
For the best experience, open this PDF portfolio in
Acrobat 9 or Adobe Reader 9, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

EMC® Smarts®

Optical Transport Manager
Version 9.6

User Guide

EMC Smarts Optical Transport Manager User Guide2

Copyright © 2004 - 2019 EMC Corporation. All rights reserved. Published in the USA.

Published January 2019

Dell believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. Dell makes no representations or warranties of any kind with respect to the
information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. Use,
copying, and distribution of any Dell software described in this publication requires an applicable software license.

Dell, EMC, and other trademarks are registered trademarks or trademarks of Dell Inc. or its subsidiaries in the United States and other
countries. All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

http://support.emc.com

CONTENTS

Contents

Chapter 1 Overview

 About the Optical Transport Manager.. 8
 EMC Smarts Optical Transport Manager architecture 8
 EMC Smarts Optical Transport Manager components 14

Topology Server .. 14
Analysis Server ... 15
OTM Adapters ... 17
XD Manager OTM to IP ... 18
Global Manager... 18
Global Console.. 18

 Summary of features of Optical Transport Manager 19
Optical Transport Manager for SONET/SDH.. 19
Optical Transport Manager for PDH.. 20
Optical Transport Manager for WDM .. 21
WDM to SONET/SDH cross-domain correlation 22
PDH to SONET/SDH cross-domain correlation.. 23
Inter-system connectivity resilience... 23

 Using the Global Console.. 24
Map Browser view ... 24

Chapter 2 Classes and Relationships for SONET/SDH

 Optical Transport Manager analysis .. 28
 SONET/SDH object classes in Optical Transport Manager............................ 29

Physical object classes and their relationships 30
Logical connection classes and their relationships................................ 33
Physical topology.. 35

Chapter 3 Classes and Relationships for PDH

 Optical Transport Manager analysis .. 38
 PDH object classes in Optical Transport Manager.. 38

Physical object classes and their relationships 39
Logical object classes and their relationships 41
Physical topology.. 42

Chapter 4 Classes and Relationships for WDM

 About the Optical Transport Manager WDM model 46
Support for Multiplexing and Demultiplexing in the same circuit pack ... 47

 WDM Object Classes in Optical Transport Manager 48
 Classes that represent equipment... 50

Facility class ... 51
OpticalNetworkElement class.. 51
Card classes.. 51
Port classes .. 57
Physical and logical connection classes .. 58

EMC Smarts Optical Transport Manager User Guide 3

Contents

Abstract entities.. 62

Chapter 5 Classes and Relationships for WDM-NG

 About the Next Generation WDM model .. 66
 Next Generation WDM object classes in Optical Transport Manager 66

Chapter 6 Notifications and Impacts for SONET/SDH Networks

 About Optical Transport Manager notifications ... 70
 Notifications and symptomatic events .. 70

Root-cause problems for SONET/SDH network elements 71
Root-cause problems for SONET/SDH network connections................... 72
Diagnosis of external failure.. 73

 Impact analysis... 74
Impact correlation ... 74
Impact notifications .. 75

Chapter 7 Notifications and Impacts for PDH Networks

 About Optical Transport Manager for PDH notifications 78
 Notifications and symptomatic events .. 78

Root-cause problems for PDH network elements 79
Root-cause problems for PDH network connections............................... 80
Diagnosis of external failure.. 80

 Impact analysis... 81
Impact correlation ... 81
Impact notifications .. 81

Chapter 8 Notifications and Impacts for WDM Networks

 Optical Transport Manager analysis for WDM networks 84
 Root-cause notifications for WDM Manager ... 84
 Impact analysis... 85

Impact correlation ... 86
Impact notification .. 87
Cross-domain correlation .. 88

Chapter 9 Notifications and Impacts for Next Generation WDM Networks

 Optical Transport Manager analysis for Next Generation WDM networks 90
 Notifications and symptomatic events .. 90

Root cause events for WDM-NG Manager... 92

Chapter 10 Protection Schemes

 Protection switching support .. 96
The AtRisk Notification .. 96

 1+1 automatic protection switching .. 97
 1:N protection... 98
 1+1 protection .. 100
 2-fiber BLSR/MS-SPRing protection... 101
 4-fiber BLSR/MS-SPRing protection... 103
 UPSR/SNCP protection.. 105
 1+1 ClientCircuit/TopologicalLink Protection... 106
 SNC (Subnetwork connection) protection:... 110

4 EMC Smarts Optical Transport Manager User Guide

Contents

 Y-Cable protection .. 110

Appendix A Abbreviations and Acronyms

Appendix B User-Defined Attributes in Notifications

 User-defined attributes for SONET/SDH Circuits and Trails 114
 User-defined attributes for Low Order SONET/SDH Circuits and Trails........ 114
 User-defined fields for OpticalNetworkElement ... 115

Appendix C Naming Conventions for Object Classes

 Generic naming convention .. 118
Optical Transport Manager for SONET/SDH class names...................... 119
Optical Transport Manager for WDM class names 119

Index

EMC Smarts Optical Transport Manager User Guide 5

Contents

6 EMC Smarts Optical Transport Manager User Guide

CHAPTER 1
Overview

The EMC Smarts Optical Transport Manager provides root cause and impact analysis for
network services using optical fiber transport networks.

Topic covered in this chapter are:

◆ About the Optical Transport Manager.. 8
◆ EMC Smarts Optical Transport Manager architecture ... 8
◆ EMC Smarts Optical Transport Manager components .. 14
◆ Summary of features of Optical Transport Manager ... 19
◆ Using the Global Console.. 24

Overview 7

Overview

About the Optical Transport Manager
The Optical Transport Manager includes the following components:

◆ Optical Transport Manager

Optical Transport Manager consists of four domain managers: SONET/SDH, WDM, low
Order SONET/SDH (also referred to as PDH), and the Next Generation WDM (WDM-NG)
server. The first three domain servers are split into two functional servers: Topology
and Analysis. The WDM-NG server works with EMC M&R to collect data from EMS
systems that support TMF 864. Both topology and analysis functions are combined in
the WDM-NG server.

◆ XD Manager OTM to IP

The XD Manager OTM to IP cross-correlates root-cause and impact analysis between a
managed optical domain and the IP network. The XD Manager OTM to IP is described
in the EMC Smarts XD Manager for OTM to IP User Guide.

Other required products
In addition, the EMC Smarts Optical Transport Manager works in conjunction with the
following:

◆ EMC Smarts Service Assurance Manager

• Global Manager

• Global Consoles

◆ EMC M&R (when the OTM WDM-NG domain manager is installed)

• SolutionPack for Optical Wavelength Services

• SolutionPack for EMC Smarts

These are provided in a separate download and have their own documentation.

EMC Smarts Optical Transport Manager architecture
Figure 1 on page 9 shows how the Optical Transport Manager relates to the Service
Assurance Manager, adapters, and the optical network.

8 EMC Smarts Optical Transport Manager User Guide

Overview

Figure 1 EMC Smarts Optical Transport Manager Architecture

Note: Figure 1 on page 9 does not show the interaction among the OTM servers and the
domains. It does not show the XD Manager OTM to IP server or the WDM-NG domain
manager. Figure 2 on page 12 shows the architecture when EMC M&R and the WDM-NG
domain manager are installed with the SolutionPack for Optical Wavelength Services.

The components of the Optical Transport Management functionality are listed in Table 1
on page 10. Components and functionality are discussed in more detail in the following
sections.

Optical Transport Manager

WDM Analysis
EMC Smarts

Global Manager
EMC Smarts

SONET/SDH Analysis
EMC Smarts

Adapter AdapterAdapter

Optical
Network

OSS OSSOSS

Adapter

Some adapters
communicate
directly with

network
elements

Operations Support Systems
(EMS, inventory,

event management)

Analysis servers perform
root cause and
impact analysis

Global Manager provides
consolidation point and
access to notifications

Adapters retrieve topology
from OSS and send to

Optical Transport Manager

Notifications and topology
are displayed in the

Global Console

Low Order SDH Analysis
EMC Smarts

WDM Topology
EMC Smarts

SONET/SDH Topology
EMC Smarts

Low Order SDH Topology
EMC Smarts

Topology/Monitor servers
model network topology and
monitor events and alarms

EMC Smarts Optical Transport Manager architecture 9

Overview

Table 1 Components of the Optical Transport Manager

Category Component Description

Optical
Transport
Manager

Optical
Transport
Manager for
SONET/SDH
Topology Server

• Receives topology from Inventory Adapters.
• Maintains repository, monitors status and events for high-order SONET and

SDH components in the underlying network.
• Communicates with PDH and WDM Topology Servers for cross-domain

root-cause analysis.
• Receives real-time events from Device and Event Adapters and passes them

to SONET/ SDH Analysis Server.

Optical
Transport
Manager for
PDH Topology
Server

• Receives topology from Inventory Adapters.
• Maintains repository, monitors status and events for low-order SONET and

SDH components in the underlying network.
• Communicates with SONET/SDH Topology Server for cross-domain

root-cause analysis.
• Receives real-time events from Device and Event Adapters and passes them

to PDH Analysis Server.

Optical
Transport
Manager for
WDM Topology
Server

• Receives topology from Inventory Adapters.
• Maintains repository, monitors status and events for WDM components in

the underlying network.
• Communicates with SONET/SDH Topology Server for cross-domain

root-cause analysis.
• Receives real-time events from Device and Event Adapters and passes them

to WDM Analysis Server.

Optical
Transport
Manager for
WDM-NG Server

• Receives topology and events collected from TMF 864-compliant EMC
systems. Requires installation of the EMC M&R platform , the SolutionPack
for Optical Wavelength Services ,and the SolutionPack for EMC SMarts.

• Passes notifications to the SolutionPack for EMC Smarts for display in the
EMC M&R user interface.

Note: The SolutionPack for Optical Wavelength Services Summary
Sheet article provides more information.

Optical
Transport
Manager for
SONET/ SDH
Analysis Server

• Contain high-order SONET/SDH topology information, objects, their
attributes, and relationships needed for analysis.

• Receives events and alarms from SONET/SDH Topology Server.
• Responsible for carrying out root-cause analysis within the SONET/SDH

domain as well as across different OTM domains.
• Communicates with SAM for display.

Optical
Transport
Manager for
PDH Analysis
Server

• Contain low-order SONET/SDH topology information, objects, their
attributes, and relationships needed for analysis.

• Receives events and alarms from PDH Topology Server.
• Responsible for carrying out root-cause analysis within the PDH domain as

well as across different OTM domains.
• Communicates with SAM for display.

Optical
Transport
Manager for
WDM Analysis
Server

• Contain WDM topology information, objects, their attributes, and
relationships needed for analysis.

• Receives events and alarms from WDM Topology Server.
• Responsible for carrying out root-cause analysis within the WDM domain as

well as across different OTM domains.
• Communicates with SAM for display.

10 EMC Smarts Optical Transport Manager User Guide

Overview

Note: The adapters deployed depend on the specific sources of topology and alarm data
present in the environment. These can be a combination of element managers, OSSs
deployed, and the devices themselves.

Figure 2 on page 12 shows the flow of data when the WDM-NG domain manager is
installed. This OTM manager can process events coming from TMF 864-compliant EMS
systems by using the EMC M&R platform with two SolutionPacks installed (SolutionPack
for Optical Wavelength Services and the SolutionPack for EMC Smarts)

Figure 3 on page 13 shows the high-level view of the flow of data among the non-WDM-NG
components when EMC M&R is not deployed in your network.

Cross-Domain
Correlation

XD Manager
OTM to IP
Analysis Server

• Topology contains a subset of objects from OTM and IP managed domains.
• Cross-correlates events between managed optical domain and the IP

network.
• Performs root-cause and impact analysis across domains.

Adapters (see
note below)

Inventory
Adapter

• Retrieves physical and logical topology information from an element
management system (EMS) in the Operations Support System (OSS)
environment or from a database or flat file.

• May extract data from multiple inventory systems, each with its own adapter,
to derive a complete end-to-end model.

Event Adapter • Retrieves alarm data from a system in the OSS environment.
• May provide some level of normalization of alarms among equipment from

different vendors.
• Several event adapters may be required in order to gather all of the alarms

from the network.

Device Adapter • Communicates directly with specified devices (as opposed to
communicating through an EMS) to retrieve topology and alarm information.

• Usually, a device adapter supports a small range of models from one vendor.

Consolidation
and
Presentation

Global Manager
(Service
Assurance
Manager)

• The Global Manager provides a consolidation function for root-cause and
impact notifications that are created as a result of analysis by underlying
Domain Managers.

• A third-party system can use the Global Manager as a single integration
point to retrieve all notifications in a set of distributed Domain Managers
that may be managing different geographical or technology domains.

Global Console • The Global Console is the graphical user interface that provides users with
the ability to navigate the topology of physical and logical entities in the
network.

• View notifications from underlying managers using filters that match users’
roles.

Table 1 Components of the Optical Transport Manager (continued)

Category Component Description

EMC Smarts Optical Transport Manager architecture 11

Overview

Figure 2 Data flow in EMC Smarts Optical Transport Manager with WDM-NG domain manager, EMC
M&R, and the SolutionPack for Optical Wavelength Services installed.

12 EMC Smarts Optical Transport Manager User Guide

Overview

Figure 3 Data flows in EMC Smarts Optical Transport Manager with WDM, Sonet/SDH, and PDH

There are three types of adapters.

◆ Inventory Adapters gather topology data from OSSs and/or from network elements.

◆ Event Adapters gather alarm data from OSSs and/or from network elements.

◆ Device Adapters (not shown in Figure 3 on page 13) may supply data directly to one or
more of the Optical Transport Manager Domain Manager Topology Servers.

OTM uses SDXA (Simple Data Exchange Adaptor) for topology transfer from a Topology
Server to the Analysis Server within the same OTM domain.

The Optical Transport Manager for SONET/SDH shares some topology and alarm data with
the Optical Transport Manager for WDM and the Optical Transport Manager for PDH in order to
enable them to perform cross-domain correlation.

Information is propagated between Topology Servers of different OTM domains (for
example, from a SONET/SDH Topology server to a PDH Topology server) using Remote
Accessor Instrumentation to perform cross-domain root-cause analysis.

Customer
Operations

Support System
Global Console and other Topology Data

Global Manager
EMC Smarts

Notifications are passed to the
Global Manager. Topology is

Global Console and other
Customer OSSs access

topology and notifications
Alarms/Notifications

Topology Data

WDM Analysis
EMC Smarts

Global Manager. Topology is
passed to the Global Console.

SONET/SDH Analysis
EMC Smarts

PDH Analysis
EMC Smarts

OTM

Notifications and needed
topology are forwarded to the

Adapters may retrieve topology
and/or events for Topology

Servers

WDM Topology
EMC Smarts

SONET/SDH Topology
EMC Smarts

PDH Topology
EMC Smarts

topology are forwarded to the
Analysis Servers.

Servers.

Topology and alarms are
gathered from OSS and

network elements

AdapterAdapter Adapter Adapter AdapterAdapter

EMC Smarts Optical Transport Manager architecture 13

Overview

Each Analysis Server sends notifications to the Global Manager, which acts as a
consolidation point. The Global Console and other customer operations support systems
retrieve notifications from the Global Manager and topology from the Analysis Servers.

EMC Smarts Optical Transport Manager components
The term Optical Transport Manager is used when referring to functionality that is common
to the Domain Managers:

◆ Optical Transport Manager for SONET/SDH

◆ Optical Transport Manager for PDH (low order SONET/SDH)

◆ Optical Transport Manager for WDM

◆ Optical Transport Manager for WM-NG

The functions of SONET/SDH, PDH, and WDM Domain Managers are divided between two
servers:

◆ Topology Server

◆ Analysis Server

Note: Currently only one Topology Server with one Analysis Server is supported for
SONET/SDH, PDH, and WDM. Splitting these functions allows the OTM Domain Servers to
improve scalability to larger optical networks.

The topology and analysis functions are combined in the WDM-NG server. WDM-NG works
with the SolutionPack for Optical Wavelength Services and the EMC M&R platform to
collect data from EMS systems that support TMF 864. The SolutionPack for Optical
Wavelength Services Summary Sheet article provides more information.

In addition to the Domain Managers, EMC Smarts Optical Transport Manager works in
conjunction with:

◆ XD Manager OTM to IP

◆ Global Manager and Global Console, both part of the EMC Smarts Service Assurance
Manager.

◆ EMC M&R, the SolutionPacks for Optical Wavelength Services, and the SolutionPack
for EMC Smarts

This section describes in more detail the functions of the various components of EMC
Smarts Optical Transport Manager.

Topology Server

The Optical Transport Manager Topology Servers provide these major functions for their
domains:

◆ Model support for optical networks

◆ Discovery of network topology

◆ Notification reporting

14 EMC Smarts Optical Transport Manager User Guide

Overview

These functions are described in the following sections.

Optical transport model
The Topology Server discovers and maintains a comprehensive and accurate repository of
the devices, physical connections, logical connections, and protection groups that are
present in an optical network. The information is obtained by collecting bulk data and
events from EMSs and other OSSs such as inventory managers, adapters, databases, and
flat files.

Every Topology Server contains an object model definition for the technology domain that
it is managing. EMC Smarts object models are defined using the EMC Smarts Common
Information Model (ICIM). The EMC Smarts ICIM Reference found at
BASEDIR/doc/html/icim/index.html provides more information.

The data model defines a class hierarchy and the properties, relationships (associations),
and observable events (exceptional conditions) for each class. The model captures the
alarm-reporting mechanism of optical networks including root-cause alarms such as LOS
(Loss of Signal) and LOF (Loss of Frame), and indication alarms such as AIS (Alarm
Indication Signal) and RDI (Remote Defect Indication).

Discovery
When a topology adapter is run, it creates topology from the OSSs for the Topology Server.
Topology information contains both physical and logical inventory. Physical inventory can
include the devices themselves, the network element, the equipment installed in those
network elements, and the ports and interfaces contained in the equipment, and the
physical connections. Logical inventory includes the applications, protocols, and logical
connections.

During discovery, the adapter information creates the Topology Server repository by
creating instances of the objects specified in the model, and by creating relationships
between the objects. When discovery is complete, the repository contains a
representation of the components of the network and how they are connected.

For technical or administrative reasons, some devices cannot be discovered. If needed,
unmanaged entities can be introduced into the topology by means of a specially designed
inventory adapter that uses an API, a flat file, XML or a database to create a “black box”
object. A black box may consist of one or more contiguous devices or entities, sometimes
called a “black box cloud”.

Notification reporting
Event adapters monitor their part of the network for problems and indicate when an event
state has changed. All real-time event and alarm updates from various events and alarms
monitoring systems are fed to the Topology Server by one or more adapters. They are
passed to the Analysis Server for root-cause analysis.

Analysis Server

The Optical Transport Manager Analysis Servers provide these major functions for their
domains:

◆ Model support for optical networks

◆ Root-cause analysis

EMC Smarts Optical Transport Manager components 15

Overview

◆ Impact analysis

These functions are described in the following sections.

Optical transport model
The Analysis Server has its own model and repository. This model contains all the object,
attributes and relationships (associations) necessary for each class. The model captures
the alarm-reporting mechanism of optical networks for discovering root-cause problems
and the causality between a root-cause problem and the observable events (exceptional
conditions) it causes.

The model is used to populate the Codebook that is used to diagnose root-cause
problems given a set of alarm conditions.

Root-cause analysis
The Analysis Server performs root-cause and impact analysis within its specific OTM
domain. It uses the EMC Smarts patented Correlation Codebook Technology (CCT). The
codebook contains an entry for each problem that can occur on each modeled object,
together with the symptomatic events that result when that problem occurs. This unique
list of symptoms is called the problem signature.

After initial discovery, and following topology updates to the repository, the codebook
entries for the possible problems in the network are calculated by applying the problem
definitions in the model to the actual network topology that has been discovered. This
pre-calculation of problem signatures allows the Optical Transport Manager to quickly and
accurately diagnose the root-cause problems in the network, using the currently active
alarm conditions as input. When problems have overlapping signatures, the codebook
algorithm proposes a set of most likely problems together with the probability that each
one is a root cause. The Analysis Server compares the current event state of the network
against the codebook at a user-configurable rate.

Equipment in optical networks is comprehensively instrumented in order to detect when a
failure occurs, and to inform other network elements that a problem has occurred. This
information is forwarded to management systems in the form of alarms.

A single fault in an optical network can result in many alarms being generated at different
layers, such as section/regen, line/multiplexer, or path. Many of these alarms appear at
points distant from the source of the problem. Using codebook correlation to perform
root-cause analysis, the Optical Transport Manager Analysis Server identifies some of
these alarms as symptomatic events of a root-cause problem, while it identifies other
events as impacted by a root-cause problem.

Impact analysis
Impact analysis has two components:

◆ Impact correlation

◆ Impact notification

Impact correlation is the process by which alarm conditions are identified as being
explained by a root cause. For example, a line failure in SONET/SDH may cause many
path-level alarms. The Optical Transport Manager Analysis Server identifies events
corresponding to these alarms as impacts of the underlying root cause.

16 EMC Smarts Optical Transport Manager User Guide

Overview

Impact notification identifies those end-to-end circuits that are affected when underlying
connections are down. There are no network alarms directly associated with the
end-to-end connections that would otherwise indicate their operational status.

OTM Adapters

The Optical Transport Manager works in conjunction with the following types of adapters,
which may be implemented in some deployments:

◆ Inventory adapters

◆ Event adapters

◆ Device adapters

Adapters are custom-built for the specific brand of equipment, type of device, and
deployment environment of the client. They can be purchased separately from EMC,
created by the client, created by the Custom Engineering (CE) group at EMC, or by a
third-party developer.

Inventory adapters
Inventory adapters (also known as topology adapters) gather topology data from an
inventory system that is part of the OSS environment in an optical-based service provider
or enterprise. Depending on operator environment, the inventory system might provide a
complete inventory of devices, including physical and logical connections; or it might
provide a subset of topology data that describes the links between devices that are
managed by different element managers, and/or end-to-end circuits that can pass over
multiple vendor devices. The output of the Inventory adapter gets read by the Topology
Server.

Inventory adapters can be implemented that collect topology data from a variety of
sources including: flat file, XML, database, and API. Inventory adapters can support bulk
loading, scoped loading, and inventory update events.

Event adapters
Event adapters acquire alarms from network devices, element managers, or other OSS
systems, map the data into the EMC Smarts format, and send it to a Topology Server that
forwards it to the Analysis Server. Event adapters can acquire alarms in real time and/or
periodically.

Event adapters can be implemented to support a variety of alarm sources including: flat
file, XML, database, and API. Event adapters can support bulk loading, scoped loading,
and events.

Device adapters
Device adapters communicate directly with specific devices to retrieve topology and alarm
information. No EMS is needed for a device adapter--the adapter translates topology and
event messages into a format that a Inventory Adapter can understand.

Usually, a device adapter supports a small range of models from one vendor.

EMC Smarts Optical Transport Manager components 17

Overview

OTM Adapter for TMF 814
The EMC Smarts Optical Transport Manager Adapter for TMF 814 is available to interface
with High order SONET/SDH devices monitored by Ciena Lightworks On-Center or Cisco
Transport Manager (CTM). These EMSs monitor transport I/O cards (such as OCx/STMx,
DSx, or Ethernet) and cross-connect switch cards. The OTM Adapter for TMF 814 makes the
EMS data available for OTM for notification and root cause analysis.

The adapter can be configured to run as an Event adapter or as both an event and
Topology adapter.

The EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide provides
functional details and the EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, VoIP,
OTM, and NPM Managers provides installation and configuration details.

XD Manager OTM to IP

The XD Manager OTM to IP correlates failures between the underlying optical network
domain and the IP network domain. When a failure in the optical network impacts a device
in the IP network, cross-domain correlation identifies both the root cause and the
impacted IP facility. The XD Manager OTM to IP collects information from the following
sources:

◆ IP Availability Manager

◆ Optical Transport Manager SONET/SDH Server for Analysis

◆ Optical Transport Manager WDM Server for Analysis

◆ Optical Transport Manager PDH Server for Analysis

◆ Optical Transport Manager WDM-NG Server (includes both Analysis and Topology)

◆ A custom cross-domain topology Inventory adapter that provides source mapping for
the optical/IP network connections

With this information, the XD Manager OTM to IP creates a cross-domain topology and
monitors and correlates alarms regarding changes to elements in the topology. The EMC
Smarts XD Manager for OTM to IP User Guide provides more information.

