for personal data in this scenario is typically avoided.

Getting Started

To have data disks available to the pod-provisioned virtual desktops and remote applications, you use the Microsoft Azure portal to create the disks and attach them to a master image before publishing the image. At a high level, you:

1. Attach the created data disks to the master image VM.
2. Initialize those data disks according to the steps in the Microsoft Azure documentation topic [Attach a managed data disk to a Windows VM by using the Azure portal](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/attach-data-disks-managed-disk-vm). Those steps include initializing the disks, defining volumes, and formatting partitions as appropriate for your needs.
3. Add any initial contents you want on the data disks.
You must perform those steps before you convert the image to a published image. The system's image publishing process captures that initial state of the data disks as it seals the image. After publishing the image, you cannot add data disks to that sealed image. To update a sealed image for any reason, including adding a data disk, you update the image according to the information in Managing Published Images for Horizon Cloud Pods in Microsoft Azure and its subtopics.

For the detailed steps of preparing a data disk for a master image VM used in Horizon Cloud, see Setting Up a Data Disk for a Master Image VM.

Number of Data Disks per VM

The current recommendation on the number of data disks supported in Horizon Cloud on an image VM is up to five (5) data disks. Additional factors might restrict the number of data disks you can attach to a VM, such as Microsoft Azure policies about how many data disks can be attached to a particular VM size and the Microsoft Azure region into which your pod is deployed. See the Microsoft Azure documentation topic Sizes for Windows virtual machines in Azure and the pages for the various VM types for the charts that show the maximum numbers for each Microsoft Azure VM size.

Life Cycle of Data Disks

When you use the Administration Console to delete a VM, the system looks for all of the resources associated with the VM and deletes those resources. Even though you manually created the data disks in the Microsoft Azure portal, when the data disks are attached to a VM in Horizon Cloud, the system will delete those data disks when it deletes the VM.

When farm server instances and VDI desktop instances are created from images with attached data disks, the data disks for those instances are created and deleted automatically when the server and desktop VMs are created and deleted, according to the system's standard behavior.

Setting Up a Data Disk for a Master Image VM

To provide a data disk in your pod-provisioned virtual desktops and remote applications, you create a managed data disk using the Microsoft Azure portal and add that data disk to the master image VM. Then you initialize the data disk and format it. After formatting the disk, you can optionally load it with any content you want in the disk's initial configuration. You must perform those steps before you convert the image to a published image.

In Horizon Cloud, you can use data disks both with master image VMs automatically created by the Import Image wizard or master image VMs that you have manually created and paired with your environment. For information about using data disks in your Horizon Cloud environment, see Using Data Disks with Virtual Desktops from a Horizon Cloud Pod in Microsoft Azure.

This topic describes the best practice workflow in the context of your Horizon Cloud pod, when the master VM already exists in a state where it is paired with Horizon Cloud and the VM does not already have a data disk attached to it. The system's automated Import Image wizard creates a master VM without a data disk. If you manually created the master VM and attached a data disk at creation time, you must log in to the VM and initialize the data disk before publishing the image. To initialize a VM's data disk, follow the steps described in the Microsoft Azure documentation topic Initialize a new data disk.
The general steps for adding a data disk to a VM and initializing it are available in the Microsoft Azure documentation topic Attach a managed data disk to a Windows VM by using the Azure portal. An overview of the process is:

- In the Microsoft Azure portal, you locate the master VM and add a data disk to it.
- You log in to the VM and initialize that data disk.

Prerequisites

Verify the Imported VMs page indicates the agent-related status is active for the VM. To get that status for a VM created in a pod at manifest 1600 and higher, use the Imported VMs page's Reset Agent Pairing action on the VM. That action is located in the More drop-down list.

Obtain the VM's name and IP address as displayed on the Imported VMs page. You use the name to locate the VM in the pod's resource groups in the Microsoft Azure portal so you can attach the data disk to the VM. You use the IP address to log in to the VM to initialize the data disk after it is attached.

Note When using the Microsoft Remote Desktop Client as your RDP software to connect to the master VM, ensure it is the most up-to-date version. For example, the default RDP software in the Windows 7 operating system is not at a high enough version. The version must be version 8 or higher.

Verify you have at least one of the following credentials (user name and password) to log in to the VM's guest Windows operating system, according to how the master image VM was created.
<table>
<thead>
<tr>
<th>When the VM was created</th>
<th>How the VM was created</th>
<th>Credentials to use to log in</th>
</tr>
</thead>
</table>
| Prior to the December 2019 service release going live in production | Import Virtual Machine wizard, from the Imported VMs page. | Prior to the December 2019 service release date, the Import Virtual Machine wizard created VMs that were always automatically joined to the Active Directory domain that was specified in the wizard. To log in to such a VM, you can use one of the following:
- The credentials for the local administrator account that were specified in the wizard.
- The credentials for a domain account in that Active Directory domain. |
| After the December 2019 service release went live in production | Import Virtual Machine wizard, from the Imported VMs page. | Starting with the December 2019 service release date, the Import Virtual Machine wizard provides the option of either having the wizard-created VM joined to a specified Active Directory domain or not having the VM joined to the domain at the end of the creation process.
- If the VM was created with the wizard's Domain Join toggle enabled, you can use either the credentials for a domain account in the specified Active Directory domain or use the local administrator account that was specified in the wizard.
- If the VM was created with the wizard's Domain Join toggle turned off, you must use the local administrator account that was specified in the wizard. In this case, because the VM is not joined to the domain, the local administrator account is the only account that has access to log in. |
| In any service release | Manual preparation steps in Manually Build the Master Virtual Machine in Microsoft Azure. | Typically you do not need to join the VM to your Active Directory domain when you manually build the VM. To log in to that VM, use one of the following:
- The credentials for the local administrator account that was specified when the manually built VM was created in the Microsoft Azure portal.
- If you manually joined that VM to an Active Directory domain, the credentials for a domain account in that domain. |

Important Starting with pod manifest 1230 and later, domain accounts can direct connect to domain-joined image VMs that have the agent software installed. Prior to pod manifest 1230, the agent software installed in a domain-joined VM prevented domain accounts from directly connecting to that VM. However, if you have not yet upgraded your pod to a manifest of 1230 and later, before a domain account can direct connect to a domain-joined image VM that has the agent software installed, you must first perform the steps in **When Your Pod is Not Yet Upgraded to Manifest 1230 or Later, How to Configure the Ability for Domain Accounts to Remote Connect to the Imported Image**.
Procedure

1. In the Microsoft Azure portal, locate the master VM in the Microsoft Azure portal.
 a. Use the portal's search bar to search for the VM's name.
 The following screenshot is an illustration of searching for a VM named la48win-1. The first result is the virtual machine.
 ![Search VM screenshot](image)
 b. Display the VM's page in the portal by clicking the virtual machine in the search results list.
 c. Make note of the VM's resource group to use it in the Create Managed Disk page.
 Master VMs used in Horizon Cloud are located in a resource group with a name in the pattern `vmw-hcs-podID-base-vms` where `podID` is the pod's identifier. In the Horizon Cloud Administration Console, the pod ID is listed in the pod's details page from the Capacity page.

2. Add a new data disk to the VM.
 a. Open the VM's Disks page by clicking **Disks** under Settings.
 b. Click **Add data disk**.
 A data disk row displays.
 c. Use the drop-down to click **Create disk**.
 The disk creation page opens.
In the disk creation page, specify the required values.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Type a name for the data disk.</td>
</tr>
<tr>
<td>Resource Group</td>
<td>Select a resource group in which to locate the data disk. Typically you would select the same resource group in which the VM is located (vmw-hcs-podID-base-vms). Note You can locate the data disk in a resource group other than the pod's resource groups.</td>
</tr>
<tr>
<td>Location</td>
<td>Displays the Microsoft Azure region in which the VM is located.</td>
</tr>
<tr>
<td>Account type</td>
<td>Select the type you want.</td>
</tr>
<tr>
<td>Source type</td>
<td>Select None (empty disk).</td>
</tr>
<tr>
<td>Size</td>
<td>Specify the size of the disk.</td>
</tr>
</tbody>
</table>

The following screenshot is an example of the fields filled out.

```
Dashboard > la48win-1 - Disks > Create managed disk

Create managed disk

* Name
la48win-1-disk1

* Resource group
vmw-hcs-podID-base-vms

Create new

* Location
West US 2

Availability zone
None

* Account type
Standard SSD

* Source type
None (empty disk)

* Size (GiB)
1023

Create
```
e Click **Create**.

After a little time during which the system creates the disk, the portal re-displays the VM's Disks page with the new data disk listed.

Note The new data disk is added with **Host Caching** set to **None** by default. You can choose a setting that is appropriate for your intended use of the data disk.

The following screenshot illustrates the VM's Disks page and its listed data disk.

f At the top of the VM's Disks page, click **Save** to complete attaching the new data disk to the VM. At this point, the data disk is attached but uninitialized.
3 Log in to the VM.
 a Use the VM's IP address in your RDP software to connect to the Windows operating system.
 ■ If the master image VM was created with a public IP address, you can use that IP address in your RDP software
 ■ If the master image VM has a private IP address, you must RDP into it by one of these two methods:
 ■ Using another VM in your Microsoft Azure subscription that does have a public IP address and doing an outbound RDP into the master image VM.
 ■ Use your VPN and RDP into the master image VM over your corporate network

 Note To access a VM that is running the agent-related software components, the version of the Remote Desktop Client must be version 8 or later. Otherwise, the connection fails. Using the most up-to-date Remote Desktop Client is recommended.

 b Log in to the Windows operating system using credentials (user name and password) as described in the prerequisites here.

 When using the local administrator account credentials that were specified in the Import Image wizard when the VM was created, enter the username as \username.

 Note When the VM is a domain-joined VM, as described in the prerequisites here, and you want to use a domain account instead of the local administrator account, enter the user name as domain\username where domain is the name of the domain.

4 In the VM, perform the steps to initialize and format the data disk, as described in the Microsoft Azure documentation topic Initialize a new data disk.

 At this point, the master VM has a formatted, empty data disk. If you want to load the data disk with any content you want to provide to your end users in the disk's initial configuration, you can add the content at any time until you publish the image.

VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure

When the Microsoft Azure VNet that is used by your pods is configured for NSX Cloud, you are able to leverage the features of NSX-T Data Center network virtualization with those pods' farms and VDI desktop assignments. You can use the micro-segmentation features of NSX Cloud to restrict access between farm server instances and VDI desktops even when those virtual machines are in the same tenant subnet.
For the specific version of NSX-T Data Center that is supported for this integration, see the Horizon Cloud Release Notes for the current Horizon Cloud release.

Note When you have updated an existing pod from manifest versions prior to 1101 up to this release level, those farms and VDI desktop assignments that existed in the pod prior to updating the pod cannot be edited after the update to enable them for NSX Cloud management.

NSX Cloud integrates the NSX-T Data Center core components, NSX Manager and NSX Controllers, with your Microsoft Azure cloud environment. For an overview of the NSX Cloud architecture and components, see NSX Cloud Architecture and Components in the VMware NSX-T Data Center documentation. The core NSX Cloud components are:

- NSX Manager
- NSX Controller
- Cloud Service Manager (CSM)
- NSX Public Cloud Gateway (PCG)
- NSX Agent

Note This integration of NSX Cloud and Horizon Cloud pods in Microsoft Azure supports non-quarantine mode only.

One requirement of using NSX Cloud with your Microsoft Azure environment is you must establish a connection between your Microsoft Azure VNet and your on-premises NSX-T Data Center appliances. Because Microsoft Azure does not allow you to modify a VNet's CIDR block after a VNet is peered or after attaching a VPN Gateway, ensure you have checked all of the values you want to use before you attach the VNet to the VPN Gateway. For a workflow of the high-level steps for connecting NSX Cloud to your public cloud, see Day-0 Workflow for Connecting NSX Cloud with Your Public Cloud.

The following table is a high-level summary of the end-to-end steps to enable using the NSX Cloud features with your pod's RDSH server VMs and VDI desktop VMs. Some of the links in the Details column open the relevant NSX-T Data Center version 2.4 documentation topics. If you are using NSX-T Data Center 2.3 instead, when you take one of the links below to the 2.4 version topic, you can use the upper blue menu to switch to the 2.3 version of the same documentation topic. The following screenshot illustrates the position of that blue menu for the Deploy or Link NSX Public Cloud Gateways topic.
### High-Level Step	Details
Install CSM in your on-premises NSX-T environment and connect it with NSX Manager. | Refer to the NSX-T Data Center documentation topic [here](#).
Enable the ports and protocols that are required for hybrid connectivity. | Refer to the NSX-T Data Center documentation topic [here](#).
Peer your Microsoft Azure VNet with your on-premises NSX-T Data Center environment. | Refer to the NSX-T Data Center documentation topic [here](#).
Enable CSM to access your Microsoft Azure inventory. | Refer to the NSX-T Data Center documentation topic [here](#).
Deploy the NSX Cloud PCG on the configured Microsoft Azure VNet. | Refer to the NSX-T Data Center documentation topics:
- Deploy PCG prerequisites
- Deploy PCG in a Microsoft Azure VNet
Create a master VM using the Import Desktop wizard. | See [Create a Master Virtual Machine Automatically from the Microsoft Azure Marketplace and Pair it with Horizon Cloud](#). To make it easy to install the required NSX agent, a best practice is to select the option for a public IP address.
- **Note**: When creating the master VM, select the options for optimizing the VM and, for Windows 10, removing Windows Store Apps. Using those options helps prevent sysprep issues when subsequently sealing the image.
Connect to the master VM and install the required NSX agent. | Install the NSX Agent in the Master Image
Publish the image. | Convert a Configured Master Virtual Machine to an Assignable Image
Create farms and VDI desktop assignments using that image and the setting to enable NSX Cloud management for that farm or assignment. When the RDSH server and VDI desktop VMs are created, they appear in your NSX Cloud inventory. | Create a Farm
- Create a Dedicated VDI Desktop Assignment
- Create a Floating VDI Desktop Assignment
Enable the distributed firewalls rules in NSX Manager that will allow communication with the RDSH server and VDI desktop VMs | Because NSX Cloud will block these communications by default, you must enable some distributed firewall rules in NSX Manager to allow communication with the NSX-managed VMs that are provisioned from the pod. See [Firewall Rules Required in NSX Manager for Pod-Provisioned VMs](#).
If you are using NSX-T Data Center 2.4, in addition to enabling the firewall rules, you must also add a forwarding policy to route the traffic pertaining to the NSX-managed VMs over the Microsoft Azure cloud's network (underlay). See [Add the Required Forwarding Policy in NSX Manager for the Pod-Provisioned VMs](#).
Use NSX Cloud features with the RDSH server and VDI desktop VMs in your NSX Cloud inventory. | See [this NSX Cloud topic](#) and its subtopics in the NSX-T Data Center Administration Guide.

Horizon Cloud Workflows and NSX Cloud

When you create an RDSH farm or a VDI desktop assignment in your Horizon Cloud pod using a master VM that you configured with the NSX agent, you can decide to whether to enable NSX Cloud management on that farm or VDI desktop assignment. When you enable NSX Cloud management for a farm or VDI desktop assignment, all of the virtual machines (VMs) in that farm or VDI desktop assignment...
are tagged for use in NSX Cloud. You specify NSX Cloud management when you create the farm or VDI
desktop assignment, and you cannot change that state after the farm or assignment is created. The
Horizon Cloud workflows to create a farm and a VDI desktop assignment include a toggle for enabling
use of NSX Cloud with the farm's server instances or the VDI desktop assignment's virtual desktops. For
details of those workflows, see:

- Create a Farm
- Create a Dedicated VDI Desktop Assignment
- Create a Floating VDI Desktop Assignment

Setting the **NSX Cloud Managed** toggle to **Yes** when creating a farm or VDI desktop assignment gives
the resulting farm's server VMs or VDI desktop VMs with a custom tag named `nsx.network=default`. The
NSX Cloud PCG manages all VMs that have that tag. NSX Cloud automatically discovers the VMs in your
configured Microsoft Azure VNet that have this tag and includes these VMs in your public cloud inventory.
You can then manage and secure those VMs using the CSM component of NSX-T Data Center. For
details, see this **NSX Cloud topic** and its subtopics in the NSX-T Data Center Administration Guide.

Some limitations apply when using the NSX Cloud management feature in the Horizon Cloud
Administration Console:

- You cannot edit the name of a farm or VDI desktop assignment that has NSX Cloud management
 enabled.
- To use both disk encryption and the NSX Cloud management features for a floating VDI desktop
 assignment, you must install the latest version of the NSX agent. That combination is not supported
 with previous NSX agent versions.

Install the NSX Agent in the Master Image

When you want to create a farm or VDI desktop assignment that is enabled for NSX Cloud management,
the NSX agent must be installed in published image you use for that farm or assignment. You must install
the NSX agent into the master image VM before you publish it. You install the NSX agent after the master
VM is created and the Imported VMs page shows the status of the VM's agent-related software is active.

Installing the NSX agent involves downloading a PowerShell install script file from the download location
identified in your NSX Cloud environment's Cloud Service Manager (CSM). In the master VM, you run
that install script to download the NSX agent install binaries and install the agent. Many of the details
about installing the NSX agent on Windows VMs are located in the NSX-T Data Center documentation.
For further information, see the **Install NSX Agent** topic and its subtopics in the NSX-T Data Center
Administration Guide.
Prerequisites

Verify the Imported VMs page indicates the agent-related status is active for the VM. To get that status for a VM created in a pod at manifest 1600 and higher, use the Imported VMs page’s **Reset Agent Pairing** action on the VM. That action is located in the **More** drop-down list.

Note When using the Microsoft Remote Desktop Client as your RDP software to connect to the master VM, ensure it is the most up-to-date version. For example, the default RDP software in the Windows 7 operating system is not at a high enough version. The version must be version 8 or higher.

Verify you have at least one of the following credentials (user name and password) to log in to the VM’s guest Windows operating system, according to how the master image VM was created.
<table>
<thead>
<tr>
<th>When the VM was created</th>
<th>How the VM was created</th>
<th>Credentials to use to log in</th>
</tr>
</thead>
</table>
| Prior to the December 2019 service release going live in production | Import Virtual Machine wizard, from the Imported VMs page. | Prior to the December 2019 service release date, the Import Virtual Machine wizard created VMs that were always automatically joined to the Active Directory domain that was specified in the wizard. To log in to such a VM, you can use one of the following:
 - The credentials for the local administrator account that were specified in the wizard.
 - The credentials for a domain account in that Active Directory domain. |
| After the December 2019 service release went live in production | Import Virtual Machine wizard, from the Imported VMs page. | Starting with the December 2019 service release date, the Import Virtual Machine wizard provides the option of either having the wizard-created VM joined to a specified Active Directory domain or not having the VM joined to the domain at the end of the creation process.
 - If the VM was created with the wizard's **Domain Join** toggle enabled, you can use either the credentials for a domain account in the specified Active Directory domain or use the local administrator account that was specified in the wizard.
 - If the VM was created with the wizard's **Domain Join** toggle turned off, you must use the local administrator account that was specified in the wizard. In this case, because the VM is not joined to the domain, the local administrator account is the only account that has access to log in. |
| In any service release | Manual preparation steps in Manually Build the Master Virtual Machine in Microsoft Azure. | Typically you do not need to join the VM to your Active Directory domain when you manually build the VM. To log in to that VM, use one of the following:
 - The credentials for the local administrator account that was specified when the manually built VM was created in the Microsoft Azure portal.
 - If you manually joined that VM to an Active Directory domain, the credentials for a domain account in that domain. |

Important
Starting with pod manifest 1230 and later, domain accounts can direct connect to domain-joined image VMs that have the agent software installed. Prior to pod manifest 1230, the agent software installed in a domain-joined VM prevented domain accounts from directly connecting to that VM. However, if you have not yet upgraded your pod to a manifest of 1230 and later, before a domain account can direct connect to a domain-joined image VM that has the agent software installed, you must first perform the steps in *When Your Pod is Not Yet Upgraded to Manifest 1230 or Later, How to Configure the Ability for Domain Accounts to Remote Connect to the Imported Image.*
Verify you have the credentials to log in to the portal for your NSX Cloud environment’s CSM. You use the CSM to identify the location for downloading the PowerShell install script to install the NSX agent. CSM is a component of NSX Cloud and provides a single-pane-of-glass management endpoint for your public cloud inventory. For more details, see the Cloud Service Manager topic and related topics in the NSX-T Data Center Administration Guide.

Procedure

1. Use the VM’s IP address in your RDP software to connect to the VM’s Windows operating system.
 - If the master image VM was created with a public IP address, you can use that IP address in your RDP software.
 - If the master image VM has a private IP address, you must RDP into it by one of these two methods:
 - Using another VM in your Microsoft Azure subscription that does have a public IP address and doing an outbound RDP into the master image VM.
 - Use your VPN and RDP into the master image VM over your corporate network.

 Note To access a VM that is running the agent-related software components, the version of the Remote Desktop Client must be version 8 or later. Otherwise, the connection fails. Using the most up-to-date Remote Desktop Client is recommended.

2. Log in to the Windows operating system using credentials (user name and password) as described in the prerequisites here.

 When using the local administrator account credentials that were specified in the Import Image wizard when the VM was created, enter the username as `\username`.

 Note When the VM is a domain-joined VM, as described in the prerequisites here, and you want to use a domain account instead of the local administrator account, enter the user name as `domain \username` where `domain` is the name of the domain.

3. From the Windows VM, log in to CSM and navigate to **Clouds > Azure > VNets**.

4. On the Overview tab, expand the **Agent Download & Installation** area if it is not already expanded.

 In that area, locate the displayed Windows install script download location. Under the download location is also a simple basic installation command.

 - The displayed download location has the pattern `http://filepath/nsx_install.ps1`, where `nsx_install.ps1` is the PowerShell script file and `filepath` is the path from which to download the file.
The displayed basic installation command includes a portion `-dnsSuffix DNS-suffix`, where `DNS-suffix` is a dynamically generated value related to the DNS settings you chose when you deployed the PCG on your Microsoft Azure VNet as part of configuring NSX Cloud.

Important When you run the script to install the NSX agent for a master image in Horizon Cloud, you must specify:

- The same `DNS-suffix` that you see displayed in CSM for your Microsoft Azure VNet. The `DNS-suffix` is unique to your configured environment.
- The `startOnDemand true` option. That option optimizes the NSX agent for the Horizon Cloud publishing workflow.

5 Copy the displayed `DNS-suffix` so that you have it when you run the install script in the next steps.

6 Use the download location to download the `nsx_install.ps1` file to a location on the VM.

7 Open a PowerShell prompt, navigate to where you downloaded the `nsx_install.ps1` file, and install the agent by running the installation command using your value for `DNS-suffix` and the option `-startOnDemand true`.

Important The option `-startOnDemand true` is required.

The following code block is an example of the command in a PowerShell prompt with an example `DNS-suffix` of `xxxxxxxxxxxxxxxxxxxxxxxxxx.xx.internal.cloudapp.net`.

```powershell
powershell -file 'nsx_install.ps1' -operation install -dnsSuffix xxxxxxxxxxxxxxxxxxxxxxxxxxxxx.xx.internal.cloudapp.net -startOnDemand true
```

When the script finishes running, a message appears indicating whether the NSX agent is installed successfully.

8 Close the PowerShell command prompt.

9 Verify that the agent's bootstrap status is ready by opening a regular command prompt and running the following command.

```bash
schtasks /query /tn nsx_bootstrap
```

Running that command should show the `nsx_bootstrap` task in `Ready` status. The following shows an example.

<table>
<thead>
<tr>
<th>TaskName</th>
<th>Next Run Time</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsx_bootstrap</td>
<td>N/A</td>
<td>Ready</td>
</tr>
</tbody>
</table>

10 Sign out of the VM's Windows operating system.
What to do next

With the NSX agent installed and the nsx_bootstrap task showing as Ready, you can publish the image if you have no further customizations to make. See Convert a Configured Master Virtual Machine to an Assignable Image.

Firewall Rules Required in NSX Manager for Pod-Provisioned VMs

When using NSX Cloud features with your pod in Microsoft Azure, you must enable some distributed firewall rules in NSX Manager to allow communication with the NSX-managed VMs that are provisioned from the pod. If these rules are not enabled, end users will not be able to launch and log in to their desktops or remote applications.

In NSX Manager, enable these rules to allow the traffic as indicated. In the table, the phrase desktop pool refers to the RDSH farm or VDI desktop assignment.

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Source</th>
<th>Destination</th>
<th>Service/Protocol/Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon HTML Access (Blast) traffic</td>
<td>The pod's Unified Access Gateway VMs</td>
<td>Desktop pool</td>
<td>VMware-View-PCoIP/TCP/4172</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VMware-View5.x-PCoIP/UDP/4172</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HTTPS/TCP/443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Horizon Blast UDP/UDP/22443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Horizon Blast TCP/TCP/22443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Horizon-USB-RedirectionIn/TCP/32111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Horizon-Beat/TCP-8443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Horizon-TCP-Side-Channel/TCP/9427</td>
</tr>
<tr>
<td>Desktop pool to pod manager traffic</td>
<td>Desktop pool</td>
<td>Pod's manager VM</td>
<td>VMware-View5.x-JMS/TCP/4001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Desktop-Messaging Server/TCP/3099</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VMware-View7-JMS/TCP/4002</td>
</tr>
<tr>
<td>Desktop pool to Active Directory domain server traffic</td>
<td>Desktop pool</td>
<td>Pod's manager VM</td>
<td>ANY</td>
</tr>
</tbody>
</table>

Add the Required Forwarding Policy in NSX Manager for the Pod-Provisioned VMs

When you are using NSX-T Data Center 2.4 with a pod in Microsoft Azure, in addition to enabling the firewall rules, you must also add a forwarding policy to route the traffic pertaining to the pod's NSX-managed VMs over the Microsoft Azure cloud's network (underlay). Forwarding policies were introduced in NSX-T Data Center 2.4.

You perform these steps in your NSX-T Data Center 2.4 environment.

Procedure

1. Log in to your environment's NSX Manager.
2 Navigate to **Networking > Forwarding Policies**.

3 On that Forwarding Policies page, expand the section that represents the VNet on which the NSX Public Cloud Gateway (PCG) is deployed for your pod's use.

4 In the expanded section, make a copy of the last rule listed in that section, the one named `CloudDefaultRoute`, by right-clicking and selecting **Copy rule**.

5 Set the action of the new copy to **Route to Underlay**.

6 Click **Publish**.

Managing VM Types and Sizes for Farms and Assignments

On the VM Types and Sizes page (**Settings > VM Types and Sizes**), you can manage the types and sizes of VMs you want to be available for creating farms and assignments.

For pods in Microsoft Azure, you can select the VMs that appear in the **Model** drop-down menu in the farm and desktop assignment creation wizards. You can also add custom tags, which can be used to filter VMs in the **Model** drop-down menu. For details about how this list can be filtered, see one of the following topics: **Create a Farm**, **Create a Floating VDI Desktop Assignment**, or **Create a Dedicated VDI Desktop Assignment**. The filter option functions identically in all three cases, so the information describing the option is the same in these three topics.

Important For production environments, ensure the VM models used for your farms and desktop assignments have a minimum of two (2) CPUs. VMware scale testing has shown that using 2 CPUs or more avoids unexpected end-user connection issues. Even though the system does not prevent you from choosing a VM model with a single CPU, you should use such VM models for tests or proof-of-concepts only.

The VM Types and Sizes page (**Settings > VM Types and Sizes**) displays a list of all VMs available in Azure across all regions, refreshed weekly to include new VMs as they are added. You can use the drop-down menu above the VM list to filter by region.

Note While the filter is being applied, you might see a message indicating that VM Types and Sizes is not supported for the selected region. If the message only appears briefly and then disappears, you can ignore the message.

You can use the **Add Tag** and **Remove Tag** buttons to manage custom tags for VMs. See the description of the Tag field in the following table for more information.

There are a few VMs that VMware has removed from the list because they do not work with Horizon Cloud, and might be some that Microsoft has not made available for other reasons. If there is an Azure VM you want to use but do not see listed, contact your VMware representative.

The information displayed for each VM is shown in the following table.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
<td>Indicates whether a VM is displayed in the Model drop-down menu in the farm and desktop assignment creation wizards. By default, this option is selected for all VMs.</td>
</tr>
<tr>
<td>VM Name</td>
<td>Name of the VM.</td>
</tr>
<tr>
<td>Tag</td>
<td>There are two types of tags that can be applied to VMs.</td>
</tr>
<tr>
<td></td>
<td>- System tags - These tags are hard-coded and are not editable. Currently the only system-level tag is VMware Recommended, which is applied to VM configurations recommended by VMware. These recommended VM sizes are ones that VMware has determined optimize the price-to-performance ratio for typical Horizon Cloud RDS farm and VDI workloads. However, your business needs might require VM sizes that are not in this VMware recommended list. Even if a VM size is not in this recommended list, ensure that you select a VM size that meets your use case and requirements.</td>
</tr>
<tr>
<td></td>
<td>- Custom tags - These are your own tags, which you create and apply to VMs. You can filter by these tags when selecting a model in the farm and desktop assignment creation wizards.</td>
</tr>
<tr>
<td></td>
<td>To add custom tags to VMs:</td>
</tr>
<tr>
<td></td>
<td>a Select the check boxes for the VMs.</td>
</tr>
<tr>
<td></td>
<td>b Click Add Tag.</td>
</tr>
<tr>
<td></td>
<td>c Enter tags, separated by commas, and click Add.</td>
</tr>
<tr>
<td></td>
<td>To remove custom tags from VMs:</td>
</tr>
<tr>
<td></td>
<td>a Select the check boxes for the VMs.</td>
</tr>
<tr>
<td></td>
<td>b Click Remove Tag.</td>
</tr>
<tr>
<td></td>
<td>c Select tags to be removed, and click Save.</td>
</tr>
<tr>
<td>vCPU</td>
<td>Number of vCPU in the VM.</td>
</tr>
<tr>
<td>RAM</td>
<td>Size of the RAM for the VM.</td>
</tr>
<tr>
<td>Data Disk</td>
<td>Number of data disks in the VM.</td>
</tr>
</tbody>
</table>

Farms in Horizon Cloud

A farm is a collection of Microsoft Remote Desktop Services (RDS) hosts that provide multiple users with session-based desktops and applications. Farms simplify the management of the RDS hosts. You can create farms to serve groups of users that vary in size or have different desktop or application requirements.

Before you can assign session-based desktops or remote applications to end users, you must create the farms to serve those desktops and applications. A farm can provide either session-based desktops or remote applications.

Use the Farms page in the Administration Console to manage your farms. You navigate to the Farms page using the Inventory icon.
Create a Farm

You create farms using the Farms page.

Note The RDS-enabled image is also called an RDS host or an RDSH (Remote Desktop Services Host) image.

For an example of how rolling maintenance works for a farm, see [Example of Farm Rolling Maintenance](#).

Prerequisites

- Verify that you have at least one image listed on the Images page, that image has an RDS-enabled Windows server operating system, the Images page shows that image is in Published state, and that image is located in the pod in which you want to create the farm. You cannot create a farm in a pod without such an image available in that pod.

- Verify whether you are eligible to use the Azure Hybrid Benefit (also known as Azure Hybrid Use Benefit or HUB) with the image's Microsoft Windows Server operating system. When you are eligible to use the Azure Hybrid Benefit with your VMs in Microsoft Azure, you can choose to apply your Azure Hybrid Benefit to this farm's server instances.

- Decide whether this farm will serve session-based desktops or remote applications. In this release, the same farm cannot serve both.

- Decide whether you want the farm's servers to have encrypted disks. You must specify disk encryption when creating the farm. You cannot later add disk encryption after the farm is created. For a description of the disk capability, see [Using Microsoft Azure Disk Encryption with Your Farms and VDI Desktops](#).

- Decide whether you want the ability to use NSX Cloud features with the farm's server VMs. You must enable NSX Cloud management when creating the farm. You cannot later enable the farm for NSX Cloud management after the farm is created. The published image you choose for this farm must have the NSX agent installed in it. You must have installed the NSX agent prior to publishing the image. See [VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure](#) and its subtopics.
Procedure

1. In the Administration Console, navigate to **Inventory > Farms**.

2. Click **New**.

 The New Farm wizard opens.

3. In the wizard's Definition step, complete the fields and make your selections as appropriate and then click **Next**.

 Note You might have to use the scroll bar to see all the required fields.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter a name for this farm.</td>
</tr>
<tr>
<td>Description</td>
<td>Enter an optional description.</td>
</tr>
<tr>
<td>VM Names</td>
<td>Base name for all of the server VMs created for this farm. The VM names will have numbers appended to this base name, for example, win2016-1, win2016-2, etc. The name must start with a letter and can contain only letters, dashes, and numbers.</td>
</tr>
</tbody>
</table>
| Farm Type | Specify the type of asset this farm provides to end users:
 - Select **Desktops** to use this farm to provide session-based desktops.
 - Select **Applications** to use this farm to provide access to remote applications.
 After an applications farm is created, you can use the New Application workflow's **Auto-scan from Farm** option to import applications from the farm's servers into your application inventory. |
<p>| Location | Select the location associated with the pod that has the RDSH image. This selection filters the choices in the Pod field to only the pods in the selected location. |
| Pod | Select the pod. |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Models</td>
<td>Set one or more filters to control the models available in the Models drop-down menu. You can filter models by type, series, number of CPUs, memory, and tags. For more information about selecting models, see Managing VM Types and Sizes for Farms and Assignments, which describes the options on the VM Types & Sizes page (Settings > VM Types & Sizes).</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

```plaintext
Filter Models
Tag = equals VMware Recommen
Add
```
To set a filter, you first select the criterion in the drop-down menu and then enter the desired value(s). By default, there is a single filter with the criterion 'Tag' the value 'VMware Recommended'. You can edit this first filter and add more filters connected by And and Or operators.

The following are the criteria you can use for filters and descriptions of the values you can enter for each.

- Type
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Models:</td>
<td>Type equals GPU and High Perf</td>
</tr>
<tr>
<td>Model:</td>
<td>Basic_A0 (1 CPU, 0G)</td>
</tr>
<tr>
<td>Image:</td>
<td>-</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>When you select this option, there is only value available in the second drop-</td>
</tr>
<tr>
<td></td>
<td>down menu:</td>
</tr>
<tr>
<td></td>
<td>GPU and High Performance - Models with GPU.</td>
</tr>
<tr>
<td></td>
<td>Note If you choose a GPU model (for example, Standard_NV6), then the</td>
</tr>
<tr>
<td></td>
<td>list of images shown will contain only images that were created with the</td>
</tr>
<tr>
<td></td>
<td>Include GPU flag selected, so you need at least one such image in order to</td>
</tr>
<tr>
<td></td>
<td>create a farm or pool using a GPU model. If you choose a non-GPU model,</td>
</tr>
<tr>
<td></td>
<td>then the list of images shown will contain only images that were created</td>
</tr>
<tr>
<td></td>
<td>without the Include GPU flag.</td>
</tr>
<tr>
<td></td>
<td>Series</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

![Diagram showing filter options](diagram.png)
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When you select this option, you can then select a series of models from a second drop-down menu. You can also filter this list by entering text in the Filter text box at the top of the list.</td>
</tr>
<tr>
<td>CPUs</td>
<td></td>
</tr>
</tbody>
</table>

VMware, Inc.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Models</td>
<td></td>
</tr>
<tr>
<td>CPUs</td>
<td>from CPU to CPU</td>
</tr>
<tr>
<td>Add</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>When you select this option, you can then enter a CPU range.</td>
</tr>
<tr>
<td></td>
<td>Important For production environments, to avoid unexpected end-user connection issues, use VM models that have a minimum of two (2) CPUs.</td>
</tr>
<tr>
<td></td>
<td>Memory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>

![Filter Models](image) Memory from GB to GB

Add
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When you select this option, you can then enter a range of memory in GBs.</td>
</tr>
<tr>
<td></td>
<td>■ Tag</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Filter Models:</td>
<td>Tag = equals Development</td>
</tr>
<tr>
<td>Model:</td>
<td>Basic_A0 (1 CPU, 0GB)</td>
</tr>
<tr>
<td>Image:</td>
<td>Development</td>
</tr>
<tr>
<td></td>
<td>Sales</td>
</tr>
</tbody>
</table>
Option | Description
--- | ---
 | When you select this option, you can then select a tag from a second drop-down menu. You can also filter this list by entering text in the **Filter** text box at the top of the list. Tags available in the drop-down menu are both hard-coded system tags and custom tags that you created on the VM Types & Sizes page (*Settings > VM Types & Sizes*).

You can set additional filters by performing the following steps for each filter:

a. Click the **Add** link.

b. Select either And or Or as the operator between the previous filter and the new one you are creating.

c. Set the new filter by selecting a criterion and entering value(s).

Note If the model you selected to create the farm becomes unavailable in the future, you will not be able to expand the farm. The farm remains fully functional except for this limitation. To see if a VM type is available, navigate to the VM Types & Sizes page (*Settings > VM Types & Sizes*).

Model

Select the VM model to use for the farm's server instances. This selection defines the set of underlying resources that will be used when the farm's server instances are created, in terms of capacity (compute, storage, and so on). The available choices map to standard VM sizes that are available in Microsoft Azure.

Important For production environments, select a VM model that has a minimum of two (2) CPUs. VMware scale testing has shown that using 2 CPUs or more avoids unexpected end-user connection issues. Even though the system does not prevent you from choosing a VM model with a single CPU, you should use such models for tests or proof-of-concepts only.

Disk Type

Select a supported disk type from the available options. Disk type options are based on the model selected, and your Azure subscription and region. The following are some commonly available disk types:

- Standard HDD - Default disk type.
- Standard SSD
- Premium SSD - Option only appears if you selected a model that supports premium IO.

You can edit your selection later if desired.

Disk Size

Enter the OS disk size in GB for the VMs in this farm.

- The default value is the base image OS disk size (typically 128 GB).
- If you edit the size, the value you enter must be greater than the base image OS disk size, and cannot exceed the largest size (typically 1024 GB) supported by the selected model.
- You can also edit this value later if desired.

Important If you edit the disk size, there are additional actions you must take to ensure that the VMs are created as expected. For more information, see *Required Administrator Actions When the Disk Size for a Farm or VDI Desktop Assignment is Increased*.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>Select the assignable RDSH image.</td>
<td>If you set the NSX Cloud Managed toggle to Yes, ensure that the image you select here has the NSX agent installed on it. For the NSX Cloud management features to work with the farm's server instances, the image that you select for this farm must have the NSX agent already installed on it. The system does not verify if the selected image has the NSX agent when it creates the farm.</td>
</tr>
<tr>
<td>Preferred Protocol</td>
<td>Select a default display protocol you want the end-user sessions to use. Circumstances might occur that cause another protocol to be used instead of the default protocol. For example, the client device does not support the default protocol or the end user overrides the default protocol selection.</td>
<td></td>
</tr>
<tr>
<td>Preferred Client Type</td>
<td>Select the preferred client type used when end users start their session-based desktops from the Workspace™ ONE™ platform's portal, either a Horizon Client or a browser for HTML Access.</td>
<td></td>
</tr>
<tr>
<td>Domain</td>
<td>Select the Active Directory domain registered with your environment.</td>
<td></td>
</tr>
<tr>
<td>Join Domain</td>
<td>Select Yes so that the farm's server instances are automatically joined the domain when they are created.</td>
<td></td>
</tr>
<tr>
<td>Encrypt Disks</td>
<td>Select Yes so that the farm's server instances have encrypted disks.</td>
<td>Important If you want disk encryption, you must make this selection when creating the farm. You cannot later add disk encryption after the farm is created.</td>
</tr>
</tbody>
</table>
| NSX Cloud Managed | Select **Yes** so that you can use features of NSX Cloud with the farm's server instances. For a description of using NSX Cloud features with your farms in Microsoft Azure, see [VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure](https://www.vmware.com/products/vmware-nsx-cloud-and-horizon-cloud-pods-in-microsoft-azure.html) and its subtopics. | **Important**

 - If you want to use NSX Cloud with the farm's server instances, you must make this selection when creating the farm. You cannot later enable NSX Cloud management after the farm is created.

 - For the NSX Cloud management features to work with the server instances, the image that you select for this farm must have the NSX agent already installed on it. When you set this toggle to **Yes**, ensure that the image you select in **Image** has the NSX agent installed on it. The system does not verify if the selected image has the NSX agent when it creates the farm. |
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Servers</td>
<td>Specify the minimum number and maximum number of servers you want in this farm. When the farm is first created, the system deploys the number of servers specified in the Max Servers field, and then powers off the servers except the number specified for Min Servers. Only the minimum number of server instances is initially powered on. As end user demand increases, the system powers on additional servers, up to the Max Servers number. Then as end-user demand shrinks, the system powers off the servers, until it reaches the Min Servers number of servers. A server must be completely empty of user sessions before the system powers it off. When you specify zero (0) for Min Servers, it indicates that you want the system to power off all the farm's servers when there is no end-user demand for sessions to the farm. When you enter zero (0) for Min Servers, use the Power Off Protect Time field to specify the amount of time you want the system to wait after determining the remaining powered-on server has no user sessions before the system powers off that server.</td>
</tr>
<tr>
<td>Max Servers</td>
<td></td>
</tr>
<tr>
<td>Power Off Protect Time</td>
<td>Specify the number of minutes that you want the system to wait before automatically powering off a powered-on server instance. You can enter a value from 1 to 60. The default is 30 minutes. This protect time is used primarily for the situations where the system would normally power off a server VM. You can use this Power Off Protect Time setting to tell the system to wait the specified time before starting to power off the VM. The default wait time is 30 minutes.</td>
</tr>
<tr>
<td>Sessions per Server</td>
<td>Specify the number of concurrent end-user sessions per server that this farm will allow. For a pod in Microsoft Azure, based on performance testing of user densities, VMware has some recommended maximums. For details about these recommendations and the analysis behind them, see the VMware Horizon Cloud Service™ on Microsoft Azure RDS Desktop and Application Scalability white paper located here in vmware.com.</td>
</tr>
</tbody>
</table>

Note
- Due to an NVIDIA driver limitation, if your GPU-enabled master image has Microsoft Windows Server 2012 R2 for its operating system, a farm using that image for its servers is limited to 20 sessions maximum per server. If you have that particular combination (image with GPU, Microsoft Windows Server 2012 R2, NVIDIA drivers, and an NV-series server model), do not specify more than 20 here.
Optionally configure the advanced properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer OU</td>
<td>Active Directory Organizational Unit where the server VMs are to be located. Enter the Active Directory Organizational Unit using the distinguished name, for example, OU=RootOrgName,DC=DomainComponent,DC=eng, and so on. The OU and each path in a nested OU can contain any combination of letters, numbers, special characters, and spaces, and can have a maximum of 64 characters. If you need to use nested Organization Units, see Considerations For Using Nested Active Directory Domain Organizational Units.</td>
</tr>
<tr>
<td>Note</td>
<td>If the Computer OU is set to CN=Computers, the system uses the default Active Directory Computers container for VMs. Your Active Directory might have this default container redirected to an organizational unit class container.</td>
</tr>
<tr>
<td>Run Once Script</td>
<td>(Optional) Location of a script that you want run in the farm's server VMs after the VM creation process.</td>
</tr>
<tr>
<td>Note</td>
<td>The script should end with a reboot step to reboot the VM. A sample reboot line as a Windows command is:</td>
</tr>
<tr>
<td></td>
<td>shutdown /r /t 0</td>
</tr>
<tr>
<td></td>
<td>The script is run after the Microsoft Windows System Preparation (Sysprep) process. When the system creates a server VM for the farm, the VM starts up and completes the Sysprep process in the Windows operating system. When the Sysprep process completes, the agent in the VM reaches out to do the domain join. At the same time, the agent gets the script path you specify here. The agent sets the Windows RunOnce path (System run once) and then restarts the server VM. On the next restart, the system logs in to the Windows operating system using the local administrator account and runs the script.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Azure Resource Tags** | (Optional) Create custom tags to be applied to Azure resource groups. Azure resource tags are only applied to the resource groups, and are not inherited by the resources in the groups. To create the first tag, enter information in the Name and Value fields. To create an additional tag, click Add and then enter information in the Name and Value fields that appear below the existing ones.
 - You can create a maximum of 10 tags.
 - The tag name is limited to 512 characters, and the tag value is limited to 256 characters.
 - Tag names cannot contain the following characters: `< > % & \ ? /`

 Note You can only add tags when creating the farm. After a farm has been created, you cannot add, edit, or delete Azure resource tags for that farm. |
| **Windows License question**| This toggle and its associated check box indicate:
 - Whether you are eligible to use the Azure Hybrid Benefit (also known as Azure Hybrid Use Benefit or HUB) with the image's Microsoft Windows Server operating system.
 - Whether you want to use the Azure Hybrid Benefit with this farm's server instances.

 The farm's server instances will be created with the HUB setting that is indicated here. By default, this toggle is set to match the HUB property set in the base image you specify in Image. For example, if the base image was created with the HUB setting as **Yes**, this toggle is automatically set to **Yes**. If the base image was created with the HUB setting as **No**, this toggle is automatically set to **No**.

 If the toggle is set to **No** and you are eligible to use the Azure Hybrid Benefit, you can set this toggle to **Yes** to have the farm's server instances use the Hybrid Benefit. If you change this toggle to **Yes**, you must also check the check box that is displayed.

 When this toggle is set to **Yes**, it means both:
 - That you are eligible to use the HUB with the server instances' Microsoft Windows Server operating system
 - That you want to have the farm's server instances use the HUB setting

 As described in the Microsoft Azure documentation, the Azure Hybrid Benefit is designed by Microsoft to save you money when you already have valid Microsoft Windows licenses. The Azure Hybrid Benefit FAQ is located in the Microsoft Azure documentation at https://azure.microsoft.com/en-us/pricing/hybrid-benefit/faq/.

 According to the Microsoft Azure documentation, when you have a Windows Server license with Software Assurance or a Windows Server subscription for the selected server operating system, you can use the Azure Hybrid Benefit for your virtual server instances that have those Windows Server operating systems. |
In the wizard’s Management step, complete the fields and make your selections as appropriate and then click **Next**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling Maintenance</td>
<td>Select the maintenance type, either according to a time cadence (Scheduled) or based on user sessions to this farm's servers (Session). When Scheduled is selected, configure the maintenance cadence, either daily or weekly. If you choose a daily recurrence, specify the hour at which the maintenance will start. If you choose a weekly recurrence, specify both the day of the week and the hour. When Session is selected, specify the number of sessions at which the farm should begin rolling maintenance.</td>
</tr>
</tbody>
</table>

Note Sessions which are logged off within 15 minutes are not counted for the purposes of the rolling maintenance calculations, to prevent restarting or rebuilding the servers based on a count of short running sessions.

In the **Concurrent Quiescing Servers** field, specify the number of servers that can be in the quiescing state at the same time. When a server is in quiescing state, the server continues to work for the user sessions already connected to that server, but it does not accept any new user connections. For a simple example, see **Example of Farm Rolling Maintenance**.

<table>
<thead>
<tr>
<th>Server Action</th>
<th>Select the action that the system should perform on the servers undergoing maintenance.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>■ With Restart, the server VMs are restarted.</td>
</tr>
<tr>
<td></td>
<td>■ With Rebuild, the server VMs are first deleted and then reprovisioned from their RDS desktop image.</td>
</tr>
</tbody>
</table>

If you choose to have the unused servers powered off, they will still consume some storage use in your cloud environment.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Management</td>
<td>These power management settings are related to the thresholds at which the system automatically increases and shrinks the number of powered-on server instances in the farm according to the session usage on the servers. When the usage increases above an upper bound, the system automatically powers up a new server instance. When the usage shrinks below a lower bound, the system drains the server until it is not being used. Then the system shuts down the server VM and deallocates it. The power management selections balance capacity cost with faster availability:</td>
</tr>
<tr>
<td></td>
<td>Select Optimized Performance when you want the system to power on the next server instance sooner rather than later. Even though you are spending more by having the next server ready to go before the user demand requires it, this setting increases the chance that when users log in, the server is already powered up to meet that demand.</td>
</tr>
<tr>
<td></td>
<td>Select Optimized Power, when you want the system to wait the maximum amount of time possible before powering on the next server instance. The occupancy of the servers is higher before the system powers up the next server. Even though this selection minimizes capacity costs by getting higher use of the existing servers, this setting increases the chance that there might be a delay when new users try to log in because they might have to wait during the time system has to power on the server.</td>
</tr>
<tr>
<td></td>
<td>Select Balanced to strike a balance between capacity costs and time-to-availability for users.</td>
</tr>
</tbody>
</table>

The low and high thresholds for each selection are:

Optimized Performance
- Low threshold: 23%
- High threshold: 50%

Optimized Power
- Low threshold: 38%
- High threshold: 80%

Balanced
- Low threshold: 31%
- High threshold: 66%

For an in-depth description about the power management features of Horizon Cloud and descriptions of how they work in various scenarios, see the VMware Horizon Cloud Service™ on Microsoft Azure RDS Desktop and Application Scalability white paper located [here](vmware.com).
Timeout Handling

Configure how you want the system to handle certain types of user sessions.

Note The user sessions governed by these settings are the user logins to the Windows operating system session of the RDS session desktop or application. These sessions are not the user logins in Horizon Client, Horizon HTML Access, or Workspace ONE.

The user's session begins when the user authenticates to the Windows operating system that underlies the session-based desktop or the remote application that is served from this farm's servers.

- **Empty Session Timeout** - For applications farms, select how the system should handle idle user sessions, whether to never time out idle sessions or to time out after a specified number of minutes. Idle timeouts are based on the activity on the endpoint device, not on the session-based desktop or application. If you specify to time out an idle session, select what happens when the timeout period is up: whether to disconnect the session or log the user off. When a session is disconnected, the session is preserved in memory. When a session is logged off, the session is not preserved in memory, and any unsaved documents are lost.

- **Log Off Disconnected Sessions** - Select when the system logs the user off of a disconnected session.

- **Max Session Lifetime** - Specify the maximum number of minutes the system should allow for a single user session.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout Handling</td>
<td>Configure how you want the system to handle certain types of user sessions.</td>
</tr>
<tr>
<td>Note</td>
<td>The user sessions governed by these settings are the user logins to the Windows operating system session of the RDS session desktop or application. These sessions are not the user logins in Horizon Client, Horizon HTML Access, or Workspace ONE.</td>
</tr>
<tr>
<td></td>
<td>The user's session begins when the user authenticates to the Windows operating system that underlies the session-based desktop or the remote application that is served from this farm's servers.</td>
</tr>
<tr>
<td></td>
<td>- Empty Session Timeout - For applications farms, select how the system should handle idle user sessions, whether to never time out idle sessions or to time out after a specified number of minutes. Idle timeouts are based on the activity on the endpoint device, not on the session-based desktop or application. If you specify to time out an idle session, select what happens when the timeout period is up: whether to disconnect the session or log the user off. When a session is disconnected, the session is preserved in memory. When a session is logged off, the session is not preserved in memory, and any unsaved documents are lost.</td>
</tr>
<tr>
<td></td>
<td>- Log Off Disconnected Sessions - Select when the system logs the user off of a disconnected session.</td>
</tr>
<tr>
<td></td>
<td>- Max Session Lifetime - Specify the maximum number of minutes the system should allow for a single user session.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Session Timeout Interval | This time interval is the amount of time the end users’ sessions can be idle before the system forces a log off from the session-based desktops or applications that are served by this farm. This timeout applies to the logged-in session to the underlying Windows operating system. The time you specify here is different from the time out settings that govern the end users’ Horizon Client or HTML Access logged-in session.

 Caution When the system forces the log off in the underlying Windows operating system session, any unsaved data is lost. To prevent an unintended loss of data, set this interval high enough to accommodate the business needs of your end users.

 The default interval is one day (1440 minutes).

 Note If no user activity occurs before the timeout interval is reached, a message indicates that the user will be logged off if they do not click **OK** in the next 30 seconds. If the logout occurs, any unsaved user data, such as documents or files, is lost. |
| Schedule Power Management | To help optimize savings and performance of the farm’s server VMs in Microsoft Azure, you can optionally configure schedules to adjust the minimum number of powered-on servers in this farm on a recurring weekly basis. For example:

 ■ For weekends or night hours when you know that your end users will not be using their desktops or remote applications, you can have a schedule for zero or a low number of powered-on servers.

 ■ For specific days or specific hourly stretches that you can predict will have increased end-user demand, you can have a schedule that increases the minimum number of powered-on servers to be available to meet that demand.

 You can specify up to 10 schedules for the farm. If any schedules have overlapping time periods but specify different minimum server numbers, the system uses the largest value of minimum servers for the overlapping time period.

 a Click the **+** icon to add the first row in the Schedule Power Management section.

 b Type an identifying name for the first schedule.

 c Select the days for the first schedule.

 Note One day is automatically selected by default when the row is added. If you do not want to include the selected day in this schedule, click the drop-down and deselect that selected day.

 d Specify the applicable hours in the specified days. Either:

 ■ Select the **All Day** check box to have this schedule in effect for all hours of the specified days.

 ■ Specify start and end times for the time period in each day.

 Note Encrypted VMs take longer to power on than non-encrypted VMs. If you have set Encrypt Disks to **Yes**, and you want 100% of the encrypted VMs to be ready for end-user connections at a particular time of day, you might have to set an earlier start time here. See **When Scheduling Power Management for Farms and VDI Desktop Assignments That Have Large Numbers of Encrypted VMs**. |
Option | Description
---|---
e | Select the time zone. The time zone closest to your end users' location is recommended. As appropriate for the selected time zone, Daylight Savings Time is automatically applied.

Note If two schedules have the same time zone setting and have overlapping times, a warning is displayed. However, if two schedules have different time zone settings and overlap, the warning is not displayed. As an example, if you have two all-day Saturday schedules and one has **Europe/London** time zone selected and the other has **America/Toronto** selected, the overlap warning does not display.

f | In the **Min Servers** field, type the minimum number of servers you want powered on during the specified time period. During the specified time period, that number of servers at a minimum will be powered on to be available to take end-user requests during that time. The number can range from zero (0) up to the number specified for **Max Servers** for the farm. When this number is zero (0) and there are no active end-user sessions at the schedule's starting time point, the farm's servers are powered off. In that scenario, if an end user then attempts to connect to a desktop or application served by this farm during the scheduled time period, there will be a delay before the desktop or application is in a usable state because the underlying server VM has to power on.

5 | In the wizard's Summary step, review the settings and then click **Submit** to begin creating the farm.

The system starts creating the farm. You can monitor the progress using the Activity page. When the farm's status shows a green dot on the Farms page:

- If you created a desktops farm, you can use it to create a session-based desktop assignment.
- If you created an applications farm, you can use it to load applications from the servers' underlying RDS-enabled operating system into your Horizon Cloud applications catalog.

<table>
<thead>
<tr>
<th>Status</th>
<th>Farm Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Demo2</td>
<td>Remote Desktops</td>
</tr>
<tr>
<td></td>
<td>Demo1</td>
<td>Remote Desktops</td>
</tr>
</tbody>
</table>

Note Creation of an encrypted farm server VM takes approximately twice as long as creating a non-encrypted VM. As a result, the end-to-end time to complete creating a farm that has disk encryption enabled is approximately twice as long as creating that farm without disk encryption enabled.

Also, when an image VM has a data disk, additional time is needed for creating an encrypted farm server VM based on that image VM. The longest times occur for data disks of larger, terabyte sizes.

What to do next

If you created a desktops farm, you would next create a session-based desktop assignment for your end users by following the steps in **Create an RDSH Session Desktop Assignment**.
If you created an applications farm, you would next scan that farm to load applications into Horizon Cloud and then create an applications assignment so your end users can use the remote applications from that farm.

For more information, see Applications in Your Horizon Cloud Inventory, Importing New Applications from an RDSH Farm Using Auto-Scan from Farm, and Create a Remote Application Assignment.

If the image for this farm has applications that require opening special ports, you might need to modify this farm's associated Network Security Group (NSG) in Microsoft Azure. For details about the NSG, see About Network Security Groups and Your Farms.

If you specified NSX Cloud management for this farm, you can use your NSX Cloud environment's Service Manager (CSM) to see that the farm's server VMs are managed in NSX Cloud. Log in to your environment's CSM and navigate to Clouds > Azure > Instances. When that Instances page shows a status of Managed for the server instances, you can start implementing NSX policies on them.

Managing Farms in Horizon Cloud

You can perform several actions on the farms listed on the Administration Console's Farms page.

Actions You Can Perform on the Farms Page

At a page level, you can select the check box next to an existing farm and click one of the buttons to perform its associated action on the farm.

Edit

Clicking this button launches a wizard in which you can change certain settings, such as the farm's power management settings, the minimum and maximum number of servers the farm can have, and so on. The wizard is similar to the New Farm wizard, with read-only fields for those settings that cannot be changed for an existing farm. For detailed descriptions of the fields, see Create a Farm.
Alternatively, instead of using the **Edit** button, you can click the farm's name and update the settings from the farm's summary page.

Note When you edit the farm and reduce the **Sessions per Server** value, any existing sessions in excess of the new lower value are not automatically logged off. You can either manually log off the excess sessions or wait until the system logs off the sessions according to the values for the farm's **Timeout Handling** settings (**Empty Session Timeout**, **Log Off Disconnected Sessions**, **Max Session Lifetime**) and **Session Timeout Interval**. Because those existing sessions in excess of the new lower value are not automatically logged off, the Administration Console might display server and farm utilization values higher than 100% until the excess active sessions are logged off.

For your farms in Microsoft Azure

- When you change the **Sessions per Server** value, the system might power on or power off server VMs to meet the new load on the farm based on the updated value.

- If the model VM you selected to create the farm has become unavailable, you will not be able to expand the farm. The farm will remain fully functional except for this limitation. To see if a VM type is available, navigate to the VM Types & Sizes page (**Settings > VM Types & Sizes**). For more information about model VMs, see **Managing VM Types and Sizes for Farms and Assignments**.

Take Offline	Clicking this button opens a window in which you can select to take a farm offline for maintenance.
Bring Online	Clicking this button opens a window in which you can select to bring an offline farm back online.
Delete	You use this button to delete the selected farm. However, before you can delete a farm using this button, you must delete any assignments that are using the farm. You can view the assignments that are using the farm by navigating to the Assignments page and sorting on its **Farms** column.

Note Deleting the farm deletes all the farm's underlying server VMs. When a farm is deleted, all of that farm's logged activity is removed from the Activity page.

Actions You Can Perform Within a Farm’s Detailed Pages

From the Farms page, you can click a farm's name to see its detailed pages. Initially the Summary page is displayed.
The following screenshot is an illustration of a farm's Summary page for a farm in a pod in Microsoft Azure.

Summary page

The Summary page displays the farm's current settings. For each page section, you can click **Edit** to change those settings that the system allows to be updated for an existing farm. Some settings cannot be changed on a farm after it is created, such as its pod.

Servers page

The Servers page displays the existing server instances in the farm. The actions you can perform on a selected server are power on or off (depending on the server's current state), delete, and reset the agent pairing.
Farms > salesfarm

<table>
<thead>
<tr>
<th>Status</th>
<th>Server Name</th>
<th>Agent Status</th>
<th>Sessions</th>
<th>Session Alloc.</th>
<th>DNS Name</th>
<th>OS Name</th>
<th>Windows Server...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>salesfarm000</td>
<td>Active (19.3.0)</td>
<td>0</td>
<td>Available</td>
<td>salesfarm000</td>
<td>Windows Server...</td>
<td></td>
</tr>
</tbody>
</table>
Sessions page

The Sessions page displays the farm's existing user sessions. When you select a session, you can disconnect it or log the user off the session. When you click **Disconnect**, you force the user's session to be disconnected. No message is sent to the user that the session is disconnecting. When you click **Log Off**, a message is displayed to the user with a grace period in which the user can save documents before the session ends.

System Activity page

The System Activity page displays activity in the farm due to system actions, such as expanding the farm.

You can cancel assignment-related tasks before they complete by selecting the task in the list and clicking **Cancel Tasks**.

- Before attempting to select a task for cancellation, refresh the view to update the status for the tasks displayed.
- If a task is currently in a state where the system allows you to cancel it, you can select the check box corresponding to that cancellable task. If you select all of the listed tasks by selecting the topmost check box, only those tasks that are currently cancellable are selected.

The table below shows tasks that you can cancel.
<table>
<thead>
<tr>
<th>Task</th>
<th>Cancel When Task is in Queued State</th>
<th>Cancel When Task is in Running State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Expansion</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>Note When the system has</td>
<td></td>
</tr>
<tr>
<td></td>
<td>automatically created an</td>
<td></td>
</tr>
<tr>
<td></td>
<td>expansion task for an RDSH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>farm, the farm must be offline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>before you can cancel that task.</td>
<td></td>
</tr>
<tr>
<td>Assignment Expansion</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>Note When the system has</td>
<td></td>
</tr>
<tr>
<td></td>
<td>automatically created an</td>
<td></td>
</tr>
<tr>
<td></td>
<td>expansion task for a VDI desktop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>assignment, the assignment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>must be offline before you can</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cancel that task.</td>
<td></td>
</tr>
<tr>
<td>Convert VM to Image</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>Note If you cancel this task,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and wish to retry it, first confirm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that the VM is in a state where it</td>
<td></td>
</tr>
<tr>
<td></td>
<td>can be converted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you are not sure, power off and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>then power on the VM.</td>
<td></td>
</tr>
</tbody>
</table>

User Activity page

The User Activity page displays activity in the farm due to user actions, such as logging on and logging off sessions provided by the farm.

Manage Servers in a Farm

You can perform certain actions on the individual servers in a farm.

Procedure

1. Click **Inventory > Farms**.

The Farms page displays.

2. Click the name of a farm on the list.

The farm details page displays.

3. Click **Servers** at the top of the page.

The Servers tab displays, showing a list of servers for the farm. You can filter, refresh, and export the list using the controls to the top right of the page.

You can perform the following actions by selecting one or more servers and clicking one of the buttons at the top of the page.

Note Server status must be green to perform these actions.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Off</td>
<td>Shuts down the selected servers.</td>
</tr>
<tr>
<td></td>
<td>- You can select more than one server at a time.</td>
</tr>
<tr>
<td></td>
<td>- You can only shut down VMs that do not have active user sessions.</td>
</tr>
<tr>
<td>Power On</td>
<td>Starts up the selected powered-off servers.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes the selected server. To reduce the size of the farm when the server is deleted, select Yes under ‘Reduce farm size’ in the dialog.</td>
</tr>
<tr>
<td>Reset Agent Pairing</td>
<td>Repairs the agent pairing state when a pairing failure has occurred.</td>
</tr>
<tr>
<td></td>
<td>- You can select multiple servers. The action will only be applied to those selected servers that are currently powered on.</td>
</tr>
<tr>
<td></td>
<td>- You can view progress on the Monitor > Activity page or on the System Activity tab of the farm's detail page.</td>
</tr>
</tbody>
</table>

About Network Security Groups and Your Farms

For every Horizon Cloud pod deployed into your Microsoft Azure cloud, a network security group (NSG) is also created in the pod's resource group to act as a template. You can use this template to ensure you have opened those additional ports that you might need for the remote applications or RDS desktops provided by your farms.

In Microsoft Azure, a network security group (NSG) governs the network traffic to the resources connected to Azure Virtual Networks (VNet). An NSG defines the security rules that allow or deny that network traffic. For more detailed information about how NSGs filter network traffic, see the Microsoft Azure documentation topic Filter network traffic with network security groups.

When a Horizon Cloud pod is deployed into Microsoft Azure, an NSG named `vmm-hcs-podID-nsg-template` is created in the pod's same resource group named `vmm-hcs-podID`, where `podID` is the pod's ID. You can obtain the pod's ID from the pod's details page, navigating from the Capacity page in the Horizon Cloud Administration Console.

By default, the pod's template NSG is configured with no outbound security rules and with the following inbound security rules. These default inbound security rules support end-user clients' access to the RDS session desktops and remote applications for Blast and PCOIP and USB redirection.

Table 5-2. Inbound Security Rules in the Pod's Template NSG

<table>
<thead>
<tr>
<th>Priority</th>
<th>Name</th>
<th>Port</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>AllowBlastUdpIn</td>
<td>22443</td>
<td>UDP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1100</td>
<td>AllowBlastTcpIn</td>
<td>22443</td>
<td>TCP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1200</td>
<td>AllowPcoipTcpIn</td>
<td>4172</td>
<td>TCP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1300</td>
<td>AllowPcoipUdpIn</td>
<td>4172</td>
<td>UDP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1400</td>
<td>AllowTcpSideChannelIn</td>
<td>9427</td>
<td>TCP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1500</td>
<td>AllowUsbRedirectionIn</td>
<td>32111</td>
<td>TCP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
</tbody>
</table>
In addition to this template NSG, when a farm is created, the system creates an NSG for that farm by copying the template NSG. Every farm has its own NSG that is a copy from the template NSG. A farm's NSG is assigned to the NICs of that farm's server virtual machines (VMs). By default, every farm uses the same default security rules as configured in the pod's template NSG.

You can modify both the template NSG and the per-farm NSGs. For example, if you have an application in a farm that you know needs an additional port opened for that application, you would modify that farm's NSG to allow network traffic on that port. If you are planning to create multiple farms that need the same port opened, a simple way to support that scenario is to edit the template NSG prior to creating those farms.

Important When planning to modify the base template, make a copy before modifying it. The copy can be a backup in case you need to revert back to the original default settings.

Example of Farm Rolling Maintenance

This example describes how Horizon Cloud provisions a new farm's server virtual machines (VMs) and manages them for rolling maintenance.

In the New Farm wizard, this farm is sized as:

- **Min Servers** = 1
- **Max Servers** = 3
- **Sessions per Server** = 20

In the creation workflow:

1. All three server VMs are fully configured in Microsoft Azure: powered on and joined to the domain.
2. Then servers 2 and 3 are powered down to save the cost of running them.

Server 1 remains powered up and ready to provide user sessions.

As users log on, they are given sessions on server 1. When the occupancy of the available servers, server 1 here, reaches the power management threshold, then another server is powered on (server 2). When two servers are powered on, new user sessions are placed on the least loaded server so that sessions are load balanced between the two powered-on servers. When the number of user sessions reaches the next occupancy threshold as calculated across both powered-on servers, the next server powers on (server 3).

As users log off of their sessions:

1. When the occupancy drops below the low threshold, then one of the servers is marked for quiescing. Typically, the system marks the least loaded server for quiescing.
2. Once marked, existing sessions stay on that server, but no new user sessions are accepted for that server. At that point, any new sessions are only placed on the running servers.
3. When all of the users with existing sessions on the marked server have logged off their sessions, Horizon Cloud powers off that server.

The above steps repeat until the number of running servers reaches the **Min Servers** value.
Rolling Maintenance

A best practice for virtual machine maintenance is to restart the VMs from time to time, to clear out cached resources or any memory leaks from third-party applications in the VM. The Horizon Cloud rolling maintenance feature provides for restoring normal health across the farm in an automated way. The typical action is to restart the VMs. Horizon Cloud offers an additional option to rebuild the server VMs, by deleting the VMs and reprovisioning them based on the latest published image used for that farm. The rebuild option provides a convenient way to ripple image updates across the farm's servers automatically and regularly. The rebuild option avoids needing manual intervention as a part of routine operations.

At any one time, the system only quiesces the number of servers configured for the farm’s Concurrent Quiescing Servers value. As set by the Maintenance Type configured for the farm’s rolling maintenance, the system goes through each of the servers and performs the specified maintenance action. The action is not performed on servers that have active user sessions nor on more than the number set in Concurrent Quiescing Servers.

Applications in Your Horizon Cloud Inventory

The Applications page shows all of the RDSH-backed applications available for assignments.

Click the Inventory icon and select Applications to access the Applications page.

The system categorizes the applications in your Horizon Cloud inventory as remote or custom depending on how the application is added into the inventory.

- Remote applications are those imported from the RDSH farms of type Remote Applications (as shown on the Farms page). From the Applications page, use the New button and the Auto-Scan from Farm choice to import these applications. When they are imported into the inventory, you can assign these remote applications to your users. See Importing New Applications from an RDSH Farm Using Auto-Scan from Farm.

- Custom applications are applications in the RDSH images that you manually add into the inventory by using the New button on the Applications page and the Manually from Farm choice. Even though the best practice is to use the automated way, the manual method can be useful for some unique situations, such as for adding applications that are invoked from the command prompt or which cannot be auto-detected in a Windows operating system.

You can take the following actions on the Applications page.

<table>
<thead>
<tr>
<th>Action button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Add applications into the inventory from your RDSH images.</td>
</tr>
<tr>
<td>Edit</td>
<td>Select an application to make changes, like giving it a friendly name so you can easily identify it within the list on the Applications page.</td>
</tr>
<tr>
<td>Delete</td>
<td>Delete an application.</td>
</tr>
<tr>
<td>Rename</td>
<td>Even though you see the Rename action in the page, this action is not used for RDSH-backed applications in a Microsoft Azure environment.</td>
</tr>
</tbody>
</table>
Importing New Applications from an RDSH Farm Using Auto-Scan from Farm

You make remote applications available for user assignments by importing them from an RDSH applications farm.

If you have more than one applications farm in your environment, repeat these steps to import the applications you want from each of those farms.

Prerequisites

Verify that you have at least one applications farm in your inventory by navigating to **Inventory > Farms**.

Procedure

1. On the Applications page, click **New**.

2. In the start screen, click **Auto-Scan from Farm**.

 The wizard opens to its first step.

3. Select the location, pod, and applications farm and click **Next** to proceed to the next step.

 When you click **Next**, the system scans the selected farm for applications and then displays them for you to select.