Global Manager

The Global Manager is part of EMC Smarts Service Assurance Manager. It consolidates
notifications from one or more Optical Transport Manager Domain Managers. The Global
Manager also can provide data to a customer’s OSS (Operation Support System). It
provides access to notifications through the Global Console.

Global Console

The graphical user interface for the Optical Transport Manager is provided by the Global
Console. Operators can use the following features of the Global Console:

◆ Topology Browser---View the objects that model the network and navigate the
relationships between objects.

◆ Map Browser---View a physical map of the major optical objects and the connections
between them and other network objects.

18 EMC Smarts Optical Transport Manager User Guide

Overview

◆ Notification Log---View notifications according to filter criteria that can be configured
on any combination of notification attributes, and view the attribute values
associated with each object.

◆ Administrative Console--For users with administrative privileges, the administration
console offers configuration options.

The Global Console supports creation of customized console layouts that are tailored to
roles in the organization, or to specific users.

The Global Console is described in the EMC Smarts Service Assurance Manager Operator
Guide.

Summary of features of Optical Transport Manager
The Optical Transport Manager supports the following optical network technologies:

◆ Optical Transport Manager for SONET/SDH---manages high-order SONET/SDH

◆ Optical Transport Manager for PDH---manages low-order SONET/SDH

◆ Optical Transport Manager for WDM---manages WDM networks

In addition, the Optical Transport Managers support WDM to SONET/SDH cross-correlation
and SONET/SDH to PDH cross-correlation.

The features supported for each network type are described in the following sections.

Optical Transport Manager for SONET/SDH

For SONET/SDH networks, the Optical Transport Manager supports various network
configurations, providing root-cause analysis, impact analysis, and impact notification.

SONET/SDH network configurations
The Optical Transport Manager supports connections over any combination of the
following configurations in SONET/SDH networks:

◆ Singleton device where a subnetwork connection is cross-connected from one port of
a network element to another port on the same network element

◆ Linear chain, including 1+1 protection

◆ For SONET: Ring, including 2F-BLSR, 4F-BLSR, UPSR
For SDH: Ring, including 2F-MS-SPRing, 4F-MS-SPRing, SNCP

◆ Mesh, where subnetwork connections can be rerouted when failures occur

These configurations are described in more detail in “Classes and Relationships for
SONET/SDH” on page 27 and “Protection Schemes” on page 95.

SONET/SDH root-cause analysis
The Optical Transport Manager for SONET/SDH identifies the following symptoms to diagnose
the root-cause problem:

◆ Failed or removed card, equipment or circuit pack

◆ Signal degradation

Summary of features of Optical Transport Manager 19

Overview

◆ Link failure

◆ OpticalNetworkElement down

◆ Circuit down

◆ Circuit at risk

Special analysis is performed for links that connect to devices that are not managed by the
Optical Transport Manager. This analysis diagnoses when alarms are due to problems in
the connected network rather than in the network managed by the Optical Transport
Manager.

“Root-cause problems for SONET/SDH network elements” on page 71 and “Root-cause
problems for SONET/SDH network connections” on page 72 provide more information.

SONET/SDH impact correlation
When a failure occurs in an optical network, alarms propagate from the failure points both
upstream and downstream at the line and path levels. The impact correlation feature of
the Optical Transport Manager identifies these alarms as impacts of the underlying root
cause. In large networks, hundreds or even thousands of such impacts may be identified,
leaving the few root-cause problems to be more easily tracked and managed through their
resolution.

“Impact correlation” on page 74 provides more information.

SONET/SDH impact notification
When a failure occurs in a SONET/SDH network and protection switching is unavailable, all
the circuits that depend on the failed element lose connectivity. Since circuits are
end-to-end entities that can span devices managed by multiple EMSs, they are not known
about at the EMS level.

When the Optical Transport Manager diagnoses problems in any element that is
underlying a circuit, it creates a notification for the circuit.

“Impact correlation” on page 74 provides more information.

Optical Transport Manager for PDH

The Optical Transport Manager for PDH provides topology and analysis for low-order
SONET/SDH network elements. “PDH” is used to designate the low-order SONET/SDH
domain manager because PDH traffic is handled as payload on low-order SONET/SDH
network elements. For these network elements, Optical Transport Manager supports a
point-to-point network configuration, providing root-cause analysis, impact analysis, and
impact notification.

PDH network configurations
The Optical Transport Manager supports point-to-point connections for low-order circuits.

PDH root-cause analysis
The Optical Transport Manager for PDH identifies the following symptoms to diagnose the
root-cause problem:

◆ Failed or removed card, equipment or circuit pack

20 EMC Smarts Optical Transport Manager User Guide

Overview

◆ Signal degradation

◆ Link failure

◆ OpticalNetworkElement down

◆ Circuit down

◆ Circuit at risk

Special analysis is performed for links that connect to devices that are not managed by the
Optical Transport Manager. This analysis diagnoses when alarms are due to problems in
the connected network rather than in the network managed by the Optical Transport
Manager.

“Root-cause problems for PDH network elements” on page 77 and “Root-cause problems
for PDH network connections” on page 77 provide more information.

PDH impact correlation
When a failure occurs in an optical network, alarms propagate from the failure points both
upstream and downstream at the line and path levels. The impact correlation feature of
the Optical Transport Manager identifies these alarms as impacts of the underlying root
cause. In large networks, hundreds or even thousands of such impacts may be identified,
leaving the few root-cause problems to be more easily tracked and managed through their
resolution.

“Impact correlation” on page 77 provides more information.

PDH impact notification
When a failure occurs in a PDH (low-order SONET/SDH) network and protection switching
is unavailable, all the circuits that depend on the failed element lose connectivity. Since
circuits are end-to-end entities that can span devices managed by multiple EMSs, they are
not known about at the EMS level.

When the Optical Transport Manager diagnoses problems in a subnetwork connection that
is part of a circuit, it creates a notification for the circuit.

“Impact correlation” on page 77 provides more information.

Optical Transport Manager for WDM

For WDM networks, the Optical Transport Manager supports various network
configurations, providing root-cause analysis, impact correlation, and impact notification.

WDM network configurations
The Optical Transport Manager supports connections over the linear chain configuration in
WDM networks.

“WDM Object Classes in Optical Transport Manager” on page 48 provides more
information.

WDM root-cause analysis
The Optical Transport Manager for WDM identifies the following symptoms to diagnose the
root-cause problem:

Summary of features of Optical Transport Manager 21

Overview

◆ Card failure (entire card or component on a card)

◆ Improper card removal

◆ Line failure between components in a device

◆ Line failure between devices

◆ Line degradation

◆ Automatic power reduction/shutdown

◆ Port problems such as laser temperature, laser bias, and reflection

◆ OpticalNetworkElement down

Special analysis is performed for links that connect to devices that are not managed by the
Optical Transport Manager. This analysis diagnoses when alarms are due to problems in
the connected network rather than in the network managed by the Optical Transport
Manager.

“Root-cause notifications for WDM Manager” on page 84 provides more information.

WDM impact correlation
When a failure occurs in a WDM network, alarms can propagate from the failure points
both upstream and downstream and also through the OTS, OMS, OCH, and OCN layers.
The impact correlation feature of the Optical Transport Manager identifies these alarms as
impacts of the underlying root cause. In large networks, hundreds or even thousands of
such impacts may be identified, leaving the few root-cause problems to be more easily
tracked and managed through their resolution.

“Impact correlation” on page 86 provides more information.

WDM impact notification
The end-to-end connections in WDM networks correspond to the physical links between
SONET/SDH devices whose data the WDM network is carrying.When a failure occurs in a
WDM network, all of the end-to-end connections that depend on the failed element lose
connectivity. The Optical Transport Manager for WDM creates notifications on these
end-to-end connections, and uses these notifications to cross-correlate with SONET/SDH
failures.

“Impact notification” on page 87 provides more information.

WDM to SONET/SDH cross-domain correlation

Cross-domain correlation is the capability of determining when alarms in one network
domain are caused by problems in another. The Optical Transport Manager performs
cross-correlation between the WDM and SONET/SDH domains.

Failures in the WDM network cause problems in the SONET/SDH network, and conversely,
failures in the SONET/SDH network cause alarms in the WDM network. The Optical
Transport Manager correlates alarms in each of the WDM and SONET/SDH domains and
identifies which SONET/SDH problems are impacts of underlying WDM problems, and
which WDM alarms are explained by SONET/SDH problems.

“Cross-domain correlation” on page 88 provides more information.

22 EMC Smarts Optical Transport Manager User Guide

Overview

PDH to SONET/SDH cross-domain correlation

The Optical Transport Manager performs cross-correlation between the PDH and
SONET/SDH domains to determine when alarms in one network domain are caused by
problems in another.

Managed objects, for the most part, are populated to either the domain: SDH/SONET for
high-order objects or PDH domain for low-order objects. PDH to SONET/SDH cross-domain
correlation is made possible by sharing the HighOrder_Trail object in both domains.

HighOrder_Trail has the same class name and instance name in both PDH and
SONET/SDH domains. However, the trails in the PDH domain will not have any associated
CTPs (that is, a-end, z-end, and CTPsInRoute). The PDH objects will also not have any
layering to the SONET/SDH physical objects.

HighOrder_Trail has a one-to-many relationship to the LowOrderCircuits in the PDH
domain.

Inter-system connectivity resilience

To ensure inter-system connectivity resilience in the case of failure or loss of
communication, the Optical Transport Manager provides the following:

◆ Buffering of events being sent between components of Optical Transport Manager

◆ Ability to retrieve northbound alarms that were held after a communications failure

◆ Ability to retrieve active southbound alarms after connection with an EMS is
interrupted

◆ Ability to switch to a peer EMS instance in the case of failure

◆ Rediscovery of devices after failure of EMS/device communication

Failure between Optical Transport Manager components
Subscribed-to events are buffered during a loss of communications, and are sent when
communications are re-established. For example, notifications sent from an Optical

Transport Manager for SONET/SDH Analysis Server to the Global Manager.

Failure between Optical Transport Manager and northbound system (northbound alarms)
Notifications are held in the Optical Transport Manager Analysis servers until
acknowledged and cleared. They are archived and removed after a configurable time
period (default, four hours). A northbound system is able to retrieve missed alarms (for
example, following loss of communications) until the alarms are archived.

Failure between the Optical Transport Manager and southbound system (southbound events)
If the Optical Transport Manager suffers a loss of communication with an EMS, it retrieves
all the active alarms on reconnection.

Failure of an EMS instance (southbound EMS connectivity)
Optical Transport Manager EMS adapters can operate in environments where two EMS
instances are running in parallel. If the first instance becomes unresponsive, the adapter
switches to the other EMS instance.

Summary of features of Optical Transport Manager 23

Overview

Failure of an EMS to managed device connection
If the EMS notifies the Optical Transport Manager of a loss of communication with a
device, the Optical Transport Manager rediscovers the device following reconnection.

Using the Global Console
When using the Global Console to view notifications, attach to the Global Manager
(Service Assurance Manager) configured to receive notifications from one or more of the
Optical Transport Manager Analysis Servers.

When using the Global Console to view optical network topology, attach the Global
Console to an Optical Transport Manager Topology Server configured to receive.Attaching
to the topology server also allows you to use the Map Browser to view the major nodes
and connections in a physical map. Objects shown and their relationships are described
in “Map Browser view” on page 25.

The configuration appendix to the EMC Smarts Installation Guide for SAM, IP, ESM, MPLS,
NPM, OTM, and VoIP Managers explains how to configure the names of the servers.

The EMC Smarts Service Assurance Manager Operator Guide provides information about
the Global Console.

Map Browser view

The Map Browser of the Service Assurance Manager Global Console displays the optical
network nodes and physical connections in a graphical view. An example is shown in
Figure 4 on page 24:

Figure 4 An example of the physical map

For Optical Transport Manager, network nodes are instances of the
OpticalNetworkElement class. The physical connections between them are instances of
the TopologicalLink class in both high and low order SONET/SDH domains or the FiberLink
class in the WDM domain.

24 EMC Smarts Optical Transport Manager User Guide

Overview

The Map Browser graphical representation would be too complex to show every one of the
optical network objects. In order to reduce the number of objects that are imported into
SAM for display to a manageable number, objects between the OpticalNetworkElement
and the TopologicalLink or Fiberlink are not imported to the SAM model and are not
displayed.

SONET/SDH and Low Order SONET/SDH domains
In the SONET/SDH domains, the PTP (Physical Termination Point) class will not be shown.
Figure 5 on page 25 compares the SONET/SDH model with the SAM model.

Figure 5 Comparison of SONET model objects with SAM model objects

The DropSideTopologicalLink, with one end connected to the edge of the managed
network, is shown in the map similarly to the TopologicalLink, without the PTP between
the DropSideTopologicalLink and the OpticalNetworkElement.

Black box devices

The Black Box classes, BBTopologicalLink and BBDropSideTopologicalLink, represent one
or more unmanaged network devices. They are shown in the physical map similarly to
TopologicalLink and DropSideTopologicalLink objects, without the PTP between them and
the managed network object.

WDM domain
In the WDM domain, the Amplifier, Card, Transponder, Port, OutputPort, and InputPort
classes will not be shown. Figure 6 on page 26 compares the WDM model with the SAM
model.

OpticalNetworkElement

PTP

TopologicalLink

0..*

0..1

ComposedOfPTPs

ConnectedVia

PartOf

ConnectedTo 0..2

1

TopologicalLink

0..*ConnectedVia

ConnectedSystems 0..2

OpticalNetworkElement

SONET Model Map Browser Model

Using the Global Console 25

Overview

Figure 6 Comparison of WDM model objects with SAM model objects

Black box devices

The Black Box classes, BBTopologicalLink and BBDropSideTopologicalLink, represent one
or more unmanaged network devices. They are shown in the physical map similarly to
TopologicalLink and DropSideTopologicalLink objects, without the PTP between them and
the managed network object.

OpticalNetworkElement

Amplifier/
Card/

Transponder

Port

0..*

0..*

ComposedOf

Realizes

PartOf

0..2

1

RealizedBy 1

OutputPort InputPort

FiberLink

Feeds

FedBy FeedsFedBy

FiberLink

0..*ConnectedVia

ConnectedSystems

0..2
OpticalNetworkElement

DWDM Model Map Browser Model

26 EMC Smarts Optical Transport Manager User Guide

CHAPTER 2
Classes and Relationships for SONET/SDH

This chapter describes the elements discovered and managed in SONET/SDH networks by
the Optical Transport Manager and the problems diagnosed for each element.

Topics covered in this chapter are:

◆ Optical Transport Manager analysis .. 28
◆ SONET/SDH object classes in Optical Transport Manager.. 29

Classes and Relationships for SONET/SDH 27

Classes and Relationships for SONET/SDH

Optical Transport Manager analysis
The Optical Transport Manager for SONET/SDH uses object classes to represent devices
and populates them to the repository during discovery. The EMC Smarts repository models
the topology of the SONET/SDH network being managed. This topology is used to build
the codebook, which is the basis for root-cause analysis.

The SONET/SDH domain includes all of the high-order circuits with “SDH” link paths of
VC-3 and AU-4. These are the higher-bandwidth devices with speeds of 34M, 44M and
139M respectively. Low-order devices and protocols are populated to the PDH domain.

Figure 7 Separation of High-order and Low-order Domains

The Optical Transport Manager for SONET/SDH uses the relationships in the SONET/SDH
topology domain and cross-correlates with Optical Transport Manager for PDH to calculate
the impact that a root-cause problem in one element has on the elements and services
that are connected to, or depend on it.

The Optical Transport Manager calculates which root-cause problems are causing
symptom events and creates notifications for the problem origin only. The Optical
Transport Manager uses the relationships in the topology to calculate the impact that a
root-cause problem in one element has on the elements and services that are connected
to, or depend on it.

“Protection Schemes” on page 95 provides information.

VC-11

VC-12

VC-2

VC-3

AU-11

AU-12

AU-2

AU-3

3

C-11

C-12

C-2

C-3 High Order

Low Order

34M, 44M

139M AU-4

1.5M

2M

6M

28 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for SONET/SDH

SONET/SDH object classes in Optical Transport Manager
Table 2 on page 29 lists the classes in the Optical Transport Manager object model that
are visible in the Global Console when it connects to an instance of the Optical Transport
Manager. Many of the terms used are derived from the TMF 814 object model.

Table 2 Classes in the Optical Transport Manager object model

Category Class Description

Physical
Equipment

OpticalNetworkElement Device supporting SONET/SDH

Card Equipment and Card are interchangeable terms. These are
physical subsystems that plug into OpticalNetworkElements
and support one or more PTPs.Equipment

Ports PTP Physical Termination Point. End point of a physical
connection.

Physical
Connections

TopologicalLink A physical connection, such as a fiber link, that connects to
another device managed by the Optical Transport Manager.

DropSideTopologicalLink A physical connection, such as a fiber link, that connects a
device managed by the Optical Transport Manager to another
device that is not managed by the Optical Transport Manager.

Conduit Conduit is an aggregated physical connection consisting of
multiple links between a pair of devices managed by Optical
Transport Manager.

Abstract Entities BBTopologicalLink An unmanaged segment in the between managed entities.
May consist of one or more physical or logical devices.

BBDropSideTopologicalLink An unmanaged segment on the edge of the managed entities.
May consist of one or more physical or logical devices.

Logical Ports CTP Connection Termination Point. End point of a logical
connection.

Logical
Connections

LogicalConnection A logical connection that crosses part of a subnetwork such
as a protection group.

SubNetworkConnection A logical connection that crosses a subnetwork.

MeshSubnetworkConnection A logical connection that crosses a subnetwork that is in a
mesh configuration.

HighOrder_Trail A logical connection across a network that may cross one or
more subnetworks.

HighOrder_Circuit An end-to-end connection across a network that may cross
several subnetworks. This entity is used to represent client
services.

SONET/SDH object classes in Optical Transport Manager 29

Classes and Relationships for SONET/SDH

Physical object classes and their relationships

This section describes the physical object classes used in the Optical Transport Manager
for SONET/SDH and the relationships between them that are used to model optical
networks.

OpticalNetworkElement, Card, Equipment and PTP classes
Figure 8 on page 30 shows the physical and logical objects modeled by the Optical
Transport Manager for SONET/SDH.

Figure 8 Physical and logical objects modeled by Optical Transport Manager

The top level physical object is an OpticalNetworkElement object (network element),
which in turn may contain multiple Card or Equipment objects, which in turn may realize
multiple PTP (Physical Termination Point) objects.

TopologicalLinks and DropSideTopologicalLink classes
The physical fiber links between network elements are modeled using two types of
topological link, depending on whether the Optical Transport Manager manages the
network element on one or both ends of the link.

Protection TopologicalLinkGroup A group of TopologicalLinks that form some larger entity such
as a ring.

ConnectionProtectionGroup A group of TopologicalLinks or TopologicalLinkGroups that
provide protection for subnetwork connections that cross the
protection group. For example, 2F-BLSR ring configuration.

RingProtectionGroup A group of TopologicalLinks that form 4F-BLSR/4F-MS-SPRing
protection configuration

LogicalConnectionTPGroup A group of CTPs that form UPSR/SNCP protection
configuration.

CardProtectionGroup A group of Cards (or Equipment) where one or more cards
backs up a main card.

Table 2 Classes in the Optical Transport Manager object model (continued)

Category Class Description

Classes used to model network elements

OpticalNetworkElement

Card PTP

OpticalNetworkElement

Card

PTP

ComposedOfOpticaEquipment

Realizes

30 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for SONET/SDH

◆ DropSideTopologicalLink is used to model links where the Optical Transport Manager
manages only one end of the link.

◆ TopologicalLink is used to model links where the Optical Transport Manager manages
both ends of the link.

Figure 9 on page 31 shows the connection between devices and fiber links, which is
modeled using a ConnectedTo relationship between a TopologicalLink and the
appropriate PTP object in the network element at each end of the link.

Figure 9 TopologicalLink and DropSideTopologicalLink objects and relationships

The root-cause and impact analysis calculations are slightly different in each of the
classes representing topological links. These calculations take account of the fact that
some alarms are not received when problems happen on drop-side connections.

Note: The TopologicalLink class can be used in the EMC Smarts model to represent
uni-directional or bi-directional connections, as appropriate. In the SONET/SDH model,
these objects represent a bi-directional connection. For example, each TopologicalLink
object represents a fiber pair.

Abstract entity “black box” classes
The black box classes allow the topology to show unmanaged segments of the network
and to provide root-cause and impact analysis for networks containing the black boxes.

In the case of a black box, entities are not managed for administrative or technical
reasons, not due to a network failure. A black box, for example, may be a leased line that
you do not manage between network segments that you do manage. It may also be a
leased line at the edge of your managed network.

TopologicalLinkDropSideTopologicalLink DropSideTopologicalLink

PTPTopologicalLink

OTM Representation

Network Topology

TopologicalLink PTP
ConnectedTo

SONET/SDH object classes in Optical Transport Manager 31

Classes and Relationships for SONET/SDH

A black box cannot be discovered. It is created using APIs provided with Optical Transport
Manager. An API, along with a flat file or database, can create the black box classes.

The black box may be a “black box cloud,” containing multiple unmanaged devices. As
long as there are no intervening managed network elements, all the adjacent devices and
connections are part of one black box.

Black boxes appear as unmanaged subnetworks in the topology, identified by its
endpoints, connected directly to the edges of the managed segments. They are
represented as BBTopologicalLink or BBDropSideTopologicalLink classes in the
SONET/SDH repository.

The BBDropSideTopologicalLink (BBDSTL) represents an edge unmanaged network entity
or segment in the SONET/SDH network.

Figure 10 Edge SONET black box

The BBTopologicalLink (BBTL) represents an in-line unmanaged network entity or segment
in the SONET/SDH network.

Figure 11 In-line SONET black box

As part of a TopologicalLinkGroup, the black box objects can be part of a 1+1 automatic
protection switching group. “1+1 automatic protection switching” on page 97 provides
more details.

TopologicalLinkGroup class
TopologicalLink, DropSideTopologicalLink, BBTopologicalLink, and
BBDropSideTopologicalLink objects may be part of a TopologicalLinkGroup, as indicated
by the ComposedOf relationship. A TopologicalLinkGroup represents a group of
topological links that together provide protection capabilities. For example, a
TopologicalLink may be part of a 1+1 protection group, or part of a 2F-BLSR ring, etc.

BBDropSideTopologicalLink

SONET SONET

BBTopologicalLink

SONET SONET

32 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for SONET/SDH

The uses of TopologicalLinkGroup objects are discussed in more detail in “Protection
Schemes” on page 95.

Logical connection classes and their relationships

This section describes the object classes used in the Optical Transport Manager to
represent logical entities in optical networks.

End points of logical connections are represented by CTPs (ConnectionTerminationPoints).
Several types of logical connection are represented in Optical Transport Manager:

◆ LogicalConnection---Represents a connection across part of a subnetwork, such as a
protection group.

◆ SubnetworkConnection---Represents a connection that crosses a subnetwork.

◆ MeshSubnetworkConnection---Represents a subnetwork connection across a group of
devices that implement mesh connectivity and rerouting within the mesh when
problems are detected. For instance, Ciena devices can be configured in this manner.

◆ HighOrder_Trail---Represents a trail, with a VC-4 or higher capacity, that carries
low-order and high-order circuits.

◆ Circuit---Represents a connection across the entire network which connects two client
entry points. A circuit may be carried over a number of SubnetworkConnections
and/or MeshSubnetworkConnections.

• HighOrder_Circuit---Represents a circuit that carries a VC-3 or higher capacity
circuit.

• LowOrder_Circuit---Represents a circuit that carries a VC-2 or lower capacity circuit.

In the simplest case, a LogicalConnection is LayeredOver a single TopologicalLink.
Figure 12 on page 33 shows the main relationships between CTPs, PTPs, TopologicalLinks,
and LogicalConnections for a simple linear connection.

Figure 12 Logical connection class relationships in SONET/SDH

CTPCTPCTPCTPCTP

Network

Physical and
Logical Connections

Objects and
Relationships

TopologicalLink

LogicalConnection

LayeredOver

PTPPTP

ConnectedTo CTPCTPCTPCTPCTPConnectedTo

LayeredOverLayeredOver

ConnectedToConnectedTo

LogicalConnections

TopologicalLink PTP

CTP

SONET/SDH object classes in Optical Transport Manager 33

Classes and Relationships for SONET/SDH

The end points of logical connections are represented by CTPs, which are LayeredOver
PTP objects. Each CTP object contains the timeslot information for the connection that
uses it. Many CTP objects can be LayeredOver each PTP when many low-speed circuits are
provisioned on the same higher speed port.

LogicalConnection class
Logical connections are represented by LogicalConnection objects with endpoints
represented as CTP objects. The logical and physical connections are related using
LayeredOver from CTP to PTP, and from LogicalConnection to TopologicalLink as shown in
Figure 12 on page 33. Many LogicalConnection objects may be LayeredOver a single
TopologicalLink in order to represent the low-speed circuits provisioned within a
high-speed trunk.

The LogicalConnection class is used to represent the connection across each protection
group when a SubnetworkConnections passes through more than one.

SubnetworkConnection class
A SubnetworkConnection is a logical connection across a subnetwork. A subnetwork is a
feature implemented in element managers that allows management of locally connected
network elements.

A SubnetworkConnection may pass over several protection groups. It is represented using
the relationship LayeredOver a number of LogicalConnections that each represent the
connection across a protection group.

If a SubnetworkConnection passes through only one protection group, or it uses linear
connection, it is LayeredOver the physical objects directly (TopologicalLinkGroup, or
TopologicalLink).

In the case of a singleton subnetwork that passes through only one network element, the
SubnetworkConnection has no LayeredOver relationship, but its CTPs are LayeredOver the
appropriate PTPs on the network element.

MeshSubnetworkConnection class
A MeshSubnetworkConnection is a logical connection across a subnetwork that
implements mesh protection. The connection is assigned a “home route” that it follows
until a network failure is detected. Alternative routes are dynamically calculated when a
network fault occurs, and affected connects are allocated new routes. For instance, Ciena
devices can be configured in this manner.

Figure 13 on page 35 shows how a circuit passing through the network is modeled.

34 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for SONET/SDH

Figure 13 A circuit that is LayeredOver other entities as it passes through the network.

Circuit class
A circuit passing through different vendor equipment (shown as green and blue device
symbols) and passing through various protection schemes is modeled by a set of objects
that represent physical and logical connections. The LayeredOver relationship is used to
define the dependencies between the objects. In Figure 13 on page 35,
when an object is shown vertically above another object, a LayeredOver relationship is
implied.

HighOrder_Trail class
A HighOrder_Trail is a logical connection that traverses the network beginning on the
high-speed port of the a-end optical network element and ends on the high-speed port of
the z-end optical network element.

Physical topology

The Optical Transport Manager model represents the physical connectivity of devices and
connections by a specific set of relationships. These relationships are described in this
section.

Figure 14 on page 36 shows an example of a connection object model that is used to
model the physical configuration of protection groups. Note that a SubNetworkConnection
may be LayeredOver several LogicalConnections, if it passes through more than one
protection group.

Subnetwork connections

Topological links

Physical topology

Circuit

BLSR/MSP Ring

Logical connections

Topological link groups

Linear1+1 protection
between
subnetworks

Mesh protectionSingleton

High Order Trail

Drop Side
Topological links

SONET/SDH object classes in Optical Transport Manager 35

Classes and Relationships for SONET/SDH

Figure 14 Connection Object Classes and Their Relationships

The end-to-end client service across a subnetwork is represented by a
SubnetworkConnection that is ConnectedTo CTP objects on the client ports (not shown in
Figure 14 on page 36). Generally, a path through a network is represented by a number of
LogicalConnection objects, each LogicalConnection representing a connection across a
segment of the network that provides protection capability such as 1+1 or 2F-BLSR.

The TopologicalLinkGroup objects are ComposedOf TopologicalLink objects that represent
the physical connections that comprise the protection group. In addition,
RingProtectionGroup objects and/or LogicalConnectionProtectionTPGroup objects model
physical topology such as BLSR/MS-SPRing or UPSR/SNCP rings. “Protection Schemes” on
page 95 provides more details.

The Optical Transport Manager represents logical connections across a protection ring
using LogicalConnection objects LayeredOver TopologicalLinkGroup objects. The Optical
Transport Manager uses additional relationships and objects that are specific to each
LogicalConnection object to calculate root causes and impacts. “Notifications and
Impacts for SONET/SDH Networks” on page 69 and “Notifications and Impacts for WDM
Networks” on page 83 provide more information.

TopologicalLinkGroup

LogicalConnection

ComposedOf

TopologicalLink TopologicalLink TopologicalLink

LayeredOver

SubnetworkConnection

LayeredOver

LogicalConnection LogicalConnection

36 EMC Smarts Optical Transport Manager User Guide

CHAPTER 3
Classes and Relationships for PDH

This chapter describes the elements discovered and managed in low-order SONET/SDH
networks by the Optical Transport Manager and the problems diagnosed for each element.

Topics covered in this chapter are:

◆ Optical Transport Manager analysis .. 38
◆ PDH object classes in Optical Transport Manager.. 38

Classes and Relationships for PDH 37

Classes and Relationships for PDH

Optical Transport Manager analysis
The Optical Transport Manager for PDH uses object classes to represent low-order
SONET/SDH devices and populates them to the repository during discovery. The
EMC Smarts repository models the topology of the low-order SONET/SDH network being
managed. This topology is used to build the codebook, which is the basis for root-cause
analysis.

The PDH domain includes all of the low-order circuits with “SDH” link paths of VC11,
VC12, and VC2. These are the lower-bandwidth devices with speeds of 1.5M, 2M and 6M
respectively. High-order devices and protocols are populated to the SONET/SDH domain.

Figure 15 Separation of High-order and Low-order Domains

The Optical Transport Manager for PDH uses the relationships in the low-order
SONET/SDH topology and cross-correlates with Optical Transport Manager for SONET/SDH
domain to calculate the impact that a root-cause problem in one element has on the
elements and services that are connected to, or depend on it.

“Protection Schemes” on page 95 provides more details.

PDH object classes in Optical Transport Manager
Table 3 on page 38 lists the classes in the Optical Transport Manager object model that
are visible in the Global Console when it connects to an instance of the Optical Transport
Manager. Many of the terms used are derived from the TMF 814 object model.

VC-11

VC-12

VC-2

VC-3

AU-11

AU-12

AU-2

AU-3

3

C-11

C-12

C-2

C-3 High Order

Low Order

34M, 44M

139M AU-4

1.5M

2M

6M

Table 3 Classes in the Optical Transport Manager object model

Category Class Description

Physical
Equipment

OpticalNetworkElement Device supporting low-order SONET/SDH

Card Equipment and Card are interchangeable terms. These are
physical subsystems that plug into OpticalNetworkElements
and support one or more PTPs.Equipment

Port PTP Low-order Physical Termination Point

Physical
Connections

DropSideTopologicalLink A physical connection, such as a fiber link, that connects a
device managed by the Optical Transport Manager to another
device that is not managed by the Optical Transport Manager.

38 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for PDH

Physical object classes and their relationships

This section describes the low-order SONET/SDH physical object classes used in the
Optical Transport Manager for PDH and the relationships between them that are used to
model the PDH domain of optical networks.

OpticalNetworkElement class
The OpticalNetworkElement class represents whole optical devices. These devices contain
Cards or Equipment that carry and process optical signals, and that perform
administrative and other functions.

OpticalNetworkElement, Card, Equipment and PTP objects
Figure 16 on page 39 shows the physical and logical objects modeled by the Optical
Transport Manager for PDH.

Figure 16 Physical and logical objects modeled by Optical Transport Manager for PDH

The top level physical object is a OpticalNetwokElement. It is composed of Card or
Equipment objects, which in turn may realize multiple PTP (Physical Termination Point)
objects.

DropSideTopologicalLinks
The physical fiber links between network elements are modeled using two types of
topological link, depending on whether the Optical Transport Manager manages the
network element on one or both ends of the link.

Logical
Connections

CTP Connection Termination Point. End point of a logical
connection.

HighOrder_Trail A logical connection across a network that may cross several
subnetworks.

LowOrder_Circuit An end-to-end connection across a network that may cross
several subnetworks and includes CTPs. This entity is used to
represent client services.

Table 3 Classes in the Optical Transport Manager object model (continued)

Category Class Description

Classes used to model network elements

OpticalNetworkElement

Card PTP

OpticalNetworkElement

Card

PTP

ComposedOfOpticaEquipment

Realizes

PDH object classes in Optical Transport Manager 39

Classes and Relationships for PDH

◆ DropSideTopologicalLink---Models links where the Optical Transport Manager for PDH
manages only one end of the link. DropSideTopologicalLinks do not include CTPs.

Figure 17 on page 40 shows the connection between devices and fiber links, which is
modeled using a ConnectedTo relationship between a TopologicalLink and the
appropriate PTP object in the network element at each end of the link.

Figure 17 Topological link objects and relationships

The root-cause and impact analysis calculations are slightly different in each of the
classes representing topological links. These calculations take account of the fact that
some alarms are not received when problems happen on drop-side connections.

Note: The TopologicalLink class can be used in the EMC Smarts model to represent
unidirectional or bidirectional connections, as appropriate. In the PDH model, these
objects represent a bidirectional connection. For example, each TopologicalLink object
represents a fiber pair.

TopologicalLinkGroups
TopologicalLink and DropSideTopologicalLink objects may be part of a
TopologicalLinkGroup, as indicated by the ComposedOf relationship. A
TopologicalLinkGroup represents a group of topological links that together provide
protection capabilities. For example, a TopologicalLink may be part of a 1+1 protection
group, or part of a 2F-BLSR ring, etc.

The uses of TopologicalLinkGroup objects are discussed in more detail in “Protection
Schemes” on page 95.

TopologicalLinkDropSideTopologicalLink DropSideTopologicalLink

PTPTopologicalLink

OTM Representation

Network Topology

TopologicalLink PTP
ConnectedTo

40 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for PDH

Logical object classes and their relationships

This section describes the object classes used in the Optical Transport Manager for PDH to
represent logical entities in optical networks. Several types of logical connection are
represented in Optical Transport Manager:

◆ LowOrder_Circuit---Represents a connection across the entire network which connects
two client entry points. A LowOrder_Circuit may be carried over a number of
HighOrder_Trails and includes end points represented by CTPs
(ConnectionTerminationPoints).

◆ HighOrder_Trail---Represents a circuit that carries a VC3 or higher capacity circuit.
HighOrder_Trails in Optical Transport Manager for PDH do not include CTPs.

In the simplest case, a LogicalConnection is LayeredOver a single HighOrder_Trail.
Figure 18 on page 41 shows the main relationships between CTPs, PTPs, HighOrder_Trails,
and LogicalConnections for a simple linear connection.

Figure 18 Logical object class relationships in PDH

The end points of logical connections are represented by CTPs, which are LayeredOver PTP
objects. Each CTP object contains the time slot information for the connection that uses it.
Many CTP objects can be LayeredOver each PTP when many low-speed circuits are
provisioned on the same higher speed port.

Figure 19 on page 42 shows how a circuit passing through the network is modeled.

CTPCTPCTPCTPCTP

Network

Physical and
Logical Connections

Objects and
Relationships

HighOrder_Trail

LogicalConnection

LayeredOver

PTPPTP

ConnectedTo CTPCTPCTPCTPCTPConnectedTo

LayeredOverLayeredOver

LogicalConnections

HighOrder_Trail

CTP

PDH object classes in Optical Transport Manager 41

Classes and Relationships for PDH

Figure 19 A LowOrder_Circuit that is LayeredOver other entities as It passes through the network.

A circuit passing through different vendor equipment (shown as green and blue device
symbols) and passing through various protection schemes is modeled by a set of objects
that represent physical and logical connections. The LayeredOver relationship is used to
define the dependencies between the objects. In Figure 19 on page 42, when an object is
shown vertically above another object, a LayeredOver relationship is implied.

Physical topology

The Optical Transport Manager model represents the physical connectivity of devices and
connections by a specific set of relationships. These relationships are described in this
section.

Figure 20 on page 43 shows an example of a connection object model that is used to
model the physical configuration of protection groups. Note that a HighOrder_Trail may be
LayeredOver several LogicalConnections, if it passes through more than one protection
group.

LO CTP

SDH

PDH
LO

DSTL

LO
PTP

LO
Card

LO Circuit

NE

HO Trail

HO Trail without CTPs

TL

RPG
TLG

LO
DSTL

NE

LO Objects
NOT created in

the SDH domain

42 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for PDH

Figure 20 Connection Object Classes and Their Relationships

The end-to-end client service across a network is represented by a LowOrder_Circuit that
is ConnectedTo LowOrderPTP objects on the client ports (not shown in Figure 20 on
page 43). Generally, a path through a network is represented by a number of
LogicalConnection objects, each LogicalConnection representing a connection across a
segment of the network that provides protection capability such as 1+1 or 2F-BLSR.

The TopologicalLinkGroup objects are ComposedOf TopologicalLink objects that represent
the physical connections that comprise the protection group. In addition,
RingProtectionGroup objects and/or LogicalConnectionProtectionTPGroup objects model
physical topology such as BLSR/MS-SPRing or UPSR/SNCP rings. F “Protection Schemes”
on page 95 provides more information.

The Optical Transport Manager represents logical connections across a protection ring
using LogicalConnection objects LayeredOver TopologicalLinkGroup objects. The Optical
Transport Manager uses additional relationships and objects that are specific to each
LogicalConnection object to calculate root causes and impacts. “Notifications and
Impacts for SONET/SDH Networks” on page 69 and “Notifications and Impacts for WDM
Networks” on page 83 provide more information.

TopologicalLinkGroup

HighOrder_Trail

ComposedOf

TopologicalLink TopologicalLink TopologicalLink

LayeredOver

Circuit

LayeredOver

HighOrder_Trail HighOrder_Trail

PDH

SDH

PDH object classes in Optical Transport Manager 43

Classes and Relationships for PDH

44 EMC Smarts Optical Transport Manager User Guide

CHAPTER 4
Classes and Relationships for WDM

This chapter describes the elements discovered and managed in WDM networks by the
Optical Transport Manager for WDM.

Topics in this chapter include:

◆ About the Optical Transport Manager WDM model .. 46
◆ WDM Object Classes in Optical Transport Manager ... 48
◆ Classes that represent equipment... 50

Classes and Relationships for WDM 45

Classes and Relationships for WDM

About the Optical Transport Manager WDM model
The Optical Transport Manager for WDM uses object classes that represent each type of
element to populate the EMC Smarts repository that models the topology of the WDM
network being managed. This, in turn, is used to build the codebook, which is the basis for
root-cause analysis. The Optical Transport Manager for WDM also uses the relationships in
the topology to calculate the impact that a root-cause problem in one element has on the
elements and services that are connected to, or depend on it.

The model for WDM is more granular than that for SONET/SDH because there are fiber
connections inside devices that are potential failure points and must therefore be part of
the model.

As an example of what needs to be modeled in a WDM device, Figure 21 on page 46 is a
schematic of a WDM Transmit End Terminal device. This illustrates how the various
components are connected together to take a number of incoming SONET/SDH services,
convert them each to a WDM signal on a wavelength, and then combine the wavelengths
onto a single fiber.

Figure 21 Schematic of a terminal end amplifier

Each incoming client signal is converted to an Optical Channel (OCH), which carries the
signal on a specific wavelength and adds a WDM header. A number of wavelengths are
combined into a single fiber using a Multiplexer. Due to physical limitations, several
stages of multiplexing are required to, for instance, combine 160 wavelengths onto a
single fiber. In the example shown, 80 wavelengths in the C-band are combined in two
stages of multiplexing, and are then combined with 80 other wavelengths in the L-band.

Clien
t se

rvic
e (O

CN)

Data streams
per link

Tra
nsp

ond
er

Optic
al C

han
nel

 (OCH)

Multip
lexe

r

Optic
al M

ultip
lex

Sec
tion

 (O
MS)

Band
 multip

lexe
r Optic

al A
mplifi

er

Optic
al S

upe
rvis

ory
 Chan

nel
 (OSC

)

Optic
al T

ran
spo

rt S
ect

ion

(OTS
)

– Dual
Band

Multip
lexe

r w
ith

inte
rlea

ver

Optic
al T

ran
spo

rt S
ect

ion
 (O

TS)

1 40 80 160

C-Band components

L-Band components

46 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM

The Optical Supervisory Channel (OSC), which carries management information on an
additional wavelength, is added in the optical amplifier that is in each band’s path in front
of the Band Multiplexer.

A WDM Receive End Terminal performs the reverse function in a similar arrangement.
Other functions, such as in-line amplifiers and back-to-back amplifiers are made up of
combinations of similar components.

Support for Multiplexing and Demultiplexing in the same circuit pack

In the next generation networks and network elements, multiplexing and demultiplexing
functionality are provided by the same circuit pack. Optical Transport Manager provides
support for such networks and network elements having multiplexers and demultiplexers
within the same circuit pack.

Figure 22 WDM NE with Separate Mux/Demux card

A number of wavelengths are combined into a single fiber using a Multiplexer. Similarly,
incoming signal is received through the receiving amplifier which feeds the signal into the
Demultiplexer. The Demultiplexer extracts the OCH signal and hands over to the
Transponders. The Transponders in turn convert the signal into Optical Carrier Network
(OCN) signals and handle it further to the client.

About the Optical Transport Manager WDM model 47

Classes and Relationships for WDM

Figure 23 WDM NE with Combo Mux/Demux Card

The classes in the object model for WDM in Optical Transport Manager represent cards
performing the functions described above, the ports on those cards, and the physical and
logical connections between cards within and between devices.

WDM Object Classes in Optical Transport Manager
Table 4 on page 48 lists the classes used in the WDM object model of the Optical
Transport Manager that are visible in the Global Console when it connects to an instance
of the Optical Transport Manager.

Table 4 Classes in the WDM object model

Category Class Description

Equipment Facility Generic class that represents entities in the network that can
be assigned during design of circuits.

OpticalNetworkElement Device supporting WDM.

48 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM

Cards Card Generic class used to represent cards or circuit packs in a
network element, including multiplexers and demultiplexers.

Amplifier Amplifier card. Can be transmit, receive, or in-line.

Transponder Card with transponder functionality. Can have transmit,
receive, or both capabilities.

ControlModule Models a Controller card.

MuxModule Models an OTN multiplexer/demultiplexer card, or a passive
filter.

OcmModule Models an OTN ROADM Optical Channel Monitor (OCM) card.

WssModule Models an Optical Transport Network (OTN) ROADM
Wavelength Selective Switch (WSS) card.

Ports TransponderInOcnPort/
TransponderOutOcnPort

Port on a transponder that faces the client and carries
SONET/SDH signals.

TransponderInOchPort/
TransponderOutOchPort

Port on a transponder that faces a multiplexer and carries an
optical channel.

TransponderInFecPort Receiving forward error correction (FEC) facility on a
transponder.

MuxInOchPort Port on a multiplexer that receives an optical channel from a
transponder.

MuxInOmsPort/
MuxOutOmsPort

Port on a multiplexer carrying an optical multiplex section.
Input will be connected to another multiplexer. Output will be
connected to a transmit amplifier.

DemuxOutOchPort Port on a demultiplexer that sends an optical channel to a
transponder.

DemuxInOmsPort/
DemuxOutOmsPort

Port on a demultiplexer carrying an optical multiplex section.
Input will be connected to a receive amplifier. Output will be
connected to another demultiplexer.

AmpInOmsPort/
AmpOutOmsPort

Port on a transmit or receive amplifier connected to a
multiplexer or demultiplexer.

Table 4 Classes in the WDM object model (continued)

Category Class Description

WDM Object Classes in Optical Transport Manager 49

Classes and Relationships for WDM

The classes are described in more detail in the sections that follow in this chapter.

Classes that represent equipment
This section describes the object classes used in the Optical Transport Manager to
represent physical equipment.

◆ Facility

◆ OpticalNetworkElement

◆ Card

◆ InputPort

◆ OutputPort

Ports (continued) AmpInOtsPort/
AmpOutOtsPort

Input and output port of an in-line amplifier.

AmpInOscPort/
AmpOutOscPort

Optical supervisory channel input and output ports on
amplifiers.

PTP Physical Termination Point. Bidirectional SONET/SDH port.

Physical
Connections

TopologicalLink A bidirectional SONET/SDH link that terminates on a PTP on
each of its two ends.

FiberLink A unidirectional physical connection, such as a fiber
connecting two optical ports.

Logical
Connections

LogicalLink A unidirectional link that corresponds to a link connection or
a network connection.

OcnLink A logical connection, generally spanning multiple physical
components and links, that connects an OCN input port to an
OCN output port.

OchLink A logical connection, generally spanning multiple physical
components and links, that connects an OCH input port to an
OCH output port.

ClientCircuit A logical connection spanning the entire WDM domain that
represents a client’s connection. Wavelength service is a
ClientCircuit.

ClientTrail Like ClientCircuit, a logical connection between OCN ports,
but underlying it. A ClientCircuit may be carried over multiple
ClientTrails.

Protection LinkGroup A logical grouping of OchLink or OcnLink objects to create a
protected ClientCircuit or TopologicalLink.

Abstract Entities BBFiberLink An unmanaged, unidirectional connection between managed
entities or at the edge of the managed network.

PassiveFiberLink A uni-directional link that generally corresponds a connection
between an output port and an input port over passive filters.

Table 4 Classes in the WDM object model (continued)

Category Class Description

50 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM

Figure 24 on page 51 shows the major physical elements that are modeled in the Optical
Transport Manager for WDM along with the classes used to model them. In this figure, the
generic label (Port) is used to indicate that each card will realize InputPort or OutputPort
classes according to the card type. The Amplifier and Transponder classes are inherited
from the Card class and have the same relationships as shown here.

Figure 24 Major physical elements and classes in the Optical Transport Manager for WDM

Facility class

The Facility class represents entities that can be assigned in the provisioning system
during circuit design. Depending on the type of Facility object, certain of the relationships
will be populated. For instance, an Optical Carrier Network (OCN) facility will Own its
Transponder and associated PTP objects.

OpticalNetworkElement class

The OpticalNetworkElement class represents whole optical devices. These devices contain
cards that carry and process optical signals, and cards that perform administrative and
other functions.

Card classes

This section describes the object classes used in the Optical Transport Manager for WDM to
represent cards and ports found in WDM networks.

◆ Card

◆ Amplifier

◆ Transponder

◆ ControlModule

◆ MuxModule

◆ OcmModule

◆ WssModule

OpticalNetworkElement

Card

Port

Classes used to model network elements

OpticalNetworkElement

Card (Port)

ComposedOf

Realizes

Facility

Owns

OpticalNetworkElement

Classes that represent equipment 51

Classes and Relationships for WDM

Card class
The Card class is a generic class that is used to represent cards or circuit packs in a device,
when these cards or circuit packs are not otherwise represented by a specialized class. For
example, multiplexers, demultiplexers, and non-optical cards performing administrative
functions are represented by the Card class.

A Card object that represents a card that does not perform an optical function will not have
any port objects associated with it.

Figure 25 on page 52 shows the classes and relationships used to represent a multiplexer
and a demultiplexer.

Figure 25 Classes and relationships for a multiplexer and a demultiplexer

Multiplexers combine signals on multiple incoming wavelengths onto a single output
fiber. When the multiplexer includes an interleaver, an additional group of wavelengths
that were previously multiplexed are added to the multiplexed wavelengths.

Note: The MuxInOmsPort is present only when the multiplexer contains an interleaver that
is taking input from another multiplexer.

The demultiplex function is the inverse of the multiplex function.

Note: The MuxOutOmsPort is present only when the demultiplexer contains an interleaver
that feeds another demultiplexer.

Subslots

Optical devices use slots on a shelf to place optical equipment. Depending on the
equipment and the supplier, some devices span multiple slots while some suppliers place
multiple equipments within a single slot. The latter case is referred as subslot or subcard
handling. Optical Transport Manager supports explicit subcard modeling capability. Both
cards and subcards are modeled as OTM class "Card" in the OTM topology. Figure 25
depicts a subslot configuration.

MuxInOmsPort

MuxOutOmsPort DemuxInOmsPort

MuxInOchPort

DemuxOutOmsPort

DemuxOutOchPort

DemultiplexerMultiplexer

MuxInOmsPort MuxOutOmsPort

Card

Classes

Schematic

MuxInOchPort

Realizes

MuxInOchPortMuxInOchPortMuxInOchPortMuxInOchPort

DemuxOutOmsPortDemuxInOmsPort

Card

Realizes

DemuxOutOchPort

Classes

Schematic

DemuxOutOchPortDemuxOutOchPortDemuxOutOchPortDemuxOutOchPort

52 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM

Figure 26 Subslot configuration

Amplifier class
There are three types of amplifier that are modeled in the Optical Transport Manager for
WDM using the Amplifier class.