4. Select the applications that you want to add to your application catalog.

 This wizard step displays the applications that the system's auto-scan process found in the RDS-enabled Windows server operating system used for the farm's RDS servers.

5. Click **Next** to proceed to the next wizard step.

6. (Optional) Customize some of the configurable options for the applications you selected, and then click **Next** to proceed to the next wizard step.

7. Review the summary and click **Submit**.

 The system adds the selected applications to the application catalog in your Horizon Cloud inventory.
What to do next
Repeat the steps to import the applications you want from your other farms.

Manually Adding Custom Applications from an RDSH Farm
Some applications cannot be automatically detected by scanning the farm. You can manually add those applications to your Horizon Cloud applications catalog.

If you have more than one such application, repeat these steps to add the applications you want.

Prerequisites
Verify that you have at least one applications farm in your inventory by navigating to Inventory > Farms.

Procedure
1. On the Applications page, click New.

2. In the start screen, click Manually from Farm.

3. In the Properties section, specify the following values.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Unique name for the application.</td>
</tr>
<tr>
<td>Display Name</td>
<td>Name for the application that you want displayed to end users when they see the application in their clients, such as in Horizon Client or Workspace ONE.</td>
</tr>
<tr>
<td>Location</td>
<td>Select a location to filter the set of pods displayed in the Pod drop-down list.</td>
</tr>
<tr>
<td>Pod</td>
<td>Select a pod to filter the set of farms displayed in the Farm list.</td>
</tr>
<tr>
<td>Farm</td>
<td>Select the farm that has the RDSH server VM from which you want to add the application.</td>
</tr>
<tr>
<td>Application Path</td>
<td>Specify the path to the application in the RDSH server VM's operating system.</td>
</tr>
<tr>
<td>Icon File</td>
<td>Optional: Upload a PNG file (32 x 32 pixels) to use as the application's icon.</td>
</tr>
</tbody>
</table>
4 In the Advanced Properties section, specify these optional settings.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application available on Farm</td>
<td>Select Yes to have the system validate the application path. If the application is not located on the farm at that path, select No so that the system does not attempt to look for the application. For example, if an application is stored in the local directory in the server VM, you would select No so that the system does not try to find the application there.</td>
</tr>
<tr>
<td>Version</td>
<td>Optional: Version number of the application</td>
</tr>
<tr>
<td>Publisher</td>
<td>Optional: Publisher of the application</td>
</tr>
<tr>
<td>Start Folder</td>
<td>Specify the location in the RDS server VM's Windows operating system that you want the remote application to use as its start folder.</td>
</tr>
<tr>
<td></td>
<td>Note If you specify a LNK file in the Application Path that specifies its own start directory, the system does not use the location specified here.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Specify any command line parameters you want used when the remote application is launched.</td>
</tr>
</tbody>
</table>

5 Click **Submit**.

The system adds an entry for the application to the Applications page.

What to do next

Repeat the steps for any applications you want from your other farms.

Create a Remote Application Assignment

You create a remote applications assignment from the Assignments page.

Prerequisites

Verify that the remote applications are available in your inventory. The Applications page lists the available remote applications.

Procedure

1 In the Administration Console, click **Assign**.

2 Click **New**.
3. From the New Assignment start screen, click the Applications icon.

4. On the wizard's Definition step, select the location and pod, provide a name for this assignment, and then click Next.

5. On the Applications step, select the remote applications and click Next.

 Note The displayed applications are all of the ones that were imported into your Horizon Cloud applications catalog from the farms in the same Horizon Cloud pod. You can have applications from different farms in the same pod within the assignment.

6. On the Users step, search for and select the users and groups for this assignment and click Next.

7. On the Summary step, review the information and then click Submit.

The system creates the assignment and lists it on the Assignments page.
Creating Desktop Assignments in Horizon Cloud

You create desktop assignments in the Administration Console to provision virtual desktops to your end users.

Your Horizon Cloud environment must have at least one image VM in the Published state that the system will use as the operating system on the virtual desktops. In desktop assignments, the published image is used as the Microsoft Windows operating system in the desktops that get assigned to your end users by the desktop assignment.

A Horizon Cloud pod in a Microsoft Azure environment provides for these types of desktop assignments:

- VDI desktop assignments. For steps on creating VDI desktop assignments, see Create a Floating VDI Desktop Assignment and Create a Dedicated VDI Desktop Assignment.
- RDSH session desktop assignments. Before creating an RDSH session desktop assignment, you must have at least one desktops farm that was created based on the published image. See Create a Farm.

Types of Desktop Assignments

In the Horizon Cloud Administration Console, to provide virtual desktops to your end users, you define what are known as desktop assignments. Each desktop assignment associates a published image with a set of users.

For a pod deployed in Microsoft Azure, you can create:

- Dedicated and floating VDI desktop assignments to provide VDI desktops to your end users.
- Session desktop assignments.

Note Even though a VDI desktop can have multiple users assigned to it, the VDI desktop can be in use by only one user at a time.

Session desktop assignment

In a session desktop assignment, a Remote Desktop Services (RDS) desktop experience is shared across multiple users. These desktops are session-based connections to the RDSH server instances running in a pod's RDSH farms.

Dedicated VDI desktop assignment

In a dedicated VDI desktop assignment, each virtual desktop gets mapped to a specific user. Each mapped user returns to the same desktop at every login. When a particular dedicated VDI desktop is mapped to a specific user, that desktop is said to be assigned to that user. A specific dedicated VDI desktop gets mapped to a particular user in one of two ways:

- An administrator explicitly assigns that specific desktop to that particular user, using the Assign action.
- The user is entitled to the assignment (in the Users tab) and makes an initial launch of a desktop from the assignment. At that point, that user
has claimed that dedicated VDI desktop from the set of all dedicated VDI desktops defined by that assignment. When the user has claimed a dedicated VDI desktop in this way, the system maps that particular desktop to that specific user and that dedicated VDI desktop gets the Assigned status. That particular dedicated VDI desktop remains in Assigned status until either an administrator explicitly unassigns the desktop (using the Unassign action) or that user's Active Directory account is removed from the assignment's set of entitled users.

Dedicated assignments require a one-to-one desktop-to-user relationship and should be sized based on the total user population. For example, you need an assignment of one hundred desktops for a group of one hundred users. The primary use for such dedicated desktop assignments is to ensure that the host name of the desktop virtual machine for each user remains the same between sessions. Certain software packages might require this use for licensing.

Floating VDI desktop assignment

In a floating VDI desktop assignment, a user receives a different virtual machine with a different machine name with each login. With floating desktop assignments, you can create desktops that shifts of users can use and that should be sized based on the maximum number of concurrent users. For example, three hundred users can use an assignment of one hundred desktops if they work in shifts of one hundred users at a time. With floating desktop assignments, the user might see different host names for each desktop session.

When deciding between dedicated and floating VDI desktop assignments, the floating VDI desktop assignments are a best practice because they provide more flexible pool management capabilities than dedicated VDI desktop assignments and they avoid dedicating virtual machine resources for each user. As a result, floating VDI desktop assignments typically cost less than dedicated VDI desktop assignments.

Note Neither session-based desktops or floating VDI desktops provide persistence of user data, settings or profiles. When a user logs off from a floating VDI desktop, that floating VDI desktop is reset to the same state it was in before that user logged in. You can provide persistence of user data, settings, and profiles by setting up VMware Dynamic Environment Manager and configuring it for your environment. Images created using the automated Import Desktop wizard have the VMware Dynamic Environment Manager agent installed by default. For information on configuring persistence of those items, see these resources:

- The Dynamic Environment Manager product documentation.
Create an RDSH Session Desktop Assignment

You create session desktop assignments using the Assignments page.

For general information about desktop assignments, see Types of Desktop Assignments.

Prerequisites

Verify you have the following items:

- The Farms page lists at least one farm of remote desktops type. Only farms configured to deliver remote desktops can be used for a session desktop assignment.
- The farm you want to use is in the pod from which you want to deliver the session desktops.
- The farm is not already used in an assignment. A farm configured to deliver remote desktops cannot be used in more than one session desktop assignment. To verify whether the farm you want to use is already used in a session desktop assignment, look in the Assignment page's Farms column and see if the farm is listed. If it is listed, then it is already being used in a session desktop assignment and you will have to create a new farm.

Procedure

1. Start the New Assignment workflow by clicking Assign and clicking New.
2. In the New Assignment start screen, click the Desktops icon.

The New Desktop Assignment window opens to the first wizard step.

3. Complete the selections on the Definition step and then click Next.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Select the location of the pod from which you want the session desktops to be provided.</td>
</tr>
<tr>
<td>Pod</td>
<td>Select the pod.</td>
</tr>
</tbody>
</table>
Create a Floating VDI Desktop Assignment

You create floating VDI desktop assignments using the Assignments page. For general information about desktop assignments, see Types of Desktop Assignments.

Use these steps to assign a floating VDI desktop to your end users. To assign another type of desktop, see the subtopics listed in Creating Desktop Assignments in Horizon Cloud.

Prerequisites

- Verify that you have at least one published image, with a Microsoft Windows client operating system. You cannot create a VDI desktop assignment without such an image. To verify, navigate to the Images page and make sure it lists an appropriate image. For steps on creating a published image, see Convert a Configured Master Virtual Machine to an Assignable Image.

- Verify that you have valid licensing for the image’s Microsoft Windows 10 operating system. At this time, the Microsoft Azure documentation indicates that to legally run Windows 10 in Microsoft Azure, you must have licensing for Microsoft Windows 10, typically by purchasing an E3 or E5 license. Please verify licensing requirements and restrictions with your Microsoft Licensing distributor.

- Decide whether you want the desktops to have encrypted disks. You must specify disk encryption when creating the VDI desktop assignment. You cannot later add disk encryption after the assignment is created. For a description of the disk capability, see Using Microsoft Azure Disk Encryption with Your Farms and VDI Desktops.

Important This release does not support having disk encryption for floating VDI assignments that use image VMs with attached data disks. Make sure the image you plan to use in the assignment does not have data disks.
Decide whether you want the ability to use NSX Cloud features with the desktop VMs. You must enable NSX Cloud management when creating the VDI desktop assignment. You cannot later enable the assignment for NSX Cloud management after the assignment is created. The published image you choose for this assignment must have the NSX agent installed in it. You must have installed the NSX agent prior to publishing the image. See VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure and its subtopics.

Important To use both NSX Cloud features and disk encryption, ensure the image’s installed NSX agent is the latest agent version. Using disk encryption with previous versions of the NSX agent is not supported.

Procedure

1. Start the New Assignment workflow by clicking **Assign** and clicking **New**.
2. In the New Assignment start screen, click the Desktops icon.

The New Desktop Assignment window opens to the first wizard step.

3. Select **Floating**.
4. Complete the selections on the Definition step and then click **Next**.

Note You might have to use the scroll bar to see everything.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Select the location of the pod from which you want the desktops to be provided.</td>
</tr>
<tr>
<td>Pod</td>
<td>Select the pod.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Filter Models</td>
<td>Set one or more filters to control the models available in the Models drop-down menu. You can filter models by type, series, number of CPUs, memory, and tags. For more information about selecting models, see Managing VM Types and Sizes for Farms and Assignments, which describes the options on the VM Types & Sizes page (Settings > VM Types & Sizes).</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Filter Models</td>
<td>Tag equals VMware Recomme</td>
</tr>
</tbody>
</table>
To set a filter, you first select the criterion in the drop-down menu and then enter the desired value(s). By default, there is a single filter with the criterion 'Tag' the value 'VMware Recommended'. You can edit this first filter and add more filters connected by And and Or operators.

The following are the criteria you can use for filters and descriptions of the values you can enter for each.

- **Type**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To set a filter, you first select the criterion in the drop-down menu and then enter the desired value(s). By default, there is a single filter with the criterion 'Tag' the value 'VMware Recommended'. You can edit this first filter and add more filters connected by And and Or operators. The following are the criteria you can use for filters and descriptions of the values you can enter for each. Type</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

![Image of Horizon Cloud Administration Guide with a table and diagram]
When you select this option, there is only value available in the second drop-down menu:

- **GPU and High Performance - Models with GPU.**

 Note If you choose a GPU model (for example, Standard_NV6), then the list of images shown will contain only images that were created with the Include GPU flag selected, so you need at least one such image in order to create a farm or pool using a GPU model. If you choose a non-GPU model, then the list of images shown will contain only images that were created without the Include GPU flag.

- **Series**
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>

![Diagram](image.png)
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When you select this option, you can then select a series of models from a second drop-down menu. You can also filter this list by entering text in the Filter text box at the top of the list.</td>
</tr>
<tr>
<td>CPUs</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

Filter Models

<table>
<thead>
<tr>
<th>CPUs from</th>
<th>CPUs to</th>
<th>CPUs Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When you select this option, you can then enter a CPU range.</td>
<td></td>
</tr>
</tbody>
</table>

Important For production environments, to avoid unexpected end-user connection issues, use VM models that have a minimum of two (2) CPUs.

- Memory
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>

Filter Models: Memory from [GB] to [GB] Add
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When you select this option, you can then enter a range of memory in GBs.</td>
</tr>
<tr>
<td></td>
<td>- Tag</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Filter Models:</td>
<td>Tag equals Development</td>
</tr>
<tr>
<td>Model:</td>
<td>Basic_A0 (1 CPU, 0G)</td>
</tr>
<tr>
<td>Image:</td>
<td>Development</td>
</tr>
<tr>
<td></td>
<td>Sales</td>
</tr>
<tr>
<td></td>
<td>Add</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| | When you select this option, you can then select a tag from a second drop-down menu. You can also filter this list by entering text in the Filter text box at the top of the list. Tags available in the drop-down menu are both hard-coded system tags and custom tags that you created on the VM Types & Sizes page (Settings > VM Types & Sizes). You can set additional filters by performing the following steps for each filter:
| | a. Click the Add link.
| | b. Select either And or Or as the operator between the previous filter and the new one you are creating.
| | c. Set the new filter by selecting a criterion and entering value(s). |
| Model | Select the model to use for the desktop instances. This selection defines the set of underlying resources that will be used when the desktop instances are created, in terms of capacity (compute, storage, and so on). The available choices map to standard VM sizes that are available in Microsoft Azure.
| | **Important** For production environments, select a VM model that has a minimum of two (2) CPUs. VMware scale testing has shown that using 2 CPUs or more avoids unexpected end-user connection issues. Even though the system does not prevent you from choosing a VM model with a single CPU, you should use such models for tests or proof-of-concepts only. |
| Disk Type | Select a supported disk type from the available options. Disk type options are based on the model selected, and your Azure subscription and region. The following are some commonly available disk types.
| | - Standard HDD - Default disk type.
| | - Standard SSD
| | - Premium SSD - Option only appears if you selected a model that supports premium IO.
| | You can edit your selection after creating the assignment if desired.
| Disk Size | Enter the OS disk size in GB for the VMs in this assignment.
| | - The default value is the base image OS disk size (typically 128 GB).
| | - If you edit the size, the value you enter must be greater than the base image OS disk size, and cannot exceed the largest size (typically 1024 GB) supported by the selected model.
| | - You can also edit this value later if desired.
| | **Important** If you edit the disk size, there are additional actions you must take to ensure that the VMs are created as expected. For more information, see Required Administrator Actions When the Disk Size for a Farm or VDI Desktop Assignment is Increased. |
| Domain | Select the Active Directory domain registered with your environment.
<p>| Join Domain | Select Yes so that the desktop instances are automatically joined the domain when they are created. |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Important</th>
</tr>
</thead>
</table>
| Encrypt Disks | Select Yes so that the desktop instances have encrypted disks. | - If you want disk encryption, you must make this selection when creating the VDI desktop assignment. You cannot later add disk encryption after the assignment is created.
- To use both NSX Cloud features and disk encryption, the image's installed NSX agent must be the latest agent version. Using disk encryption with previous versions of the NSX agent is not supported. |
| NSX Cloud Managed | Select Yes so that you can use features of NSX Cloud with the assignment's desktop instances. For a description of using NSX Cloud features with your desktops in Microsoft Azure, see VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure and its subtopics. | - If you want to use NSX Cloud with the desktop instances, you must make this selection when creating the VDI desktop assignment. You cannot later enable NSX Cloud management after the assignment is created.
- For the NSX Cloud management features to work with the assignment's desktop instances, the image that you select for this assignment must have the NSX agent already installed on it. When you set this toggle to Yes, ensure that the image you select in Image has the NSX agent installed on it. The system does not verify if the selected image has the NSX agent when it creates the VDI desktop assignment.
- To use both NSX Cloud features and disk encryption, the image's installed NSX agent must be the latest agent version. Using disk encryption with previous versions of the NSX agent is not supported. |
| Image | Select an image that you want to assign to the end users. | - If you set the Encrypt Disks to Yes, ensure that the image you select here does not have data disks attached to it. Use of disk encryption of VMs with data disks for floating VDI assignments is not supported in this release.
- If you set the NSX Cloud Managed toggle to Yes, ensure that the image you select here has the NSX agent installed on it. For the NSX Cloud management features to work with the assignment's desktop instances, the image that you select for this assignment must have the NSX agent already installed on it. The system does not verify if the selected image has the NSX agent when it creates the VDI desktop assignment. |
<p>| Assignment Name | Type a friendly name for this floating VDI desktop assignment. Entitled end users might see a form of this assignment name in the client they use to access their desktops. The name must contain only letters, hyphens, and numbers. Spaces are not allowed. The name cannot start with a non-alphabetic character. |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM Names</td>
<td>Base name for the desktop VMs created in this assignment. The VM names will have numbers appended to this base name, for example, win10-1, win10-2, etc. The name must start with a letter and can contain only letters, dashes, and numbers. The end users see this name when they go to access a desktop from this assignment. For example, when an end user launches Horizon Client to use one of the desktops, this name is the one displayed in Horizon Client.</td>
</tr>
<tr>
<td>Default Protocol</td>
<td>Select a default display protocol you want the end-user sessions to use. Circumstances might occur that cause another protocol to be used instead of the default protocol. For example, the client device does not support the default protocol or the end user overrides the default protocol selection.</td>
</tr>
<tr>
<td>Preferred Client Type</td>
<td>Select the preferred client type used when end users launch their desktops from the Workspace™ ONE™ platform's portal, either a Horizon Client or a browser for HTML Access.</td>
</tr>
<tr>
<td>Min Desktops</td>
<td>Specify the minimum number and maximum number of desktops you want in this floating VDI desktop assignment. When the assignment is first created, the system deploys the number of desktops specified in the Max Desktops field, and then powers off the desktops except the number specified for Min Desktops. Only the minimum number of desktop instances is initially powered on. As end-user demand increases, the system powers on additional desktops, up to the Max Desktops number. Then as end-user demand shrinks, the system powers off the desktops, until it reaches the Min Desktops number. A desktop must be free of a logged-in user session before the system will power it off. When you specify zero (0) for Min Desktops, it indicates that you want the system to power off all the assignment's desktops until there is end-user demand for a desktop.</td>
</tr>
<tr>
<td>Max Desktops</td>
<td></td>
</tr>
<tr>
<td>Power Off Protect Time</td>
<td>Specify the number of minutes that you want the system to wait before automatically powering off a powered-on desktop. You can enter a value from 1 to 60. The default is 30 minutes. This protect time is used primarily for the situations where the system will automatically power off a desktop VM. You can use this Power Off Protect Time setting to tell the system to wait the specified time before starting to power off the VM to meet the threshold setting in the Power Management field. The system waits the time specified for the Power Off Protect Time before powering off the VM to match the configured schedule. The default wait time is 30 minutes.</td>
</tr>
</tbody>
</table>
Optionally configure the advanced properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer OU</td>
<td>Active Directory Organizational Unit where the desktop VMs are to be located. Enter the Active Directory Organizational Unit using the distinguished name, for example, OU=RootOrgName,DC=DomainComponent,DC=eng, and so on. The OU and each path in a nested OU can contain any combination of letters, numbers, special characters, and spaces, and can have a maximum of 64 characters. If you need to use nested Organization Units, see Considerations For Using Nested Active Directory Domain Organizational Units. Note If the Computer OU is set to CN=Computers, the system uses the default Active Directory Computers container for VMs. Your Active Directory might have this default container redirected to an organizational unit class container.</td>
</tr>
<tr>
<td>Run Once Script</td>
<td>(Optional) Location of a script that you want run in the assignment's desktop VMs after the VM creation process. Note The script must end with a reboot step to reboot the VM. Otherwise, the end user will not be able to log in the desktop until doing a manual restart. A sample reboot line as a Windows command is: shutdown /r /t 0 The reason why the script must end with a reboot step is due to the sequence when the script is run after the sysprep process. When the system creates a desktop VM for the assignment, the VM boots up and completes the sysprep process in the Windows operating system. When the sysprep process completes, the agent in the desktop VM reaches out to do the domain join. At the same time, the agent gets the script path you specify here. The agent sets the Windows RunOnce path (System run once) and then restarts the desktop VM. On the next restart, the system logs in to the Windows operating system using the local administrator account and runs the script. It is only after another subsequent restart, specified in the script, that the desktop VM is ready for a user to log in.</td>
</tr>
<tr>
<td>Session Timeout Interval</td>
<td>This time interval is the amount of time the end users' sessions can be idle before the system forces a log off from the desktops. This time out applies to the logged-in session to the underlying Windows operating system. The time you specify here is different from the time out settings that govern the end users' Horizon Client or HTML Access logged-in session. Caution When the system forces the log off in the underlying Windows operating system session, any unsaved data is lost. To prevent an unintended loss of data, set this interval high enough to accommodate the business needs of your end users. The default interval is one week (10080 minutes). Note If no user activity occurs before the timeout interval is reached, a message appears in the desktop that indicates that the user will be logged off if they do not click OK in the next 30 seconds. If the logout occurs, any unsaved user data, such as documents or files, is lost.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Azure Resource Tags</td>
<td>(Optional) Create custom tags to be applied to Azure resource groups. Azure resource tags are only applied to the resource groups, and are not inherited by the resources in the groups.</td>
</tr>
<tr>
<td></td>
<td>To create the first tag, enter information in the Name and Value fields. To create an additional tag, click Add and then enter information in the Name and Value fields that appear below the existing ones.</td>
</tr>
<tr>
<td></td>
<td>- You can create a maximum of 10 tags.</td>
</tr>
<tr>
<td></td>
<td>- The tag name is limited to 512 characters, and the tag value is limited to 256 characters.</td>
</tr>
<tr>
<td></td>
<td>- Tag names cannot contain the following characters:</td>
</tr>
<tr>
<td></td>
<td><code>< > % & \ ? /</code></td>
</tr>
<tr>
<td>Note</td>
<td>You can only add tags when creating the assignment. After an assignment has been created, you cannot add, edit, or delete Azure resource tags for that assignment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Windows license question</th>
<th>For a Microsoft Windows 10 client operating system, Horizon Cloud sets the VDI assignment's desktop instances to use the Windows Client license type by default and you cannot change this setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>You cannot change this setting because by design, Horizon Cloud sets the same license type on the VM that would be set if you manually used the Microsoft Azure portal and created the VM from the Azure Marketplace with the selected Microsoft Windows 10 operating system. At this time, the Microsoft Azure documentation indicates that to legally run Windows 10 in Microsoft Azure, you must have licensing for Microsoft Windows 10, typically by purchasing an E3 or E5 license. Please verify licensing requirements and restrictions with your Microsoft Licensing distributor.</td>
</tr>
</tbody>
</table>

5 In the wizard's Management step, complete the fields and make your selections as appropriate and then click **Next**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Updates</td>
<td>The Concurrent Quiescing Desktops setting controls the number of desktops in this floating VDI desktop assignment that can be concurrently quiesced during the time the assignment's image is being updated. For example, when you later edit this floating VDI desktop assignment to use another image, the system will power off at the same time this number of desktops. Then the system performs the required actions to provision the new image to that set of powered-off desktops. Typically this number is a subset of the full maximum number of desktops defined for this assignment. However, you can specify a number here equal to the Max Desktops setting. In that scenario, you would be allowing the system to power off all of the assignment's desktops at the same time when you edit the assignment to use a new image.</td>
</tr>
</tbody>
</table>
| **Power Management** | These power management settings are related to the thresholds at which the system automatically increases and shrinks the number of powered-on desktop instances in the floating VDI desktop assignment according to usage. When the usage increases above an upper bound, the system automatically powers up a new desktop instance. When the usage shrinks below a lower bound, the system shuts down deallocates desktop VMs as end users log off from the desktops. The power management selections balance capacity cost with faster availability:
 - Select **Optimized Performance** when you want the system to power on the next desktop instance sooner rather than later. Even though you are spending more by having the next desktop ready to go before the user demand requires it, this setting increases the chance that when users try to launch a desktop from the assignment, the desktop is already powered up to meet that demand.
 - Select **Optimized Power**, when you want the system to wait as long as possible before powering on the next desktop instance. The occupancy of the assignment's set of desktops is higher before the system powers up the next desktop instance. Even though this selection minimizes capacity costs by having more utilization of the existing desktops, this setting increases the chance that there might be a delay when new users try to log in because they might have to wait during the time system has to power on desktops.
 - Select **Balanced** to strike a balance between capacity costs and time-to-availability for users.

The low and high thresholds for each selection are:
 - **Optimized Performance**
 - Low threshold: 23%
 - High threshold: 50%
 - **Optimized Power**
 - Low threshold: 38%
 - High threshold: 80%
 - **Balanced**
 - Low threshold: 31%
 - High threshold: 66%
Option | **Description**
--- | ---
Timeout Handling | Configure how you want the system to handle the desktops' user sessions.

Note The user sessions governed by these settings are the user logins to the desktops' Windows operating system. These sessions are not the user logins in Horizon Client, Horizon HTML Access, or Workspace ONE.

The user's session begins when the user authenticates to the desktop's Windows operating system.

- **Log Off Disconnected Sessions** - Select when the system will log the user off of a disconnected session.
- **Max Session Lifetime** - Specify the maximum number of minutes the system should allow for a single user session.

Schedule Power Management | To help optimize savings and performance of the desktop VMs in Microsoft Azure, you can optionally configure schedules to adjust the minimum number of powered-on desktop instances on a recurring weekly basis. For example:

- For weekends or night hours when you know your end users will not be using their desktops, you can have a schedule for zero or a low number of powered-on desktops.
- For specific days or specific hourly stretches that you can predict will have increased end user demand, you can have a schedule that increases the minimum number of powered-on desktops to be available to meet that demand.

You can specify up to 10 schedules for the floating VDI desktop assignment. If any schedules have overlapping time periods but specify different minimum desktop numbers, the system uses the largest value of minimum desktops for the overlapping time period.

- Click the + icon to add the first row in the Schedule Power Management section.
- Type an identifying name for the first schedule.
- Select the days for the first schedule.
- Specify the applicable hours in the specified days. Either:
 - Select the **All Day** check box to have this schedule in effect for all hours of the specified days.
 - Specify start and end times for the time period in each day.

Note One day is automatically selected by default when the row is added. If you do not want to include the selected day in this schedule, click the drop-down and deselect that selected day.

- Specify the applicable hours in the specified days. Either:
 - Select the **All Day** check box to have this schedule in effect for all hours of the specified days.
 - Specify start and end times for the time period in each day.

Note Encrypted VMs take longer to power on than non-encrypted VMs. If you have set **Encrypt Disks** to **Yes**, and you want 100% of the encrypted VMs to be ready for end-user connections at a particular time of day, you might have to set an earlier start time here. See When Scheduling Power Management for Farms and VDI Desktop Assignments That Have Large Numbers of Encrypted VMs.
Option	Description
e | Select the time zone. The time zone closest to your end users' location is recommended. As appropriate for the selected time zone, Daylight Savings Time is automatically applied.

Note If two schedules have the same time zone setting and have overlapping times, a warning is displayed. However, if two schedules have different time zone settings and overlap, the warning is not displayed. As an example, if you have two all-day Saturday schedules and one has **Europe/London** time zone selected and the other has **America/Toronto** selected, the overlap warning does not display.

f | In the **Min Desktops** field, type the minimum number of desktops you want powered on during the specified time period. During the specified time period, that number of desktops at a minimum will be powered on to be available to take end user requests during that time. The number can range from zero (0) up to the number specified for **Max Desktops** for the overall floating VDI desktop assignment. When this number is zero (0) and there are no active end user sessions at the schedule's starting time point, the assignment's desktops are powered off. In that scenario, if an end user subsequently attempts to connect to a desktop from this assignment during the scheduled time period, there will be a delay before the desktop is in a usable state because the underlying desktop VM has to power on.

Note By default, when a user logs off of a desktop at a time that lies outside of a schedule's time period, the system protects the desktop VM from powering off for the time specified in the **Power Off Protect Time** field. The default is 30 minutes.

6 On the Users step, search for users and groups in your registered Active Directory domains, select the ones you want to entitle to use desktops from this assignment, and then click **Next**.

7 On the Summary step, review the configuration and then click **Submit**.

The system begins the process of configuring the desktop instances to provide VDI desktops to the selected users. On the Assignments page, the Status column reflects the current progress.

Note Creation of an encrypted desktop VM takes approximately twice as long as creating a non-encrypted VM. As a result, the end-to-end time to complete creating a VDI desktop assignment that has disk encryption enabled is approximately twice as long as creating that VDI desktop assignment without disk encryption enabled.

What to do next

If the image for this floating VDI desktop assignment has applications that require opening special ports, you might need to modify this assignment's associated Network Security Group (NSG) in Microsoft Azure. For details about the NSG, see **About Network Security Groups and Your VDI Desktops**.

If you specified NSX Cloud management for this assignment, you can use your NSX Cloud environment's Service Manager (CSM) to see that the desktop VMs are managed in NSX Cloud. Log in to your environment's CSM and navigate to **Clouds > Azure > Instances**. When that Instances page shows a status of Managed for the desktop instances, you can start implementing NSX policies on them.
Create a Dedicated VDI Desktop Assignment

You create dedicated VDI desktop assignments using the Assignments page.

For general information about desktop assignments, see Types of Desktop Assignments.

Use these steps to assign a dedicated VDI desktop to your end users. To assign another type of desktop, see the subtopics listed in Creating Desktop Assignments in Horizon Cloud.

Prerequisites

- Verify that you have at least one published image, with a Microsoft Windows client operating system. You cannot create a VDI desktop assignment without such an image. To verify, navigate to the Images page and make sure it lists an appropriate image. For steps on creating a published image, see Convert a Configured Master Virtual Machine to an Assignable Image.

- Verify that you have valid licensing for the image’s Microsoft Windows 10 operating system. Currently, the Microsoft Azure documentation indicates that to legally run Windows 10 in Microsoft Azure, you must have licensing for Microsoft Windows 10, typically by purchasing an E3 or E5 license. Verify licensing requirements and restrictions with your Microsoft Licensing distributor.

- Decide whether you want the desktops to have encrypted disks. You must specify disk encryption when creating the VDI desktop assignment. You cannot later add disk encryption after the assignment is created. For a description of the disk capability, see Using Microsoft Azure Disk Encryption with Your Farms and VDI Desktops.

 Important This release does not support having disk encryption for floating VDI assignments that use image VMs with attached data disks. Make sure the image you plan to use in the assignment does not have data disks.

- Decide whether you want the ability to use NSX Cloud features with the desktop VMs. You must enable NSX Cloud management when creating the VDI desktop assignment. You cannot later enable the assignment for NSX Cloud management after the assignment is created. The published image you select for this assignment must have the NSX agent installed in it. You must have installed the NSX agent before publishing the image. See VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure and its subtopics.

Procedure

1. Start the New Assignment workflow by clicking Assign and clicking New.
2 In the New Assignment start screen, click the Desktops icon.

The New Desktop Assignment window opens to the first wizard step.

3 Select **Dedicated**.

4 Complete the selections on the Definition step and then click **Next**.

Note You might have to use the scroll bar to see all the required fields.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Select the location of the pod from which you want the desktops to be provided.</td>
</tr>
<tr>
<td>Pod</td>
<td>Select the pod.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Filter Models</td>
<td>Set one or more filters to control the models available in the Models drop-down menu. You can filter models by type, series, number of CPUs, memory, and tags. For more information about selecting models, see Managing VM Types and Sizes for Farms and Assignments, which describes the options on the VM Types & Sizes page (Settings > VM Types & Sizes).</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Filter Models:</td>
<td>Tag <code>=</code> equals VMware Recommend</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>To set a filter, you first select the criterion in the drop-down menu and then enter the desired value(s). By default, there is a single filter with the criterion 'Tag' the value 'VMware Recommended'. You can edit this first filter and add more filters connected by And and Or operators. The following are the criteria you can use for filters and descriptions of the values you can enter for each.</td>
</tr>
<tr>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

![Image](image-url)
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When you select this option, there is only value available in the second drop-down menu:</td>
</tr>
<tr>
<td></td>
<td>- GPU and High Performance - Models with GPU.</td>
</tr>
<tr>
<td>Note</td>
<td>If you choose a GPU model (for example, Standard_NV6), then the list of images shown will contain only images that were created with the Include GPU flag selected, so you need at least one such image in create a farm or pool using a GPU model. If you choose a non-GPU model, then the list of images shown will contain only images that were created without the Include GPU flag.</td>
</tr>
<tr>
<td></td>
<td>- Series</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Filter Models*</td>
<td>Series equals A</td>
</tr>
<tr>
<td>Model:</td>
<td>Basic_A0 (1 CPU, 0G)</td>
</tr>
<tr>
<td>Image:</td>
<td>A0_A7 A0</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>When you select this option, you can then select a series of models from a second drop-down menu. You can also filter this list by entering text in the Filter text box at the top of the list.</td>
</tr>
<tr>
<td>CPUs</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

Filter Models

<table>
<thead>
<tr>
<th>CPUs</th>
<th>from</th>
<th>to</th>
<th>Add</th>
</tr>
</thead>
</table>

VMware, Inc. 286
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When you select this option, you can then enter a CPU range.</td>
</tr>
<tr>
<td></td>
<td>Important For production environments, to avoid unexpected end-user connection issues, use VM models that have a minimum of two (2) CPUs.</td>
</tr>
<tr>
<td></td>
<td>Memory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>

Filter Models

Memory from **GB** to **GB**

Add
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When you select this option, you can then enter a range of memory in GBs.</td>
</tr>
<tr>
<td></td>
<td>Tag</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Filter Models:</td>
<td>Tag equals Development</td>
</tr>
<tr>
<td>Model:</td>
<td>Basic_A0 (1 CPU, 0G)</td>
</tr>
<tr>
<td>Image:</td>
<td>Development</td>
</tr>
</tbody>
</table>

Filter

- Development
 - Sales
 - Office
 - Sales

Add
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Option | When you select this option, you can then select a tag from a second drop-down menu. You can also filter this list by entering text in the Filter text box at the top of the list. Tags available in the drop-down menu are both hard-coded system tags and custom tags that you created on the VM Types & Sizes page. You can set additional filters by performing the following steps for each filter:
 a. Click the Add link.
 b. Select either And or Or as the operator between the previous filter and the new one you are creating.
 c. Set the new filter by selecting a criterion and entering value(s). |

Model
Select the model to use for the desktop instances. This selection defines the set of underlying resources that will be used when the desktop instances are created, in terms of capacity (compute, storage, and so on). The available choices map to standard VM sizes that are available in Microsoft Azure.
Important For production environments, select a VM model that has a minimum of two (2) CPUs. VMware scale testing has shown that using 2 CPUs or more avoids unexpected end-user connection issues. Even though the system does not prevent you from choosing a VM model with a single CPU, you should use such models for tests or proof-of-concepts only.

Disk Type
Select a supported disk type from the available options. Disk type options are based on the model selected, and your Azure subscription and region. The following are some commonly available disk types.
- Standard HDD - Default disk type.
- Standard SSD
- Premium SSD - Option only appears if you selected a model that supports premium I/O.
You can edit your selection after creating the assignment if desired.

Disk Size
Enter the OS disk size in GB for the VMs in this assignment.
- The default value is the base image OS disk size (typically 128 GB).
- If you edit the size, the value you enter must be greater than the base image OS disk size, and cannot exceed the largest size (typically 1024 GB) supported by the selected model.
- You can also edit this value later if desired.
Important If you edit the disk size, there are additional actions you must take to ensure that the VMs are created as expected. For more information, see Required Administrator Actions When the Disk Size for a Farm or VDI Desktop Assignment is Increased.

Domain
Select the Active Directory domain registered with your environment.

Join Domain
Select Yes so that the desktop instances are automatically joined the domain when they are created.

Encrypt Disks
Select Yes so that the desktop instances have encrypted disks.
Important If you want disk encryption, you must make this selection when creating the VDI desktop assignment. You cannot later add disk encryption after the assignment is created.
### Option	Description
NSX Cloud Managed | Select Yes so that you can use features of NSX Cloud with the assignment's desktop instances. For a description of using NSX Cloud features with your desktops in Microsoft Azure, see [VMware NSX Cloud and Horizon Cloud Pods in Microsoft Azure](#) and its subtopics. **Important**
- If you want to use NSX Cloud with the desktop instances, you must make this selection when creating the VDI desktop assignment. You cannot later enable NSX Cloud management after the assignment is created.
- For the NSX Cloud management features to work with the assignment's desktop instances, the image that you select for this assignment must have the NSX agent already installed on it. When you set this toggle to Yes, ensure that the image you select in **Image** has the NSX agent installed on it. The system does not verify if the selected image has the NSX agent when it creates the VDI desktop assignment.

Image | Select an image that you want to assign to the end users.
Only those published images in the selected pod that are appropriate for VDI desktops are listed here. A published image, sometimes called a sealed image or an assignable image, is one that was published to the system by converting a master image into a desktop. **Important** If you set the NSX Cloud Managed toggle to Yes, ensure that the image you select here has the NSX agent installed on it. For the NSX Cloud management features to work with the assignment's desktop instances, the image that you select for this assignment must have the NSX agent already installed on it. The system does not verify if the selected image has the NSX agent when it creates the VDI desktop assignment.

Assignment Name | Type a friendly name for this dedicated VDI desktop assignment. Entitled end users who have not yet claimed or been assigned a desktop from this assignment might see a form of this assignment name in the client they use to access their desktops. The name must contain only letters, hyphens, and numbers. Spaces are not allowed. The name cannot start with a non-alphabetic character.

VM Names | Base name for the desktop VMs created in this assignment. The VM names will have numbers appended to this base name, for example, win10-1, win10-2, etc. The name must start with a letter and can contain only letters, dashes, and numbers. The end users see a form of this name in the client they use to access their desktops.

Default Protocol | Select a default display protocol you want the end-user sessions to use. Circumstances might occur that cause another protocol to be used instead of the default protocol. For example, the client device does not support the default protocol or the end user overrides the default protocol selection.

Preferred Client Type | Select the preferred client type used when end users launch their desktops from the Workspace™ ONE™ platform's portal, either a Horizon Client or a browser for HTML Access.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Desktops</td>
<td>Specify the minimum number and maximum number of desktops you want in this dedicated VDI desktop assignment. When the assignment is first created, the system deploys the number of desktops specified in the Max Desktops field, and then powers off the desktops except the number specified for Min Desktops. Only the minimum number of desktop instances is initially powered on. As end-user demand increases, the system powers on additional desktops, up to the Max Desktops number. Then as end-user demand shrinks, the system powers off the desktops, until it reaches the Min Desktops number. A desktop must be free of a logged-in user session before the system will power it off. When you specify zero (0) for Min Desktops, it indicates that you want the system to power off all the assignment's desktops until there is end user demand for a desktop.</td>
</tr>
<tr>
<td>Max Desktops</td>
<td></td>
</tr>
<tr>
<td>Power Off Protect Time</td>
<td>Specify the number of minutes that you want the system to wait before automatically powering off a powered-on desktop. You can enter a value from 1 to 60. The default is 30 minutes. This protect time is used primarily for the situations where the system will automatically power off a desktop VM. You can use this Power Off Protect Time setting to tell the system to wait the specified time before starting to power off the VM. For example, if there is a schedule defined in the Schedule Power Management, the system can automatically power off desktops to meet the configured schedule. If you manually power on one of the assignment's desktops within the configured schedule, the system waits the time specified for the Power Off Protect Time before powering off the VM to match the configured schedule. The default wait time is 30 minutes.</td>
</tr>
</tbody>
</table>
Optionally configure the advanced properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Computer OU** | Active Directory Organizational Unit where the desktop VMs are to be located. Enter the Active Directory Organizational Unit using the distinguished name, for example, OU=RootOrgName,DC=DomainComponent,DC=eng, and so on. The OU and each path in a nested OU can contain any combination of letters, numbers, special characters, and spaces, and can have a maximum of 64 characters. If you need to use nested Organization Units, see Considerations For Using Nested Active Directory Domain Organizational Units.

 Note If the Computer OU is set to CN=Computers, the system uses the default Active Directory Computers container for VMs. Your Active Directory might have this default container redirected to an organizational unit class container. |
| **Run Once Script** | (Optional) Location of a script that you want run in the assignment's desktop VMs after the VM creation process.

 Note The script must end with a reboot step to reboot the VM. Otherwise, the end user will not be able to log in the desktop until doing a manual restart. A sample reboot line as a Windows command is:

  ```bash
  shutdown /r /t 0
  ```  

 The reason why the script must end with a reboot step is due to the sequence when the script is run after the sysprep process. When the system creates a desktop VM for the assignment, the VM boots up and completes the sysprep process in the Windows operating system. When the sysprep process completes, the agent in the desktop VM reaches out to do the domain join. At the same time, the agent gets the script path you specify here. The agent sets the Windows RunOnce path (System run once) and then restarts the desktop VM. On the next restart, the system logs in to the Windows operating system using the local administrator account and runs the script. It is only after another subsequent restart, specified in the script, that the desktop VM is ready for a user to log in. |
| **Session Timeout Interval** | This time interval is the amount of time the end users' sessions can be idle before the system forces a log off from the desktops. This time out applies to the logged-in session to the underlying Windows operating system. The time you specify here is different from the time out settings that govern the end users' Horizon Client or HTML Access logged-in session.

 Caution When the system forces the log off in the underlying Windows operating system session, any unsaved data is lost. To prevent an unintended loss of data, set this interval high enough to accommodate the business needs of your users.

 The default interval is one week (10080 minutes).

 Note If no user activity occurs before the timeout interval is reached, a message indicates that the user will be logged off if they do not click OK in the next 30 seconds. If the logout occurs, any unsaved user data, such as documents or files, is lost. |
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Azure Resource Tags** | *(Optional)* Create custom tags to be applied to Azure resource groups. Azure resource tags are only applied to the resource groups, and are not inherited by the resources in the groups.
To create the first tag, enter information in the Name and Value fields. To create an additional tag, click *Add* and then enter information in the Name and Value fields that appear below the existing ones.
- You can create a maximum of 10 tags.
- The tag name is limited to 512 characters, and the tag value is limited to 256 characters.
- Tag names cannot contain the following characters: `< > % & \ ? /`
Note You can only add tags when creating the assignment. After an assignment has been created, you cannot add, edit, or delete Azure resource tags for that assignment. |
| **Windows license question** | For a Microsoft Windows 10 client operating system, Horizon Cloud sets the VDI assignment's desktop instances to use the Windows Client license type by default and you cannot change this setting.
You cannot change this setting because by design, Horizon Cloud sets the same license type on the VM that would be set if you manually used the Microsoft Azure portal and created the VM from the Azure Marketplace with the selected Microsoft Windows 10 operating system. Currently, the Microsoft Azure documentation indicates that to legally run Windows 10 in Microsoft Azure, you must have licensing for Microsoft Windows 10, typically by purchasing an E3 or E5 license. Verify licensing requirements and restrictions with your Microsoft Licensing distributor. |
In the wizard's Management step, complete the fields and make your selections as appropriate and then click **Next**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Updates</td>
<td>The Concurrent Quiescing Desktops setting controls the number of unassigned desktops in this dedicated VDI desktop assignment that can be concurrently quiesced during the time the assignment's image is being updated. For example, when you later edit this dedicated VDI desktop assignment to use another image, the system will power off at the same time this number of unassigned desktops. Then the system performs the required actions to provision the new image to that set of powered-off unassigned desktops. Note Desktops in a dedicated VDI desktop assignment that are mapped to users are said to be assigned to those users. Unassigned desktops in a dedicated VDI desktop assignment are desktops which have not yet been mapped to specific users.</td>
</tr>
</tbody>
</table>
| **Timeout Handling** | Configure how you want the system to handle the desktops' user sessions. **Note** The user sessions governed by these settings are the user logins to the desktops' Windows operating system. These sessions are not the user logins in Horizon Client, Horizon HTML Access, or Workspace ONE. The user's session begins when the user authenticates to the desktop's Windows operating system.
 - **Log Off Disconnected Sessions** - Select when the system will log the user off of a disconnected session.
 - **Max Session Lifetime** - Specify the maximum number of minutes the system should allow for a single user session. |
| **Schedule Power Management** | To help optimize savings and performance of the desktop VMs in Microsoft Azure, you can optionally configure schedules to adjust the minimum number of powered-on unassigned desktop instances on a recurring weekly basis. For example:
 - For weekends or night hours when you know that your end users will not be using their desktops, you can have a schedule for zero or a low number of powered-on unassigned desktops.
 - For specific days or specific hourly stretches that you can predict will have increased end user demand, you can have a schedule that increases the minimum number of powered-on unassigned desktops to be available to meet that demand. |
Option | Description
---|---

You can specify up to 10 schedules for the dedicated VDI desktop assignment. If any schedules have overlapping time periods but specify different minimum unassigned desktop numbers, the system uses the largest value minimum unassigned desktops for the overlapping time period.

Caution By default, when you configure a schedule here for a dedicated VDI desktop assignment, the system keeps all the already assigned desktop VMs powered on, regardless of the schedule. That is:

- If you set any schedule here, it results in the system leaving the currently assigned (mapped to a user) desktop VMs on. The schedule only controls the power state of unassigned desktops, if any.
- Having a schedule here changes the system's treatment of the power-on behavior of the assigned desktops from what it would be in the absence of a schedule. When there is no schedule configured here, the system powers off the assigned desktops that have no logged-in users.

For example, if all of the desktops in this dedicated VDI desktop assignment are mapped to users (assigned), and there is a schedule configured here, the system does not power off those assigned desktops by design. This design is for ensuring an assigned desktop is ready to meet its mapped-to user's request to log in, even when a schedule is in effect.

As a result, if all of the desktops are in assigned state, when a schedule is set here, those assigned desktops will remain powered on, even when their assigned users are not logged in. If you want all assigned desktop VMs to be powered off during a specific day, like a weekend day, do not configure any schedules here.

To configure a schedule:

a Click the + icon to add the first row in the Schedule Power Management section.

b Type an identifying name for the first schedule.

c Select the days for the first schedule.

Note One day is automatically selected by default when the row is added. If you do not want to include the selected day in this schedule, click the drop-down and deselect that selected day.

d Specify the applicable hours in the specified days. Either:

- Select the All Day check box to have this schedule in effect for all hours of the specified days.

- Specify start and end times for the time period in each day.

Note Encrypted VMs take longer to power on than non-encrypted VMs. If you have set Encrypt Disks to Yes, and you want 100% of the encrypted VMs to be ready for end-user connections at a particular time of day, you might have to set an earlier start time here. See When Scheduling Power Management for Farms and VDI Desktop Assignments That Have Large Numbers of Encrypted VMs.
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>Select the time zone. The time zone closest to your end users' location is recommended. As appropriate for the selected time zone, Daylight Savings Time is automatically applied.</td>
</tr>
</tbody>
</table>

Note If two schedules have the same time zone setting and have overlapping times, a warning is displayed. However, if two schedules have different time zone settings and overlap, the warning is not displayed. As an example, if you have two all-day Saturday schedules and one has Europe/London time zone selected and the other has America/Toronto selected, the overlap warning does not display.

| f | In the **Min Desktops** field, type the minimum number of unassigned desktops you want powered on during the specified time period. During the specified time period, that number of unassigned desktops at a minimum will be powered on to be available to take end user requests during that time. The number can range from zero (0) up to the number specified for **Max Desktops** for the overall dedicated VDI desktop assignment. |

Important The **Min Desktops** field in the power management schedules control only the unassigned desktops. Assigned desktops do not participate in the power management schedule. When all desktops in the dedicated VDI desktop assignment are in Assigned state, this **Min Desktops** value, which controls the unassigned desktops, defaults to zero (0).

When this number is zero (0) and there are no active end user sessions at the schedule's starting time point, the assignment's desktops are powered off. In that scenario, if an end user subsequently attempts to connect to a desktop from this assignment during the scheduled time period, there will be a delay before the desktop is in a usable state because the underlying desktop VM has to power on.

Note By default, when a user logs off of a desktop at a time that lies outside of a schedule's time period, the system protects the desktop VM from powering off for the time specified in the **Power Off Protect Time** field. The default is 30 minutes.

6 On the Users step, search for users and groups in your registered Active Directory domains, select the ones you want to entitle to use desktops from this assignment, and then click **Next**.

7 On the Summary step, review the configuration and then click **Submit**.

The system begins the process of configuring the desktop instances to provide VDI desktops to the selected users. On the Assignments page, the Status column reflects the current progress.

Note Creation of an encrypted desktop VM takes approximately twice as long as creating a non-encrypted VM. As a result, the end-to-end time to complete creating a VDI desktop assignment that has disk encryption enabled is approximately twice as long as creating that VDI desktop assignment without disk encryption enabled.

Also, when a Windows 10 image VM has a data disk, additional time is needed for creating an encrypted desktop VM based on that image VM. The longest times occur for data disks of larger, terabyte sizes.
What to do next

If the VDI desktop has applications that require opening special ports, you might need to modify this VDI desktop assignment's associated Network Security Group (NSG) in Microsoft Azure. For details about the pod's NSG, see About Network Security Groups and Your VDI Desktops.

If you specified NSX Cloud management for this assignment, you can use your NSX Cloud environment's Service Manager (CSM) to see that the desktop VMs are managed in NSX Cloud. Log in to your environment's CSM and navigate to Clouds > Azure > Instances. When that Instances page shows a status of Managed for the desktop instances, you can start implementing NSX policies on them.

Create a URL Redirection Customization and Assign it to Users

In the Administration Console, you create customization assignments to assign settings that customize your end users' environments. One type of customization is URL redirection. You can define URL handling rules where the Horizon Client redirects URLs from the end user's client machine to a desktop or application provided by your Horizon Cloud environment. A URL redirection configuration gives the Horizon Client information about which URLs should be handled by one of the end user's assigned Horizon Cloud desktops or applications instead of being opened by the user's local system.

Note The Horizon Cloud Administration Console provides a user interface for you to configure client-to-agent URL redirection. To configure agent-to-client URL redirection, you must use group policy settings as described in Configuring Agent-to-Client Redirection. The steps below are for configuring client-to-agent URL redirection.

The Horizon Client fetches an end user's assigned URL redirection rules when the user logs in to the Horizon Client on their local device. Then when that user attempts to open a link in a local document or file and the link matches a URL pattern rule in the assigned settings, Horizon Client determines the appropriate handler to use. The handlers are specified opens the user's assigned desktop or application to handle the URL link, as determined by the appropriate handler you specified in the URL redirection configuration. If the URL redirection handler specifies to use a desktop, the desktop's default application for the link's specified protocol processes the URL. If the handler specifies to use an application, the user's assigned application processes the URL. If the user is not entitled to the desktop or application specified in the handler, Horizon Client displays a message to the user, unless you have specified Strict Match as No for the handler.

In the scenario where Strict Match is set to No, the system locates a resource to use based on this fallback behavior:

1 The system searches the user's assignments using a substring match of the target resource specified for the handler. If the system finds an assignment that matches the substring, that assigned desktop or application is used to open the link.
When the handler’s **Resource Type** is set to **Application**, if the search for a substring match fails, the system searches the user’s application assignments for an assigned application that can handle the protocol specified in the handler’s **Scheme** field.

Note This step in the fall-back behavior only applies for applications. If the **Resource Type** is set to **Desktops**, this step is skipped.

If the system cannot locate a resource in the user’s assignments that can handle the protocol, Horizon Client displays a message to the user.

Important The user’s Horizon Client must be installed with the **URL_FILTERING_ENABLED=1** option to give the client the capability to handle the URL redirection feature. For details, see the **Installing Horizon Client for Windows with the URL Content Redirection Feature** topic in the VMware Horizon 7 documentation.

When your environment is integrated with Workspace ONE Access, the user must have opened at least one application using Horizon Client before the URL redirection feature can work for that user. By opening at least one application using the **Open in Client** option, the user's assigned URL redirection configuration is loaded into the client device’s registry where Horizon Client can get the configuration values.

A customization assignment can be turned inactive by using the **Take Offline** button on the Assignments page. A user can be assigned more than one active customization for URL redirection settings. To avoid potential conflicts between rules from different active configurations, when the user logs in to Horizon Client, the system:

- Sets only one configuration in effect, even when that user has more than one active configuration assigned.
- Uses the URL redirection configuration that is alphabetically first as the configuration in effect for the user.

Prerequisites

In the Administration Console, you can create a customization for URL redirection even before you have any desktops or remote applications in your Horizon Cloud inventory. However, before the URL redirection flow works for those end users specified in the customization, the following prerequisites must be met:

- When the master image VM was created using the Import Image workflow, you set the Horizon agent feature named **URL Redirection** to **Yes**.
- Your Horizon Cloud inventory has the desktops and remote applications that you intend to use in the configuration.
- If the customization has **Strict Match** set to **Yes**, assignments must exist that entitle the specific desktops and remote applications to the end users specified in the customization.

Procedure

1. On the Assignments page, click **New**.
2 In the New Assignment window, click the **Customizations** icon.

The New Customization Assignment wizard opens to its first step.

3 In the Definition step, configure the general settings and then click **Next**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment Name</td>
<td>Enter a friendly name for this assignment.</td>
</tr>
<tr>
<td>Location</td>
<td>Select the location that has the pod you want to use.</td>
</tr>
<tr>
<td>Pod</td>
<td>Select the pod. This pod is the one from which the session desktops and remote applications are served.</td>
</tr>
<tr>
<td>Description</td>
<td>Optionally enter a description for the configuration.</td>
</tr>
</tbody>
</table>

4 In the Configuration step's Source section, create a list of URL patterns that this configuration will tell Horizon Client to intercept on the client system.

 a In the **URL Pattern** field, type a string that specifies the URL matching pattern to be intercepted.

 You can use wildcards to specify a URL pattern that matches multiple URLs.

 For example:

 - If you type `google.*`, all URLs that include the text `google` are intercepted.
 - If you type `.*` (period asterisk), all URLs are intercepted for all protocol schemes (matches all).
 - If you type `mailto://.*.example.com` all URLs that contain the text `mailto://.*.example.com` are intercepted.

 Important You should always consider that the URLs you enter in the **URL Pattern** field are case-sensitive, including the host name part like `docs.vmware.com`. The URL redirection feature behavior is sensitive to the case of the URL patterns you enter here. As an example, if you enter `DOCS.VMWARE.COM/*` as the pattern and the end user clicks a link `https://docs.vmware.com`, the URL redirection does not happen, because the host name exists actually in lowercase. For host names, enter them as lowercase. If you need to match subdirectories in the URL path, use a wildcard or enter those URLs as the path actually exists, such as `docs.vmware.com/en/VMware-Horizon-Cloud-Service/*`

 b Press Enter to add your specified URL pattern to the list.

 c Repeat the steps of typing in a pattern and pressing Enter to add more URL matching patterns.
In the Rules section, define the set of handlers that determine which target inventory resource should handle various protocols.

A handler defines which of the user's entitled desktops or applications should handle that specific protocol. For example, if the user opens a Microsoft Word document that has a mailto hypertext link and the user clicks on that link in the document, the handler defines what entitled application should handle the request, such as Microsoft Outlook or Mozilla Thunderbird.

a In the Rules section, configure the settings.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme</td>
<td>Enter the protocol to which this handler applies, such as http, https, mailto, callto, and so on.</td>
</tr>
<tr>
<td>Resource Type</td>
<td>Select whether a desktop or application is to handle the specified protocol.</td>
</tr>
<tr>
<td>Target Resource</td>
<td>Enter the name of the target resource in your Horizon Cloud inventory that you want handling the protocol specified in the Scheme field.</td>
</tr>
<tr>
<td>Strict Match</td>
<td>Select Yes to force an exact match between the name specified in the Target Resource field and the names of the user's available entitled session desktops or remote applications. Select No if you want the system to use its fall-back behavior to support the situation where an end user does not have an assignment for a resource with the exact name specified in the Target Resource field. For example, when the Resource Type is set to Applications and you specify Microsoft Outlook as the target resource to handle the mailto protocol, but the user does not have an assignment for any Microsoft Outlook applications, when Strict Match is set to No, the system will search for a compatible application assigned to that user to handle the mailto protocol, such as Mozilla Thunderbird.</td>
</tr>
</tbody>
</table>

b To add more handlers, click Add a row and complete the fields.

6 Click Next to proceed to the next wizard step.

7 Search for and select the users and groups for this assignment and click Next.

8 Review the summarized information and click Submit.

Understanding What URL Content Redirection Is

Generally speaking, the URL content redirection feature supports redirection from a remote desktop or application to a client, and from a client to a remote desktop or application.

Redirection from a remote desktop or application to a client is called agent-to-client redirection. Redirection from a client to a remote desktop or application is called client-to-agent redirection.

Agent-to-client redirection
With agent-to-client redirection, Horizon Agent sends the URL to Horizon Client, which opens the default application for the protocol in the URL on
the client machine. For details about configuring agent-to-client redirection in Horizon Cloud, see Configuring Agent-to-Client Redirection.

Client-to-agent redirection

With client-to-agent redirection, Horizon Client opens a remote desktop or remote application that you specified to handle the URL. For details about configuring client-to-agent redirection in Horizon Cloud, see Create a URL Redirection Customization and Assign it to Users.

You can redirect some URLs from a remote desktop or application to a client, and redirect other URLs from a client to a remote desktop or application. You can redirect any number of protocols, including HTTP, HTTPS, mailto, and callto.

Configuring Agent-to-Client Redirection

With agent-to-client redirection, Horizon Agent sends the URL to Horizon Client, which opens the default application for the protocol in the URL.

To enable agent-to-client redirection, perform the following configuration tasks.

- Ensure the URL content redirection feature is enabled in Horizon Agent in the master image VM, as described in the prerequisites section in Create a URL Redirection Customization and Assign it to Users.
- Apply the URL Content Redirection group policy settings to your remote desktops and applications. See Add the URL Content Redirection ADMX Template to a GPO.
- Configure group policy settings to indicate, for each protocol, how the Horizon Agent should redirect the URL. See URL Content Redirection Group Policy Settings.

Add the URL Content Redirection ADMX Template to a GPO

The URL Content Redirection ADMX template file, called urlRedirection.admx, contains settings that enable you to control whether a URL link is opened on the client (agent-to-client redirection) or in a remote desktop or application (client-to-agent redirection).

To apply the URL Content Redirection group policy settings to your remote desktops and applications, add the ADMX template file to GPOs on your Active Directory server. For rules regarding URL links clicked in a remote desktop or application, the GPOs must be linked to the OU that contains your virtual desktops and RDS hosts.

You can also apply the group policy settings to a GPO that is linked to the OU that contains your Windows client computers, but the preferred method for configuring client-to-agent redirection is to use the vdmutil command-line utility. Because macOS does not support GPOs, you must use vmdutil if you have Mac clients.

Prerequisites

- Verify that the URL content redirection feature is included when Horizon Agent is installed in the master image VM, as described in Create a URL Redirection Customization and Assign it to Users.
- Verify that Active Directory GPOs are created for the URL Content Redirection group policy settings.
- Verify that the MMC and the Group Policy Management Editor snap-in are available on your Active Directory server.

Procedure

1. Download the Horizon 7 GPO Bundle ZIP file from the VMware download site at my.vmware.com/web/vmware/downloads.

 The file has a name in the form VMware-Horizon-Extras-Bundle-x.x.x-yyyyyy.zip where x.x.x is the version and yyyyyy is the build number. All ADMX files that provide group policy settings for the product are available in this file.

2. Unzip that ZIP file and copy the URL Content Redirection ADMX file to your Active Directory server.

 a. Copy the urlRedirection.admx file to the C:\Windows\PolicyDefinitions folder.

 b. Copy the urlRedirection.adml language resource file to the appropriate subfolder in C:\Windows\PolicyDefinitions.

 For example, for the EN locale, copy the urlRedirection.adml file to the C:\Windows\PolicyDefinitions\en-US folder.

3. On your Active Directory server, open the Group Policy Management Editor.

 The URL Content Redirection group policy settings are installed in **Computer Configuration > Policies > Administrative Templates > VMware Horizon URL Redirection**.

What to do next

Configure the group policy settings in your Active Directory server. For descriptions of the settings, see **URL Content Redirection Group Policy Settings**.

URL Content Redirection Group Policy Settings

The URL Content Redirection template file contains group policy settings that enable you to create rules for configuring the agent-to-client redirection capability for your Horizon Cloud environment. The template file contains only Computer Configuration settings. All of the settings are in the **VMware Horizon URL Redirection** folder in the Group Policy Management Editor.

Important Even though the URL Content Redirection template file contains group policy settings related to client-to-agent redirection, you do not use group policy settings to configure client-to-agent redirection in Horizon Cloud. In Horizon Cloud, you use the Administration Console to create the rules for client-to-agent redirection. You create rules for client-to-agent redirection when you create a URL redirection assignment in the Administration Console. For detailed steps, see [Create a URL Redirection Customization and Assign it to Users](#).

The following table describes the group policy settings available in the URL Content Redirection template file.
Table 5-3. URL Content Redirection Group Policy Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE Policy: Prevent users from changing URL Redirection plugin loading behavior</td>
<td>Determines whether users can disable the URL Content Redirection feature. This setting is not configured by default.</td>
</tr>
<tr>
<td>IE Policy: Automatically enable URL Redirection plugin</td>
<td>Determines whether newly installed Internet Explorer plug-ins are automatically activated. This setting is not configured by default.</td>
</tr>
<tr>
<td>Url Redirection Enabled</td>
<td>Determines whether the URL Content Redirection feature is enabled. You can use this setting to disable the URL Content Redirection feature even if the feature has been installed in the client or agent. This setting is not configured by default.</td>
</tr>
<tr>
<td>Url Redirection Protocol 'http'</td>
<td>For all URLs that use the HTTP protocol, specifies the URLs that should be redirected. This setting has the following options: Broker Hostname - IP address or fully qualified name of the Connection Server host to use when redirecting URLs to a remote desktop or application. Remote Item - display name of the remote desktop or application pool that can handle the URLs specified in Agent Rules. Client Rules - the URLs that should be redirected to the client. For example, if you set Client Rules to '.mycompany.com', all URLs that include the text mycompany.com are redirected to the Windows-based client and are opened in the default browser on the client. Agent Rules - the URLs that should be redirected to the remote desktop or application specified in Remote Item. For example, if you set Agent Rules to '.mycompany.com', all URLs that include mycompany.com are redirected to the remote desktop or application. When you create agent rules, you must also use the Broker Hostname option to specify the IP address or fully qualified domain name of the Connection Server host, and the Remote Item option to specify the display name of the desktop or application pool. Note The preferred method for configuring client rules is to use the vdmutil command-line utility. This setting is enabled by default.</td>
</tr>
<tr>
<td>Url Redirection Protocol ' [...] '</td>
<td>Use this setting for any protocol other than HTTP, such as HTTPS, email, or callto. The options are the same as for Url Redirection Protocol 'http'. If you do not need to configure other protocols, you can delete or comment out this entry before adding the URL Content Redirection template file to Active Directory. As a best practice, configure the same redirection settings for the HTTP and HTTPS protocols. That way, if a user types a partial URL into Internet Explorer, such as mycompany.com, and that site automatically redirects from HTTP to HTTPS, the URL Content Redirection feature will work as expected. In this example, if you set a rule for HTTPS but do not set the same redirection setting for HTTP, the partial URL that the user types is not redirected. This setting is not configured by default.</td>
</tr>
</tbody>
</table>
Managing Published Images for Horizon Cloud Pods in Microsoft Azure

After you publish an image, you can manage that image using the Administration Console. A published image is an image that has successfully completed the Horizon Cloud sealing process and Horizon Cloud can use it to provision RDS farms (in the case of RDS-enabled server images) or VDI desktops. Other terms sometimes used to describe such images are sealed images and assignable images. Sealing an image is sometimes referred to as publishing the image or converting the image to a desktop.

Actions You Can Perform on Assignable Images

You can perform several actions on the assignable images listed on the Administration Console’s Images page. These assignable images are also referred to as sealed images or published images. When an image is sealed, the Images page shows it having Published status.

Procedure

1. Select **Inventory > Images**.

2. Click the check box corresponding to the image you want to act on.
3 Click one of the action buttons to perform an action on this image.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rename</td>
<td>Even though you see the Rename action in the page, this action is not used for images in a Microsoft Azure environment.</td>
</tr>
<tr>
<td>Duplicate</td>
<td>The duplicate workflow is typically used when updating a farm's or VDI desktop assignment's underlying master base image, for example, to install or update applications in the base VM. Duplicating an existing image creates an image with the same configuration and a new name. For detailed steps of changing images used for farms and VDI desktop assignments, see Change RDS-Enabled Images Used for Farms and Change Images Used for VDI Desktop Assignments. When you click Duplicate, you must enter a name for the new duplicated VM. After you enter a new name and click Save, the system clones the sealed image's VM to make a new master VM, and lists the new master VM on the Imported VMs page. When you see that the imported VMs page reports the new master VM's agent is active, you can log in to it and make changes. When you are finished making your changes, you convert the duplicate to an assignable (sealed) image by either using the Images page's New action or by selecting the image on the Imported VMs page and selecting Convert to Image. Note As the system begins the cloning process, the original sealed image goes into Transition status for the first part of the process. After some time, the original sealed image returns to its original state. You can monitor the progress of the duplicate image on the Imported VMs page or using the Activity page.</td>
</tr>
</tbody>
</table>
| Update Agent | Update the image's agent-related software components to a newer version. Clicking this button opens the Agent Update wizard. A blue dot appears next to the name of an image when agent updates are available for it. When you hover over that blue dot, a popup indicates all of the agent updates that are available for that image. For details, see one of the following topics:
 - Update Agent Software for RDSH Images
 - Update Agent Software for Images Used by Floating VDI Desktop Assignments **Important** For dedicated VDI desktop assignments, you usually update the agents from the Assignments page instead of by updating the agents in the image. See Update Agent Software for Dedicated VDI Desktop Assignments. |
To perform one of the other available actions, click **More** and select the drop-down option of your choice.

Note Even though the **Download Bootstrap** and **Refresh Password** actions are visible when an image is selected, those actions are not applicable to any one image.

<table>
<thead>
<tr>
<th>Drop-Down Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Delete | Permanently deletes the selected image.

Note An image cannot be deleted if it is in use by an RDSH farm or a VDI desktop assignment.

<table>
<thead>
<tr>
<th>Publish</th>
<th>For images used in farms or VDI desktop assignments, this action republishes a duplicated image to make it assignable again. This action is not available if the image already is an assignable (sealed) image. An assignable image is one that has Published status.</th>
</tr>
</thead>
</table>
| Convert to Desktop | Use this action only on images that have failed the publishing workflow and did not reach the Published status. This action converts the published image to an unsealed VM. The unsealed VM is listed on the Imported VMs page at that point.

Caution Use this action sparingly. Repeated use of this action on the same image can result in unexpected results and failure to seal the image when attempting to re-publish the image. As an example, if you create a new image, then run Publish on it and it reaches Published status, then you run Convert to Desktop on that image, then run Publish again, the sysprep process that happens in the publishing workflow can fail. If you again convert the image back to an unsealed image, from that point on, the image might always fail the publishing workflow. At that point, it is prudent to start fresh and make a new base image.

<table>
<thead>
<tr>
<th>Assign Image</th>
<th>Even though you see this action in the Administration Console, this action is not used for images in a Microsoft Azure environment.</th>
</tr>
</thead>
</table>
| Bulk Assign Image | Assigns the image to multiple assignments/farms of the immediate parent image (the image from which the selected image was duplicated/updated).
In the Bulk Assign Image dialog, select assignments/farms in the list and click **Update**.

Note This option is only available for images created using the Duplicate operation and images updated to newer agent versions using the Update Agent operation.

4
(Optional) View details about the image by clicking the image's name.

The screen displays the image's details page along with buttons for those actions you can perform on the image from its details page.

For example, this screen is the information for an RDS-enabled assignable server image named WinSvr2016. This image belongs to a pod named East-Coast-Stores and is referenced by two RDSH farms.
Change RDS-Enabled Images Used for Farms

After you publish your initial RDS-enabled image and create farms using it, you can make changes to that image and push the changes to all of the farms using that image. A typical reason to update an already published image is to install additional third-party applications or other features.

Note If you are changing the RDS-enabled image to update the Horizon Cloud agent-related components, you use a different procedure. See [Update Agent Software for RDSH Images](#).

At a high-level, the workflow to update an in-use image is:

1. Duplicate the existing image to create an image with the same configuration and a new name. In the duplication process, the system clones the sealed image's virtual machine (VM) to make a new unpublished master VM, and lists the new master VM on the Imported VMs page.

2. When you see that the Imported VMs page reports the new master VM's agent is active, log in to the VM and make your desired changes to that duplicate VM.

3. Use **Convert to Image** to publish that duplicate VM, making it an assignable (sealed) image.

4. Edit the RDSH farms that are using the original image to use the newly updated duplicate image instead of the original one.
Prerequisites

Verify you have local administrator account credentials to log in to the image and update it. This administrator account is the same one that was used to publish the image using the New Image workflow. See Convert a Configured Master Virtual Machine to an Assignable Image.

Note When using the Microsoft Remote Desktop Client as your RDP software to connect to the master VM, ensure it is the most up-to-date version. For example, the default RDP software in the Windows 7 operating system is not at a high enough version. The version must be version 8 or higher.

Procedure

1. In the Administration Console, navigate to **Inventory > Images**.
2. Select the check box for the image and click **Duplicate**.

 In the dialog box, enter a name for the duplicate image. After you enter a new name and click **Save**, the system clones the sealed image's VM to make a new master VM, and lists the new master VM on the Imported VMs page.

 Note As the system begins the cloning process, the original sealed image goes into Transition status for the first part of the process. After some time, the original sealed image returns to its original state.

3. Navigate to **Inventory > Imported VMs** to see when the imported VMs page reports the new master VM's agent is active.

4. When you see on the imported VMs page that the new master VM's agent is active, use the VM's IP address and your RDP software to connect to the RDS-enabled Windows server operating system.

 - If the original image was created with a public IP address, the new duplicate VM has a public IP address and you can use that IP address in your RDP software
 - If the original image was not created with a public IP address, the new duplicate VM has an IP that is private in your Microsoft Azure cloud environment, and you must RDP into it by one of these two methods:

 - Using another VM in your Microsoft Azure subscription that does have a public IP address and doing an outbound RDP into the VM.
 - Use your VPN and RDP into the VM over your corporate network

5. Log in to the RDS-enabled Windows server operating system using the username and password that was supplied in the Import Image wizard when the image was created.

 If using the local administrator name, enter the username as `\username`.

6. In the Windows server operating system, perform your intended updates.

 If you are installing additional third-party applications, see the steps described in Customize the Guest Windows Server Operating System of the Master Server Image Virtual Machine.
7 Return to the Imported VMs page, select the check box for that duplicate VM, and click More > Convert to Image.

The system takes the image, which was duplicated and then updated, through its standard publishing process. The image is displayed on the Images page. When the publishing process is complete, the image has the Published status on the Images page.

8 When you see that the duplicated and updated image is in Published status, update each farm that is using the original image to use the new duplicate image instead, the image which now has your changes in it.

In each farm's details page, click the General Settings Edit link to open a window, select the new duplicate image, and save.

The farms you update automatically delete and re-create their server instances using the updated image.

What to do next

When you have updated the farms that are using the original image and can determine the original image is no longer needed by your organization, use the Images page to delete the original image. Deleting the original image is a best practice, to prevent other administrators in your organization from using an image that has down-level software.

Change Images Used for VDI Desktop Assignments

After you publish an image and create VDI desktop assignments using it, you can make changes to that image and push the changes to all of the VDI desktop assignments that use that image. A typical reason to update an already published image is to install additional third-party applications or other features.

Note If you are changing the image to update the Horizon Cloud agent-related components, you use a different procedure. See *Updating the Agent-Related Software Used by Horizon Cloud* and its subtopics.

At a high-level, the workflow to update an in-use image is:

1 Duplicate the existing image to create an image with the same configuration and a new name. In the duplication process, the system clones the sealed image's virtual machine (VM) to make a new unpublished master VM, and lists the new master VM on the Imported VMs page.

2 When you see that the Imported VMs page reports the new master VM's agent is active, log in to the VM and make your desired changes to that duplicate VM.

3 Use **Convert to Image** to publish that duplicate VM, making it an assignable (sealed) image.

4 Edit the VDI desktop assignments that are using the original image to use the newly updated duplicate image instead of the original one.
Prerequisites

Verify you have local administrator account credentials to log in to the image and update it. This administrator account is the same one that was used to publish the image using the New Image workflow. See Convert a Configured Master Virtual Machine to an Assignable Image.

Note When using the Microsoft Remote Desktop Client as your RDP software to connect to the master VM, ensure it is the most up-to-date version. For example, the default RDP software in the Windows 7 operating system is not at a high enough version. The version must be version 8 or higher.

Procedure

1. In the Administration Console, navigate to **Inventory > Images**.
2. Select the check box for the image and click **Duplicate**.
 In the dialog box, enter a name for the duplicate image. After you enter a new name and click **Save**, the system clones the sealed image's VM to make a new master VM, and lists the new master VM on the Imported VMs page.

 Note As the system begins the cloning process, the original sealed image goes into Transition status for the first part of the process. After some time, the original sealed image returns to its original state.

3. Navigate to **Inventory > Imported VMs** to see when the Imported VMs page reports the new master VM's agent is active.
4. When you see on the Imported VMs page that the new master VM's agent is active, use the VM's IP address and your RDP software to connect to the Windows operating system.
 - If the original image was created with a public IP address, the new duplicate VM has a public IP address and you can use that IP address in your RDP software.
 - If the original image was not created with a public IP address, the new duplicate VM has an IP that is private in your Microsoft Azure cloud environment, and you must RDP into it by one of these two methods:
 - Using another VM in your Microsoft Azure subscription that does have a public IP address and doing an outbound RDP into the VM.
 - Use your VPN and RDP into the VM over your corporate network.
5. Log in to the Windows operating system using the username and password that was supplied in the Import Image wizard when the image was created.
 If using the local administrator name, enter the username as \username.
6. In the Windows operating system, perform your intended updates.
 If you are installing additional third-party applications, see the steps described in Customize the Guest Windows Client Operating System of the Master VDI Desktop Virtual Machine.
7 Return to the Imported VMs page, select the check box for that duplicate VM, and click More > Convert to Image.

The system takes the image, which was duplicated and then updated, through its standard publishing process. The image is displayed on the Images page. When the publishing process is complete, the image has the Published status on the Images page.

8 When you see that the duplicated and updated image is in Published status, edit each VDI desktop assignment that is using the original image to use the new duplicate image instead, the image which now has your changes in it.

When you update a VDI desktop assignment to change its image:

- Unassigned, powered-off VMs in the assignment are automatically recreated using the new image.
- Unassigned VMs that are powered on but do not have an active end user connection are automatically recreated with the new image.
- Unassigned VMs that are powered on and which have an active end user connection, such as those from a floating VDI desktop assignment, are automatically updated with the new image when the end user logs off.
- Desktop VMs that are mapped to an end user, such as those from a dedicated VDI desktop assignment, are not automatically updated to the new image. To get such an assigned desktop VM updated to use the new duplicate image instead, you must manually unassign that desktop VM. The next time the system goes to power on the desktop VM, it will apply the new image. Then you can manually assign that desktop VM back to a specific end user.

What to do next

When you have updated the VDI desktop assignments that are using the original image and you can determine the original image is no longer needed by your organization, use the Images page to delete the original image. Deleting the original image is a best practice, to prevent other administrators in your organization from using an image that has down-level software.

Managing Assignments Provisioned By Horizon Cloud Pods in Microsoft Azure

After you create an assignment in your pod in Microsoft Azure, you can manage the assignment using the Administration Console. The types of assignments in your Horizon Cloud tenant environment depend on what you have created.

You work with assignments from the Administration Console's Assignments page. The types of actions you can use on an assignment depends on the assignment's type. As an example, on the Assignments page, the Update Agent action applies only to dedicated VDI desktop assignments, while the Delete action can be used on all assignment types. For information about creating assignments, see the respective instructions.

The following table provides links to the steps for creating various assignment types.
<table>
<thead>
<tr>
<th>Assignment Type</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDI desktop</td>
<td>Create a Floating VDI Desktop Assignment</td>
</tr>
<tr>
<td></td>
<td>Create a Dedicated VDI Desktop Assignment</td>
</tr>
<tr>
<td>Session-based desktop</td>
<td>Create an RDSH Session Desktop Assignment</td>
</tr>
<tr>
<td>Remote application</td>
<td>Create a Remote Application Assignment</td>
</tr>
<tr>
<td>URL redirection customization</td>
<td>See Create a URL Redirection Customization and Assign it to Users</td>
</tr>
</tbody>
</table>

At a page level, you can select the check box next to an existing assignment and click one of the buttons to perform its associated action on the assignment. Some buttons are accessed under the **More** action.

Edit

Clicking this button launches a wizard in which you can change the editable settings in the assignment. The wizard is similar to the creation wizard for that assignment type, with read-only fields for those settings that cannot be changed. For detailed descriptions of the fields, see the creation topics at the above links.

Alternatively, instead of using the **Edit** button, you can click an assignment's name and update the settings from the assignment's summary page.

Duplicate

Use this action to duplicate the selected desktop assignment and create a new one with the same specifications but a new name. The wizard that opens is the same as the creation wizard for the same desktop assignment type as the one you are duplicating.

Take Offline

This action applies to floating VDI desktop assignments, dedicated VDI desktop assignments, and URL redirection customization assignments. Clicking this button opens a window in which you can select to take the assignment offline.

The system behavior when you take an assignment offline depends on the selected assignment type.

- For an active URL redirection customization assignment, you use **Take Offline** to turn off the URL redirection behavior defined in the assignment.
For VDI desktop assignments, you use **Take Offline** to take the assignments offline to perform maintenance actions that would impact incoming connection requests. When you click **Take Offline** for a VDI desktop assignment, the system puts the assignment into offline mode and prevents users from logging in to the assignment's desktops.

Note Due to a known issue in this release, image update does not start in an offline assignment. Even though you can edit the offline assignment to have it use an updated image, the system does not start the update operation until you bring the assignment back online.

Update Agent
On the Assignments page, this action applies only to dedicated VDI desktop assignments. See [Update Agent Software for Dedicated VDI Desktop Assignments](#).

Bring Online
Clicking this button opens a window in which you can select to bring an offline assignment back online.

Delete
You use this button to delete the selected assignment. See [Delete an Assignment](#).

Actions You Can Perform Within a VDI Desktop Assignment’s Detailed Pages
For VDI desktop assignments, you can perform actions specific to those assignment types from within the assignment’s detailed pages. From the Assignments page, click a VDI desktop assignment’s name to see its detailed pages. Initially the Summary page is displayed.

Summary page
The Summary page displays the VDI desktop assignment’s current settings. For each page section, you can click **Edit** to change those settings that the system allows to be updated for an existing VDI desktop assignment. Some settings cannot be changed on a VDI desktop assignment after it is created, such as its pod.

Desktops page
The Desktops page displays the existing desktop instances in the VDI desktop assignment. The actions that are provided to you on the Desktops page and available to click depend on the desktop's current state and whether the assignment is a floating VDI desktop assignment or a dedicated VDI desktop assignment. As an example, even though the **Reset Agent Pairing** action is provided for desktops in a dedicated VDI desktop
assignment, it is not provided for desktops in a floating VDI desktop assignment.

- For a desktop in floating VDI desktop assignments, you can restart it, power it off (if the desktop is powered on), and log off or disconnect the currently connected user (if any).

 Note Do not manually delete a desktop in a floating VDI desktop assignment, because the system's power management feature will automatically create a new desktop VM to take the place of the deleted one. To adjust the number of desktops in a floating VDI desktop assignment, see Resizing a VDI Desktop Assignment.

- For a desktop in dedicated VDI desktop assignments, you can restart it, power it on or off (depending on the desktop's current state), log off or disconnect the currently connected user (if any), assign the desktop to a specific user (if the desktop is unassigned), unassign the desktop (if the desktop is assigned to a user), and reset the agent pairing for cases where the desktop is powered on but the agent status is not showing as active. Unassigning the desktop removes the mapping of the desktop to that user and makes it available to be mapped to a different user. Resetting the agent pairing repairs the desktop VM's pairing state with Horizon Cloud.

 Note Do not manually power on a desktop, even if the action is available in the Desktops page. Manually powering on a desktop might conflict with the power management settings that are set in the dedicated VDI desktop assignment. If you manually power on a desktop, unexpected results of other desktops powering off might occur. Instead of powering on a desktop, use the **Restart** action.

System Activity page

The System Activity page displays activity in the desktop assignment due to system actions, such as powering off desktops to meet the power management schedule.

You can cancel some tasks before they complete by selecting the task in the list and clicking **Cancel Tasks**.

- Before attempting to select a task for cancellation, refresh the view to update the status for the tasks displayed.

- If a task is currently in a state where the system allows you to cancel it, you can select the check box corresponding to that cancellable task. If you select all of the listed tasks by selecting the topmost check box, only those tasks that are currently cancellable are selected.

The table below shows tasks that you can cancel.
Task Cancel When Task is in Queued State Cancel When Task is in Running State

<table>
<thead>
<tr>
<th>Task</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Expansion</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>When the system has automatically created an expansion task for an RDSH farm, the farm must be offline before you can cancel that task.</td>
<td></td>
</tr>
<tr>
<td>Assignment Expansion</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>When the system has automatically created an expansion task for a VDI desktop assignment, the assignment must be offline before you can cancel that task.</td>
<td></td>
</tr>
<tr>
<td>Convert VM to Image</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>If you cancel this task, and wish to retry it, first confirm that the VM is in a state where it can be converted. If you are not sure, power off and then power on the VM.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>If you cancel this task, and wish to retry it, first confirm that the VM is in a state where it can be converted. If you are not sure, power off and then power on the VM.</td>
<td></td>
</tr>
</tbody>
</table>

User Activity page

The User Activity page displays activity in the VDI desktop assignment due to user actions, such as logging on and logging off sessions provided by the assignment.

View an Assignment

Use the Assignments page to get an overview or detailed view of all the assignment types. You can view the details of individual assignments by clicking the respective assignment. For some assignment types, you can click on hyperlinks in the page to navigate to where you can perform actions on the individual assets used in that assignment.

Procedure

1. In the Administration Console, open the Assignments page by clicking **Assign**.
2. On the Assignments page, click the name of an assignment to see detailed information.

 The assignment opens to its Summary page. The information available is specific to each assignment type.
Navigate through the information depending on the assignment type.

<table>
<thead>
<tr>
<th>Assignment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session-based desktop</td>
<td>View the information on the Summary page and optionally click Edit to update specific properties. You can click on the link for the associated RDSH farm to navigate to information about the individual desktop sessions, system and user activity in the farm, and perform actions on the farm's servers.</td>
</tr>
<tr>
<td>Remote application</td>
<td>View the information on the Summary page and optionally click Edit to update specific properties. You can click on the link for the associated RDSH farm to navigate to information about the individual sessions, system and user activity in the farm, and perform actions on the farm's servers.</td>
</tr>
<tr>
<td>URL redirection customization</td>
<td>View the information on the Summary page and optionally click Edit to update specific properties.</td>
</tr>
</tbody>
</table>
| VDI desktop | View the information on the Summary page and click **Desktops**, **System Activity**, or **User Activity** to view the information on those respective pages or work with the virtual desktops.
 - The Summary page provides definition information about the assignment, the name of an image from which the desktop was created, and a list of the assigned users.
 - The Desktops page provides information about the individual desktops created as part of the desktop assignment. You can also perform actions on an individual desktop, depending on its current state.
 - You can also use the Desktops page to manage the individual desktops in a desktop assignment.
 - The System Activity and User Activity pages provide activity information for that assignment over a specified time.
Note If this VDI desktop assignment was created in a pod in Microsoft Azure that has a pod manifest version lower than 1101, the **License Type** field displays **No License** even though the assignment has inherited the Windows 10 client license from the image used for this assignment. If you click the **Edit** link, the editing window shows that the Windows 10 client license is being used. |

Edit an Assignment

You can edit any assignment type from the Assignments page. The specific properties you can change depends on the assignment type.

Procedure

1. In the Administration Console, click **Assign**.
2. Select the check box next to the assignment you want to edit and click **Edit**. The corresponding assignment type's wizard appears.
3 Proceed through the wizard making your changes and click Submit.

For instructions on filling in the fields in the wizard, see the topic for creating the type of assignment you are editing. Those topics are listed in Managing Assignments Provisioned By Horizon Cloud Pods in Microsoft Azure.

Delete an Assignment

You can delete assignments if they are no longer needed. From the Assignments page, Delete is under the More menu (More > Delete).

The specific steps for deleting an assignment vary depending on the assignment type.

<table>
<thead>
<tr>
<th>Assignment Type</th>
<th>Details</th>
</tr>
</thead>
</table>
| Floating VDI desktop assignment | Select the assignment on the Assignments page and click More > Delete. When you confirm the deletion, the system starts deleting the desktop VMs. You can use the Activity page to monitor the deletion process. As the system deletes the desktop VMs, it marks all of the VMs as not brokerable, which prevents new end user connections during the deletion process. For any desktop VMs that have existing end user connections, the Administration Console will display a warning to you that those sessions will be terminated. The connected end users will not get a warning in their desktops.

 Note Do not manually delete desktop VMs in a floating VDI desktop assignment from the assignments Desktops tab. When you manually delete a desktop VM from a floating VDI desktop assignment, the system's power management feature automatically creates a new desktop VM to take the place of the deleted one. To remove desktop VMs from a floating VDI desktop assignment, always edit the Min Desktops and Max Desktops values. |
| Dedicated VDI desktop assignment | To delete a dedicated VDI desktop assignment:
 1. Take the assignment offline, using the Take Offline button on the Assignments page. Taking the assignment offline prevents the system's power management feature from attempting to automatically create new desktop VMs as you delete instances during the next step.
 2. Delete all of the assignment's desktop VMs. Navigate into the assignment's details page, click the Desktops tab, select all of the desktop VMs, click More > Delete, select Yes under 'Reduce assignment size' in the dialog, and confirm the deletion.

 Note A desktop VM with a logged-in user session cannot be deleted. Use the Log Off action and then delete the desktop VM.
 3. Use the Activity page to monitor the deletion process and determine when all of the desktop VMs are deleted and all tasks are finished. Do not rely on the Assignments page displaying the assignment's size as zero, because even though all of the desktop VMs might be zero, additional tasks to fully update the system's records might still be running. Those running tasks will prevent you from deleting the assignment from the Assignments page until all of those tasks are done. Deleting all of the desktops can take a long time depending on how many there are.
 4. When all of the desktop VMs are deleted and the assignment's capacity is reported as zero, then you can delete the assignment from the Assignments page by selecting it and clicking More > Delete. |
<p>| Session desktop assignment | Select the assignment on the Assignments page and click More > Delete. Because session desktop assignments are for entitling users to connect to the RDSH servers in a farm, no VMs are actually deleted when you delete this assignment type. The assignment record is removed from the system. |</p>
<table>
<thead>
<tr>
<th>Assignment Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application assignment</td>
<td>Select the assignment on the Assignments page and click More > Delete.</td>
</tr>
<tr>
<td>URL redirection customization assignment</td>
<td>Select the assignment on the Assignments page and click More > Delete.</td>
</tr>
</tbody>
</table>

Resizing a VDI Desktop Assignment

When you create VDI desktop assignments, you assign an initial capacity of VDI desktop instances using the **Max Desktops** value. As the user population changes, you might need to expand or shrink the VDI desktop assignment.

You would expand a VDI desktop assignment by adding additional desktop VMs to meet your end user needs.

You would shrink a VDI desktop assignment to free up capacity in your Microsoft Azure cloud environment so you can use that capacity for something else. When your end users no longer need to access the desktop VMs from a particular VDI desktop assignment, you might want to free up that unneeded capacity.

Important For a dedicated VDI desktop assignment, to reduce its capacity, you must delete the desktop VMs from the Desktops tab in the assignment's details page. You cannot shrink an existing dedicated VDI desktop assignment by decreasing the **Max Desktops** value.

Expanding a VDI Desktop Assignment

You increase the capacity of a VDI desktop assignment by adding VDI desktop VMs to the VDI desktop assignment. You add desktop VMs by editing the VDI desktop assignment, floating or dedicated, to increase the **Max Desktops** value. See **Edit an Assignment** for how to edit a VDI desktop assignment using the Administration Console. You can expand an assignment up to the scale limits for VDI desktops in a pod.

When you submit the change, the system starts creating the new desktop VMs to match the new larger **Max Desktops** value. You can use the VDI desktop assignment’s Desktops and Activity tabs to monitor the process. For details about those tabs, see **View an Assignment**.

** Shrinking a VDI Desktop Assignment**

The method to reduce capacity in a VDI desktop assignment varies depending on which type it is.
VDI Desktop Assignment Type

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
| **Floating** | To reduce the capacity of a floating VDI desktop assignment, edit the assignment and change the Max Desktops value to a new smaller value. When you submit the change, the system starts to delete not-in-use VDI desktop VMs until the total number in the assignment matches the new value.
If the new requested number is smaller than the number of not-in-use desktop VMs due to currently logged-in end users or because end users have disconnected sessions to the desktop VMs, the system prevents the process and an error message displays in the Administration Console. To shrink the assignment in this situation, you can use one, or a combination, of the following methods:
 - Re-edit the assignment and use a different Max Desktops value to remove any currently not-in-use desktops.
 - Wait for, or force, the users to fully log off of the in-use desktops before you edit the assignment to reduce the Max Desktops value. You can force a log off from the assignment's Desktops tab by selecting the desktop and clicking ***Log Off***. |
| **Dedicated** | Because the desktop instances in a dedicated VDI desktop assignment are mapped to specific end users when they first connect to a desktop from the assignment, the system prevents reducing the capacity of the assignment by changing the Max Desktops value. The reason is because reducing that number would not inform the system about which specific desktop instances to delete out of the total number.
To reduce the size of the dedicated VDI desktop assignment, you must explicitly delete desktops from the assignment's Desktops tab. On that tab, select the check box next to the desktops you want to delete, click ***Delete***, and confirm the deletion. You can delete both VDI desktops that are assigned to users and unassigned ones.
1. Take the dedicated VDI desktop assignment offline using the Assignment page's Take Offline button. Taking the assignment offline prevents the system's power management feature from attempting to automatically create new desktop VMs as you delete some.
2. Select the check box next to the desktops you want to delete, click ***Delete***, select Yes under 'Reduce assignment size' in the dialog, and confirm the deletion.
3. When the system has finished deleting the desktops, bring the assignment back online again using the Bring Online button.
After the system has deleted the selected VDI desktops, the assignment's size automatically decreases down to the number that matches the original Max Desktops value minus the ones you deleted.
Note You cannot delete a desktop that the Desktops tab indicates has an active or disconnected session. That end user must be fully logged off before you can delete that desktop.
If you want to keep the same overall capacity of the dedicated VDI desktop assignment, but want to have a different user consume a desktop that is already mapped to a user, on the assignment's Desktops tab, you can select the desktop and select ***Unassign***. Then you can explicitly assign that desktop to another user. |

About Network Security Groups and Your VDI Desktops

For every Horizon Cloud pod deployed into your Microsoft Azure cloud, a network security group (NSG) is also created in the pod's resource group to act as a template. You can use this template to ensure you have opened those additional ports that you might need for the VDI desktops provided by your VDI desktop assignments.
In Microsoft Azure, a network security group (NSG) governs the network traffic to the resources connected to Azure Virtual Networks (VNet). An NSG defines the security rules that allow or deny that network traffic. For more detailed information about how NSGs filter network traffic, see the Microsoft Azure documentation topic Filter network traffic with network security groups.

When a Horizon Cloud pod is deployed into Microsoft Azure, an NSG named `vmw-hcs-podID-nsg-template` is created in the pod's same resource group named `vmw-hcs-podID`, where `podID` is the pod's ID. You can obtain the pod's ID from the pod's details page, navigating from the Capacity page in the Horizon Cloud Administration Console.

By default, the pod's template NSG is configured with no outbound security rules and with the following inbound security rules. These default inbound security rules support your end-user clients' access to their VDI desktops using Blast and PCOIP and USB redirection.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Name</th>
<th>Port</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>AllowBlastUdpIn</td>
<td>22443</td>
<td>UDP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1100</td>
<td>AllowBlastTcpIn</td>
<td>22443</td>
<td>TCP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1200</td>
<td>AllowPcoipTcpIn</td>
<td>4172</td>
<td>TCP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1300</td>
<td>AllowPcoipUdpIn</td>
<td>4172</td>
<td>UDP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1400</td>
<td>AllowTcpSideChannelIn</td>
<td>9427</td>
<td>TCP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>1500</td>
<td>AllowUsbRedirectionIn</td>
<td>3211</td>
<td>TCP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
</tbody>
</table>

In addition to this template NSG, when a VDI desktop assignment is created, the system creates an NSG for that assignment's pool of desktops by copying the template NSG. Every VDI desktop assignment's pool has its own NSG that is a copy from the template NSG. A pool's NSG is assigned to the NICs of that pool's VDI desktop virtual machines (VMs). By default, every VDI desktop pool uses the same default security rules as configured in the pod's template NSG.

You can modify both the template NSG and the per-VDI-desktop-assignment NSGs. For example, if you have an application in a VDI desktop that you know needs an additional port opened for that application, you would modify the corresponding VDI desktop assignment pool's NSG to allow network traffic on that port. If you are planning to create multiple VDI desktop assignments that need the same port opened, a simple way to support that scenario is to edit the template NSG prior to creating the VDI desktop assignments.

Important When planning to modify the base template, make a copy before modifying it. The copy can be a backup in case you need to revert back to the original default settings.

Updating the Agent-Related Software Used by Horizon Cloud

Horizon Cloud communicates with agent-related software that is installed in the virtual machines (VMs) that are involved in the system operations for master image VMs, published images, RDSH farms, and VDI desktop assignments. VMware updates the agent-related software periodically to include new
features and bug fixes. As appropriate for your environment, use the steps in the topics below to update the agent-related software.

Important The system's update-manager job runs once a day to evaluate whether an image or assignment is a candidate for updating its agent-related software. If the agent-related software changes for that image or assignment in between the times the daily job is run, the status in the Administration Console can be out of sync until the next time the daily job is run. This situation primarily occurs when you do a manual update to the latest agent software, either by running the Horizon Agents Installer manually on the virtual machine to update the agent software or by using a GPO. As an example:

1. The update-manager job runs at its daily scheduled time and indicates in the Administration Console that an agent update is available on an image.
2. You manually update the desktop instances in a VDI desktop assignment to the latest agent using a GPO.

Even though the agent-related software on the desktop instances are running the latest software, the Administration Console will still show the blue dot on the image, indicating an agent update is available until the next scheduled run of the update-manager job.

About the VMware Dynamic Environment Manager Agent Software

Starting with the July 2019 Horizon Cloud release, installation of the VMware Dynamic Environment Manager agent is incorporated into the Horizon Agents Installer. The Horizon Agents Installer is the software package that:

- Installs the agent-related software in a new master image VM, when you run the Import Desktop workflow or manually create a master image VM. When you Create a Master Virtual Machine Automatically from the Microsoft Azure Marketplace and Pair it with Horizon Cloud, the Horizon Agents Installer runs behind the scenes to install the agents. When you Manually Build the Master Virtual Machine in Microsoft Azure, you download and run the Horizon Agents Installer as part of those steps.

- Updates the agent-related software in existing image VMs, and in dedicated VDI desktop assignments, when you run the Update Agent workflow. The Horizon Agents Installer runs behind the scenes to update the installed agents.

After you run the Update Agent workflow on an image VM or on the desktop VMs in a dedicated VDI desktop assignment, the install path of the VMware Dynamic Environment Manager files in the updated VMs depends on whether the original agent installation into the VM was at version 19.2 or later prior to running the Update Agent workflow.

When the base image VM was originally created using the Import Desktop workflow

In this case, the VMware Dynamic Environment Manager agent was installed automatically by default. The specific install file path depends on
whether the base image VM was created starting with the 19.2 version of the agent software:

- If the image VM was created new in a pod of manifest 1493 or later, the VMware Dynamic Environment Manager install file path is `C:\Program Files\VMware\Horizon Agents\User Environment`. When you subsequently run the Update Agent workflow on that VM, the file path remains as `C:\Program Files\VMware\Horizon Agents\User Environment`.

- If the image VM was created in a pod of manifest earlier than 1493, the VMware Dynamic Environment Manager install file path is `C:\Program Files\Immidio\Flex Profiles`. When you subsequently run the Update Agent workflow on that VM, the file path remains as `C:\Program Files\Immidio\Flex Profiles`.

When the base image VM was originally created manually in Microsoft Azure

The VMware Dynamic Environment Manager install file path depends on how you installed the VMware Dynamic Environment Manager agent in that manually created VM:

- If you installed the VMware Dynamic Environment Manager agent using the Horizon Agents Installer version 19.2, the VMware Dynamic Environment Manager install file path is `C:\Program Files\VMware\Horizon Agents\User Environment`. When you subsequently run the Update Agent workflow on that VM, the file path remains as `C:\Program Files\VMware\Horizon Agents\User Environment`.

- If you installed the VMware Dynamic Environment Manager agent using the separate stand-alone VMware Dynamic Environment Manager installer, the VMware Dynamic Environment Manager install file path is `C:\Program Files\Immidio\Flex Profiles`. When you subsequently run the Update Agent workflow on that VM, the file path remains as `C:\Program Files\Immidio\Flex Profiles`.

Also, when the base image VM was originally created manually in Microsoft Azure and you did not install the VMware Dynamic Environment Manager agent at that time, if you want to subsequently install the agent during the Update Agent workflow, use the command-line argument `ADDLOCAL=UEM` in the Agent Update wizard's Command Line step.

Update Agent Software for RDSH Images

To update the agent-related software that is installed on RDSH images that are currently in use by farms, you first use the Images page’s **Update Agent** action. Then you edit the farms to use those updated images.
At a high-level, the system's agent update capability works as follows:

- The system makes regular contact with the VMware CDS (Component Download Service) software distribution network to see if a new version of the Horizon Agents Installer is available. If so, the system automatically downloads that version to your Horizon Cloud pods.

- After a new version is downloaded, the Images page reflects that an update is available. A visual indicator is displayed for those images that have the agent-related software at a level prior to the new version.

- During the agent update process:
 - The system powers on the selected image's virtual machine (VM), clones a duplicate VM from the powered-on image, and then runs the convert-to-image process on the selected image to return it to its original published state. During this part of the process, the selected image's status on the Images page changes from Published to In Transition.
 - When the duplicate VM exists, the system powers it on, installs the agent-related software using the newer update version that was selected in the wizard, and then runs the convert-to-image process on that duplicate to publish it.
 - At the end of the agent update process, the Images page lists both the originally selected image and its duplicate, where the duplicate image is the one with the updated agent software installed in it.

Important At the end of the agent update process, the RDSH image you selected when you clicked **Update Agent** ends up in the same state it was in when the process started, with its original agent version level. The new duplicate image gets the agent software at the selected update level.

The agent update process results in a new assignable image that is a duplicate of the original, with the agent-related software updated to the version you specify in the wizard. The agent update workflow automatically clones the original image to make a new VM, installs the agent-related software of the specified level into that VM, and then converts that VM to make it an assignable (published) image. The system bases the name of the new image on the original image's name appended with a dash and a number. For example, if the original image's name is SalesGold, the agent update process results in an image such as SalesGold-2. At the end of the process, both images are listed on the Images page.

The screenshot below illustrates the two images listed on the Images page after running the agent update process on the image named pat2016 and selecting the most recently available update version. Because the original image is unchanged at the end of the process, the blue dot remains displayed next to it. The pat2016-1 image contains the agent software at the update level, and because there are no newer update versions in the system yet, the pat2016-1 image has no blue dot next to it.
Prerequisites

Before you can use the Update Agent action on an RDSH image in your Horizon Cloud environment, the image must already have agent-related software at the following versions or later:

- Version 7.3.2 for the Horizon View Agent (64-bit)
- Version 17.2 for the Horizon DaaS Agent

You can see the agent version number in the properties on the image’s details page. From the Images page, click on the image to open its details page.

Procedure

1. Navigate to the Images page by clicking **Inventory > Images**.

 On the Images page, a blue dot appears next to the name of any image for which an update applies. If you hover over a blue dot, a popup displays indicating the new version of the Horizon Agents Installer available for that image.

 The screenshot below illustrates that an agent update is available for the image named pat2016.

 ![Images](screenshot.png)

 Hover your cursor over that blue dot to see what updates are available.
2 Select the check box next to the image you want to update.

3 Click **Update Agent**.

The Agent Update wizard appears.

4 In the Software step, select the update version you want to use from the drop-down list and click **Next**.

5 (Optional) In the Command Line step, add any command-line options that might be relevant for this update on the image.

The wizard displays a message that indicates whether command-line options are available for the specified update.

6 Click **Submit**.

- A message displays at the top of the page indicating that the update has started.
- The system creates a clone virtual machine (VM) of the original image and then updates the agent-related components on that clone image. After the clone image is updated, the system runs the convert-to-desktop process to turn it into a published image.

You can view the progress of the update task by selecting **Monitor > Activity**. If the task is not completed successfully within 24 hours, it is shown in failure status.
What to do next

- Update the farms that are using the original image by editing the farms to use the new duplicate image, the image which now has the updated agent software on it. In each farm's details page, click the General Settings Edit link to open a window, select the new duplicate image, and save.

- When you have updated the farms that were using the original image and can determine the original image is no longer needed by your organization, use the Images page to delete the original image. Deleting the original image is a best practice, to prevent other administrators in your organization from using an image that has down-level agents.

The following screenshots illustrate the location of the Edit link on the farm's details page and the window that subsequently opens when you click that link.

In this window, use the Image drop-down to select the new duplicate image that has the updated agents. In this example, the farm goes from using its original pat2016 image to the new pat2016-1 image that resulted from the agent update workflow.
Update Agent Software for Dedicated VDI Desktop Assignments

To update the agent-related software that is installed in the desktop VMs that are used by a dedicated VDI desktop assignment, use the Assignment page's Update Agent action. You make the agent update on the specific dedicated VDI desktop assignment. This method is different than for agent updates for floating VDI desktop assignments.

For a high-level description of how the agent update capability works in Horizon Cloud for dedicated VDI desktop assignments, see How the Agent Update Feature Works for Dedicated VDI Desktop Assignments.

Important These steps are for dedicated VDI desktop assignments. These steps do not apply to floating VDI desktop assignments. For information on updating agents in your floating VDI desktop assignments, see Update Agent Software for Images Used by Floating VDI Desktop Assignments.
Prerequisites

Caution While the update agent operation is in progress, you must ensure that you have no other planned activities that might cause any of the assignment's desktop VMs to experience a power change operation. For example, notify your other administrators to avoid manually powering off or on one of these desktop VMs, and ensure that any power management schedules configured in this assignment will not cause the desktops to power on or off while the update agent tasks are running. If a desktop VM experiences a power-change operation while the system is running its agent update tasks on the VM, unexpected results can occur and leave that desktop VM in a state that requires manual recovery.

A best practice is to edit the assignment and remove any configured power management schedules to eliminate the chance a power-change operation will occur while the agent update tasks are running.

Before you can use the **Update Agent** action on a dedicated VDI desktop assignment in your Horizon Cloud environment, that assignment must be using an image that has agent-related software at the following versions or later:

- Version 7.3.2 for the Horizon View Agent (64-bit)
- Version 17.2 for the Horizon DaaS Agent

If the assignment's agent-related software is at an earlier version, the Assignments page will not show the blue dot indicator next to the assignment. You can see the agent version number in the Agent Software section of the dedicated VDI desktop assignment's summary page. From the Assignments page, click the assignment to open its details page.

Procedure

1. Navigate to the Assignments page by clicking **Assign**.

 On the Assignments page, a blue dot appears next to the name of any dedicated VDI desktop assignment for which an update applies. If you point at a blue dot, a pop-up box displays indicating the new version of the Horizon Agents Installer available for that assignment.

 The following screenshot illustrates that an agent update is available for the assignment named *la24dedsales*.

 ![Assignments Page Screenshot](image)

 Hold your pointer over that blue dot to see what updates are available.
2. Select the check box next to the image you want to update.

3. Click **Update Agent**.

 The Agent Update wizard appears.

4. In the **Software** step, select the update version you want to use from the drop-down list.

5. (Required) In the **Available VMs to Users** field, specify the percentage of desktop VMs in the assignment that you want powered on and available to end users during the upgrade process.

 Important If you do not need desktops available, type a zero (0). You must specify a value for **Available VMs to Users**, even when you do not care about having desktop VMs available to users during the update process.

 This value determines how many desktop VMs will be accessible to users over the time the system performs the update on the assignment. This setting is useful for a desktop assignment with a small
number of desktops, less than 30 desktops or a few multiples of 30 (like 60 or 90), because it can ensure a higher percentage of a small-sized pool is available as the system goes through updating the desktops. For examples, see How the Agent Update Feature Works for Dedicated VDI Desktop Assignments.

Setting a higher availability percentage results in an adjustment to the number of desktops in the batch of currently updating VMs. When updating the assignment, the system updates a batch of VMs in parallel. By default, the system uses 30 VMs for each batch until the remaining number of VMs to update is less than 30. At that point, the final batch is for those remaining VMs. Because it takes approximately 30 minutes to fully update a VM, even though a set of VMs is getting updated in parallel, that set of update-in-progress VMs is unavailable for that amount of time.

This option has less effect when the assignment has many desktops, where the system's maximum default 30 VMs per batch is a small percentage of the assignment's total number of desktops.

6 (Optional) To have the system skip those desktops that have logged-in users, set the Skip VMs with Logged-In User toggle to Yes.

When that toggle is set to Yes, the Retry Skipped VMs toggle appears.

```
Skip Disconnected and Active Sessions

Skip VMs with Logged-in User: YES

Retry Skipped VMs: NO
```

7 (Optional) To have the system automatically retry any of skipped VMs, set the Retry Skipped VMs toggle to Yes.

When that toggle is set to Yes, the Job Timeout field appears.

```
Retry Skipped VMs: YES

*Job Timeout: 720 Minutes
```

8 (Optional) In the Job Timeout field, specify the time period over which you want the system to continue automatically trying to update the skipped VMs.

The Job Timeout field sets the number of minutes that the system retries updating the skipped VMs. Every 30 minutes, the system tries to update the skipped VMs until it reaches the end of this time period or until all of the assignment's desktop VMs have been updated.

You can enter a value that ranges from 120 minutes (2 hours) to 1440 minutes (24 hours). The default value is 720 minutes (12 hours).

Note VMs that encounter an error during the update process are not retried. For a failed update, the VM rolls back to the agent version that it had before the update process started.
9 Click Next.

10 (Optional) In the Command Line step, add any command-line options that might be relevant for this update on the image.

 The wizard displays a message that indicates whether command-line options are available for the specified update.

11 Click Submit.

 ■ A message displays at the top of the page indicating that the update has started.
 ■ The system updates the agent-related components on the desktop VMs in the dedicated VDI desktop assignment.

You can view the progress of the update task by selecting Monitor > Activity.

How the Agent Update Feature Works for Dedicated VDI Desktop Assignments

This topic is a high-level description of how the agent update capability works in Horizon Cloud for dedicated VDI desktop assignments.

The system makes regular contact with the VMware CDS (Component Download Service) software distribution network to see if a new version of the Horizon Agents Installer is available. If so, the system automatically downloads that version to your Horizon Cloud pods.

After a new version is downloaded, the Administration Console's Assignments page reflects that an update is available. A visual indicator is displayed for those dedicated VDI desktop assignments that have the agent-related software at a level prior to the new version.

You initiate the update by selecting the dedicated VDI assignment and starting the agent update wizard as described in the steps in Update Agent Software for Dedicated VDI Desktop Assignments. Besides selecting the version to use for the update, you can specify the following options.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available VMs to Users</td>
<td>Use this field to specify a percentage of the assignment's VMs to keep available for users during the update. This option is useful for a small-sized desktop assignment, with desktops fewer than 30 or a couple of multiples of 30 (like 60 or 90). Because the system updates the desktops in batches of 30 by default, if the assignment has 30 or less desktops, all the desktops will start the update process at the same time. If all the desktops are actively in the update process, none of the entitled users can make new connections to the desktops until the update process has completed. The agent update process takes approximately 30 minutes until the updated desktop is ready for an end-user connection. Similarly, in the case where the desktop assignment's desktops are around 60, the default batch of 30 results in 50% of the desktops being unavailable. Therefore, you can use this field to ensure that a greater percentage of a small-sized pool is available as the system goes through and updates the desktops. Setting a higher availability percentage results in an adjustment to the number of desktops in each batch of updating VMs. For an assignment with many desktops, this option has less effect because the system's maximum default 30 VMs per batch is a small percentage of the assignment's total number of desktops.</td>
</tr>
<tr>
<td>Skip VMs with Logged-In User</td>
<td>Have the system skip updating VMs that have a logged-in user, a session that is either active or disconnected. This setting avoids the system's default behavior of forcing end users off their desktop when the update process starts on that desktop.</td>
</tr>
</tbody>
</table>
| **Retry Skipped VMs and Job Timeout** | When you have the system skip updating VMs that have a logged-in user, you can optionally specify whether to have the system automatically retry updating any skipped VMs. In this case, after the system has gone through the assignment's desktop VMs and updated those VMs without logged-in users, the system:
1. Checks the ones that it initially skipped to see if those VMs have logged-in users.
2. Updates any of the skipped VMs which have no logged-in users.
3. Periodically repeats steps 1 and 2 until the time specified in the Job Timeout field has elapsed.
If you do not have the system automatically retry the skipped VMs, you can manually take care of those VMs later. Important VMs that encounter an error during the update process are not retried. For a failed update, the VM rolls back to the agent version that it had before the update process started. |

After you submit the update task in the wizard's last step, the system begins updating the desktops in the dedicated VDI desktop assignment. When updating the assignment, the system updates a batch of VMs in parallel. By default, the system uses 30 VMs for each batch until the remaining number of VMs to update is less than 30. At that point, that final set is for updating those remaining VMs. Because it takes approximately 30 minutes to fully update a VM, even though a set of VMs is getting updated in parallel, that set of update-in-progress VMs is unavailable for that stretch of time. The number of in-progress VMs depends on whether you specified to have a percentage of the VMs to be kept available during the update. When you set an availability percentage, the system adjusts the set of in-progress VMs to meet the availability percentage. The following table illustrates some examples.
Examples

<table>
<thead>
<tr>
<th>Description</th>
<th>Available VMs to Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>When you do not set an availability percentage, the availability percentage is zero and the run-time batch size is 30 VMs, the default. If the assignment has 30 or fewer desktops, all desktops in the assignment are updated together in one batch.</td>
<td>not set (= 0%)</td>
</tr>
<tr>
<td>With an assignment of 20 desktops, and you want 80% of them to be kept available, that means the system must keep 16 available at any time. In this case, the system:</td>
<td>Assignment has 20 desktops and Available VMs to Users= 80%</td>
</tr>
<tr>
<td>1 First updates a batch of 4 VMs (20 minus 16).</td>
<td></td>
</tr>
<tr>
<td>2 Counts the 4 updated VMs plus 12 not-yet-updated ones to keep 16 available, and updates a second batch of 4 VMs.</td>
<td></td>
</tr>
<tr>
<td>3 At this point, 8 VMs are updated and 12 are not-yet-updated. The system continues updating the not-yet-updated VMs in batches of 4. With each subsequent batch, the ones kept available are a mixture of updated VMs and not-yet-updated VMs.</td>
<td></td>
</tr>
<tr>
<td>With an assignment of 100 desktops, and you want 80% of them to be kept available, that means the system must keep 80 available at any time. In this case, the system:</td>
<td>Assignment has 100 desktops and Available VMs to Users= 80%</td>
</tr>
<tr>
<td>1 First updates a batch of 20 VMs (100 minus 80).</td>
<td></td>
</tr>
<tr>
<td>2 Counts the 20 updated VMs plus 60 not-yet-updated ones to keep 80 available, and updates a second batch of 20 VMs.</td>
<td></td>
</tr>
<tr>
<td>3 At this point, 40 VMs are updated and 60 are not-yet-updated. The system continues updating the not-yet-updated VMs in batches of 20.</td>
<td></td>
</tr>
<tr>
<td>With an assignment of 100 desktops, and you want 25% of them to be kept available, that leaves 75 VMs that can be updated first. In this case, the system:</td>
<td>Assignment has 100 desktops and Available VMs to Users= 25%</td>
</tr>
<tr>
<td>1 First updates a batch of 30 VMs, which is its default batch size, leaving 70 not-yet-updated.</td>
<td></td>
</tr>
<tr>
<td>2 Out of the 70 not-yet-updated, updates a second batch of 30 VMs out of that, to make 60 VMs updated and 40 VMs not-yet-updated from the 100 total number of desktops.</td>
<td></td>
</tr>
<tr>
<td>3 Now that 60 VMs are updated, 25 of those updated VMs can meet the 25% availability setting. So the system uses its default 30 VM batch size and updates 30 VMs out of the remaining 40 not-yet-updated VMs.</td>
<td></td>
</tr>
<tr>
<td>4 The system updates the remaining VMs, with 10 in this final batch.</td>
<td></td>
</tr>
</tbody>
</table>

At the end of the agent update process, the assignment's summary page lists the version of the Horizon Agents Installer that is in effect.

During the time the system is updating the desktops, the desktops' end users encounter the following behaviors:

- If a desktop has an active session and you did not specify skipping VM with active users, that user is warned five minutes before the update occurs. This five-minute warning is to give the user time to save any in-progress work.

- If a user attempts to log in to a desktop that is being updated, the login is unsuccessful and the user receives a message that the desktop is not yet available.

You can view the progress of the update task by selecting **Monitor > Activity**. The task description indicates the update being performed and the assignment on which it is being performed. If the task is not completed successfully within 24 hours, and the retry and job timeout options are not in effect, the update task is shown in failure status.
If any VMs are skipped in the update task, the update task has Partial Success status on the Activity page. In the Activity page, you can see how many VMs are skipped in the update task. If the Activity page shows a number of skipped VMs at the end of the update task even though the retry option was set to Yes, either the Job Timeout value was not long enough for the system to get to all of the skipped VMs or the end users never logged out of those VMs.

Update Agent Software for Images Used by Floating VDI Desktop Assignments

To update the agent-related software that is installed on the images that are used by floating VDI desktop assignments, you first use the Images page’s Update Agent action. Then you edit the floating VDI desktop assignments to use those updated images.

Caution For a dedicated VDI desktop assignment, the recommended way to update the Horizon agent software is to run the agent update operation on the assignment itself, from the Assignments page (see Update Agent Software for Dedicated VDI Desktop Assignments). Even though you can technically follow the steps here on the Images page to run the agent update operation and make the updated duplicate image, when you edit a dedicated VDI desktop assignment to use such an image, only unassigned desktop VMs in that dedicated VDI desktop assignment are recreated to use the updated image. The system does not touch the assigned desktop VMs. When you edit a dedicated VDI desktop assignment to use an image that is different from the dedicated VDI desktop assignment’s original one, assigned desktop VMs remain using the original image until they become unassigned again.

At a high-level, the system’s agent update capability works as follows:

- The system makes regular contact with the VMware CDS (Component Download Service) software distribution network to see if a new version of the Horizon Agents Installer is available. If so, the system automatically downloads that version to your Horizon Cloud pods.

- After a new version is downloaded, the Images page reflects that an update is available. A visual indicator is displayed for those images that have the agent-related software at a level prior to the new version.

- During the agent update process:
 - The system powers on the selected image, clones a duplicate virtual machine (VM) from the powered-on image, and then runs the convert-to-image process on the selected image to return it to its original published state. During this part of the process, the image’s status on the Images page changes from Published to In Transition.
 - When the duplicate VM exists, the system powers it on, installs the agent-related software using the newer update version that was selected in the wizard, and then runs the convert-to-image process on that duplicate to publish it.
At the end of the agent update process, the Images page lists both the original image and its duplicate, where the duplicate image has the updated agent software installed in it.

Important At the end of the agent update process, the image you selected when you clicked Update Agent ends up in the same state it was in when the process started, with its original agent version level. The new duplicate image gets the agent software at the selected update level.

The agent update process results in a new assignable image that is a duplicate of the original, with the agent-related software updated to the version you specify in the wizard. The agent update workflow automatically clones the original image to make a new VM, installs the agent-related software of the specified level into that VM, and then converts that VM to make it an assignable (published) image. The system bases the name of the new image on the original image's name appended with a dash and a number. For example, if the original image’s name is SalesGold, the agent update process results in an image such as SalesGold-2. At the end of the process, both images are listed on the Images page.

The screenshot below illustrates the two images listed on the Images page after running the agent update process on one image and selecting the most recently available update version. Because the original image is unchanged at the end of the process, the blue dot remains displayed next to it. The other image contains the agent software at the update level, and because there are no newer update versions in the system yet, that image has no blue dot next to it.

Prerequisites

Before you can use the Update Agent action on an image in your Horizon Cloud environment, the image must already have agent-related software at the following versions or later:

- Version 7.3.2 for the Horizon View Agent (64-bit)
- Version 17.2 for the Horizon DaaS Agent

You can see the agent version number in the properties on the image’s details page. From the Images page, click on the image to open its details page.
Procedure

1. Navigate to the Images page by clicking **Inventory > Images**.

 On the Images page, a blue dot appears next to the name of any image for which an update applies. If you hover over a blue dot, a popup displays indicating the new version of the Horizon Agents Installer available for that image.

 The screenshot below illustrates that an agent update is available for the image named la24win10N.

 Hover your cursor over that blue dot to see what updates are available.

2. Select the check box next to the image you want to update.

3. Click **Update Agent**.

 The Agent Update wizard appears.

4. In the Software step, select the update version you want to use from the drop-down list and click **Next**.
5. (Optional) In the Command Line step, add any command-line options that might be relevant for this update on the image.

The wizard displays a message that indicates whether command-line options are available for the specified update.

6. Click **Submit**.

- A message displays at the top of the page indicating that the update has started.
- The system creates a clone virtual machine (VM) of the original image and then updates the agent-related components on that clone image. After the clone image is updated, the system runs the convert-to-desktop process to turn it into a published image.

You can view the progress of the update task by selecting **Monitor > Activity**. If the task is not completed successfully within 24 hours, it is shown in failure status.

What to do next

- Update the floating VDI desktop assignments that are using the original image by editing the assignments to use the new duplicate image, the image which now has the updated agent software on it. In each assignment's details page, click the General Settings **Edit** link to open a window, select the new duplicate image, and save.

- If you have any dedicated VDI desktop assignments that are using the original image and you want to move them to the same agent level, update the agent on those assignments following the steps in **Update Agent Software for Dedicated VDI Desktop Assignments**.

 Important Even though you can edit a dedicated VDI desktop assignment to use the new duplicate image, only unassigned desktop VMs will be updated in that method. If you want to update agents on all desktop VMs in a dedicated VDI desktop assignment, use the steps in **Update Agent Software for Dedicated VDI Desktop Assignments**.

- When you have updated the assignments that were using the original image and can determine the original image is no longer needed by your organization, use the Images page to delete the original image. Deleting the original image is a best practice, to prevent other administrators in your organization from using an image that has down-level agents.

Managing Your Pods Deployed in Microsoft Azure

After your customer account has its first cloud-connected pod and you have fully registered the Active Directory domain, you can deploy additional pods and see them in the Horizon Cloud Administration Console. For pods deployed in Microsoft Azure, you can perform tasks to manage them, such as monitoring their capacity limits and updating their subscription information, as needed. You can also edit a pod to change its settings, including its gateway configuration settings.

You primarily use the Capacity page to work with your pods, as well as the pods' individual detail pages. You navigate to a pod's details page from the Capacity page. For details about the Capacity page, see **Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types**.
In addition to the Capacity page, you can use the Dashboard page to get a snapshot view of the health, allocated capacity and utilization, and user activity for your entire set of pods. See Health Visibility and Insights into Your Cloud-Connected Pods Provided by the Cloud Monitoring Service in Horizon Cloud.

Obtain the Pod Gateway’s Load Balancer Information to Map in your DNS Server

When a deployed Horizon Cloud pod in Microsoft Azure has a gateway configuration, you must create a CNAME record in your DNS server that maps the fully qualified domain name (FQDN) that you entered in the deployment wizard to the pod gateway’s deployed Azure load balancer information. For an external gateway configuration with a public load balancer IP address, you map the FQDN that you entered in the deployment wizard to the gateway’s Azure load balancer resource’s auto-generated FQDN. For an internal gateway configuration or an external gateway configuration with a private load balancer IP address, you map the FQDN that you entered in the deployment wizard to the gateway’s Azure internal load balancer resource’s private IP address. You can obtain the Azure load balancer information from the pod’s details page in the Administration Console.

In the deployment wizard, you provided:

- Your FQDN (for example, ourOrg.example.com or ourApps.ourOrg.example.com). This FQDN is the one which your end users use to access their desktops.
- An SSL certificate that is associated with that FQDN and which is signed by a trusted certificate authority.

External gateway configuration with a public load balancer IP address

If your pod deployment specified using an external gateway with a public IP address, the deployed Unified Access Gateway instances are configured with an Azure load balancer resource that has a public IP address and an auto-generated public FQDN. The form of the auto-generated public FQDN is in the pattern vmw-hcs-ID-uag.region.cloudapp.azure.com, where vmw-hcs-ID matches the pattern within the name of the resource group in which the Unified Access Gateway instances reside, and region is the Microsoft Azure region where the pod is located.

Tip The pod’s details page in the Administration Console displays the auto-generated public FQDN.
For the external gateway, your DNS server must map those two FQDNs. When the addresses are mapped, your end users can enter your provided FQDN as the server address in the Horizon Client or use with HTML Access to access the desktops served by that pod.

```
ourApps.ourOrg.example.com vwm-hcs-ID-uag.region.cloudapp.azure.com
```

When you specify using an internal gateway or using an external gateway without a public IP address on its load balancer, the deployed Unified Access Gateway instances are configured with an Azure load balancer resource that has a private IP address. The typical reason why you deploy an external gateway without a public IP address is to add a firewall or NAT in front of that Azure load balancer, to remove the ability of directly connecting to it.

Tip The pod's details page in the Administration Console displays the IP address to use.

For the internal gateway or an external gateway without a public IP address on its load balancer, your DNS server would map your FQDN to the deployed Azure load balancer's private IP address. When they are mapped, your end users can enter your provided FQDN as the server address in the Horizon Client or use with HTML Access to access the desktops served by that pod.

```
ourApps.ourOrg.example.com Azure-load-balancer-private-IP
```

The pod’s details page lists the information you need for this mapping. Use these steps to locate the appropriate information in the pod’s details page.

Prerequisites

The pod must be successfully deployed into your Microsoft Azure environment, according to the steps in *Horizon Cloud Deployment Guide*.

Procedure

1. In the Administration Console, navigate to **Settings > Capacity**, and click on the pod to open its details page.

2. On the **Summary** tab, scroll down towards the bottom of the page and locate the sections labeled **Internal UAG** and **External UAG**.

Note The page includes a section only when the pod has the corresponding gateway configured. If the pod only has an internal gateway, then only the **Internal UAG** section appears and not the section for the external one. If the pod has both configurations, then both sections appear in the page.
The following screenshot shows the portion of the page for a pod that has both types of configurations, internal and external.

![Gateway Settings](image)

3. For each configuration that your pod has, locate the **Load Balancer FQDN** field and copy its displayed value.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>The displayed value is the gateway configuration's Microsoft Azure load balancer resource's private IP address. This numeric IP address is assigned to the gateway's load balancer resource from the pod's desktop subnet.</td>
</tr>
<tr>
<td>External with a public load balancer IP address</td>
<td>The displayed value is the Microsoft Azure load balancer resource's auto-generated public FQDN in the form <code>vmw-hcs-podID-uag.region.cloudapp.azure.com</code>, where region is the Microsoft Azure region and <code>podID</code> is the pod's ID value. That pod ID is displayed on its details page.</td>
</tr>
<tr>
<td>External with a private load balancer IP address</td>
<td>The displayed value is the Microsoft Azure load balancer resource's private IP address. This numeric IP address is assigned to the load balancer resource from the pod's DMZ subnet.</td>
</tr>
</tbody>
</table>

4. In your DNS server, map that load balancer FQDN value to the FQDN that was provided in the wizard when the pod was deployed.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td><code>ourApps.ourOrg.example.com Azure-load-balancer-private-IP</code></td>
</tr>
<tr>
<td>External with a public load balancer IP address</td>
<td><code>ourApps.ourOrg.example.com vwm-hcs-</code>
<code>ID-uag.region.cloudapp.azure.com</code></td>
</tr>
<tr>
<td>External with a private load balancer IP address</td>
<td><code>ourApps.ourOrg.example.com Azure-load-balancer-private-IP</code></td>
</tr>
</tbody>
</table>

Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod

Upload SSL certificates to the pod itself when you are going to tell your end users to make direct connections to the FQDN that you map to the pod's tenant IP address (or to that numeric IP address...
itself, without an FQDN mapping). When you use these steps to upload an SSL certificate, the certificate gets loaded onto the pod manager VMs. If the pod is enabled for high availability, it has two manager VMs and the certificate will get loaded onto each one. If the pod is not enabled for high availability, it has one manager VM and the certificate gets loaded on to that one.

These steps are for uploading an SSL certificate so that the system can install it on the pod's manager VMs to support the following use cases.

- When you deployed the pod without any Unified Access Gateway VMs whatsoever (zero Unified Access Gateway VMs at all). So that in this case, you made your pod with zero gateway VMs altogether, and you are telling your end users to use any of the operating-system-specific Horizon Clients and configure the connection in the client to use the pod manager VM's address (either its numeric tenant IP address or to an FQDN that you mapped to that numeric tenant IP address in your DNS server).

 Attention Unlike when using one of the operating-system-specific Horizon Clients, when you type the pod's FQDN directly into a browser, that browser connection will behave as an untrusted connection even when you have used these steps to upload an SSL certificate to the pod. Typing the pod's FQDN directly into a browser makes the browser connect using the HTML Access (Blast) connection type, and due to the way HTML Access (Blast) works, the browser will display the typical untrusted certificate error when it makes the connection direct to the pod. To have such browser connections — these HTML Access (Blast) connections — avoid the displayed untrusted certificate error, the pod would need gateways configured so that you can have those browser connections go through the appropriate gateway configuration: an external gateway configuration for your end users sitting outside of your corporate network and an internal gateway configuration for your end users sitting inside your corporate network. If you do not want to expose your FQDN to the Internet, use an internal gateway configuration. The internal gateway configuration uses a Microsoft internal load balancer to which end users who are internal to your corporate network can point their connections.

- When the pod has external Unified Access Gateway VMs for those of your end users who are connecting over the Internet, you should upload an SSL certificate to the pod when you decided not to deploy the internal Unified Access Gateway VMs. So that in this case, you made your pod with only external Unified Access Gateway VMs and zero internal Unified Access Gateway VMs. Even though you've got your external end users using your pod's external Unified Access Gateway VMs over the Internet for their connections, you are telling your internal end users — those users internal to your corporate network — to make their client connections directly to the pod manager VM's address (either to its numeric tenant IP address or to an FQDN that you mapped to that numeric tenant IP address in your DNS server). A scenario like this typically occurs when you usually have your end users using a VPN.

 Important During the procedure of uploading the certificate, the environment is temporarily unavailable and you cannot perform administrator operations. Upload the certificates after confirming that no users are on the system and no running tasks exist, such as importing base images, publishing images, provisioning farms or desktops, assigning desktops, and so on.
Prerequisites

Caution Uploading and saving incorrect or improperly formed SSL certificate files to the pod can result in loss of access to the pod. To avoid inability to recover the pod, if you earlier notified VMware Support that you do not want the pod to participate in the backup and restore service that is provided by default for Horizon Cloud pods in Microsoft Azure, before you upload an SSL certificate to the pod, contact VMware Support to turn on the backup service for the pod to ensure a backup is available in case you lose access to the pod after uploading the certificate files. See Backup and Restore Service for Pods in Microsoft Azure for information about the default backup and restore service. If your pod manifest version is lower than 1101, contact VMware Support to update your pod so that it can participate in the backup and restore service.

Before performing these steps, verify you have the following items.

- In your DNS server, you have mapped a fully qualified domain name (FQDN) to the pod's tenant IP address. You can locate the pod's tenant IP address from the pod's details page, navigating from the Administration Console's Capacity page. This mapping is needed so that a Horizon Client application that is configured to use that FQDN can get a trusted connection to the pod.

 Important For a pod newly deployed starting with the September 2019 release and for a pod upgraded to the September 2019 release, the displayed tenant IP address is the IP address for the pod's load balancer resource. This pod load balancer exists for pods of manifest version 1600 or later. For a description of the load balancer and the pod design for this release, see High Availability and Your Horizon Cloud Pod in Microsoft Azure.

- You have a valid trusted SSL certificate based on that FQDN.

- That SSL certificate is in the following format needed for you to provide it into the Administration Console's Upload Certificate window. Because the Administration Console's Upload Certificate workflow requires specific elements, you must ensure that this SSL certificate adheres to the following characteristics:

 - Three separate files for uploading into the Upload Certificate window:
 - A CA.crt file for the CA certificate.
 - A SSL.crt file for your CA-signed SSL certificate.
 - A.key file for the RSA private key.

 The following screenshot illustrates the Upload Certificate window and how it expects those three separate files.
The CA certificate file and the SSL certificate files for this upload must be in PEM format, which is a BASE64-encoded DER representation of an X.509 certificate. They both have a .crt extension. When looking at their contents, these two files should look similar to the following example.

```
-----BEGIN CERTIFICATE-----
MIIFejCCA2KgAwIBAgIDAIi/MA0GCSqG

-----END CERTIFICATE-----
```

The private key must not have a password or passphrase associated with it. The .key file looks like the following example:

```
-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAoJmURboiFut+R34CNFibb9fjtI+cpDarUzqe8oGKFzEE/jmj

-----END PRIVATE KEY-----
```

** Procedure **

1. Select **Settings > Capacity**.
2. Open the pod's summary page by expanding the pod's row and clicking its name.
3. Click **More > Upload Certificate**.

 The Upload Certificate window opens. The following screenshot is an example of the window.
4 For each of the certificate files listed in the Upload Certificate dialog box, click **Select** and navigate to where you have the file available to upload.

5 When the window shows that all of the certificate files are listed in the window, click **Save**.

The following screenshot is an illustration of the window with all certificate files listed before saving them to the system.

The Administration Console will be unresponsive for 5 to 10 minutes for all administrators while the certificates are applied.

6 When the system is responsive again, refresh the browser page and use your credentials to reauthenticate.

7 Verify that the certificates are shown as valid in the Pod Certificates section of the pod's details page.

Update the Subscription Information Associated with Deployed Pods

In some circumstances, you might want to update the subscription information that is associated with your deployed pods. For example, if you created the subscription's application key to have it expire in one year, the year passes, and the key expires, you would have to use the Microsoft Azure portal to create a
new key for the subscription. After creating the new key, then you need to update the subscription information in the Administration Console to enter the new key there.

You edit the subscription information used by a pod or by its external gateway — when that gateway is deployed in a separate subscription — from the pod’s details page. For a description of the subscription information fields, see Deploying Horizon Cloud Pods into Microsoft Azure from the Capacity Page.

Procedure

1. In the Administration Console, navigate to the Capacity page and click the pod to open its details page.
2. Locate the Subscription field for the subscription you need to update and click the edit icon.
3. Modify the values you want to update.
 You can change the Subscription Name, Application ID, and Application Key.

 Note The Subscription ID and Domain ID values cannot be updated.

4. Click Save.

Examine a Subscription’s Current Usage of Your Microsoft Azure Limits

Horizon Cloud monitors your pods’ usage of your subscription's limits. The Microsoft Azure limits are also known as quotas. The Dashboard page displays health warning information when the usage gets close to reaching the maximum limits on your subscription. You can examine the current usage for a given subscription from the pod details page of any of that subscription's pods.

When you register with Microsoft Azure for a subscription, you sign up for a particular amount of capacity in terms of Microsoft Azure limits. Types of these limits are things like VMs per subscription and cores per subscription. Each of your pods uses quota from the pod’s associated subscription’s Microsoft Azure limits.

Procedure

1. In the Administration Console, navigate to Settings > Capacity, and open the details page for any of the pods in that subscription.
2 In the pod details page, locate the **Subscription Limits** field and click on **show details** to see the subscription's usage of various Microsoft Azure limits.

If you see a high percentage of limits reported for a subscription, and the details show it is nearing close to the maximum number of cores or VMs from the various types, you can increase the number of cores allotted for that subscription in Microsoft Azure. You use the Microsoft Azure portal to increase the subscription's quotas for the various resources in the Microsoft Azure environment. Log into the portal and navigate to **Subscriptions**. Select the subscription name and then click **Usage + quotas** to see the subscription's usage levels. From that page, click **Request Increase** to get higher quotas for that subscription.

Updating Your Horizon Cloud Pod

VMware updates the Horizon Cloud software components periodically to include new features, improvements for service supportability and resiliency, user-experience improvements, and bug fixes. VMware typically updates the in-cloud management environment on a weekly basis and updates the software components used in a deployed pod on a roughly quarterly basis. When VMware updates the software components used in a deployed pod, the manifest number for the pod's software goes to a higher number. If there are improvements considered important for pod serviceability and support
operations, VMware will make a new manifest available even if the timing within a quarter of the previous manifest version. The normal update process takes place without incurring any system downtime.

Important If the pod is already integrated with the cloud-hosted Workspace ONE Access using the old Linux connector version 2017.12.1.0, you should update the connector to the latest supported version before updating the pod. To choose the connector version that is supported by this Horizon Cloud release, see the VMware Product Interoperability Matrixes at https://www.vmware.com/resources/compatibility/sim/interop_matrix.php. Then upgrade your existing connector by following the steps for your chosen connector version found in the VMware Workspace ONE Access documentation. After you have completed upgrading your connector, then upgrade your pod.

Updating your deployed pod means appropriately moving your pod’s current infrastructure components to a higher software manifest level. The infrastructure components are primarily the pod manager VMs and any Unified Access Gateway VMs that are configured for the pod. For example, a pod update can include updates for the pod management software or for the Unified Access Gateway software or for both.

You can use the Capacity page to see at a glance which pods have updates available for them. Navigate to **Settings > Capacity**. A visual indicator appears next to those pods that have updates available for them. When your cursor hovers over the indicator, a pop-up displays additional details.

The following screenshot illustrates the placement of the available update indicator when it appears in the Location view of the Capacity page.

You can see the update details for a specific pod by selecting **Settings > Capacity** and clicking the pod to open its summary page. When an update is available, an on-screen message describing the update appears at the **Version No** entry. The displayed version number corresponds to the version of the pod’s software manifest.
Note After you have updated a pod from prior releases to later ones, you can then update the agent-related software in the pod’s already published images, farms, and VDI desktop assignments to the same agent version level that comes with the updated pod version. The agent-related update is done in a process separate from updating the pod itself. For the steps on how to update the agent-related software after the pod is updated, see [Update Agent Software for RDSH Images](#), [Update Agent Software for Dedicated VDI Desktop Assignments](#), and [Update Agent Software for Images Used by Floating VDI Desktop Assignments](#).

This Horizon Cloud pod upgrade process is patterned after a software industry technique known as blue-green deployment.
The existing to-be-upgrade pod components are considered the blue components. Shortly after VMware releases a new pod manifest, the VMware Horizon Operations team runs some pre-checks and then designates your Horizon Cloud customer account as available to use the new manifest version. At the point in time when that new manifest version is designated in your customer account, the service builds a green set of components for the pod in your Microsoft Azure subscription. This green set is a parallel environments of the existing blue components.

Note Not all of the pod update process adheres exactly to a software industry blue-green deployment pattern. As an example, in the pod update process, when the newer instances are created alongside the existing ones, the newer ones are powered up and remain running until the pod has completed migrating to the new instances. Also, after the deployer validates the pod is successfully running on the newer components, the older VMs are deleted instead of remaining in an idle state.

End-to-End Process

Starting from when the VMware Operations team designates your customer account to use the new manifest version, the end-to-end sequence is:

1. The service creates a jump box resource group in the pod's subscription and deploys a jump box VM. This jump box VM orchestrates the creation of the green set of components.

2. The green set of components is created alongside the blue components, in the same resource groups. In the pod management resource group, the green set of pod manager VMs and their associated artifacts like NICs and disks are created. In the pod's gateway-related resource groups, the green set of Unified Access Gateway VMs are their associated artifacts are created. These green VMs are started and kept running until this entire end-to-end sequence is completed. The jump box VM and its resource group are deleted when the green components are successfully built and running.

Important Starting from this sequence point until the last step of the sequence, there are a duplicate number of VMs running: both the blue VMs and the green VMs. Therefore, it is prudent for you to schedule the upgrade to switch to the new pod software as soon as you see the notification banner that the upgrade is available to move to, and schedule it for a day and time earlier rather than later.

This process does not cause any downtime, and the parallel VMs do not affect the pod's operations. Unless the system encounters errors that only you can resolve in your Microsoft Azure environment, no actions are required from you at this point. If the service encounters any issues in deploying the green components, it detects whether the remedy for those issues is within your control. If the service determines that you can remedy the issues, a notification appears in the Administration Console. Because the remedy is in your control and cannot be resolved by VMware, if you get a notification of upgrade errors, you must complete the actions to resolve them and then contact VMware support to continue the pod update process. For details about the types of issues that you can remedy, see [Cores Needed for Upgrading a Pod in Microsoft Azure and Remedies for Typical Pod Upgrade Errors](#).

If the service determines an issue can be resolved by the VMware Operations team, it alerts the VMware Operations team, which will resolve the issue without any actions from you.
3 A notification banner appears in the Administration Console, letting you know an upgrade is available to move to and you can schedule the day and time for making the switch. The following screenshot is an example of what appears on the Capacity page.

Next, you must schedule the update to move the pod from using its current blue VMs and components to the green ones. You schedule this update from the pod’s summary page, by selecting **Update > Schedule**. You set a day and time for the service to switch the pod to using the new green components. The service deploys a jump box VM to configure the scheduler in the pod, and then deletes the jump box VM until the scheduled day and time.