◆ Transmit amplifier---Part of a transmit end terminal or back-to-back transponder

◆ Receive amplifier---Part of a receive end terminal or back-to-back transponder

◆ In-line amplifier---Used along Optical Transport Section (OTS) paths to boost the
signal

The same class, Amplifier, is used to model each case. The difference between the
configurations is the way the Optical Supervisory Channel (OSC) is split out and/or added
in, which in turn determines which port type---Optical Multiplex Section (OMS) or
OTS---forms the input and output. Different combinations of AmpInOmsPort,
AmpOutOmsPort, AmpInOtsPort, AmpOutOtsPort, AmpInOscPort and AmpOutOscPort are
used as required.

Figure 27 on page 54 shows the classes and relationships for transmit and receive
amplifiers.

Classes that represent equipment 53

Classes and Relationships for WDM

Figure 27 Classes and relationships for transmit and receive amplifiers

Figure 28 on page 54 shows the classes and relationships for an in-line amplifier.

Figure 28 Classes and relationships for a in-line amplifier

The reverse amplifier relationship is used to identify peers of amplifiers that transmit in
each direction. Figure 29 on page 55 shows the classes and relationships for a reverse
amplifier.

AmpInOscPort

AmpInOmsPort AmpOutOtsPort

Transmit Amplifier

AmpInOscPort

Amplifier

Classes

Schematic

AmpInOmsPort AmpOutOtsPort

Realizes

AmpInOtsPort AmpOutOmsPort

Receive Amplifier

AmpOutOscPort

AmpOutOscPort

Amplifier

Classes

Schematic

AmpInOtsPort AmpOutOmsPort

Realizes

AmpOutOscPort

AmpInOtsPort AmpOutOtsPort

AmpInOscPort

AmpInOscPort AmpOutOscPort

Amplifier
Classes

Schematic

AmpInOtsPort AmpOutOtsPort

Realizes

54 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM

Figure 29 Classes and relationships for a reverse amplifier

In-line amplifiers have additional, special relationships between them that are used
during impact analysis of problems related to the OSC. These are illustrated in Figure 30
on page 55.

Figure 30 Amplifier relationships used for analysis of OSC problems

Transponder
Transponders are components that convert signals from one protocol to another. In WDM,
transponders operate in one of two ways:

◆ Converting from OCN to OCH

◆ Converting from OCH to OCN

Amplifier

Amplifier
Classes

Schematic

ReverseAmp ReverseAmp

Classes

Schematic C-Band amplifier

L-Band amplifier

Amplifier

Amplifier

OscReportedByReportsOscFor

OscReportedBy
ReportsOscFor

Classes that represent equipment 55

Classes and Relationships for WDM

These two cases are modeled in slightly different ways.

Figure 31 on page 56 shows the classes and relationships for transponders converting
from OCN to OCH and from OCH to OCN.

Figure 31 Classes and relationships for OCN-OCH and OCH-OCN transponders

In the case of translating from OCH to OCN, the internal forward error correction (FEC) port
is modeled by a TransponderInFecPort since alarm conditions can be raised on this port.

ControlModule
Control module is part of the Ciena CN 4200 system. There are several cards in the CN
4200 family that may function as a controller module when installed in slot A. The Ciena
cards that maybe used as the control module for the CN 4200 are:

◆ M3S,
◆ M6S,
◆ F 10-T,
◆ F-10A,
◆ F-10P,
◆ FC4-T

System controller functions include system initialization, diagnostics, provisioning, IP
address detection and resolution, alarm reporting, network management connectivity,
maintenance, and current and historical performance monitoring.

MuxModule
The MuxModule object represents the Ciena CN 4200 VMUX card, Ciena’s channelized,
managed optical multiplexer-demultiplexer card. This card is critical to O-USPR and
2-degree ROADM protection schemes that the CN 4200 may be set up to implement.

The VMUX card also contains a passive filter module used to support multi-degree ring
and mesh topologies. Discovery will find provisioned passive filters and model them as
MuxModules. If the passive filter is used without provisioning, it will not be discovered
from the MIB walk and must be created manually.

Transponder (into OCN)

TransponderInFecPort

TransponderInOchPort TransponderOutOcnPort

Transponder (from OCN)

TransponderInOchPort TransponderOutOcnPort

Transponder

Realizes

FecPort

FecPort

Transponder

TransponderInOcnPort TransponderOutOchPort

Transponder

Realizes

TransponderInOcnPort TransponderOutOchPort

Transponder

Classes

Schematic

Classes

Schematic

56 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM

OcmModule
OcmModule represents the Ciena CN 4200 system’s Optical Channel Monitor card. The
OCM is one of the four card used to implement ROADM protection with the CN 4200
system. Each ROADM node must have one OCM to monitor optical power levels and
achieve power equalization across all wavelengths. A single OCM card can monitor up to
44 wavelengths on eight ports.

WssModule
The WssModule object represents the Ciena CN 4200 DWR (Dynamic Wavelength Router)
card. The DWR module performs the primary multi-degree optical switching functionality
at each ROADM node using a Wavelength Selectable Switch (WSS). Each DWR module
contains a WSS capable of dynamically adding, dropping, or expressing any of 44
wavelengths to any of nine ports.

Port classes

Each type of port in WDM has its own class that models the specific alarm behavior seen
at that point in the network. The port classes for each type of card are described in Table 5
on page 57. Some cards have a specific class associated with them (for example,
Amplifier), while others use the Card class.

Table 5 Port classes in the WDM object model

Card Type Class Port Objects

Multiplexer Card MuxInOmsPort
MuxInOchPort
MuxOutOmsPort

Demultiplexer Card DemuxInOmsPort
DemuxOutOmsPort
DemuxOutOchPort

Transmit amplifier Amplifier AmpInOmsPort
AmpOutOtsPort
AmpInOscPort

Receive amplifier Amplifier AmpInOtsPort
AmpOutOmsPort
AmpOutOscPort

In-line amplifier Amplifier AmpInOtsPort
AmpOutOtsPort
AmpInOscPort
AmpOutOscPort

Transponder OCN (into OCH) Transponder TransponderInOcnPort
TransponderOutOchPort

Transponder (OCH into OCN) Transponder TransponderInOchPort
TransponderOutOcnPort
TransponderInFecPort

Classes that represent equipment 57

Classes and Relationships for WDM

Note: Port objects are only created in the Optical Transport Manager for WDM when the
port is used by a link that is being managed. This means that the ports seen in the
Topology Manager may be a subset of those on the actual equipment.

Physical and logical connection classes

The following classes are used to model connections in the Optical Transport Manager for

WDM:

◆ FiberLink---Unidirectional physical link

◆ OchLink---Unidirectional link at the OCH layer

◆ OcnLink---Unidirectional link at the OCN layer

◆ TopologicalLink---Bidirectional link that is carrying a client service across the WDM
network

◆ ClientCircuit ---Unidirectional link traversing the WDM domain

◆ ClientTrail---Unidirectional link carrying a segment of the ClientCircuits

Special treatment is given to band-multiplexers, which are passive devices with no alarms
associated with them. This is described in “FiberLink used in modeling band-multiplexer”
on page 59.

The connection classes are described in the following sections.

FiberLink class
A FiberLink is used to represent a unidirectional physical connection between two ports,
which is always an optical fiber. A FiberLink has the relationship Feeds with each of the
ports to which it is connected.

These relationships are shown in Figure 32 on page 58. In this figure, generic labels
(InputPort) and (OutputPort) indicate that FiberLink objects represent fibers that connect
to any of the types of port represented in the Optical Transport Manager for WDM.

Figure 32 FiberLink relationship with ports

Classes

Schematic

FiberLink(OutputPort) (InputPort)
Feeds Feeds

FedBy FedBy

(OutputPort) (InputPort)

FiberLinkCard Card

58 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM

FiberLink used in modeling band-multiplexer
Band-multiplexers are used to combine two blocks of wavelengths on two separate fibers
onto a single fiber. Band-multiplexers are not represented directly in the Optical Transport

Manager for WDM because they do not have alarms raised on them. However, two groups of
wavelengths combined on a single fiber are represented. The model represents the fiber
between the band-multiplexer and band-demultiplexer ports as a FiberLink that has a
LayeredOver relationship with the FiberLinks that connect the transmit and receive
amplifiers for each band. These relationships distinguish between a problem on a fiber
relating to a single band and a problem on the combined link.

Figure 33 on page 59 shows the logical and physical relationships for Band-
Multiplexer/Demultiplexer ports.

Figure 33 Classes used to represent band-multiplexer/demultiplexer configuration

OchLink and OcnLink
OchLink and OcnLink classes represent logical connections that pass through multiple
WDM components at the OCH and OCN layers respectively.

Figure 34 on page 59 shows the classes and relationships used for the OchLink and
OcnLink classes.

Figure 34 Classes and relationships for OchLink and OcnLink classes

FiberLink

FiberLink

FiberLink

AmpOutOtsPort

AmpOutOtsPort

AmpInOtsPort

AmpInOtsPort
Feeds

Feeds Feeds

Feeds

LayeredOver

LayeredOver

OchLink

OcnLink

Classes

(Port)

LayeredOver

OchLinkOchLinkOchLink (Port)(Port)(Port)(Port)(Port)

PassesThrough

PassesThrough

Classes that represent equipment 59

Classes and Relationships for WDM

TopologicalLink (and PTP)
The TopologicalLink class represents bidirectional connections carried across devices in
the WDM network that appear in the transported protocol to be carried by a single fiber.
When cross-domain correlation is performed between SONET/SDH and WDM, these
objects are imported from the Optical Transport Manager for SONET/SDH to the Optical
Transport Manager for WDM. “Cross-domain correlation” on page 88 provides more
information.

Figure 35 on page 60 shows the classes and relationships used for the TopologicalLink
class and for the PTP objects that represent the ports at each end of the link.

Figure 35 TopologicalLink and PTP classes

Note: The input and output ports that make up PTPs are on devices that are not managed
by the Optical Transport Manager for WDM. Their presence is inferred, and their names are
calculated values that are not related to the names that these ports may have in the EMS
for a SONET/SDH network whose links are carried over WDM. The objects corresponding to
these ports are used during cross-domain correlation only.

Figure 36 on page 61 shows the physical relationships for a topological link and the
associated PTPs.

Classes

OcnLink

ClientInOcnPortClientOutOcnPort

TopologicalLink PTPPTP ConnectedTo ConnectedTo

OutPort

FiberLink

Feeds

InPort

InPort

OutPort

FiberLink OcnLink

TransponderInOcnPort TransponderOutOcnPort

Feeds Feeds Feeds Feeds Feeds

ClientInOcnPort ClientOutOcnPort

Detail is shown for one direction only

Feeds Feeds

LayeredOver

ClientTrail

LayeredOver

60 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM

Figure 36 Physical relationships for a Topological link and PTPs

ClientTrail and ClientCircuit classes
ClientTrails and ClientCircuits are supported for WDM. The ClientCircuits are the
end-to-end circuits that traverse the WDM domain. The ClientTrails are the trails that are
used to carry the ClientCircuits. ClientTrails can also carry TopologicalLinks.

Figure 37 ClientCircuit and ClientTrail relationship

A single ClientCircuit or TopologicalLink can ride over multiple ClientTrails.

Failures in the WDM domain will propagate to the ClientTrails and then to the ClientCircuit
or TopologicalLink, thus tying root cause to service impact.

Schematic

Note that an end-to-end connection is made up of several OcnLinks in each direction that terminate on back-to-back
transponders. Only the FiberLinks that have relationships to OcnLinks are shown.

PTP TopologicalLink

OcnLink

FiberLink

TransponderInOcnPort
TransponderOutOcnPort

ClientOutOcnPort ClientInOcnPort

OcnLink feeds
relationship
between link
ends and ports.

ClientTrail

Classes

OcnLink

ClientInOcnPortClientOutOcnPort

ClientTrail

FiberLink

Feeds

FiberLink OcnLink

TransponderInOcnPort TransponderOutOcnPort

Feeds Feeds Feeds Feeds Feeds

ClientInOcnPort ClientOutOcnPort

Detail is shown for one direction only

Feeds Feeds

LayeredOver

ClientCircuit or
TopologicalLink

LayeredOver

Classes that represent equipment 61

Classes and Relationships for WDM

Wavelength service

Wavelength service is modeled as a specialized logical connection using the ClientCircuit
entity. Wavelength service is carried over several other logical and physical entities. A
failure in any one or more of these entities will cause the wavelength service to be down.

A failure or fault event in any object underlying the wavelength service is propagated
through all layers up to the wavelength service, the ClientCircuit entity. The
ServiceUnavailable event will show the underlying fault or failure as the root cause of the
problem.

Wavelength service, the ClientCircuit, typically rides over one or more ClientTrails. While
the ClientCircuit represents user’s end-to-end connection, the ClientTrail is used for
internal logical connections within the network.

As shown in Figure 38 on page 62, underlying the ClientTrail is the OcnLink. An OcnLink is
layered over OchLinks connecting multiplexers and demultiplexers. OchLinks are layered
over one or more FiberLinks which represent the lowest physical layer.

Figure 38 Classes and relationships in wavelength service

Abstract entities

PassiveFiberLink
The PassiveFiberLink is an abstract entity that allows OTM to distinguish
inter-network-element fiber link failures from intra-network-element errors.

OcnLink

OchLink OchLink

ClientTrail

OcnLinkOcnLink OcnLink

OchLink OchLink

LayeredOver LayeredOver

FiberLink FiberLink

LayeredOver LayeredOver

LayeredOver

Wavelength Service
(ClientCircuit)

LayeredOver LayeredOver LayeredOver

ClientTrailClientTrail

LayeredOver

FiberLink FiberLink

LayeredOver LayeredOver

62 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM

A PassiveFiberLink entity is created directly connecting each pair of transponder OCH
ports. As shown in Figure 39 on page 63, the two start and end intra-network-element
FiberLinks underlay their corresponding PassiveFiberLink. While the four (or eight)
PassiveFiberLinks, carried by the passive filter, underlay the inter-network-element
FiberLink.

Figure 39 Inter- and Intra-network-element FiberLinks and PassiveFiberLinks

PassiveFiberLinks can generate a LineFailure alarm. The relationships shown in Figure 39
on page 63 allow OTM to distinguish between a problem on a single, internal fiber and a
problem on the combined fiber linking the network elements.

When the intra-network-element FiberLink is cut, there are multiple LineFailure alarms
received on the PassiveFiberLinks.

When a single enter-network-element FiberLink is cut, only one PassiveFiberLinks receives
a LineFailure alarm and the system points to the enter-network-element FiberLink as the
root cause of the alarm.

LayeredOver

FiberLink FiberLink

Intra-Network-
Element

FiberLinks

LayeredOver

PassiveFiberLink

FiberLink

PassiveFiberLink

Inter-Network-
Element
FiberLink

PassiveFiberLink

LayeredOver

PassiveFiberLink

LayeredOver

FiberLink FiberLink

Classes that represent equipment 63

Classes and Relationships for WDM

64 EMC Smarts Optical Transport Manager User Guide

CHAPTER 5
Classes and Relationships for WDM-NG

This chapter describes the elements discovered and managed in WDM networks by the
Optical Transport Manager Next Generation WDM Manager (WDM-NG).

Topics in this chapter include:

◆ About the Next Generation WDM model .. 66
◆ Next Generation WDM object classes in Optical Transport Manager 66

Classes and Relationships for WDM-NG 65

Classes and Relationships for WDM-NG

About the Next Generation WDM model
The Optical Transport Manager for Next Generation WDM uses object classes to represent
each type of topological element present in the WDM network being managed. Unlike the
legacy WDM Manager, the Next Generation WDM Manager model is based on the TMF-864
standard, which follows a different representation of topological elements than the
TMF-814 model. The topology is used to build the codebook, which is the basis for
root-cause analysis.

Next Generation WDM object classes in Optical Transport
Manager

Table 6 on page 66 lists the classes used in the Next Generation WDM object model of the

Optical Transport Manager. These classes are visible in the Global Console when it

connects to an instance of the Optical Transport Manager.

Table 6 Next Generation WDM object classes

Category Class Description

EMS EMS The Element Management System.

Physical Equipment OpticalNetworkElement Device supporting WDM.

Shelf Physical container which holds the equipment.

Equipment The manageable physical components of an
OpticalNetworkElement such as circuit packs,
fans, power supply units and any other type of
replaceable unit.

Ports PTP Physical T ermination Point. End point of a
physical connection.

Physical Connections TopologicalLink A physical connection, such as a fiber link, that
connects to another device managed by the
Optical Transport Manager. This can be used to
represent unidirectional or bidirectional
connections.

DropsideTopologicalLink A physical connection, such as a fiber link, that
connects a device
managed by the Optical Transport Manager to
another device that is not managed by the
Optical Transport Manager.

Logical Ports CTP Connection Termination Point. End point of a
logical connection.

66 EMC Smarts Optical Transport Manager User Guide

Classes and Relationships for WDM-NG

Logical Connections Route A logical connection that represents a
SubnetworkConnection route.

SubnetworkConnection A logical connection that crosses a subnetwork.

Client Trail A logical connection across a network that may
cross one or more subnetworks

ClientCircuit An end-to-end connection across a network that
may cross several
subnetworks. This entity is used to represent
client services.

Protection ProtectionGroup A redundancy group of PTPs.

Table 6 Next Generation WDM object classes

Category Class Description

Next Generation WDM object classes in Optical Transport Manager 67

Classes and Relationships for WDM-NG

68 EMC Smarts Optical Transport Manager User Guide

CHAPTER 6
Notifications and Impacts for SONET/SDH
Networks

This chapter describes the notifications generated by the Optical Transport Manager for
SONET/SDH networks and the symptomatic events it diagnoses.

Topics covered in this chapter include:

◆ About Optical Transport Manager notifications ... 70
◆ Notifications and symptomatic events .. 70
◆ Impact analysis... 74

Notifications and Impacts for SONET/SDH Networks 69

Notifications and Impacts for SONET/SDH Networks

About Optical Transport Manager notifications
Optical Transport Manager for SONET/SDH describes the failures diagnosed for each
element in SONET/SDH networks. The Optical Transport Manager calculates which
root-cause problems are causing symptomatic events and creates notifications for the
problem origin. The Optical Transport Manager uses the relationships in the topology to
calculate the impact that a root-cause problem in one element has on the elements and
services that are connected to, or depend on it.

When the Optical Transport Manager receives alarms that relate to connections to
elements that it does not manage, the Optical Transport Manager performs special
analysis to determine if a problem has occurred in the connected network. This is
described in “Diagnosis of external failure” on page 73.

“Protection Schemes” on page 95 provides detailed information about the protection
schemes supported by the Optical Transport Manager.

Notifications and symptomatic events
Table 7 on page 70 lists the notifications generated by the Optical Transport Manager for
optical network elements and network connections for SONET/SDH networks.

Table 7 Notifications Generated by the Optical Transport Manager

Managed Element Notification Condition

Card or Equipment Down A Card or Equipment device in a network element has
failed.

PTP Down A PTP on a network element has failed.

PTPHardFailureConditio
n

A hard failure indication has been observed on this
PTP.

OpticalNetworkElement Down The EMS has lost management connection with the
NE.

TopologicalLink Down No traffic is passing through the link in one or both
directions and symptoms may indicate fiber failure.

SignalDegrade Traffic is passing through the link but symptoms
indicate that the signal is degraded.

DropSideTopologicalLink Down The drop side topological link is down.

SignalDegrade A signal degrade (soft failure) occurs when the signal
error rate reaches a threshold. The impact is a
function of the device specification; however, if there
is an impact, it will be very similar to Fiber Cut.

Conduit Down No traffic is passing through the link in one or both
directions
and symptoms may indicate fiber failure. Physical
failure of the link bundle that comprises topological
links.

BBTopologicalLink Down No traffic is passing through the unmanaged segment
in one or both directions.

SignalDegrade Traffic is passing through the link but symptoms
indicate that the signal is degraded.

70 EMC Smarts Optical Transport Manager User Guide

Notifications and Impacts for SONET/SDH Networks

The following sections describe the root-cause problems and related symptoms for some
optical network elements and network connections.

Root-cause problems for SONET/SDH network elements

The Optical Transport Manager diagnoses the following root-cause problems for optical
network elements in SONET/SDH networks:

◆ Card Down

◆ Equipment Down

◆ PTP Down

◆ OpticalNetworkElement Down

Card Down or Equipment Down
Down indicates that the Card or Equipment in a network element has failed. A card or
equipment failure causes all PTPs on the device to fail to pass traffic.

The symptomatic events for Card Down or Equipment Down include:

◆ Alarm from a network element indicating Card or Equipment failure.

◆ Loss of Signal (LOS) or Loss of Frame (LOF) on the PTPs that are directly connected to
the PTPs contained in the failed Card or Equipment.

BBDropSideTopologicalLink Down The edge, unmanaged segment is down.

SignalDegrade A signal degrade (soft failure) occurs when the signal
error rate reaches a threshold. The impact is a
function of the device specification; however, if there
is an impact, it will be very similar to Fiber Cut.

HighOrder_Trail TrailDown This facility is down.

TrailAtRis One element of a protection group is down.
Communication continues, but without the security of
redundancy.

HighOrder_Circuit ServiceUnavailable This facility is down. May be a result of
TransportOutgoingFail, TransportIncomingFail, or
TransportFail.

ServiceAtRisk One element of a protection group is down.
Communication continues, but without the security of
redundancy.

EMS Disconnected There is a loss of communication with the EMS.

EmsAdapterNotRunnin
g

The EMC Smarts EMS adapter has shut down.

EmsAdapterDisconnect
ed

The EMC Smarts EMS adapter is not responding.

Table 7 Notifications Generated by the Optical Transport Manager

Managed Element Notification Condition

Notifications and symptomatic events 71

Notifications and Impacts for SONET/SDH Networks

◆ Remote Failure Indication (RFI) on PTP objects that represent the end points on which
the client connections that pass through the network element enter and exit the
network. Note that the Optical Transport Manager interprets RAIs (Remote Alarm
Indications) and RFIs from digital links as RemoteIndications.

◆ LOS and/or LOF for downstream PTP objects that are directly connected to ports on the
failed Card or Equipment.

PTP Down
Down indicates that a PTP is failing to pass traffic. Each PTP object represents a pair of
transmit and receive ports on the network element. The symptoms seen from the network
differ depending on which PTP has failed.

The symptomatic events for Down when a transmitter has failed include:

◆ Card or Equipment alarm from network element indicating transmitter failure.

◆ LOS or LOF on the PTP that is directly connected to the failed PTP.

◆ RFI on CTP objects that represent the end points on which the client connections that
pass through the network element enter and exit the network. The Optical Transport
Manager interprets RAIs and RFIs from digital links as RemoteIndications.

The symptomatic events for Down when a receiver has failed include:

◆ Card or Equipment alarm from network elements indicating receiver failure.

◆ RFI on downstream CTP objects that represent the end points on which the client
connections that pass through the network element enter and exit the network. The
Optical Transport Manager interprets RAIs and RFIs from digital links as “zz.”

OpticalNetworkElement Down
Down indicates that the Optical Network Element has failed. The symptomatic events for a
Down condition when an optical network element has failed include:

◆ CommunicationState Unavailable alarm from the Network Element indicating that the
communication to that OpticalNetworkElement has been lost.

◆ LOS or LOF on the all the PTPs of the neighboring OpticalNetworkElements that are
connected to the failed Network Element.

Root-cause problems for SONET/SDH network connections

The Optical Transport Manager diagnoses root-cause problems for the following
SONET/SDH network connections:

◆ TopologicalLink Down

◆ TopologicalLink SignalDegrade

◆ BBTopologicalLink Down

◆ BBDropSideTopologicalLink Down

TopologicalLink Down
Down indicates that the SONET/SDH line in at least one direction on a bidirectional link is
degraded to the point of no longer passing traffic.

72 EMC Smarts Optical Transport Manager User Guide

Notifications and Impacts for SONET/SDH Networks

The East/West directionality for each topological link is determined during discovery.

The symptoms for TopologicalLink Down are as follows:

◆ LOS from downstream PTP connected to the TopologicalLink

◆ RFI for the upstream PTP connected to the TopologicalLink

◆ Signal Failure (SF) on the receiving PTP connected to the TopologicalLink

TopologicalLink SignalDegrade
SignalDegrade indicates that traffic is passing through the link but symptoms indicate
that the signal is degraded.