Important Before the update runs, remove any management locks in Microsoft Azure that you might have set on any of the pod’s virtual machines (VMs). Any VMs with names that have a portion like `vmw-hcs-podID`, where `podID` is the pod’s ID value, belong to the pod. Microsoft Azure provides an ability to use the Microsoft Azure portal to lock resources to prevent changes to them. Such management locks can be applied on an entire resource group or on individual resources. If you or your organization has applied management locks on the pod’s VMs, those locks must be removed before the update runs. Otherwise, the update process will not successfully complete. You can locate the pod’s ID value in the pod’s details page from the Capacity page.

You determine the convenient time for the update to take place. Typically, the update itself, or the migration from the existing version to the new version, takes about ten minutes. As a best practice, schedule the update at a time when the environment is least busy. After the update is scheduled, the Administration Console displays the scheduled time in a top banner. You can reschedule the time for the update at any time prior to the scheduled time, if required by your organization’s needs.

Important When you schedule the update in the pod’s details page, you are prompted for a date and time. This time is local to your browser time zone.
At your selected day and time, the service again deploys a jump box VM to orchestrate the switch for the pod to use the green VMs and components. The green components become the current blue components. The process takes from five to fifteen minutes to complete, with the longer times for pods that have both an external and internal Unified Access Gateway configuration. The process migrates the data and configuration from your existing to-be-updated pod's infrastructure to the new.

During the migration, the following limitations apply:

- You cannot perform administrative tasks on the pod that is undergoing the update.
- End users who do not have connected sessions to their virtual desktops or remote applications served by the updating pod and who attempt to connect cannot do so.
End users who have connected sessions served by the updating pod will have those active sessions disconnected. After the migration is complete, those users can reconnect. No data loss will occur, unless you have used the `Immediately` option for the timeout handling in the farms and VDI desktop assignments.

Caution Users with connected sessions to desktops or remote applications served by farms and VDI desktop assignments with **Logoff Disconnected Sessions** set to **Immediately** will be immediately disconnected and those disconnected sessions are also logged off immediately. In those conditions, any in-progress user work is lost.

To avoid loss of in-progress end user data for this scenario, before the migration process starts, adjust the **Logoff Disconnected Sessions** setting in the farms and VDI desktop assignments to a time value that will give those users time to save their work. Then after the update is finished, you can change the setting back to what it was before.

After everything is migrated to the new environment and the pod is successfully running on the new instances, the system deletes the blue VMs from the pod’s resource groups, and the jump box resource group and its contents. Some artifacts, such as the NICs for the previous Unified Access Gateway instances, remain to preserve configuration values that are needed for the next pod update.

After the End-to-End Process is Complete

When the migration to the green components finishes, you can perform administrative tasks on the pod. To see the software version that a pod is currently running, select **Settings > Capacity** and click the pod to open its summary page. The page displays the current software version running. Click the software version number to see associated release information.
Post-Upgrade

Important If your configured Radius server is deployed in same VNet, then after the migration to the new infrastructure elements, you must update the settings on your Radius server to accept the new private IP addresses for the new internal Unified Access Gateway VMs. This is a one-time requirement for the first update on the pod, and does not have to be repeated for that pod's future updates.

Important Starting with this release, the pod architecture is updated to support high availability. After you upgrade your pod to manifest 1600 and subsequently enable high availability, if your pod was configured for direct connections, you should remap your DNS settings to point to the new tenant appliance IP address that will be displayed in the upgraded pod's details page. Until you update the DNS mapping, even though those direct user connections will still work, they won't have the high availability fail over if the active-broker manager VM goes down. For this use case, you map an FQDN to the IP address in the **Tenant appliance IP address** field that is displayed on the pod's details page, as described in [Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod](#). Prior to this release, that IP was the one assigned to the pod's manager VM's NIC on the tenant subnet. Starting in this release, for pods at manifest 1600 or later, the pod's tenant appliance IP address is the private IP address of the pod's load balancer. For existing pods that are upgraded to this release's manifest version, if you had configured a DNS name to point to the tenant appliance IP address for a pod of manifest 1493.1 or earlier, you should remap your DNS settings to point to the new tenant appliance IP address that will be displayed in the upgraded pod's details page.

Cores Needed for Upgrading a Pod in Microsoft Azure and Remedies for Typical Pod Upgrade Errors

When Horizon Cloud encounters errors in the pod upgrade process that block its progress and which you can remedy, those errors are surfaced to you in the Horizon Cloud Administration Console so that you can take the actions required to resolve them. The surfaced progress-blocking errors are under your control in your Microsoft Azure environment. Because the remedy is in your control and cannot be resolved by VMware, if you see notification of upgrade errors in the Administration Console, you must complete the actions to resolve them and then contact VMware support to continue the pod update process.

[Updating Your Horizon Cloud Pod](#) describes how the upgrade process works for a pod deployed in Microsoft Azure. Generally speaking, the upgrade process follows a blue/green pattern, where the existing to-be-upgraded pod resources in the pod's main resource group and gateway-related resource groups are the blue components. The first step of the process is creation of a jump box resource group in your subscription, and deployment of a jump box VM in that resource group. That jump box VM then orchestrates the creation of a parallel set of pod VMs in your subscription, within the pod's existing resource groups. This parallel set are the green components in the blue/green pattern. The green components include VMs that are parallel to the ones in the pod's main resource group and gateway-related resource groups, such as the pod manager VMs and Unified Access Gateway VMs. These VMs are started and remain running alongside the to-be-upgraded pod's VMs (the blue set's VMs) until the
end-to-end upgrade process is finished. The end-to-end upgrade process finishes only after you use the Administration Console to schedule the upgrade and that scheduled activity runs and completes the switch of the pod from using the blue VMs to the green VMs. When the pod is using the green VMs, the blue VMs are stopped and removed, and the jump box VM and its resources are deleted.

Creating the green VMs cannot complete successfully if your Microsoft Azure environment cannot accommodate creating those parallel green VMs alongside the existing pod VMs. A typical key reason this occurs is when the pod's associated Microsoft Azure subscription does not have enough quota left to instantiate the jump box VM and the green VMs. Another reason that building out the green VMs can encounter errors is if your pod is currently offline. At the time you schedule the update in the Administration Console, Horizon Cloud deploys the jump box VM so that it can keep track of the schedule and be ready to kick off the migration of the pod to the newer components at the time you scheduled. If the pod's associated Microsoft Azure subscription does not have enough quota left to instantiate the jump box VM and keep it running through the time period from your scheduled time and when the switchover to the green VMs is finished, an upgrade error is flagged for notification in the Administration Console.

For a description of the various system activities in the end-to-end pod upgrade process, see Updating Your Horizon Cloud Pod.

Upgrade-Blocking Errors that can Typically Occur

These are the upgrade-blocking errors that can typically occur and which you can remedy in your Microsoft Azure environment.

Subscription does not have the capacity available to instantiate the jump box VM.

The update process is designed to instantiate a jump box VM in the pod's subscription when the system builds out the green components, when you use the scheduler to schedule the update, and at the scheduled time to orchestrate the switch from blue to green components. This jump box VM orchestrates the work to get the new components ready and run the actual migration process. Along with your current quota usage by your existing pods' VMs that are using the same subscription, your subscription's quota needs to allow for an additional VM of the Standard_F2 VM specification, 2 cores (vCPUs). This quota requirement is in addition to the VM types and cores required for creating the parallel green VMs.

Subscription does not have enough of the appropriate cores (vCPUs) or VM sizes available to instantiate all of the VMs for the parallel green VMs.

When the green components are built out, for each VM in your current pod, another VM gets created. As a result, you will have a duplicate number of pod manager VMs and Unified Access Gateway VMs from the time the green components are built out until the switch from the blue components to green components occurs at the time you scheduled in the Administration Console. To accommodate creating these green VMs, your subscription's quota levels for cores (vCPUs) from the relevant Microsoft VM families must be enough to encompass the parallel green VMs along with the quota you have already used from that subscription for its existing
associated pods. See the quota and cores table below for the necessary cores for the various VM types and usages.

Pod is currently offline, or is not currently able to communicate with Horizon Cloud.

On the Capacity page, verify that the to-be-updated pod is reporting online status. Log in to the Microsoft Azure portal and check if the pod manager VM and its Unified Access Gateway VMs (if your pod has those) are running. If a VM is not running, power it on. For details about the resource groups in which those VMs are located, see Resource Groups Created For a Pod Deployed In Microsoft Azure.

Quota and Cores Needed For the Time from Deploying the Green VMs to When the Switch to the Green Pod is Completed

If you are notified about an update error due to lack of available cores, use the following table to see the additional quota you need. For the various VM types used in the current blue pod, the table at the end of this topic describes the quota used by those types, the additional quota needed when the green pod VMs are created, and the total quota needed for running both blue and green VMs from when the green VMs are created until the switch to the green VMs completes. For details about the VM family types and cores used by a pod, see the VM requirements for a pod documentation topic in the Deployment Guide.
<table>
<thead>
<tr>
<th>VM Types and Their Cores</th>
<th>Description</th>
<th>Total Quota for Running Blue VMs and Green VMs Until Switch to Green is Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard_D4_v3 VM type, 4 cores each</td>
<td>This VM type is used for the pod manager VMs.</td>
<td>For a pod with a single manager VM
Your quota must allow for the 4 cores of the existing (blue) manager VM plus an additional 4 cores for the parallel green manager VM. Eight (8) cores to cover this usage.</td>
</tr>
<tr>
<td>Note If the Standard_D4_v3 type is not available in your Microsoft Azure region, your pod is typically using Standard_D3_v2 VM type. That type also uses 4 cores.</td>
<td></td>
<td>For a pod with high availability enabled, that has two manager VMs
Your quota must allow for the 8 cores of the existing (blue) manager VMs (2 VMs of 4 cores each) plus an additional 8 cores for the parallel green manager VMs. Sixteen (16) cores to cover this usage.</td>
</tr>
<tr>
<td>Standard_A4_v2 VM type, 4 cores each</td>
<td>This VM type is used for the Unified Access Gateway VMs in your pod's gateway configurations. The number of cores your subscription needs to support depends on which gateway types are configured on your pod.</td>
<td>For a pod with only an external gateway
That external gateway has two Unified Access Gateway VMs, 8 cores (2 VMs times 4 cores each). For the green set, your quota must allow for those 8 cores of the existing (blue) Unified Access Gateway VMs plus an additional 8 cores for the parallel green Unified Access Gateway VMs. Sixteen (16) cores to cover this usage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For a pod with only an internal gateway
That gateway has two Unified Access Gateway VMs, 8 cores (2 VMs times 4 cores each). For the green set, your quota must allow for those 8 cores of the existing (blue) Unified Access Gateway VMs plus an additional 8 cores for the parallel green Unified Access Gateway VMs. Sixteen (16) cores to cover this usage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For a pod with both types of gateways
That gateway has four Unified Access Gateway VMs, 16 cores (4 VMs times 4 cores each). For the green set, your quota must allow for those 16 cores of the existing (blue) Unified Access Gateway VMs plus an additional 16 cores for the parallel green Unified Access Gateway VMs. 32 cores to cover this usage.</td>
</tr>
<tr>
<td>Standard_F2 VM, 2 cores</td>
<td>This VM is used for the jump box VM.</td>
<td>Your quota must allow for these 2 cores for the jump box VM to deploy and run during creation of the green components and during the time it needs to orchestrate the pod update activities.</td>
</tr>
</tbody>
</table>
Backup and Restore Service for Pods in Microsoft Azure

Horizon Cloud pods deployed in Microsoft Azure of manifest version 1101 or later automatically participate in the Horizon Cloud backup and restore service. Manifest version 1101 was first made available in the Horizon Cloud December 2018 release.

Note If you do not want a pod to participate in the backup and restore service, please file a VMware support request (SR) to request disabling the feature for that pod.

Backups

The service takes daily backups of the following items for each pod: the pod's manager virtual machine (VM), Unified Access Gateway settings, Network Security Groups (NSGs), and key vaults. No other resources are backed up. The system retains up to seven (7) backups. The backups are saved in your Microsoft Azure subscription in a separate resource group, which has a name in the pattern `vmw-hcs-podID-recovery`. The `podID` is the pod's ID identifier that is listed in the pod's details, accessed from the Administration Console's Capacity page.

Your Microsoft Azure subscription incurs a disk storage cost for the retained backups. Each disk is approximately 32 GB, so when the maximum of seven backups is reached, the incurred cost consists of 7 times the 32 GB disk storage cost applicable in your subscription's Microsoft Azure region.

If the system fails to take a daily backup, you will see a notification in the Administration Console. The VMware team is also alerted when the system fails to take the backup and will attempt to remedy and get backups resumed without any action from you.

Restores

To have a pod restored to one of the last 7 restore points, you make the request by filing a VMware SR. The VMware support team will advise you about the procedures as part of providing this overall service. The system's recovery process can recover the pod to the configuration that the backups hold in the last 7 restore points. After the system's recovery process, the VMware team will assist you to get the pod closer to its latest working state. After the pod is restored, some settings and configurations in the restored environment will require your input and for you to perform some actions in the environment. The VMware team will work with you during the post-restore reconfiguration steps to complete the process.

Important Because the backups are stored in a resource group in your Microsoft Azure subscription, if that resource group is lost, no restore is possible for the associated pod.

For pods of anifest 1600 and later, the pod architecture includes the Microsoft Azure Postgres database. This Microsoft Azure Postgres database is not backed up by the Horizon Cloud backup and restore service because the Microsoft Azure Postgres database is a Microsoft Azure managed service. If the pod's Microsoft Azure Postgres database is deleted, no restore is possible for that pod.

Changing Gateway-Related Items for a Deployed Horizon Cloud Pod in Microsoft Azure

You can change the gateway configurations on a deployed pod in a variety of ways. You make these changes using the pod's details page in the Horizon Cloud Administration Console. The Administration
Console is dynamic. It will only make available to you those actions that make sense to perform based on what gateway configuration already exists on the pod.

As described in the Deployment Guide, a pod can be deployed without any gateway configurations at all, an external or internal gateway configuration, or both. A deployed pod can also have RADIUS two-factor authentication set on neither, one, or both of its gateway configurations. You can change the following gateway-related items on a deployed pod from the pod’s details page.

- Add gateway configurations to the pod. If the pod has no gateway configuration, you can add one or both types. If the pod has one type of gateway, you can add the one that's missing.
- Delete gateway configurations from the pod.
- Edit an existing gateway configuration to add, change, or disable the RADIUS two-factor authentication settings for that gateway.
- Change a gateway configuration's settings.

Add a Gateway Configuration to a Deployed Horizon Cloud Pod

When you initially deployed a Horizon Cloud pod into Microsoft Azure no gateway, or with only one type of gateway, you can later add a gateway configuration to the pod using the Edit Pod workflow. You launch that workflow from the pod's details page.

Tip The Administration Console is dynamic. It will only make available in the user interface those workflows and toggles and fields that make sense and are appropriate based on the pod's current configuration.

As described in Chapter 5 Introduction to Horizon Cloud Pods in Microsoft Azure, a pod can have an external gateway configuration or an internal one or both. You can use this workflow to add the type that the pod does not already have. At the same time that you edit the pod to add a gateway configuration, you can also specify two-factor authentication settings for that gateway.

Important When modifying the pod using these steps, keep in mind the following points:

- Keep in mind that the IP setting for an external gateway's load balancer cannot be changed after the external gateway configuration is originally set. When you add an external gateway configuration, you have the option to have it use a private IP address for the gateway's load balancer instead of a public one. The default is to use a public IP.

- During the time the system is changing the pod's configuration until it is finished, the following limitations apply:
 - You cannot perform administration tasks on the pod.
 - End users who do not have connected sessions to their desktops or remote applications served by the pod and who attempt to connect cannot do so.
 - End users who have connected sessions served by the pod will have those active sessions disconnected. No data loss will occur. After the configuration changes are complete, those users can reconnect.
Prerequisites

Note If the pod has high availability enabled and one of the pod manager VMs is offline, the system prevents adding a gateway to the pod. The message will appear after you click **Save & Exit**. You must bring the offline pod manager VM back online using the Microsoft Azure portal before you can add the gateway.

When adding a gateway configuration to an existing pod in Microsoft Azure, to complete the fields in the Edit Pod wizard, you must provide the information as described in **Prerequisites When Deploying With a Unified Access Gateway Configuration**. If you are also specifying two-factor authentication settings at the same time that you're adding the gateway, you must provide the information described in **Prerequisites When Deploying With a Two-Factor Authentication Configuration**. If you are adding an external gateway configuration and you want it to use its own subscription, you also need that subscription information and ensure that the VNet that you'll use for that gateway meets the VNet requirements. For those VNet requirements, see **Configure the Required Virtual Network in Microsoft Azure**.

Important All certificates in the certificate chain must have valid time frames. The Unified Access Gateway VMs require that all of the certificates in the chain, including any intermediate certificates, have valid time frames. If any certificate in the chain is expired, unexpected failures can occur later as the certificate is uploaded to the Unified Access Gateway configuration.

Procedure

1. In the Administration Console, navigate to **Settings > Capacity** and click the pod's name to open its details page.
2. In the pod's details page, click **Edit**.
3. In the Subscription step, if you are adding an external gateway configuration and want it to use a subscription separate from the pod's, enable **Use a Different Subscription for External Gateway** and enter the subscription information.
4. Click **Next** until you reach the **Gateway Settings** step.

 This step has a section for the external gateway configuration and a section for the internal gateway configuration. The user interface reflects the pod's current configuration and the gateway settings it already has.
To add an external gateway, switch on the **Enable External UAG?** toggle and complete the fields in the **External UAG** section.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable External UAG?</td>
<td>Controls whether the pod has an external gateway configuration. The external configuration allows access to desktops and applications for users located outside of your corporate network. The pod includes an Azure load balancer resource and Unified Access Gateway instances to provide this access.</td>
</tr>
<tr>
<td></td>
<td>Note Leaving the default enabled setting is recommended.</td>
</tr>
<tr>
<td></td>
<td>When this toggle is switched off, clients must either connect through Workspace ONE Access integrated with the pod or directly to the pod managers' load balancer, or they connect through an internal gateway configuration. In the case of clients connecting through Workspace ONE Access integrated with the pod or directly, some post-deployment steps are required. In this case, after the pod is deployed, follow the steps in Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod.</td>
</tr>
<tr>
<td>FQDN</td>
<td>Enter the required fully qualified domain name (FQDN), such as <code>ourOrg.example.com</code>, which your end users will use to access the service. You must own that domain name and have a certificate in PEM format that can validate that FQDN.</td>
</tr>
<tr>
<td></td>
<td>Important This FQDN cannot contain underscores. In this release, connections to the Unified Access Gateway instances will fail when the FQDN contains underscores.</td>
</tr>
<tr>
<td>DNS Addresses</td>
<td>Optionally enter addresses for additional DNS servers that Unified Access Gateway can use for name resolution, separated by commas. When configuring this external Unified Access Gateway configuration to use two-factor authentication with your on-premises RADIUS server, you would specify the address of a DNS server that can resolve the name of your on-premises RADIUS server. As described in the Prerequisites for All Deployments, a DNS server must be set up internally in your subscription and configured to provide external name resolution. The Unified Access Gateway instances use that DNS server by default. If you specify addresses in this field, the deployed Unified Access Gateway instances use the addresses in addition to the prerequisite DNS server that you configured in your subscription's virtual network.</td>
</tr>
<tr>
<td>Routes</td>
<td>Optionally specify custom routes to additional gateways that you want the deployed Unified Access Gateway instances to use to resolve network routing for the end user access. The specified routes are used to allow Unified Access Gateway to resolve network routing such as to RADIUS servers for two-factor authentication. When configuring this pod to use two-factor authentication with an on-premises RADIUS server, you must enter the correct route the Unified Access Gateway instances can use to reach the RADIUS server. For example, if your on-premises RADIUS server uses 10.10.60.20 as its IP address, you would enter 10.10.60.0/24 and your default route gateway address as a custom route. You obtain your default route gateway address from the Express Route or VPN configuration you are using for this environment. Specify the custom routes as a comma-separated list in the form <code>ipv4-network-address/bits ipv4-gateway-address</code>, for example: <code>192.168.1.0/24 192.168.0.1, 192.168.2.0/24 192.168.0.2</code>.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Upload the certificate in PEM format that Unified Access Gateway will use to allow clients to trust connections to the Unified Access Gateway instances running in Microsoft Azure. The certificate must be based on the FQDN you entered and be signed by a trusted CA. The PEM file must contain the entire certificate chain and the private key: SSL certificate intermediate certificates, root CA certificate, private key.</td>
</tr>
</tbody>
</table>

Specify the settings for this gateway’s Microsoft Load Balancer.
Option	Description
Enable Public IP? | Controls whether this gateway's load balancing type is configured as private or public. If switched on, the deployed Microsoft Azure load balancer resource is configured with a public IP address. If switched off, the Microsoft Azure load balancer resource is configured with a private IP address.

Important In this release, you cannot later change the external gateway's load balancing type from public to private, or from private to public. The only way to make that change would be to delete the gateway configuration entirely from the deployed pod and then edit the pod to add it back with the opposite setting.

If you disable this toggle, the field *Public IP for Horizon FQDN* appears.

Public IP for Horizon FQDN | When you have chosen not to configure the deployed Microsoft Azure load balancer with a public IP, you must provide the IP address that you are mapping in your DNS to the FQDN that your end users' Horizon clients will use for PCoIP connections to the gateway. The deployer will configure this IP address in the Unified Access Gateway configuration settings.

Type | Select the SKU to use for the Microsoft Azure Load Balancer that the deployer will use for this external gateway configuration. The choices are **Standard** or **Basic**. For a comparison of the two SKUs, see the Microsoft Azure documentation topic [Load Balancer SKU comparison](https://docs.microsoft.com/en-us/azure/load-balancer/).

Specify the external gateway's networking settings.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a Different Virtual Network</td>
<td>This toggle controls whether the external gateway will be deployed into its own VNet, separate from the pod's VNet. The following rows describe the different cases.</td>
</tr>
<tr>
<td></td>
<td>Note When you specified to use a different subscription for the external gateway in the first step of the wizard, this toggle is enabled by default. You must choose a VNet for the gateway in that situation.</td>
</tr>
</tbody>
</table>

Use a Different Virtual Network — Disabled	When the toggle is disabled, the external gateway will be deployed into the pod's VNet. In this case, you must specify the DMZ subnet.
	DMZ Subnet - When *Use Existing Subnet* is enabled in the Pod Setup wizard step, *DMZ Subnet* lists the subnets available on the VNet selected for *Virtual Network*. Select the existing subnet that you want to use for the pod's DMZ subnet.
	Important Select an empty subnet, one that has no other resources attached to it. If the subnet is not empty, unexpected results might occur during the deployment process or pod operations.
	DMZ Subnet (CIDR) - When *Use Existing Subnet* is disabled in the preceding wizard step, enter the subnet (in CIDR notation) for the DMZ (demilitarized zone) network that will be configured to connect the Unified Access Gateway instances to the gateway's Microsoft Azure public load balancer.

Use a Different Virtual Network — Enabled	When the toggle is enabled, the external gateway will be deployed into its own VNet. In this case, you must select the VNet to use and then specify the three required subnets. Enable the *Use Existing Subnet* toggle to select from subnets that you have created in advance on the specified VNet. Otherwise, specify the subnets in CIDR notation.
	Important Select empty subnets, ones that have no other resources attached to them. If the subnets are not empty, unexpected results might occur during the deployment process or pod operations.
	In this case, the gateway's VNet and pod's VNet are peered. The best practice is to have the subnets created in advance, and not use the CIDR entries here. See *Prerequisites When Deploying With an External Unified Access Gateway Configuration Using Its Own VNet or Subscription Separate from the Pod's VNet or Subscription*.
	Management subnet - Specify the subnet to use for the gateway's management subnet. A CIDR of at least /27 is required. This subnet must have the Microsoft.SQL service configured as a service endpoint.
	Back-end subnet - Specify the subnet to use for the gateway's back end subnet. A CIDR of at least /27 is required.
	Front-end subnet - Specify the subnet for the front-end subnet that will be configured to connect the Unified Access Gateway instances to the gateway's Microsoft Azure public load balancer.
To add an internal gateway, switch on the **Enable Internal UAG?** toggle and complete the fields in the **Internal UAG** section.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Internal UAG?</td>
<td>Controls whether the pod has an internal gateway configuration. The internal configuration provides trusted access to desktops and applications for HTML Access (Blast) connections for users located inside of your corporate network. The pod includes an Azure load balancer resource and Unified Access Gateway instances to provide this access. By default, this gateway's load balancing type is private. The load balancer is configured with a private IP address.</td>
</tr>
<tr>
<td>FQDN</td>
<td>Enter the required fully qualified domain name (FQDN), such as <code>ourOrg.example.com</code>, which your end users will use to access the service. You must own that domain name and have a certificate in PEM format that can validate that FQDN.</td>
</tr>
<tr>
<td>Important</td>
<td>This FQDN cannot contain underscores. In this release, connections to the Unified Access Gateway instances will fail when the FQDN contains underscores.</td>
</tr>
<tr>
<td>DNS Addresses</td>
<td>Optionally enter addresses for additional DNS servers that Unified Access Gateway can use for name resolution, separated by commas. When configuring this internal Unified Access Gateway configuration to use two-factor authentication with your on-premises RADIUS server, you would specify the address of a DNS server that can resolve the name of your on-premises RADIUS server.pecified routes are used to allow Unified Access Gateway to resolve network routing such as to RADIUS servers for two-factor authentication. When configuring this pod to use two-factor authentication with an on-premises RADIUS server, you must enter the correct route the Unified Access Gateway instances can use to reach the RADIUS server. For example, if your on-premises RADIUS server uses 10.10.60.20 as its IP address, you would enter 10.10.60.0/24 and your default route gateway address as a custom route. You obtain your default route gateway address from the Express Route or VPN configuration you are using for this environment. Specify the custom routes as a comma-separated list in the form <code>ipv4-network-address/bits ipv4-gateway-address</code>, for example: <code>192.168.1.0/24 192.168.0.1, 192.168.2.0/24 192.168.0.2</code>.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Upload the certificate in PEM format that Unified Access Gateway will use to allow clients to trust connections to the Unified Access Gateway instances running in Microsoft Azure. The certificate must be based on the FQDN you entered and be signed by a trusted CA. The PEM file must contain the entire certificate chain and the private key: SSL certificate intermediate certificates, root CA certificate, private key.</td>
</tr>
<tr>
<td>Load Balancer Type</td>
<td>Select the SKU to use for the Microsoft Azure Load Balancer that the deployer will use for this external gateway configuration. The choices are Standard or Basic. For a comparison of the two SKUs, see the Microsoft Azure documentation topic Load Balancer SKU comparison.</td>
</tr>
</tbody>
</table>

In the section for whichever gateway you are adding, if you want to optionally configure the end users' desktops to use RADIUS two-factor authentication, follow the steps in **Enable Two-Factor Authentication on a Horizon Cloud Pod's Gateways**.

Click **Save & Exit**.

A confirmation message appears asking you to confirm the start of the workflow.

Click **Yes** to start the workflow.
Until the system is finished deploying the elements for the gateway, the pod summary page's section for that configuration type shows Pending status. Also, you cannot perform additional Edit Pod workflow-related activities until the system is finished with its actions to deploy the gateway.

When the workflow is completed, the status will show as Ready and the load balancer FQDN will be displayed in the page.

Note When running this workflow for a pod in Microsoft Azure China, the process can take longer than an hour to complete. The process is subject to geographic network issues that can cause slow download speeds as the binaries are downloaded from the cloud control plane.

What to do next

Important Before your end users can start using the newly added gateway, you must complete the following tasks.

- For the newly added gateway configuration, ensure you have a CNAME record in your DNS server to map the configuration's deployed load balancer to the FQDN that you entered in the deployment wizard. See Obtain the Pod Gateway's Load Balancer Information to Map in your DNS Server for details.

- If you specified RADIUS two-factor authentication for the added gateway, you must do these tasks:

 - If you configured an external gateway with RADIUS settings and that RADIUS server is not reachable within the same VNet as used by the pod, or within the peered VNet topology if you deployed the external gateway into its own VNet, verify, configure that RADIUS server to allow client connections from the IP address of the external gateway's load balancer. In an external gateway configuration, the Unified Access Gateway instances attempt contact with the RADIUS server using that load balancer address. To allow the connections, ensure the load balancer resource's IP address that is in that external gateway's resource group is specified as a client in your RADIUS server configuration.

 - If you configured an internal gateway, or an external gateway and your RADIUS server is reachable within the same VNet as used by the pod, configure the RADIUS server to allow connections from the appropriate NICs that were created in the gateway's resource group in Microsoft Azure that must communicate with the RADIUS server. Your network administrator determines the RADIUS server's network visibility to the pod's Azure Virtual Network and subnets. Your RADIUS server must allow client connections from the IP addresses of those gateway NICs that correspond to the subnet for which your network administrator has given network visibility to the RADIUS server. The gateway's resource group in Microsoft Azure has four NICs that correspond to that subnet, two that are currently active for the two Unified Access Gateway instances and two that are idle and will become the active ones after the pod goes through an upgrade. To support connectivity between the gateway and the RADIUS server both for ongoing pod operations and after each pod upgrade, ensure the IP addresses of those four NICs are specified as clients in the RADIUS server configuration.

 For information on how to obtain those IP addresses, see Update Your RADIUS System with the Required Horizon Cloud Pod Gateway Information.
Enable Two-Factor Authentication on a Horizon Cloud Pod's Gateways

To enable use of two-factor authentication in the gateway settings of an already deployed pod, use the **Edit** action in the pod's details page. Gateway configurations on your pod use Unified Access Gateway VMs and are configured to provide your end users' access to their desktops and applications. You can add these two-factor authentication settings to the pod's existing gateway configurations, or you can add them at the same time that you add a new gateway configuration. You use the Edit Pod workflow to add the two-factor authentication settings to the pod's gateway configuration.

Prerequisites

For the gateway on which you are adding two-factor authentication, verify that you have [Add a Gateway Configuration to a Deployed Horizon Cloud Pod](#). When configuring two-factor authentication to an on-premises authentication server, you also provide information in the following fields so that the Unified Access Gateway instances for that gateway can resolve routing to that on-premises server.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Addresses</td>
<td>Specify one or more addresses of DNS servers that can resolve the name of your on-premises authentication server.</td>
</tr>
</tbody>
</table>
| Routes | Specify one or more custom routes that allow the pod's Unified Access Gateway instances to resolve network routing to your on-premises authentication server.
 For example, if you have an on-premises RADIUS server that uses 10.10.60.20 as its IP address, you would use 10.10.60.0/24 and your default route gateway address as a custom route. You obtain your default route gateway address from the Express Route or VPN configuration you are using for this environment.
 Specify the custom routes as a comma-separated list in the form ipv4-network-address/bits ipv4-gateway-address, for example: 192.168.1.0/24 192.168.0.1, 192.168.2.0/24 192.168.0.2. |

Verify that you have the following information used in your authentication server's configuration, so that you can provide it in the appropriate fields in the pod deployment wizard. If you have both a primary and secondary server, obtain the information for each of them.

- IP address or DNS name of the authentication server
- The shared secret that is used for encryption and decryption in the authentication server's protocol messages
- Authentication port numbers, typically the 1812 UDP port.
- Authentication protocol type. The authentication types include PAP (Password Authentication Protocol), CHAP (Challenge Handshake Authentication Protocol), MSCHAP1, MSCHAP2 (Microsoft Challenge Handshake Authentication Protocol, version 1 and 2).

Note Check your RADIUS vendor's documentation for the authentication protocol that your RADIUS vendor recommends and follow their indicated protocol type. The pod's capability to support two-factor authentication with RADIUS is provided by the Unified Access Gateway instances, and Unified Access Gateway supports PAP, CHAP, MSCHAP1, and MSCHAP2. PAP is generally less secure than MSCHAP2. PAP is also a simpler protocol than MSCHAP2. As a result, even though most RADIUS vendors are compatible with the simpler PAP protocol, some RADIUS vendors are not as compatible with the more secure MSCHAP2.
Procedure

1. If the Edit Pod window’s **Gateway Settings** step is not already open, click **Edit** in the pod’s details page and then click **Next** to move to the **Gateway Settings** step.

2. Position the window at the gateway type for which you want to enable two-factor authentication, either external or internal.

3. Switch on the **Enable 2 Factor Authentication** toggle.

 When the toggle is enabled, the wizard displays the additional configuration fields. Use the scroll bar to access all of the fields.

 The following screenshot is an example of what is displayed after you switch on the toggle in the **External UAG** section.

4. Select your two-factor authentication method in the drop-down list.

 In this release, RADIUS authentication is supported.

5. In the **Name** field, enter an identifying name for this configuration.
6 In the Properties section, specify details related to the end users' interaction with the login screen they will use to authenticate for access.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Name</td>
<td>You can leave this field blank. Even though this field is visible in the wizard, it only sets an internal name in Unified Access Gateway. This name is not used by Horizon clients.</td>
</tr>
<tr>
<td>Display Hint</td>
<td>Optionally enter a text string that will be displayed to the end users in the message on the end-user client login screen when it prompts the user for their RADIUS user name and passcode. The specified hint appears to the end user as Enter your DisplayHint user name and passcode, where DisplayHint is the text you specify in this field. This hint can help guide users to enter the correct RADIUS passcode. As an example, specifying a phrase like Example Company user name and domain password below for would result in a prompt to the end user that says Enter your Example Company user name and domain password below for user name and passcode.</td>
</tr>
<tr>
<td>Name ID Suffix</td>
<td>This setting is used in SAML scenarios, where your pod is configured to use TrueSSO for single sign-on. Optionally provide a string which the system will append to the SAML assertion user name that is sent to the broker. For example, if the user name is entered as user1 on the login screen and a name ID suffix of @example.com was specified here, the system sends a SAML assertion user name of user1@example.com to the broker.</td>
</tr>
<tr>
<td>Number of Iterations</td>
<td>Enter the maximum number of failed authentication attempts that a user is allowed when attempting to log in using this RADIUS system.</td>
</tr>
</tbody>
</table>
| Maintain Username | Enable this toggle to maintain the user's RADIUS username during authentication to Horizon Cloud. When enabled:
 - The user must have the same username credentials for RADIUS as for their Active Directory authentication to Horizon Cloud.
 - The user cannot change the username in the login screen.
If this toggle is disabled, the user is able to type a different user name in the login screen.
Note For the relationship between enabling Maintain Username and the domain security settings in Horizon Cloud, see the Domain Security Settings on General Settings Page topic. |

7 In the Primary Server section, specify details about the authentication server.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name / IP Address</td>
<td>Enter the DNS name or the IP address of the authentication server.</td>
</tr>
<tr>
<td>Shared Secret</td>
<td>Enter the secret for communicating with the authentication server. The value must be identical to the server-configured value.</td>
</tr>
<tr>
<td>Authentication Port</td>
<td>Specify the UDP port configured on the authentication server for sending or receiving authentication traffic. The default is 1812.</td>
</tr>
<tr>
<td>Accounting Port</td>
<td>Optionally specify the UDP port configured on the authentication server for sending or receiving accounting traffic. The default is 1813.</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Select the authentication protocol that is supported by the specified authentication server and which you want the deployed pod to use.</td>
</tr>
<tr>
<td>Server Timeout</td>
<td>Specify the number of seconds that the pod should wait for a response from the authentication server. After this number of seconds, a retry is sent if the server does not respond.</td>
</tr>
<tr>
<td>Max Number of Retries</td>
<td>Specify the maximum number of times the pod should retry failed requests to the authentication server.</td>
</tr>
</tbody>
</table>
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realm Prefix</td>
<td>Optionally provide a string which the system will place at the beginning of the user name when the name is sent to the authentication server. The user account location is called the realm. For example, if the user name is entered as <code>user1</code> on the login screen and a realm prefix of <code>DOMAIN-A\</code> was specified here, the system sends <code>DOMAIN-A\user1</code> to the authentication server. If you do not specify a realm prefix, only the entered user name is sent.</td>
</tr>
<tr>
<td>Realm Suffix</td>
<td>Optionally provide a string which the system will append to the user name when the name is sent to the authentication server. For example, if the user name is entered as <code>user1</code> on the login screen and a realm suffix of <code>@example.com</code> was specified here, the system sends <code>user1@example.com</code> to the authentication server.</td>
</tr>
</tbody>
</table>

8 **(Optional)** In the Secondary Server section, optionally specify details about an auxiliary authentication server.

You can configure a secondary authentication server to provide for high availability. Enable the **Auxiliary Server** toggle and complete the fields as described in the **Primary Server** section.

9 When you have made all the settings you want, click **Save & Exit**.

A confirmation message appears asking you to confirm the start of the workflow.

10 Click **Yes** to start the workflow.

Until the system is finished deploying the new configuration to the pod, the pod summary page's section for the gateway on which you added two-factor authentication will show the **Pending** status.

When the workflow is completed, the status will show as **Ready** and the gateway's two-authentication settings will be displayed in the page.

Note When running this workflow for a pod in Microsoft Azure China, the process can take longer than an hour to complete. The process is subject to geographic network issues that can cause slow download speeds as the binaries are downloaded from the cloud control plane.

What to do next

Important Before your end users can start using the gateway with the two-factor authentication feature, you must complete the following tasks.

- If you configured an external gateway with RADIUS settings and that RADIUS server is not reachable within the same VNet as used by the pod, or within the peered VNet topology if you deployed the external gateway into its own VNet, verify, configure that RADIUS server to allow client connections from the IP address of the external gateway's load balancer. In an external gateway configuration, the Unified Access Gateway instances attempt contact with the RADIUS server using that load balancer address. To allow the connections, ensure the load balancer resource's IP address that is in that external gateway's resource group is specified as a client in your RADIUS server configuration.

- If you configured an internal gateway, or an external gateway and your RADIUS server is reachable within the same VNet as used by the pod, configure the RADIUS server to allow connections from the appropriate NICs that were created in the gateway's resource group in Microsoft Azure that must communicate with the RADIUS server. Your network administrator determines the RADIUS server's...
network visibility to the pod's Azure Virtual Network and subnets. Your RADIUS server must allow client connections from the IP addresses of those gateway NICs that correspond to the subnet for which your network administrator has given network visibility to the RADIUS server. The gateway's resource group in Microsoft Azure has four NICs that correspond to that subnet, two that are currently active for the two Unified Access Gateway instances and two that are idle and will become the active ones after the pod goes through an upgrade. To support connectivity between the gateway and the RADIUS server both for ongoing pod operations and after each pod upgrade, ensure the IP addresses of those four NICs are specified as clients in the RADIUS server configuration.

For information on how to obtain those IP addresses, see Update Your RADIUS System with the Required Horizon Cloud Pod Gateway Information.

Change or Disable the Two-Factor Authentication Settings on a Horizon Cloud Pod’s Gateways

You can use the Edit Pod workflow to change the two-factor authentication settings on the pod's gateways, or disable the two-factor authentication entirely. When you change the settings, you basically type a new name for the set of two-factor authentication settings, enter the new settings you want, make sure that new name is selected for the specific gateway, and save. You use the Edit Pod workflow to change the two-factor authentication settings.

Prerequisites

If you are keeping two-factor authentication enabled for one of the gateways but are changing the specific settings, verify that you have the following information:

- When the two-factor authentication server is on-premises, verify that you have the relevant information for the following fields so that the Unified Access Gateway instances for that gateway can resolve routing to that server.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Addresses</td>
<td>Specify one or more addresses of DNS servers that can resolve the name of your on-premises authentication server.</td>
</tr>
</tbody>
</table>
| Routes | Specify one or more custom routes that allow the pod's Unified Access Gateway instances to resolve network routing to your on-premises authentication server.
For example, if you have an on-premises RADIUS server that uses 10.10.60.20 as its IP address, you would use 10.10.60.0/24 and your default route gateway address as a custom route. You obtain your default route gateway address from the Express Route or VPN configuration you are using for this environment.
Specify the custom routes as a comma-separated list in the form ipv4-network-address/bits ipv4-gateway-address, for example: 192.168.1.0/24 192.168.0.1, 192.168.2.0/24 192.168.0.2. |

- Verify that you have the following information used in your authentication server's configuration, so that you can provide it in the appropriate fields in the pod deployment wizard. If you have both a primary and secondary server, obtain the information for each of them.

 - IP address or DNS name of the authentication server
 - The shared secret that is used for encryption and decryption in the authentication server's protocol messages
- Authentication port numbers, typically the 1812 UDP port.

- Authentication protocol type. The authentication types include PAP (Password Authentication Protocol), CHAP (Challenge Handshake Authentication Protocol), MSCHAP1, MSCHAP2 (Microsoft Challenge Handshake Authentication Protocol, version 1 and 2).

 Note Check your RADIUS vendor's documentation for the authentication protocol that your RADIUS vendor recommends and follow their indicated protocol type. The pod's capability to support two-factor authentication with RADIUS is provided by the Unified Access Gateway instances, and Unified Access Gateway supports PAP, CHAP, MSCHAP1, and MSCHAP2. PAP is generally less secure than MSCHAP2. PAP is also a simpler protocol than MSCHAP2. As a result, even though most RADIUS vendors are compatible with the simpler PAP protocol, some RADIUS vendors are not as compatible with the more secure MSCHAP2.

Procedure

1. Open the Edit Pod window from the pod's details page by clicking **Edit**.

2. In the Edit Pod window, click **Next** to move to the **Gateway Settings** step.

 This step has a section for the external gateway configuration and a section for the internal gateway configuration. The user interface reflects the pod's current configuration and the gateway settings it already has.

3. Position the window at the gateway type for which you want to change the two-factor authentication, either external or internal.

4. To disable two-factor authentication on the gateway, switch off the **Enable 2 Factor Authentication** toggle and then go to **Step step 9** to save the changes.

 If the other gateway also has two-factor authentication enabled and you want to disable it, switch off the toggle in the section for that other gateway.

5. To change the specific two-factor authentication settings that are set on the gateway, continue with the following steps.

 You create a new name for the new set of two-factor authentication values and save the configuration with that new name selected for that gateway section in the window.

6. In the **Name** field, enter an identifying name for this configuration.
7 In the Properties section, specify details related to the end users’ interaction with the login screen they will use to authenticate for access.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Name</td>
<td>You can leave this field blank. Even though this field is visible in the wizard, it only sets an internal name in Unified Access Gateway. This name is not used by Horizon clients.</td>
</tr>
<tr>
<td>Display Hint</td>
<td>Optionally enter a text string that will be displayed to the end users in the message on the end-user client login screen when it prompts the user for their RADIUS user name and passcode. The specified hint appears to the end user as Enter your DisplayHint user name and passcode, where DisplayHint is the text you specify in this field. This hint can help guide users to enter the correct RADIUS passcode. As an example, specifying a phrase like Example Company user name and domain password below for would result in a prompt to the end user that says Enter your Example Company user name and domain password below for user name and passcode.</td>
</tr>
<tr>
<td>Name ID Suffix</td>
<td>This setting is used in SAML scenarios, where your pod is configured to use TrueSSO for single sign-on. Optionally provide a string which the system will append to the SAML assertion user name that is sent to the broker. For example, if the user name is entered as user1 on the login screen and a name ID suffix of @example.com was specified here, the system sends a SAML assertion user name of user1@example.com to the broker.</td>
</tr>
<tr>
<td>Number of Iterations</td>
<td>Enter the maximum number of failed authentication attempts that a user is allowed when attempting to log in using this RADIUS system.</td>
</tr>
</tbody>
</table>
| Maintain Username | Enable this toggle to maintain the user's RADIUS username during authentication to Horizon Cloud. When enabled:
 - The user must have the same username credentials for RADIUS as for their Active Directory authentication to Horizon Cloud.
 - The user cannot change the username in the login screen.
 If this toggle is disabled, the user is able to type a different user name in the login screen. |

Note For the relationship between enabling Maintain Username and the domain security settings in Horizon Cloud, see the Domain Security Settings on General Settings Page topic.

8 In the Primary Server section, specify details about the authentication server.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name / IP Address</td>
<td>Enter the DNS name or the IP address of the authentication server.</td>
</tr>
<tr>
<td>Shared Secret</td>
<td>Enter the secret for communicating with the authentication server. The value must be identical to the server-configured value.</td>
</tr>
<tr>
<td>Authentication Port</td>
<td>Specify the UDP port configured on the authentication server for sending or receiving authentication traffic. The default is 1812.</td>
</tr>
<tr>
<td>Accounting Port</td>
<td>Optionally specify the UDP port configured on the authentication server for sending or receiving accounting traffic. The default is 1813.</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Select the authentication protocol that is supported by the specified authentication server and which you want the deployed pod to use.</td>
</tr>
<tr>
<td>Server Timeout</td>
<td>Specify the number of seconds that the pod should wait for a response from the authentication server. After this number of seconds, a retry is sent if the server does not respond.</td>
</tr>
<tr>
<td>Max Number of Retries</td>
<td>Specify the maximum number of times the pod should retry failed requests to the authentication server.</td>
</tr>
</tbody>
</table>

VMware, Inc. 373
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realm Prefix</td>
<td>Optionally provide a string which the system will place at the beginning of the user name when the name is sent to the authentication server. The user account location is called the realm. For example, if the user name is entered as <code>user1</code> on the login screen and a realm prefix of <code>DOMAIN-A\</code> was specified here, the system sends <code>DOMAIN-A\user1</code> to the authentication server. If you do not specify a realm prefix, only the entered user name is sent.</td>
</tr>
<tr>
<td>Realm Suffix</td>
<td>Optionally provide a string which the system will append to the user name when the name is sent to the authentication server. For example, if the user name is entered as <code>user1</code> on the login screen and a realm suffix of <code>@example.com</code> was specified here, the system sends <code>user1@example.com</code> to the authentication server.</td>
</tr>
</tbody>
</table>

9. (Optional) In the Secondary Server section, optionally specify details about an auxiliary authentication server.

You can configure a secondary authentication server to provide for high availability. Enable the **Auxiliary Server** toggle and complete the fields as described in the **Primary Server section**.

10. When you have made all the settings you want, click **Save & Exit**.

A confirmation message appears asking you to confirm the start of the workflow.

11. Click **Yes** to start the workflow.

Until the system is finished deploying the new configuration to the pod, the pod summary page's section for the gateway on which you added two-factor authentication will show the Pending status.

When the workflow is completed, the status will show as Ready and the gateway's two-authentication settings will be displayed in the page.

Note When running this workflow for a pod in Microsoft Azure China, the process can take longer than an hour to complete. The process is subject to geographic network issues that can cause slow download speeds as the binaries are downloaded from the cloud control plane.

What to do next

Important When you change the values of a gateway's two-factor authentication settings to new ones, before your end users resume using the gateway that has the new two-factor authentication values, you must complete the following tasks.

- If you configured an external gateway with RADIUS settings and that RADIUS server is not reachable within the same VNet as used by the pod, or within the peered VNet topology if you deployed the external gateway into its own VNet, verify that the RADIUS server that you specified in the gateway configuration allows client connections from the IP address of the external gateway's load balancer. In an external gateway configuration, the Unified Access Gateway instances attempt contact with the RADIUS server using that load balancer address. To allow the connections, ensure the load balancer resource's IP address that is in that external gateway's resource group is specified as a client in your RADIUS server configuration.

- If you configured an internal gateway, or an external gateway and your RADIUS server is reachable within the same VNet as used by the pod, verify that the RADIUS server is configured to allow
connections from the appropriate NICs that were created in the gateway's resource group in Microsoft Azure. Your network administrator determines the RADIUS server's network visibility to the pod's Azure Virtual Network and subnets. Your RADIUS server must allow client connections from the IP addresses of those gateway NICs that correspond to the subnet for which your network administrator has given network visibility to the RADIUS server. The gateway's resource group in Microsoft Azure has four NICs that correspond to that subnet, two that are currently active for the two Unified Access Gateway instances and two that are idle and will become the active ones after the pod goes through an upgrade. To support connectivity between the gateway and the RADIUS server both for ongoing pod operations and after each pod upgrade, ensure the IP addresses of those four NICs are specified as clients in the RADIUS server configuration.

For information on how to obtain those IP addresses, see Update Your RADIUS System with the Required Horizon Cloud Pod Gateway Information.

Customize the Session Timeout Setting in a Deployed Horizon Cloud Pod's Gateway Configuration

When a gateway is initially configured on a Horizon Cloud pod in Microsoft Azure, its session timeout value is the default Unified Access Gateway value of 10 hours (36000000 milliseconds). Using the Edit Pod workflow, you can edit the pod's gateway configuration to customize that timeout value according to your own organization's needs.

Prerequisites

The pod must already have the gateway configuration for which you want to customize the session timeout.

Procedure

1. From the pod's details page, open the Edit Pod window by clicking **Edit**.

2. In the Edit Pod window, click **Next** to move to the **Gateway Settings** step.

 This step has a section for the external gateway configuration and a section for the internal gateway configuration. The user interface reflects the pod's current configuration and the gateway settings it already has.

3. Locate the **Session Timeout** field for the gateway type for which you want to change it, either external or internal.

4. In **Session Timeout**, type a new value.

 If the pod has another gateway type and you want to change its session timeout value, repeat this step for that other gateway.

 The timeout value can be a minimum of 5 minutes (300,000 milliseconds).

5. Click **Save & Exit**.

 The system updates the session timeout in the pod's gateway configuration according to the value you typed for that gateway configuration.
Change the FQDN and Certificate Used for the Pod’s Unified Gateway Configuration

You can change the fully qualified domain name (FQDN) and certificate that is used by the Horizon Cloud pod's Unified Gateway configuration using the Administration Console's Edit Pod wizard. You launch that wizard from the pod's summary page.

As described in Horizon Cloud Pod Deployed in Microsoft Azure, the pod can have an external Unified Access Gateway configuration, an internal type, or both. In both types of Unified Gateway configurations, the Unified Access Gateway instances are configured with FQDN and SSL certificate information. Follow these steps when you need to change the FQDN and certificate for either type of configuration, or for both.

Note During the time the system is changing the configuration, end users who have connected sessions served by the pod will have those active sessions disconnected. No data loss will occur. After the configuration changes are complete, those users can reconnect.

Prerequisites

To complete this workflow, you must have:

- A fully qualified domain name (FQDN) that is unique to this pod. You cannot reuse an FQDN that is already configured for your other pods.

 Important This FQDN cannot contain underscores. In this release, connections to the Unified Access Gateway instances will fail when the FQDN contains underscores.

- A signed SSL server certificate (in PEM format) based on that FQDN. The Unified Access Gateway capabilities require SSL for client connections, as described in the Unified Access Gateway product documentation. The certificate must be signed by a trusted Certificate Authority (CA). The single PEM file must contain the full entire certificate chain with the private key. For example, the single PEM file must contain the SSL server certificate, any necessary intermediate CA certificates, the root CA certificate, and private key. OpenSSL is a tool you can use to create the PEM file.

 Important All certificates in the certificate chain must have valid time frames. The Unified Access Gateway VMs require that all of the certificates in the chain, including any intermediate certificates, have valid time frames. If any certificate in the chain is expired, unexpected failures can occur later as the certificate is uploaded to the Unified Access Gateway configuration.

Procedure

1. In the Administration Console, navigate to **Settings > Capacity** and click the pod's name to open its details page.
2. In the pod's details page, click **Edit**.
3. In the Edit Pod window, click **Next** to move to the **Gateway Settings** step.
4 Complete the following steps for the change you want to make, in either the **External UAG** section or **Internal UAG** section.

a Change the **FQDN** value to your new one.
b Click **Change** to upload the new certificate.

Upload the certificate in PEM format that Unified Access Gateway will use to allow clients to trust connections to the Unified Access Gateway instances running in Microsoft Azure. The certificate must be based on the FQDN you entered and be signed by a trusted CA.

5 Click **Save & Exit**.

A confirmation message appears stating that updating the FQDN or certificate disconnects existing user connections and asking you to confirm the start of the workflow.

6 Click **Yes** to start the workflow.

Important If any of the certificates in the certificate chain has expired, the **Update status** will display **Update has failed**. If you see this, check the certificate file and verify that the certificates all have valid time frames.

What to do next

For whichever Unified Access Gateway configuration you changed, ensure you update the CNAME record in your DNS server to map the FQDN of the configuration's load balancer to the new FQDN. See **Obtain the Pod Gateway's Load Balancer Information to Map in your DNS Server** for details.

Convert a Certificate File to the PEM Format Required for Pod Deployment

The Unified Access Gateway capability in your pod requires SSL for client connections. When you want the pod to have a Unified Access Gateway configuration, the pod deployment wizard requires a PEM-format file to provide the SSL server certificate chain to the pod's Unified Access Gateway configuration. The single PEM file must contain the full entire certificate chain including the private key: the SSL server certificate, any necessary intermediate CA certificates, the root CA certificate, and private key.

For additional details about certificate types used in Unified Access Gateway, see the topic titled **Selecting the Correct Certificate Type in the Unified Access Gateway product documentation**.

In the pod deployment wizard step for the gateway settings, you upload a certificate file. During the deployment process, this file is submitted in to the configuration of the deployed Unified Access Gateway instances. When you perform the upload step in the wizard interface, the wizard verifies that the file you upload meets these requirements:

- The file can be parsed as PEM-format.
- It contains a valid certificate chain and a private key.
- That private key matches the public key of the server certificate.
If you do not have a PEM-format file for your certificate information, you must convert your certificate information into a file that meets those above requirements. You must convert your non-PEM-format file into PEM format and create a single PEM file that contains the full certificate chain plus private key. You also need to edit the file to remove extra information, if any appears, so that the wizard will not have any issues parsing the file. The high-level steps are:

1. Convert your certificate information into PEM format and create a single PEM file that contains the certificate chain and the private key.

2. Edit the file to remove extra certificate information, if any, that is outside of the certificate information between each set of `-----BEGIN CERTIFICATE-----` and `-----END CERTIFICATE-----` markers.

The code examples in the following steps assume you are starting with a file named `mycaservercert.pfx` that contains the root CA certificate, intermediate CA certificate information, and private key.

Prerequisites

- Verify that you have your certificate file. The file can be in PKCS#12 (.p12 or .pfx) format or in Java JKS or JCEKS format.

 Important All certificates in the certificate chain must have valid time frames. The Unified Access Gateway VMs require that all of the certificates in the chain, including any intermediate certificates, have valid time frames. If any certificate in the chain is expired, unexpected failures can occur later as the certificate is uploaded to the Unified Access Gateway configuration.

- Familiarize yourself with the `openssl` command-line tool that you can use to convert the certificate. See https://www.openssl.org/docs/apps/openssl.html.

- If the certificate is in Java JKS or JCEKS format, familiarize yourself with the Java `keytool` command-line tool to first convert the certificate to .p12 or .pks format before converting to .pem files.

Procedure

1. If your certificate is in Java JKS or JCEKS format, use `keytool` to convert the certificate to .p12 or .pks format.

 Important Use the same source and destination password during this conversion.

2. If your certificate is in PKCS#12 (.p12 or .pfx) format, or after the certificate is converted to PKCS#12 format, use `openssl` to convert the certificate to a .pem file.

 For example, if the name of the certificate is `mycaservercert.pfx`, you can use the following commands to convert the certificate:

   ```
   openssl pkcs12 -in mycaservercert.pfx -nokeys -out mycaservercertchain.pem
   openssl pkcs12 -in mycaservercert.pfx -nodes -nocerts -out mycaservercertkey.pem
   ```
The first line above obtains the certificates in mycaservercert.pfx and writes them in PEM format to mycaservercertchain.pem. The second line above obtains the private key from mycaservercert.pfx and writes it in PEM format to mycaservercertkey.pem.

3 (Optional) If the private key is not in RSA format, convert the private key to the RSA private key format.

The Unified Access Gateway instances require the RSA private key format. To check if you need to run this step, look at your PEM file and see if the private key information starts with

```
-----BEGIN PRIVATE KEY-----
```

If the private key starts with that line, then you should convert the private key to the RSA format. If the private key starts with `-----BEGIN RSA PRIVATE KEY-----`, you do not have to run this step to convert the private key.

To convert the private key to RSA format, run this command.

```
openssl rsa -in mycaservercertkey.pem -check -out mycaservercertkeyrsa.pem
```

The private key in the PEM file is now in RSA format (`-----BEGIN RSA PRIVATE KEY-----` and `-----END RSA PRIVATE KEY-----`).

4 Combine the information in the certificate chain PEM file and private key PEM file to make a single PEM file.

The example below shows a sample where the contents of mycaservercertkeyrsa.pem is first (the private key in RSA format), followed by the contents from mycaservercertchain.pem, which is your primary SSL certificate, followed by one intermediate certificate, followed by the root certificate.

```
-----BEGIN CERTIFICATE-----
.... (your primary SSL certificate)
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
.... (the intermediate CA certificate)
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
.... (the trusted root certificate)
-----END CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
.... (your server key from mycaservercertkeyrsa.pem)
----- END RSA PRIVATE KEY-----
```

Note The server certificate should come first, followed by any intermediate ones, and then the trusted root certificate.

5 If there are any unnecessary certificate entries or extraneous information between the BEGIN and END markers, edit the file to remove those.

The resulting PEM file meets the requirements of the pod deployment wizard.
Update Your RADIUS System with the Required Horizon Cloud Pod Gateway Information

After you configure RADIUS two-factor authentication settings in a Horizon Cloud pod's gateway configuration, you must also configure your RADIUS server's configuration to allow client requests from specific gateway-related IP addresses. The gateway's Unified Access Gateway instances will attempt to communicate with the RADIUS server from specific IP addresses. Your network administrator determines the RADIUS server's network visibility to the pod's Azure Virtual Network (VNet) and subnets. The combination of that network visibility and the pod gateway type, external or internal, determines the specific gateway-related IP addresses that you must configure as allowed clients in your RADIUS server configuration.

Important Follow the documentation that is appropriate for your RADIUS two-factor authentication system to see the syntax for the specific configuration file used in your RADIUS system in which you must configure this client information. As an example, as described in the FreeRADIUS wiki for FreeRADIUS client configuration, the `/etc/raddb/clients.conf` file contains the definitions of RADIUS clients as:

```plaintext
client NAME {
   ipaddr = IPADDRESS
   secret = SECRET
}
```

This topic describes the information from your Horizon Cloud pod that you must use in your RADIUS server to enable communication between the pod's gateway and also to maintain resiliency of that communication after each pod upgrade. To accept connections from client machines that attempt to reach it, RADIUS servers need to register the IPs of those client machines as allowed clients. In this case of a Horizon Cloud pod gateway configured with RADIUS two-factor authentication settings, those client machines are the gateway's Unified Access Gateway instances. Usually your network administrator determines what network access the RADIUS server has to the VNet and the subnets that are connected to the deployed pod. The specific source IPs that the Unified Access Gateway instances use when contacting the RADIUS server depend on:

- Whether the gateway configuration is internal or external
- Whether your network administrator has configured the RADIUS server as accessible from inside the pod's VNet, or is located outside the VNet
- If the RADIUS server is accessible within the pod's VNet, from which of the pod's subnets in that VNet has your network administrator configured access to the RADIUS server

Internal gateway configuration

The Unified Access Gateway instances deployed for an internal gateway configuration use their NICs' private IP addresses to contact that RADIUS server. The RADIUS server sees the requests coming from source IP addresses that are the NICs' private IP addresses. Your network administrator has configured whether the RADIUS server is accessible to the pod's management or tenant subnet's IP address range. The internal gateway's resource group in Microsoft Azure has four (4) NICs that
correspond to that subnet: two that are currently active for the two Unified Access Gateway instances and two NICs that are idle and will become the active ones after the pod goes through an upgrade. To support the communication connectivity between the gateway and the RADIUS server both for ongoing pod operations and after each pod upgrade, you must configure the RADIUS server to allow client connections from the IP addresses of the four NICs in the internal gateway's resource group in Microsoft Azure that correspond to the subnet that has visibility to the RADIUS server. See How to Add Pod Gateway NICs' IP Addresses as Allowed Clients for Requests.

External gateway configuration and the RADIUS server is accessible inside the pod's VNet

When your network administrator has configured the RADIUS server to be accessible on the same VNet as the pod, the Unified Access Gateway instances use their NICs' private IP addresses to contact that RADIUS server. The RADIUS server sees the requests coming from source IP addresses that are the NICs' private IP addresses. Your network administrator has configured whether the RADIUS server is accessible to the pod's management, tenant, or DMZ subnet's IP address range. The external gateway's resource group in Microsoft Azure has four (4) NICs that correspond to that subnet: two that are currently active for the two Unified Access Gateway instances and two that are idle and will become the active ones after the pod goes through an upgrade. To support the communication connectivity between the gateway and the RADIUS server both for ongoing pod operations and after each pod upgrade, you must configure the RADIUS server to allow client connections from the IP addresses of the four NICs in the external gateway's resource group in Microsoft Azure that correspond to the subnet that has visibility to the RADIUS server. See How to Add Pod Gateway NICs' IP Addresses as Allowed Clients for Requests.

External gateway configuration and the RADIUS server that is accessible outside the pod's VNet

When your network administrator has configured the RADIUS server outside of the pod's VNet, the external gateway configuration's Unified Access Gateway instances use the external gateway's Azure load balancer resource's IP address to contact that RADIUS server. You must configure the RADIUS server to allow client connections from the external gateway's load balancer resource's IP address. See How to Add the Pod External Gateway's Load Balancer IP Address as an Allowed Client for Requests.

How to Add Pod Gateway NICs' IP Addresses as Allowed Clients for Requests

When the pod is deployed, the pod deployer creates a set of NICs in the gateway's resource group in your Microsoft Azure subscription. The following screenshots are examples of the NICs for the internal gateway type and external gateway type. Even though the pod ID is pixelated out in these screenshots, you can see the pattern in which the deployer names the NICs, with -management, -tenant and -dmz in those names. For the names of the pod's resource groups, see Resource Groups Created For a Pod Deployed In Microsoft Azure.
You need to obtain the IP addresses of the NICs for the gateway configuration on which you enabled RADIUS two-factor authentication which correspond to the subnet which has network visibility to the RADIUS server, and specify those IP addresses as allowed clients in your RADIUS server configuration.

Important To avoid any disruption in connectivity between your RADIUS server and the pod after an upgrade, for each gateway that you configured with RADIUS settings, ensure that the IP addresses of the four (4) NICs that are described below are specified as allowed clients in your RADIUS server's configuration. Even though only half of the NICs are active during ongoing pod operations, they switch when the pod is upgraded. After a pod upgrade, the other half of the NICs become active and the pre-upgrade NICs go idle until the next pod upgrade, when they switch back again. If you have not added all of the NIC IP addresses, both the active and idle ones, to your RADIUS server configuration, the RADIUS server will refuse connection requests from the post-pod-upgrade now-active set of NICs, and the login process for end users using that gateway will break.
To obtain the gateway's NIC IP addresses to add to the RADIUS server configuration:

1. Obtain from your network administrator the information about which of the pod's subnets has network visibility to the RADIUS server (management, tenant, or dmz).
2. Log in to the Microsoft Azure portal for your subscription and locate the gateway's resource group.
3. For the NICs that correspond to the subnet that your network administrator says has visibility to the RADIUS server, click on each NIC and copy its IP address.
4. Add those NIC IP addresses to your RADIUS server client configuration file so that those NICs are allowed clients for the RADIUS server that you configured in the settings for that gateway.

The following line is an illustration of a portion of the client configuration lines for the NICs with IP addresses on the pod's tenant subnet for an internal gateway where the network administrator configured the RADIUS server inside the same VNet as the pod and with accessibility from the pod's tenant subnet. The pod's tenant subnet was configured as 192.168.25.0/22 when this pod was deployed. When the pod is initially deployed, the NIC1 and NIC2 are active and NIC3 and NIC4 are idle. However, all four of those NICs are added to the RADIUS server configuration to ensure that after the pod upgrades, when NIC3 and NIC4 become active and NIC1 and NIC2 go idle, the RADIUS server will continue to accept connections from this gateway. You must use the appropriate syntax for your own RADIUS server.

```plaintext
client UAGTENANTNIC1 {
  ipaddr = 192.168.25.5
  secret = myradiussecret
}
client UAGTENANTNIC2 {
  ipaddr = 192.168.25.6
  secret = myradiussecret
}
client UAGTENANTNIC3 {
  ipaddr = 192.168.25.7
  secret = myradiussecret
}
client UAGTENANTNIC4 {
  ipaddr = 192.168.25.8
  secret = myradiussecret
}
```

How to Add the Pod External Gateway’s Load Balancer IP Address as an Allowed Client for Requests

When the RADIUS server is located outside of the pod's VNet, for the external gateway on which you specified that RADIUS server, you must add the external gateway's Azure load balancer resource's public IP address as an allowed client in that RADIUS server configuration. You can obtain that load balancer IP address by using the Microsoft Azure portal and locating the load balancer resource in the gateway's resource group.

1. Log in to the Microsoft Azure portal for your subscription and locate the gateway's resource group.
2 In the gateway’s resource group, click on the load balancer resource. It has a name in the pattern vmw-hcs-podID-uag-lb. Its IP address is listed in its overview information.

3 Add the gateway’s load balancer IP address to your RADIUS server client configuration file so that the gateway’s load balancer is an allowed client for the RADIUS server that you configured in the settings for that gateway. The following line is an illustrating example. You must use the appropriate syntax for your own RADIUS server.

```plaintext
client MYPPODUAGEXTLBIP {
  ipaddr = 52.191.236.223
  secret = myradiussecret
}
```

Delete a Gateway Configuration from a Horizon Cloud Pod

To delete a gateway configuration from a pod deployed in Microsoft Azure, use the Delete action in the pod’s details page. As an example, after the pod is deployed, you might decide you want to set up that gateway type all over again with a new configuration. For that scenario, you first delete the existing gateway configuration from the pod and then edit the pod to set up the gateway again.

Caution

- Deleting the gateway configuration will immediately end all the user sessions that are connected to that gateway.
- Deleting the gateway is an irreversible action. You cannot recover the specific deleted gateway configuration. You can later edit the pod to add a new gateway configuration in place of the deleted one.
As described in Chapter 5 Introduction to Horizon Cloud Pods in Microsoft Azure, a pod can have an external gateway configuration or an internal one or both. You choose the specific type to delete from the Delete action. If you want to delete both gateway configurations from the pod, you must delete each one at a time.

Important During the time the system is changing the pod's configuration until it is finished, the following limitations apply:

- You cannot perform administration tasks on the pod. As an example, the Edit button in the pod detail's page will become unavailable until the changes to the pod are completed.
- End users who do not have connected sessions to their desktops or remote applications served by the pod and who attempt to connect cannot do so.
- End users who have connected sessions served by a gateway on the pod that you are not deleting will have those active sessions disconnected. No data loss will occur. After the configuration changes are complete, those users can reconnect using that remaining gateway.

Tip The Administration Console is dynamic. It will only make available in the user interface those workflows and toggles and fields that make sense and are appropriate based on the pod's current configuration.

Procedure

1. In the Administration Console, navigate to the Capacity page and click on the pod to open its details page.
2. Click the appropriate action for the gateway type you want to delete from the pod.
 - **Delete > External UAG**, to delete the pod's external gateway configuration.
 - **Delete > Internal UAG**, to delete the pod's internal gateway configuration.
3. Confirm the deletion.

The system begins the process of deleting the gateway’s resources in Microsoft Azure.

What to do next

If you deleted the gateway configuration so that you can add a new gateway with different settings, see Add a Gateway Configuration to a Deployed Horizon Cloud Pod.

Change the Horizon Cloud Pod’s NTP Setting

You can change the NTP settings for a pod deployed in Microsoft Azure by using the Edit action on the pod's details page.

Procedure

1. In the Administration Console, navigate to Settings > Capacity and click the pod's name to open its details page.
2. In the pod's details page, click Edit.
3 In the Edit Pod window, edit the settings in the **NTP Servers** field.

4 Click **Save & Exit** to save the new settings to the system.

DNS Requirements for a Horizon Cloud Pod in Microsoft Azure

For the pod deployment process to deploy your pod successfully into Microsoft Azure, you must configure your firewalls to allow Horizon Cloud to access the Domain Name Service (DNS) addresses it needs. In addition, your DNS must resolve specific names as described in this topic. In addition to the main pod deployment, when you are deploying the external gateway in its own VNet, that VNet's subnet must meet the same DNS requirements as the separate pod VNet's management subnet, as described in this topic.

Important The pod deployment process uses a jump box VM. This jump box VM has ports and protocol requirements for the pod deployment process. See [Ports and Protocols Required by the Pod Jump Box During Pod Deployments and Pod Updates](#).

Deploying the external gateway into its own VNet also uses its own jump box VM, separate from the pod's. That jump box VM has its own ports and protocol requirements for the gateway deployment process. See [When the External Gateway is Deployed in its Own VNet: Ports and Protocols Required by the External Gateway Configuration's Jump Box During Gateway Deployments and Updates](#).

After a pod is successfully deployed, specific ports and protocols are required for ongoing Horizon Cloud operations. The specific ports and protocols required depends on whether the pod is at the manifest version for the September 2019 release, or is at a previous manifest version.

- For a pod created after the September 2019 release or upgraded to that release's manifest version or later, see [Ports and Protocols Requirements for a Horizon Cloud Pod at the September 2019 Release's Manifest or Later](#). Such pods have manifest versions of 1593 or later.

- For a pod created before the September 2019 release and not yet upgraded to that release's manifest version, see [Ports and Protocols Requirements for a Horizon Cloud Pod Deployed Prior to the September 2019 Release](#). Such pods have manifest versions of 1493.1 or earlier.

- [DNS Requirements for the Overarching Pod Deployment Process, Pod Upgrades, and Ongoing Operations](#)

- [Ports and Protocols Required by the Pod Jump Box During Pod Deployments and Pod Updates](#)

- [When the External Gateway is Deployed in its Own VNet: Ports and Protocols Required by the External Gateway Configuration's Jump Box During Gateway Deployments and Updates](#)
DNS Requirements for the Overarching Pod Deployment Process, Pod Upgrades, and Ongoing Operations

You must ensure the following DNS names are resolvable and reachable from the management and tenant subnets using the specific ports and protocols as indicated in the following table. Horizon Cloud uses specific outbound ports to securely download the pod software into your Microsoft Azure environment and so that the pod can connect back to the Horizon Cloud control plane. You must configure your network firewall such that Horizon Cloud has the ability to contact the DNS addresses on the ports that it requires. Otherwise, the pod deployment process will fail.

Important When you are using the feature to deploy the external gateway into its own VNet, the management subnet in that VNet must meet the same DNS requirements as stated in the table below for the management subnet in the pod's VNet. The external gateway VNet's back-end subnet and DMZ subnet do not have specific DNS requirements.

Table 5-5. Pod Deployment and Operations DNS Requirements

<table>
<thead>
<tr>
<th>Subnet Source</th>
<th>Destination (DNS name)</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>One of the following, depending on which Horizon Cloud control plane is specified in your Horizon Cloud account: cloud.horizon.vmware.com cloud-eu-central-1.horizon.vmware.com cloud-ap-southeast-2.horizon.vmware.com</td>
<td>443</td>
<td>TCP</td>
<td>Horizon Cloud control plane. cloud.horizon.vmware.com is in the United States cloud-eu-central-1.horizon.vmware.com is in Europe cloud-ap-southeast-2.horizon.vmware.com is in Australia</td>
</tr>
<tr>
<td>Management</td>
<td>softwareupdate.vmware.com</td>
<td>443</td>
<td>TCP</td>
<td>VMware software package server. Used for downloading updates of the agent-related software used in the system's image-related operations.</td>
</tr>
<tr>
<td>Subnet Source</td>
<td>Destination (DNS name)</td>
<td>Port</td>
<td>Protocol</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Management</td>
<td>d1mes20qfad06k.cloudfront.net</td>
<td>443</td>
<td>TCP</td>
<td>Horizon Cloud content delivery server. On the management subnet, this site is used for downloading the VHDs (virtual hard disks) for the pod’s manager and Unified Access Gateway VMs. Also used for the VHD for the gateway connector VM, in the case where the external gateway is in its own VNet)</td>
</tr>
<tr>
<td>Management</td>
<td>packages.microsoft.com</td>
<td>443 and 11371</td>
<td>TCP</td>
<td>Microsoft software package server. Used to securely download the Microsoft Azure Command Line Interface (CLI) software.</td>
</tr>
<tr>
<td>Management</td>
<td>azure.archive.ubuntu.com</td>
<td>80</td>
<td>TCP</td>
<td>Ubuntu software package server. Used by the pod-related Linux-based VMs for Ubuntu operating system updates.</td>
</tr>
<tr>
<td>Management</td>
<td>api.snapcraft.io</td>
<td>443</td>
<td>TCP</td>
<td>Ubuntu software package server. Used by the pod’s Linux-based VMs for Ubuntu operating system updates.</td>
</tr>
<tr>
<td>Management</td>
<td>archive.ubuntu.com</td>
<td>80</td>
<td>TCP</td>
<td>Ubuntu software package server. Used by the pod’s Linux-based VMs for Ubuntu operating system updates.</td>
</tr>
</tbody>
</table>
Table 5-5. Pod Deployment and Operations DNS Requirements (continued)

<table>
<thead>
<tr>
<th>Subnet Source</th>
<th>Destination (DNS name)</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>changelogs.ubuntu.com</td>
<td>80</td>
<td>TCP</td>
<td>Ubuntu software package server. Used by the pod's Linux-based VMs for tracking Ubuntu operating system updates.</td>
</tr>
<tr>
<td>Management</td>
<td>security.ubuntu.com</td>
<td>80</td>
<td>TCP</td>
<td>Ubuntu software package server. Used by the pod's Linux-based VMs for security-related Ubuntu operating system updates.</td>
</tr>
</tbody>
</table>
| Management | One of the following, depending on which Microsoft Azure cloud you are deploying your pod into:
 - Microsoft Azure (global): login.microsoftonline.com
 - Microsoft Azure Germany: login.microsoftonline.de
 - Microsoft Azure China: login.chinacloudapi.cn
 - Microsoft Azure US Government: login.microsoftonline.us | 443 | TCP | This web address is generally used by applications to authenticate against Microsoft Azure services. For some descriptions in the Microsoft Azure documentation, see OAuth 2.0 authorization code flow, Azure Active Directory v2.0 and the OpenID Connect protocol, and National clouds. The National clouds topic describes how there are different Azure AD authentication endpoints for each Microsoft Azure national cloud. |
<table>
<thead>
<tr>
<th>Subnet Source</th>
<th>Destination (DNS name)</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>One of the following, depending on which Microsoft Azure cloud you are deploying your pod into:</td>
<td>443</td>
<td>TCP</td>
<td>Used for pod API requests to the Microsoft Azure Resource Manager endpoints for using Microsoft Azure Resource Manager services. Microsoft Azure Resource Manager provides a consistent management layer to perform tasks through Azure PowerShell, Azure CLI, Azure portal, REST API, and client SDKs.</td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure (global): management.azure.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure Germany: management.microsoftazure.de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure China: management.chinacloudapi.cn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure US Government: management.usgovcloudapi.net</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>One of the following, depending on which Microsoft Azure cloud you are deploying your pod into:</td>
<td>443</td>
<td>TCP</td>
<td>Access to the Azure Active Directory (Azure AD) Graph API, which is used for the pod's programmatic access to Azure Active Directory (Azure AD) through OData REST API endpoints.</td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure (global): graph.windows.net</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure Germany: graph.cloudapi.de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure China: graph.chinacloudapi.cn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure US Government: graph.windows.net</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>One of the following, depending on which Microsoft Azure cloud you have deployed your pod into:</td>
<td>443</td>
<td>TCP</td>
<td>Used for the pod's programmatic access to the Azure Blob Storage. Azure Blob Storage is a service for storing large amounts of unstructured object data, such as text or binary data.</td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure (global): *.blob.core.windows.net</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure Germany: *.blob.core.cloudapi.de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft Azure China: *.blob.core.chinacloudapi.cn</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5-5. Pod Deployment and Operations DNS Requirements (continued)

<table>
<thead>
<tr>
<th>Subnet Source</th>
<th>Destination (DNS name)</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Management | One of the following, depending on which Microsoft Azure cloud you have deployed your pod into:
 - Microsoft Azure (global): *.vault.azure.net
 - Microsoft Azure Germany: *.vault.microsoftazure.de
 - Microsoft Azure China: *.vault.azure.cn
 - Microsoft Azure US Government: *.vault.usgovcloudapi.net | 443 | TCP | Used for the pod’s ability to programmatically work with the Azure Key Vault cloud service. Azure Key Vault is a cloud service that provides a secure store for secrets. |
| Management | If your firewall or network security group (NSG) supports the use of service tags, one of the following:
 - Global Azure SQL service tag: Sql
 - Region-specific SQL service tag for the Azure region where the pod is deployed: Sql.region, such as Sql.WestUS
 - If your firewall or network security group (NSG) does not support the use of service tags, you can use the hostname of the database. This name follows the pattern *.postgres.database.azure.com. | 5432 | TCP | Used for pod communication to the Microsoft Azure PostgreSQL database server. Starting with the September 2019 release, pods that are newly deployed after that release date and pods that are upgraded to that release’s manifest version are configured with a Microsoft Azure PostgreSQL database server. For information about service tags in security groups, see the Microsoft Azure documentation topic at Service tags. |
Table 5-5. Pod Deployment and Operations DNS Requirements (continued)

<table>
<thead>
<tr>
<th>Subnet Source</th>
<th>Destination (DNS name)</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenant</td>
<td>d1mes20qfad06k.cloudfront.net</td>
<td>443</td>
<td>TCP</td>
<td>Horizon Cloud content delivery server. On the tenant subnet, this site is used by the system’s automated Import Image process for downloading the installer for the agent-related software.</td>
</tr>
</tbody>
</table>
| Tenant | Depending on which regional Horizon Cloud control plane is specified in your Horizon Cloud account:
 North America:
 - kinesis.us-east-1.amazonaws.com
 - query-prod-us-east-1.cms.vmware.com
 Europe:
 - kinesis.eu-central-1.amazonaws.com
 - query-prod-eu-central-1.cms.vmware.com
 Australia:
 - kinesis.ap-southeast-2.amazonaws.com

Ports and Protocols Required by the Pod Jump Box During Pod Deployments and Pod Updates

As described in the Horizon Cloud Deployment Guide, a jump box VM is used in the initial creation of a pod and during subsequent software updates on the pod's environment. After a pod is created, the jump box VM is deleted. Then, when a pod is being updated, the jump box VM is re-created to run that update process and is deleted when the update has completed. Such updates include when a pod is edited to add a gateway.

Note A pod that is either deployed new in Microsoft Azure starting with the September 2019 release or which is upgraded to the September 2019 release manifest level and has high availability enabled will have two manager VMs. The following paragraphs use the plural word VMs to indicate the jump box VM must communicate with all of the pod's manager VMs, whether the pod has only one or has two.
During those processes, that jump box VM communicates with the pod's manager VMs using SSH to the manager VMs' port 22. As a result, during the pod deployment process and pod update process, the requirement that communication between the jump box VM and the manager VMs' port 22 must be met. The manager VMs' port 22 must be allowed between the jump box VM as a source and the manager VMs as a destination. Because these VMs are assigned IP addresses dynamically, the network rule to allow this communication should use the management subnet CIDR as both the source and destination, with destination port 22, source port any, and protocol TCP.

Note Ongoing pod operations do not require availability of port 22 on the pod's manager VMs. However, if you make a support request to VMware and the support team determines the way to debug that request is to deploy a jump box VM for SSH communication to your pod's manager VMs, then you will have to meet this port requirement during the time the VMware support team needs the port for debugging your issue. The VMware support team will inform you of any requirements, as appropriate for any support situation.

When the External Gateway is Deployed in its Own VNet: Ports and Protocols Required by the External Gateway Configuration's Jump Box During Gateway Deployments and Updates

As described in the Horizon Cloud Deployment Guide, a jump box VM is used in the initial creation of the external gateway in its own VNet and during subsequent software updates on that gateway. After the external gateway is created in its own VNet, the jump box VM is deleted. Then, when that external gateway is being updated, the jump box VM is re-created to run that update process and is deleted when the update has completed. Such updates include when a pod is edited to add an external gateway in its own VNet.

During those processes, that jump box VM communicates with the gateway connector VM using SSH to that connector VM's port 22. As a result, during the gateway deployment process and update process, the requirement that communication between the jump box VM and the connector VMs' port 22 must be met. The connector VMs' port 22 must be allowed between the jump box VM as a source and the connector VMs as a destination. Because these VMs are assigned IP addresses dynamically, the network rule to allow this communication should use the management subnet CIDR as both the source and destination, with destination port 22, source port any, and protocol TCP.

Note Ongoing pod operations do not require availability of port 22 on the gateway connector's VM. However, if you make a support request to VMware and the support team determines the way to debug that request is to deploy a jump box VM for SSH communication to that gateway's connector VM, then you will have to meet this port requirement during the time the VMware support team needs the port for debugging your issue. The VMware support team will inform you of any requirements, as appropriate for any support situation.

Ports and Protocols Requirements for a Horizon Cloud Pod at the September 2019 Release’s Manifest or Later

For ongoing Horizon Cloud operations, a pod that is either deployed new in Microsoft Azure starting with the September 2019 release and later, or which is upgraded to the September 2019 release level, has
specific port and protocol requirements that are different from a pod that was deployed previously. Pods deployed new or upgraded to the September 2019 release have manifest versions of 1600 or later.

Important In addition to the ports and protocols described here, you must meet DNS requirements. For details, see [DNS Requirements for a Horizon Cloud Pod in Microsoft Azure](#).

Ports and Protocols Required by Key Pod Components for Ongoing Operations

In addition to the DNS requirements, the ports and protocols in the following tables are required for the pod to operate properly for ongoing operations after deployment.

In the tables below, the term manager VM refers to the pod's manager VM. In the Microsoft Azure portal, this VM has a name that contains a part like `vmw-hcs-podID`, where `podID` is the pod's UUID, and a `node` part.

Important A pod that is enabled for high availability has two manager VMs. A pod that has high availability disabled has only one manager VM. In the tables below, wherever you see the term manager VM, it applies to all of the manager VMs in your high-availability-enabled pod unless otherwise indicated.

All pods at the September 2019 release's manifest version or later have a pod Microsoft Azure load balancer. The table rows that involve the pod's load balancer apply for all pods at the manifest level of 1600 or later.

Table 5-6. Pod Operations Ports and Protocols

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager VM</td>
<td>Pod's other manager VM</td>
<td>410</td>
<td>TCP</td>
<td>For a pod that is enabled with high availability, this traffic is JMS routing between the manager VMs.</td>
</tr>
<tr>
<td>Pod's Microsoft Azure load balancer</td>
<td>Manager VM</td>
<td>808</td>
<td>HTTP</td>
<td>Health checks of the VMs in the load balancer's backend pool. When a pod at this release's manifest version is not enabled with high availability, the load balancer has one manager VM to check.</td>
</tr>
<tr>
<td>Manager VM</td>
<td>Domain controller</td>
<td>389</td>
<td>TCP UDP</td>
<td>LDAP services. Server that contains a domain controller role in an Active Directory configuration. Registering the pod with an Active Directory is a requirement.</td>
</tr>
<tr>
<td>Manager VM</td>
<td>Global catalog</td>
<td>326</td>
<td>TCP</td>
<td>LDAP services. Server that contains global catalog role in an Active Directory configuration. Registering the pod with an Active Directory is a requirement.</td>
</tr>
<tr>
<td>Manager VM</td>
<td>Domain controller</td>
<td>88</td>
<td>TCP UDP</td>
<td>Kerberos services. Server that contains a domain controller role in an Active Directory configuration. Registering the pod with an Active Directory is a requirement.</td>
</tr>
<tr>
<td>Manager VM</td>
<td>DNS server</td>
<td>53</td>
<td>TCP UDP</td>
<td>DNS services.</td>
</tr>
<tr>
<td>Manager VM</td>
<td>NTP server</td>
<td>123</td>
<td>UDP</td>
<td>NTP services. Server that provides NTP time synchronization.</td>
</tr>
</tbody>
</table>
Table 5-6. Pod Operations Ports and Protocols (continued)

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager VM</td>
<td>True SSO Enrollment Server</td>
<td>321</td>
<td>TCP</td>
<td>True SSO Enrollment Server. Optional if you are not using True SSO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td>Enrollment Server capabilities with your pods.</td>
</tr>
<tr>
<td>Manager VM</td>
<td>Workspace ONE Access service</td>
<td>443</td>
<td>HTTPS</td>
<td>Optional if you are not using Workspace ONE Access with the pod. Used</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to create a trust relationship between the pod and the Workspace ONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Access service. Ensure that the pod can reach the Workspace ONE Access</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>environment you are using, either on-premises or the cloud service, on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>port 443. If you are using the Workspace ONE Access cloud service, see</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>also the list of Workspace ONE Access service IP addresses to which the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Workspace ONE Access Connector and the pod must have access in the VMware</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knowledge Base article 2149884.</td>
</tr>
<tr>
<td>Transient Jump</td>
<td>Manager VM</td>
<td>22</td>
<td>TCP</td>
<td>As described above in Ports and Protocols Required by the Pod Jump Box</td>
</tr>
<tr>
<td>box VM</td>
<td></td>
<td></td>
<td></td>
<td>During Pod Deployments and Pod Updates, a transient jump box is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>during pod deployment and pod update processes. Even though ongoing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>processes do not require these ports, during pod deployment and pod</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>update processes, this jump box VM must communicate with the manager VMs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>using SSH to the manager VMs' port 22. For details about the cases for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>which the jump box VM needs this communication, see Ports and Protocols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required by the Pod Jump Box During Pod Deployments and Pod Updates.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td></td>
<td></td>
<td>A pod that is at manifest version 1600 or later and has the high</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>availability feature enabled on it, will have two manager VMs. The</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>preceding paragraph uses the plural word VMs to indicate the jump box</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VM must communicate with all of the pod’s manager VMs, whether the pod</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>has only one or has two.</td>
</tr>
</tbody>
</table>

Gateway Connector VM Ports and Protocols Requirements

This table applies to the gateway's connector VM that is used when you have deployed the external gateway in a separate VNet. In addition to the DNS requirements, the ports and protocols in the following table are required for the external gateway to operate properly for ongoing operations after deployment.

In the table below, the term connector VM refers to the gateway's connector VM which manages the connection between the cloud management plane and the external gateway. In the Microsoft Azure portal, this VM has a name that contains a part like `vmw-hcs-<ID>`, where `<ID>` is the gateway's deployer ID, and a node part.
Table 5-7. Pod Operations Ports and Protocols

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port(s)</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector VM</td>
<td>DNS server</td>
<td>53</td>
<td>TCP, UDP</td>
<td>DNS services.</td>
</tr>
<tr>
<td>Connector VM</td>
<td>NTP server</td>
<td>123</td>
<td>UDP</td>
<td>NTP services. Server that provides NTP time synchronization.</td>
</tr>
<tr>
<td>Transient Jump box VM</td>
<td>Connector VM</td>
<td>22</td>
<td>TCP</td>
<td>As described above in Ports and Protocols Required by the Pod Jump Box During Pod Deployments and Pod Updates, a transient jump box is used during deployment of the external gateway and during update processes. Even though ongoing processes do not require these ports, during deployment and update processes, this jump box VM must communicate with the connector VM using SSH to the connector VMs' port 22.</td>
</tr>
</tbody>
</table>

Unified Access Gateway VM Ports and Protocols Requirements

In addition to the DNS and above primary ports and protocols requirements, the ports and protocols in the following tables are related to the gateways that you have configured on the pod to operate properly for ongoing operations after deployment.

For connections using a high-availability-enabled pod configured with Unified Access Gateway instances, traffic must be allowed from the pod's Unified Access Gateway instances to targets as listed in the table below. During pod deployment, a Network Security Group (NSG) is created in your Microsoft Azure environment for use by the pod's Unified Access Gateway software.

Table 5-8. Port Requirements for Traffic from the Pod's Unified Access Gateway Instances

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified Access Gateway</td>
<td>Pod's Microsoft Azure load balancer</td>
<td>443</td>
<td>TCP</td>
<td>Login authentication traffic. The traffic from the Unified Access Gateway instances reaches the pod's manager VM through the pod's load balancer.</td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>4172</td>
<td>TCP, UDP</td>
<td>PCoIP</td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>22443</td>
<td>TCP, UDP</td>
<td>Blast Extreme By default, when using Blast Extreme, client-drive redirection (CDR) traffic and USB traffic is side-channeled in this port. If you prefer instead, the CDR traffic can be separated onto the TCP 9427 port and the USB redirection traffic can be separated onto the TCP 32111 port.</td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>9427</td>
<td>TCP</td>
<td>Optional for client driver redirection (CDR) and multimedia redirection (MMR) traffic.</td>
</tr>
</tbody>
</table>
Table 5-8. Port Requirements for Traffic from the Pod's Unified Access Gateway Instances (continued)

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified Access Gateway</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>32111</td>
<td>TCP</td>
<td>Optional for USB redirection traffic.</td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td>Your RADIUS instance</td>
<td>1812</td>
<td>UDP</td>
<td>When using RADIUS two-factor authentication with that Unified Access Gateway configuration. The default value for RADIUS is shown here.</td>
</tr>
</tbody>
</table>

End-User Connection Traffic Ports and Protocols Requirements

For detailed information about the various Horizon Clients that your end users might use with your Horizon Cloud pod, see the Horizon Client documentation page at https://docs.vmware.com/en/VMware-Horizon-Client/index.html. Which ports must be opened for traffic from the end users' connections to reach their pod-provisioned virtual desktops and remote applications depends on the choice you make for how your end users will connect:

When you choose the deployer option for having an external gateway configuration in the pod's own VNet

The deployer deploys Unified Access Gateway instances in your Microsoft Azure environment, along with a Microsoft Azure load balancer resource to those instances in that load balancer's backend pool. That load balancer communicates with those instances' NICs on the DMZ subnet, and is configured as a public load balancer in Microsoft Azure. The diagram Figure 5-1. Illustration of the Horizon Cloud Pod Architecture for a Pod with High Availability Enabled and Configured with Both External and Internal Unified Access Gateway Configurations depicts the location of this public load balancer and the Unified Access Gateway instances. When your pod has this configuration, traffic from your end users on the Internet goes to that load balancer, which distributes the requests to the Unified Access Gateway instances. For this configuration, you must ensure that those end-user connections can reach that load balancer using the ports and protocols listed below. Post-deployment, the external gateway's load balancer is located in the resource group named vmw-hcs–podID–uag, where podID is the pod's UUID.

When you choose the deployer option for having an internal Unified Access Gateway configuration

An internal gateway configuration is deployed into the pod's own VNet by default. The deployer deploys Unified Access Gateway instances in your Microsoft Azure environment, along with a Microsoft Azure load balancer resource to those instances in its backend pool. That load balancer communicates with those instances' NICs on the tenant subnet, and is configured as an internal load balancer in Microsoft Azure. The diagram Figure 5-1. Illustration of the Horizon Cloud Pod Architecture for a Pod with High Availability Enabled and Configured with Both External and Internal Unified Access Gateway Configurations depicts the location of this internal load balancer and the Unified Access Gateway instances. When your pod...
has this configuration, traffic from your end users in your corporate network goes to that load balancer, which distributes the requests to the Unified Access Gateway instances. For this configuration, you must ensure that those end-user connections can reach that load balancer using the ports and protocols listed below. Post-deployment, the internal gateway’s load balancer is located in the resource group named \texttt{vmw-hcs-podID-uag-internal}, where \texttt{podID} is the pod's UUID.

The deployer deploys Unified Access Gateway instances in your Microsoft Azure environment, along with a Microsoft Azure load balancer resource to those instances in that load balancer’s backend pool. That load balancer communicates with those instances’ NICs on the DMZ subnet, and is configured as a public load balancer in Microsoft Azure. The diagram \textit{Figure 5-2. Illustration of the External Gateway’s Architecture Elements When the External Gateway is Deployed into Its Own VNet, Separate from the Pod’s VNet} depicts the location of this public load balancer and the Unified Access Gateway instances in the gateway’s own VNet. When your pod has this configuration, traffic from your end users on the Internet goes to that load balancer, which distributes the requests to the Unified Access Gateway instances. For this configuration, you must ensure that those end-user connections can reach that load balancer using the ports and protocols listed below. Post-deployment, the external gateway’s load balancer is located in the resource group named \texttt{vmw-hcs-ID-uag}, where \texttt{ID} is the value show in the \textbf{Deployer ID} field of the pod’s details page. As described in the Administration Guide, you get to the pod’s details page from the Administration Console’s Capacity page.

\begin{custombreak}
\textbf{Attention} In production systems, for internal-user access, the best practice is to use an internal Unified Access Gateway gateway configuration on the pod, and not direct connections to the pod.
\end{custombreak}

When Workspace ONE Access is integrated with the pod, you typically have your end users connect through Workspace ONE Access. When Workspace ONE Access is integrated with a Horizon Cloud pod in Microsoft Azure, you must configure it pointing directly to the pod. No Unified Access Gateway configuration is needed on the pod then, when your end users are connecting to their pod-provisioned resources using Workspace ONE Access. For this configuration, you upload an SSL certificate to the pod’s manager VMs using the pod’s summary page in the Administration Console, as described in \textit{Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod}. Then you complete the steps to integrate Workspace ONE Access with the pod.
Table 5-9. External End User Connections Ports and Protocols when the Pod Configuration has External Unified Access Gateway instances

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>TCP</td>
<td>Login authentication traffic. Can also carry client-drive redirection (CDR), multimedia redirection (MMR), USB redirection, and tunneled RDP traffic. SSL (HTTPS access) is enabled by default for client connections. Port 80 (HTTP access) can be used in some cases. See Understanding What URL Content Redirection Is.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>4172</td>
<td>TCP, UDP</td>
<td>PCoIP via PCoIP Secure Gateway on Unified Access Gateway</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>TCP</td>
<td>Blast Extreme via Blast Secure Gateway on Unified Access Gateway for data traffic.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>UDP</td>
<td>Blast Extreme via the Unified Access Gateway for data traffic.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>8443</td>
<td>UDP</td>
<td>Blast Extreme via Blast Secure Gateway on Unified Access Gateway for data traffic (adaptive transport).</td>
</tr>
<tr>
<td>Browser</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>TCP</td>
<td>HTML Access</td>
</tr>
</tbody>
</table>

Table 5-10. Internal End User Connections Ports and Protocols when the Pod Configuration has Internal Unified Access Gateway instances

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>TCP</td>
<td>Login authentication traffic. Can also carry client-drive redirection (CDR), multimedia redirection (MMR), USB redirection, and tunneled RDP traffic. SSL (HTTPS access) is enabled by default for client connections. Port 80 (HTTP access) can be used in some cases. See Understanding What URL Content Redirection Is.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>4172</td>
<td>TCP, UDP</td>
<td>PCoIP via PCoIP Secure Gateway on Unified Access Gateway</td>
</tr>
</tbody>
</table>
Table 5-10. Internal End User Connections Ports and Protocols when the Pod Configuration has Internal Unified Access Gateway instances (continued)

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>TCP</td>
<td>Blast Extreme via Blast Secure Gateway on Unified Access Gateway for data traffic.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>UDP</td>
<td>Blast Extreme via the Unified Access Gateway for data traffic.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>8443</td>
<td>UDP</td>
<td>Blast Extreme via Blast Secure Gateway on Unified Access Gateway for data traffic (adaptive transport).</td>
</tr>
<tr>
<td>Browser</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>TCP</td>
<td>HTML Access</td>
</tr>
</tbody>
</table>

Table 5-11. Internal End User Connections Ports and Protocols when using Direct Pod Connections, Such as Over VPN

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon Client</td>
<td>Pod's Microsoft Azure load balancer</td>
<td>443</td>
<td>TCP</td>
<td>Login authentication traffic. The traffic from the clients reaches the pod's manager VMs through the pod's load balancer.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>4172</td>
<td>TCP, UDP</td>
<td>PCoIP</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>2243</td>
<td>TCP, UDP</td>
<td>Blast Extreme</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>32111</td>
<td>TCP</td>
<td>USB redirection</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>9427</td>
<td>TCP</td>
<td>Client-drive redirection (CDR) and multimedia redirection (MMR)</td>
</tr>
<tr>
<td>Browser</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>443</td>
<td>TCP</td>
<td>HTML Access</td>
</tr>
</tbody>
</table>
Horizon Agent to VDI Desktops and Farms Required Ports and Protocols

The following ports must allow traffic from the Horizon agent-related software that is installed in the desktop VMs and farm server VMs to the high-availability pod’s manager VMs.

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>Manager VM</td>
<td>4002</td>
<td>TCP</td>
<td>Java Message Service (JMS) when using enhanced security (the default)</td>
</tr>
<tr>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>Manager VM</td>
<td>4001</td>
<td>TCP</td>
<td>Java Message Service (JMS), legacy</td>
</tr>
<tr>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>Manager VM</td>
<td>3099</td>
<td>TCP</td>
<td>Desktop message server</td>
</tr>
<tr>
<td>FlexEngine agent (the agent for VMware Dynamic Environment Manager) in the desktop or farm server VMs</td>
<td>Those file shares that you set up for use by the FlexEngine agent that runs in the desktop or farm server VMs</td>
<td>445</td>
<td>TCP</td>
<td>FlexEngine agent access to your SMB file shares, if you are using VMware Dynamic Environment Manager capabilities.</td>
</tr>
</tbody>
</table>

As part of the pod deployment process, the deployer creates network security groups (NSGs) on the network interfaces (NICs) on all of the deployed VMs. For details about the rules defined in those NSGs, see Default Network Security Group Rules for the VMs in a Horizon Cloud Pod Deployed in Microsoft Azure.

Note Instead of listing DNS names, IP addresses, ports, and protocols in a Horizon Cloud Knowledge Base (KB) article, we have provided them here as part of the core Horizon Cloud documentation.

Ports and Protocols Requirements for a Horizon Cloud Pod Deployed Prior to the September 2019 Release

For ongoing Horizon Cloud operations, a pod that was deployed in Microsoft Azure prior to the September 2019 release has specific port and protocol requirements that are different from a pod that is deployed at the manifest version of the September 2019 release, or which is upgraded to the September
2019 release's manifest version. A pod that was deployed prior to the September 2019 release has a manifest version of 1493.1 or earlier.

Important In addition to the ports and protocols described here, you must meet DNS requirements. For details, see [DNS Requirements for a Horizon Cloud Pod in Microsoft Azure](#).

Ports and Protocols Required for Ongoing Operations for a Pod of Manifest Version

In addition to the DNS requirements, the ports and protocols in the following tables are required for the pod to operate properly for ongoing operations after deployment.

Note In this section's tables, the term manager VM refers to the pod's manager VM. In the Microsoft Azure portal, this VM has a name that contains a part like `vmw-hcs-podID`, where `podID` is the pod's UUID, and a node part.

<table>
<thead>
<tr>
<th>Table 5-12. Pod Operations Ports and Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Manager VM</td>
</tr>
</tbody>
</table>
Which ports must be opened for traffic from the end users' connections to reach their pod-provisioned virtual desktops and remote applications depends on the choice you make for how your end users will connect:

- When you choose the option for having an external gateway configuration, Unified Access Gateway instances are automatically deployed in your Microsoft Azure environment, along with a Microsoft Azure load balancer resource to those instances in its backend pool. That load balancer communicates with those instances' NICs on the DMZ subnet, and is configured as a public load balancer in Microsoft Azure. The diagram Figure 5-1. Illustration of the Horizon Cloud Pod Architecture for a Pod with High Availability Enabled and Configured with Both External and Internal Unified Access Gateway Configurations depicts the location of this public load balancer and the Unified Access Gateway instances. When your pod has this configuration, traffic from your end users on the Internet goes to that load balancer, which distributes the requests to the Unified Access Gateway instances. For this configuration, you must ensure that those end-user connections can reach that load balancer using the ports and protocols listed below. For the deployed pod, the external gateway's load balancer is located in the resource group named vmw-hcs-podID-uag, where podID is the pod's UUID.

- When you choose the option for having an internal Unified Access Gateway configuration, Unified Access Gateway instances are automatically deployed in your Microsoft Azure environment, along with a Microsoft Azure load balancer resource to those instances in its backend pool. That load balancer communicates with those instances' NICs on the tenant subnet, and is configured as an internal load balancer in Microsoft Azure. The diagram Figure 5-1. Illustration of the Horizon Cloud Pod Architecture for a Pod with High Availability Enabled and Configured with Both External and Internal Unified Access Gateway Configurations depicts the location of this internal load balancer and the Unified Access Gateway instances. When your pod has this configuration, traffic from your end users in your corporate network goes to that load balancer, which distributes the requests to the
Unified Access Gateway instances. For this configuration, you must ensure that those end-user connections can reach that load balancer using the ports and protocols listed below. For the deployed pod, the internal gateway's load balancer is located in the resource group named `vmw-hcs-podID-uag-internal`, where `podID` is the pod's UUID.

- When you do not choose either Unified Access Gateway configurations, you can instead have your end users connecting directly to the pod, such as using a VPN. For this configuration, you upload an SSL certificate to the pod's manager VM using the pod's summary page in the Administration Console, as described in Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod.

For detailed information about the various Horizon Clients that your end users might use with your Horizon Cloud pod, see the Horizon Client documentation page at https://docs.vmware.com/en/VMware-Horizon-Client/index.html.

Table 5-13. External End User Connections Ports and Protocols when the Pod Configuration has External Unified Access Gateway instances

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon</td>
<td>Microsoft Azure load balancer</td>
<td>443</td>
<td>TCP</td>
<td>Login authentication traffic. Can also carry client-drive redirection (CDR), multimedia redirection (MMR), USB redirection, and tunneled RDP traffic. SSL (HTTPS access) is enabled by default for client connections. Port 80 (HTTP access) can be used in some cases. See Understanding What URL Content Redirection Is.</td>
</tr>
<tr>
<td>Client</td>
<td>for these Unified Access Gateway instances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon</td>
<td>Microsoft Azure load balancer</td>
<td>4172</td>
<td>TCP</td>
<td>PCoIP via PCoIP Secure Gateway on Unified Access Gateway</td>
</tr>
<tr>
<td>Client</td>
<td>for these Unified Access Gateway instances</td>
<td></td>
<td>UDP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microsoft Azure load balancer</td>
<td>443</td>
<td>TCP</td>
<td>Blast Extreme via Blast Secure Gateway on Unified Access Gateway for data traffic.</td>
</tr>
<tr>
<td>Client</td>
<td>for these Unified Access Gateway instances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microsoft Azure load balancer</td>
<td>443</td>
<td>UDP</td>
<td>Blast Extreme via the Unified Access Gateway for data traffic.</td>
</tr>
<tr>
<td>Client</td>
<td>for these Unified Access Gateway instances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microsoft Azure load balancer</td>
<td>8443</td>
<td>UDP</td>
<td>Blast Extreme via Blast Secure Gateway on Unified Access Gateway for data traffic (adaptive transport).</td>
</tr>
<tr>
<td>Client</td>
<td>for these Unified Access Gateway instances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Browser</td>
<td>Microsoft Azure load balancer</td>
<td>443</td>
<td>TCP</td>
<td>HTML Access</td>
</tr>
<tr>
<td></td>
<td>for these Unified Access Gateway instances</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5-14. Internal End User Connections Ports and Protocols when the Pod Configuration has Internal Unified Access Gateway instances

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>TCP</td>
<td>Login authentication traffic. Can also carry client-drive redirection (CDR), multimedia redirection (MMR), USB redirection, and tunneled RDP traffic. SSL (HTTPS access) is enabled by default for client connections. Port 80 (HTTP access) can be used in some cases. See Understanding What URL Content Redirection Is.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>4172</td>
<td>TCP, UDP</td>
<td>PCoIP via PCoIP Secure Gateway on Unified Access Gateway</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>TCP</td>
<td>Blast Extreme via Blast Secure Gateway on Unified Access Gateway for data traffic.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>UDP</td>
<td>Blast Extreme via the Unified Access Gateway for data traffic.</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>8443</td>
<td>UDP</td>
<td>Blast Extreme via Blast Secure Gateway on Unified Access Gateway for data traffic (adaptive transport).</td>
</tr>
<tr>
<td>Browser</td>
<td>Microsoft Azure load balancer for these Unified Access Gateway instances</td>
<td>443</td>
<td>TCP</td>
<td>HTML Access</td>
</tr>
</tbody>
</table>

Table 5-15. Internal End User Connections Ports and Protocols when using Direct Pod Connections, Such as Over VPN

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon Client</td>
<td>Manager VM</td>
<td>443</td>
<td>TCP</td>
<td>Login authentication traffic</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>4172</td>
<td>TCP, UDP</td>
<td>PCoIP</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>22443</td>
<td>TCP, UDP</td>
<td>Blast Extreme</td>
</tr>
</tbody>
</table>
Table 5-15. Internal End User Connections Ports and Protocols when using Direct Pod Connections, Such as Over VPN (continued)

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon Client</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>32111</td>
<td>TCP</td>
<td>USB redirection</td>
</tr>
<tr>
<td>Horizon Client</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>9427</td>
<td>TCP</td>
<td>Client-drive redirection (CDR) and multimedia redirection (MMR)</td>
</tr>
<tr>
<td>Browser</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>443</td>
<td>TCP</td>
<td>HTML Access</td>
</tr>
</tbody>
</table>

For connections using a pod configured with Unified Access Gateway instances, traffic must be allowed from the pod's Unified Access Gateway instances to targets as listed in the table below. During pod deployment, a Network Security Group (NSG) is created in your Microsoft Azure environment for use by the pod's Unified Access Gateway software.

Table 5-16. Port Requirements for Traffic from the Pod’s Unified Access Gateway Instances

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified Access Gateway</td>
<td>Manager VM</td>
<td>443</td>
<td>TCP</td>
<td>Login authentication traffic</td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>4172</td>
<td>TCP</td>
<td>PCoIP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UDP</td>
<td></td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>22443</td>
<td>TCP</td>
<td>Blast Extreme</td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td></td>
<td></td>
<td>UDP</td>
<td>By default, when using Blast Extreme, client-drive redirection (CDR) traffic and USB traffic is side-channeled in this port. If you prefer instead, the CDR traffic can be separated onto the TCP 9427 port and the USB redirection traffic can be separated onto the TCP 32111 port.</td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>9427</td>
<td>TCP</td>
<td>Optional for client drive redirection (CDR) and multimedia redirection (MMR) traffic.</td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>32111</td>
<td>TCP</td>
<td>Optional for USB redirection traffic.</td>
</tr>
<tr>
<td>Unified Access Gateway</td>
<td>Your RADIUS instance</td>
<td>1812</td>
<td>UDP</td>
<td>When using RADIUS two-factor authentication with that Unified Access Gateway configuration. The default value for RADIUS is shown here.</td>
</tr>
</tbody>
</table>

The following ports must allow traffic from the Horizon agent-related software that is installed in the desktop VMs and farm server VMs.
<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>Manager VM</td>
<td>4002</td>
<td>TCP</td>
<td>Java Message Service (JMS) when using enhanced security (the default)</td>
</tr>
<tr>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>Manager VM</td>
<td>4001</td>
<td>TCP</td>
<td>Java Message Service (JMS), legacy</td>
</tr>
<tr>
<td>Horizon agent in the desktop or farm server VMs</td>
<td>Manager VM</td>
<td>3099</td>
<td>TCP</td>
<td>Desktop message server</td>
</tr>
<tr>
<td>FlexEngine agent (the agent for VMware Dynamic Environment Manager) in the desktop or farm server VMs</td>
<td>Those file shares that you set up for use by the FlexEngine agent that runs in the desktop or farm server VMs</td>
<td>445</td>
<td>TCP</td>
<td>FlexEngine agent access to your SMB file shares, if you are using VMware Dynamic Environment Manager capabilities.</td>
</tr>
</tbody>
</table>

As part of the pod deployment process, the deployer creates network security groups (NSGs) on the network interfaces (NICs) on all of the deployed VMs. For details about the rules defined in those NSGs, see Default Network Security Group Rules for the VMs in a Horizon Cloud Pod Deployed in Microsoft Azure.

Note Instead of listing DNS names, IP addresses, ports, and protocols in a Horizon Cloud Knowledge Base (KB) article, we have provided them here as part of the core Horizon Cloud documentation.

Default Network Security Group Rules for the VMs in a Horizon Cloud Pod Deployed in Microsoft Azure

As part of deploying the pod in Microsoft Azure, the automated deployment process creates a set of network security groups (NSGs) and associates them with the individual network interfaces (NICs) that are on each of the pod's core virtual machines (VMs). These core VMs are the pod's manager VM, and the VMs that are deployed when the pod is configured with Unified Access Gateway. Each NSG contains a set of security rules that define the allowed traffic to and from that NIC.
As described in the Microsoft Azure documentation’s Security groups topic, a network security group filters network traffic to and from resources in your Microsoft Azure environment using security rules. Each rule has a set of properties such as source, destination, port, protocol, and so on that determine the traffic allowed for the resources to which the NSG is associated. The sections below describe the NSG rules that the pod deployer defines in the NSGs it creates and associates to the VMs' NICs.

- **General Facts About These NSGs**
- **Pod Manager VM's Deployer-Created NSGs**
- **External Unified Access Gateway VMs' Deployer-Created NSGs**
- **Internal Unified Access Gateway VMs' Deployer-Created NSGs**

General Facts About These NSGs

This list applies to all of these NSGs.

- In the Microsoft Azure portal, the NSGs have names that contain the pattern `vmw-hcs-<podUUID>`, where `<podUUID>` is the pod's identifier, except for the NSGs that are for an external gateway configuration that is deployed into its own VNet. In that case, the gateway’s relevant NSGs have names that contain the pattern `vmw-hcs-<ID>`, where `<ID>` is the deployment ID for that external gateway.

 You can locate these identifiers by navigating to the pod's details from the Horizon Cloud Administration Console’s Capacity page.

- The NSGs are located in the same resource group as the VMs and NICs to which they are associated. As an example, the NSGs associated with the NICs on the external Unified Access Gateway VMs are located in the resource group named `vmw-hcs-<podUUID>-uag` when the external gateway is deployed in the pod's VNet. See also Resource Groups Created For a Pod Deployed In Microsoft Azure.

- Horizon Cloud might add new rules or modify these rules as appropriate for ensuring maintainability of the service.

- During a pod upgrade, the NSGs and rules will be retained. They will not be deleted.

- The Horizon Cloud rules start at priority 1000, and the priorities go up in increments of 100. The Horizon Cloud rules end with a rule at priority 3000.

- The `AllowAzureInBound` rules for source IP address 168.63.129.16 provide for the NSGs accepting incoming communication from the Microsoft Azure platform, as described in the Microsoft Azure documentation topic What is IP address 168.63.129.16.

- In the NSGs for the Unified Access Gateway instances, the `AllowPcoipUdpInBound` rules are set for any port because PCoIP traffic is using variable port numbers in the 4173+ range, so that traffic cannot be restricted to a specific set of ports.

- Microsoft Azure creates some default rules automatically in each NSG when it is created. In every NSG that is created, Microsoft Azure creates some inbound and outbound rules at priority 65000 and higher. Such Microsoft Azure default rules are not described in this documentation topic, because they are created by Microsoft Azure automatically. For details on those default rules, see the Microsoft Azure documentation topic Default security rules.
Pod Manager VM's Deployer-Created NSGs

The pod manager VM has two NICs, one connected to the management subnet and the other connected to the tenant subnet. Each NIC has an NSG defined on it.

- The management NIC has an NSG named in the pattern `vmw-hcs-podUUID-mgmt-nsg`.
- The tenant NIC has an NSG named in the pattern `vmw-hcs-podUUID-tenant-nsg`.

In your Microsoft Azure environment, these NSGs reside in the pod's resource group named in the pattern `vmw-hcs-podUUID`.

Important When the pod is using the feature to have its external gateway in a separate VNet (which includes the case where that gateway is using a separate subscription from the pod's subscription), the NSG for the pod manager VM's tenant NIC has an additional inbound rule named `AllowGatewayBrokeringHttpsInBound` for port 8443 TCP with `VirtualNetwork` as the source. The deployer-created NSG rules on the pod manager VM's tenant NIC when the external gateway is in a separate VNet are listed in the third table below.

Table 5-17. Deployer-Created NSG Rules on the Pod Manager VM's Management NIC

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1000</td>
<td>AllowSshInBound</td>
<td>22</td>
<td>Any</td>
<td>Management subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1100</td>
<td>AllowAzureInBound</td>
<td>Any</td>
<td>Any</td>
<td>168.63.129.16</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1200</td>
<td>AllowHttpsInBound</td>
<td>443</td>
<td>Any</td>
<td>Management subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>3000</td>
<td>DenyAllInBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Table 5-18. Deployer-Created NSG Rules on the Pod Manager VM's Tenant NIC

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1000</td>
<td>AllowHttpsInBound</td>
<td>80</td>
<td>TCP</td>
<td>VirtualNetwork</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1100</td>
<td>AllowAgentHttpsInBound</td>
<td>3443</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1200</td>
<td>AllowAgentJmsInBound</td>
<td>4001</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1210</td>
<td>AllowRouterJmsInBound</td>
<td>4101</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1300</td>
<td>AllowAgentUdpInBound</td>
<td>5678</td>
<td>UDP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
</tbody>
</table>
Table 5-18. Deployer-Created NSG Rules on the Pod Manager VM’s Tenant NIC (continued)

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1400</td>
<td>AllowAzureInBound</td>
<td>Any</td>
<td>Any</td>
<td>168.63.129.1</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>3000</td>
<td>DenyAllInBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Table 5-19. When the External Gateway resides in a Separate VNet, Deployer-Created NSG Rules on the Pod Manager VM’s Tenant NIC

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1000</td>
<td>AllowHttpsInBound</td>
<td>80</td>
<td>TCP</td>
<td>VirtualNetwork</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1100</td>
<td>AllowAgentHpssInBound</td>
<td>3443</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1110</td>
<td>AllowGatewayBrokeringHpssInBound</td>
<td>8443</td>
<td>TCP</td>
<td>VirtualNetwork</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1200</td>
<td>AllowAgentJmsInBound</td>
<td>4001</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1210</td>
<td>AllowRouterJmsInBound</td>
<td>4101</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1300</td>
<td>AllowAgentUdpInBound</td>
<td>5678</td>
<td>UDP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1400</td>
<td>AllowAzureInBound</td>
<td>Any</td>
<td>Any</td>
<td>168.63.129.1</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>3000</td>
<td>DenyAllInBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

External Unified Access Gateway VMs’ Deployer-Created NSGs

Each of the VMs for the external Unified Access Gateway configuration has three (3) NICs, one connected to the management subnet, one connected to the tenant subnet, and one connected to the DMZ subnet. Each NIC has an NSG defined on it.

- The management NIC has an NSG named in the pattern `vmw-hcs-ID-uag-management-nsg`.
- The tenant NIC has an NSG named in the pattern `vmw-hcs-ID-uag-tenant-nsg`.
- The DMZ NIC has an NSG named in the pattern `vmw-hcs-ID-uag-dmz-nsg`.

In your Microsoft Azure environment, these NSGs are named in the pattern `vmw-hcs-ID-uag` where `ID` is the pod’s ID as displayed on the pod’s details page in the Administration Console, unless the external gateway is deployed in its own VNet separate from the pod’s VNet. In the case of an external gateway deployed in its own VNet, the `ID` is the Deployment ID value shown on the pod's details page.
Table 5-20. Deployer-Created NSG Rules on the External Unified Access Gateway VMs' Management NIC

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1000</td>
<td>AllowHttpsInBound</td>
<td>9443</td>
<td>TCP</td>
<td>Management subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1100</td>
<td>AllowAzureInBound</td>
<td>Any</td>
<td>Any</td>
<td>168.63.129.16</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1200</td>
<td>AllowSshInBound</td>
<td>22</td>
<td>Any</td>
<td>Management subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>3000</td>
<td>DenyAllInBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
<tr>
<td>Outbound</td>
<td>3000</td>
<td>DenyAllOutBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Table 5-21. Deployer-Created NSG Rules on the External Unified Access Gateway VMs' Tenant NIC

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1000</td>
<td>AllowAzureInBound</td>
<td>Any</td>
<td>Any</td>
<td>168.63.129.16</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1400</td>
<td>AllowPcoipUdpInBound</td>
<td>Any</td>
<td>UDP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>3000</td>
<td>DenyAllInBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
<tr>
<td>Outbound</td>
<td>1000</td>
<td>AllowHttpsOutBound</td>
<td>443</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Outbound</td>
<td>1100</td>
<td>AllowBlastOutBound</td>
<td>22443</td>
<td>Any</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Outbound</td>
<td>1200</td>
<td>AllowPcoipOutBound</td>
<td>4172</td>
<td>Any</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Outbound</td>
<td>1300</td>
<td>AllowUsbOutBound</td>
<td>32111</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Outbound</td>
<td>1400</td>
<td>AllowMmrOutBound</td>
<td>9427</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Outbound</td>
<td>1500</td>
<td>AllowAllOutBound</td>
<td>Any</td>
<td>Any</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Outbound</td>
<td>3000</td>
<td>DenyAllOutBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>
Table 5-22. Deployer-Created NSG Rules on the External Unified Access Gateway VMs’ DMZ NIC

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1000</td>
<td>AllowHttpsInBound</td>
<td>80</td>
<td>TCP</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>443</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inbound</td>
<td>1100</td>
<td>AllowBlastInBound</td>
<td>443</td>
<td>Any</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8443</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inbound</td>
<td>1200</td>
<td>AllowPcoipInBound</td>
<td>4172</td>
<td>Any</td>
<td>Internet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1300</td>
<td>AllowAzureInBound</td>
<td>Any</td>
<td>Any</td>
<td>168.63.129.16</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>3000</td>
<td>DenyAllOutBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Internal Unified Access Gateway VMs’ Deployer-Created NSGs

Each of the VMs for the internal Unified Access Gateway configuration has two (2) NICs, one connected to the management subnet and one connected to the tenant subnet. Each NIC has an NSG defined on it.

- The management NIC has an NSG named in the pattern `vmw-hcs-podUUID-uag-management-nsg`.
- The tenant NIC has an NSG named in the pattern `vmw-hcs-podUUID-uag-tenant-nsg`.

In your Microsoft Azure environment, these NSGs reside in the pod’s resource group named in the pattern `vmw-hcs-podUUID-uag-internal`.

Table 5-23. Deployer-Created NSG Rules on the Internal Unified Access Gateway VMs’ Management NIC

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1000</td>
<td>AllowHttpsInBound</td>
<td>9443</td>
<td>TCP</td>
<td>Management subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inbound</td>
<td>1100</td>
<td>AllowAzureInBound</td>
<td>Any</td>
<td>Any</td>
<td>168.63.129.16</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inbound</td>
<td>3000</td>
<td>DenyAllInBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outbound</td>
<td>3000</td>
<td>DenyAllOutBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Table 5-24. Deployer-Created NSG Rules on the Internal Unified Access Gateway VMs’ Tenant NIC

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1000</td>
<td>AllowAzureInBound</td>
<td>Any</td>
<td>Any</td>
<td>168.63.129.16</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inbound</td>
<td>1100</td>
<td>AllowHttpsInBound</td>
<td>80</td>
<td>TCP</td>
<td>VirtualNetwork</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>443</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5-24. Deployer-Created NSG Rules on the Internal Unified Access Gateway VMs’ Tenant NIC (continued)

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1200</td>
<td>AllowBlastInBound</td>
<td>443 8443</td>
<td>Any</td>
<td>VirtualNetwork</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1300</td>
<td>AllowPcoipInBound</td>
<td>4172</td>
<td>Any</td>
<td>VirtualNetwork</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1400</td>
<td>AllowPcoipUDPInBound</td>
<td>Any</td>
<td>UDP</td>
<td>Tenant subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>3000</td>
<td>DenyAllInBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
<tr>
<td>Outbound</td>
<td>1000</td>
<td>AllowHttpsOutBound</td>
<td>443 8443</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Allow</td>
<td></td>
</tr>
<tr>
<td>Outbound</td>
<td>1100</td>
<td>AllowBlastOutBound</td>
<td>22443</td>
<td>Any</td>
<td>Tenant subnet</td>
<td>Allow</td>
<td></td>
</tr>
<tr>
<td>Outbound</td>
<td>1200</td>
<td>AllowPcoipOutBound</td>
<td>4172</td>
<td>Any</td>
<td>Tenant subnet</td>
<td>Allow</td>
<td></td>
</tr>
<tr>
<td>Outbound</td>
<td>1300</td>
<td>AllowUsbOutBound</td>
<td>32111</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Allow</td>
<td></td>
</tr>
<tr>
<td>Outbound</td>
<td>1400</td>
<td>AllowMmrOutBound</td>
<td>9427</td>
<td>TCP</td>
<td>Tenant subnet</td>
<td>Allow</td>
<td></td>
</tr>
<tr>
<td>Outbound</td>
<td>1500</td>
<td>AllowAllOutBound</td>
<td>Any</td>
<td>Any</td>
<td>Tenant subnet</td>
<td>Allow</td>
<td></td>
</tr>
<tr>
<td>Outbound</td>
<td>3000</td>
<td>DenyAllOutBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
<td></td>
</tr>
</tbody>
</table>

Gateway Connector VM’s Deployer-Created NSG When an External Gateway is Deployed in Its Own VNet

The gateway connector VM has a single NIC. This NIC is attached to the external gateway’s VNet’s management subnet. The deployer creates a single NSG for that NIC.

Table 5-25. Deployer-Created NSG Rule on the External Gateway’s Connector VM’s Management NIC

<table>
<thead>
<tr>
<th>Direction</th>
<th>Priority</th>
<th>Name</th>
<th>Ports</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound</td>
<td>1000</td>
<td>AllowSshInBound</td>
<td>22</td>
<td>Any</td>
<td>Management subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1100</td>
<td>AllowAzureInBound</td>
<td>Any</td>
<td>Any</td>
<td>168.63.129.1/6</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>1200</td>
<td>AllowHttpsInBound</td>
<td>443</td>
<td>Any</td>
<td>Management subnet</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>Inbound</td>
<td>3000</td>
<td>DenyAllInBound</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
<td></td>
</tr>
</tbody>
</table>
Resource Groups Created For a Pod Deployed In Microsoft Azure

As part of the process of deploying a Horizon Cloud pod using your Microsoft Azure capacity, a set of resource groups are automatically created in your Microsoft Azure subscription. This topic describes those resource groups and their purpose. You can see these resource groups when you log in to your Microsoft Azure environment using the Microsoft Azure portal. If you deploy the pod's external gateway into its own subscription, the resource groups that support that gateway are created in that subscription.

In the table below, the podID refers to the pod's unique identifier. You can find a pod's identifier displayed in the pod's details page, navigating from the Horizon Cloud Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types. The poolID refers to the unique identifier for a farm or VDI desktop assignment. The Deployment-ID refers to the unique identifier related to an external gateway when it is deployed using its own VNet, separate from the pod's VNet.

Resource groups that contain VMs also contain the resources associated with those VMs, such as the VMs' network interfaces (NICs), network security groups (NSGs), and similar artifacts. Log in to the Microsoft Azure portal and navigate to the resource group to see the artifacts it contains. For details about the default rules in the NSGs that the pod deployer creates for the pod VMs' NICs, see Default Network Security Group Rules for the VMs in a Horizon Cloud Pod Deployed in Microsoft Azure.

Some resource groups are per pod, while others are created in your Microsoft Azure subscription to contain resources that are used with all of the pods deployed using the same Microsoft Azure subscription. Such cross-pod resource groups are created when the first pod is deployed using that subscription.

Table 5-26. Per-Pod Resource Groups Created By Horizon Cloud

<table>
<thead>
<tr>
<th>Resource Group</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmw-hcs-podID-jumpbox</td>
<td>Contains the transient jump box VM and its associated resources that Horizon Cloud uses when deploying a pod or updating an existing pod. When the deployment process or update process is completed, Horizon Cloud deletes the jump box VM and its associated resources from this resource group.</td>
</tr>
<tr>
<td>vmw-hcs-podID</td>
<td>Contains the pod manager VMs and their associated resources.</td>
</tr>
<tr>
<td>vmw-hcs-podID-uag</td>
<td>Created when the pod has an external Unified Access Gateway configuration. Contains the Unified Access Gateway VMs and their associated resources.</td>
</tr>
<tr>
<td>vmw-hcs-podID-uag-internal</td>
<td>Created when the pod has an internal Unified Access Gateway configuration. Contains the Unified Access Gateway VMs and their associated resources.</td>
</tr>
</tbody>
</table>
Table 5-26. Per-Pod Resource Groups Created By Horizon Cloud
(continued)

<table>
<thead>
<tr>
<th>Resource Group</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmw-hcs-podID-base-vms</td>
<td>Contains the master VMs created either by running the Create a Master Virtual Machine Automatically from the Microsoft Azure Marketplace and Pair it with Horizon Cloud or Manually Build the Master Virtual Machine in Microsoft Azure, and those VMs’ associated resources. After a master VM is published, it continues to reside in this resource group along with its associated resources.</td>
</tr>
<tr>
<td>vmw-hcs-podID-poolID</td>
<td>Contains the VMs for a farm or VDI desktop assignment and those VMs’ associated resources. Each time a farm or VDI desktop assignment is created, this resource group is created for it. For every farm or VDI desktop assignment in the pod is one of these resource groups.</td>
</tr>
<tr>
<td>vmw-hcs-podID-recovery</td>
<td>Contains the storage-related and snapshot-related artifacts that support the Horizon Cloud Backup and Restore Service for Pods in Microsoft Azure.</td>
</tr>
</tbody>
</table>

Table 5-27. Resource Groups Created By Horizon Cloud That Are Specific To an External Gateway Deployed in its Own VNet

<table>
<thead>
<tr>
<th>Resource Group</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmw-hcs-Deployment-ID-jumpbox</td>
<td>Contains the transient jump box VM and its associated resources that Horizon Cloud uses when deploying an external gateway in its own VNet, or updating that gateway. When the deployment process or update process is completed, Horizon Cloud deletes the jump box VM and its associated resources from this resource group.</td>
</tr>
<tr>
<td>vmw-hcs-Deployment-ID</td>
<td>Contains the gateway connector VM and its associated resources.</td>
</tr>
<tr>
<td>vmw-hcs-Deployment-ID-nnnnnnnn-nnnn-uag</td>
<td>Created when the pod has an external Unified Access Gateway configuration. Contains the Unified Access Gateway VMs and their associated resources. The value nnnnnnnn-nnnn is a unique identifier that corresponds with what is known as the gateway set ID in the Horizon Cloud control plane.</td>
</tr>
</tbody>
</table>
Table 5-28. Cross-Pod Resource Groups Created By Horizon Cloud

<table>
<thead>
<tr>
<th>Resource Group</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmw-hcs-images-region</td>
<td>Contains the Horizon Cloud pre-configured VHD files used for configuring a pod's VMs for the pods deployed in a particular Microsoft Azure region (region). When you deploy the initial pod in a Microsoft Azure region, this region-specific resource group is created. Horizon Cloud uses the resources in this resource group for the subsequent pods deployed into that same region.</td>
</tr>
<tr>
<td>vmw-hcs-diagnostics</td>
<td>Used for the Horizon Cloud diagnostic storage account that contains the pod deployment log files for your subscription's pods.</td>
</tr>
</tbody>
</table>

Integrate a Horizon Cloud Pod in Microsoft Azure with Workspace ONE Access

By integrating your pod in Microsoft Azure with an on-premises or cloud-hosted Workspace ONE Access environment, you can give your end users the ability to authenticate to their entitled pod-provisioned desktops and applications from a single unified catalog in Workspace ONE Access. You must deploy a Workspace ONE Access connector that bridges your Workspace ONE Access environment with the pod. This connector gives you the ability to synchronize the end-user entitlements from the pod to Workspace ONE Access.

Tip

- The former name of Workspace ONE Access was VMware Identity Manager™. The former name of the connector was the VMware Identity Manager™ connector. You might continue to see references to the former name in the product, documentation, and KB articles, especially if you are using older connector versions.

- See the VMware Digital Workspace Tech Zone for an excellent write-up describing the integration between Horizon Cloud and Workspace ONE Access.

- The Workspace ONE Access documentation uses the term entitlements when it describes the connector's synchronization from the pod to Workspace ONE Access. In Horizon Cloud, an assignment represents the combination of a resource and entitlement. In the Horizon Cloud Administration Console, adding a user to an assignment entitles that user to the assignment's pod-provisioned resource, such when you Create a Dedicated VDI Desktop Assignment.

Workspace ONE Access is an Identity as a Service (IDaaS) offering that provides application provisioning, a self-service catalog, conditional access controls, and single sign-on (SSO) for SaaS, web, cloud, and native mobile applications. Workspace ONE Access handles the authentication of users to access those items that you have configured for them in the Workspace ONE Access catalog. Workspace ONE Access is available both as an on-premises product and as a service hosted by VMware.
For an overview of this integration from the perspective of the Workspace ONE Access environment, see the Providing Access to VMware Horizon Cloud Service Desktops and Applications overview. You configure desktops and remote application assignments for your users and groups in the Horizon Cloud Administration Console as usual. After you complete the steps to integrate your pod with your Workspace ONE Access environment, you sync the pod's assignment information to Workspace ONE Access. Then you can see the desktops and applications in the Workspace ONE Access administration console and your end users can authenticate to their assigned resources from Workspace ONE Access. You can set up a regular sync schedule to sync the assignment information from Horizon Cloud to your Workspace ONE Access environment.

Note The screenshots in the Workspace ONE Access documentation might look different from the user interface elements you see in your specific Workspace ONE Access environment.

High-Level View of the Key Components

Integration of a pod in Microsoft Azure with Workspace ONE Access involves the following key concepts.

- The pod deployed in Microsoft Azure
- A Workspace ONE Access connector is installed and settings put into place to sync to Workspace ONE Access the information about these resources:
 - The Active Directory users and groups
 - The pod's assignments (the pod-provisioned resources and the entitlements to those resources)
- Configuration settings in the Horizon Cloud Administration Console to set up the SAML artifact that allows Workspace ONE Access to perform the SAML communication with the pod.

Overview of the Integration Process

The following list is a high-level summary of the end-to-end steps to enable your end users to authenticate to their pod-provisioned desktops and applications using Workspace ONE Access.

1. In your DNS server, map the pod's tenant appliance IP address to a fully qualified domain name (FQDN), such as mypod1.example.com. You can locate the pod's tenant appliance IP address by navigating to the pod's details page from the Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.

2. Obtain a trusted SSL certificate based on that FQDN. For details on the certificate file formats that are needed, see Uploading SSL Certificates for the Trusted Connection Between the Workspace ONE Access Connector and Your Pod in Microsoft Azure.

 Note The certificate file formats required for uploading an SSL certificate to the pod are different than the PEM file format used by the pod gateway configurations.

3. Upload that SSL certificate as described in Uploading SSL Certificates for the Trusted Connection Between the Workspace ONE Access Connector and Your Pod in Microsoft Azure.
4 Obtain a Workspace ONE Access environment, either by deploying the on-premises version or by subscribing to the cloud-hosted version to have a Workspace ONE Access tenant in the cloud.

Note If you specified creation of a cloud-based Workspace ONE Access tenant during the pod deployment process, the Workspace ONE Access tenant is associated with your Horizon Cloud customer record as part of that process. Pods that already exist for the same Horizon Cloud customer record can then be integrated with that tenant by deploying the Workspace ONE Access connector. In the following steps, make note of the connector-related details.

5 Deploy Workspace ONE Access according to the Workspace ONE Access guidelines for the deployment model you are using.

If you are using the cloud-hosted Workspace ONE Access, you must install the Workspace ONE Access connector appliance in your Active Directory network. Read all of the connector-related prerequisites starting with What You Need Before You Begin the Integration Steps.

Important You must also ensure that the authoritative time source you configure in that connector matches the NTP server that is configured for the pod. If the time sources do not match, syncing issues can occur. The pod's details page shows the pod's configured NTP server. You can open the pod's details page from the Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.
6 Ensure that you meet the Workspace ONE Access prerequisites for integration, as documented in the Workspace ONE Access product documentation appropriate for your situation. See What You Need Before You Begin the Integration Steps

Important In addition to the prerequisites listed below in this documentation topic, you must also ensure that your configured Workspace ONE Access environment meets the prerequisites for integration with Horizon Cloud resources, as described in the Workspace ONE Access documentation.

<table>
<thead>
<tr>
<th>Workspace ONE Access environment</th>
<th>Link to Workspace ONE Access Prerequisites in the Workspace ONE Access Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud-hosted</td>
<td>Prerequisites for Integration of Workspace ONE Access with Horizon Cloud</td>
</tr>
<tr>
<td>On-premises</td>
<td>Prerequisites for Integration of Workspace ONE Access with Horizon Cloud</td>
</tr>
</tbody>
</table>

Tip When you open the topic at the above link, you can use the blue rectangle menu in the topic's upper right corner to view the information for your version. The following screenshot is an example of one of the blue rectangle menus depicting the versioned-information choices for a non-cloud-service documentation topic.
7 Enable the desktops from your Horizon Cloud environment to the Workspace ONE Access environment, as documented in the Workspace ONE Access product information appropriate for your situation.

Important In the Workspace ONE Access screen for entering the Horizon Cloud tenant information, in the **Host** field in that screen, you specify the FQDN that you mapped in your DNS server to the pod’s tenant appliance IP address. This FQDN must be the one on which the SSL certificate is based for the SSL certificate that you uploaded to the pod as described in Uploading SSL Certificates for the Trusted Connection Between the Workspace ONE Access Connector and Your Pod in Microsoft Azure. In the Configure Horizon Cloud Tenant in Workspace ONE Access topics that are linked below, the final step in those procedural topics describes how to sync the information about the entitlements from your Horizon Cloud environment. However, do not perform that sync step until after you complete step 5 below of configuring your pod for Workspace ONE Access access.

<table>
<thead>
<tr>
<th>Workspace ONE Access environment</th>
<th>Link to Desktop Enablement Information in the Workspace ONE Access Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud-hosted</td>
<td>Configure Horizon Cloud Tenant in VMware Identity Manager. As of this date, the title of that topic contains the former name.</td>
</tr>
<tr>
<td>On-premises</td>
<td>Configure Horizon Cloud Tenant in VMware Identity Manager As described in step 6, you can use the blue rectangle menu in the upper right corner of the linked topic above to view the information for your version. As of this date, the title of that topic contains the former name.</td>
</tr>
</tbody>
</table>

8 Enter the settings that allow your configured Workspace ONE Access environment to be used as an identity management provider for the pod. See Configure a Pod in Microsoft Azure for Workspace ONE Access.

9 In your Workspace ONE Access environment, sync the entitled desktops and applications to Workspace ONE Access. In the Workspace ONE Access administration console, navigate to the Virtual Apps Configuration page for the collection you created in Step 4 and click **Sync**.

10 Verify end-user access to desktops and applications by logging in to Workspace ONE Access as an end user and launching a desktop and application from the catalog. See Confirm End-User Access to Desktop Assignments in Workspace ONE Access.

After you have verified the integration is working, you can optionally enforce end users to authenticate and access their desktops and applications through Workspace ONE Access. See Enforce End-User Access Through Workspace ONE Access.

What You Need Before You Begin the Integration Steps

To fully complete the integration process end to end through to the step of verifying end-user access to the pod-provided desktops or RDS-based remote applications using Workspace ONE Access, ensure that you have the following items.

- An entry in your DNS server that maps the pod’s tenant appliance IP address to a fully qualified domain name (FQDN). You want the FQDN that you will be using in the SSL certificate to resolve to
the pod's tenant appliance IP address that is displayed on the pod's details page in the Horizon Cloud Administration Console. As an example, let's say you have the pod that is illustrated in the screenshot below and you want to use an FQDN of mypod-a.example.com as the FQDN of that pod for the purposes of the Workspace ONE Access connection to the pod.

![Pod Details Screenshot](image)

For this example, in your DNS, you would map mypod-a.example.com to that depicted tenant appliance IP address of 192.168.21.4.

<table>
<thead>
<tr>
<th>FQDN</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>mypod-a.example.com</td>
<td>192.168.21.4</td>
</tr>
</tbody>
</table>

As you perform the steps in the Workspace ONE Access screen for entering the Horizon Cloud tenant information, you specify this FQDN for the **Host** field in that Workspace ONE Access screen.

- A fully configured pod that has a trusted and valid SSL certificate that you uploaded to the pod itself using the pod details page in the Horizon Cloud Administration Console. For details, see Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod.

- Configured VDI desktop assignments, session desktop assignments, or remote application assignments for the pod.

- Access to your organization's configured Workspace ONE Access environment, either an on-premises or a cloud-hosted environment. Your Workspace ONE Access environment must be configured with trusted certificates.

If you are deploying Workspace ONE Access on premises, follow the deployment information available from the Workspace ONE Access documentation page. For the specific versions of the on-premises Workspace ONE Access product that are supported for use with this release, see the VMware Product Interoperability Matrixes at https://www.vmware.com/resources/compatibility/sim/interop_matrix.php.

If you are using the cloud-hosted Workspace ONE Access and your Workspace ONE Access tenant is set up, a Workspace ONE Access connector appliance is required for integrating your pod with that tenant. This connector sends the information about user and group entitlements to the virtual desktops and applications to your Workspace ONE Access tenant. You must install the Workspace ONE Access connector appliance in your Active Directory network. Follow the steps as documented in the Workspace ONE Access Cloud Documentation, also available from this documentation page, and see the description of this deployment scenario and subtopics. For the connector version that is required for this release, see the VMware Product Interoperability Matrixes at https://www.vmware.com/resources/compatibility/sim/interop_matrix.php.
Verify that the connector's configured authoritative time source matches the NTP server that is configured for the pod.

Note If you have an existing integration and VMware Workspace ONE® Access™ connector appliance, a best practice is to upgrade the connector before upgrading the pod to the latest pod software level.

- Verify your configured Workspace ONE Access environment meets all of the prerequisites for integration with Horizon Cloud resources, as described in the Workspace ONE Access documentation.

<table>
<thead>
<tr>
<th>Workspace ONE Access environment</th>
<th>Link to Workspace ONE Access Prerequisites in the Workspace ONE Access Documentation Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud-hosted</td>
<td>Prerequisites for Integration</td>
</tr>
<tr>
<td>On-premises</td>
<td>Prerequisites for Integration As described in step 6, you can use the blue rectangle menu in the upper right corner of the linked topic above to view the information for your version.</td>
</tr>
</tbody>
</table>

Procedure

1. **Uploading SSL Certificates for the Trusted Connection Between the Workspace ONE Access Connector and Your Pod in Microsoft Azure**

 Uploading a valid SSL certificate onto the Horizon Cloud pod’s manager VMs is a system requirement when you are integrating Workspace ONE Access with the pod. The SSL certificate allows the Workspace ONE Access connector to trust connecting to the pod when the connector synchronizes the entitlements and pod-provisioned resources for the Horizon Cloud Virtual Apps Collection in Workspace ONE Access. If the pod does not have such an SSL certificate on it to present to the Workspace ONE Access connector attempting to connect to it, the connector’s attempt to connect to the pod to sync the entitlements and resources will fail because the connector will not make an untrusted network connection. The pod’s SSL certificate must be trusted by the Workspace ONE Access connector for it to successfully connect with the pod. Until you have uploaded an SSL certificate that meets the criteria onto the pod, you will be unable to successfully integrate Workspace ONE Access with the pod.