The symptom for TopologicalLink SignalDegrade is as follows:

◆ Signal Degrade (SD) on the receiving PTP connected to the TopologicalLink

BBTopologicalLink Down
Down indicates that the SONET/SDH connection through the black box in at least one
direction on a bidirectional link is degraded to the point of no longer passing traffic.

The aEnd/zEnd directionality for each topological link is determined by the API parameters
when the black box is created.

The symptoms for BBTopologicalLink Down are as follows:

◆ LOS from downstream PTP connected to the BBTopologicalLink

◆ LOF from downstream PTP connected to the BBTopologicalLink

◆ RDI on the upstream PTP connected to the BBTopologicalLink

◆ AIS on the downstream PTP connected to the BBTopologicalLink

BBTopologicalLink SignalDegrade
SignalDegrade indicates that traffic is passing through the black box but symptoms
indicate that the signal is degraded.

The symptom for BBTopologicalLink SignalDegrade is as follows:

◆ Signal Degrade (SD) on the receiving PTP connected to the BBTopologicalLink

Diagnosis of external failure

When the Optical Transport Manager receives alarms that relate connections from network
elements managed by the Optical Transport Manager to those that are not managed by the
Optical Transport Manager, special analysis is performed to determine if a problem has
occurred in the connected network rather than in the managed network.

This additional analysis is performed for drop side topological links that have a Down
notification. The following alarms are used in determining the existence of an external
failure.

◆ LOS on the PTP connected to a DropSideTopologicalLink or
BBDropSideTopologicalLink

◆ LOF on the PTP connected to a DropSideTopologicalLink or
BBDropSideTopologicalLink

Notifications and symptomatic events 73

Notifications and Impacts for SONET/SDH Networks

◆ AIS on the PTP connected to a DropSideTopologicalLink or BBDropSideTopologicalLink

◆ RFI on the PTP connected to a DropSideTopologicalLink

◆ RFI-P on the aEnd or zEnd CTP

◆ LOP-P on the aEnd or zEnd CTP

◆ AIS-P on the aEnd or zEnd CTP

◆ UNEQ-P on the aEnd or zEnd CTP

◆ TIM-P on the aEnd or zEnd CTP

◆ PLM-P on the aEnd or zEnd CTP

◆ PDI-P on the aEnd or zEnd CTP

◆ SSF-P on the aEnd or zEnd CTP

When analysis shows that an external failure has occurred, two user-defined attributes are
updated to show where the failure has occurred.

The UserDefined1 attribute can take one of the following values:

◆ zEnd Customer Network - External Failure

◆ Service Provider Network - Internal Failure

◆ aEnd Customer Network - External Failure

Impact analysis
When the Optical Transport Manager diagnoses a problem, it considers the impact of a
failure on other network elements or network connections by following certain
relationships in the topology. The Optical Transport Manager propagates impacts through
the topology along the Underlying and ComposedOf relationships.

Impact analysis performs two functions:

◆ Correlates alarms that are a result of the underlying root cause problem and labels
them in the notification as impacts, by setting their Category attribute to Impact.

◆ Creates ServiceUnavailable notifications for circuits where traffic is no longer flowing
because of one or more problems along its path.

Impact correlation

When the Optical Transport Manager performs root-cause analysis, it uses only a subset of
the alarms that result from a given failure as symptoms. The Optical Transport Manager
identifies the other alarms that occur as impacts of the root-cause problem. For instance, a
line failure that occurs when a fiber is cut has the symptoms, LOS on the downstream PTP,
and RDI-L on the upstream PTP. In addition, AIS-L, RDI-L, AIS-P and RDI-P alarms occur at
various points along all paths that pass through the cut fiber. The Optical Transport
Manager identifies all of these resulting alarms as impacts of the Down notification on the
TopologicalLink that models the cut fiber.

In the case of an Card or Equipment failure, the Optical Transport Manager identifies the
resulting UNEQ-P alarms as impacts.

74 EMC Smarts Optical Transport Manager User Guide

Notifications and Impacts for SONET/SDH Networks

Impact notifications

When the Optical Transport Manager diagnoses a root cause problem, it calculates
whether the problem has caused service to be lost on end-to-end circuits that depend on
the affected object. When service has been lost, the Optical Transport Manager creates
the following notification:

◆ ServiceUnavailable on Circuit object

For more information about how the Optical Transport Manager deals with protection, see
“Protection Schemes” on page 95.

Table 8 on page 75 shows the context in which the Optical Transport Manager generates
ServiceUnavailable root-cause notifications for circuits when there is either no protection,
or multiple failures prevent successful protection switching.

Table 8 Impact of failures on circuits when protection is unavailable

Root-cause
Notification Element Context

Down Card or Equipment Circuits passing through the Card or Equipment
depending on it.

Down PTP Circuits passing through the PTP.

Down or
SignalDegrade

TopologicalLink Circuits passing through the TopologicalLink.

Down or
SignalDegrade

DropSideTopologicalLink Circuits connected to the DropSideTopologicalLink

Down or
SignalDegrade

BBTopologicalLink Circuits passing through the BBTopologicalLink.

Down or
SignalDegrade

BBDropSideTopologicalLink Circuits connected to the BBDropSideTopologicalLink

Down HighOrder_Circuit A optical network object reports TransportOutgoingFail,
TransportIncomingFail, or TransportFail notifications.

Impact analysis 75

Notifications and Impacts for SONET/SDH Networks

76 EMC Smarts Optical Transport Manager User Guide

CHAPTER 7
Notifications and Impacts for PDH Networks

This chapter describes the notifications generated by the Optical Transport Manager for
PDH networks and the symptomatic events it diagnoses.

Topics covered in this chapter include:

◆ About Optical Transport Manager for PDH notifications ... 78
◆ Notifications and symptomatic events .. 78
◆ Impact analysis... 81

Notifications and Impacts for PDH Networks 77

Notifications and Impacts for PDH Networks

About Optical Transport Manager for PDH notifications
Optical Transport Manager for PDH describes the failures diagnosed for each low-order
element in the SDH network. Optical Transport Manager for PDH cross-correlates with
Optical Transport Manager for SONET/SDH to calculate which root-cause problems are
causing symptomatic events and creates notifications for the problem origin. The Optical
Transport Manager uses the relationships in the topology to calculate the impact that a
root-cause problem in one element has on the elements and services that are connected
to, or depend on it.

When the Optical Transport Manager receives alarms that relate to connections to
elements that it does not manage, the Optical Transport Manager performs special
analysis to determine if a problem has occurred in the connected network. This is
described in “Diagnosis of external failure” on page 80.

“Protection Schemes” on page 95 provides For detailed information about the protection
schemes supported by the Optical Transport Manager.

Notifications and symptomatic events
Table 9 on page 78 lists the notifications generated by the Optical Transport Manager for
low-order optical network elements and network connections in the SDH network.

The following sections describe the root-cause problems and related symptoms for optical
network elements and network connections.

Table 9 Notifications Generated by the Optical Transport Manager

Managed Element Notification Condition

Card Down A card in a network element has failed.

Equipment Down Equipment in a network element has failed.

PTP Down A PTP on a network card or equipment has failed.

PTPHardFailureCondition A hard failure indication has been observed on this
PTP.

OpticalNetworkElement Down The EMS has lost management connection with the
NE.

DropSideTopologicalLink Down The drop side topological link is down.

HighOrder_Trail TrailDown This facility is down.

TrailAtRisk One element of a protection group is down.
Communication continues, but without the security of
redundancy.

LowOrder_Circuit ServiceUnavailable This facility is down. May be a result of
TransportOutgoingFail, TransportIncomingFail, or
TransportFail.

ServiceAtRisk One element of a protection group is down.
Communication continues, but without the security of
redundancy.

78 EMC Smarts Optical Transport Manager User Guide

Notifications and Impacts for PDH Networks

Root-cause problems for PDH network elements

The Optical Transport Manager for PDH diagnoses the following root-cause problems for
low-order optical network elements in the SDH network:

◆ Card Down

◆ Equipment Down

◆ PTP Down

Card Down or Equipment Down
Down indicates that a card or equipment in a network element has failed. A Card or
Equipment failure causes all PTPs on the device to fail to pass traffic.

The symptomatic events for Card Down or Equipment Down include:

◆ Alarm from a network element indicating Card or Equipment failure

◆ Remote Failure Indication (RFI) on PTP objects that represent the end points on which
the client connections that pass through the network element enter and exit the
network. Note that the Optical Transport Manager interprets RAIs (Remote Alarm
Indications) and RFIs from digital links as RemoteIndications.

PTP Down
Down indicates that a PTP has failed; that is, the PTP is failing to pass traffic. Each PTP
object represents a pair of transmit and receive ports on the network element. The
symptoms seen from the network differ depending on which PTP has failed.

The symptomatic events for Down when a transmitter has failed include:

◆ Alarm from network element indicating transmitter failure.

◆ RFI on CTP objects that represent the end points on which the client connections that
pass through the network element enter and exit the network. The Optical Transport
Manager interprets RAIs and RFIs from digital links as RemoteIndications.

The symptomatic events for Down when a receiver has failed include:

◆ Alarm from network elements indicating receiver failure.

◆ RFI on downstream CTP objects that represent the end points on which the client
connections that pass through the network element enter and exit the network. The
Optical Transport Manager interprets RAIs and RFIs from digital links as “zz.”

OpticalNetworkElement Down
Down indicates that the Optical Network Element has failed. The symptomatic events for a
Down condition when an optical network element has failed include:

◆ CommunicationState Unavailable alarm from the Network Element indicating that the
communication to that OpticalNetworkElement has been lost.

◆ LOS or LOF on the all the PTPs of the neighboring OpticalNetworkElements that are
connected to the failed Network Element.

Notifications and symptomatic events 79

Notifications and Impacts for PDH Networks

Root-cause problems for PDH network connections

The Optical Transport Manager for PDH diagnoses root-cause problems for the following
loworder SDH network connections:

◆ DropSideTopologicalLink

The Optical Transport Manager diagnoses the following root-cause problems for
DropSideTopologicalLink objects.

◆ Down

DropSideTopologicalLink Down
Down indicates that the connection in at least one direction on a bidirectional link is
degraded to the point of no longer passing traffic.

The East/West directionality for each topological link is determined during discovery.

The symptoms for DropSideTopologicalLink Down are as follows:

◆ LOS on the PTP connected to the DropSideTopologicalLink

◆ RFI on the PTP connected to the DropSideTopologicalLink

◆ Signal Failure (SF) on the receiving PTP connected to the DropSideTopologicalLink

Diagnosis of external failure

When the Optical Transport Manager for PDH receives alarms that relate connections from
network elements it manages to those it does not manage, special analysis is performed
to determine if a problem has occurred in the connected network rather than in the
managed network.

This additional analysis is performed for circuits that have a Down notification. The
following alarms are used in determining the existence of an external failure. These alarms
may be applied to CTPs at various rates (for example, VC12, VC11, E1).

◆ LOP on the aEnd or zEnd CTP

◆ AIS on the aEnd or zEnd CTP

◆ UNEQ on the aEnd or zEnd CTP

◆ TIM on the aEnd or zEnd CTP

◆ PLM on the aEnd or zEnd CTP

◆ PDI on the aEnd or zEnd CTP

◆ SSF on the aEnd or zEnd CTP

◆ HighOrder_Trail TrailDown and TrailAtRisk alarms where the failed end cannot be
determined

When analysis shows that an external failure has occurred, the UserDefined1 attribute is
updated to show where the failure has occurred.

The UserDefined1 attribute can take one of the following values:

◆ zEnd Customer Network - External Failure

80 EMC Smarts Optical Transport Manager User Guide

Notifications and Impacts for PDH Networks

◆ Service Provider Network - Internal Failure

◆ aEnd Customer Network - External Failure

◆ Customer Network - External Failure

Customer Network - External Failure is a special case of DropSideTopologicalLink
Down where the end location of the external failure cannot be determined.

Impact analysis
When the Optical Transport Manager diagnoses a problem, it considers the impact of a
failure on other network elements or network connections by following certain
relationships in the topology. The Optical Transport Manager propagates impacts through
the topology along the Underlying and ComposedOf relationships.

Impact analysis performs two functions:

◆ Correlates alarms that are a result of the underlying root cause problem and labels
them in the notification as impacts, by setting their Category attribute to Impact.

◆ Creates ServiceUnavailable notifications for circuits where traffic is no longer flowing
because of one or more problems along its path.

Impact correlation

When the Optical Transport Manager performs root-cause analysis, it uses only a subset of
the alarms that result from a given failure as symptoms. The Optical Transport Manager
identifies the other alarms that occur as impacts of the root-cause problem. For instance, a
line failure that occurs when a fiber is cut has the symptoms, LOS on the downstream PTP,
and RDI-L on the upstream PTP. In addition, AIS-L, RDI-L, AIS-P and RDI-P alarms occur at
various points along all paths that pass through the cut fiber. The Optical Transport
Manager identifies all of these resulting alarms as impacts of the Down notification on the
TopologicalLink that models the cut fiber.

Impact notifications

When the Optical Transport Manager diagnoses a root cause problem, it calculates
whether the problem has caused service to be lost on end-to-end circuits that depend on
the affected object. When service has been lost, the Optical Transport Manager creates
the following notification:

◆ ServiceUnavailable on Circuit object

“Protection Schemes” on page 95 provides more information.

Impact analysis 81

Notifications and Impacts for PDH Networks

Table 10 on page 82 shows the context in which the Optical Transport Manager generates
ServiceUnavailable root-cause notifications for circuits when there is either no protection,
or multiple failures prevent successful protection switching.

Table 10 Impact of failures on circuits when protection is unavailable

Root-cause Notification Element Context

Down Card or Equipment Circuits passing through or depending on the Card or
Equipment

Down PTP Circuits passing through the PTP.

Down or SignalDegrade DropSideTopologicalLink Circuits passing through the TopologicalLink.

82 EMC Smarts Optical Transport Manager User Guide

CHAPTER 8
Notifications and Impacts for WDM Networks

This chapter describes problems diagnosed for each element in WDM networks. Topics
covered in this chapter include:

◆ Optical Transport Manager analysis for WDM networks ... 84
◆ Root-cause notifications for WDM Manager ... 84
◆ Impact analysis... 85

Notifications and Impacts for WDM Networks 83

Notifications and Impacts for WDM Networks

Optical Transport Manager analysis for WDM networks
The Optical Transport Manager calculates which root-cause problems are causing
symptomatic events and creates notifications for the problem origin. The Optical Transport
Manager uses the relationships in the topology to calculate the impact that a root-cause
problem in one element has on the elements and services that are connected to, or
depend on it.

Root-cause notifications for WDM Manager
Table 11 on page 84 lists the root-cause notifications generated by the Optical Transport
Manager for optical network elements and network connections in WDM networks.

Table 11 Notifications generated by Optical Transport Manager

Managed Element Notification Description

Card CardFailure Replaceable unit problem

CardRemoval Improper removal

CardFailure Dcc failure

Transponder CardFailure Replaceable unit problem

CardRemoval Improper removal

Amplifier CardFailure Replaceable unit problem

CardRemoval Improper removal

CardFailure Forced laser shutdown

PTP PTPHardFailureCondition PTPHardFailureCondition
up on the topological link

Port (can be declared on any
type of output port)

PortFailure Transmit failed

OpticalNetworkElement AtRisk Fan or power supply failure when backup
is provided and still working.

AmpOutOtsPort CardFailure Laser temperature or bias problem

AmpOutOmsPort CardFailure Laser temperature or bias problem

TransponderOutOcnPort CardFailure Laser temperature or bias problem

TransponderOutOchPort CardFailure Laser temperature or bias problem

Transponder Module ModuleDown Transmit failed, Improper removal or
Internal link failure. (This applies to a
special class of Transponder Modules
such as the OC192_Transmit
Transponder_NEC64 and OC192_Receive
Transponder_NEC64.)

FiberLink (OCN) LineFailure Loss of signal

LineFailure Loss of frame

SignalDegrade Signal degrade

84 EMC Smarts Optical Transport Manager User Guide

Notifications and Impacts for WDM Networks

Impact analysis
When the Optical Transport Manager performs impact analysis, it does the following:

◆ Correlates alarms that result from an underlying root-cause problem and labels them
in the notification as impacts, by setting their Category attribute to Impact.

◆ Creates Down notifications for end-to-end TopologicalLinks where traffic is no longer
flowing because of one or more problems along its path.

These functions are described in more detail in the following sections.

Impact correlation

When problems occur in a WDM network, many alarms are generated as a result. For
instance, if a fiber goes down inside a network element, there may be an LOS generated at
a downstream circuit pack, and up to 80 LOS alarms generated on transponders whose
input signals are carried by the fiber. If wavelengths have been added and dropped along
the light path, these alarms can occur at various point across the network. The Optical

FiberLink (OCH) LineFailure Loss of signal

SignalDegrade Signal degrade

FiberLink (OMS) LineFailure Loss of signal
Reflection power

FiberLink (OTS) LineFailure Loss of continuity
Loss of signal

SignalDegrade Signal degrade

BBFiberLink (OCN) LineFailure Loss of signal
Loss of frame
Alarm Indication Signal, Line level

WssModule CardFailure Replaceable unit problem

CardRemoval Improper removal

OcmModule CardFailure Replaceable unit problem

CardRemoval Improper removal

ControlModule CardFailure Replaceable unit problem

CardRemoval Improper removal

MuxModule CardFailure Replaceable unit problem

CardRemoval Improper removal

PassiveFiberLink LineFailure Loss of signal

Table 11 Notifications generated by Optical Transport Manager (continued)

Managed Element Notification Description

Impact analysis 85

Notifications and Impacts for WDM Networks

Transport Manager uses the local LOS alarm as a symptom of the root-cause problem
(WdmLink Down) and identifies the transponder LOS alarms as being impacts of the
underlying root-cause problem.

Table 12 on page 86 lists the events that can appear as symptoms and/or impacts of
root-cause notifications.

Table 12 Symptom and impact events

Object Event Description

TransponderInOcnPort,
TransponderOutOcnPort

LofEvent Loss of frame

TransponderInFecPort FecLofEvent Loss of FEC frame

Any Input Port LosEvent Loss of signal

AmpInOtsPort LocEvent Loss of continuity

Any Output Port OutFailEvent Transmit failed

Any Input/Output Port SignalDegradeEvent Signal Degrade

Any Output port of an amp or a
transponder

LaserTemperatureEvent Laser Temperature

Any Output port of an amp or a
transponder

LaserBiasEvent Laser Bias Current Level

AmpOutOtsPort AprEvent Automatic Power Reduction

TransponderInFecPort AisEvent Forward Defect Indication

TransponderInFecPort BdiEvent Backward Defect Indication

AmpOutOtsPort ForcedShutdownEvent Forced Laser shutdown

Any Card CardRemovalEvent Improper Removal

AmpOutOtsPort
AmpOutOmsPort

ReflectionEvent Reflection Power

AmpOutOtsPort
AmpOutOmsPort

ShutdownEvent Laser shutdown

Any Card CardFailureEvent Replaceable Unit Problem

AmpOutOscPort
AmpInOscPort
The DCC card (e.g., AUXA)

DccFailureEvent DCC Failure

OC192_TransmitTransponder_NEC6
4

OCHTRemovedEvent
OCLTRemovedEvent
FECTRemovedEvent

Improper Removal

OC192_TransmitTransponder_NEC6
4

OCHTFailedEvent
OCLTFailedEvent
FECTFailedEvent

Transmit Failed

OC192_TransmitTransponder_NEC6
4

OCLTToFECTLinkFailedEvent
FECTToOCHTLinkFailedEvent

Internal Link Failure

86 EMC Smarts Optical Transport Manager User Guide

Notifications and Impacts for WDM Networks

Impact notification

In order to facilitate cross-domain correlation with SONET/SDH, the Optical Transport
Manager for WDM identifies which end-to-end TopologicalLink objects have lost service
due to a root-cause problem. These TopologicalLink objects will correspond to links in the
SONET/SDH model where WDM is being used as a transport. Cross-domain correlation is
explained more fully in “Cross-domain correlation” on page 88.

A Down notification is created on a TopologicalLink when any of the ClientTrail objects that
the ToplogicalLink is LayeredOver are marked Down.

Enhanced Card Level Impact

Optical Transport Manager supports additional Card level event to categorize between
service affecting (SA) and non-service affecting (NSA).

ServiceAffecting events have impact on Services that passes through components while
NonServiceAffecting events does not have such impacts.

OC192_ReceivetTransponder_NEC6
4

OCHRRemovedEvent
OCLRRemovedEvent
FECRRemovedEvent

Improper Removal

OC192_ReceivetTransponder_NEC6
4

OCHRFailedEvent
OCLRFailedEvent
FECRFailedEvent

Transmit Failed

OC192_ReceivetTransponder_NEC6
4

OCHRToFECRLinkFailedEvent
FECRToOCLRLinkFailedEvent

Internal Link Failure

Table 12 Symptom and impact events (continued)

Object Event Description

Table 13 ServiceAffecting events and NonServiceAffecting events

Category CardAlarmType Problem Event

ServiceAffecting CARD_FAIL CardDown CardUnavailabl
e

CARD_REMOVED

CARD_MISMATCH

AMP_INTERNAL_SHUTDOWN

DCF_LOS

DCF_OUTFAIL

AMP_INTERNAL_REFLECTION

AMP_FORCED_LASER_SHUTDOWN

AMP_LASER_TEMPERATURE

AMP_LASER_BIAS

NonServiceAffecting SV_LOS ImProperCardState CardConditionIn
appropriate

OSC_INTERNALLINKFAIL

Impact analysis 87

Notifications and Impacts for WDM Networks

Cross-domain correlation

The Optical Transport Manager performs the following cross-domain correlation
calculations:

◆ Explanation of a SONET/SDH TopologicalLink Down as being an impact of an
underlying WDM root-cause problem

◆ Explanation of alarms in WDM as being caused by a problem in SONET/SDH

These calculations are described in more detail in the following sections.

Explanation of SONET/SDH TopologicalLink Down
The Optical Transport Manager for WDM can be configured to receive TopologicalLink Down
notifications from the Optical Transport Manager for SONET/SDH. When these are
received, the Optical Transport Manager for WDM determines if the received notification
corresponds to an impact notification it has calculated. If the notifications correspond, the
root-cause of the impact notification is marked as the root-cause of the notification that
came from the Optical Transport Manager for SONET/SDH, and this information is passed to
Service Assurance Manager. In this case, the alarm repository in Service Assurance
Manager shows that what appeared to be a problem in SONET/SDH was in fact caused by
a root-cause problem in WDM.

Explanation of alarms in WDM as being caused by a problem in SONET/SDH
When a problem occurs in the SONET/SDH network feeding a WDM network, the
equipment in the WDM network generates alarms (for instance, LOS on the input
transponder). When the Optical Transport Manager does not diagnose a root-cause in the
WDM network, but does diagnose a problem in the SONET/SDH network, it indicates that
the WDM alarms are impacts of the SONET/SDH problem.

88 EMC Smarts Optical Transport Manager User Guide

CHAPTER 9
Notifications and Impacts for Next Generation
WDM Networks

This chapter describes problems diagnosed for each element in Next Generation WDM
networks. Topics covered in this chapter include:

◆ Optical Transport Manager analysis for Next Generation WDM networks 90
◆ Notifications and symptomatic events .. 90

Notifications and Impacts for Next Generation WDM Networks 89

Notifications and Impacts for Next Generation WDM Networks

Optical Transport Manager analysis for Next Generation WDM
networks

The Optical Transport Manager calculates which root-cause problems are causing
symptomatic events and creates notifications for the problem origin. The Optical Transport
Manager uses the relationships in the topology to calculate the impact that a root-cause
problem in one element has on the elements and services that are connected to, or
depend on it.

Notifications and symptomatic events
Table 14 on page 90 lists the root-cause notifications for optical network elements and
connections in networks that support TMF 864. Notifications from the WDM-NG Manager
are displayed in the Notification Log in to the SolutionPack for EMC Smarts, available from
the EMC M&R user interface.

The SolutionPack for Optical Wavelength Services Summary Sheet article explains how to
set up the collection of TMF 864-related data. The SolutionPack for EMC Smarts Summary
Sheet article provide information on viewing notifications and topology from the EMC M&R
user interface. The Service Assurance Suite Documentation Index, available on the EMC
Community Network (ECN), provides links to related documentation.

Table 14 Notifications generated by Optical Transport Manager

Managed Element Notification Description

OpticalNetworkElement CommunicationStateDown The EMS lost management connection
with the Optical Network Element.

Down The Optical Network Element is powered
off or down.

Shelf DownEvent A Shelf is powered off.

Down A Shelf is powered off or down.

EMS AsyncTimedOut Event processing via the 'async' message
queue has timed out for this EMS.

Disconnectted Loss of Communication with the EMS.

EmsAdapterNotRunning EMS adapter has shut down.

SyncTimedOut Event processing via the 'sync' message
queue has timed out for this EMS.

Equipment (Card) DownOrUnavailable Equipment/Card is either down or
removed.

Down Equipment/Card is either down or
removed.

90 EMC Smarts Optical Transport Manager User Guide

Notifications and Impacts for Next Generation WDM Networks

PTP LosEvent Loss of Signal.

AOPE Aggregate Output Power Exceeded.

LOF Loss of Frame.

LOFD Loss of Frame Delineation.

OPOVLD Optical Power Overload.

TIM Trace identifier Mismatch.

Vendor/Alarm Vendor specific alarm.

Down Down, due to a service affecting alarm
condition.

CTP LosEvent Loss of Signal.

LOF Loss of Frame.

LOFD Loss of Frame Delineation.

LOM Loss of Multiframe.

LOSTC Loss of Tandem Connection.

MSIM Multiplex Structure Identifier Mismatch.

TIM Trace identifier Mismatch.

VendorAlarm Vendor specific alarm.

Down Down, due to a service affecting alarm
condition.

TopologicalLink Down No traffic is passing through the link in
one or both directions and symptoms may
indicate fiber failure.

DropsideTopologicalLink Down No traffic is passing through the link in
one or both directions and symptoms may
indicate link failure.

Route Unavailable This SubnetworkConnection (SNC) Route
is down due to one or more failures in its
path.

SubnetworkConnection ServiceAtRisk SubnetworkConnection is at Risk due to a
loss of redundancy in its Routes

ServiceUnavailable The SubnetworkConnection is down.

ClientTrail Unavailable This ClientCircuit Trail is down.

ClientCircuit ServiceAtrisk The ClientCircuit is at risk due to a loss of
redundancy in its Trails.

ServiceUnavailable This ClientCircuit is down.

Table 14 Notifications generated by Optical Transport Manager (continued)

Managed Element Notification Description

Notifications and symptomatic events 91

Notifications and Impacts for Next Generation WDM Networks

Root cause events for WDM-NG Manager

The WDM-NG domain manager calculates the following root-cause events based on raw
EMS alerts collected by the SolutionPack for Optical Wavelength Services from EMS
systems in networks that support TMF 864.

OpticalNetworkElement::Down
An OpticalNetworkElement is powered off or down.

Symptoms

◆ loss-of-communication alarm

◆ Loss Of Signal on Ports (PTP) on other ONEs that are directly connected to a Card on
this ONE.

Impact

◆ Route::Unavailable

◆ ClientTrail::Unavailable

◆ ClientCircuit::ServiceUnavailable or ClientCircuit::AtRisk

◆ SubnetworkConnection::ServiceUnavailable or SubnetworkConnection::AtRisk

◆ LosEvent on Ports on other ONEs that are directly connected to a Card on this ONE.

All services (SubnetworkConnections and ClientCircuits) that pass through this ONE are
shown as impacted. ONE::Down explains why a service may be unavailable (no working
alternate path) or at risk (when there is a working protected path, though a different ONE).

Shelf::Down
A Shelf within an OpticalNetworkElement is powered off or down.

Symptoms

◆ loss-of-communication alarm on the ONE (if it is a MAIN_SHELF) or a LOSSCOM alarm
on the Shelf (if it is a PORT_SHELF)

◆ Loss Of Signal on Ports (PTP) on other ONEs that are directly connected to a Card on
this Shelf.

Impact

◆ Route::Unavailable

◆ ClientTrail::Unavailable

◆ ClientCircuit::ServiceUnavailable or ClientCircuit::AtRisk

◆ SubnetworkConnection::ServiceUnavailable or SubnetworkConnection::AtRisk

◆ LosEvent on ports (PTP or CTP) on other ONEs that are directly connected to Card on
this Shelf.

Equipment::Down
A Card is removed, or a mismatching Card is placed the the slot.

92 EMC Smarts Optical Transport Manager User Guide

Notifications and Impacts for Next Generation WDM Networks

Symptoms

◆ EquipmentMismatch or HardwareMismatch or ReplaceableUnitMissing

◆ Optionally, LosEvents on peer ports (PTP or CTP)

Impact

◆ Route::Unavailable

◆ ClientTrail::Unavailable

◆ ClientCircuit::ServiceUnavailable or ClientCircuit::AtRisk

◆ SubnetworkConnection::ServiceUnavailable or SubnetworkConnection::AtRisk

◆ LosEvents on peer ports (PTP or CTP)

Services that are flowing through this Card, a subcard, or related Cards (which form a
degree) are shown as impacted.

TopologicalLink::Down
A fiber is cut or unplugged or got damaged. The TopologicalLink is modeled as a
bidirectional fiber, but in reality, there are separate fibers for transmit and receive, which
can individually go bad or unplugged.

Symptoms

◆ Loss Of Signal on one or both of the connected Ports (PTP or CTP).

Impact

◆ Route::Unavailable

◆ ClientTrail::Unavailable

◆ ClientCircuit::ServiceUnavailable or ClientCircuit::AtRisk

◆ SubnetworkConnection::ServiceUnavailable or SubnetworkConnection::AtRisk

◆ LosEvents on peer ports (PTP or CTP)

PTP::Down
A service affecting alarms is reported on the PTP.

Symptoms

◆ Any of the service affecting alarms are reported on the PTP.

Impact:

◆ Route::Unavailable

◆ ClientTrail::Unavailable

◆ ClientCircuit::ServiceUnavailable or ClientCircuit::AtRisk

◆ SubnetworkConnection::ServiceUnavailable or SubnetworkConnection::AtRisk

CTP::Down
A service affecting alarms is reported on the CTP.

Notifications and symptomatic events 93

Notifications and Impacts for Next Generation WDM Networks

Symptoms

◆ Any of the service affecting alarms are reported on the PTP.

Impact

◆ Route::Unavailable

◆ ClientTrail::Unavailable

◆ ClientCircuit::ServiceUnavailable or ClientCircuit::AtRisk

◆ SubnetworkConnection::ServiceUnavailable or SubnetworkConnection::AtRisk

◆ A higher level CTP::DownEvent

94 EMC Smarts Optical Transport Manager User Guide

CHAPTER 10
Protection Schemes

Optical Transport Manager supports several protection scheme frameworks for the reliable
transport of upper layer traffic such as IP, voice, and data.

Topics covered in this chapter include:

◆ Protection switching support .. 96
◆ 1+1 automatic protection switching .. 97
◆ 1:N protection... 98
◆ 1+1 protection .. 100
◆ 2-fiber BLSR/MS-SPRing protection... 101
◆ 4-fiber BLSR/MS-SPRing protection... 103
◆ UPSR/SNCP protection.. 105
◆ 1+1 ClientCircuit/TopologicalLink Protection... 106
◆ SNC (Subnetwork connection) protection:... 110
◆ Y-Cable protection .. 110

Protection Schemes 95

Protection Schemes

Protection switching support
One of the key features of optical networks is protection switching. EMC Smarts Optical
Transport Manager supports Layer 1 network topologies with the following protection
schemes for SONET/SDH networks:

◆ 1+1 Automatic Protection Switching (APS)

◆ 1:N protection

◆ 1+1 protection

◆ 2-fiber Bidirectional Line Switched Ring (BLSR) or 2-fiber Multiplex Section-Shared
Protection Ring (MS-SPRing)

◆ 4-fiber BLSR or 4-fiber MS-SPRing

◆ UPSR (SNCP)

The following protection scheme is supported for the WDM network:

◆ 1+1 ClientCircuit/TopologicalLink Protection

The following protection scheme is supported for the WDM NG domain:

◆ Y-cable protection

◆ SNC protection

The AtRisk Notification

The AtRisk notification identifies when a HighOrder_Circuit or LowOrder_Circuit has lost its
redundancy and therefore its failure protection. The HighOrder_Circuit or LowOrder_Circuit
goes into an AtRisk condition when a member of a redundancy group that underlays the
HighOrder_Circuit or LowOrder_Circuit has failed.

The redundancy or protection group contains two or more of the same type of network
objects, for example TopologicalLinks, that also share the same A-end and Z-end points.
The following table shows the various redundancy groups, the type of object each
contains, and the protection scheme it implements.

Table 15 Protection objects, elements contained, and protection schemes

Protection group object
Network element
contained Protection scheme

TopologicalLinkGroup TopologicalLink 1+1 APS

RingProtectionGroup TopologicalLinkGroup 2F-BLSR/2F-MS-SPRing
4F-BLSR/4F-MS-SPRing

LogicalConnectionTPGroup TopologicalLink UPSR/SNCP

CardProtectionGroup Card/Equipment 1:N Card/Equipment protection
1+1 Card/Equipment protection

LinkGroup OchLink (WDM)
OcnLink (WDM)

1+1 ClientCircuit protection (WDM)
1+1 TopologicalLink protection
(SONET/SDH)

96 EMC Smarts Optical Transport Manager User Guide

Protection Schemes

The way protection is modeled for the WDM-NG domain differs from other domains.
WDM-NG protection is described in“SNC (Subnetwork connection) protection:” on
page 110 and “Y-Cable protection” on page 110.

When one of the network elements contained in the protection group fails, the protection
group object goes into an AtRisk condition. The AtRisk condition propagates up to the
object layered over the protection group, such as:

◆ HighOrder_Trail
◆ ClientTrail
◆ TopologicalLink
◆ OcnLink

One of these object going into an AtRisk condition propagates up to the object it is layered
over, such as:

◆ HighOrder_Circuit
◆ LowOrder_Circuit
◆ ClientCircuit

Details of each protection scheme and the classes and relationships used to model each
protection scheme are described in the sections following in this chapter.

1+1 automatic protection switching
1+1 automatic protection switching (APS) is a line protection scheme used in SONET/SDH.
In this protection scheme, the optical signal is bridged at the source termination point and
traverses two optical lines (working and protection). The destination termination point
selects one of the lines based on standard switching criteria. Thus, if a signal on a working
path is lost or significantly degraded, the destination switch automatically selects the
signal on the protection path. The 1 + 1 APS protection protocol allows both unidirectional
and bidirectional protection switching modes.

Figure 40 on page 97 shows the physical configuration of the 1+1 Protection Group, in
which traffic is bridged at the source node and selected at the destination node.

Figure 40 Physical configuration in a protection group

Figure 41 on page 98 shows the classes and relationships used to model 1 + 1 protection.
The connection running over the protection group is represented by a
TopologicalLinkGroup, which is ComposedOf the two topological link objects that
represent the two fiber pairs that make up the protection group.

For 1 + 1 protection TopologicalLinkGroup ComposedOf two object instances, one for
Route, one for AlternateRoute.

Working Line

Protection Line

1+1 automatic protection switching 97

Protection Schemes

The Route may be a DropSideTopologicalLink or BBDropSideTopologicalLink with an
AlternateRoute of DropSideTopologicalLink or BBDropSideTopologicalLink. Or the Route
may be a TopologicalLink or BBTopologicalLink with an AlternateRoute of TopologicalLink
or BBTopologicalLink.

The Route and/or AlternateRoute can be black boxes in this protection scheme. For
example, a BBTopologicalLink can be an alternate route for a TopologicalLink, or vice
versa. And a BBDropSideTopologicalLink can be an alternate route for a
DropSideTopologicalLink, or vice versa.

For root-cause analysis, the TopologicalLinkGroup object creates a Route relationship with
the working fiber connection, and an AlternateRoute relationship with the protected fiber
connection.

For impact analysis, the HighOrder_Circuit or LowOrder_Circuit object creates a
LayeredOver/Underlaying relationship with the HighOrder_Trail object. The
HighOrder_Trial object creates a LayeredOver/Underlaying relationship with the
TopologicalLinkGroup object.

Figure 41 Classes and relationships used in 1+1 protection

1:N protection
In this protection scheme, a single device, Card or Equipment, protects up to 14 others in
the same shelf. The type of card or equipment and the number of ports in the card or
equipment located in the protection slot must be the same as that of the number of
working devices that it protects. When a failure occurs on a working device, the protection

SubNetworkConnection

Circuit

TopologicalLinkGroup

BlackBoxDropSideTopologicalLink

BlackBoxTopologicalLink

DropSideTopologicalLink

TopologicalLink

ComposedOf/PartOf
AlternateRouteRoute

LayeredOver/Underlying

LayeredOver/Underlying

BlackBoxDropSideTopologicalLink

BlackBoxTopologicalLink

DropSideTopologicalLink

TopologicalLink

or or

98 EMC Smarts Optical Transport Manager User Guide

Protection Schemes

device takes on the role of the working device. All of the facilities connected to the ports
on the working device use the ports on the protection device. The 1:N protection scheme
is shown in Figure 42 on page 99.

This protection scheme does not deal with the failure of multiple devices; however, a
priority scheme would allow protection of the highest priority working device.

Figure 42 1:N protection scheme

Topology

◆ No Equipment Protection Group is created for Cards or Equipment participating in 1:N
Equipment protection.

◆ In both the SONET/SDH and Low-order SONET/SDH domains, the TMF 814 Topology
Adapter is responsible for discovering and setting up the attributes and relationships
in the Card/Equipment objects to indicate their participation in the 1:N Equipment
Protection scheme.

◆ In Low-order SONET/SDH, the Equipment/Cards are imported from the SONET/SDH
server for those which have a DSTL or Trail running over them. If there is no Trail, that
Card does not participate in 1:N Equipment protection.

◆ The IsProtected attribute indicates participation of the Card/Equipment in the 1:N
Protection scheme.

◆ The Protects relationship specifies which cards this card is protecting.

◆ The ProtectedBy relationship specifies which card is protecting this card.

Protection C
ard

W
orking C

ard

W
orking C

ard

W
orking C

ard

W
orking C

ard

1

2

N

1

2

N

1

2

N

1

2

N

1

2

N

… … … … …

Working Card

Protection Card

Working Card

Protection Card

Before Failure After Failure

1:N protection 99

Protection Schemes

◆ Services or Circuit are layered over the DSTLs related to the Equipment participating in
the 1:N Equipment protection scheme. Both the working and the protecting cards
layered over the DSTLs.

◆ The 1:N Equipment protection scheme applies to Cards, for example, DS1, DS3, E1,
etc., which are directly interfacing with Client equipment.

◆ Services may be protected using the 1:N Equipment protection scheme by having one
protected side interfacing with the Client protected, while the other side may or may
not be protected.

◆ A Circuit or Trail related to the 1:N Equipment protection group is not discovered by the
TMF814 Topology Adapter. It is created independently, after the topology discovery,
using TMF 814 Topology Adapter.

Event

◆ TMF814 Event Adapter is responsible for marking the Card objects with a Failure event.

◆ TMF814 Event Adapter is also responsible for indicating if the failure of the Card/
Equipment impacts a service. This is indicated by the “IsServiceAffected” attribute of
the Card/Equipment.

◆ The “IsServiceAffected” attribute does not apply to the protecting card.

Root Cause and Impact Analysis

◆ A ServiceUnavailable/TrailDown notification is generated for the services related to
the card for which “IsServiceAffected” is true.

◆ A ServiceAtRisk/TrailAtRisk notification is generated for the services related in the
following cases:

• Protecting card is down

• Working card is down and protecting card is not being already used for carrying
services of another down working card.

1+1 protection
In this protection scheme, a protection device, Card or Equipment, is paired with a working
Card or Equipment in the same shelf. The type of card or equipment and the number of
ports in the protection device must be the same as that of the working device that it
protects. The ports on the protection device must match the ports on the working device.
For example, port 2 on an OC-12/STM-4 working card is protected by port 2 on the
OC-12/STM-4 protection card. In this scheme, any of the ports on the protection card or
equipment can be assigned to protect the ports on the working device, while other ports
on the working card or equipment can remain unprotected.

100 EMC Smarts Optical Transport Manager User Guide

Protection Schemes

Figure 43 on page 101 shows 1+1 protection.

Figure 43 1+1 protection

1+1 protection is implemented using the CardProtectionGroup object which have a
ComposedOf/PartOfEquipmentProtectionGroup relationship to Card or Equipment
objects.

2-fiber BLSR/MS-SPRing protection
2-fiber Bidirectional Line Switched Ring (BLSR) or Multiplexed Section-Shared Protection
Ring (MS-SPRing) protection is a line protection scheme used in SONET/SDH rings. In this
scheme, half of the bandwidth of the fiber is used to carry traffic. The other half is used for
protection. For example, if the ring is an OC-48/STM-16 ring, tributaries 1-24/1-8 are used
for working; while 25-48/9-16 are used for protection. The scheme activates ring
switching when there is a line-level failure away from the failure.

Nodes are connected via bidirectional lines to form a ring. Up to 16 Network elements can
be connected in a 2F-BLSR/2F-MS-SPRing ring. When a line failure occurs, the nodes that
terminate the failed line switch the traffic from the working path to the protection path.
The protection path traverses around the ring opposite to the failure.

Figure 44 on page 102 shows the physical configuration of the 2F-BLSR/2F-MS-SPRing
Protection Group.

Protection C
ard

W
orking C

ard

1

2

N

1

2

N

……
Working Card

Protection Card

Working Card

Protection Card

Before Failure After Failure

2-fiber BLSR/MS-SPRing protection 101

Protection Schemes

Figure 44 Physical configuration of the 2F-BLSR/2F-MS-SPRing protection group

Figure 45 on page 103 shows the classes and relationships used to model
2F-BLSR/2F-MS-SPRing protection. Each HighOrder_Trail across a 2F-BLSR/2F-MS-SPRing
ring has a LayeredOver relationship with the protection group, TopologicalLinkGroup.

The TopologicalLinkGroup object has Route and AlternateRoute relationships that each
point to a set of TopologicalLink objects, which are used in the working route and
alternate route, respectively.

In Figure 45 on page 103, the ring has two legs; one is used for the working route, while
the other is used for the alternate route. The HighOrder_Circuit or LowOrder_Circuit object
and HighOrder_Trail object each have a LayeredOver relationship with the
TopologicalLinkGroup object. These relationships are used to assess the impact of
network failures on the HighOrder_Circuit or LowOrder_Circuit object and HighOrder_Trail
objects that use the ring.

2-Fiber BLSR
or

2-Fibre MSSPRING

C

A

D B

Working

Protection

Working

Protection

CCW

CW

102 EMC Smarts Optical Transport Manager User Guide

Protection Schemes

Figure 45 Classes and relationships used in 2F-BLSR/2F-MS-SPRing protection

4-fiber BLSR/MS-SPRing protection
4-Fiber Bidirectional Line Switched Ring (BLSR) or Multiplexed Section-Shared Protection
Ring (MS-SPRing) protection is a line protection scheme used in SONET/SDH rings. In this
scheme a bidirectional line is used to carry the traffic; another bidirectional line is
reserved for protection. When failure occurs, the traffic is switched from the working lines
onto the protection lines. This scheme first activates span switching when there is a line
level failure. If span switching is not enabled or not possible, the scheme activates ring
switching away from the failure.

Nodes are connected via a pair of bidirectional lines (working and protection lines) to form
a ring. Up to 16 Network elements can be connected in a 4F-BLSR/4F-MS-SPRing ring.
When a line failure occurs, the nodes that bookend the failed line switch the traffic from
the working path to one of the two protection paths. The first protection path uses the
protection span (similar to 1+1 APS) while the second protection path traverses around
the ring opposite to the failure.

Figure 46 on page 104 shows the physical configuration of the 4F-BLSR/4F-MS-SPRing
Protection Group.

TopologicalLinkGroup

TopologicalLinkTopologicalLinkTopologicalLinkTopologicalLink
TopologicalLinkTopologicalLinkTopologicalLinkTopologicalLink

ComposedOf/Partof

AlternateRouteRoute

LayeredOver/Underlying

HighOrder_Trail

LowOrder_Circuit

LayeredOver/Underlying

HighOrder_Circuitor

LayeredOver/Underlying

4-fiber BLSR/MS-SPRing protection 103

Protection Schemes

Figure 46 Physical configuration of the 4F-BLSR/4F-MS-SPRing protection group

Figure 47 on page 104 shows the classes and relationships used to model 4F-BLSR/4F-
MS-SPRing protection. Each HighOrder_Circuit or LowOrder_Circuit across a
4F-BLSR/4F-MS-SPRing ring is LayerOver a HighOrder_Trail. The HighOrder_Trail is
LayeredOver a RingProtectionGroup object. Each RingProtectionGroup object has a
ComposedOfRPG relationship with TopologicalLinkGroup objects. Each
TopologicalLinkGroup object has a Route relationship for the working route and an
AlternateRoute for the alternate route, which is similar to the 1 + 1 protection group for a
link between two network elements. Each RingProtectionGroup also has a
RouteProtectedBy relationship with TopologicalLink objects, which participate in ring
switching.

.

Figure 47 Classes and relationships used in 4F-BLSR/4F-MS-SPRing protection

4F-BLSR/
MS-SPRing

W

P

TopologicalLinkGroupTopologicalLinkGroupTopologicalLinkGroup

TopologicalLink TopologicalLink

ComposedOf/PartOf
AlternateRouteRoute

LayeredOver/Underlying

RingProtectionGroup

TopologicalLinkTopologicalLinkTopologicalLinkTopologicalLink

RouteProtectedBy/
RouteProtectedFor

ComposedOfTLG/
PartOfTLG

HighOrder_Trail

LowOrder_Circuit

LayeredOver/Underlying

HighOrder_Circuitor

LayeredOver/Underlying

104 EMC Smarts Optical Transport Manager User Guide

Protection Schemes

UPSR/SNCP protection
Unidirectional Path Switch Ring (UPSR) or Subnetwork Connection Protection (SNCP) is a
path protection scheme used in SONET/SDH rings. Nodes are connected via bidirectional
lines to form a ring.

This protection scheme offers 1+1 protection for each logical connection configured
across the ring. Thus SONET path traffic (STSn) or SDH path traffic (VC3,VC4, VC4-nC) is
bridged at the source logical termination point and traverses the ring in both directions
towards its destination node. At the destination node, one of the paths is selected based
on standard switching criteria. Thus, if a signal on one path is lost or significantly
degraded, the destination switch automatically selects the signal on the alternate path.

Figure 48 on page 105 shows the physical configuration of the USPR/SNCP Protection
Group, in which traffic is bridged at the source node. This traffic takes alternate paths
around the ring and is finally selected at the destination node. The protection occurs at
the destination, where the path overheads of the alternate paths are monitored for the
purpose of switching to the path with better quality.

Figure 48 Physical configuration of the UPSR/SNCP group

Figure 49 on page 106 shows the classes and relationships used to model UPSR/SNCP
protection.

The HighOrder_Circuit or LowOrder_Circuit that travels across a ring that implements
UPSR/SNCP is LayeredOver a HighOrder_Trail. The HighOrder_Trail is LayeredOver a
TopologicalLinkGroup or a LogicalConnectionTPGroup object. Either has a Route and
AlternateRoute relationship with a set of CTP objects, which are part of the working route
the protection route, respectively.

USPR/SNCP

BridgeSelector

SelectorBridge

UPSR/SNCP protection 105

Protection Schemes

Figure 49 Classes and relationships used in UPSR/SNCP protection

1+1 ClientCircuit/TopologicalLink Protection
1+1 ClientCircuit/TopologicalLink Protection protects WDM wavelength service and
SONET/SDH traffic over WDM networks. Wavelength service is carried via the ClientCircuit
entity and SONET/SDH traffic is carried via the TopologicalLink entity.