2. **Configure a Pod in Microsoft Azure for Workspace ONE Access**

 To integrate a pod in Microsoft Azure with Workspace ONE Access, you must configure the pod with the appropriate Workspace ONE Access information. You use the Administration Console to configure this information.

3. **Confirm End-User Access to Desktop Assignments in Workspace ONE Access**

 After you integrate your Horizon Cloud environment with your Workspace ONE Access environment, you can confirm that end users have remote access to their virtual desktops.
Uploading SSL Certificates for the Trusted Connection Between the Workspace ONE Access Connector and Your Pod in Microsoft Azure

Uploading a valid SSL certificate onto the Horizon Cloud pod's manager VMs is a system requirement when you are integrating Workspace ONE Access with the pod. The SSL certificate allows the Workspace ONE Access connector to trust connecting to the pod when the connector synchronizes the entitlements and pod-provisioned resources for the Horizon Cloud Virtual Apps Collection in Workspace ONE Access. If the pod does not have such an SSL certificate on it to present to the Workspace ONE Access connector attempting to connect to it, the connector's attempt to connect to the pod to sync the entitlements and resources will fail because the connector will not make an untrusted network connection. The pod's SSL certificate must be trusted by the Workspace ONE Access connector for it to successfully connect with the pod. Until you have uploaded an SSL certificate that meets the criteria onto the pod, you will be unable to successfully integrate Workspace ONE Access with the pod.

When you use these steps to upload an SSL certificate, the certificate gets loaded onto the pod's manager VMs. If the pod is enabled for high availability, it has two manager VMs and the certificate will get configured on each one. If the pod is not enabled for high availability, it has one manager VM and the certificate gets configured on that one.

Important During the procedure of uploading the certificate, the environment is temporarily unavailable and you cannot perform administrator operations. Upload the certificates after confirming that no users are on the system and no running tasks exist, such as importing base images, publishing images, provisioning farms or desktops, assigning desktops, and so on.

Prerequisites

Caution Uploading and saving incorrect or improperly formed SSL certificate files to the pod can result in loss of access to the pod. To avoid inability to recover the pod, if you earlier notified VMware Support that you do not want the pod to participate in the backup and restore service that is provided by default for Horizon Cloud pods in Microsoft Azure, before you upload an SSL certificate to the pod, contact VMware Support to turn on the backup service for the pod to ensure a backup is available in case you lose access to the pod after uploading the certificate files. See [Backup and Restore Service for Pods in Microsoft Azure](#) for information about the default backup and restore service. If your pod manifest version is lower than 1101, contact VMware Support to update your pod so that it can participate in the backup and restore service.
Before performing these steps, verify you have the following items.

- In your DNS server, you have mapped a fully qualified domain name (FQDN) to the pod's tenant IP address. You can locate the pod's tenant IP address from the pod's details page, navigating from the Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types. This mapping is needed so that a connection using that FQDN will get a trusted connection to the pod.

 Important For a pod newly deployed starting with the September 2019 release and for a pod upgraded to the September 2019 release, the displayed tenant IP address is the IP address for the pod's load balancer resource. This pod load balancer exists for pods of manifest version 1600 or later. For a description of the load balancer and the pod design for this release, see High Availability and Your Horizon Cloud Pod in Microsoft Azure.

- You have a valid trusted SSL certificate based on that FQDN.

- That SSL certificate is in the following format needed for you to provide it into the Administration Console's Upload Certificate window. Because the Administration Console's Upload Certificate workflow requires specific elements, you must ensure that this SSL certificate adheres to the following characteristics:
 - Three separate files for uploading into the Upload Certificate window:
 - A **CA.crt** file for the CA certificate.
 - A **SSL.crt** file for your CA-signed SSL certificate.
 - A **.key** file for the RSA private key.

 The following screenshot illustrates the Upload Certificate window and how it expects those three separate files.
The CA certificate file and the SSL certificate files for this upload must be in PEM format, which is a BASE64-encoded DER representation of an X.509 certificate. They both have a .crt extension. When looking at their contents, these two files should look similar to the following example.

```plaintext
-----BEGIN CERTIFICATE-----
MIIFejCCA2KgAwIBAgIDAIi/MA0GCSqG

-----END CERTIFICATE-----
```

The private key must not have a password or passphrase associated with it. The .key file looks like the following example:

```plaintext
-----BEGIN RSA PRIVATE KEY ----- 
MIIEpQIBAAKCAQEAoJmURboiFut+R34CNFibb9fjtI+cpDorUzqe8oGKFzEE/jmj

-----END PRIVATE KEY-----
```

Procedure

1. Select **Settings > Capacity**.
2. Open the pod's summary page by expanding the pod's row and clicking its name.
3. Click **More > Upload Certificate**.

 The Upload Certificate window opens. The following screenshot is an example of the window.

4. For each of the certificate files listed in the Upload Certificate dialog box, click **Select** and navigate to where you have the file available to upload.
5. When the window shows that all of the certificate files are listed in the window, click **Save**.

 The following screenshot is an illustration of the window with all certificate files listed before saving them to the system.
The Administration Console will be unresponsive for 5 to 10 minutes for all administrators while the certificates are applied.

6. When the system is responsive again, refresh the browser page and use your credentials to reauthenticate.

7. Verify that the certificates are shown as valid in the Pod Certificates section of the pod's details page.

Configure a Pod in Microsoft Azure for Workspace ONE Access

To integrate a pod in Microsoft Azure with Workspace ONE Access, you must configure the pod with the appropriate Workspace ONE Access information. You use the Administration Console to configure this information.

Prerequisites

Verify that an SSL certificate based on that FQDN is uploaded to the pod itself, as described in Upload SSL Certificates to Support Direct Connections to a Horizon Cloud Pod. That SSL certificate must be based on the FQDN that you mapped to the pod’s tenant appliance IP address in your DNS server, as described in step 4 of Integrate a Horizon Cloud Pod in Microsoft Azure with Workspace ONE Access.

Verify that your Workspace ONE Access environment is configured to use that FQDN, for synchronizing the pod-provisioned end-user resources and entitlements to Workspace ONE Access.

Verify that you have the following information:

- The SAML identity provider (IdP) metadata URL from your Workspace ONE Access environment. You obtain the environment's SAML IdP metadata URL using the Workspace ONE Access administration console and navigating to Catalog > Settings > SAML Metadata. When you click the Identity Provider (IdP) metadata link on that page, your browser's address bar displays the URL, typically in
the form https://WS1AccessFQDN/SAAS/API/1.0/GET/metadata/idp.xml, where
WS1AccessFQDN is the fully qualified domain name (FQDN) of your Workspace ONE Access
environment. For details, see the Workspace ONE Access product information appropriate for your
situation:

<table>
<thead>
<tr>
<th>Workspace ONE Access environment</th>
<th>Configure SAML Authentication Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud-hosted</td>
<td>Configure SAML Authentication in the Horizon Cloud Tenant</td>
</tr>
<tr>
<td>On-premises</td>
<td>Configure SAML Authentication in the Horizon Cloud Tenant</td>
</tr>
</tbody>
</table>

Tip When you open the topic at the above link, you can use the blue rectangle menu in the topic’s
upper right corner to view the information for your version. The following screenshot is an example
of one of the blue rectangle menus depicting the versioned-information choices for a non-cloud-
service documentation topic.

- The FQDN that you tell your end users to make their connections to, for connecting to Horizon Cloud.

Procedure

1. Log in to the Administration Console.
2. Navigate to **Settings > Identity Management** and click **New**.
3. Configure the following options.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware Workspace ONE Access Meta data URL</td>
<td>Type your Workspace ONE Access environment's SAML IdP metadata URL, typically of the form https://WS1AccessFQDN/SAAS/API/1.0/GET/metadata/idp.xml where WS1AccessFQDN is the FQDN of your Workspace ONE Access environment.</td>
</tr>
<tr>
<td>Timeout SSO Token</td>
<td>Type the amount of time, in minutes, after which you want the SSO token to time out. The prefilled, system-default value is zero (0).</td>
</tr>
<tr>
<td>Location</td>
<td>Select one of your locations to filter the Pod drop-down to the set of pods associated with that location.</td>
</tr>
<tr>
<td>Pod</td>
<td>Select the pod for which this configuration applies.</td>
</tr>
<tr>
<td>Data Center</td>
<td>The drop-down displays a numeric related to the Horizon Cloud pod software version. Keep the default.</td>
</tr>
<tr>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Client Access FQDN</td>
<td>Type the FQDN that you tell your end users to make their connections to, for connecting to Horizon Cloud.</td>
</tr>
<tr>
<td>Workspace ONE Redirection</td>
<td>When you also have the configuration to force end-user access to go through Workspace ONE Access, you can set this toggle to YES to have the end users' clients automatically redirect to their Workspace ONE Access environment. You can read about setting the options to force end-user access to go through Workspace ONE Access in Configure the Option to Force End-User Access to Use Workspace ONE Access. With the automatic redirection configured to YES, in the end-user clients, when the client attempts to connect to Horizon Cloud and you have configured forced authentication through Workspace ONE Access, the client is automatically redirected to the Workspace ONE Access environment that is integrated with the pod. When the toggle is set to NO, automatic redirection is not enabled. When automatic redirection is not enabled and forced access is configured, the clients display an informational message to the user instead. For more details, see Enforce End-User Access Through Workspace ONE Access.</td>
</tr>
</tbody>
</table>

Note You can enable Workspace ONE Access redirection for only one of the identity management providers that are configured here. If the toggle is already set to YES for another configuration and you try to set the toggle to YES, an error message is displayed.

4 Click **Save**.

A status of green indicates that the configuration is successful.

What to do next

In your Workspace ONE Access environment, sync the entitled desktops and applications to Workspace ONE Access. In the Workspace ONE Access administration console, navigate to **Catalog > Virtual Apps** until you are on the Virtual Apps Configuration page. Click **Sync** to sync the Horizon Cloud collection.

Important

- Each time resources or entitlements change in Horizon Cloud, a sync is required to propagate the changes to Workspace ONE Access.

- You must also ensure that the authoritative time source you configure in that connector matches the NTP server that is configured for the pod. If the time sources do not match, syncing issues can occur. The pod's details page shows the pod's configured NTP server. You can open the pod's details page from the Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.

Confirm End-User Access to Desktop Assignments in Workspace ONE Access

After you integrate your Horizon Cloud environment with your Workspace ONE Access environment, you can confirm that end users have remote access to their virtual desktops.

Prerequisites

Configure the methods of access you want to provide to end users for accessing their desktops through Workspace ONE Access.
Ensure that the entitled desktops are synced from the integrated Horizon Cloud pod to your Workspace ONE Access environment. In the Workspace ONE Access administration console, navigate to the Virtual Apps Configuration page and sync the Horizon Cloud collection.

Procedure

1. Use your organization's Workspace ONE Access URL to log in to Workspace ONE Access.
2. Launch entitled Horizon Cloud desktops and remote applications from the portal.

Configure True SSO for Use with Your Horizon Cloud Environment

After you have registered an Active Directory domain with your Horizon Cloud environment, you can configure True SSO for it. True SSO is a feature that integrates with Workspace ONE Access to allow users to single sign-on to the virtual Windows desktops and applications served by Horizon Cloud without needing to also enter their Active Directory credentials into the Windows operating system. When True SSO is configured for your environment, the end users authenticate by logging into Workspace ONE Access. After that authentication, the users are able to launch their entitled desktops or applications without a prompt for Active Directory credentials.

Configuring True SSO for use with your environment is a multi-step process. At a high-level, the steps are:

1. Set up the infrastructure required for True SSO to operate, which involves:
 a. Installing and configuring a Windows Server Certificate Authority (CA) to be an enterprise CA. The procedures in this section are for Windows Server 2012 R2. Very similar steps can be followed on Windows Server 2008 R2.
 b. Setting up a certificate template on the CA.
 c. Downloading the Horizon Cloud pairing bundle from the Administration Console's Active Directory page. The pairing bundle is used when setting up the Enrollment Server.
 d. Setting up the Enrollment Server.

 Important After setting up the Enrollment Server, make sure you meet the port requirements for the Enrollment Server described in [DNS Requirements for a Horizon Cloud Pod in Microsoft Azure](#).

2. Adding the Enrollment Server information to the Administration Console's Active Directory page.

When the configuration is complete, the enterprise CA and Enrollment Server work together to issue short-lived certificates that are used to log the users in to their entitled desktops and applications. The Horizon Cloud pod asks the Enrollment Server for a certificate for a specific entitled user. The Enrollment Server contacts the CA to generate the requested certificate and then returns the certificate to the Horizon Cloud pod.
Prerequisites

Before configuring True SSO, you must have at least one Workspace ONE Access environment configured. Complete the steps described in Integrate a Horizon Cloud Pod in Microsoft Azure with Workspace ONE Access.

Procedure

1. Install and Configure a Windows Server 2012 R2 Certificate Authority
 You can set up a Windows Server 2012 Certificate Authority (CA) using the Service Manager wizard.

2. Set Up a Certificate Template on the CA
 You must configure the certificate template on the CA. The certificate template is the basis for the certificates that the CA generates.

3. Download the Horizon Cloud Pairing Bundle
 You need this pairing bundle to complete the Enrollment Server setup steps when you are configuring your Horizon Cloud environment for True SSO. You download the pairing bundle from the Administration Console's Active Directory page.

4. Set up the Enrollment Server
 The Enrollment Server (ES) is a Horizon Cloud component that you install on a Windows Server machine as the last step in setting up infrastructure for True SSO. By deploying the Enrollment Agent (Computer) certificate onto the server, you are authorizing this ES to act as an Enrollment Agent and generate certificates on behalf of users.

5. Complete Configuring True SSO for your Horizon Cloud Environment
 After the Enrollment Server is set up, you enter the information in the Administration Console's Active Directory page.

After completing the steps, your environment is configured with True SSO.

Install and Configure a Windows Server 2012 R2 Certificate Authority

You can set up a Windows Server 2012 Certificate Authority (CA) using the Service Manager wizard.

The following are standard steps to set up a Microsoft CA. They are detailed here in a simple form suitable for use in a lab environment, but for a real production system it is recommended that you follow industry best practice for CA configuration.

If you need further guidance about setting up a CA, please check out the standard Microsoft technical references: Active Directory Certificate Services Step-by-Step Guide and Install a Root Certification Authority.

Note The procedures in this topic are for Windows Server 2012 R2. Very similar steps can be followed on Windows Server 2008 R2.
Procedure

1. On the Server Manager Dashboard, click **Add Roles and Features** to open the wizard, and then and click **Next**.

2. On the Select Installation Type page, select Role-based or feature-based installation and click **Next**.

3. On the Server Selection page, leave defaults and click **Next**.

4. On the Server Roles page:
 - Select Active Directory Certificate Services.
 - In the dialog, select Include management tool (if applicable) and click **Add Features**.
 - Click **Next**.

5. On the Features page, click **Next**.

6. On the AD CS page, click **Next**.

7. On the Role Services page, select Certification Authority and click **Next**.

8. On the Confirmation page, select Restart the destination server automatically is required and click **Install**.

 Installation Progress displays. When the installation is complete, a URL link displays, allowing you to configure the newly installed CA as “Configure Active Directory Certificate Services” on the destination server.

9. Click on the configuration link to launch the configuration wizard.

10. On the Credentials page, enter user credentials from Enterprise Admin group and click **Next**.

11. On the Role Services page, select CA and click **Next**.

12. On the Setup Type page, select Enterprise CA and click **Next**.

13. On the CA Type page, select Root or Subordinate CA as appropriate (in this example it is a Root CA) and click **Next**.

14. On the Private Key page, select Create a new private key and click **Next**.

15. On the Cryptography page, enter information as follows.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Provider</td>
<td>RSA#Microsoft Software Key Storage Provider</td>
</tr>
<tr>
<td>Key Length</td>
<td>4096 (or another length if you prefer)</td>
</tr>
<tr>
<td>Hash Algorithm</td>
<td>SHA256 (or another SHA algorithm if you prefer)</td>
</tr>
</tbody>
</table>

16. On the CA Name page, configure as preferred or accept defaults and click **Next**.

17. On the Validity Period page, configure as preferred and click **Next**.

18. On the Certificate Database page, click **Next**.

19. On the Confirmation page, review the information and click **Configure**.
20 Complete the configuration process by performing the following tasks (run all commands from the command prompt).

a Configure CA for non-persistent certificate processing

```
certutil -setreg DBFlags +DBFLAGS_ENABLEVOLATILEREQUESTS
```

b Configure CA to ignore offline CRL errors

```
certutil -setreg ca\CRLFlags +CRLF_REVCHECK_IGNORE_OFFLINE
```

c Restart the CA service

```
net stop certsvc
net start certsvc
```

21 Set up a certificate template on the CA by following the steps in Set Up a Certificate Template on the CA.

Set Up a Certificate Template on the CA

You must configure the certificate template on the CA. The certificate template is the basis for the certificates that the CA generates.

Prerequisites

Complete the steps described in Install and Configure a Windows Server 2012 R2 Certificate Authority.

Procedure

1 Create a new Universal Security Group.

Creating this group allows you to have a single Security Group to which you can assign the permissions required for issuing certificates on behalf of users. All the computers where VMware Enrollment Servers are installed can inherit those permissions by becoming a member of this group.

a Click Start and type dsa.msc.

The Active Directory Users and Computers window displays.

b In the tree, right-click the Users folder for the domain controller and select New > Group.

The New Object - Group window displays.

c In the Group Name field, enter a name for the new group. For example, TrueSSO Enrollment Servers.
d Set the following values.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group scope</td>
<td>Universal</td>
</tr>
<tr>
<td>Group type</td>
<td>Security</td>
</tr>
</tbody>
</table>

e Click OK. The new group appears in the tree in the Active Directory Users and Computers window.

f Right-click the group and select Properties.

g On the Member Of tab, add every computer on which you will be installing an Enrollment Server, and then click OK.

h Restart every computer on which you will be installing an Enrollment Server.

2 Configure the certificate template.

a Select Control Panel > Administrative Tools > Certificate Authority.

b In the tree, expand the local CA name.

c Right-click on the Certificate Templates folder and select Manage. The Certificate Templates Console displays.

d Right-click on the Smartcard Logon template and select Duplicate Template. The Properties of New Template window displays.
Enter information on the tabs of the window as described below.

<table>
<thead>
<tr>
<th>Tab</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility</td>
<td>- Select the Show resulting changes check box.</td>
</tr>
<tr>
<td></td>
<td>- Certification Authority - Windows Server 2008 R2</td>
</tr>
<tr>
<td></td>
<td>- Certificate recipient - Windows 7 / Server 2008 R2</td>
</tr>
<tr>
<td>General</td>
<td>- Template display name - Name of your choice. For example, True SSO Template.</td>
</tr>
<tr>
<td></td>
<td>- Template name - Name of your choice. For example, True SSO Template.</td>
</tr>
<tr>
<td></td>
<td>- Validity period - 1 hours</td>
</tr>
<tr>
<td></td>
<td>- Renewal period - 0 weeks</td>
</tr>
<tr>
<td>Request Handling</td>
<td>- Purpose - Signature and smartcard logon</td>
</tr>
<tr>
<td></td>
<td>- Select the For automatic renewal of smart card certificates check box</td>
</tr>
<tr>
<td></td>
<td>- Select the Prompt the user during enrollment radio button</td>
</tr>
<tr>
<td>Cryptography</td>
<td>- Provider Category - Key Storage Provider</td>
</tr>
<tr>
<td></td>
<td>- Algorithm name - RSA</td>
</tr>
<tr>
<td></td>
<td>- Minimum key size - 2048</td>
</tr>
<tr>
<td></td>
<td>- Select the Requests can use any provider available radio button</td>
</tr>
<tr>
<td></td>
<td>- Request hash - SHA256</td>
</tr>
<tr>
<td>Subject Name</td>
<td>- Select the Build from this Active Directory Information radio button</td>
</tr>
<tr>
<td></td>
<td>- Subject name format - Fully distinguished name</td>
</tr>
<tr>
<td></td>
<td>- Select the User principal name (UPN) check box.</td>
</tr>
<tr>
<td>Server</td>
<td>- Select the Do not store certificates and requests in the CA databasecheck box</td>
</tr>
<tr>
<td>Issuance Requirements</td>
<td>- Require the following for enrollment - Select This number of authorized signatures and enter 1.</td>
</tr>
<tr>
<td></td>
<td>- Policy type required in signature - Application policy</td>
</tr>
<tr>
<td></td>
<td>- Application policy - Certificate Request Agent</td>
</tr>
<tr>
<td></td>
<td>- Require the following for enrollment - Valid existing certificate</td>
</tr>
<tr>
<td>Security</td>
<td>In the upper part of the tab, select the new group you created. Then in the lower part of the tab, select Allow for Read and Enroll permissions.</td>
</tr>
</tbody>
</table>

Click **OK**.

3 Issue the template for True SSO.

 a Right-click again on the Certificate Templates folder and select **New > Certificate Template to Issue**.

The Enable Certificate Templates window displays.

 b Select TrueSsoTemplate and click **OK**.
4 Issue the Enrollment Agent template.
 a Right-click again on the Certificate Templates folder and select **New > Certificate Template to Issue**.
 The Enable Certificate Templates window displays.
 b Select the Enrollment Agent computer and click **OK**.

 Note This template must have the same security settings as the template issued in the previous step.

 The CA is now set up and configured with a certificate template suitable for use with True SSO.

5 Download the Horizon Cloud pairing bundle by following the steps in **Download the Horizon Cloud Pairing Bundle**.

Download the Horizon Cloud Pairing Bundle

You need this pairing bundle to complete the Enrollment Server setup steps when you are configuring your Horizon Cloud environment for True SSO. You download the pairing bundle from the Administration Console's Active Directory page.

The pairing bundle contains a certificate file for each Horizon Cloud pod in your environment. For the pods for which you want to configure True SSO, you upload those pods’ certificate files to the Enrollment Server. When you have one pod, the bundle contains one certificate file in CRT format. When you have more than one pod, the bundle contains multiple CRT files, one per pod. The name of each CRT file follows the pattern:

```
podID_truesso.crt
```

where `podID` is the pod's ID that is displayed in the pod's summary page.

Procedure

1 In the Administration Console, navigate to **Settings > Active Directory**.
2 In the True SSO Configuration area, obtain the `pairing_bundle.7z` file by clicking **Download Pairing Token**.
3 Save the file to a location where you can extract its contents.
4 For the pods for which you want to configure True SSO, extract the pods' CRT files from the pairing bundle to a location where you can retrieve them when you are setting up the Enrollment Server.
 The pairing bundle contains a certificate file for each pod in your environment. Each CRT file name follow the pattern `podID_truesso.crt`, where `podID` is the pod's ID value.
5 Set up the Enrollment Server by following the steps in **Set up the Enrollment Server**.
Set up the Enrollment Server

The Enrollment Server (ES) is a Horizon Cloud component that you install on a Windows Server machine as the last step in setting up infrastructure for True SSO. By deploying the Enrollment Agent (Computer) certificate onto the server, you are authorizing this ES to act as an Enrollment Agent and generate certificates on behalf of users.

Prerequisites

Verify that you have completed the steps in Install and Configure a Windows Server 2012 R2 Certificate Authority, Set Up a Certificate Template on the CA, and Download the Horizon Cloud Pairing Bundle.

Procedure

1. Install the Enrollment Server.
 a. Download the Enrollment Server.exe file from the My VMware site. The file name should be similar to VMware-HorizonCloud-TruessoEnrollmentServer-x86_64-7.3.0-xxxxx.exe.
 b. Confirm that the system is running Windows Server 2008 R2, 2012 R2, or 2016, and that it has a minimum of 4GB memory.
 c. Run the installer and follow the wizard.

2. Deploy the Enrollment Agent (Computer) Certificate.
 a. Open the Microsoft Management Console (MMC).
 b. On the File menu, click Add/Remove Snap-in.
 c. Under Available snap-ins, double-click Certificates.
 d. Select Computer account and click Next.
 e. Select Local computer and click Finish.
 f. On the Add or Remove Snap-ins dialog, click OK.
 g. In the MMC, right-click the Personal folder under Certificates and select All Tasks > Request New Certificates.
 h. In the Certificate Enrollment dialog, select the check box for the Enrollment Agent (Computer) and click Enroll.

3. Import the pods' certificate CRT files extracted from the pairing_bundle.7z file, for those pods with which you want to configure True SSO.
 a. In the MMC, right-click the Certificates sub-folder under the VMware Horizon Cloud Enrollments Server Trusted Roots folder and select All Tasks > Import.
 b. Click Next.
c Navigate to the location where you extracted the certificate files from the `pairing_bundle.7z` bundle.

When you have only one pod, the bundle contains only one CRT file. When you have more than one pod, the bundle contains a CRT file for each pod.

d Import the certificate file or files, depending on how many pods you are configuring.

e Click Next, then click Finish.

4 Complete the remaining configuration steps described in Complete Configuring True SSO for your Horizon Cloud Environment.

Complete Configuring True SSO for your Horizon Cloud Environment

After the Enrollment Server is set up, you enter the information in the Administration Console's Active Directory page.

Prerequisites

Complete the previous step Set up the Enrollment Server.

Verify that you have met the port and protocol requirements for the pod's manager VM and Enrollment Server network traffic, as described in DNS Requirements for a Horizon Cloud Pod in Microsoft Azure. If the appropriate ports are not allowing traffic, pairing of the Enrollment Server will fail.

Procedure

1 In the Administration Console, navigate to Settings > Active Directory.

2 Click Add next to True SSO Configuration.

 The True SSO Config dialog displays.

 Note Because you already configured the Enrollment Server you can ignore the [Download Pairing Token](#) link in this dialog.

3 Enter the fully-qualified domain name (FQDN) of your enrollment server in the Primary Enrollment Server field and click the Test Pairing button next to the field.

 The other required fields are auto-populated.

4 Click Save

5 To configure a Secondary Enrollment Server for high-availability, do the following.

 a Repeat the process described in Set up the Enrollment Server on a second machine.

 b Edit the True SSO configuration and add the second ES address in the Secondary Enrollment Server field, and then test the pairing.

 c Save the configuration again.

 The configuration information now appears on the Active Directory page under True SSO Configuration.
End User Connections to Desktops and Applications Provided by Your Horizon Cloud Environment

These topics provide information about areas related to your end users' connections to their entitled desktops and remote applications.

When Using PCOIP URLs and a Pod with an Internal Gateway Configuration

As described in Chapter 5 Introduction to Horizon Cloud Pods in Microsoft Azure, a Horizon Cloud pod in Microsoft Azure can be configured with an internal gateway configuration, using Unified Access Gateway instances. For the internal gateway type, even though HTML Access (Blast protocol) configures its external URL to be your provided FQDN, the PCOIP URL uses IP addresses instead. This behavior makes for a difference between the external gateway and internal gateway types with respect to PCOIP:

- External gateway type: the PCOIP URL is set to the public IP of the external gateway configuration's load balancer resource.
- Internal gateway type: the PCOIP URL first attempts to resolve your provided FQDN using DNS to an IP address, and then uses that as the PCOIP URL. If the PCOIP URL cannot resolve your provided FQDN, the PCOIP URL instead uses the private IP address of the internal gateway configuration's internal load balancer resource.

Now, your network environment might be such that the internal gateway configuration's load balancer is not the first endpoint in an end-user connection attempt. As an example, you might have an additional endpoint or load balancer that you have set up to redirect to the internal gateway configuration's load balancer. In the certificate you uploaded to the internal Unified Access Gateway gateway configuration when you deployed or edited the pod, you likely have made that certificate match the FQDN or IP addresses of that first endpoint in your networking setup. You likely did that because you expect your end-user clients to access your network environment starting with that first endpoint. If your network environment matches this description, where your end-user clients first access an endpoint that is not the internal gateway configuration's load balancer as their first endpoint, you must ensure your DNS mapping provides for the PCOIP URL to match for your end-user clients to properly authenticate against your provided certificate.

Enable Time Zone Redirection for RDS Desktop and RDS-Based Application Sessions

If a farm's RDS server VM is in one time zone and the end user is in another time zone, by default, when the user connects to their RDS session-based desktop, the desktop displays time that is in the time zone of the RDS server VM. You can enable the Time Zone Redirection group policy setting to make the session-based desktop display time in the local time zone. This policy setting applies to remote application sessions as well.

Prerequisites

- Verify that the Group Policy Management feature is available on your Active Directory server.

- Verify that the Horizon 7 RDS ADMX files are added to your Active Directory. See Add the Remote Desktop Services ADMX File to Active Directory.
- Familiarize yourself with the group policy settings. See RDS Device and Resource Redirection Settings.

Procedure

1. On the Active Directory server, open the Group Policy Management Console.
2. Expand your domain and Group Policy Objects.
3. Right-click the GPO that you created for the group policy settings and select Edit.
5. Enable the setting Allow time zone redirection.

Multiple-Monitor Support for Desktops and Remote Applications Provided By a Horizon Cloud Pod in Microsoft Azure

This topic describes specific support for using multiple monitors with the VDI desktops, RDS-based desktops, and remote applications served by a Horizon Cloud pod in Microsoft Azure.

For general and extensive details about using monitors and screen resolution in the Horizon Client used by end users, see Monitors and Screen Resolution.

Note Due to the number of variables in your end users’ environments that can affect their graphical user experience — such as network conditions, bandwidth consumption, workload intensity, and so on — testing is recommended so that you can identify the usability, cost, and performance mix which best meet your specific business requirements.

The configurations in the following table are for a typical knowledge worker workload, such as a combination of office productivity applications, streaming media in a browser, and Internet use. Your experience might vary due to VM size, display protocol you are using, screen resolution, workload, and other factors.
Table 5-29. Supported Configurations for RDSH Server VMs

<table>
<thead>
<tr>
<th>VM Type</th>
<th>Graphics By</th>
<th>Workload</th>
<th>Monitor Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-GPU-backed RDSH server VM</td>
<td>Microsoft Hyper-V display adapter</td>
<td>Basic, not requiring advanced graphics features or HD video playback</td>
<td>Single 4K display</td>
</tr>
<tr>
<td>GPU-backed NV-Series RDSH server VM</td>
<td>NVIDIA GRID GPU</td>
<td>Graphics intensive or requiring advanced graphics features</td>
<td>Single 4K display</td>
</tr>
<tr>
<td></td>
<td>For driver details, see:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5-30. Supported Configurations for VDI Desktop VMs

<table>
<thead>
<tr>
<th>VM Type</th>
<th>Graphics By</th>
<th>Workload</th>
<th>Monitor Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-GPU-backed VDI desktop VM</td>
<td>VMware Display Adapter</td>
<td>Basic, not requiring advanced graphics features or HD video playback</td>
<td>Single 2560x1440 display</td>
</tr>
<tr>
<td></td>
<td>Note: This driver is not the VMware ESX display driver. Microsoft software rendering is used for advanced graphics features.</td>
<td>Two 1920x1080 displays</td>
<td></td>
</tr>
<tr>
<td>GPU-backed VDI desktop VM</td>
<td>NVIDIA GRID GPU</td>
<td>Graphics intensive or requiring advanced graphics features</td>
<td>Up to four 4K displays</td>
</tr>
<tr>
<td></td>
<td>For driver details, see:</td>
<td></td>
<td>Note: Microsoft NV-series VMs allow use of up to four 4K displays for VDI desktops. Please see the NVIDIA GRID documentation for the specific GPU you are using to get supported resolutions and workload recommendations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Access Desks tots and Applications

After you create desktop and application assignments, end users can access desktops and applications using the Horizon Client or a browser using Horizon HTML Access capabilities. If you have integrated your environment with your VMware Workspace ONE® Access™ environment, you can optionally enforce end-user access to go through that environment.
Log In to Desktops or RDS-Based Remote Applications Using the Horizon Client

When your end users connect to Horizon Cloud using the Horizon Client, they can work with their assigned desktops or remote applications.

These steps describe using Horizon Client for the first time to connect to a desktop provided by a Horizon Cloud pod.

Important If you are assigning URL redirection to your end users, they must install their Horizon Client with the URL Content Redirection feature enabled for them to take advantage of that feature. The client must be installed using the command line to enable URL Content Redirection in the client. As a starting point to learn about this area, see these topics in the Horizon Client documentation:

- Installing Horizon Client for Windows from the Command Line
- Clicking URL Links That Open Outside of Horizon Client

Prerequisites

- Familiarize yourself with the most up-to-date information regarding VMware Horizon Clients. For example, to check for up-to-date Horizon Client support information, see the VMware Product Interoperability Matrixes at https://www.vmware.com/resources/compatibility/sim/interop_matrix.php and to see the respective documentation, see the Horizon Client documentation page at https://docs.vmware.com/en/VMware-Horizon-Client/index.html.

- From your organization's DNS information, obtain the fully qualified domain name (FQDN) that your organization has associated in its domain name system (DNS) for end-user connections to this pod, such as `desktops.mycorp.example.com`.

 For example, when the Horizon Cloud pod in Microsoft Azure is configured to use Unified Access Gateway for end-user connections, your organization has a DNS CNAME or A record that maps the FQDN that you provided in the deployment wizard to the auto-generated public FQDN of the pod's deployed load balancer. See Obtain the Pod Gateway's Load Balancer Information to Map in your DNS Server for a description of this auto-generated public FQDN.

- If you want those Horizon clients that have implemented the client retry feature to automatically retry the connection when the system has to power on the underlying desktop VM or farm server VM, set the **Enable Client Retry** option to **Yes** in the Administration Console's General Settings page. For details about that option, see Edit General Settings. The Horizon Client for Windows and Horizon Client for Mac starting with version 4.8 and later have this feature implemented.

Procedure

1. Start the Horizon Client.
2. In the client, select the choices to add a new server.
3. In the new server configuration, enter the name that was added to your DNS for end-user connections, for example, `desktops.mycorp.com`.
4. Enter the credentials for your Active Directory user in the authentication dialog box.
If RADIUS two-factor authentication is configured for this pod, enter the RADIUS credentials.

From the displayed list of entitled desktops and remote applications, connect to the one you want to use.

When the underlying desktop VM or RDSH server VM is powered off, due to any power-management schedules configured in the VDI desktop assignment or RDSH farm, the system starts powering on the VM in response to the connection request. If you are running version 4.8 or later of Horizon Client for Windows or Horizon Client for Mac and you have the Enable Client Retry option set to Yes in the Administration Console’s General Settings, the client displays a message describing the connection will be made when the desktop is ready and the estimated time it might take.

(Optional) To configure additional options that apply when you launch the selected desktop or application, right-click the icon and make your selection.

Log in to Desktops and RDS-Based Remote Applications Using a Browser

If your environment is configured for HTML Access, users can access their VDI desktops, RDS desktops, and RDS-based remote applications by pointing their browser to the fully qualified domain name (FQDN) that your organization has associated with the pod for end-user connections.

These steps describe using a browser to launch a desktop provided by the pod.

Note If integration with a VMware Workspace ONE® Access™ environment is configured, end users might have to access their desktops and remote applications using that environment. See Enforce End-User Access Through Workspace ONE Access.

Prerequisites

- Familiarize yourself with the most up-to-date information regarding Horizon HTML Access. For example, to check for up-to-date Horizon HTML Access support information, see the VMware Product Interoperability Matrixes at https://www.vmware.com/resources/compatibility/sim/interop_matrix.php and to see the respective documentation, see the Horizon HTML Access documentation page at https://docs.vmware.com/en/VMware-Horizon-HTML-Access/index.html.

- From your organization's DNS information, obtain the fully qualified domain name (FQDN) that your organization has associated in its domain name system (DNS) for end user connections to this Horizon Cloud pod, such as desktops.mycorp.example.com.

 For example, when your Horizon Cloud pod in Microsoft Azure is configured to use Unified Access Gateway for end user connections, your organization has a DNS CNAME or A record that maps the FQDN that you provided in the deployment wizard to the auto-generated public FQDN of the pod's deployed load balancer. See Obtain the Pod Gateway's Load Balancer Information to Map in your DNS Server.

- If you want those Horizon clients that have implemented the client retry feature to automatically retry the connection when the system has to power on the underlying desktop VM or farm server VM, set the Enable Client Retry option to Yes in the Administration Console’s General Settings page. For details about that option, see Edit General Settings. The Horizon HTML Access client starting with version 4.10 has this feature implemented.
Verify that you have the credentials for a user that has a VDI desktop, RDS desktop, or remote application assignment.

Procedure

1. Point a browser to a URL of the form `https://<desktops-FQDN>`, where `desktops-FQDN` is the fully qualified domain name that was added to your DNS for end-user connections.

 For example, if your company's DNS associated an FQDN of `myDesktops.example.com`, point the browser to `https://myDesktops.example.com`.

2. Sign in using the credentials for a user that has a desktop assignment.

 Icons representing the user's assignments are displayed in the browser. The user can launch a desktop or application by clicking its icon.

Accessing Local Files with Remote Applications Using File Redirection

The file redirection feature allows users to open local files in entitled remote applications that support a given file type.

The feature is enabled in the Horizon Client when the **Open local files in hosted applications** option is selected.

This functionality allows users to do the following:

- Open a local file in a remote application by double-clicking the file in the client machine or by right-clicking, selecting **Open with**, and choosing the remote application in the menu.

- In the remote application, browse the complete folder where the file resides.

- Save changes made using the remote application to the local client disk.

- Register an entitled application as a file handler for the file types that those applications can open, or chose to open with the remote application a single time.

 When an application is set as the default handler:

 - The file's preview icon matches the entitled application's icon in the application launcher page.

 - The file type description is overridden by the remote application, if any.

 - Double-clicking a file of that type launches the Horizon Client.

Enforce End-User Access Through Workspace ONE Access

When you have integrated your Horizon Cloud environment with your Workspace ONE Access environment, you can specify that end users must go through Workspace ONE Access to access their desktops. Requiring end users to access their desktops through Workspace ONE Access prevents direct desktop access using their Horizon Client or by HTML access. This enforcement is useful when you want to use the two-factor authentication method that is set in your Workspace ONE Access environment.

Your end users typically launch their entitled desktops using the following methods.

- From a browser, by loading the FQDN for end-user access that your organization's DNS records have associated with the pod they need to access.
- From the Horizon Client application, by including that FQDN as a new server location in the client application.

- From Workspace ONE Access, if your environments are integrated.

You can optionally configure your Horizon Cloud environment to require your end users use Workspace ONE Access only.

You can configure enforcement on users who are accessing their desktops and applications from locations outside your corporate network or on users accessing from inside your corporate network, or both. You can also configure the client to automatically redirect to Workspace ONE Access the enforcement is enabled.

The feature to force end-user access to Workspace ONE Access works with the Workspace ONE Access redirection feature in the following ways.

<table>
<thead>
<tr>
<th>Force end-user access through Workspace ONE Access setting</th>
<th>Workspace ONE Access redirection setting</th>
<th>What happens when the end user's client connects to Horizon Cloud to access their desktops and applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled (yes)</td>
<td>Enabled (yes)</td>
<td>Client is automatically redirected to Workspace ONE Access.</td>
</tr>
<tr>
<td>Enabled (yes)</td>
<td>Disabled (no)</td>
<td>Client displays a message that tells the user that they must access Horizon Cloud using Workspace ONE Access. Automatic redirection does not occur.</td>
</tr>
<tr>
<td>Disabled (no)</td>
<td>Enabled (yes)</td>
<td>Client displays the Horizon Cloud login screen for the end user to log in. Automatic redirection does not occur because forced access to Workspace ONE Access is not enabled.</td>
</tr>
<tr>
<td>Disabled (no)</td>
<td>Disabled (no)</td>
<td>Client displays the Horizon Cloud login screen for the end user to log in. In this scenario, both forced access and the automatic redirection features are disabled.</td>
</tr>
</tbody>
</table>

Prerequisites

Verify that your Horizon Cloud and Workspace ONE Access environments are successfully integrated. See [Integrate a Horizon Cloud Pod in Microsoft Azure with Workspace ONE Access](#).

Procedure

1. In the Administration Console, navigate to **Settings > Identity Management** and click **Configure**.

2. In the dialog box, make selections according to your organization’s needs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Remote Users to Workspace ONE Access</td>
<td>When set to Yes, users that are trying to access their desktops from locations outside of your corporate network must log in to Workspace ONE Access and access desktops from there.</td>
</tr>
<tr>
<td>Force Internal Users to Workspace ONE Access</td>
<td>When set to Yes, users that are trying to access their desktops from locations within your corporate network must log in to Workspace ONE Access and access desktops from there.</td>
</tr>
</tbody>
</table>
3 Click **Save** to confirm the configuration to the system.

4 (Optional) Set Workspace ONE Access redirection on the identity management configuration.

Note You can have Workspace ONE Access redirection enabled for only one of the identity management URLs that are configured on the Identity Management page. If your Identity Management page lists multiple configurations with different identity management URLs, and one is associated with the toggle is set to **YES**, when you try to set the toggle to **YES** for a different identity management URL, an error message is displayed.

a On the Identity Management page, select the check box for the Workspace ONE Access configuration for which you want to set redirection and click **Edit** to open its configuration.

b Set the **Workspace ONE Redirection** toggle to **YES**.

c Click **Save**.

What to do next

Verify that the desktop access behaves according to your settings by trying to access a desktop using the Horizon Client or using a browser directly instead of through Workspace ONE Access.
Setting Up and Managing End-User Assignments in Your Horizon Cloud Tenant Environment

You can use the cloud-management capabilities of Horizon Cloud to give your end users access to virtual resources, such as virtual desktops and remote applications. The resources can reside in an on-premises pod or in a pod on a public cloud. The types of assignments you can configure depend on the type of pod holding the virtual resources.

End-User Assignments You Can Configure Using Resources from Pods Deployed into Microsoft Azure

For details about the types of assignments you can configure using resources from your Horizon Cloud tenant's pods in Microsoft Azure, see:

- Types of Desktop Assignments
- Managing Assignments Provisioned By Horizon Cloud Pods in Microsoft Azure

End-User Assignments You Can Configure Using Resources from Cloud-Connected Horizon 7 Pods

In addition to the Horizon Cloud features for unified visibility, health monitoring, and help desk services for cloud-connected Horizon 7 pods, you can create multi-cloud assignments, known as cross-pod desktop assignments in previous releases. A multi-cloud assignment uses the brokering method of your choice to deliver pod resources such as virtual desktops to your end users.

For overview information about configuring multi-cloud assignments based on resources from your Horizon Cloud tenant's cloud-connected Horizon 7 pods, see High-Level Steps for Setting Up Horizon Cloud Multi-Cloud Assignments (MCA) for Your Horizon Cloud Tenant.

This chapter includes the following topics:

- System Requirements for Multi-Cloud Assignments
- High-Level Steps for Setting Up Horizon Cloud Multi-Cloud Assignments (MCA) for Your Horizon Cloud Tenant
System Requirements for Multi-Cloud Assignments

To support the use of multi-cloud assignments, you must install and configure certain components in your Horizon 7 pod environment.

System Requirements for Multi-Cloud Assignments Brokered by Horizon Universal Broker

To support the use of Horizon Universal Broker, your system environment must meet the following requirements.

- Each participating VMware Horizon 7 pod must be:
 - Running Horizon 7 Connection Server version 7.11 or later, with a valid license and the Horizon Universal Broker Plugin installed, as described in Install the Horizon Universal Broker Plugin on the Connection Server
 - Running Unified Access Gateway 3.8 or later
 - Configured according to the Horizon 7 version 7.11 documentation, as described in Configuring Horizon 7 for the First Time
 - Cloud-connected to Horizon Cloud using Horizon 7 Cloud Connector version 1.5 or later
- Your system components must have the required ports configured as described in Port and Protocol Requirements for Horizon Universal Broker.
- Desktop pools must be configured on the participating pods and based on virtual machines running the Windows operating system. In addition, the pool configuration settings must meet the requirements of Horizon Universal Broker, as described in Prepare an Existing Desktop Pool for Multi-Cloud Assignments Brokered by Horizon Universal Broker.
- To access desktops provided by Horizon Universal Broker, an end user must be running Horizon Client for Windows 5.3 or later.

System Requirements for Multi-Cloud Assignments Brokered by Cloud Pod Architecture

To support the use of multi-cloud assignments brokered by Cloud Pod Architecture, you must first initialize the Cloud Pod Architecture feature, as described in Initialize the Cloud Pod Architecture Feature in Horizon Console.
In addition, each participating VMware Horizon 7 pod must be:

- Running Horizon 7 Connection Server version 7.9 or later, with a valid license
- Cloud-connected to Horizon Cloud using Horizon 7 Cloud Connector version 1.3 or later
- A member of the same pod federation as defined by the CPA feature

For information about how to define a pod federation, see Join a Pod to the Pod Federation in Horizon Console.

Important For a pod to join a pod federation successfully, its Connection Servers must meet specific network requirements. You must ensure that your network allows for TCP traffic to specific ports on the pod's Connection Servers. For details about the required settings for these TCP ports, see the Horizon Connection Server section in the Network Ports in VMware Horizon 7, particularly the table rows that describe the ports needed for Cloud Pod Architecture. If network traffic is not allowed to these ports, the join step might fail.

Desktop pools must be configured on the participating pods and based on virtual machines running the Windows operating system.

Port and Protocol Requirements for Horizon Universal Broker

To establish ongoing communications between its brokering components and the system components in participating Horizon 7 pods, Horizon Universal Broker has specific port and protocol requirements. These requirements are described in the following table.

The Horizon Universal Broker client on the Horizon 7 Cloud Connector establishes a persistent web-socket connection with the Horizon Universal Broker service through port 443. The Horizon Universal Broker client receives connection requests from the service through a randomly selected port.

The Horizon Universal Broker client then forwards the request through a different randomly selected port to the Horizon Universal Broker plugin on the Connection Server. The Horizon Universal Broker plugin listens for these incoming requests through the port that was specified during the installation of the plugin.

For more information about the system architecture and traffic flow of Horizon Universal Broker, see About Horizon Universal Broker.
<table>
<thead>
<tr>
<th>Source</th>
<th>Source Port</th>
<th>Target</th>
<th>Target Port</th>
<th>Protocol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon Universal Broker client on the Horizon 7 Cloud Connector</td>
<td>Randomly selected from available ports</td>
<td>Horizon Universal Broker service</td>
<td>443</td>
<td>HTTPS</td>
<td>Used to establish a persistent web-socket connection with the Horizon Universal Broker service</td>
</tr>
<tr>
<td>Horizon Universal Broker client on the Horizon 7 Cloud Connector</td>
<td>Randomly selected from available ports</td>
<td>Horizon Universal Broker plugin on the Connection Server</td>
<td>As specified during installation of the Horizon Universal Broker plugin. If no port is specified, port 33443 is used by default.</td>
<td>HTTPS</td>
<td>Used by Horizon Universal Broker plugin to listen for incoming connection requests forwarded by the Horizon Universal Broker client from the Horizon Universal Broker service</td>
</tr>
</tbody>
</table>

High-Level Steps for Setting Up Horizon Cloud Multi-Cloud Assignments (MCA) for Your Horizon Cloud Tenant

Using the Horizon Cloud Administration Console, you can create multi-cloud assignments to provision virtual resources in cloud-connected Horizon 7 pods to your end users. In previous releases, these multi-cloud assignments were called cross-pod desktop assignments.

When you first onboard a Horizon 7 pod to Horizon Cloud, the pod is placed in Monitored state by default. Monitored state allows you to use the cloud-hosted dashboard, health monitoring, and help desk services for that pod.
After onboarding at least one Horizon 7 pod to your Horizon Cloud tenant, you can choose the brokering method that will provision resources from multi-cloud assignments. Choosing a brokering method allows you to move any of your cloud-connected Horizon 7 pods into Managed state. When you change a pod to Managed state, it becomes eligible for participation in multi-cloud assignments.

The resources in a multi-cloud assignment can span one or more Managed pods. For example, given Pod-A and Pod-B which each have their own desktop pools, you can create a multi-cloud assignment that entitles end users to desktops from both Pod-A's pools and Pod-B's pools.

Two different brokering methods are available for multi-cloud assignments: Horizon Universal Broker and Cloud Pod Architecture (CPA). You must choose one or the other brokering method. Once you choose a brokering method, it becomes permanent and cannot be changed or undone.

The high-level steps for configuring multi-cloud assignments differ by brokering method.

High-Level Steps for Configuring Multi-Cloud Assignments Brokered by Horizon Universal Broker

The following list summarizes the high-level procedures that you must complete to set up multi-cloud assignments brokered by Horizon Universal Broker.

1. Verify that the system components in your Horizon 7 pod environment meet the necessary System Requirements for Multi-Cloud Assignments.
2. Onboard the participating Horizon 7 pods to Horizon Cloud using Horizon 7 Cloud Connector version 1.5 or later. See *High-Level Workflow When You are Onboarding an Existing Manually Deployed Horizon 7 Pod as Your First Pod to Your Horizon Cloud Tenant Environment*.
3. For each participating pod, prepare the necessary system components for working with Horizon Universal Broker.
 a. Install the Horizon Universal Broker Plugin on the Connection Server. You must install the plugin on every Connection Server instance within the pod.
 b. Configure Unified Access Gateway for Use with Horizon Universal Broker. You must configure every Unified Access Gateway instance within the pod. If you want to use two-factor authentication for Horizon Universal Broker, you must configure the same authentication settings for every Unified Access Gateway instance across all participating pods.
4. Choose Horizon Universal Broker as the brokering method for multi-cloud assignments in your Horizon Cloud tenant. See *Choose a Brokering Method*.
5. Configure the Horizon Universal Broker settings. See *Configure Horizon Universal Broker*.
6. Enable each participating pod for multi-cloud assignments, as described in *Change a Pod to Managed State in a Horizon Universal Broker Environment*.
7. Define the site configuration and home site associations for your Horizon Cloud tenant. See *Configuring Sites for Horizon Universal Broker* and *Configuring Home Sites for Horizon Universal Broker*.
Within the participating pods, configure desktop pools with the mandatory settings required by Horizon Universal Broker. See Prepare an Existing Desktop Pool for Multi-Cloud Assignments Brokered by Horizon Universal Broker and Create a New Desktop Pool for Multi-Cloud Assignments.

Gather the necessary configuration information for the multi-cloud assignment by filling in the Worksheet for Creating a Multi-Cloud Assignment.

Configure the multi-cloud assignments. See Create a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment.

High-Level Steps for Configuring Multi-Cloud Assignments Brokered by Cloud Pod Architecture

The following list summarizes the high-level procedures that you must complete to set up multi-cloud assignments brokered by Cloud Pod Architecture.

1. Verify that the system components in your Horizon 7 pod environment meet the necessary System Requirements for Multi-Cloud Assignments.
2. Initialize the Cloud Pod Architecture feature. See Initialize the Cloud Pod Architecture Feature in Horizon Console.
3. Join each participating pod to a single pod federation. See Join a Pod to the Pod Federation in Horizon Console.
4. Define the site configuration and home site associations for your Cloud Pod Architecture environment. See Create and Configure a Site in Horizon Console and Assign a Home Site to a User or Group in Horizon Console.
5. Onboard the participating Horizon 7 pods to Horizon Cloud using Horizon 7 Cloud Connector version 1.3 or later. See High-Level Workflow When You are Onboarding an Existing Manually Deployed Horizon 7 Pod as Your First Pod to Your Horizon Cloud Tenant Environment.
7. Enable each pod for multi-cloud assignments, as described in Change a Pod to Managed State in a Cloud Pod Architecture Brokering Environment.
8. Configure desktop pools within the participating pods, as described in Create a New Desktop Pool for Multi-Cloud Assignments.
9. Gather the necessary configuration information for the multi-cloud assignment by filling in the Worksheet for Creating a Multi-Cloud Assignment.
10. Create a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment.
Understanding Brokering Methods for Multi-Cloud Assignments

Two different brokering choices are available for multi-cloud assignments: Horizon Universal Broker and Cloud Pod Architecture (CPA). Once you choose a brokering method, it becomes permanent and cannot be changed or undone. The brokering method you choose is used to manage and delegate virtual resources from multi-cloud assignments to your end users.

Comparing Horizon Universal Broker and Cloud Pod Architecture

This topic summarizes the main differences between Horizon Universal Broker and Cloud Pod Architecture and offers guidelines for choosing between the two brokering methods.

Choosing a Brokering Method

Horizon Universal Broker represents the latest cloud-based brokering technology from VMware and is the preferred brokering method for multi-cloud assignments in new deployments.

If you have already configured a Cloud Pod Architecture environment and want to provide your end users with a feature not supported by Horizon Universal Broker, choose Cloud Pod Architecture as your brokering method. For more information, see Feature Limitations of Horizon Universal Broker.

<table>
<thead>
<tr>
<th>Horizon Universal Broker</th>
<th>Cloud Pod Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use for new, greenfield deployments</td>
<td>Use to configure multi-cloud assignments that include features not supported by Horizon Universal Broker</td>
</tr>
<tr>
<td>Single connection FQDN for all users in all sites</td>
<td>Multiple connection FQDNs</td>
</tr>
<tr>
<td>No interpod network traffic required</td>
<td>Dependent on interpod network traffic</td>
</tr>
</tbody>
</table>
Horizon Universal Broker, the latest cloud-based brokering technology from VMware, provides the following key features:

- **Single connection FQDN for all multi-cloud assignments**

 End users can access multi-cloud assignments in your environment by connecting to a single FQDN (or URL), which you define in the Horizon Universal Broker configuration settings. Through the single Horizon Universal Broker FQDN, users can access assignments from any participating Horizon 7 pod in any site in your environment. No internal networking between your pods is required.

- **Global pod connectivity and awareness for optimal performance**
Horizon Universal Broker maintains direct connectivity with every pod participating in multi-cloud assignments and stays aware of the availability status of each pod. As a result, Horizon Universal Broker can manage connection requests and deliver virtual resources to end users directly from these pods. There is no need for global server load balancing (GSLB) or any interpod network communication that can cause reduced performance and latency issues.

- **Smart brokering**

 By maintaining an awareness of your geographical sites and pod topology, Horizon Universal Broker can deliver desktops from multi-cloud assignments to end users along the shortest network route.

About Cloud Pod Architecture

Cloud Pod Architecture uses standard Horizon components to link together multiple Horizon 7 pods in a single large desktop brokering environment, called a pod federation. Key features include:

- **Different connection FQDNs for each pod**

 To access a multi-cloud assignment brokered by Cloud Pod Architecture, an end user connects to the Connection Server FQDN (or URL) for one of the participating pods. Since each pod has a distinct Connection Server FQDN, users have multiple points of entry into the Cloud Pod Architecture environment.
Requires an interpod WAN network

Cloud Pod Architecture requires that you set up an internal WAN network to handle communication between your pods. This interpod communication enables Cloud Pod Architecture to deliver a desktop from one pod to a user who is connected to another pod. For example, a user can connect to Pod A in San Francisco and receive a desktop from Pod B in New York.

Requires GSLB capabilities

- To use Cloud Pod Architecture, you must deploy and configure a global load balancer. Cloud Pod Architecture requires global server load balancing (GSLB) to manage and direct connection requests to the best available resources in your environment.

About Horizon Universal Broker

Horizon Universal Broker represents the latest cloud-based brokering technology from VMware and is the preferred brokering method for multi-cloud assignments in new deployments. Horizon Universal Broker includes several system components that run within participating pods and in the cloud.

For an overview of the key features of Horizon Universal Broker, see Comparing Horizon Universal Broker and Cloud Pod Architecture.

System Components of Horizon Universal Broker

The following components comprise the Horizon Universal Broker solution for cloud-based brokering of multi-cloud assignments.

- The Horizon Universal Broker service is a multi-tenant cloud service that runs within the Horizon Universal Broker cloud, which is connected to Horizon Cloud. Each customer connects to the Horizon Universal Broker service using a unique, dedicated FQDN that is configured as described in Configure Horizon Universal Broker.

- The Horizon Universal Broker client runs within the Horizon 7 Cloud Connector for each of your cloud-connected pods. The client is part of the OVA file for Cloud Connector 1.5 or later and is automatically installed when you pair the Cloud Connector with your pod.
The Horizon Universal Broker plugin runs within the Connection Server for every cloud-connected pod that participates in multi-cloud assignments. You must download and install the plugin on each Connection Server instance within a participating pod, as described in Install the Horizon Universal Broker Plugin on the Connection Server.

System Architecture and Traffic Flow in the Horizon Universal Broker Environment
The following diagram illustrates how Horizon Universal Broker works with the components in your Horizon 7 pod environment to deliver virtual resources from multi-cloud assignments to your end users.
1. From Horizon Client, the end user requests a virtual desktop by connecting to the Horizon Universal Broker service through the brokering FQDN. The service uses the XML-API protocol to authenticate the Horizon Client user and manage the connection session.

2. After determining that Pod 1 in Site 1 is the best available source for the desktop, the Horizon Universal Broker service sends a message to the Horizon Universal Broker client, which runs on the Horizon 7 Cloud Connector paired with Pod 1.

3. The Horizon Universal Broker client forwards the message to the Horizon Universal Broker plugin, which runs on one of the Connection Server instances within Pod 1.
The Horizon Universal Broker plugin identifies the best available desktop to deliver to the end user.

The Horizon Universal Broker service returns a response to Horizon Client which includes the unique FQDN of Pod 1 (typically the FQDN of the Pod 1 load balancer). Horizon Client establishes a connection with the load balancer to request a protocol session with the desktop.

After passing through the local load balancer, the request goes to the Unified Access Gateway for Pod 1. The Unified Access Gateway validates that the request is trusted and prepares the Blast Secure Gateway, PCoIP Secure Gateway, and tunnel server.

The Horizon Client user receives the specified desktop and establishes a session based on the configured secondary protocol (Blast Extreme or PCoIP).

For more information about the ports used for Horizon Universal Broker communications, see Port and Protocol Requirements for Horizon Universal Broker.

About Cloud Pod Architecture

Cloud Pod Architecture allows you to link together multiple Horizon 7 pods in a pod federation to provide a single brokering environment. Cloud Pod Architecture is one of the methods that you can use to broker resources from multi-cloud assignments in your Horizon Cloud tenant.

For an overview of the key features of Cloud Pod Architecture, see Comparing Horizon Universal Broker and Cloud Pod Architecture.

For a detailed introduction to Cloud Pod Architecture, see Understanding Cloud Pod Architecture.

Feature Limitations of Horizon Universal Broker

This release of Horizon Universal Broker supports a certain subset of Horizon 7 features.

Virtual Resources

This release of Horizon Universal Broker only supports the provisioning of virtual desktops running Windows operating systems. Linux-based desktops and Microsoft Remote Desktop Services (RDS) hosts are not supported.

This release also does not support administrator-created shortcuts to desktops and applications.

Display Protocols

This release of Horizon Universal Broker supports the VMware Blast and PCoIP protocols.

Microsoft RDP is not supported.

Horizon Client

This release of Horizon Universal Broker only supports connection requests from Horizon Client for Windows 5.3 or later. This release does not support versions of Horizon Client running on operating systems other than Windows.
Authentication Methods

This release of Horizon Universal Broker supports client user authentication through Windows user name and password, in UPN and NETBIOS formats.

Multi-factor authentication through RSA or Radius is also supported.

The following user authentication and access methods are not supported:

- Smart card
- Certificate
- SAML
- Log in as current user
- Anonymous access

VMware Workspace ONE Access

This release of Horizon Universal Broker does not support integration with VMware Workspace ONE Access. Features associated with Workspace ONE Access integration, such as True SSO, are not supported.

Desktop Features

The following features are not supported in this release of Horizon Universal Broker:

- URL redirection
- Session collaboration
- Kiosk mode
- Smart policies

Other Features

The following features are also not supported in this release of Horizon Universal Broker:

- Timing profile (for troubleshooting user sessions)
- OPSWAT-based endpoint compliance checks

Preparing Horizon 7 System Components for Horizon Universal Broker

To support the use of Horizon Universal Broker with multi-cloud assignments, you must prepare certain system components within participating Horizon 7 pods. You must install the Horizon Universal Broker plugin on each Connection Server and configure the Unified Access Gateway within each pod.
Install the Horizon Universal Broker Plugin on the Connection Server

Before a pod can participate in multi-cloud assignments brokered by Horizon Universal Broker, you must install the required plugin on each Connection Server instance in that pod. The Horizon Universal Broker plugin supports communication between the brokering service and the Connection Server instances within a pod.

When installing the Horizon Universal Broker plugin, observe the following considerations:

- In this release of Horizon Universal Broker, the plugin only supports IPv4.
- During the plugin installation, the Connection Server service is restarted and all administrator console sessions on the Connection Server are logged off.
- If a pod has multiple Connection Server instances, you must install the Horizon Universal Broker plugin on each Connection Server instance.
- You must install the same version of the plugin on all Connection Server instances within participating pods. For example, if you upgrade the plugin to a later version on one Connection Server instance, you must upgrade the plugin to that same version on every other Connection Server instance within the pod.
- If you add a new Connection Server instance to a participating pod, you must install the plugin on the new Connection Server instance.
- If you upgrade a Connection Server to a later version, you must reinstall the plugin on that Connection Server instance after the upgrade.
- When working with the LDAP configuration in a Connection Server instance that has the Horizon Universal Broker plugin installed, observe the following guidelines:
 - In addition to making a backup copy of the LDAP configuration, take a virtual-machine snapshot of the current Connection Server instance. If you use the backup to restore the LDAP configuration to an earlier state, you can use the snapshot to populate the restored LDAP configuration with the information required by the Horizon Universal Broker plugin to function.
 - When restoring the LDAP configuration to an earlier state, only use LDAP backups made after the plugin was installed on the Connection Server.
 - If you restore the LDAP configuration to a state earlier than the Horizon Universal Broker plugin installation, certain information required by the plugin will be missing in the restored LDAP configuration. Consequently, the plugin will not function.
To download the installer for the Horizon Universal Broker plugin, see the instructions in the Release Notes for this service release. Then use the following procedures to install the Horizon Universal Broker plugin on the Connection Server instances within each participating pod.

- To install the Horizon Universal Broker plugin silently on a bulk deployment of Connection Server instances, use the following command. Replace `<portNumber>` with the TCP port that the plugin uses to listen for and accept incoming requests from the Horizon Universal Broker client.

```
horizon-universal-broker-plugin-19.4.0-15186122-x64.exe /s /v"LISTENPORT=<portNumber> /qn"
```

- To install the Horizon Universal Broker plugin on an individual Connection Server instance, perform the numbered steps described in this topic.

Prerequisites

Verify that:

- Each Connection Server instance on the pod is running version 7.11 or later.
- You have both Horizon administrator and local administrator privileges on the Connection Server. The plugin installer only runs when initiated by an administrator with both of these privileges.

Procedure

1. If needed, place the plugin installer file on the Connection Server.
2. Run the `.exe` installer file.
3. At the Welcome screen of the installer wizard, click **Next**.
4. Accept the End-User License Agreement, and click **Next**.
5. At the Configuration screen, specify the required port information.
 a. Enter the TCP port number that the Horizon Universal Broker plugin should use to listen for and accept incoming requests from the Horizon Universal Broker client.

 Note The installer checks and validates that the specified port is available. If the port already has a process running on it, a warning message appears and the installation is stopped. To resume the installation, you must specify an available TCP port.

 b. Select **Configure Windows firewall exception automatically** if you want the installer to configure the firewall exception required to allow incoming connections through the specified port. Deselect this option if you want to configure the firewall exception manually.

 Note The Windows firewall exception is mandatory for Horizon Universal Broker, whether you instruct the installer to configure it or you configure it yourself.

 c. Click **Next**.
5. Follow the prompts in the remaining screens of the wizard to finish installing the Horizon Universal Broker plugin on the Connection Server.
What to do next

Important If, at a later time, you want to uninstall the Horizon Universal Broker plugin or the Connection Server instance, follow this order of uninstallation:

1. First, uninstall the Horizon Universal Broker plugin.
2. Next, uninstall Connection Server.

If you uninstall Connection Server first, a system error results and you will not be able to uninstall the Horizon Universal Broker plugin.

Note If you want to change the port that the Horizon Universal Broker plugin uses to listen for incoming requests from the Horizon Universal Broker client, do the following:

1. In the LDAP configuration for the Connection Server, change the value of the `poe-RCXServerPort` property to the new port number.
2. Restart the Connection Server.
3. If needed, update the corresponding Windows firewall exception to allow incoming traffic through the new port.

The new port configuration takes effect after the Connection Server and the Horizon Universal Broker plugin complete their restart sequences.

Configure Unified Access Gateway for Use with Horizon Universal Broker

To use Horizon Universal Broker with your cloud-connected Horizon 7 pods, you must first replace the security server in each pod with a Unified Access Gateway appliance. Then you must configure the required JSON Web Token settings in each Unified Access Gateway instance to support the tunnel server and protocol redirection required by Horizon Universal Broker.

If you want to use two-factor authentication for Horizon Universal Broker, you must also configure the appropriate RADIUS or RSA SecurID service on each Unified Access Gateway instance.

Prerequisites

- Install a dedicated Unified Access Gateway appliance for each cloud-connected Horizon 7 pod participating in multi-cloud assignments. Ensure that you install version 3.8 or later of Unified Access Gateway. Configure each Unified Access Gateway instance as the proxy server for connection requests to its paired Connection Server.

 For more information, see the [Unified Access Gateway documentation](#) and the [VMware Horizon 7 documentation](#).

 Note Ensure that each Unified Access Gateway instance is paired with only one pod.

- To validate the pairing of each Unified Access Gateway instance with its respective Connection Server, connect directly to the Unified Access Gateway and verify that you can access virtual desktops.
Procedure

1. Log in to the Unified Access Gateway administration console.
2. In the **Configure Manually** section, click **Select**.
3. Under **Advanced Settings**, click the gearbox for **JWT Settings**.
4. To create a JWT configuration set, click **Add**.
5. Specify the required settings in the JWT Settings dialog box.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter a descriptive name for the configuration set.</td>
</tr>
<tr>
<td>Issuer</td>
<td>Enter the cluster name of the Horizon 7 pod, as displayed in Horizon Console.</td>
</tr>
</tbody>
</table>
| Dynamic Public key URL | Enter `https://<Horizon pod FQDN>/broker/publicKey/protocolredirection`, where `<Horizon pod FQDN>` is replaced with the pod's unique FQDN (fully qualified domain name). The FQDN is typically defined as follows:
 - If the pod has multiple Unified Access Gateway instances, specify the address of the local load balancer as the FQDN.
 - If the pod has only one Unified Access Gateway instance, specify the address of that instance's paired Connection Server as the FQDN. |
| Public key URL thumbprints | To use a public key URL for authentication, enter the SHA1 thumbprint of the Horizon 7 pod's certificate.
 Note You can configure either Public key URL thumbprints or Trusted Certificates for authentication. You do not need to configure both options. |
| Trusted Certificates | To use a certificate other than the Horizon 7 pod's certificate for authentication, click the (+) icon and add the trusted certificate.
 Note You can configure either Trusted Certificates or Public key URL thumbprints for authentication. You do not need to configure both options. |
| Public key refresh interval | For best results, enter **900**. This value sets the refresh interval to 900 seconds, or 15 minutes. |
| Static public keys | Leave this option set to its default value. |

6. Click **Save** and then click **Close**.
If you want to use two-factor authentication for Horizon Universal Broker, enable the **Show** toggle for **Authentication Settings**. Then enable and configure settings for one of the security services supported by Horizon Universal Broker: **RSA SecurID** or **RADIUS**.

Note You must configure the appropriate RADIUS or RSA SecurID service on the Unified Access Gateway instance for every participating pod. The configurations of all Unified Access Gateway instances within a participating pod must match each other and must be identical to the configurations of Unified Access Gateway instances across every other participating pod. Otherwise, authentication to the Horizon Universal Broker service fails.

For example, if you want to use RADIUS authentication for your Horizon Universal Broker, you must configure the identical RADIUS service on every Unified Access Gateway instance across all participating pods. You cannot configure RADIUS on some participating pods and RSA SecurID on other participating pods.

Choose a Brokering Method

Before you can configure your first multi-cloud assignment, you must choose a brokering method to use for desktop provisioning. The brokering choice you make is permanent and cannot be changed.

The Capacity page displays all the pods that you have connected to your Horizon Cloud tenant. By default, a cloud-connected pod is in Monitored state, as shown under the **State** column.

To choose a brokering method for multi-cloud assignments, access the **Enable Brokering** command from the Summary page for one of your cloud-connected pods.

Procedure

1. In the left pane of the Horizon Cloud Administration Console, select **Settings > Capacity**.

2. On the Capacity page, click the name of a pod to open its Summary page.
3. On the pod’s Summary page, click **Enable Brokering**.

The **Set Up Brokering Technology** window appears.

4. Choose the brokering method that you want to use for multi-cloud assignments in your Horizon Cloud tenant.

Important The brokering method that you choose is used to manage and provision resources from multi-cloud assignments. Your brokering choice is permanent and cannot be changed.

- To choose Horizon Universal Broker, click **Set Up** under the **Universal Broker** section.
- To choose Cloud Pod Architecture, click **Show More** and then click **Set Up** under the **Cloud Pod Architecture** section.
What to do next

- If you chose Horizon Universal Broker, a wizard appears prompting you to configure broker settings. You must configure and save these settings to finish setting up Horizon Universal Broker as your brokering method. Complete the steps described in Configure Horizon Universal Broker.

- If you chose Cloud Pod Architecture, the brokering method is now available for use. Proceed to enable your pods for multi-cloud assignments, as described in Change a Pod to Managed State in a Cloud Pod Architecture Brokering Environment.

Configure Horizon Universal Broker

To use Horizon Universal Broker as your brokering method for multi-cloud assignments, you must configure certain settings. These settings include the fully qualified domain name (FQDN) for the Horizon Universal Broker service and optional two-factor authentication. You can also configure session timeout values and user access to certain Horizon 7 features.

Note Your brokering connection FQDN represents your company or organization. Additional details might apply. For those details, see the Release Notes for this service release.

Procedure

1. Open the Set Up Universal Broker wizard for configuring Horizon Universal Broker settings.
 - If you are configuring Horizon Universal Broker for the first time, the Set Up Universal Broker wizard appears after you choose Horizon Universal Broker as your brokering method. See Choose a Brokering Method.
 - If you have already configured Horizon Universal Broker and want to modify the existing configuration settings, select Settings > General Settings in the left pane of the Horizon Cloud Administration Console. Scroll down to the Universal Broker section and click the edit icon.

The following screenshot shows an illustration of the Set Up Universal Broker wizard before any settings are configured.
Set Up Universal Broker

Provide the details required to set up Universal Broker. Then, click Save & Continue to enable brokering.

Broker FQDN

Type *

- VMware Provided
- Customer Provided

Sub Domain *

Broker FQDN

https://<sub-domain>.vmwarehorizon.com

Authentication Settings

2 Factor Authentication

ADVANCED
2 In the Set Up Universal Broker wizard, specify the **Broker FQDN** settings. These settings define the dedicated connection address that your end users will use to access resources provisioned by Horizon Universal Broker.

Note When you modify a subdomain or FQDN setting, it may take some time for the change to take effect across all your DNS servers.

- For Type, select either a **VMware Provided** or **Customer Provided** fully qualified domain name (FQDN).
- Specify additional settings for the selected FQDN type.
 - If you selected the **VMware Provided** type, specify settings as follows.
Setting	Description
Sub Domain	Enter the unique DNS name of a valid subdomain in your network configuration that represents your company or organization. This subdomain is prefixed to the VMware-provided domain to form the brokering FQDN.
Brokering FQDN	This read-only field displays the configured FQDN. The FQDN uses the format https://<your sub-domain>.vmwarehorizon.com. Provide this FQDN to your end users to allow them to connect to the Horizon Universal Broker service using Horizon Client. Horizon Universal Broker manages the DNS and SSL validation of this FQDN using a wildcard certificate.

The following screenshot shows an example of the wizard with the settings for the VMware Provided FQDN filled in.

![Broker FQDN Settings](image)

- If you selected the **Customer Provided** type, specify settings as follows.
<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brokering FQDN</td>
<td>Enter the custom FQDN that your end users will use to access the Horizon Universal Broker service. Your custom FQDN functions as an alias to the automatically generated VMware-provided FQDN that completes the connection to the service. You must be the owner of the domain name specified in your custom FQDN and provide a certificate that can validate that domain.</td>
</tr>
</tbody>
</table>

VMware, Inc. 468
<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important</td>
<td>You must create a CNAME record on your DNS server that maps your custom FQDN to the VMware-provided FQDN representing the internal connection address of the Horizon Universal Broker service. For example, the record might map vdi.examplecompany.com to <auto-generated string>.vmwarehorizon.com.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Click Browse and upload the certificate (in password-protected PFX format) that validates your brokering FQDN. The certificate must be signed by a trusted CA, and the certificate’s Subject Alternative Name (SAN) must match the FQDN. The PFX file must contain the entire certificate chain and the private key: domain certificate, intermediate certificates, root CA certificate, private key. The Horizon Universal Broker service uses this certificate to establish trusted connection sessions with clients.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter the password for the PFX certificate file.</td>
</tr>
<tr>
<td>VMware Provided FQDN</td>
<td>This read-only field displays the VMware-provided FQDN that is automatically generated for the brokering service. The FQDN takes the format https://<auto-generated string>.vmwarehorizon.com. The VMware-provided FQDN is transparent to end users and represents the internal connection address of the Horizon Universal Broker service. Your custom FQDN functions as an alias to the VMware-provided FQDN. Important You must set up an alias association by creating a CNAME record on your DNS server that maps your custom FQDN to the VMware-provided FQDN. For example, the record might map vdi.examplecompany.com to <auto-generated string>.vmwarehorizon.com.</td>
</tr>
</tbody>
</table>

The following screenshot shows an example of the wizard with the settings for the Customer Provided FQDN filled in.

![Broker FQDN wizard](image)
(Optional) Specify Authentication Settings.

By default, Horizon Universal Broker authenticates users solely through their Active Directory user name and password. You can also choose to implement two-factor authentication by specifying RADIUS or RSA SecurID as an additional authentication method.

Note To use two-factor authentication for Horizon Universal Broker, you must first configure the appropriate RADIUS or RSA SecurID service on the Unified Access Gateway instance for every participating pod. The configurations of Unified Access Gateway instances must be identical within and across participating pods.

For example, if you want to use RADIUS authentication for your Horizon Universal Broker, you must configure the RADIUS service on each Unified Access Gateway instance across all participating pods. You cannot configure RADIUS on some participating pods and RSA SecurID on other participating pods.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Factor Authentication</td>
<td>To use two-factor authentication, enable this toggle. When you enable the toggle, you are presented with additional options for configuring two-factor authentication.</td>
</tr>
<tr>
<td>Type</td>
<td>Select the authentication method that you want to use in addition to the Active Directory user name and password. You can select either RADIUS or RSA SecurID.</td>
</tr>
<tr>
<td>Maintain User Name</td>
<td>Enable this toggle to maintain the user’s Active Directory user name during authentication to Horizon Universal Broker. When enabled:</td>
</tr>
<tr>
<td></td>
<td>- The user must have the same user name credentials for RADIUS or RSA SecurID as for their Active Directory authentication to Horizon Universal Broker.</td>
</tr>
<tr>
<td></td>
<td>- The user cannot change the user name in the client login screen.</td>
</tr>
<tr>
<td></td>
<td>If this toggle is disabled, the user is allowed to type a different user name in the login screen.</td>
</tr>
<tr>
<td>Show Hint Text</td>
<td>Enable this toggle to configure a text string that displays in the client login screen to help prompt the user for their RADIUS or RSA SecurID credentials.</td>
</tr>
<tr>
<td>Custom Hint Text</td>
<td>Enter the text string that you want to display in the client login screen. The specified hint appears to the end user as <code>Enter your DisplayHint user name and password</code>, where <code>DisplayHint</code> is the text string you enter in this text box.</td>
</tr>
<tr>
<td></td>
<td>This hint can help guide users to enter the correct credentials. For example, entering the phrase <code>Company user name and domain password below for user name and password</code> results in a prompt to the end user that states: Enter your Company user name and domain password below for user name and password</td>
</tr>
</tbody>
</table>

The following screenshot shows an example of the wizard with the Authentication Settings filled in.
To configure session timeout settings for Horizon Client, expand the Advanced section and specify Client Timeout Settings.

These settings apply to the connection session between Horizon Client and the assigned desktop provisioned by Horizon Universal Broker. These settings do not apply to the user's login session to the guest operating system of the assigned desktop. When Horizon Universal Broker detects the timeout conditions specified by these settings, it closes the user's Horizon Client connection session.
<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Heartbeat Interval</td>
<td>Controls the interval, in minutes, between Horizon Client heartbeats and the state of the user's connection to Horizon Universal Broker. These heartbeats report to Horizon Universal Broker how much idle time has passed during the Horizon Client connection session. Idle time is measured when no interaction occurs with the end-point device running Horizon Client. This idle time is not affected by inactivity in the login session to the guest operating system that underlies the user's assigned desktop. In large desktop deployments, increasing the Client Heartbeat Interval might reduce network traffic and improve performance.</td>
</tr>
<tr>
<td>Client Idle User</td>
<td>Maximum idle time, in minutes, allowed during a connection session between Horizon Client and Horizon Universal Broker. When the maximum time is reached, the user's authentication period expires, and Horizon Universal Broker closes all active Horizon Client sessions. To reopen a connection session, the user must reenter their authentication credentials on the Horizon Universal Broker login screen. To configure connection sessions that never expire, enter –1 for this setting. In this case, users can remain idle indefinitely and maintain their connection sessions without expiration. Note To avoid disconnecting users unexpectedly from their assigned desktops, set the Client Idle User timeout to a value that is at least double that of the Client Heartbeat Interval.</td>
</tr>
<tr>
<td>Client Broker Session</td>
<td>Maximum time, in minutes, allowed for a Horizon Client connection session before the user's authentication expires. The time starts when the user authenticates to Horizon Universal Broker. When the session timeout occurs, the user can continue to work in their assigned desktop. However, if they perform an action (such as changing settings) that requires communication with Horizon Universal Broker, Horizon Client prompts them to reenter their Horizon Universal Broker credentials. Note The Client Broker Session timeout must be greater than or equal to the sum of the Client Heartbeat Interval value and the Client Idle User timeout.</td>
</tr>
<tr>
<td>Client Credential Cache</td>
<td>Controls whether to store user login credentials in the client system cache. Enter 1 to store user credentials in the cache. Enter 0 if you do not want to store user credentials in the cache.</td>
</tr>
</tbody>
</table>

The following screenshot shows the default values for the Client Timeout Settings.
5 To configure additional connection options, expand the Advanced section and configure Policy Details.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimedia Redirection (MMR)</td>
<td>Enable this toggle to allow your end users access to the Multimedia Redirection feature, if the feature is available on the desktop and client.</td>
</tr>
<tr>
<td>USB Access</td>
<td>Enable this toggle to allow your end users to the USB Redirection feature, if the feature is available on the desktop and client.</td>
</tr>
</tbody>
</table>
| Blast Client Credential Clean Up| This setting has no effect on the current release of Horizon Universal Broker. Enabling this setting removes a user's credentials from cache when a user closes a tab that connects to a remote desktop, or closes a tab that connects to the desktop selection page, in the HTML Access client. When this setting is enabled, credentials are also removed from cache in the following HTML Access client scenarios:
 ■ A user refreshes the desktop selection page or the remote session page.
 ■ The server presents a self-signed certificate, a user starts a remote desktop, and the user accepts the certificate when the security warning appears.
 ■ A user runs a URI command in the tab that contains the remote session.
When this setting is disabled, the credentials remain in cache. |

6 Click Save and Continue to save the Horizon Universal Broker configuration.

If you are configuring Horizon Universal Broker for the first time, you are prompted to configure your first pod for multi-cloud assignments. Complete the steps described in Change a Pod to Managed State in a Horizon Universal Broker Environment.
Working with Sites for Multi-Cloud Assignments

You can use sites to help Horizon Universal Broker or Cloud Pod Architecture determine how to search for and allocate desktops from multi-cloud assignments to your end users. A site is a collection of cloud-connected pods in the same physical location, typically in a single data center.

Configuring Sites and Home Sites

When you choose Horizon Universal Broker as your brokering method and enable a pod for multi-cloud assignments, you are prompted to associate the pod with a new or existing site.

When you use Horizon Console to initialize Cloud Pod Architecture, it creates a default site called Default First Site. Participating pods are automatically added to the Default First Site. Later, you can configure new sites and move pods from the Default First Site to a configured site.

You can also associate a user or a group of users with a specific site, called a home site.

Sites can serve as a useful part of a disaster recovery solution. For example, you can add pods in different data centers to different sites and entitle users and groups to a multi-cloud assignment that spans those sites. If a data center in one site becomes unavailable, the broker (Horizon Universal Broker or Cloud Pod Architecture) can use desktops from an available site to fulfill user requests.

The process of configuring sites differs by brokering method:

- For Horizon Universal Broker, use the Horizon Cloud Administration Console to configure sites and home sites. See Configuring Sites for Horizon Universal Broker and Configuring Home Sites for Horizon Universal Broker.

- For Cloud Pod Architecture, use Horizon Console to configure sites and home sites. See Create and Configure a Site in Horizon Console and Assign a Home Site to a User or Group in Horizon Console.

Using Sites to Define Desktop Search and Allocation Behavior

When a user accesses a multi-cloud assignment, the broker searches for an available desktop from the pools participating in that assignment. By default, the broker gives preference to the user's home site, the site physically closest to the user, and other sites, in that order.

For assignments that contain dedicated desktop pools, the broker uses the default search behavior only the first time a user requests a desktop. After the broker allocates a dedicated desktop in this first session, it returns the user directly to the same desktop in subsequent sessions.

You can modify the default search and allocation behavior for individual assignments by configuring site policies and home site overrides. For example, the broker can give preference to the site physically closest to the user instead of the user's home site. The broker can also restrict the scope of the search to desktops from a specific site.

You can also designate a home site override for a multi-cloud assignment. In this case, the broker begins searching for available desktops in the override site instead of the user's home site.
You can configure site policy and home site override settings when you create an assignment, as described in Create a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment. You can also modify existing site policy and home site override settings by editing an assignment, as described in Edit a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment.

Note To resolve the physical locations of users, Horizon Universal Broker uses GeoLite2 data created by MaxMind, available from https://www.maxmind.com.

Configuring Sites for Horizon Universal Broker

When you choose Horizon Universal Broker as your brokering method and change a pod to Managed state, you are prompted to associate the pod with a new or existing site. A pod must be associated with a site before it can participate in multi-cloud assignments brokered by Horizon Universal Broker.

The *Sites* tab on the *Settings > Capacity* page shows the list of configured sites in your Horizon Universal Broker environment and reports the number of pods associated with each site.

Site-Level Actions Available on the Sites Tab

You can perform the following actions from the Sites tab.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Click New to create a site in your Horizon Universal Broker environment. Enter values for Name and Description, and click Save. For example, enter San Francisco as the name of the site that corresponds to your data center situated in San Francisco. The newly created site is added to the Sites list.</td>
</tr>
<tr>
<td>Edit</td>
<td>Select a site in the list and click Edit to modify the name and description of the site.</td>
</tr>
</tbody>
</table>
| Delete | The **Delete** action lets you remove a site permanently from your Horizon Universal Broker environment. Before you delete a site, clear the site of any associations with specific pods, users, or assignments:
 - Move each pod in the site to a different site by modifying the pod's site association. See Configuring the Site Association for a Pod.
 - Verify that:
 - The site is not configured as the home site for any user or group. See Configuring Home Sites for Horizon Universal Broker.
 - The site is not configured as the home site override for any multi-cloud assignment. See Edit a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment.
 Note If you have any multi-cloud assignments that use the deleted site as a home site or home site override, Horizon Universal Broker will have problems delivering desktops from these assignments.
 To delete a site permanently, select a site in the list and click **Delete**. |

Configuring the Site Association for a Pod

You can configure the site association for a pod by doing one of the following:

- When changing the pod from Monitored to Managed state, specify a new or existing site to associate with the pod. See Change a Pod to Managed State in a Horizon Universal Broker Environment.
Change the site association for the pod by editing the pod's characteristics. Click the Pods tab on the Capacity page, select the pod in the list, and click Edit. See Pod-Level Actions Available on the Capacity Page.

Configuring Home Sites for Horizon Universal Broker

You can associate a user or a group of users with a specific site in a Horizon Universal Broker environment, called a home site. Home sites help you define how Horizon Universal Broker searches for and allocates desktops from multi-cloud assignments to your end users.

One use case for home sites involves managing the desktop allocation for roaming users and groups. For example, if a user has a home site in San Francisco but is visiting London, Horizon Universal Broker begins searching in the San Francisco site to fulfill the user's desktop request rather than allocating a desktop closer to the user.

Introducing the Users and Groups Page

The Users and Groups page lists the users and groups who are entitled to multi-cloud assignments in your Horizon Universal Broker environment. The page also lets you assign a home site to a user or group.

To open the Users and Groups page in the Horizon Cloud Administration Console, select Settings > Users and Groups.

The Users and Groups page reports the following information.

<table>
<thead>
<tr>
<th>Column</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>Displays the name of the user or group.</td>
</tr>
<tr>
<td>Domain</td>
<td>Displays the Active Directory domain in which the user or group resides.</td>
</tr>
<tr>
<td>Type</td>
<td>Displays the type of user account.</td>
</tr>
<tr>
<td>Home Site</td>
<td>Displays the name of the home site associated with the user or group.</td>
</tr>
</tbody>
</table>

Actions Available on the Users and Groups Page

You can perform the following actions from the Users and Groups page.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>The New action lets you create a home site assignment that associates a home site with the selected user or group. See Configuring a Home Site Assignment.</td>
</tr>
<tr>
<td>Edit</td>
<td>Click Edit to change the home site associated with the selected user or group.</td>
</tr>
<tr>
<td>Delete</td>
<td>Click Delete to remove the existing home site assignment from the selected user or group.</td>
</tr>
</tbody>
</table>

Configuring a Home Site Assignment

To associate a home site with a user or group, perform the following steps.

On the Users page of the wizard, specify the user or group that will receive the home site assignment.

a For **Domain**, specify the Active Directory domain in which the user or group resides.

Note Only cloud-configured domains are available for selection.

b For **Find Users**, enter the first few characters of the user or group name, and select the user or group of users from the list that appears. Your selection is added to the Selected Users / User Groups list.

Note To remove a user or group from the list, select the check box to the left of the user or group, and click **Remove**.

Specify the details of the home site assignment.

a Select the check box next to the user or group that will receive the home site assignment.

b Click **Assign Home Site** and select a site from the menu.

c Click **Next**.

Review the settings on the Summary page, and then click **Finish**.

The configured user or group appears in the Users and Groups list, with the associated home site indicated under the Home Site column.

Enabling a Cloud-Connected Horizon 7 Pod for Multi-Cloud Assignments

The Capacity page displays the current state of those pods that are connected to your Horizon Cloud tenant under the **State** column. In this release, a cloud-connected Horizon 7 pod can be in either Monitored or Managed state. Only when the pod is in Managed state can you use that pod's resources in multi-cloud assignments (MCAs).

Monitored State

Monitored state is the default state of a pod after you first connect the pod to your Horizon Cloud environment. The following list describes the features available for a pod in Monitored state:

- The Dashboard page provides an overall health report on the components of a Monitored pod. This page also displays information about resource usage, current user sessions, and connection statistics for the pod. See [Health Visibility and Insights into Your Cloud-Connected Pods Provided by the Cloud Monitoring Service in Horizon Cloud](#).

- The Capacity page displays details about the pod such as its status, location, and state. See Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.

- The Administration Console provides a user-based search feature from which you can perform help-desk operations to support your users. See Chapter 3 Introducing the Cloud Monitoring Service's Unified Visibility, Health Monitoring, and Help Desk Features Provided in Horizon Cloud.
Managed State

If a Monitored pod meets certain requirements, you can change the pod's state to the Managed state. See Change a Pod to Managed State in a Cloud Pod Architecture Brokering Environment.

A Managed pod offers all the features available for a Monitored pod. In addition, you can create multi-cloud assignments that use resources from a Managed pod, and manage those multi-cloud assignments using the Horizon Cloud Administration Console. For more information, see Managing Multi-Cloud Assignments in Your Horizon Cloud Tenant Environment.

Change a Pod to Managed State in a Horizon Universal Broker Environment

If you chose Horizon Universal Broker as your brokering method and a Monitored pod meets certain requirements, you can change the pod to Managed state. Changing a pod to Managed state lets you use the pod in multi-cloud assignments.

If you are enabling Horizon Universal Broker for the first time, the Configure Universal Broker for Pod dialog box opens automatically after you finish configuring the Horizon Universal Broker settings.

Prerequisites

- Ensure that the pod meets the requirements for Horizon Universal Broker, as described in System Requirements for Multi-Cloud Assignments.
- Install the Horizon Universal Broker plugin on every Connection Server instance within the pod. See Install the Horizon Universal Broker Plugin on the Connection Server.
- Configure each Unified Access Gateway instance within the pod. See Configure Unified Access Gateway for Use with Horizon Universal Broker.

If you want to use two-factor authentication for Horizon Universal Broker, ensure that all Unified Access Gateway instances within the pod are configured with the same two-factor authentication settings. Also, ensure that these settings match the two-factor authentication settings on every Unified Access Gateway instance across all the other pods participating in multi-cloud assignments.

- Choose and configure Horizon Universal Broker as the brokering method. See Choose a Brokering Method and Configure Horizon Universal Broker.

Procedure

1. Select Settings > Capacity. If needed, click the Pods tab.
2. Open the Summary page for the pod by clicking the pod's name.
3. Click Change State.

The Configure Universal Broker for Pod dialog box appears.
Configure Universal Broker for Pod

Configuring Universal Broker will change the pod to a managed state so it can deliver assignments. The pod must have a unique FQDN, and must have the same 2-factor authentication settings as other pods that use Universal Broker.

- **Site**
 - \(\text{New} \quad \text{Existing}\)

- **Pod FQDN**

4. In the **Configure Universal Broker for Pod** dialog box, configure the pod's site association.
 - To associate the pod with a new site, select **New** and type the name of the new site.
 - To associate the pod with an existing site, select **Existing** and select a site from the drop-down menu.

5. Enter the pod's unique FQDN. The FQDN is typically defined as follows:
 - If the pod has multiple Unified Access Gateway instances, specify the address of the local load balancer as the pod's FQDN.
 - If the pod has only one Unified Access Gateway instance, specify the address of that Unified Access Gateway instance as the pod's FQDN.

6. Click **Validate & Save**.

The Capacity page now displays the pod's state as **Managed**.

Change a Pod to Managed State in a Cloud Pod Architecture Brokering Environment

If you chose Cloud Pod Architecture as your brokering method and a Monitored pod meets certain requirements, you can change the pod to Managed state. Changing a pod to Managed state lets you use the pod in multi-cloud assignments.

Prerequisites

- If one or more pods are already in Managed state, ensure that the new pod belongs to the same pod federation as the already managed pods.

For information about how to join a pod to a pod federation, see *Administering Cloud Pod Architecture in Horizon 7* on the [VMware Horizon 7 Documentation](https://www.vmware.com/support/horizon/7) landing page.
Procedure

1 Select **Settings > Capacity**.

2 Open the Summary page for the pod by clicking the pod's name.

3 Click **Change State**.

 The Change State dialog box appears.

 Note If the pod does not meet the prerequisites for changing to Managed state, an error message appears in front of the Change State dialog box. Click **Close** to close the error message, and perform the prerequisite actions to prepare the pod. Then retry the steps to change the pod's state.

4 In the Change State dialog box, click **Save**.

 The Capacity page now displays the pod's state as Managed.

Change a Pod to Monitored State

To change a pod from Managed state to Monitored state, you must first disconnect the pod and then redeploy it again to Horizon Cloud. After you redeploy the pod, it appears on the Capacity page in Monitored state.

Procedure

1 Remove the pod from any desktop assignments that include that pod. For detailed instructions, see [Edit a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment](#).

2 Disconnect the pod from Horizon Cloud. For detailed instructions, see [Removing Cloud-Connected Horizon 7 Pods from Use with Horizon Cloud](#).

 The pod is disconnected from Horizon Cloud, and the pod's name disappears from the Horizon Cloud Administration Console.

 Note You do not need to perform the steps described in [Clear the Cloud-Managed Properties from a Horizon 7 Pod that was Offline During the Process to Disconnect it from Horizon Cloud](#).

3 Redeploy the pod to Horizon Cloud. For more information, see [Deploying Pods Using the Capacity Page](#).

 The redeployed pod appears on the Capacity page in Monitored state.
Creating and Managing Multi-Cloud Assignments in Your Horizon Cloud Tenant Environment

A multi-cloud assignment consists of a collection of desktop pools from one or more cloud-connected pods. Users and groups entitled to a multi-cloud assignment can access and use virtual desktops from the desktop pools in that assignment.

Note In the current service release, the multi-cloud assignment features are available for use with cloud-connected Horizon 7 pods.

Note If a Horizon Client user logs in to a floating desktop from a multi-cloud assignment, they might encounter a duplicate connection session, even when the **Clean Up Redundant Sessions** policy enabled. If the user attempts to log out manually from the duplicate session, they receive the error message "You do not have a current session from which to log off." The error occurs because the duplicate session has already been closed through the assignment's policy but the Horizon Client display does not refresh to reflect the session's closed state. When the user closes the error message, the display refreshes and the duplicate session is no longer visible.

Prepare an Existing Desktop Pool for Multi-Cloud Assignments Brokered by Horizon Universal Broker

Use the following steps to prepare an existing desktop pool for use in multi-cloud assignments. Horizon Universal Broker only supports desktop pools configured with certain mandatory settings.

To use an existing desktop pool in multi-cloud assignments brokered by Horizon Universal Broker, you must configure the pool with the mandatory settings described in the following procedure. You must also remove all local entitlements from the pool and any user assignments from virtual machines included in the pool.

Procedure

1. Log in to the Horizon Console user interface for any Connection Server instance in the pod that contains the desktop pool.

2. In Horizon Console, select **Inventory > Desktops**. In the list, select the desktop pool that you want to use in multi-cloud assignments and click **Edit**.

 The Edit Pool wizard appears.

3. Click the **General** tab. Under **User Assignment**, select **Enable automatic assignment** (if this option is available for the pool type).
4 Click the **Desktop Pool Settings** tab and specify the following settings.

a For **State**, select **Enabled**.

b For **Connection Server restrictions**, click **Browse**, select **No Restrictions**, and then click **Submit**.

c Under **General**, select **Cloud Managed**. Horizon Universal Broker only recognizes desktop pools marked as **Cloud Managed**.

5 Click **OK** to save the configuration and close the Edit Pool wizard.

6 To remove all local entitlements from the desktop pool, select the pool on the Desktop Pools page and select **Entitlements > Remove Entitlements**.

7 For a dedicated pool, remove any user assignments from virtual machines included in the pool. See **Unassign a User from a Dedicated Machine in Horizon Console**.

What to do next

Use the **Worksheet for Creating a Multi-Cloud Assignment** to gather the necessary information for configuring an assignment. Then proceed to **Create a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment**.

Create a New Desktop Pool for Multi-Cloud Assignments

Use the following steps to create a desktop pool that can be used in multi-cloud assignments. To use a desktop pool in multi-cloud assignments brokered by Horizon Universal Broker, you must configure the pool with certain mandatory settings.
Procedure

1. Log in to the Horizon Console user interface for any Connection Server instance in the target pod.

2. In Horizon Console, select **Inventory > Desktops**.

3. Click **Add**.

 The Add Pool wizard appears.

4. Follow the prompts in the wizard to configure settings for the new pool. For detailed instructions, see [Setting Up Virtual Desktops in Horizon Console](#).

 If you chose Horizon Universal Broker as your brokering method, configure the following mandatory settings.

 a. **Type page**: Select **Automated Desktop Pool** or **Manual Desktop Pool**.

 b. **vCenter Server page**: Select **Instant Clone** or **Full Virtual Machines**

 c. **User Assignment page**: Select **Floating** or **Dedicated**. If you select **Dedicated**, select **Enable automatic assignment**.

 Do not configure any manual assignments of machines to users.

 d. **Desktop Pool Settings page**: Select **Cloud Managed**. Horizon Universal Broker only recognizes desktop pools marked as **Cloud Managed**.

 ![Add Pool - test](image)

Note You cannot use Horizon Console to delete or disable a desktop pool configured as **Cloud Managed**.

Horizon Cloud Administration Guide

VMware, Inc. 483
Remote Display Settings page: For the default display protocol, select VMware Blast or PCoIP.

Note Horizon Universal Broker does not support the RDP display protocol. If you do specify Microsoft RDP as the protocol, you must also set Allow users to change protocol to Yes. These settings are required to make the pool available for multi-cloud assignments.

Continue following the prompts in the wizard to configure additional settings for the pool. When you are finished, click Submit to create the pool.

If you configured a dedicated pool for use in a Horizon Universal Broker environment, remove any user assignments from virtual machines included in the pool. See Unassign a User from a Dedicated Machine in Horizon Console.

What to do next
Use the Worksheet for Creating a Multi-Cloud Assignment to gather the necessary information for configuring an assignment. Then proceed to Create a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment.

Remove a Desktop Pool from Multi-Cloud Assignments Brokered by Horizon Universal Broker

To remove a desktop pool from participation in multi-cloud assignments brokered by Horizon Universal Broker, you must perform the proper sequence of steps in the proper order. You must first modify each assignment containing the pool and then clear the Cloud Managed setting on the pool.

After you complete this sequence, the desktop pool becomes available for local entitlement configured in Horizon Console.

Important Always use the proper sequence of steps to remove a desktop pool from participation in multi-cloud assignments. Do not attempt to remove pools by manually clearing the Cloud Managed setting in Horizon Console. If you manually clear Cloud Assigned, the pool will still retain its association with multi-cloud assignments and Horizon Universal Broker can still provision desktops from the pool to users requesting the assignment.

Procedure

1. In the Horizon Cloud Administration Console, edit a multi-cloud assignment that contains the desktop pool.

 a. In the left pane of the Administration Console, click Assignments. Select On-Prem & VMware Cloud from the Assignments menu.

 b. On the Assignments page, select the check box next to the assignment that contains the desktop pool and click Edit.

 c. In the Edit Desktop Assignment wizard, navigate to the Desktop page and deselect the desktop pool that you want to remove.

 d. Click Finish.
2 Repeat step 1 to deselect the desktop pool from additional multi-cloud assignments.

To make the desktop pool available for local entitlements in Horizon Console, you must remove the pool from every multi-cloud assignment with which it is associated.

3 Log in to the Horizon Console user interface for any Connection Server instance in the pod that contains the desktop pool. Then modify the configuration settings for the pool.

 a In Horizon Console, select **Inventory > Desktops**.

 The Edit Pool wizard appears.

 b Select the desktop pool in the list and click **Edit**.

 c Click the **Desktop Pool Settings** tab. Under **General**, verify that the **Cloud Assigned** setting is cleared.

 The **Cloud Assigned** setting is automatically cleared when you remove the pool from all its associated multi-cloud assignments in the Horizon Cloud Administration Console.

 d Under **General**, clear the **Cloud Managed** setting.

 The pool is now available for local entitlements in Horizon Console.

 The following screenshot shows the configuration for a desktop pool that is available for local entitlements and no longer participates in multi-cloud assignments.

 e Click **OK** to close the Edit Pool wizard.

Worksheet for Creating a Multi-Cloud Assignment

When you create a multi-cloud assignment, you can configure certain options. Use this worksheet to prepare your configuration information before you create an assignment.
The configuration properties and policies defined in this worksheet are used to filter the desktop pools to include in the multi-cloud assignment. For example, if you specify **Windows 10 (64-bit)** for Operating System and enable the **Allow Users to Restart VMs** policy, only desktop pools based on Windows 10 (64-bit) that have the **Allow Users to Restart VMs** policy enabled are available for inclusion in the assignment.

Table 6-1. Worksheet: Configuration Options for Creating a Multi-Cloud Assignment

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Fill In Your Value Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop Type</td>
<td>Select one of the following:</td>
<td></td>
</tr>
</tbody>
</table>
| | ■ Floating: In a floating assignment, a user receives a different virtual machine with a different machine name with each login. With floating assignments, you can create desktops that shifts of users can use and that are sized based on the maximum number of concurrent users. For example, 300 users can use an assignment of 100 desktops if they work in shifts of 100 users at a time. With floating assignments, the user might see different host names for each desktop session.
■ Dedicated: In a dedicated assignment, each virtual desktop gets mapped to a specific user. Each mapped user returns to the same desktop at every login. When a particular dedicated desktop is mapped to a specific user, that desktop is said to be assigned to that user. | |
| | **Note** This setting becomes read-only when you are editing an existing assignment. | |
| Desktop Name | Enter a user-friendly name for the assignment. Entitled end users might see a form of this assignment name in the client they use to access their desktops. The name must contain only letters, hyphens, and numbers. Spaces are not allowed. The name cannot start with a non-alphabetic character. | |
| Description | Enter a description for the assignment. | |
| Operating System | Specify the operating system of the desktop pools that you want to include in the assignment. | |
| | **Note** This setting becomes read-only when you are editing an existing assignment. | |
| Default Display Protocol | Select the default display protocol of the desktop pools that you want to include in the assignment. The available choices are **PCoIP** and **VMware Blast**. | |
| Allow Users to Choose Protocol| This policy filters desktop pools based on whether they allow users to choose a display protocol other than the default. | |
| | **Note** This setting becomes read-only when you are editing an existing assignment. | |
| HTML Access | This policy filters desktop pools based on whether they allow users to connect to virtual desktops from a Web browser using the HMTL Access client. For more information about this feature, see the *VMware Horizon HTML Access Documentation*. | |
| Allow Users to Restart VMs | This policy filters desktop pools based on whether they allow users to restart virtual machines with a graceful operating system restart. This policy applies only to an automated pool or a manual pool that contains vCenter Server virtual machines. | |
| | **Note** This setting becomes read-only when you are editing an existing assignment. | |
Table 6-1. Worksheet: Configuration Options for Creating a Multi-Cloud Assignment (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Fill In Your Value Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Up Redundant Sessions</td>
<td>This policy specifies whether to close duplicate user sessions automatically. Duplicate sessions can occur when a pod that contains a session goes offline, the user logs in again and starts another session, and the problem pod comes back online with the original session. When duplicate sessions occur, Horizon Client prompts the user to select a session. This policy determines what happens to sessions that the user does not select. When this policy is disabled, users must manually close their own extra sessions, either by logging off in Horizon Client or by launching the sessions and logging them off.</td>
<td></td>
</tr>
<tr>
<td>Allow Multiple Sessions Per User (Cloud Pod Architecture only)</td>
<td>This policy filters desktop pools based on whether they allow a user to connect to the same desktop pool from different client devices using different desktop sessions. The user can only reconnect to an existing session from the same client device. With pools that have this policy disabled, users are always reconnected to their existing session no matter which client device is used. Note This setting becomes read-only when you are editing an existing assignment.</td>
<td></td>
</tr>
</tbody>
</table>

Create a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment

To make a collection of desktop pools available to end users, you create a multi-cloud assignment. The desktop pools in an assignment can span one or more cloud-connected pods that are in Managed state.

Prerequisites

- Change your cloud-connected pods to Managed state. See Enabling a Cloud-Connected Horizon 7 Pod for Multi-Cloud Assignments.
- Configure sites and home site associations for your brokering environment:
 - For Horizon Universal Broker, see Configuring Sites for Horizon Universal Broker and Configuring Home Sites for Horizon Universal Broker.
 - For Cloud Pod Architecture, see Create and Configure a Site in Horizon Console and Assign a Home Site to a User or Group in Horizon Console.
- Using Horizon Console, configure desktop pools on the cloud-connected pods that you want to include in the assignment.

 See Create a New Desktop Pool for Multi-Cloud Assignments and Prepare an Existing Desktop Pool for Multi-Cloud Assignments Brokered by Horizon Universal Broker. For Horizon Universal Broker, ensure that the desktop pools meet the configuration requirements for supporting the brokering method, as described in those topics.
- Using the Worksheet for Creating a Multi-Cloud Assignment, gather the configuration information that you must provide to create the multi-cloud assignment.
Procedure

1. In the left pane of the Horizon Cloud Administration Console, click Assignments. If you have configured the Administration Console for hybrid cloud capacity, select On-Prem & VMware Cloud from the Assignments menu.

2. On the Assignments page, click New.

 The New Desktop Assignment wizard appears.

3. On the Definition page, configure the required settings.

 a. Specify the Desktop Type, Desktop Name, and other settings, using the configuration information that you gathered in the Worksheet for Creating a Multi-Cloud Assignment.

 b. For Select Pod(s), select the check box next to each pod that will participate in the assignment. You can select multiple pods to create an assignment of desktop pools from different pods.

 c. Specify settings to define how the broker (Horizon Universal Broker or Cloud Pod Architecture) searches for desktops from the assignment.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>To specify where the broker can search for desktops in response to a user's desktop request, select one of the following options:</td>
</tr>
<tr>
<td></td>
<td>- Any Site allows the broker to search for available desktops located in any configured geographic site.</td>
</tr>
<tr>
<td></td>
<td>- Restrict to One Site instructs the broker to search only for available desktops located in the user's default site, as specified by the Site Connection Affinity setting.</td>
</tr>
<tr>
<td>Site Connection Affinity</td>
<td>Site Connection Affinity specifies a certain geographic site as the default site for the user. When the user requests a desktop, the broker begins searching in the default site for available desktops. If no available desktops are found in the default site and no site restrictions are in effect, the broker continues searching for desktops beyond the default site. Select one of the following options:</td>
</tr>
<tr>
<td></td>
<td>- Nearest Site specifies the nearest geographic site as the default site for the user.</td>
</tr>
<tr>
<td></td>
<td>- Home Site specifies the user's home site (or the home site of the group that includes the user) as the default site for that user.</td>
</tr>
<tr>
<td></td>
<td>- To allow the user to access desktops beyond their configured home site, do not enable Home Site Restriction.</td>
</tr>
<tr>
<td></td>
<td>- To restrict the user to their configured home site when accessing desktops, enable Home Site Restriction.</td>
</tr>
</tbody>
</table>

 Important If you enable Home Site Restriction, the user (or the group that includes the user) must have a configured home site before they can access any desktops.

 d. Click Next.
On the Desktop page, specify the required settings.

a Specify the properties and policies (such as Operating System and Default Display Protocol) used to filter the desktop pools to include in the assignment. Use the information that you gathered in the Worksheet for Creating a Multi-Cloud Assignment.

b For Select Desktop Pools, select the check box next to each desktop pool that you want to add to the assignment. You can add multiple pools to a single assignment. If you cannot find the desktop pool that you want in the list, verify the following:

- The properties and policies of the desktop pool match the properties and policies that you specified for this multi-cloud assignment. For example, if you specified Windows 10 (64-bit) for Operating System and enabled the Allow Users to Restart VMs policy, the desktop pool must be based on Windows 10 (64-bit) and have the Allow Users to Restart VMs policy enabled.
- For Horizon Universal Broker, ensure that the desktop pool meets the configuration requirements for supporting Horizon Universal Broker, as described in Prepare an Existing Desktop Pool for Multi-Cloud Assignments Brokered by Horizon Universal Broker.

c Click Next.

On the Users page, specify the users and user groups that will receive the assignment.

a For Domain, specify the Active Directory domain in which the users and groups reside.

Note Only cloud-configured domains are available for selection.

b For Find Users, type the first few characters of the user or group name, and select the users or group of users from the list that appears.

Your selection is added to the Selected Users / User Groups list.

Note To remove a user or group from the list, select the check box to the left of the user or group, and click Remove.
c Optionally, use the Assign Home Site menu to configure a home site override for the selected user or group accessing this assignment. In this case, the broker (Cloud Pod Architecture or Horizon Universal Broker) begins searching for available desktops in the override site instead of the user or group's configured home site.

Note The Assign Home Site menu is available only if you selected Home Site for Site Connection Affinity in step 3c of this procedure.

To specify a home site override, select the user or group, click Assign Home Site, and select an option from the menu.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[configured site 1], [configured site 2] ...</td>
<td>The Assign Home Site menu displays all the available sites for pods participating in this assignment. Select the override site that you want to make the default for the user or group, instead of the user or group's configured home site.</td>
</tr>
<tr>
<td>Default First Site (Cloud Pod Architecture only)</td>
<td>When you initialize Cloud Pod Architecture, it places all pods into a default site called Default First Site. Later, you can move pods from the Default First Site to a configured site. Select Default First Site to specify it as the override site for the user or group.</td>
</tr>
<tr>
<td>Clear Home Site</td>
<td>Select this option to remove the override site and use the user or group's configured home site instead.</td>
</tr>
</tbody>
</table>

For example, suppose that a user has a home site in San Francisco but you specify New York as the override site. When the user accesses the assignment, the broker first searches for available desktops in New York instead of in San Francisco.

d Select the check box next to each user or group that you want to entitle to the assignment.

e Click Next.

6 Review the settings on the Summary page, and then click Finish.

The newly created assignment appears in the list on the Assignments page.

(Horizon Universal Broker only) Each desktop pool included in the assignment is now marked as Cloud Assigned in the Edit Pool wizard in Horizon Console. You cannot use Horizon Console to delete or disable a desktop pool marked as Cloud Assigned.
Managing Multi-Cloud Assignments in Your Horizon Cloud Tenant Environment

You can perform several actions on the assignments listed on the Assignments page.

Note Horizon Cloud Administration Console does not restrict you from using Horizon Administrator or Horizon Console to edit desktop pools associated with one of these assignments. Horizon Cloud Administration Console also does not sync its desktop pool data with data from Horizon Administrator or Horizon Console. Therefore, Horizon Cloud Administration Console might display inconsistent information about assignments at times.

For example, if you use Horizon Administrator or Horizon Console to delete a desktop pool associated with one of these assignments, Horizon Cloud Administration Console still displays the deleted desktop pool as part of the assignment. To resolve this consistency, manually delete the desktop pool from the assignment using the Edit Desktop Assignment wizard.

Actions You Can Perform on the Assignments Page

At a page level, you can perform the following actions on the listed assignments.

New

Clicking this button starts the New Desktop Assignment wizard, which guides you through the steps to create a desktop assignment. For instructions on how to use the wizard, see Create a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment. For detailed
descriptions of the options that you can configure for a new desktop assignment, see Worksheet for Creating a Multi-Cloud Assignment.

Edit

You can select the check box next to an existing desktop assignment and click this button to start the Edit Desktop Assignment wizard. This wizard lets you change certain configuration options for the desktop assignment. The wizard is similar to the New Desktop Assignment wizard, with read-only settings for those options that cannot be changed for an existing desktop assignment. For detailed descriptions of the options, see Worksheet for Creating a Multi-Cloud Assignment.

Delete

You can select the check box next to an existing desktop assignment and click this button to delete the assignment. A message appears asking you to confirm the action. To delete the desktop assignment permanently, click **Delete** in the confirmation message. For more information, see Delete a Multi-Cloud Assignment from Your Horizon Cloud Environment.

The desktop pools included in an assignment remain intact after the assignment is deleted.

Information You Can View Within a Desktop Assignment’s Summary Page

From the Assignments page, you can click the name of an assignment to view its detailed Summary page.

Capacity and Usage

The Summary page shows information about the current capacity and usage of the desktop assignment.
<table>
<thead>
<tr>
<th>Usage Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktops</td>
<td>Total capacity of the desktop assignment, expressed as an integer value. This value is calculated as the sum of the maximum number of virtual machines provided by all desktop pools associated with the desktop assignment. For example, suppose that the desktop assignment includes four desktop pools, and each of these desktop pools provides a maximum of one virtual machine (VM). The Desktops capacity is calculated as follows: (Maximum VM count for first desktop pool) + (maximum VM count for second desktop pool) + (maximum VM count for third desktop pool) + (maximum VM count for fourth desktop pool) = 1+1+1+1 = 4.</td>
</tr>
<tr>
<td>Occupancy</td>
<td>The used or assigned portion of the total Desktops capacity, expressed as a percentage value. The Occupancy is based on users logged in through both global entitlements (such as the Horizon Cloud desktop assignment) and local entitlements. - The Occupancy for a floating desktop assignment is calculated by first summing up the number of logged-in user sessions (including sessions in connected, disconnected, and idle states) across all the floating desktop pools in the assignment. The logins can originate from both global entitlements (such as the Horizon Cloud desktop assignment) and local entitlements. The sum of user sessions is then divided by the Desktops capacity to yield a fractional value. Finally, the fractional value is multiplied by 100 to obtain the Occupancy percentage. - The Occupancy for a dedicated desktop assignment is calculated by first totaling the number of assigned virtual machines from all the dedicated desktop pools in the assignment. The total is divided by the Desktops capacity to yield a fractional value and then multiplied by 100 to obtain the Occupancy percentage. For example, suppose that a floating desktop assignment includes four desktop pools, for a total Desktops capacity of 4. There are two user sessions currently in effect. The Occupancy equals (2/4)*100 = 50%.</td>
</tr>
<tr>
<td>Active Users</td>
<td>The total number of users who are currently logged in and connected to a session on a desktop, expressed as an integer value. Disconnected and idle sessions are excluded from this count. The Active Users count is based on users logged in and connected through both global entitlements (such as the Horizon Cloud desktop assignment) and local entitlements. The Active Users count is calculated by adding up the total number of connected sessions for each desktop in the assignment.</td>
</tr>
</tbody>
</table>
Usage Type | Description
---|---
| For example, suppose that a desktop assignment includes four desktop pools. There is one connected user session for one of the desktop pools. There are no connected user sessions for any of the remaining three desktop pools. In this case, the Active Users count is 1.

Definition, Desktops, and Users Settings
The Summary page displays a read-only list of the assignment's current settings, organized under the categories Definition, Desktops, and Users. For instructions on how to modify the settings, see **Edit a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment**. For detailed information about a specific setting, see **Worksheet for Creating a Multi-Cloud Assignment**.

Edit a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment
You can use the **Edit** button on the Assignments page to change the configuration settings for an existing multi-cloud assignment.

Procedure

1. In the left pane of the Administration Console, click **Assignments**. If you have cloud-connected Horizon 7 pods, select **On-Prem & VMware Cloud** from the Assignments menu.
2. On the Assignments page, select the check box next to an existing assignment and click **Edit**. The Edit Desktop Assignment wizard appears. This wizard is similar to the New Desktop Assignment wizard, with read-only settings for those options that cannot be changed for an existing desktop assignment.
3. Follow the prompts in the wizard to change the configuration settings for the assignment as needed. For instructions on how to use the wizard, see **Create a Multi-Cloud Assignment in Your Horizon Cloud Tenant Environment**.

Note Some configuration settings cannot be changed for an existing assignment. For example, you cannot change the desktop type from Floating to Dedicated. Instead, you must create a new assignment and specify the desktop type at the time of creation.

Delete a Multi-Cloud Assignment from Your Horizon Cloud Environment
You can permanently delete an assignment from the Assignments page.

When you delete an assignment, users who received the assignment can no longer access it. However, the desktop pools included in the assignment remain intact.
Procedure

1. In the left pane of the Administration Console, click Assignments. If you have configured the Administration Console for hybrid cloud capacity, select On-Prem & VMware Cloud from the Assignments menu.

2. On the Assignments page, select the check box next to an existing desktop assignment and click Delete.

3. At the message asking you to confirm the action, click Delete.

Note The deletion of the assignment does not happen immediately and can take some time to finish completely. On occasion, the deletion might fail, leaving the assignment in “ERROR DELETE” state. If such a failure occurs, complete the deletion process by clearing the cloud-managed property from the global entitlement that corresponds to the assignment. See Clear the Cloud-Managed Properties from a Horizon 7 Pod that was Offline During the Process to Disconnect it from Horizon Cloud.
About Menu Selections in the Administration Console

The menu icons provide a quick way to navigate to monitor activity and perform various functions in your Horizon Cloud environment. The icons are located along the left side of the Administration Console.

Table 7-1. Administrator Functions

<table>
<thead>
<tr>
<th>Icon</th>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Default landing page</td>
<td>If you set the Getting Started page as your default landing page, clicking this icon displays the Getting Started page. See About the Horizon Cloud Getting Started Wizard. Otherwise, clicking this icon displays the Health Visibility and Insights into Your Cloud-Connected Pods Provided by the Cloud Monitoring Service in Horizon Cloud.</td>
</tr>
</tbody>
</table>
| ![Monitor](image) | Monitor | Provides access to:
- Dashboard that depicts information about your overall environment: issue status, capacity and utilization levels, end-user activity, and more.
- Activity reports and audit logs.
- Various detailed reports related to end users' desktop and application sessions.
- Notifications. |
| ![Assign](image) | Assign | Opens the Assignments screen from which you can work with assignments that entitle end-user access to those assignable items that are in your environment's inventory. |
Table 7-1. Administrator Functions (continued)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Inventory Icon](image) | Inventory | For pods in Microsoft Azure environments, provides access to work with:
 - Master image virtual machines and other virtual machines (if any) that the system has imported from your in-cloud pod.
 - Published (sealed) images
 - RDSH farms
 - Remote applications from the RDSH farms |
| ![Settings Icon](image) | Settings | Provides access to screens from which you can work with system-wide settings and configurations for various system areas such as:
 - Active Directory domains
 - Roles and permissions
 - Capacity-related aspects of your environment
 - Utility VMs
 - Identity management using Workspace ONE Access
 - Getting Started page |

This chapter includes the following topics:

- About the Monitor Icon
- About the Assignments Icon
- About the Inventory Icon
- About the Settings Icon

About the Monitor Icon

Use the **Monitor** icon to navigate to various dashboards, displays, and reports. You can explore details about usage of your environment, the administrator and user activity in the environment, see system notifications, and view various reports.

Click the **Monitor** icon to navigate to these pages.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dashboard</td>
<td>Displays information about your overall environment: pod health status, capacity and utilization levels, end-user activity, and more.</td>
</tr>
<tr>
<td>Activity</td>
<td>Provides activity details for administrators and end users, and audit logs.</td>
</tr>
</tbody>
</table>
| Reports | Provides access to various reports related to end users’ desktop and application sessions.
Note If you have disabled monitoring user session information for utilization, trending, and historical analysis, the associated data reports are disabled and not visible on the Reports page. When that monitoring feature is disabled, the system collects such user session information for a limited period of time and hashes the user name to enable real-time administration while disabling historical and aggregated viewing of that user information. As a result, the reports that usually display historical and aggregated viewing of that data, such as the Session History report, are not available. |
| Notifications | Lists notifications, which provide information about the system, such as important events. |
Activity Page

The Activity page shows data regarding current and past events in the system. The Activity page is available from the Monitor icon. You can perform these tasks.

- Use the **Show** filter to display events for only a certain time period.
- Use the **Pod** filter to display events for a specific pod.
- View the total number of events.
- Use the **Filter** box to filter events.
- Refresh the list.
- Cancel tasks that can be canceled.
- Download the displayed information as a report file with the **Export** feature.

Note If you have many activity records, plan to download the information when you can wait up to 10 minutes before performing other tasks in the Administration Console. After you make your selections for the downloaded report, the system starts preparing the report. A message appears stating that the report is being compiled and it can take some time. During this time, you cannot close the message to perform other tasks in the Administration Console. You must wait until the preparation is done and the next message appears with the message Report Generated Successfully and a **Download** button. Depending on the number of records, the preparation time can take several minutes. A report with 50,000 records takes approximately 10 minutes.

For the report file for the audit logs, the system generates an XLSX file. For the report file for the administrator or user events, the system generates a CSV file, and then a ZIP file containing that CSV file. The data in the generated CSV file is not sorted by date. You can correct that in one of the following ways:

- Open the CSV file in Excel and set the date format for the cells that contain dates to *mm/dd/yy hh:mm AM/PM*.
- In Excel, create a new blank workbook and use Excel's Data Import wizard to import the downloaded CSV file.

The Activity page contains tabs for administrator events, user events, and audit logs for events initiated on your pods.

Administrator Events

The **Admins** tab displays information about administrator events. Expand an event to view details and subtasks for that event.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Details regarding the event.</td>
</tr>
<tr>
<td>% Completion</td>
<td>Current percentage of event completed.</td>
</tr>
</tbody>
</table>
Column Description

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Successful indicates that an event was performed in its entirety. Failed indicates that an event was either partially performed or not performed at all.</td>
</tr>
<tr>
<td>Time</td>
<td>Time that the event was logged.</td>
</tr>
</tbody>
</table>

From the **Admins** tab, you can cancel assignment-related tasks before they complete by selecting the task in the list and clicking **Cancel Tasks**.

- Before attempting to select a task for cancellation, refresh the view to update the status for the tasks displayed.
- If a task is currently in a state where the system allows you to cancel it, you can select the check box corresponding to that cancellable task. If you select all the listed tasks by selecting the topmost check box, only those tasks that are currently cancellable are selected.

The following table shows the tasks that you can cancel.

<table>
<thead>
<tr>
<th>Task</th>
<th>Cancel When Task is in Queued State</th>
<th>Cancel When Task is in Running State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Expansion</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>Note When the system has automatically created an expansion task for an RDSH farm, the farm must be offline before you can cancel that task.</td>
<td></td>
</tr>
<tr>
<td>Assignment Expansion</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>Note When the system has automatically created an expansion task for a VDI desktop assignment, the assignment must be offline before you can cancel that task.</td>
<td></td>
</tr>
<tr>
<td>Convert VM to Image</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>Note If you cancel this task, and want to retry it, first confirm that the VM is in a state where it can be converted. If you are not sure, power off and then power on the VM.</td>
<td>Note If you cancel this task, and want to retry it, first confirm that the VM is in a state where it can be converted. If you are not sure, power off and then power on the VM.</td>
</tr>
</tbody>
</table>

User Events

The **Users** tab displays descriptions and times logged for end-user events.

Audit Logs

The Audit Logs tab displays the time, status, description, and user information logged for events that have occurred from administrator-initiated actions on your pods. For more information, see Working with Audit Logs.
Reports Page

Use the Reports page to access various reports related to end users' desktop and application sessions.

Important The Desktop Health, Utilization, Azure Concurrency, Sessions, and VDI Applications Usage reports do not reflect user-related data until an hour has passed from the time you deployed your Horizon Cloud pod into Microsoft Azure or from the time you enabled monitoring user session information.

In addition to that one hour elapsed time, four of the reports are updated at specific UTC (Coordinated Universal Time) times: Utilization, Azure Concurrency, Sessions, and VDI Applications Usage. As a result, those reports might not be populated with information collected during the time since the last UTC update time for that report. For details, see the table below.

Select **Monitor > Reports** to open the Reports page, where you can view detailed information for the following categories. You can also manually refresh this page, filter your search, and export data to a Microsoft Excel worksheet.

Note If you have disabled monitoring user session information for utilization, trending, and historical analysis, the reports associated with that type of data are disabled and not visible on the Reports page. When the Cloud Monitoring Service is disabled, the system collects such user session information for a limited period of time and hashes the user name to enable real time administration while disabling historical and aggregated viewing of that user information. As a result, the reports that would display historical and aggregated viewing of that data, such as the Sessions report, are not available.

For information about toggling the Cloud Monitoring Service options, see Enabling or Disabling the Cloud Monitoring Service (CMS) for Your Horizon Cloud Tenant Environment.

The vRealize Operations Desktop Agent option is installed by default. If you do not install this option, activity-related data from user sessions in the desktop instance or farm server instances based on this image is not reported to Horizon Cloud. As a result, data from end-user activity and other types of desktop activity will not be displayed in reports in the Administration Console.

Caution If you have cloud-connected Horizon 7 pods that are sending desktop data to vRealize Operations Manager, enabling CMS causes data to be sent to the Cloud Monitoring Service instead. To continue using vRealize Operations Manager to collect that desktop session data, disable CMS.
<table>
<thead>
<tr>
<th>Report Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Mapping</td>
<td>View details and sort by various categories, such as User name, Domain, Desktop Name, Desktop Model, Farm, and Mapping Type (User or Group).</td>
</tr>
<tr>
<td></td>
<td>Note This report is populated only for users that have at least one direct assignment to a desktop. In the Administration Console, you can select individual users or user groups when making a desktop assignment. If a user has at least one assignment done as an individual user and zero or more assignments done as being part of the assigned group, this report reports all of that user's desktop assignments. However, if all the user's desktop assignments are done using groups, that user's assignments are not reported in this report. If the user is mapped to a desktop as an individual user, the Group Name column is blank. If the user is mapped to a desktop from being a member of a group that is entitled to the desktop assignment, the Group Name column displays the entitled group's name.</td>
</tr>
<tr>
<td>Desktop Mapping</td>
<td>View details and sort by various categories, such as Desktop Name, Model, Assignment Name, Type, Farm, Active User, Mapped Users, and Mapped User Groups.</td>
</tr>
<tr>
<td></td>
<td>Note In this report, the Mapped Users column is populated only for dedicated VDI desktop assignments, because for such assignments, each user gets mapped to a specific VDI desktop and returns to that same desktop at each login. That mapped user is the user assigned to that desktop. However, for floating VDI desktop assignments and session desktop assignments that are served by farms, users do not get mapped to specific desktop VMs. As a result, there is not data in the Mapped Users column for those desktop assignment types.</td>
</tr>
<tr>
<td>Desktop Health</td>
<td>View list of desktops, which you can filter by assignment or error status. Click a desktop to view its real-time desktop health report.</td>
</tr>
<tr>
<td></td>
<td>- For RDS desktops, the report includes CPU use %, memory use %, disk IOPS, and active/disconnected sessions.</td>
</tr>
<tr>
<td></td>
<td>- For VDI desktops, the report includes CPU use %, memory use %, disk IOPS, duration, bandwidth, and latency.</td>
</tr>
<tr>
<td></td>
<td>- For all desktops, a Desktop Health alert displays when one or more of the following parameters is at or above a set threshold value: CPU use %, memory use %, and disk latency.</td>
</tr>
<tr>
<td></td>
<td>- Threshold values are 90% for CPU, 80% for memory use, and 100 ms for disk latency.</td>
</tr>
<tr>
<td></td>
<td>- These parameters are checked every minute, and the alert is triggered when the measurement is at or above the threshold value for 10 consecutive minutes.</td>
</tr>
<tr>
<td></td>
<td>Note This report's data is updated every minute by the data from the backend reporting system.</td>
</tr>
<tr>
<td>Report Type</td>
<td>Details</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Utilization | View consumption trends for deployed capacity over a pre-defined time window in both graphical and tabular formats. If you have multiple types of pods in your deployment, there is a separate tab for each type.
 - For Horizon 7 pods, information provided includes utilization of CPU, Memory, and Disk as well as session concurrency data at the deployment level and at the pod level.
 - For pods in Microsoft Azure, information provided includes utilization of deployed capacity as well as session concurrency. Ancillary details covering client use, protocol use, session duration distribution, access type, and service type are also provided for the sessions. For pods in Microsoft Azure, data can be filtered for the pool or farm.
 Note
 - The Unique User Summary feature of this report is not provided when the Session Data setting is disabled.
 - This report is not provided when the Cloud Monitoring Service setting is disabled.
 Both of these settings are located in Settings > General Settings > Monitoring. See Edit General Settings for more information.
 The backend reporting system sends the data for this report at a specific UTC time:
 - For the selected periods Last 24 hours or Last 1 week, the data is updated hourly. The update starts at 5 minutes past the hour UTC and takes about 15 minutes to finish.
 - For the other time periods, the data is updated daily. The update starts at 2am UTC and takes about 15 minutes to finish. |
| Azure Concurrency | View per-assignment data for capacity, number of concurrent users, peak concurrency, and applications in use. You can filter this information by time period.
 The reporting system sends the data for this report daily at a specific UTC time. The update starts at 2am UTC and takes about 15 minutes to finish. Due to that update timing, data for sessions that take place after the 2am UTC time point are not reflected in this report until the next day.
 Note
 - This report is available for pods in Microsoft Azure only.
 - This report is not provided when the Cloud Monitoring Service setting is disabled in Settings > General Settings > Monitoring. |
| URL Configurations | View information for currently configured URL redirects. For more information, see Create a URL Redirection Customization and Assign it to Users. |
| Agent Versions | View current versions of agents for each VM. For a pod in Microsoft Azure, this tab also displays the pod's manifest version to help you determine if the agent versions needs to be updated or not.
 Select a pod in the Pod drop-down at the top left of the page to show information for that pod. You can also sort data on all columns, including Assignment Name. |
Sessions

View session information for user sessions including User Name, Pod, Pod Type, Session Type (Desktop or Application), Last Login Time, Client IP, Client Type, Desktop Name, Pool/Farm Name, Protocol Type, Total Session Duration (including idle and disconnected time), and Session Idle Duration, across all your pools over a pre-defined time period.

The reporting system sends the data for this report daily at a specific UTC time. The update starts at 2:10am UTC and takes about 15 minutes to finish. Due to that update timing, data for sessions that take place after the 2am UTC time point are not reflected in this report until the next day.

Note

- The **User Name** column does not appear in this report when the **Session Data** setting is disabled.
- This report is not provided when the **Cloud Monitoring Service** setting is disabled. Both of these settings are located in **Settings > General Settings > Monitoring**. See [Edit General Settings](#) for more information.

VDI Applications Usage

View a list of applications that end users have used in VDI desktops and each application's total usage duration. Can be filtered by assignment and by time period. This data can help you see which are the most used applications in a particular VDI desktop assignment.

The reporting system sends the data for this report at a specific UTC time:

- For the selected period **Last 24 hours**, the data is updated hourly. The update starts at 20 minutes past the hour UTC and takes about 15 minutes to finish.
- For the other time periods, the data is updated daily. The update starts at 2:30am UTC and takes about 15 minutes to finish.

Note This report is not provided when the **Cloud Monitoring Service** setting is disabled in **Settings > General Settings > Monitoring**.

User Usage Report

View a record of desktop and applications usage by the user over the pod for a predefined time period. This report helps you identify the number of sessions that the user has launched and their total active usage time.

Note This report is not provided when either the **Cloud Monitoring Service** setting or the **Session Data** setting is disabled in **Settings > General Settings > Monitoring**. See [Edit General Settings](#) for more information.

Notifications Page

Horizon Cloud uses notifications to inform you of certain types of system activity, such as events and service registrations.

You can view recent notifications in the Administration Console by clicking the bell icon located in the upper right corner of any page. Open the Notifications page to view all notifications, which includes both active and dismissed notifications, by clicking **Monitor > Notifications**.

You can also show the notifications for different periods of time up to 30 days, refresh the page, and filter your search.
Table 7-2. Notification Types

<table>
<thead>
<tr>
<th>Notification Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Registration</td>
<td>Service registration notifications are issued during the configuration of your environment. The system issues this type of notification when one of its packaged services is registered successfully.</td>
</tr>
<tr>
<td>Pod related</td>
<td>Pod-related notifications are issued when the system detects a change in status of the deployed pod in Microsoft Azure. These notifications include those for when a pod has lost connectivity with the Horizon Cloud cloud plane and when subnets are full. When subnets are full, then system operations involving cloning VMs raise notifications.</td>
</tr>
<tr>
<td>Pod API related</td>
<td>Notifications related to the cloud plane API requests to the pod resources in Microsoft Azure, such as API slow downs or time outs.</td>
</tr>
<tr>
<td>Primary bind account</td>
<td>Account-lockout notifications are issued when the system detects the primary domain-bind account is in a failed or inactive state. For more information, see Notifications When the Primary Domain-Bind Account is Locked Out.</td>
</tr>
</tbody>
</table>

Working with Audit Logs

The Audit Logs tab displays the time, status, description, and user information logged for events that have occurred from administrator-initiated actions on your pods. The amount and types of event data reported on the Audit Logs tab might vary by pod type.

Viewing Audit Logs

- To display the audit logs, do one of the following:
 - Select Monitor > Activity. On the Activity page, click the Audit Logs tab.
 - Select Settings > Capacity. On the Capacity page, click the name of the pod for which you want to view logs, and then click the Audit Logs tab.

By default, the Audit Logs tab displays the logs for every pod-related event that transpired in the past 24 hours, in descending order of time with the most recent events listed first.

- To sort the logs by ascending order of time, click the Time column header. To toggle back to descending order, click the header again.
To refresh the display of audit logs with the most recently reported events, click the button.

Filtering Audit Logs

To customize the display of audit logs, you can adjust the settings for the Time Period filter. You can also apply additional filters to refine further the selection of logs that are displayed. Each filter has drop-down menus that let you define the operations and values used to narrow the selection of logs.

- To customize the Time Period filter, select an operation and time value from the drop-down menus, and click **Apply**.
- To specify an additional filter, click the plus sign (+) button. Using the drop-down menus, select the filter type, operation, and value for the filter. Then click **Apply**.

The options available from the operation and value menus vary depending on the filter type. For example, if you select **Severity** for the filter type, **Greater Than or Equal To** for the operation, and **Success** for the value, the filter displays all the logs with the status "Success" or "Info."

You can also apply more than one filter of the same type. For example, you can apply a **Severity** filter that shows logs with status **Equal To** the value **Success**. Then you can apply an additional **Severity** filter that shows logs with status **Equal To** the value **Failure**.

Downloading Audit Logs

Note The download feature is only available to users who have Horizon Cloud Super Administrator privileges.

To download the current, filtered list of audit logs, click the button.

The downloaded logs reside in a CSV file and have the following properties:

- The download file includes all the logs that fulfill the current filtering criteria, regardless of whether they are visible on the Audit Logs tab.

 For example, the current filter might return a total of 1000 logs spanning multiple pages of the Audit Logs tab. However, each page can only display 10 logs. The download file contains all 1000 logs from all the Audit Logs pages, not just the currently viewed page.

- The download file always lists logs in descending order of time, regardless of the sort order specified on the Audit Logs tab. The sort order only applies to the display on the Audit Logs tab.

- By default, the download file uses the name format **AuditReport-<YYYY-MM-DDTHH_MIN_SEC.millisZ>** (for example, "AuditEventReport-2019-08-14T11_16_32.096Z").
About the Assignments Icon

The Horizon Cloud Administration Console navigation bar’s Assignments icon provides access to use assignment-related workflows in your Horizon Cloud environment.

When you click Assignments in the navigation bar, the Administration Console displays differently depending on the pod types you have in your environment.

When You Have Mixed Pod Types

When you have both Horizon 7 pods and pods in Microsoft Azure, clicking Assignments displays selection choices:

- **Microsoft Azure** - Click this choice to display the Assignments page that is specific for assignment-related workflows for pods in Microsoft Azure. See the When All of Your Pods are In Microsoft Azure section.

- **On-Prem & VMware Cloud** - Click this choice to display the Assignments page that is specific for assignment-related workflows for Horizon 7 pods. See the When All of Your Pods are Horizon 7 Pods section.

When All of Your Pods are Horizon 7 Pods

When all of your pods are Horizon 7 pods, clicking Assignments displays the Assignments page, where you can initiate actions to create new desktop assignments and work with your existing assignments. For each listed assignment, you can click its name see more information about that assignment, such as which users it is assigned to and other details. For more information about desktop assignments for cloud-connected Horizon 7 pods, see Chapter 6 Setting Up and Managing End-User Assignments in Your Horizon Cloud Tenant Environment and its subtopics.

When All of Your Pods are In Microsoft Azure

When you have zero Horizon 7 pods, clicking Assignments displays the Assignments page, where you can initiate actions to create new assignments and work with your existing assignments. For each listed assignment, you can click its name see more information about that assignment, such as which users it is assigned to and other details.

For detailed information about managing assignments for your pod in Microsoft Azure, see Managing Assignments Provisioned By Horizon Cloud Pods in Microsoft Azure.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Create assignments for items in your inventory, such as virtual desktops and applications.</td>
</tr>
<tr>
<td>Edit</td>
<td>Use this button to modify characteristics of the selected assignment.</td>
</tr>
<tr>
<td>Duplicate</td>
<td>Use this button to duplicate the selected desktop assignment and create a new one with the same specifications but a new name.</td>
</tr>
<tr>
<td>Take Offline</td>
<td>Use this button to take the selected assignment offline, typically for maintenance purposes.</td>
</tr>
<tr>
<td>Update Agent</td>
<td>Use this button to update the agent-related software in a dedicated VDI desktop assignment.</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>URL Redirection</td>
<td>Use this button to configure a set of URL handling rules and assign to users.</td>
</tr>
<tr>
<td>Delete</td>
<td>Use this button to delete the selected assignment.</td>
</tr>
<tr>
<td>Recover</td>
<td>Even though you see the Recover action in the page, this action is not used for assignments in a Microsoft Azure environment.</td>
</tr>
<tr>
<td>Bring Online</td>
<td>Use this button to bring an offline assignment back online.</td>
</tr>
</tbody>
</table>

When you click on a VDI desktop assignment, in addition to seeing more information about the assignment, you can also navigate to the VDI desktop assignment's **Desktops** tab to see the list of virtual desktops that are in that VDI desktop assignment and optionally perform actions on those desktops.

About the Inventory Icon

Use the **Inventory** icon to navigate to pages where you can work with assets that are in your environment's inventory, such as RDSH farms, assignable images and applications, and virtual machines (VMs) that have been imported into your environment.

Click the **Inventory** icon to navigate to these pages.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>Opens the Applications page, where you can add applications into your inventory, edit parameters for applications in the inventory, rename applications, and remove applications from the inventory. See Applications in Your Horizon Cloud Inventory.</td>
</tr>
<tr>
<td>Farms</td>
<td>Opens the Farms page. See Farms in Horizon Cloud.</td>
</tr>
<tr>
<td></td>
<td>At a page level, you can:</td>
</tr>
<tr>
<td></td>
<td>■ View the RDSH farms available in your environment.</td>
</tr>
<tr>
<td></td>
<td>■ Create an RDSH farm.</td>
</tr>
<tr>
<td></td>
<td>■ Edit an existing farm</td>
</tr>
<tr>
<td></td>
<td>■ Move a farm online or offline</td>
</tr>
<tr>
<td></td>
<td>■ Delete a farm</td>
</tr>
<tr>
<td></td>
<td>When you click the name of a specific farm, you open its details page. From a farm's details page, you can perform actions on that specific farm:</td>
</tr>
<tr>
<td></td>
<td>■ Edit various settings, such as the farm's name and its size.</td>
</tr>
<tr>
<td></td>
<td>■ Power off and delete the servers in the farm.</td>
</tr>
<tr>
<td></td>
<td>■ Work with sessions currently connected to the farm's servers.</td>
</tr>
<tr>
<td></td>
<td>■ Examine activity that has taken place in the farm.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Images</td>
<td>Opens the Images page. See Creating Desktop Images for a Horizon Cloud Pod in Microsoft Azure and Managing Published Images for Horizon Cloud Pods in Microsoft Azure.</td>
</tr>
<tr>
<td></td>
<td>In this page, you can:</td>
</tr>
<tr>
<td></td>
<td>■ View the assignable desktop images available in the system.</td>
</tr>
<tr>
<td></td>
<td>■ Create an assignable desktop image from a master VM that has been prepared with the required agents.</td>
</tr>
<tr>
<td></td>
<td>■ Download the DaaS bootstrap file. If needed based on the manifest version of your pod, you typically use the Download Bootstrap button to download an encrypted bootstrap file to deploy to your images. When you select this option, you are prompted to enter a password of 8-20 ASCII characters containing at least one each of the following: lowercase letter, uppercase letter, number, and symbol (l@#$%^&*). Do not use non-ASCII characters in the password.</td>
</tr>
<tr>
<td></td>
<td>■ Refresh the DaaS bootstrap password. Use the Refresh Password button to refresh a previously set DaaS bootstrap password.</td>
</tr>
<tr>
<td></td>
<td>Note If you refresh the password after having downloaded a bootstrap file but before applying the bootstrap file using the Keytool utility, then the resultant agents will not be able to pair. Therefore, it is recommended that you download the bootstrap file again after refreshing the password.</td>
</tr>
<tr>
<td></td>
<td>When you select the check box for a specific listed assignable image, or click its name, you can perform the following actions on it:</td>
</tr>
<tr>
<td></td>
<td>■ Duplicate it.</td>
</tr>
<tr>
<td></td>
<td>■ Delete it.</td>
</tr>
<tr>
<td></td>
<td>■ Update its agent-related software, if a later version is available.</td>
</tr>
<tr>
<td>Imported VMs</td>
<td>Opens the Imported VMs page. The virtual machines (VMs) displayed on this page include:</td>
</tr>
<tr>
<td></td>
<td>■ The master VMs that you created using the Import action button.</td>
</tr>
<tr>
<td></td>
<td>■ VMs that the system imported from the pods' podID-base-vms resource groups.</td>
</tr>
<tr>
<td></td>
<td>You can move VMs from this page to the Utility VMs page, according to your organization's needs.</td>
</tr>
<tr>
<td></td>
<td>See Imported VMs Page for details.</td>
</tr>
</tbody>
</table>

Imported VMs Page

The Imported VMs page in the Administration Console lists the virtual machines (VMs) that have been brought into your Horizon Cloud environment.