ComposedOf/
PartOf

AlternateRouteRoute

LayeredOver/Underlying

TopologicalLinkTopologicalLinkCTP
TopologicalLinkTopologicalLinkCTP

HighOrder_Trail

LowOrder_Circuit

LayeredOver/Underlying

HighOrder_Circuitor

LogicalConnectionTPGroup TopologicalLinkGroup

TopologicalLinkTopologicalLinkTopologicalLink
TopologicalLinkTopologicalLinkTopologicalLink

ComposedOf/
Partof

AlternateRouteRoute

LayeredOver/Underlying

LayeredOver/Underlying

106 EMC Smarts Optical Transport Manager User Guide

Protection Schemes

A ClientCircuit or TopologicalLink may ride over several logical and physical entities. When
some of those entities duplicate the same segment of the route between OcnLinks or
OchLinks, the discovery adapter puts them in a protection group which is modeled as a
LinkGroup entity. This allows for redundancy in the service underlaying the ClientCircuit or
TopologicalLink.

Figure 50 WDM protection with duplicate OcnLinks

Figure 50 on page 107 shows two OcnLinks both spanning the route from the input of one
transponder (TransponderInOcnPort) to the output of another transponder
(TransponderOutOcnPort). The discovery adapter insures that none of the equipment in
the working route is shared with the protection route.

In the OcnLink protection scheme, the LinkGroup is composed of OcnLinks. The ClientTrail
or TopologicalLink is layered over the LinkGroup. The OcnLinks are layered over one or
more OchLinks which is a logical connection between multiplexers/demultiplexers. See
Figure 52 on page 109.

In the OchLink protection scheme, the LinkGroup is composed of OchLinks. An OcnLink is
layered over the LinkGroup. Underlaying the OchLinks are one or more FiberLink objects,
the lowest level in the architecture. The connections between the add-drop multiplexer
(ADM) and the transponders (TPDR) are FiberLinks underlaying the OcnLink.

Figure 51 on page 108 shows two OchLinks spanning the same route from the input of one
multiplexer (TransponderInOchPort) to the output of a demultiplexer
(TransponderOutOchPort). Like OcnLinks, the OchLinks must have unique routes with no
shared equipment.

OA

OA

A
D
M

OA

OA

M
U
X

D
E
M
U
X

OA

OA
T
P
D
R

M
U
X

D
E
M
U
X

OA

OA M
U
X

D
E
M
U
X

M
U
X

D
E
M
U
X

OA OA

OA OA

OA OA

OA OA

ET ET

ADM = Add Drop Multiplexer MUX = Multiplexer
ET = End Terminal DEMUX = De-Multiplexer
OA = Optical Amplifier TPDR = Transponder
OCN = Optical Connection ILA = In-Line Amplifier

T
P
D
R

A
D
M

T
P
D
R

T
P
D
R

OcnLink #1

OcnLink #2

ILA/Regen

1+1 ClientCircuit/TopologicalLink Protection 107

Protection Schemes

The FiberLinks connecting the transponders to the mux/demuxers is part of OchLink and
underlays the OchLink.

Figure 51 WDM protection with duplicate OchLinks

In the 1+1 ClientCircuit/TopologicalLink protection scheme, switching is handled by
negotiation between the transponders.

When a failure or fault occurs on a logical or physical entity that underlays the ClientCircuit
or TopologicalLink, if it is part of a LinkGroup, the services layered over the entity receive
an “AtRisk” notification, as does the LinkGroup. The “AtRisk” event is propagated to all
layers from the LinkGroup to the wavelength service or TopologicalLink.

Only in the event of a failure of all entities in a protection group, will the event notification
be “Down” for the TopologicalLink or “ServiceUnavailable” for the ClientCircuit. This
notification will also be propagated to all entities layered over the entities in the
LinkGroup.

Figure 52 on page 109 shows the classes and relationships used to model the 1+1
ClientCircuit/ TopologicalLink protection scheme with redundant OcnLinks. The LinkGroup
underlays a ClientTrail for wavelength service or a TopologicalLink for SONET/SDH traffic.
The LinkGroup is composed of a route and alternate route each of which are layered over
OchLinks.

Figure 53 on page 109 shows the classes and relationships used to model the 1+1
ClientCircuit/ TopologicalLink protection scheme with redundant OchLinks. The LinkGroup
underlays a OcnLink. The LinkGroup is composed of a route and alternate route each of
which are layered over FiberLinks.

OA

OA

A
D
M

OA

OA

M
U
X

D
E
M
U
X

OA

OA

T
P
D
R

M
U
X

D
E
M
U
X

OA

OA M
U
X

D
E
M
U
X

M
U
X

D
E
M
U
X

T
P
D
R

A
D
M

OchLink #1

OchLink #2

ILA/Regen

OA OA

OA OA

OA OA

OA OA
ET ET

ADM = Add Drop Multiplexer MUX = Multiplexer
ET = End Terminal DEMUX = De-Multiplexer
OA = Optical Amplifier TPDR = Transponder
OCH = Optical Channel ILA = In-Line Amplifier

108 EMC Smarts Optical Transport Manager User Guide

Protection Schemes

Figure 52 Classes and relationships used in 1+1 ClientCircuit/TopologicalLink OcnLink protection

Figure 53 Classes and relationships used in 1+1 ClientCircuit/TopologicalLink OchLink protection

ClientTrail

LinkGroup

ComposedOf/
PartOf

AlternateRouteRoute

LayeredOver/Underlying

CTPCTPOcnLink

FiberLinkFiberLinkOchLink

CTPCTPOcnLink

FiberLinkFiberLinkOchLink

LayeredOver/Underlying LayeredOver/Underlying

TopologicalLinkor

LayeredOver/Underlying

OcnLink

LinkGroup

ComposedOf/
PartOf

AlternateRouteRoute

LayeredOver/Underlying

CTPCTPOchLink

FiberLinkFiberLinkFiberLink

CTPCTPOchLink

FiberLinkFiberLinkFiberLink

LayeredOver/Underlying LayeredOver/Underlying

1+1 ClientCircuit/TopologicalLink Protection 109

Protection Schemes

SNC (Subnetwork connection) protection:
SNC protection is a path protection scheme that offers 1+1 protection for a given
Subnetwork connection. There are two different protection types associated with the SNC:

◆ Fully protected: In this case the working and protected paths, referred to as Route,
cover the complete SNC.

◆ Partial protection: Only a section of the SNC will have the protection. WDM-NG domain
does not support this protection scheme.

Root Cause and Impact
◆ When one of the Routes goes down due to any underlying (Topological Link,

Equipment, Port) fault, an AtRisk notification is generated for the
SubnetworkConnection.

◆ When all the Routes are down, then ServiceUnavailable event is generated for the
SNC.

Y-Cable protection
Y-cable protection is a path protection scheme that offers 1+1 protection. Differences
between Y-Cable and SNC protection:

◆ Y-Cable protection starts from the transponder. When a Y-cable connects two different
transponders, the SNCs configured on each transponder act as the working and
protected SNC.

◆ Y-Cable protects the full Wavelength service represented by the ClientCircuit instance
in the topology. The scope of SNC protection is limited to EMS. A logical entity, called
ClientTrail, is created to represent the Working and protected paths.

Root cause and impact
◆ When one of the clientTrails goes down then AtRisk notification is generated on the

ClientCircuit.

◆ If all the clientTrails are down then ServiceUnavailable event is generated for the
ClientCircuit.

110 EMC Smarts Optical Transport Manager User Guide

APPENDIX A
Abbreviations and Acronyms

Table 16 on page 111 lists common abbreviations and acronyms that are used in this
document.

Table 16 Abbreviations and acronyms for EMC Smarts Optical Transport Manager

Term Description

AIS-L Alarm Indication Signal-Line Level

AIS-P Alarm Indication Signal-Path Level

API Application Program Interface

APR Automatic Power Reduction

BDI Backward Defect Indication

BER Bit Error Rate

BLSR Bidirectional Line Switched Ring

CCT Codebook Correlation Technology

CORBA Common Object Request Broker Architecture

CTP Connection Termination Point

DCF Dispersion Compensation Fiber

EMS Element Management System

FEC Forward Error Correction

LOF Loss of Frame

LOP Loss of Pointer

LOS Loss of Signal

MS-SPRing Multiplexed Switched Protection Ring

OCH Optical Channel

OCN Optical Carrier Network

OCS Optical Supervisory Channel

OMS Optical Multiplex Section

OSS Operations Support System

OTM Optical Transport Manager

OTS Optical Transport Section

PDH Pliesosynchronous Digital Hierarchy

PDI Payload Defect Indication

PLM Payload Label Mismatch

Abbreviations and Acronyms 111

Abbreviations and Acronyms

PTP Physical Termination Point

RDI Remote Defect Indication

RFI Remote Failure Indication

SD Signal Degrade

SDH Synchronous Digital Hierarchy

SF Signal Failure

SNCPP Subnetwork Connection protection

SONET/SDH Synchronous Optical NETwork

TIM Trace Identifier Mismatch

TMF 814 TeleManagement Forum 814 Specification

UNEQ Unequipped

UPSR Unidirectional path switched ring

WDM Wavelength Division Multiplexing

Table 16 Abbreviations and acronyms for EMC Smarts Optical Transport Manager (continued)

Term Description

112 EMC Smarts Optical Transport Manager User Guide

APPENDIX B
User-Defined Attributes in Notifications

There are ten user-definable notification attribute fields in an Optical Transport Manager
event notification. Some of these are needed by Optical Transport Manager for certain
notifications. This appendix provides attribute for the user-defined attributes used by
Optical Transport Manager notifications.

◆ User-defined attributes for SONET/SDH Circuits and Trails 114
◆ User-defined attributes for Low Order SONET/SDH Circuits and Trails.................... 114
◆ User-defined fields for OpticalNetworkElement ... 115

User-Defined Attributes in Notifications 113

User-Defined Attributes in Notifications

User-defined attributes for SONET/SDH Circuits and Trails
Table 17 on page 114 lists the values that OTM populates into the first three user-defined
attribute fields. These are populated only in HighOrder_Circuit and HighOrder_Trail
notifications in the SONET/SDH domain.

Note: CTP failures will populate UserDefined1 and UserDefined2 fields of
HighOrder_Circuit notification.

User-defined attributes for Low Order SONET/SDH Circuits and
Trails

Table 18 on page 115 lists the values that OTM populates into the first four user-defined
attribute fields. These are populated only in LowOrder_Circuit and HighOrder_Trail
notifications in the Low Order SONET/SDH (PDH) domain

Table 17 User-defined attributes for Circuit and Trail notifications in SONET/SDH

Notification
Attribute Description

UserDefined1 One of the following:
• Service Provider Network – Internal Failure
• a-End Customer Network – External Failure
• z-End Customer Network – External Failure

Note: Not used for HighOrder_Trails.

UserDefined2 Elements of the CTP alarm vector separated by a semicolon, each element
consists of:
CTP Name | CTP Type | Notify Timestamp | Clear Timestamp | Notify/Clear
|Alarm;
Example:
CTP-IOS_1/1-3-1-1/1/8|TP_INROUTE| 22-May-2007 12:00:00EDT
|22-May-2007 13:00:00 EDT| Clear | RDI_P;

114 EMC Smarts Optical Transport Manager User Guide

User-Defined Attributes in Notifications

Note: CTP failures will populate UserDefined1 and UserDefined2 fields of
LowOrder_Circuit notification.

User-defined fields for OpticalNetworkElement
Table 19 on page 115 lists the values that OTM populates into the second user-defined
attribute field only for OpticalNetworkElement notifications in the WDM domain.

Table 18 User-defined attributes for Circuit and Trail notifications in Low Order SONET/SDH

Notification
Attribute Description

UserDefined1 One of the following:
• Service Provider Network – Internal Failure
• aEnd Customer Network – External Failure
• zEnd Customer Network – External Failure
• Customer Network – External Failure

Note: Not used for HighOrder_Trails.

UserDefined2 Elements of the CTP alarm vector separated by a semicolon, each
element consists of:
CTP Name | CTP Type | Notify Timestamp | Clear Timestamp | Notify/Clear
|Alarm;
Example:
CTP-IOS_1/1-3-1-1/1/8|TP_INROUTE| 22-May-2007 12:00:00EDT
|22-May-2007 13:00:00 EDT| Clear | RDI_P;

Note: Does not show CTP alarms for underlying HighOrder_Trails.

Table 19 User-Defined Attributes for ONE Notifications in WDM

Notification
Attribute Description

UserDefined2 Populated with fan and power supply alarm information, alarm entities are
separated by a semicolon, each element consists of:
<FAN or POWER_SUPPLY> | <Component Id> | <Alarm> | <NOTIFY or CLEAR>
Example:
FAN|1-3-6|FAN_LOW_RPM|NOTIFY;POWER_SUPPLY|PS1|DOWN|NOTIFY

User-defined fields for OpticalNetworkElement 115

User-Defined Attributes in Notifications

116 EMC Smarts Optical Transport Manager User Guide

APPENDIX C
Naming Conventions for Object Classes

This section describes the naming conventions used by the Optical Transport Manager to
name object classes. Topics include:

◆ Generic naming convention... 118

Naming Conventions for Object Classes 117

Naming Conventions for Object Classes

Generic naming convention
The following is the generic naming convention that the Optical Transport Manager uses
for object classes:

<PREFIX>-<TID>/<bay>-<shelf>-<slot>[-sub-slot]/[port num/]
<Port Type>-<Port Direction>[-<channel>][-BandName][-AD|-PT]

Table 20 on page 118 lists the parts of the naming convention and what they identify.

Some fields, even those not indicated as optional, may not be valid for every object type.
For example,

◆ An OpticalNetworkElement object has only a TID field.

◆ A Card object has the following fields:

<PREFIX>-TID/<bay>-<shelf>-<slot>

The remaining fields are invalid for Card objects.

The following object classes use specialized naming conventions:

◆ Facility:

<PREFIX>-<VendorSpecificString>

◆ FiberLink, BBFiberLink, OchLink, OcnLink, and OmsLink:

<PREFIX>-<A-End Link>><Z-End Link>

◆ PTP:

Table 20 Object class naming convention parts

Name part Description

PREFIX Internal code for the class. Table 21 on page 119 and
Table 22 on page 119 provide more information.

TID Terminal identifier

Bay Bay location of Optical NetworkElement

Shelf Shelf number

Slot Slot number used for Card.

Sub-slot Sub-slot number for sub-card. This is optional.

Port Num Port Number on a given card. This is optional.

Port Type Type of port; for example, OMS/OCH/OCN. Table 22 on
page 119 provides more information.

Port Direction “In” or “Out”. Table 22 on page 119 provides more
information.

Channel Channel number. This is optional. Table 22 on page 119
provides more information.

Band Name Band name if exists. This is optional.

AD Add Drop. This is optional.

PT Pass Through. This is optional.

118 EMC Smarts Optical Transport Manager User Guide

Naming Conventions for Object Classes

E

<PREFIX>-<TID>/<rack>-shelf>-<slot>-<sub slot>/<port num>

Examples of these exceptions are found in Table 21 on page 119 and Table 22 on
page 119.

Optical Transport Manager for SONET/SDH class names

Table 21 on page 119 lists the Optical Transport Manager SONET/SDH classes, the naming
prefix used for each class, and an example name for an object in each class.

Optical Transport Manager for WDM class names

Table 22 on page 119 lists the Optical Transport Manager WDM classes, the naming Prefix
and other name parts used for each class, and an example name for an object in each
class.

Table 21 Optical Transport Manager SONET/SDH class names

Class Name Prefix Naming Convention Object Name Example

BBDropSideTopologicalLink Prefix=BBDSTL BBDSTL-Node1/1-3-16-1/1

BBTopologicalLink Prefix=BBTL BBTL-Node1/1-2-3-4/5-Node2/5-4-2-3/1

Card Prefix = CARD CARD-Node1/1-1-10

Equipment Prefix = EQPT EQPT-Node1/1-1-10

CTP Prefix = CTP CTP-Node11/1-3-1/1/1

DropSideTopologicalLink Prefix = DSTL DSTL-Node1/1-1-7/1

OpticalNetworkElement No Prefix, TID only Node1

PTP Prefix = PTP PTP-Node1/1-1-3/1

TopologicalLink Prefix = TL TL-Node1-Node2-p

TopologicalLinkGroup Prefix = TLG TLG-Node1/1-1-8/1/Node1/1-1-9/1

Table 22 Optical Transport Manager for WDM class names

Class Name Name Part Convention Object Name Example

AmpInOmsPort Prefix = PORT
Port Type = OMS
Port Direction = In

PORT-Node1/1-1-7/OMS-In

AmpInOscPort Prefix = PORT
Port Type = OSC
Port Direction = In

PORT-Node1/1-1-7/OSC-In

AmpInOtsPort Prefix = PORT
Port Type = OTS
Port Direction = In

PORT-Node1/1-1-8/OTS-In

Amplifier Prefix = CARD CARD-Node1/1-1-7

AmpOutOmsPort Prefix = PORT
Port Type = OMS
Port Direction = Out

PORT-Node1/1-1-8/OMS-Out

Generic naming convention 119

Naming Conventions for Object Classes

AmpOutOscPort Prefix = PORT
Port Type = OSC
Port Direction = Out

PORT-Node1/1-1-8/OSC-Out

AmpOutOtsPort Prefix = PORT
Port Type = OTS
Port Direction = Out

PORT-Node1/1-1-7/OTS-Out

BBFiberLink Prefix = BBFL BBFL-Node1/1-1-11/1/OMS-Out-->Node1/1-1-8/OMS-I
n

Card Prefix = CARD CARD-Node1/1-1-1

ClientInOcnPort Prefix = PORT
Port Type = OCN
Port Direction = In

PORT-Node6/2-2-8/OCN-In-1

ClientOutOcnPort Prefix = PORT
Port Type = OCN
Port Direction = Out

PORT-Node6/2-2-7/OCN-Out-1

DemuxInOmsPort Prefix = PORT
Port Type = OMS
Port Direction = In

PORT-Node1/1-1-1/OMS-In

DemuxOutOchPort Prefix = PORT
Port Type = OCH
Port Direction = Out
Channel = 48

PORT-Node1/1-2-1/OCH-Out-48

DemuxOutOmsPort Prefix = PORT
Port Type = OMS
Port Direction = Out
Channel = 2

PORT-Node1/1-3-1/OMS-Out-2

Facility Prefix = FACIL
VendorSpecificString =
Facility type and links

FACIL-Adapter-3011 DWDM Node1 Node2

FiberLink Prefix = FL FL-Node1/1-1-11/1/OMS-Out-->Node1/1-1-8/OMS-In

MuxInOchPort Prefix = PORT
Port Type = OCH
Port Direction = In
Channel = 79

PORT-Node1/1-3-11/OCH-In-79

MuxInOmsPort Prefix = PORT
Port Type = OMS
Port Direction = In

PORT-Node1/1-1-11/OMS-In

MuxOutOmsPort Prefix = PORT
Port Type = OMS
Port Direction = Out

PORT-Node1/1-1-11/OMS-Out

OchLink Prefix = LL LL-Node1/1-3-11/OCH-In-79-->Node5/1-2-1/OCH-Out-
79

OcnLink Prefix = LL LL-Node1/2-2-8/OCN-In-1-->Node5/2-2-7/OCN-Out-1

Table 22 Optical Transport Manager for WDM class names (continued)

Class Name Name Part Convention Object Name Example

120 EMC Smarts Optical Transport Manager User Guide

Naming Conventions for Object Classes

E

OmsLink Prefix = LL LL-Node1/6-2-7/OMS-In-->Node6/6-2-8/OMS-Out

OpticalNetworkElement No Prefix, TID only Node1

Transponder Prefix = CARD CARD-Node1/2-2-7

TransponderInOchPort Prefix = PORT
Port Type = OCH
Port Direction = In
Channel = 79

PORT-Node1/2-2-7/OCH-In-79

TransponderInOcnPort Prefix = PORT
Port Type = OCN
Port Direction = In
Channel = 1

PORT-Node1/2-2-8/OCN-In-1

TransponderOutOchPort Prefix = PORT
Port Type = OCH
Port Direction = Out
Channel = 79

PORT-Node1/2-2-8/OCH-Out-79

TransponderOutOcnPort Prefix = PORT
Port Type = OCN
Port Direction = In
Channel = 1

PORT-Node1/2-2-7/OCN-Out-1

Table 22 Optical Transport Manager for WDM class names (continued)

Class Name Name Part Convention Object Name Example

Generic naming convention 121

Naming Conventions for Object Classes

122 EMC Smarts Optical Transport Manager User Guide

INDEX

Numerics
1:N card protection 98
1+1 automatic protection switching 97
1+1 card protection 100
2-Fiber BLSR/MS-SPRing protection 101
4-Fiber BLSR/MS-SPRing protection 103

A
Adapter

Device adapter 11
Adapters 11, 17

Event adapter 11, 17
Inventory 17
Inventory adapter 11

Administrative console 19
A-end 35, 114, 118
Alarms 16
AmpInOmsPort 49
AmpInOscPort 50
AmpInOtsPort 50
Amplifier 49, 53, 57

In-line 54
Notifications generated 84
Receive 53
Reverse 54
Transmit 53

AmpOutOmsPort 49
Notifications generated 84

AmpOutOscPort 50
AmpOutOts

Notifications generated 84
AmpOutOtsPort 50
Analysis

Impact 74, 81
Root-cause 16

APIs 17, 111
Architecture 8

B
Band-Multiplexer 47, 59
BBFiberLink 50

Notifications generated 85
BBTopologicalLink

Down 73
SignalDegrade 73

C
Card 29, 38, 49, 50, 51

Down 71, 79
Notifications generated 70, 78, 84

CardProtectionGroup 30
Circuit 33, 35
Class

AmpInOmsPort 49
AmpInOscPort 50
AmpInOtsPort 50
Amplifier 49, 53, 57
AmpOutOmsPort 49
AmpOutOscPort 50
AmpOutOtsPort 50
BBFiberLink 50
Card 29, 38, 49, 50, 51
CardProtectionGroup 30
Circuit 33, 35
ClientCircuit 61
ClientTrail 61
Conduit 29
ConnectionProtectionGroup 30
CTP 29, 33, 39
DemuxInOmsPort 49
DemuxOutOchPort 49
DemuxOutOmsPort 49
DropSideTopologicalLink 29, 31, 38, 39, 40
Facility 48, 50, 51
FiberLink 50, 58
HighOrder_Circuit 29, 33, 41
HighOrder_Trail 29, 33, 35, 39, 41, 42
InputPort 50
LogicalConnection 29, 33, 34, 36, 42
LogicalConnectionProtectionTPGroup 36
LogicalConnectionTPGroup 30
LogicalLink 50
LowOrder_Circuit 39, 41, 43
MeshSubnetworkConnection 29, 33, 34
MuxInOchPort 49
MuxInOmsPort 49, 52
MuxOutOmsPort 49, 52
OchLink 50, 58, 59
OcnLink 50, 58, 59
OpticalNetworkElement 29, 38, 39, 48, 50, 51
OutputPort 50
Port 57
PTP 29, 38, 43, 50, 60
RingProtectionGroup 30
SubNetworkConnection 29
SubnetworkConnection 33, 34
TopologicalLink 29, 30, 31, 32, 40, 50, 58, 60
TopologicalLinkGroup 30, 32, 36, 40, 43
Transponder 49, 55
TransponderInFecPort 49
TransponderInOchPort 49
TransponderInOcnPort 49
TransponderOutOchPort 49
TransponderOutOcnPort 49
WDM object 48

ClientCircuit 61
ClientTrail 61
Conduit 29

EMC Smarts Optical Transport Manager User Guide 123

Index

Notifications generated 70
Connection classes 58
Connection object model 35, 42
ConnectionProtectionGroup 30
Connectivity resilience 23
Cross-domain correlation 13, 22, 88
CTP 29, 33, 39

D
Data flows 11, 12, 13
Data model 15
Demultiplex 52
Demultiplexer 52, 57
DemuxInOmsPort 49
DemuxOutOchPort 49
DemuxOutOmsPort 49
Discovery 15
Domain Manager 11
DropSideTopologicalLink 29, 31, 38, 39, 40

Failure Impact 75
Notifications generated 70, 75, 78

E
EMS

Notifications generated 71
End-to-end client service 36, 43
Equipment 78
Events 70, 78, 84

F
Facility 48, 50, 51
Failures

Between components 23
Diagnosed

PDH network elements 79
SONET/SDH network elements 71
WDM network elements 84

EMS to managed device 24
External 73, 80
Network connections 72, 80
Northbound alarms 23
Optical network equipment 71, 79
Southbound EMS connectivity 23
Southbound events 23