You can perform the following actions on a listed VM by selecting the check box next to the VM and clicking the respective action. Some of the actions are under the More option.

Note

■ If the process to import an image from the Microsoft Azure Marketplace fails, the system generates a notification about the failure and displays a Failed link in the Agent Version column. Clicking that link opens the Notification page where you can read the reason for the failure.

■ The Imported VMs page does not automatically refresh itself. After you perform an action, you might have to click the refresh action to see the current status. As an example, when a VM is powered off and you choose the Power On action, the page displays In progress as the power-on process starts, and continues to show that status until you refresh the page.
Action and Description

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rename</td>
<td>Even though you see the Rename action in the page, this action is not used for VMs from a Microsoft Azure environment.</td>
</tr>
<tr>
<td>VM power and guest</td>
<td>For a VM in Microsoft Azure, the available actions are Power On, Power Off, and Restart.</td>
</tr>
<tr>
<td>operating system actions</td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>Delete the selected VM.</td>
</tr>
<tr>
<td>Migrate to Utility VMs</td>
<td>Move the VM to the Utility VMs page. See Utility VMs Page.</td>
</tr>
<tr>
<td>Convert to Image</td>
<td>Convert the selected VM to an image that Horizon Cloud can use for farms or VDI desktop assignments. See Convert a Configured Master Virtual Machine to an Assignable Image.</td>
</tr>
<tr>
<td></td>
<td>Note Make sure the VM has all of the applications and drivers you want installed on it before converting it.</td>
</tr>
<tr>
<td>Reset Agent Pairing</td>
<td>Updates the agent state that governs the pairing of the VM with Horizon Cloud. You typically use this action in the following scenarios:</td>
</tr>
<tr>
<td></td>
<td>■ For a master VM recently imported using the Create a Master Virtual Machine Automatically from the Microsoft Azure Marketplace and Pair it with Horizon Cloud: in this scenario, this action restarts the agent software that the workflow installed in the VM, which completes the pairing of the imported VM with the cloud plane.</td>
</tr>
<tr>
<td></td>
<td>■ For a master VM that you manually created and installed the agent software in it, using the Manually Build the Master Virtual Machine in Microsoft Azure: in this scenario, this action restarts the agent software that the workflow installed in the VM, which completes the pairing of the imported VM with the cloud plane.</td>
</tr>
<tr>
<td></td>
<td>■ For a listed VM that shows an error message in its Agent Status column: in this scenario, this action restarts the agent software to repair the pairing failure and pair the VM with the cloud plane.</td>
</tr>
</tbody>
</table>

About the Settings Icon

You use the Settings icon to navigate to pages for working with various aspects of your Horizon Cloud environment, such as utility virtual machines (VMs), identity management, your deployed pods, and related settings and configurations.

Click the Settings icon to access these pages in the Administration Console.

<table>
<thead>
<tr>
<th>User Interface Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Settings</td>
<td>Displays settings for networks, domains, connection timeouts, and so on, including the toggle to enable or disable monitoring user session information. You can edit settings from this page. See Edit General Settings for details.</td>
</tr>
<tr>
<td>Active Directory</td>
<td>View and edit Active Directory (AD) details and configure the True SSO capabilities for your environment. True SSO provides the capabilities for your end users to connect to their desktops and RDS-based remote applications without having to enter AD credentials. See Complete Configuring True SSO for your Horizon Cloud Environment.</td>
</tr>
<tr>
<td>Roles & Permissions</td>
<td>Edit roles and permissions. See Assign Horizon Cloud Administrative Roles to Active Directory Groups.</td>
</tr>
</tbody>
</table>
User Interface Page Description

<table>
<thead>
<tr>
<th>User Interface Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>View details about your deployed pods, such as each pod's utilization and capacity usage, as well as drill down to view and optionally update some of the editable properties associated with a pod, such as its specified NTP server, its associated Microsoft Azure subscription's application key, and so on. For details, see Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.</td>
</tr>
<tr>
<td>Utility VMs</td>
<td>Displays virtual machines (VMs) that are used for infrastructure services like DHCP. Usually a VM is listed on this page when you have moved it from the Imported VMs page. See Utility VMs Page.</td>
</tr>
<tr>
<td>Identity Management</td>
<td>Configure integration of your Horizon Cloud environment with your VMware Workspace ONE® Access™ environment.</td>
</tr>
<tr>
<td>File Share</td>
<td>This page is not currently supported to use for pods deployed in Microsoft Azure. As a result, this option does not appear.</td>
</tr>
<tr>
<td>VM Types & Sizes</td>
<td>Manage the types and sizes of VMs to be used in farms and assignments for pods in Microsoft Azure. For details, see Managing VM Types and Sizes for Farms and Assignments.</td>
</tr>
<tr>
<td>Getting Started</td>
<td>Opens the Getting Started wizard. See About the Horizon Cloud Getting Started Wizard for details.</td>
</tr>
</tbody>
</table>

Edit General Settings

Use the General Settings page to modify settings that apply to your overall Horizon Cloud environment.

When your cloud-connected pods are all Horizon 7 pods, only the Default Domain and My VMware Accounts sections are displayed and available for editing. When you have pods deployed in Microsoft Azure, all the sections described here are displayed in the General Settings page.

Note When changing any of the following settings, it can take up to 5 minutes for the update to take effect.

- The settings in the Session Timeout section, listed in Horizon Client Timeout Settings.
- The Cleanup credentials when tab is closed setting in the HTML Access section.
- The Enable Client Retry setting in the Pool/Farm Options section.
- The settings in the Domain Security Settings section, listed in Domain Security Settings on General Settings Page.

Procedure

1. Select **Settings > General Settings**.
2. Click **Edit**.
3 Change these settings.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Domain</td>
<td>If you have only one Active Directory domain registered with your environment, the name of that domain appears here. If you have multiple Active Directory domains registered, this text box displays the name of that Active Directory domain that is specified as the default Active Directory domain, the one that appears first in the domain selection list in the Active Directory login page used when logging in to the Administration Console. This setting only governs which Active Directory domain appears first in the domain selection list on that Active Directory login page. As described in Log in to the Horizon Cloud Administration Console, when your environment has multiple Active Directory domains registered, the Active Directory login page has a domain selection list. You can use this Default Domain text box to specify one of the Active Directory domains as the default. That default Active Directory domain then appears first in the Active Directory login page's domain selection list. Click Edit to change the current setting.</td>
</tr>
</tbody>
</table>
| Session Timeout | These settings govern timeouts of connections to your Horizon Cloud environment:
- The Admin Portal Timeout setting governs the amount time an administrator can be continuously logged in to the Administration Console. When that time has elapsed, the administrator's authenticated session ends and the administrator must log back in.
- The other listed settings govern the end users' connections made from their endpoint devices using Horizon Client, Horizon HTML Access, and Workspace ONE. You can adjust these timeout settings to allocate enough time to avoid a user unexpectedly finding that they must reauthenticate to Horizon Cloud. For details, see Horizon Client Timeout Settings. |
| My VMware Accounts | To give users the ability to log into Horizon Cloud, you can add their My VMware accounts. After adding their My VMware information here, then assign their Active Directory user accounts the role that is appropriate for their job or business tasks. See Assign Horizon Cloud Administrative Roles to Active Directory Groups. |
| HTML Access | The Cleanup credentials when tab is closed setting affects system security and ease of use when end users use HTML Access to access their desktops or applications. The setting determines if end users must reenter their credentials when they reconnect.
- A value of Yes, the option that emphasizes security, prompts end users to re enter their credentials.
- A value of No, the option that emphasizes ease of use, does not prompt end users to re their credentials. |
<p>| RDSH Farm | You can provide a message that Horizon Cloud displays to end users when their logged-in Windows session with their session desktop or remote application has reached the farm's configured maximum session time. The system will forcibly log out the user from their logged-in Windows session after the grace period time expires. In the Grace Period text box, you can provide a time for which the system waits before forcibly logging out the user, after the reminder message has been sent. |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Pool/Farm Options | This option governs what happens if the end user uses Horizon Client to try to connect to a desktop or remote application when the underlying VDI or RDSH virtual machine is powered off in the cloud. As a result of an assignment's or RDSH farm's power management settings, there might not be enough powered-on virtual machine capacity to serve the client's request. When the connection is initiated, Horizon Cloud starts powering on the underlying virtual machine needed to fulfill the request. However, although the underlying virtual machine is powering on, the Horizon Cloud agent in the virtual machine has not yet started up and cannot respond to the Horizon Client connection request. Because it can take some time between the client connecting and the agent starting, you can use this option to have the client retry the connection and inform the end user of the estimated time. For this scenario, when the Enable Client Retry toggle is set to Yes, the client presents a message to the end user that describes the estimated waiting time.
 a. Horizon Cloud starts powering on the underlying virtual machine in the cloud that will serve the end user's client request.
 b. Horizon Cloud notifies Horizon Client to retry the connection when the agent in the virtual machine is up and running.
 c. The client prompts the user with a message that describes the wait time estimated before the client retries the connection. |
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Security Settings</td>
<td>Use these settings to prevent the communication of Active Directory domain names to unauthenticated users using the various Horizon clients to connect to the pods in Microsoft Azure. These settings govern whether the Active Directory domain information is sent to the client and, if sent, how it is displayed in the end-user clients' login pages. For details, see Domain Security Settings on General Settings Page.</td>
</tr>
</tbody>
</table>

Important

- These settings are applied to all the pods in your environment, the ones that are under the same Horizon Cloud customer account (tenant).
- The combination of options selected here changes the user experience in the clients. Certain combinations can set requirements for how end users enter the domain information on the client login page, especially when using older clients, command-line clients, and when your environment has multiple Active Directory domains. How these settings affect the client user experience depends on the client. You might need to balance your desired end-user experience according to your organization's security policies. For more information, see Domain Security Settings on General Settings Page.
- The General Settings page does not display this Domain Security Settings section when your Horizon Cloud environment has any pods in Microsoft Azure that are not yet upgraded to pod manifest version 1273 or later. To get access to these controls, upgrade all your pods in Microsoft Azure to this release.
- Until all your pods are upgraded to pod manifest version 1273 or later, your environment is configured by default to provide the same behavior as it was in the previous Horizon Cloud release. Until all your pods are at this release level, the system sends the Active Directory domain names to the end-user clients and the clients have the legacy behavior that displays the Active Directory domain drop-down menu.

Then when all your pods' manifests are at version 1273 or later, these settings are displayed in the General Settings page. At that point, the displayed settings reflect the legacy behavior (both controls set to No), and you can change them to control the communication of domain information to the clients.

To see your pods' current manifest versions, use the Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types. For this release's pod manifest version, see the Release Notes for the current release.
Option	Description
Monitoring | The Horizon Cloud cloud monitoring service collects and stores session, application, and desktop data from connected pods for monitoring and reporting purposes.
- Use the **Cloud Monitoring Service** toggle to enable or disable the Horizon Cloud cloud monitoring service. It is enabled by default.
 - When this setting is disabled, the **Session Data** setting below does not appear.
- When the cloud monitoring service is enabled, you can use the **Session Data** toggle to opt in or opt out of tracking user information related to your end users’ sessions. Information collected includes times they logged in, session durations, and average session length per user.
 - When you opt in to the collection of user data, Horizon Cloud collects this information and maintains it for the duration of your use of Horizon Cloud. You can delete the collected data by turning off the Session Data toggle.
 - When you opt out of the collection of user data but leave the cloud monitoring service enabled, Horizon Cloud collects session data for a limited period and hashes the user name to allow real-time administration while disabling historical and aggregated viewing of information. As a result, some reports, such as the User Usage report, are not available. In this case the system also continues to collect other data related to applications and desktops in connected pods.
 - The information collected by the Horizon Cloud cloud monitoring service is used in charts on the Dashboard page and reports on the Reports page. See [Health Visibility and Insights into Your Cloud-Connected Pods Provided by the Cloud Monitoring Service in Horizon Cloud](https://example.com) and [Reports Page](https://example.com).

Contact Info | Administrator contact information

4. **Click Save.**

Horizon Client Timeout Settings

Most of the session timeout settings in the General Settings page govern the end users’ connections made from their endpoint devices using Horizon Client, Horizon HTML Access, and Workspace ONE. You can adjust these timeout settings to allocate enough time to avoid a user unexpectedly finding that they need to reauthenticate to Horizon Cloud.

These settings are associated with the connection between an end user’s endpoint device and their assigned VDI desktops, RDS session desktops, and remote applications provided by Horizon Cloud. These settings are separate from the users’ logged-in session to the underlying Windows operating system of those desktops and applications. When Horizon Cloud detects the conditions determined by these settings have occurred, it expires the user’s authenticated Horizon Client, Horizon HTML Access, or Workspace ONE connection.

Note When changing any of these settings, it can take up to 5 minutes for the update to take effect.
Timeout Table

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Heartbeat Interval Controls the interval between Horizon Client heartbeats and the state of the endpoint's connection to Horizon Cloud. These heartbeats report to the Horizon Cloud connection broker the amount of idle time that has passed in the connection to the endpoint. Idle time occurs when no interaction occurs with the end-point device, as opposed to idle time in the Windows operating system session that underlies the user's desktop or remote application usage. In large desktop deployments, setting the activity heartbeats at longer intervals might reduce network traffic and increase performance.</td>
</tr>
<tr>
<td>Client Idle User Maximum time that a user can be idle in a connection between the end-point device and Horizon Cloud. When this maximum is reached, the user's authentication expires and all active Horizon Client, Horizon HTML Access, and Workspace ONE connections are closed. The user must reauthenticate to reopen a connection from their end-point device to Horizon Cloud. Note Set the Client Idle User timeout to be at least double the Client Heartbeat Interval setting to avoid unexpected disconnects from desktops.</td>
</tr>
<tr>
<td>Client Broker Session Maximum time that a Horizon Client, Horizon HTML Access, or Workspace ONE connection can be connected to Horizon Cloud before the connection's authentication expires. The timeout count starts each time the user authenticates to Horizon Cloud. When this timeout occurs, the user can continue to work. If the user performs an action that causes communication to the Horizon Cloud broker, such as changing settings, the system requires the user to reauthenticate and log back in to their client (Horizon Client, Horizon HTML Access, or Workspace ONE). Note The Client Broker Session timeout must be at least equal to the sum of the Client Heartbeat Interval setting and the Client Idle User timeout.</td>
</tr>
<tr>
<td>User Portal Timeout This setting is deprecated and has no effect.</td>
</tr>
</tbody>
</table>

Domain Security Settings on General Settings Page

You use these settings to prevent communication of Active Directory domain names to unauthenticated users using the various Horizon clients. These settings govern whether the information about the Active Directory domains that are registered with your Horizon Cloud environment is sent to the Horizon end-user clients and, if sent, how it is displayed in end-user clients' login screens.

Configuring your Horizon Cloud environment includes registering your environment with your Active Directory domains. When your end users use a Horizon client to access their entitled desktops and remote applications, those domains are associated with their entitled access. Prior to the March 2019 Horizon Cloud release, the system and clients had default behavior with no options to adjust that default behavior. Starting in March 2019, the defaults are changed, and you can optionally use the new Domain Security Settings controls to change from the defaults.

Important When changing these settings, it can take up to 5 minutes for the update to take effect.

This topic has the following sections.

- Domain Security Settings
- This Release's Default Behavior Compared with Past Releases
- Relationship to Your Pods' Manifest Levels
- Single Active Directory Domain Scenarios and User Login Requirements
Multiple Active Directory Domain Scenarios and User Login Requirements

About Pods in Microsoft Azure with Unified Access Gateway Instances Configured with Two-Factor Authentication

Domain Security Settings

Combinations of these settings determine whether domain information is sent to the client and whether a domain selection menu is available to the end user in the client.

Important These settings apply to all of your pods in Microsoft Azure that are within the same Horizon Cloud environment. All pods that are deployed in Microsoft Azure using the same Horizon Cloud customer account (tenant) get the same combination. All of the end users connecting to your pods will receive the behavior according to these settings, regardless of which pod is provisioning their virtual desktops and remote applications.

Caution These settings change the user experience in the clients. The behavior for end users using versions of Horizon Client prior to version 5.0 is different than for Horizon Client 5.0 and later. Certain combinations can set requirements on how your end users specify their domain information in the client login screen, especially when using older clients, command-line clients, and when your environment is configured with multiple Active Directory domains. How these settings affect the client user experience depends on the client. You might need to balance your desired end-user experience according to your organization's security policies. See sections Single Active Directory Domain Scenarios and User Login Requirements and Multiple Active Directory Domain Scenarios and User Login Requirements.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Default Domain Only</td>
<td>This option controls what domain information the system sends to connecting clients prior to user authentication.</td>
</tr>
<tr>
<td></td>
<td>- Yes - The system sends only the literal string value DefaultDomain.</td>
</tr>
<tr>
<td></td>
<td>- No - The system sends the list of registered Active Directory domain names to the client.</td>
</tr>
<tr>
<td>Hide Domain Field</td>
<td>This option controls the visibility in the client login screen of whatever domain-related information is sent to the client, based on the Show Default Domain Only setting.</td>
</tr>
<tr>
<td></td>
<td>- Yes - Nothing about domains is displayed in the client login screen, regardless of what Show Default Domain Only is set to. Neither the literal string value DefaultDomain nor the domain names are displayed in the client login screen.</td>
</tr>
<tr>
<td></td>
<td>- No - The client login screen displays one of the following items, depending on the Show Default Domain Only setting.</td>
</tr>
<tr>
<td></td>
<td>- The literal text DefaultDomain, when Show Default Domain Only is Yes. This combination is optimized for user experience in Horizon Clients older than version 5.0, while also providing improved security.</td>
</tr>
<tr>
<td></td>
<td>- The list of domain names in a drop-down menu, when Show Default Domain Only is No.</td>
</tr>
</tbody>
</table>
This Release’s Default Behavior Compared with Past Releases

The following table details the previous default behavior, the new default behavior, and the settings you can use to adjust the behavior to meet your organization's needs.

<table>
<thead>
<tr>
<th>Previous Release Default Behavior</th>
<th>This Release Default Behavior</th>
<th>Corresponding Domain Security Settings Combination for this Release's Default Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system sent the names of the registered Active Directory domains to the clients.</td>
<td>The system sends only a literal string value (DefaultDomain) to the clients and not the names of the registered Active Directory domains.</td>
<td>Show Default Domain Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default setting: Yes</td>
</tr>
<tr>
<td>Note Sending the literal string provides support for older Horizon clients which are implemented to expect a string list of domain names.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The clients displayed a drop-down menu in the login screen that presents the list of registered Active Directory domain names for the end user to choose their domain prior to logging in.</td>
<td>The clients display that literal string DefaultDomain.</td>
<td>Hide Domain Field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default setting: No</td>
</tr>
</tbody>
</table>

Relationship to Your Pods’ Manifest Levels

When you are an existing customer with pods created in an earlier service release, until all of your pods in Microsoft Azure are upgraded to the manifest level for this Horizon Cloud release, your environment is configured by default to provide the same behavior as it had in the previous Horizon Cloud release. That legacy behavior is:

- The system sends the Active Directory domain names to the client (**Show Default Domain Only** is set to **No**).
- The clients have a drop-down menu that displays the list of domain names to the end user prior to logging in (**Hide Domain Field** is set to **No**).

Also, until all of your pods are at this service release level, the General Settings page does not display the Domain Security Settings controls. If you have a mixed environment with existing non-upgraded pods and newly deployed pods at this release level, the new controls are not available. As a result, you cannot change from the legacy behavior until all of your pods are at this service release level.

When all of your environment's pods are upgraded, the settings are available in the Administration Console. The post-upgrade defaults are set to the pre-upgrade behavior (**Show Default Domain Only** is **No** and **Hide Domain Field** is **No**). The post-upgrade default settings are different than the new-customer defaults. These settings are applied so that the pre-upgrade legacy behavior continues for your end users after the upgrade, until you choose to change the settings to meet your organization's security needs.
Single Active Directory Domain Scenarios and User Login Requirements

The following table describes the behavior for various setting combinations when your environment has a single Active Directory domain, without two-factor authentication, and your end users use the Horizon Clients 5.0 and later versions.

Table 7-4. Behavior For Horizon Clients 5.0 and Later Versions and You Have One Active Directory Domain

<table>
<thead>
<tr>
<th>Show Default Domain Only (enabled sends DefaultDomain)</th>
<th>Hide Domain Field</th>
<th>Horizon Client 5.0 Login Screen Details</th>
<th>How Users Log In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>The client's login screen has the standard user name and password fields. No domain field is displayed. No domain name is sent. The following screenshot is an example for how the resulting login screen looks like for the Windows client.</td>
<td>When there is a single domain, to log in, end users can enter either of the following values in the User name text box. The domain name is not required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Server:</td>
<td>username</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User name:</td>
<td>domain\username</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Password:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Domain:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Login</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancel</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>The client's login screen has the standard user name and password fields. The domain field displays DefaultDomain. No domain name is sent. The following screenshot is an example for how the resulting login screen looks like for the Windows client.</td>
<td>When there is a single domain, to log in, end users can enter either of the following values in the User name text box. The domain name is not required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Server:</td>
<td>username</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User name:</td>
<td>domain\username</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Password:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Domain:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Login</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancel</td>
<td></td>
</tr>
</tbody>
</table>
Table 7-4. Behavior For Horizon Clients 5.0 and Later Versions and You Have One Active Directory Domain (continued)

<table>
<thead>
<tr>
<th>Show Default Domain Only (enabled)</th>
<th>Hide Domain Field</th>
<th>Horizon Client 5.0 Login Screen Details</th>
<th>How Users Log In</th>
</tr>
</thead>
</table>
| No | Yes | The client's login screen has the standard user name and password fields. No domain field is displayed. The system sends the domain name to the client. **Note** This combination is atypical. You would not normally use this combination because it hides the domain field even though the system is sending the domain name. The login screen looks the same as the one in the first row of this table, with no domain field displayed. | An end user must include the domain name in the **User name** text box.
 - `domain\username` |
| No | No | The client's login screen has the standard user name and password fields and a standard drop-down domain selector displays the one available domain name. The domain name is sent. | The end user can specify their user name in the **User name** text box and use the single domain that is in the list visible in the client. Using the command-line client launch and specifying the domain in the command works. |

This table describes the behavior when your environment has a single Active Directory domain and your end users use previous versions of the Horizon clients (pre-5.0).

Important Using the command-line client launch of older (pre-5.0) clients and specifying the domain in the command fails for all of the combinations below. To work around this behavior, either use `*DefaultDomain*` for the command's domain option or upgrade the client to the 5.0 version. However, when you have more than one Active Directory domain, passing `*DefaultDomain*` does not work.
Table 7-5. Behavior For Older Horizon Clients (Before 5.0) and You Have One Active Directory Domain

<table>
<thead>
<tr>
<th>Show Default Domain Only (enabled sends DefaultDomain)</th>
<th>Hide Domain Field</th>
<th>Pre-5.0 Horizon Client Login Screen Details</th>
<th>How Users Log In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>The client's login screen has the standard user name and password fields. No domain field is displayed. No domain name is sent.</td>
<td>An end user must include the domain name in the User name text box.</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>The client's login screen has the standard user name and password fields. The domain field displays DefaultDomain. No domain name is sent.</td>
<td>An end user must enter username in the User name text box. When the domain name is included, an error message displays that states the specified domain name does not exist in the domain list.</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>The client's login screen has the standard user name and password fields. No domain field is displayed. The system sends the domain name to the client.</td>
<td>An end user must include the domain name in the User name text box.</td>
</tr>
<tr>
<td>Note This combination is atypical. You would not normally use this combination because it hides the domain field even though the system is sending the domain name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The login screen looks the same as the one in the first row of this table, with no domain field displayed.</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>The client's login screen has the standard user name and password fields and a standard drop-down domain selector displays the one available domain name. The domain name is sent.</td>
<td>The end user can specify their user name in the User name text box and use the single domain that is in the list visible in the client.</td>
</tr>
</tbody>
</table>

Multiple Active Directory Domain Scenarios and User Login Requirements

This table describes the behavior for various setting combinations when your environment has multiple Active Directory domains, without two-factor authentication, and your end users use the Horizon Clients 5.0 and later versions.

Basically, the end user has to include the domain name when they type in their user name, like `domain \username`, except for the legacy combination where the domain names are sent and are visible in the client.
Table 7-6. Behavior For Horizon Clients 5.0 and Later Versions and You Have Multiple Active Directory Domains

<table>
<thead>
<tr>
<th>Show Default Domain Only (enabled sends DefaultDomain)</th>
<th>Hide Domain Field</th>
<th>Horizon Client 5.0 Login Screen Details</th>
<th>How Users Log In</th>
</tr>
</thead>
</table>
| Yes | Yes | The client's login screen has the standard user name and password fields. No domain field is displayed. No domain names are sent.
The following screenshot is an example for how the resulting login screen looks like for the Windows client. | An end user must include the domain name in the User name text box.
- domain\username
Using the command-line client launch and specifying the domain in the command works. |
| Yes | No | The client's login screen has the standard user name and password fields. The domain field displays *DefaultDomain*. No domain names are sent.
The following screenshot is an example for how the resulting login screen looks like for the Windows client. | An end user must include the domain name in the User name text box.
- domain\username
Using the command-line client launch and specifying the domain in the command works. |
Table 7-6. Behavior For Horizon Clients 5.0 and Later Versions and You Have Multiple Active Directory Domains (continued)

<table>
<thead>
<tr>
<th>Show Default Domain Only (enabled sends DefaultDomain)</th>
<th>Hide Domain Field</th>
<th>Horizon Client 5.0 Login Screen Details</th>
<th>How Users Log In</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>The client's login screen has the standard user name and password fields. No domain field is displayed. The system sends the domain names to the client.</td>
<td>An end user must include the domain name in the User name text box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note This combination is atypical. You would not normally use this combination because it hides the domain field even though the system is sending the domain names.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The login screen looks the same as the one in the first row of this table, with no domain field displayed.</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>The client's login screen has the standard user name and password fields and a standard drop-down domain selector displays the list of domain names. The domain names are sent.</td>
<td>The end user can specify their user name in the User name text box and select their domain from the list visible in the client.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Using the command-line client launch and specifying the domain in the command works.</td>
</tr>
</tbody>
</table>

This table describes the behavior when your environment has multiple Active Directory domains and your end users use previous versions of the Horizon clients (pre-5.0).

Important

- Setting **Hide Domain Field** to **Yes** allows end users to enter their domain in the User name text box in these pre-5.0 Horizon clients. When you have multiple domains and you want to support use of pre-5.0 Horizon clients by your end users, you must set **Hide Domain Field** to **Yes** so that your end users can include the domain name when they type in their user name.

- Using the command-line client launch of older (pre-5.0) clients and specifying the domain in the command fails for all of the combinations below. The only work around when you have multiple Active Directory domains and want to use command-line client launch is to upgrade the client to the 5.0 version.
Table 7-7. Behavior For Older Horizon Clients (Before 5.0) and You Have Multiple Active Directory Domains

<table>
<thead>
<tr>
<th>Show Default Domain Only (enabled sends DefaultDomain)</th>
<th>Hide Domain Field</th>
<th>Pre-5.0 Horizon Client Login Screen Details</th>
<th>How Users Log In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>The client's login screen has the standard user name and password fields. No domain field is displayed. No domain name is sent.</td>
<td>An end user must include the domain name in the User name text box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>The client's login screen has the standard user name and password fields. The domain field displays DefaultDomain. No domain name is sent.</td>
<td>This combination is unsupported for environments with multiple Active Directory domains.</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>The client's login screen has the standard user name and password fields. No domain field is displayed. The system sends the domain name to the client.</td>
<td>An end user must include the domain name in the User name text box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>The client's login screen has the standard user name and password fields and a standard drop-down domain selector displays the one available domain name. The domain name is sent.</td>
<td>The end user can specify their user name in the User name text box and select their domain from the list visible in the client.</td>
</tr>
</tbody>
</table>

About Pods in Microsoft Azure with Unified Access Gateway Instances Configured with Two-Factor Authentication

As described in Specify Two-Factor Authentication Capability for the Pod, when you deploy a pod into Microsoft Azure, you have the option of deploying it with RADIUS two-factor authentication configured on its Unified Access Gateway instances.

When a pod in Microsoft Azure has its Unified Access Gateway configured with RADIUS two-factor authentication, end users attempting to authenticate with their Horizon clients first see a screen asking for their two-factor authentication credentials, followed by a login screen asking for their Active Directory domain credentials. In this case, the system sends the domain list to the clients only after the end user's credentials successfully pass that initial authentication screen.

Generally speaking, if all of your pods have RADIUS two-factor authentication configured on their Unified Access Gateway instances, you might consider having the system send the domain list to the clients and have the clients display the domain drop-down menu. That configuration provides the same legacy end-user experience for all of your end users, regardless of which Horizon client version they are using or how
many Active Directory domains you have. After the end user successfully completes the two-factor authentication passcode step, they can then select their domain from the drop-down menu in the second login screen. They can avoid having to include their domain name when they enter their credentials into the initial authentication screen.

However, because the Domain Security Settings are applied at the Horizon Cloud customer account (tenant) level, if some of your pods do not have two-factor authentication configured, you might want to avoid sending the domain list, because those pods will send the domain names to the clients connecting to them prior to the end users logging in.

Important When a pod’s two-factor authentication configuration has **Maintain Username** configured as **Yes**, ensure that the **Hide Domain Field** is set to **No**. Otherwise, your end users will not be able to provide the required domain information for the system to associate with their login credentials.

The end-user login requirements by Horizon client follow the same patterns that are described in [Single Active Directory Domain Scenarios and User Login Requirements](#) and [Multiple Active Directory Domain Scenarios and User Login Requirements](#). When connecting to a pod that has RADIUS two-factor authentication configured and you have multiple Active Directory domains, the end user must provide their domain name as `domain\username` if **Hide Domain Field** is set to **Yes**.

File Share Page

The File Share page provides details about any file shares that have been registered with your Horizon Cloud environment.

Note This release does not support registering file shares for use with pods deployed in Microsoft Azure. As a result, no information is provide on this page for such pods.

Utility VMs Page

The Utility VMs page in the Administration Console provides actions for virtual machines (VMs) that you might have added to your environment for infrastructure-related capabilities, such as DHCP, Domain Controller functions, and so on.

You can perform the following actions on the listed VMs by selecting the check box next to the VM and clicking the respective action.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rename</td>
<td>Even though you see the Rename action in the page, this action is not used for VMs imported from a Microsoft Azure environment.</td>
</tr>
<tr>
<td>VM power and guest operating system actions</td>
<td>Depending on the current state of the VM, these standard VM power operations are available: power on, power off, suspend, resume, reset. Operations on the guest operating system are restart and shutdown.</td>
</tr>
<tr>
<td>Migrate to Imported VMs</td>
<td>Move the VM to the Imported VMs. See Imported VMs Page.</td>
</tr>
</tbody>
</table>
Identity Management Page

On the Identity Management page, you can add, edit, and configure those identity management providers you want to use with your Horizon Cloud environment.

The Identity Management page displays the currently configured providers, including the following information for each:

- **Status** - Current status of the listed configuration. Hover on the icon to see the current status.
- **Workspace ONE Access URL** - The metadata URL of the identity management provider.
- **Workspace ONE Redirection** - Indicates whether automatic redirection to Workspace ONE Access is configured for the listed configuration. You can only enable redirection for one identity provider per tenant. This feature is primarily used with the feature to force end-user access to their desktops and applications through Workspace ONE Access. See Configure the Option to Force End-User Access to Use Workspace ONE Access.
- **Timeout SSO Token** - Timeout value in minutes.
- **Data Center** - For a pod deployed in Microsoft Azure, the displayed value corresponds to the pod's software version for the specific pod that is configured with this particular provider. This number is the same as the pod's version number that is listed in the pod's details page. See the description of the pod's details page in Chapter 4 Managing Your Cloud-Connected Pods, for All Horizon Cloud Supported Pod Types.
- **Client Access FQDN** - The FQDN that you tell your end users to make their connections to, for connecting to Horizon Cloud.
- **Location** - The pod's location.
- **Pod** - The pod for which this configuration applies.

Create an Identity Management Provider Configuration

Configuring a new identity provider for one of your pods in Microsoft Azure is a multi-step process. See the information in Integrate a Horizon Cloud Pod in Microsoft Azure with Workspace ONE Access and follow the steps in Configure a Pod in Microsoft Azure for Workspace ONE Access.

Edit Settings for a Configuration

To edit the information for a configuration on this page:

1. Select the listed configuration.
2. Click **Edit**.
3 Edit the following information.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout SSO Token</td>
<td>Timeout value in minutes.</td>
</tr>
<tr>
<td>Client Access FQDN</td>
<td>For a pod in Microsoft Azure, you enter here the FQDN that you tell your end users to make their connections to, for connecting to Horizon Cloud.</td>
</tr>
<tr>
<td>Workspace ONE Redirection</td>
<td>When editing the configuration, you can change the current setting of this toggle. When you also have the configuration to force end-user access to go through Workspace ONE Access, you can set this toggle to YES to have the end users' clients automatically redirect to their Workspace ONE Access environment. Read about the options to force end-user access to go through Workspace ONE Access in Configure the Option to Force End-User Access to Use Workspace ONE Access. With the automatic redirection configured to YES, in the end-user clients, when the client attempts to connect to Horizon Cloud and is forcing access through Workspace ONE Access, the client is automatically redirected to the Workspace ONE Access environment that is specified in this identity management provider configuration. When the toggle is set to NO, automatic redirection is not enabled, and the clients display an informational message to the user instead.</td>
</tr>
</tbody>
</table>

Note You can have this redirection enabled for only one of the identity management URLs per pod. If you try to enable this feature for multiple URLs and the same pod, an error message is displayed.

4 Click **Save**.

Configure the Option to Force End-User Access to Use Workspace ONE Access

For each listed provider, you can use the following steps to configure whether end users can access their assigned desktops and remote applications directly from Horizon Cloud or must access only using Workspace ONE Access.

Note When you change these settings, it can take up to 5 minutes for the update to take effect.

1 Click **Configure**.

2 Edit settings as described below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Remote Users to Workspace ONE Access</td>
<td>Select YES to block remote user access except through the identity management provider. Option only displays if that provider status is green.</td>
</tr>
<tr>
<td>Force Internal Users to Workspace ONE Access</td>
<td>Select YES to block internal user access except through the identity management provider. Option only displays if that provider status is green.</td>
</tr>
</tbody>
</table>

3 Click **Save**.

When you force end-user access through Workspace ONE Access, you typically also edit the corresponding identity provider configuration to specify that the end-user clients automatically redirect to Workspace ONE Access. See **Edit Settings for a Configuration**.

The feature to force end-user access to Workspace ONE Access works with the Workspace ONE Access redirection feature in the following ways.
<table>
<thead>
<tr>
<th>Force end-user access through Workspace ONE Access setting</th>
<th>Workspace ONE Access redirection setting</th>
<th>What happens when the end user's client connects to Horizon Cloud to access their desktops and applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled (yes)</td>
<td>Enabled (yes)</td>
<td>Client is automatically redirected to Workspace ONE Access.</td>
</tr>
<tr>
<td>Enabled (yes)</td>
<td>Disabled (no)</td>
<td>Client displays a message that tells the user that they must access Horizon Cloud using Workspace ONE Access. Automatic redirection does not occur.</td>
</tr>
<tr>
<td>Disabled (no)</td>
<td>Enabled (yes)</td>
<td>Client displays the Horizon Cloud login screen for the end user to log in. Automatic redirection does not occur because forced access to Workspace ONE Access is not enabled.</td>
</tr>
<tr>
<td>Disabled (no)</td>
<td>Disabled (no)</td>
<td>Client displays the Horizon Cloud login screen for the end user to log in. In this scenario, both forced access and the automatic redirection features are disabled.</td>
</tr>
</tbody>
</table>

Remove a Configuration

To remove one of the configurations:

1. Select the configuration in the list.
2. Click **Remove**.
3. Click **Delete** to confirm.

About the Horizon Cloud Getting Started Wizard

You use the Getting Started wizard to perform the configuration steps that are needed before you can fully manage and use the environment, such as registering an Active Directory domain. The Getting Started wizard displays by default when you log in to the Administration Console for the first time.

After you have finished registering one Active Directory domain and given the Horizon Cloud Super Administrators role to one Active Directory group, then you can perform administration tasks using the Administration Console, and register additional Active Directory domains, as appropriate for your organization's needs.

Important System workflows involving pods in Microsoft Azure require that the Horizon Cloud Super Administrators role be given to the domain-join account you specify in the Active Directory domain registration steps. The system workflows are those that involve joining virtual machines in those pods to your Active Directory domain, such as when importing a base image, creating farm server VMs, creating VDI desktop instances, and so on.

Therefore, to avoid such workflows failing, when you have cloud-connected pods in Microsoft Azure, the domain-join account you specify in the Active Directory domain registration steps must be in a group to which you give the Super Administrators role. For more information about the requirements for that domain-join account, see [Service Accounts That Horizon Cloud Requires for Its Operations](#).
The Getting Started wizard provides a high-level overview of the work that you have done, and what is still to do. You can access the wizard from **Settings > Getting Started**.

Note To ensure that you completed all tasks required to run and manage the environment, review the steps in **High-Level Workflow for When Your Very First Cloud-Connected Pod is from Deploying into Microsoft Azure** and its subtopics for your type of pod. You cannot perform certain tasks from the Getting Started wizard, such as uploading certificates.

Table 7-8. Getting Started Wizard Selections

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>Provides:</td>
</tr>
<tr>
<td></td>
<td>- A high-level overview of your environment's existing pods.</td>
</tr>
<tr>
<td></td>
<td>- Access to the Add Cloud Capacity wizard, used to deploy your first pod in a cloud capacity environment, such as the Microsoft Azure cloud.</td>
</tr>
<tr>
<td>General Setup</td>
<td>Provides details and links for the initial configuration of various pod-wide settings, such as registering an Active Directory domain. See General Setup Section of the Getting Started Wizard.</td>
</tr>
<tr>
<td>Desktop Assignment</td>
<td>- When you have pods deploying in Microsoft Azure, this section provides links to task pages related to working with virtual machines (VMs) that are brought in your Horizon Cloud environment, and for publishing master images. Master images are used in farms and VDI desktop assignments. See Creating Desktop Images for a Horizon Cloud Pod in Microsoft Azure and its subtopics.</td>
</tr>
<tr>
<td></td>
<td>- When you have Horizon 7 on-premises pods or Horizon 7 pods in VMware Cloud on AWS, this section provides links to task pages related to configuring desktop assignments. Desktop assignments allow you to make desktop pools from multiple cloud-connected pods available to end users. See Chapter 6 Setting Up and Managing End-User Assignments in Your Horizon Cloud Tenant Environment.</td>
</tr>
<tr>
<td>App Assignment</td>
<td>Note In this release, this section is not displayed when your cloud-connected pods are only Horizon 7 pods on-premises or in VMware Cloud on AWS.</td>
</tr>
<tr>
<td></td>
<td>When you have pods deploying in Microsoft Azure, this section provides links to task pages related to applications and application assignments. See Applications in Your Horizon Cloud Inventory and its subtopics.</td>
</tr>
</tbody>
</table>

When you have completed the required steps of registering at least one Active Directory domain and giving the Super Administrator role to at least one of your Active Directory user groups, displaying the wizard is optional. To toggle having the wizard appear every time you log in to the Administration Console, move the slider at the bottom of the wizard's main page to **Yes**.

Note Even though the wizard's primary use occurs during your first time setting up a pod and most people toggle off the wizard after that, some people find the wizard might be a convenient launching point when performing some of the standard tasks.

General Setup Section of the Getting Started Wizard

In the first-time configuration for a pod connected to Horizon Cloud, you use the choices in the General Setup section for the initial configuration of various pod-wide settings, such as registering an Active Directory domain. After the first-time configuration, you can use the choices in the General Setup section to open the console pages in which you can edit the configurations.
<table>
<thead>
<tr>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>My VMware Accounts</td>
<td>Give access for other people to log in to the Administration Console and your Horizon Cloud environment using their own My VMware accounts. See Add Administrators to Log in to Your Horizon Cloud Tenant Environment.</td>
</tr>
<tr>
<td>Active Directory</td>
<td>Register the initial Active Directory domain and add the domain bind and domain join information. Domain registration of at least one Active Directory domain is required to give roles and permissions to Administration Console users or assign services to users. You must register an Active Directory domain and finish the domain join before you can perform other operations with the first cloud-connected pod, including registering additional Active Directory domains. For information about tasks related to Active Directory and your pods, see:</td>
</tr>
<tr>
<td></td>
<td>- Performing Your First Active Directory Domain Registration in the Horizon Cloud Environment</td>
</tr>
<tr>
<td></td>
<td>- Register Additional Active Directory Domains as Cloud-Configured Active Directory Domains</td>
</tr>
<tr>
<td></td>
<td>- Add Additional Auxiliary Bind Accounts for a Cloud-Configured Active Directory Domain</td>
</tr>
<tr>
<td>Roles & Permissions</td>
<td>Assign roles to users who will be managing the environment. A role grants its associated permissions to the users given that role. See Assign Horizon Cloud Administrative Roles to Active Directory Groups.</td>
</tr>
<tr>
<td>Cloud Monitoring Service</td>
<td>The Horizon Cloud cloud monitoring service collects and stores session, application, and desktop data from connected pods for monitoring and reporting purposes.</td>
</tr>
<tr>
<td></td>
<td>- Use the Cloud Monitoring Service toggle to enable or disable the Horizon Cloud cloud monitoring service. It is enabled by default.</td>
</tr>
<tr>
<td></td>
<td>When this setting is disabled, the Session Data setting below does not appear.</td>
</tr>
<tr>
<td></td>
<td>- When the cloud monitoring service is enabled, you can use the Session Data toggle to opt in or opt out of tracking user information related to your end users’ sessions. Information collected includes times they logged in, session durations, and average session length per user.</td>
</tr>
<tr>
<td></td>
<td>When you opt in to the collection of user data, Horizon Cloud collects this information and maintains it for the duration of your use of Horizon Cloud. You can delete the collected data by turning off the Session Data toggle.</td>
</tr>
<tr>
<td></td>
<td>When you opt out of the collection of user data but leave the cloud monitoring service enabled, Horizon Cloud collects session data for a limited period and hashes the user name to allow real-time administration while disabling historical and aggregated viewing of information. As a result, some reports, such as the User Usage report, are not available. In this case, the system also continues to collect other data related to applications and desktops in connected pods.</td>
</tr>
<tr>
<td></td>
<td>The information collected by the Horizon Cloud cloud monitoring service is used in charts on the Dashboard page and reports on the Reports page. See Health Visibility and Insights into Your Cloud-Connected Pods Provided by the Cloud Monitoring Service in Horizon Cloud and Reports Page.</td>
</tr>
</tbody>
</table>
Using the Filter Field in the Administration Console

Various pages in the Horizon Cloud Administration Console provide a filter field to filter the information that is displayed on those pages.

When a page has a filter field, as you type characters into the field, the system displays only the subset of the displayed records that contain characters that match that pattern.

Note The system begins matching the pattern and filtering the records displayed in the page after you have typed three (3) characters into the filter field.

On-Screen Filtering in the Reports Pages

In the tabs of the Administration Console's Reports page, the filtering field works on the number of items that are displayed on the user interface itself and not on the total set of system records for that item. These pages support displaying up to 500 items. Therefore, if the system contains more than 500 records for an item, up to 500 items only are displayed in the user interface page. Using the filter field only filters the 500 displayed records. The filter is not applied to the full set. Here is an example to illustrate:

- You have 2000 users assigned to a VDI floating desktop assignment.
- The user names range from vdiuser-1 to vdiuser-2000, such as vdiuser-500, vdiuser-501, vdiuser-502, and so on up to vdiuser-2000.
- Over the course of a day, all 2000 users log in and use a desktop from that assignment.
- When you navigate to **Monitor > Reports > Desktop Mapping**, a displayed message states the report has more than 500 items.
- When you type vdiuser-54 into the filter to see the records for users vdiuser-54, vdiuser-540, vdiuser-541 up to vdiuser-549, you expect to see 11 rows displayed.
However, instead of displaying the expected 11 rows filtered out of the full 2000 set, the Desktop Mapping page displays only the subset of the originally displayed 500 rows that match the filter pattern. To see the full data set, use the export feature (export).

The following screenshot is an example of the Desktop Mapping page where the system has more than 500 records and the pattern entered in the filter field displays the subset of the displayed records.
Troubleshooting for Administrators of Horizon Cloud Environments

You can troubleshoot issues that you might experience in ongoing operation of your Horizon Cloud environment.

This chapter includes the following topics:

- Required Administrator Actions When the Disk Size for a Farm or VDI Desktop Assignment is Increased
- Cannot Successfully Log In at the First Login Screen of the Administration Console
- Convert to Image Task Fails with Timeout Error Even After Addressing the Logged Microsoft Windows Sysprep Errors
- For a Windows Server 2012 Image, Convert to Image Task Fails with Timeout Error
- Notifications When the Primary Domain-Bind Account is Locked Out
- New Farm Remains In Progress
- Windows Error Message Appears When Trying to Connect to a Desktop from a Floating VDI Desktop Assignment
- Give Feedback Menu Choice Does Not Work
- Considerations For Using Nested Active Directory Domain Organizational Units
- Horizon 7 Cloud Connector Known Considerations
- When Your Pod is Not Yet Upgraded to Manifest 1230 or Later, How to Configure the Ability for Domain Accounts to Remote Connect to the Imported Image

Required Administrator Actions When the Disk Size for a Farm or VDI Desktop Assignment is Increased

When you create or edit a farm or a VDI desktop assignment, you have the option of increasing the OS disk size value. When that option is used, the OS disk of each VM in that farm or assignment is created at that size. However, as a result of default behavior of VMs in Microsoft Azure, even though the VM’s disk is expanded, the partition containing the C drive is not expanded to encompass the entire disk. That new
space on the VM's disk is unused until you take actions in the VM to expand the C drive partition to encompass the new space.

Microsoft provides several ways to expand the partition to cover the full disk. The following Powershell commands are untested by VMware and are given only as an example of one way the expansion might be achieved using a script. You must determine the method that is most appropriate for your organization.

```powershell
$size = (Get-PartitionSupportedSize -DiskNumber 0 -PartitionNumber 2)
Resize-Partition -DiskNumber 0 -PartitionNumber 2 -Size $size.SizeMax
```

This example assumes the disk number is 0 and partition number is 2. More information about these Powershell commands is available at https://docs.microsoft.com/en-us/powershell/module/storage/resize-partition?view=win10-ps.

Cannot Successfully Log In at the First Login Screen of the Administration Console

When the My VMware account system is experiencing a system outage for maintenance, you are not able to log in to the Horizon Cloud Administration Console.

Problem

You try to log in to Horizon Cloud at https://cloud.horizon.vmware.com. Even though the Horizon Cloud login screen does not indicate any reason, you find when you enter valid My VMware account credentials into the first login screen, the attempt fails.

Cause

Login authentication into the Horizon Cloud Administration Console relies on My VMware account credentials. If the My VMware account system is experiencing a system outage and cannot take authentication requests, logging in to the Administration Console during that period fails.

Solution

- If you encounter issues logging in to the Administration Console's first login screen, check the Horizon Cloud System Status page at https://status.horizon.vmware.com to see the latest system status.

 On that page, you can also subscribe to receive updates.

Convert to Image Task Fails with Timeout Error Even After Addressing the Logged Microsoft Windows Sysprep Errors

Even though you have taken steps to prevent Microsoft Sysprep issues from occurring when you convert your master VM, the conversion task times out in a subsequent attempt.
Problem

In the first attempt to publish the image, in the Activity page, you see that the image conversion process fails with a timeout error because of Microsoft Sysprep issues related to appx packages. After you follow the optimization steps described in Customize the Master Image VM's Windows Operating System and address any issues described in the Microsoft Sysprep error logs, you try to convert the image. In this second attempt, you see messages in the Activity page as "Waited 20 minutes for virtual machine to power off: Convert the image back to the virtual machine".

Cause

This situation happens because the second attempt to run the Microsoft Sysprep process is hung or not responsive. Use the following steps to work around the issue.

Solution

1. Ensure that you address the Microsoft Sysprep issues according to the error messages in the Microsoft Sysprep error logs and VMware KB 2079196 and Microsoft KB 2769827.
2. In the master VM, examine the VMware DaaS Agent service and ensure it has its startup type set to Automatic.
3. Reboot the master VM.
4. Try the conversion process again on the rebooted master VM.

For a Windows Server 2012 Image, Convert to Image Task Fails with Timeout Error

Sometimes after you have installed applications into a Windows Server 2012 image to customize it before running the publishing workflow, the publishing process fails with the error message about timing out after 20 minutes.

Problem

After installing applications into the Windows Server 2012 master image, logging off the VM, and then starting the publishing workflow, sometimes the workflow fails with the VM powering off while the Microsoft System Preparation (Sysprep) process is running.

Solution

1. Ensure that you address the Sysprep issues according to the error messages in the Sysprep error logs and VMware KB 2079196 and Microsoft KB 2769827.
2. In the master VM, examine the VMware DaaS Agent service and ensure it has its startup type set to Automatic.
3. Reboot the master VM.
4. Try the conversion process again on the rebooted master VM.
Notifications When the Primary Domain-Bind Account is Locked Out

When Horizon Cloud detects an authentication failure due to a locked primary domain-bind account, a notification is displayed in the Administration Console to alert you to remedy the state of the account. The system uses the primary domain-bind account as a service account to connect to the Active Directory (AD) server and query Active Directory.

Each time an administrator successfully logs in to the Administration Console, the system checks whether the primary domain-bind account is in a failed or inactive state. If the system determines the account is in a failed or inactive state, a notification is created. When the notification is created, it is added to the Notifications page and is reflected in the count on the bell icon located in the upper right corner of the console. You can read the notification details by clicking the bell icon or by navigating to the Notifications page.

Note The connection state for the connection between the system and the AD server is cached for 15 minutes. As a result, it might take up to 15 minutes from the time the primary domain-bind account goes into a locked-out state until the notification is reflected in the Administration Console. For example, if you log in to the Administration Console, and then manually locked out your primary domain-bind account in your AD server, it might take up to 15 minutes for the notification to display in the console. Similarly, if you see the lockout notification in the console and then fix the account in your AD server, the console might continue to show the account lockout notification for up to 15 minutes after the fix.

If the primary domain-bind account becomes locked out, the system falls back to use an active configured auxiliary domain-bind account to authenticate the connection to the Active Directory server. When you see a notification that the primary domain-bind account is locked out, you should take action to remedy the state of the primary domain-bind account to ensure successful system connection continues over time.

New Farm Remains In Progress

You initiate creation of a new farm from the Farms page and the system begins creating the farm and its server virtual machines (VMs). However, even after thirty minutes have passed, the page shows the farm's status is still in progress. When you drill into the farm details page, you see that one of its server VMs is in offline status.

Problem

Even though the other servers in the farm show online status, the farm creation process cannot complete because one server continues to show offline status.

Cause

A temporary network connection loss causes the server's state to show as offline in Horizon Cloud, preventing completion of the farm creation workflow.
Solution

1. Navigate to the farm's Servers tab.
2. Select the check box next to the offline server and click **Delete**.

 The system deletes the server VM. Then after a few minutes, the system automatically recreates the server VM, it completes coming online, and the farm changes to online status.

Windows Error Message Appears When Trying to Connect to a Desktop from a Floating VDI Desktop Assignment

When an end user tries to connect to a desktop from a floating VDI desktop assignment, a Windows message appears that states **Windows couldn't connect to the System Event Notification Service service. Please consult your system administrator**.

Problem

After the user sees this message and clicks the displayed **OK** button, the session might disconnect. Sometimes after clicking **OK**, the user can log in to the desktop. Usually after clicking **OK**, the user can try to log into the desktop again and the second attempt is successful.

Cause

This issue is a known Microsoft Windows issue that is described at [this page at answers.microsoft.com](http://answers.microsoft.com).

Give Feedback Menu Choice Does Not Work

When you click the **Give Feedback** menu choice in the Administration Console, nothing happens or a browser error message appears.

Problem

The Administration Console's Help menu has a **Give Feedback** choice. Depending on your settings for your local system's browser or mail application, when you click it, you might see one of the following:

- Nothing happens.
- A browser error message appears.

Cause

The design for this menu choice is to run the new mail action of your local system's default mail application, using `mailto:feedback.horizonair@vmware.com`. This error occurs when the browser cannot perform the `mailto` action, such as under these conditions:

- Your browser is set up to block pop-up windows.
- Your browser's applications list is not configured with a default action for the `mailto` content type or the `mailto` content type is configured with the action **Always ask**.
- Your local system does not have a default local mail application configured.
Solution

1. If your browser blocks pop-up windows, add the Administration Console's URL to the exception list.

2. Configure your browser's mailto content type's action with a mail application, so that the Give Feedback choice can successfully open a new email form.

3. If you do not want to change your browser settings, you can submit feedback by manually sending an email to feedback.horizonair@vmware.com.

Considerations For Using Nested Active Directory Domain Organizational Units

When you create a farm or a VDI desktop assignment using the Horizon Cloud Administration Console, you can use the Computer OU field to optionally specify an Active Directory organizational unit (OU) where the farm's server VMs or the VDI desktop VMs are to be located. You can use these steps to locate the nested OU information for your organization to use in the Computer OU field.

Note Microsoft limits an individual OU to 64 characters or less. An OU path that is longer than 64 characters, but with no individual OU having more than 64 characters, is valid. However, each individual OU must be 64 characters or less.

As a result, in the Administration Console's Active Directory page's Default OU field and the farm and VDI desktop assignments' Computer OU fields, you can enter OUs that are up to 64-characters long, not counting the OU= portion of your entry.

Use these steps to locate the nested OU information in your organization's Active Directory domain server.

Procedure

1. From your Active Directory machine, open Active Directory Users and Computers.

2. Select View > Advanced features (Enabled Advanced features).

3. Navigate to the Organizational Unit where the desktops will be placed.

4. Right-click and select Properties.

5. Click the Attribute editor and select distinguishedName.

6. Click View.

7. Enter the distinguished name information in the Computer OU field in the Horizon Cloud Administration Console.

Only the OU= part of the string is required. The DC= part is optional.
Horizon 7 Cloud Connector Known Considerations

Keep these considerations in mind when you are using Horizon 7 Cloud Connector.

- Use of IPv6 with the Horizon 7 Cloud Connector virtual appliance is not supported.
- If you plan to use Horizon Universal Broker with Horizon 7 Cloud Connector 1.5, you must configure the appropriate proxy settings at the time of deployment. Horizon Universal Broker only recognizes the proxy settings configured during deployment and disregards any changes you make to the proxy settings after deployment.
- Proxy SSL configuration is not supported during the deployment of the Horizon 7 Cloud Connector virtual appliance.
- Information about the static IP and proxy settings for the deployed Horizon 7 Cloud Connector virtual appliance is saved in certain container files. When you want to change those settings on the virtual appliance, you need to connect to the virtual appliance and edit those container files. If you change the static IP address for the deployed virtual appliance in your vSphere environment, you must edit the appropriate container file in the virtual appliance's operating system and run a command to ensure the new IP address is shared with all of the pod's components that depend upon the virtual appliance. See Update the Static IP for the Horizon 7 Cloud Connector Virtual Appliance.
- Before deleting the Horizon 7 Cloud Connector virtual appliance from your vCenter environment, point your browser to the Horizon 7 Cloud Connector appliance's IP address and use the Unplug action to remove the connection between the pod and Horizon Cloud.
- Using a separate vmdadmin account for the Horizon 7 Cloud Connector paired with the Horizon 7 pod is a best practice. Using a separate vmdadmin account avoids configurations being overridden between cloud and on-premises management. Using separate accounts also provides easier auditing for the cloud-based operations.
- The connection between the Horizon 7 Cloud Connector and Horizon Cloud uses outbound Internet port 443. For all of the connector's required DNS, ports, and protocols, see DNS, Ports, and Protocols Requirements When Using Horizon 7 Cloud Connector and a Horizon 7 Pod.
- You set the password for the root user of the Horizon 7 Cloud Connector virtual appliance during deployment. By default, this password does not expire. However, based on your organization's security policy, you might want to periodically update that root password by setting an expiry policy for that root user. For steps, see Set a Password Expiry Policy for the Horizon 7 Cloud Connector Root User.
- If your Connection Server is using self-signed certificates and you then replace those self-signed certificates after pairing the pod with Horizon Cloud, you must log in to the Horizon 7 Cloud Connector interface and use the Reconfigure workflow to perform the certificate validation steps again with the new self-signed certificate. When you log in to the Horizon 7 Cloud Connector interface, you can click Reconfigure and complete the wizard steps to verify communication using the new self-signed certificate from the Connection Server.
If you added an entry to the `/etc/hosts` file to resolve the IP address of the Connection Server, you must restart the `hze-core` service. Use the following command:

```
systemctl restart hze-core
```

Configure a CA-Signed Certificate for the Horizon 7 Cloud Connector Virtual Appliance

For enhanced security, you can configure a custom CA-signed certificate for the Horizon 7 Cloud Connector virtual appliance.

Prerequisites

- Verify that the full certificate chain is available in the PEM format.
- Verify that the private key is available in the PEM format.
- Verify that the FQDN and Subject Alt Name is included in the issued certificate.

Procedure

1. Open an SSH session to your deployed Horizon 7 Cloud Connector virtual appliance.
2. Copy the CA-signed certificate in the directory `/root/server.crt`.
3. Copy the CA-signed key in the directory `/root/server.key`.
4. Back up the existing certificate.
 - For version 1.4 or later of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /opt/container-data/certs/hze-nginx/server.crt /opt/container-data/certs/hze-nginx/server.crt.orig
     ```
 - For version 1.3 or earlier of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /etc/nginx/ssl/server.crt /etc/nginx/ssl/server.crt.orig
     ```
5. Back up the existing key.
 - For version 1.4 or later of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /opt/container-data/certs/hze-nginx/server.key /opt/container-data/certs/hze-nginx/server.key.orig
     ```
 - For version 1.3 or earlier of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /etc/nginx/ssl/server.key /etc/nginx/ssl/server.key.orig
     ```
6 Copy the existing nginx conf file.
 - For version 1.4 or later of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /opt/container-data/conf/hze-nginx/nginx.conf /opt/container-data/conf/hze-nginx/nginx.conf.orig
     ```
 - For version 1.3 or earlier of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /etc/nginx/nginx.conf /etc/nginx/nginx.conf.orig
     ```

7 Copy the CA certificate in the appropriate directory for your virtual appliance version.
 - For version 1.4 or later of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /root/server.crt /opt/container-data/certs/hze-nginx/server.crt
     ```
 - For version 1.3 or earlier of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /root/server.crt /etc/nginx/ssl/server.crt
     ```

8 Copy the CA certificate key file in the appropriate directory for your virtual appliance version.
 - For version 1.4 or later of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /root/server.key /opt/container-data/certs/hze-nginx/server.key
     ```
 - For version 1.3 or earlier of Horizon 7 Cloud Connector, use the following command:
     ```
     cp /root/server.key /etc/nginx/ssl/server.key
     ```

9 Verify the owner and permissions for the certificate and key file.
 - For version 1.4 or later of Horizon 7 Cloud Connector, use the following commands:
     ```
     chown -R hze-nginx:hze-nginx /opt/container-data/certs/hze-nginx
     chmod 644 /opt/container-data/certs/hze-nginx/server.crt
     chmod 600 /opt/container-data/certs/hze-nginx/server.key
     ```
 - For version 1.3 or earlier of Horizon 7 Cloud Connector, use the following commands:
     ```
     chown -R root:root /etc/nginx/ssl
     chmod -R 600 /etc/nginx/ssl
     ```

10 Verify that the issued FQDN in the certificate matches the server name directive in the server listen 443 block in the nginx configuration file.
 - For version 1.4 or later of Horizon 7 Cloud Connector, the nginx configuration file is located at /opt/container-data/conf/hze-nginx/nginx.conf.
 - For version 1.3 or earlier of Horizon 7 Cloud Connector, the nginx configuration file is located at /etc/nginx/nginx.conf.
11 Verify and restart nginx.

- For version 1.4 or later of Horizon 7 Cloud Connector, use the following commands:


  ```
  docker exec -i hze-nginx sudo nginx -t
  systemctl restart hze-nginx
  ```

- For version 1.3 or earlier of Horizon 7 Cloud Connector, use the following commands:

  ```
  nginx -t
  systemctl restart nginx
  ```

12 For version 1.4 or later of Horizon 7 Cloud Connector, update the SSL thumbprints in the welcome screen.

Use the following commands:

```
docker exec -i hze-core sudo /opt/vmware/bin/configure-welcome-screen.py
/usr/bin/killall --quiet vami_login
```

13 Test the new certificate by reloading the Horizon 7 Cloud Connector user interface URL in a Web browser.

14 (Optional) If the certificate works correctly, remove the backed-up files.

- For version 1.4 or later of Horizon 7 Cloud Connector, use the following commands:

  ```
  rm /opt/container-data/certs/hze-nginx/server.crt.orig
  rm /opt/container-data/certs/hze-nginx/server.key.orig
  rm /opt/container-data/conf/hze-nginx/nginx.conf.orig
  ```

- For version 1.3 or earlier of Horizon 7 Cloud Connector, use the following commands:

  ```
  rm /etc/nginx/ssl/server.crt.orig
  rm /etc/nginx/ssl/server.key.orig
  rm /etc/nginx/nginx.conf.orig
  ```

15 Remove the copied CA certificates and key files in the root directory.

Use the following commands:

```
rm /root/server.crt
rm /root/server.key
```

Update the Static IP for the Horizon 7 Cloud Connector Virtual Appliance

Information about the static IP for the Horizon 7 Cloud Connector virtual appliance is saved in a container file in the deployed virtual appliance. If you update the static IP address for the Horizon 7 Cloud Connector virtual appliance, you must also perform some additional steps. You must manually reconfigure
the container settings file and then send the new static IP information to all desktops associated with the paired Horizon 7 pod.

Where the static IP is stored

The static IP address of the deployed Horizon 7 Cloud Connector virtual appliance is saved in the `/opt/container-data/cc-settings/ip.conf` file and is shared with containers running inside the appliance.

For example, the static IP information might appear in the file as follows.

```
cc.address=10.117.163.20
```

Where the proxy settings are stored

The proxy settings of the Horizon 7 Cloud Connector virtual appliance are stored in the `/opt/container-data/cc-settings/proxy.conf` and are shared with containers running inside the appliance.

For example, the proxy information might appear in the file as follows.

```
proxyHost=null
proxyPort=0
proxySsl=false
proxyUsername=null
proxyPassword=
noProxyFor=null
```

Prerequisites

Configure a new static IP address for the Horizon 7 Cloud Connector virtual appliance, and join the appliance to Active Directory.

Procedure

1. Edit the `cc.address` line in the `/opt/container-data/cc-settings/ip.conf` file, as shown in the following example.

   ```
   cc.address=[new static IP address]
   ```

2. To send the new static IP address to all running Horizon 7 desktops, run the following command.

   ```
   docker exec csms /bin/bash -c "cd /usr/local/csms; ./scripts/address_changed.sh"
   ```

Set a Password Expiry Policy for the Horizon 7 Cloud Connector Root User

When deploying the Horizon 7 Cloud Connector OVA into your vSphere environment, the deployment process requires you to set the password for the root user. By default, this password does not expire.
However, based on the user's security policy, you might need to periodically update the root password by setting an expiry policy for the root user.

Note You must enter all commands as the root user after you log in to the Horizon 7 Cloud Connector virtual appliance. If the user sets a custom password expiry policy, it is your responsibility as an administrator to periodically log in and update the password before it expires. The Horizon 7 Cloud Connector virtual appliance does not notify administrators about password expiry.

Procedure

1. To set an expiry policy for the password for the root user, enter the following command:

   ```bash
   chage -M <Max days before password change> -W <Number of days of warning before password expires> root
   ```

 For example, if you want the password to expire after 365 days from the date of password change with a 30-day warning period before the password expires, enter the following command:

   ```bash
   chage -M 365 -W 30 root
   ```

2. To list the current password expiry policy of the root user, enter the following command:

   ```bash
   chage -l root
   ```

When Your Pod is Not Yet Upgraded to Manifest 1230 or Later, How to Configure the Ability for Domain Accounts to Remote Connect to the Imported Image

Starting with pod manifest version 1230 and later for pods in Microsoft Azure, domain accounts can direct connect to image virtual machines that have the agent software installed. Prior to pod manifest 1230, the agent software installed in a domain-joined VM prevents domain accounts from directly connecting to that VM. Starting with pod manifest 1230, you can use a domain account to log in and customize the master image. However, if your pod is at a manifest earlier than 1230, you can use these steps to configure the ability for domain accounts to remote connect to the imported image.

So that you can customize the master image for your organization's needs, you must be able to remotely connect to and log in to that image's virtual machine located in Microsoft Azure. If the master image is joined to an Active Directory domain and your organization has a policy that prevents use of local administrator accounts on domain-joined VMs, you will not be able to log in to the master image until you configure the DaaS Direct Connect Users local group with those domain accounts you want used for customizing the image.

You connect to the master image VMs in Microsoft Azure using your Remote Desktop Protocol (RDP) software. As part of the overall process of creating the master image VM, these items are put in place:

- The VM is always joined to the domain when it was created either using the Import Virtual Machine wizard prior the December 2019 service release. The VM is also joined to the domain when manually
created and you explicitly joined it to the domain, or it was created using the Import Virtual Machine wizard after the December 2019 service release and you selected the wizard option to join the domain. Prior to the December 2019 service release, the Import Virtual Machine wizard always automatically joined the VM to the domain.

- The Horizon agent software is installed in the VM's Microsoft Windows operating system.

By default, the agent software prevents using any account to RDP to the VM's guest Microsoft Windows system other than the VM's local administrator account with which the agent software was installed. For example, when you try to RDP to the master VM using a domain administrator account that is a member of the local Administrators group, even though the connection is made initially, as the Microsoft Windows session starts, a message is displayed. The message states that direct connection to your virtual desktop is not allowed.

![VMware Horizon DaaS Agent](image)

However, some organizations typically have policies that prevent use of the local administrator account on domain-joined VMs. To enable providing domain accounts with the ability to RDP and log in to customize the master VM, installing the agent software also creates a local group named DaaS Direct Connect Users. This group does not have local administration rights. The agent allows domain accounts in this group to connect to the desktop using a direct RDP connection. The DaaS Direct Connect Users group is empty when created. To give the RDP capability to those domain accounts you want used to customize the image, you add those domain users to the DaaS Direct Connect Users local group.

The following screenshot is an example showing the DaaS Direct Connect Users group in the Local Users and Groups window on a master image that was created using the Import Image wizard.
When you cannot direct connect to the VM using the local administrator account, you use a Group Policy Object (GPO) policy in your Active Directory environment to add domain accounts to the DaaS Direct Connect Users group. The following steps describe using the GPO policy's Restricted Groups - Members Of method for adding members to the DaaS Direct Connect Users group on the domain-joined VM.

1. In your Active Directory environment, create a new GPO.
2. Right-click on the GPO and select **Edit**.
3. In the Group Policy Management Editor, navigate to **Computer Configuration > Policies > Windows Settings > Security Settings > Restricted Groups**.
4. Right-click **Restricted Groups** and select **Add Group**.
5. In the Add Group box, type DaaS Direct Connect Users and click **OK**.
6. In the properties dialog, use the **Members of this group** area and its **Add** button to add those domain accounts that you want able to connect to the master VM.
7. When you are finished adding accounts into the **Members of this group** area, click **OK** to close the properties dialog.
8. Close the Group Policy Management Editor and the Group Policy Management Console.
9. Link the newly created GPO to the same domain that is used for the master VM.

After the new GPO is linked to the domain, you can use one of those specified domain accounts to RDP to the master VM and customize it. Follow the steps as described in **Customize the Master Image VM's Windows Operating System** and its subtopics.