FiberLink 50, 58
OCH

Notifications generated 85, 91
OCN

Notifications generated 84
OMS

Notifications generated 85
OTS

Notifications generated 85

G
Global Console 11, 14, 18, 19, 24
Global Manager 11, 14

H
High-order and low-order domain separation 38
HighOrder_Circuit 29, 33, 41

Notifications generated 71
HighOrder_Trail 29, 33, 35, 39, 41, 42

Notifications generated 71, 78

I
ICIM Common Informartion Model 15
Impact analysis 16

PDH 81
SONET 74
WDM 85

Impact correlation 16
SONET/SDH 20
WDM 22

Impact notification
SONET/SDH 20
WDM 22

In-line amplifier 54, 57
InputPort 50
Inter-system connectivity resilience 23
Inventory adapter 11
Inventory adapters 17

L
Logical object classes 33
LogicalConnection 29, 33, 34, 36, 42
LogicalConnectionProtectionTPGroup 36
LogicalConnectionTPGroup 30
LogicalLink 50
Low-order and high-order domain separation 38
Low-order Circuit

Notifications generated 78
LowOrder_Circuit 39, 41, 43
LowOrder_Circuit LayeredOver other entities 42
LowOrderPTP 43

M
Managed device 24
Managed elements 70, 78
Manager

Service Assurance (Global Manager) 18
SONET/SDH 19
WDM 21

MeshSubnetworkConnection 29, 33, 34
Model 15, 16

Connection object 35, 42
Multiplexer 52, 57
MuxInOchPort 49
MuxInOmsPort 49, 52
MuxOutOmsPort 49, 52

N
Network configurations

SONET/SDH 19
WDM 21

Network path 36, 43

124 EMC Smarts Optical Transport Manager User Guide

IndexIndex

E

Notification log 19
Notifications 28, 70, 78, 84

WDM 84

O
Object classes 28, 38
Object model 29, 38, 48
OC192_Receive Transponder_NEC64

Notifications generated 84
OC192_Transmit Transponder_NEC64

Notifications generated 84
OCH

See Optical Channel (OCH) 46
OchLink 50, 58, 59
OcnLink 50, 58, 59
Optical Channel (OCH) 46, 55, 56, 57
Optical Channel (OCN) 55, 56, 57
Optical Supervisory Channel (OSC) 47
Optical Transport Manager 14

SONET/SDH object classes 29
OpticalNetworkElement 29, 38, 39, 48, 50, 51

Notifications generated 78
OpticalNetworkElement object 30
OSC

See Optical Supervisory Channel (OSC) 47
OSC Problems 55
OutputPort 50

P
PDH object classes 38
PDH physical object relationships 39
Physical object classes 50
Physical topology 35, 36, 42
Port

Notifications generated 84
Port Classes 57
Protection

1:N card 98
1+1 automatic protection switching 97
1+1 card 100
2-Fiber BLSR/MS-SPRing 101
4-Fiber BLSR/MS-SPRing 103
UPSR/SNCP 105

Protection scheme 35, 42, 96
PTP 29, 38, 50, 60

Down 72, 79
Notifications generated 70, 78, 84, 91

PTP object 30, 31, 40

R
Repository model 28, 38, 46
Resilience

Inter-system connectivity 23
Reverse amplifier 54
RingProtectionGroup 30
Root-cause analysis 16, 28, 38, 46

SONET/SDH 19
WDM 21

Root-cause problems 38

PDH network 80
PDH network elements 79
SONET network 72
SONET/SDH network elements 71
WDM network 84, 90
WDM network connections 85

S
Separation of high-order and low-order domains 38
Service Assurance Manager (Global Manager) 18
SONET/SDH Manager 19
SONET/SDH model 46
SONET/SDH physical object relationships 30
subcard 52
SubNetworkConnection 29
SubnetworkConnection 33, 34
subslot 52
Symptomatic events

PDH 78
SONET/SDH 70
WDM 84

T
Terminal End Amplifier schematic 46
TopologicalLink 29, 30, 31, 32, 40, 50, 58, 60

Down 72, 80
Notifications generated 70
SignalDegrade 73

TopologicalLinkGroup 30, 32, 36, 40, 43
Topology

Physical 35, 42
Viewing 24

Topology browser 18
Transponder 49, 55

Notifications generated 84
Transponder Module

Notifications generated 84
TransponderInFecPort 49
TransponderInOchPort 49
TransponderInOcnPort 49
TransponderOutOchPort 49

Notifications generated 84
TransponderOutOcnPort 49

Notifications generated 84

U
UPSR/SNCP protection 105

W
WDM domain 61
WDM Impact analysis 85
WDM Manager 21
WDM model 46
WDM Receive End Terminal 47

X
XD Manager for OTM to IP 8, 11

EMC Smarts Optical Transport Manager User Guide 125

Index

Z
Z-end 35, 114, 118

126 EMC Smarts Optical Transport Manager User Guide

		Contents

		Overview

		About the Optical Transport Manager

		EMC Smarts Optical Transport Manager architecture

		EMC Smarts Optical Transport Manager components

		Topology Server

		Analysis Server

		OTM Adapters

		XD Manager OTM to IP

		Global Manager

		Global Console

		Summary of features of Optical Transport Manager

		Optical Transport Manager for SONET/SDH

		Optical Transport Manager for PDH

		Optical Transport Manager for WDM

		WDM to SONET/SDH cross-domain correlation

		PDH to SONET/SDH cross-domain correlation

		Inter-system connectivity resilience

		Using the Global Console

		Map Browser view

		Classes and Relationships for SONET/SDH

		Optical Transport Manager analysis

		SONET/SDH object classes in Optical Transport Manager

		Physical object classes and their relationships

		Logical connection classes and their relationships

		Physical topology

		Classes and Relationships for PDH

		Optical Transport Manager analysis

		PDH object classes in Optical Transport Manager

		Physical object classes and their relationships

		Logical object classes and their relationships

		Physical topology

		Classes and Relationships for WDM

		About the Optical Transport Manager WDM model

		Support for Multiplexing and Demultiplexing in the same circuit pack

		WDM Object Classes in Optical Transport Manager

		Classes that represent equipment

		Facility class

		OpticalNetworkElement class

		Card classes

		Port classes

		Physical and logical connection classes

		Abstract entities

		Classes and Relationships for WDM-NG

		About the Next Generation WDM model

		Next Generation WDM object classes in Optical Transport Manager

		Notifications and Impacts for SONET/SDH Networks

		About Optical Transport Manager notifications

		Notifications and symptomatic events

		Root-cause problems for SONET/SDH network elements

		Root-cause problems for SONET/SDH network connections

		Diagnosis of external failure

		Impact analysis

		Impact correlation

		Impact notifications

		Notifications and Impacts for PDH Networks

		About Optical Transport Manager for PDH notifications

		Notifications and symptomatic events

		Root-cause problems for PDH network elements

		Root-cause problems for PDH network connections

		Diagnosis of external failure

		Impact analysis

		Impact correlation

		Impact notifications

		Notifications and Impacts for WDM Networks

		Optical Transport Manager analysis for WDM networks

		Root-cause notifications for WDM Manager

		Impact analysis

		Impact correlation

		Impact notification

		Enhanced Card Level Impact

		Cross-domain correlation

		Notifications and Impacts for Next Generation WDM Networks

		Optical Transport Manager analysis for Next Generation WDM networks

		Notifications and symptomatic events

		Root cause events for WDM-NG Manager

		Protection Schemes

		Protection switching support

		The AtRisk Notification

		1+1 automatic protection switching

		1:N protection

		1+1 protection

		2-fiber BLSR/MS-SPRing protection

		4-fiber BLSR/MS-SPRing protection

		UPSR/SNCP protection

		1+1 ClientCircuit/TopologicalLink Protection

		SNC (Subnetwork connection) protection:

		Y-Cable protection

		Abbreviations and Acronyms

		User-Defined Attributes in Notifications

		User-defined attributes for SONET/SDH Circuits and Trails

		User-defined attributes for Low Order SONET/SDH Circuits and Trails

		User-defined fields for OpticalNetworkElement

		Naming Conventions for Object Classes

		Generic naming convention

		Optical Transport Manager for SONET/SDH class names

		Optical Transport Manager for WDM class names

		Index

EMC® Smarts®

Version 9.6

Installation Guide for SAM, IP, ESM, MPLS,
NPM, OTM, and VoIP Managers
P/N 302-004-754
REV 01

EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers2

Copyright © 1996 - 2018 Dell Inc. or its subsidiaries. All rights reserved. Published in the USA.

Published December 2018

Dell believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. Dell Corporation makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose. Use, copying, and distribution of any Dell software described in this publication requires an applicable software license.

Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries in the United States and other countries. All other
trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

EMC Corporation
Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.EMC.com

http://support.emc.com

http://www.EMC.com

CONTENTS

Chapter 1 Overview

 Product contents... 10
Installation directory structure .. 13

 Product and version compatibility... 14
 Installation tasks overview.. 14
 Upgrade tasks overview .. 16
 Migration tasks overview .. 17
 Uninstallation tasks overview ... 18

Chapter 2 Performing an Installation

 Installation overview... 20
 Installation prerequisites .. 21
 Install the product .. 21

Install using Wizard mode ... 22
Install using CLI mode ... 26
Install using Unattended mode ... 28
Additional Service Assurance Manager installation tasks 30
Installing the Service Assurance Manager Console, or the Smarts NOTIF
Editor, or both ... 30

 Add additional features to a new installation .. 32
 Support for FIPS 140-2 for 9.6 products .. 32

Enabling FIPS 140 mode on a new installation 33
Disabling FIPS 140 mode .. 36

 Next steps .. 36

Chapter 3 Performing an Installation in Docker Container

 Installation overview... 38
 Installation prerequisites .. 38
 Creating and starting Docker image... 39
 Operations on Docker container.. 39
 Performing Smarts upgrade inside Docker... 41

Chapter 4 NAS Installation and Startup

 Overview... 44
 Installing and starting the HTTPS Adapter service.. 44

Running HTTPs adapter in FIPS mode .. 46

Chapter 5 Performing an Upgrade

 Upgrade installation overview... 50
Installer tasks ... 52
Installer-called utilities.. 52

 Upgrade installation prerequisites .. 53
 Upgrade the product ... 53
 Add additional features to an upgrade installation...................................... 58
 Upgrading 9.6 products in FIPS mode ... 58
 Next steps .. 58

EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers 3

Contents

Chapter 6 Performing a Migration

 Migration overview ... 60
 Install and migrate on the same host .. 61

Migration procedure for the same host.. 62
 Install and migrate on a different host... 64

Migration procedure for a different host .. 65
 Post-migration tasks ... 67

Rename the repository file... 67
Ensure that the Broker host:port is updated in the runcmd_env.sh files 68
Remove the old out-of-date service entries.. 68
Change the secret phrase to match rest of deployment 69
Uninstall the old software ... 69

Chapter 7 Migration Utilities

 Customization migration utility overview... 72
sm_migrate modes of operation.. 72

 sm_migrate function ... 74
 Customization migration procedures... 76

Migrating customizations on the same host .. 76
Migrating customizations to a different host.. 78
Restoring customizations after an upgrade installation 81

 Perform a rollback... 82
 Custom file migration use cases.. 83

Migration of security configuration files... 85
Migration of dynamic model files .. 85

 Three-way merge utility ... 86
Use cases for content block comparison ... 86
Configuration migration process logs .. 87

 Automatically migrate topology for IP Manager using RPS utility.................. 88
Functions of RPS migration utility .. 88
Running RPS migration utility .. 88

 Deployment utility overview .. 89
Running the Deployment utility ... 90
sm_deploy modes of operation ... 90
To create a deployment package ... 91
Manage RPS file settings across multiple installations 91
To deploy the package .. 92
To Rollback ... 92

Chapter 8 Verifying the Installation

 Check the version number .. 94
 Start services .. 94

Starting services on UNIX .. 95
Starting services on Windows.. 95

 Start programs .. 96
 Service and program startup options .. 97
 Start Smarts NOTIF .. 98
 Verify the product status ... 100
 Verify the FIPS 140 mode status.. 101
 Collect system information.. 102

sm_getinfo files .. 102
sm_getinfo command-line syntax.. 103
sm_getinfo invocation examples ... 105

4 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Contents

sm_getinfo data collection .. 105
 Configuration Scanner Tool ... 106

Running the Configuration Scanner tool from the sm_getinfo utility..... 107

Chapter 9 Performing an Uninstallation

 Before uninstallation .. 110
Extracting JVM file ... 110
Remove manually installed services.. 110
Determine order for removing products (UNIX only) 111
Uninstall when same product software is installed twice (Windows only) ...
111
Detect and stop programs ... 111

 Uninstall EMC Smarts products ... 114
Uninstall using Wizard mode... 114
Uninstall using CLI mode... 115
Uninstall using Unattended mode ... 116

Appendix A The sm_edit utility

 sm_edit .. 118
 sm_edit example .. 118

Appendix B Manually Installing Services

 Overview... 120
Selection of bootstrap files when installing services............................ 120

 Broker services ... 120
 Services for the IP Manager... 121

IP Availability Manager-only server .. 121
IP Availability Manager-only server (interacting with EMC M&R) 122
IP Performance Manager-only Server ... 122
IP Performance Manager-only Server (interacting with EMC M&R) 123
IP Availability and Performance Manager Server 124
IP Availability and Performance Manager Server (interacting with EMC M&R)
124
IP Configuration Manager .. 125
IP Configuration Manager (interacting with EMC M&R) 126

 Services for the Service Assurance Manager ... 127
EMC Smarts Broker.. 127
Service Assurance Manager (Presentation SAM server)........................ 127
Service Assurance Manager (Global Manager)..................................... 128
Business Impact Manager server... 128
Adapter Platform ... 129
Business Dashboard ... 129
Syslog Adapter.. 130
SNMP Trap Adapter ... 130
Notif trap Adapter.. 131
Notif syslog adapter .. 131
EMC Smarts Data Web Applications (Tomcat) 132
EMC Smarts Notification Exchange (Rabbit MQ)................................... 132
EMC Smarts Notification Cache (ElasticSearch) 132

 Services for the MPLS Manager ... 133
MPLS Topology Server ... 133
MPLS Monitoring Server .. 134
MPLS Analysis Server .. 134

EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers 5

Contents

MPLS VPN-Tagging Server.. 135
 Services for the Server Manager .. 135

Server Manager ... 135
 Services for the Network Protocol Manager installation 136

Network Protocol Manager for BGP .. 136
Network Protocol Manager for EIGRP ... 137
Network Protocol Manager for IS-IS ... 137
Network Protocol Manager for OSPF .. 138

 Services for the Optical Transport Manager ... 139
EMC Smarts Optical Transport Manager for Next Generation WDM 139
EMC Smarts Optical Transport Manager for SDH (Topology) 140
EMC Smarts Optical Transport Manager for SDH (Analysis) 140
EMC Smarts Optical Transport Manager for PDH (Topology) 141
EMC Smarts Optical Transport Manager for PDH (Analysis) 141
EMC Smarts Optical Transport Manager for WDM (Topology) 142
EMC Smarts Optical Transport Manager for WDM (Analysis)................. 142
EMC Smarts Optical Transport Manager for IP Cross Domain Analysis.. 143
EMC Smarts TMF814 Cisco CTM Adapter for OTM................................. 143
EMC Smarts TMF814 Ciena On-Center Adapter for OTM 144

 Services for the VoIP Availability Manager... 144
VoIP Availability Manager.. 144
VoIP Notification Trap Adapter... 145

Appendix C Procedures for CD/DVD-ROMs

 Mounting a CD/DVD-ROM on UNIX systems... 148
 Loading a CD/DVD-ROM on Windows .. 149

Appendix D Using the MPLS server_config Utility

 Use the server_config.pl script to change domain names 152
Purpose .. 152
Run the script.. 152
Script options ... 153

Appendix E EMC Smart Optical Transport Manager Configuration

 Prerequisites .. 158
Optical Transport Manager .. 158
SAM servers used with OTM .. 158
Global Manager... 158

 Configuring Optical Transport Manager ... 159
OTM settings... 159
Configuring EMC M&R for the OTM Next Generation WDM Manager...... 159
Configure the RabbitMQ service for the OTM Next Generation WDM Domain
Manager.. 161
OTM-Extensions .. 161
Configuration scenarios .. 162

 Configuring the Service Assurance Manager.. 167
 Configuring the presentation layer Global Manager 168

Appendix F Configuration Scanner tool Sample Output

 Files created by Configuration Scanner tool... 172
 Sample outputs .. 172

Running Configuration Scanner tool with server name 172

6 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Contents

Report when server is specified... 173
Running Configuration Scanner tool without server name.................... 178
Report when server is not specified ... 178

EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers 7

Contents

8 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

CHAPTER 1
Overview

This chapter describes the EMC Smarts Service Assurance Manager, EMC Smarts IP
Manager, EMC Smarts MPLS Manager, EMC Smarts Server Manager, EMC Smarts Network
Protocol Manager, EMC Smarts Optical Transport Manager, and EMC Smarts VoIP
Availability Manager, their compatibility with other EMC Smarts products, and installation
tasks. It consists of the following topics:

◆ Product contents... 10
◆ Product and version compatibility ... 14
◆ Installation tasks overview.. 14
◆ Upgrade tasks overview .. 16
◆ Migration tasks overview .. 17
◆ Uninstallation tasks overview ... 18

Overview 9

Overview

Product contents
This document provides installation, upgrade, migration, and uninstallation procedures
for:

◆ EMC Smarts Service Assurance Manager

◆ EMC Smarts IP Manager

◆ EMC Smarts MPLS Manager

◆ EMC Smarts Server Manager

◆ EMC Smarts Network Protocol Manager

◆ EMC Smarts Optical Transport Manager

◆ EMC Smarts VoIP Availability Manager

The EMC Smarts Service Assurance Manager includes the following products:

◆ Service Assurance Manager

The EMC Smarts Service Assurance Manager product includes the following
components:

• Global Manager

• EMC Smarts Broker

• EMC Smarts MBIM — Maintenance and Business Impact Manager Server

• Generic notification adapters such as Log File, SNMP Trap, Script, and email

• EMC Data Access API

– Smarts Foundation EMC Data Access API (Smarts EDAA)

– Alert EMC Data Access API (EDAA)

– EMC Smarts Data Web Applications (Tomcat)

– EMC Smarts Notification Exchange (Rabbit MQ)

– EMC Smarts Notification Cache (ElasticSearch)

◆ EMC M&R — EMC M&R is distributed with Service Assurance Suite. The Service
Assurance Suite Installation and Configuration Guide for EMC M&R provides
installation and configuration instructions. The SolutionPack for EMC Smarts
Summary Sheet article provides instructions for installing the SolutionPack for EMC
Smarts. The How to Set Up SAM, EMC M&R, and the SolutionPack for EMC Smarts
article provides instructions on configuring Service Assurance Manager to work with
EMC M&R.

◆ Global Console

The Global Console product is the graphical interface for all EMC Smarts products.

Global Console functionality can also be deployed as a Web Console or a Business
Dashboard.

◆ Adapter Platform

10 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Overview

The SAM Adapter Platform product provides functionality to import and normalize
topology and events from outside the EMC Smarts domain.

◆ Syslog Adapter

The Syslog Adapter product reads and processes system log (Syslog) messages. It
requires the SAM Adapter Platform.

◆ Smarts Notification Module

The Smarts Notification Module (NOTIF) augments EMC Smarts solutions with event
management features that are configured through a graphical user interface (the
Smarts NOTIF Editor). Smarts NOTIF enables the user to easily optimize the flow of
events and notifications sent through any EMC Smarts system. Smarts NOTIF can be
installed on either the SAM server or Adapter Platform server, or both. The internal
event and notification processing features of the standard SAM Adapter Platform are
replaced by Smarts NOTIF.

Smarts NOTIF functionality and architecture is discussed in the EMC Smarts
Notification Module User Guide.

◆ Smarts Notification Module Cisco Syslog Processing Adapter

The Smarts Notification Module Cisco Syslog Processing Adapter (referred to as the
Smarts NOTIF Cisco Syslog Adapter) replaces the log file processing features of the
standard Syslog Adapter. The Smarts NOTIF Cisco Syslog Adapter processes the log file
information into useful notifications with or without the use of ASL scripts.

The EMC Smarts Notification Module Cisco Syslog Processing Adapter Installation and
User Guide provides additional information on this adapter.

◆ SNMP Trap Adapter

The SNMP Trap Adapter product reads SNMP traps and forwards traps to any
EMC Smarts application. It requires the SAM Adapter Platform.

◆ XML Adapter

The XML Adapter product imports and exports topology from any EMC Smarts
application.

The EMC Smarts IP Manager includes the following products:

◆ IP Availability Manager

◆ IP Performance Manager

◆ IP Server Performance Manager

◆ IP Availability Manager Extension for NAS

The EMC Smarts MPLS Manager includes the following products:

◆ EMC Smarts MPLS Manager is composed of three servers:

• MPLS Topology Server

Product contents 11

Overview

• MPLS Monitoring Server

• MPLS Analysis Server

◆ MPLS VPN-Tagging Server

The EMC Smarts Network Protocol Manager includes the following products:

◆ EMC Smarts Network Protocol Manager for BGP

◆ EMC Smarts Network Protocol Manager for EIGRP

◆ EMC Smarts Network Protocol Manager for IS-IS

◆ EMC Smarts Network Protocol Manager for OSPF

The EMC Smarts Server Manager includes the Server Manager software.

The EMC Smarts Optical Transport Manager includes the following products:

◆ EMC Smarts Optical Transport Manager for Next Generation WDM

◆ EMC Smarts Optical Transport Manager for SDH (Topology and Analysis)

◆ EMC Smarts Optical Transport Manager for PDH (Topology and Analysis)

◆ EMC Smarts Optical Transport Manager for WDM (Topology and Analysis)

◆ EMC Smarts Optical Transport Manager for IP Cross Domain Analysis

◆ EMC Smarts TMF814 Cisco CTM Adapter for OTM

◆ EMC Smarts TMF814 Ciena On-Center Adapter for OTM

The VoIP Availability Manager includes the following products:

◆ EMC Smarts VoIP Availability Manager

◆ EMC Smarts VoIP Enablement Pack for Avaya

◆ EMC Smarts VoIP Enablement Pack for Cisco

◆ EMC Enablement Pack for ACME

◆ EMC Smarts VoIP Integration Pack for VoIP Performance Manager

12 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Overview

Installation directory structure

The installation directory structure is shown in Figure 1 on page 14. All EMC Smarts
products use the same basic installation directory structure.

In Figure 1 on page 14, notice that:

◆ BASEDIR, which is not an environment variable, is used in documentation to represent
the top-level directory structure of an EMC Smarts product software installation.

For UNIX, this location is /opt/InCharge/<product>.

For Windows, this location is C:\InCharge\<product>.

BASEDIR represents:

• For MPLS Manager —<installation_root_directory>/MPLS

• For IP Manager — <installation_root_directory>/IP

• For Service Assurance Manager — <installation_root_directory>/SAM

• For Server Manager — <installation_root_directory>/ESM

• For Network Protocol Manager — <installation_root_directory>/NPM

• For Optical Transport Manager — <installation_root_directory>/OTM

• For VoIP Availability Manager — <installation_root_directory>/VoIP

By default, EMC Smarts software is installed to BASEDIR/smarts.

Optionally, you can specify the root of BASEDIR to be something different, but you
cannot change the <product> location under the root directory.

◆ The EMC Smarts sm_edit utility ensures that modified files are always saved to the
appropriate local area and that base (original) copies of the files remain unchanged.
Appendix A, “The sm_edit utility,” provides additional information.

The EMC Smarts System Administration Guide provides detailed information about the
directory structure for EMC Smarts software and the sm_edit utility.

Product contents 13

Overview

_jvm (dir)

_uninst (dir)

smarts (dir)

sm_edit utilitylocal (dir)

actions (dir)

bin (dir)

classes (dir)

conf (dir)

actions (dir)

bin (dir)

classes (dir)

conf (dir)

Installation root directory

Product suite directory
BASEDIR

Location of

base files

Location of

customized files

Figure 1 Installation directory structure

Product and version compatibility
The EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers Support Matrix
provides information about the 9.6 products and the compatible versions of the
EMC Smarts products.

Installation tasks overview
To install EMC Smarts Service Assurance Manager, IP Manager, MPLS Manager, Server
Manager, Network Protocol Manager, Optical Transport Manager, or the VoIP Availability
Manager, you need to meet the requirements or perform the tasks that are listed in Table 1
on page 14.

To install additional components to an existing installation, you can perform an
installation or an upgrade.

Table 1 Installation requirements and tasks (page 1 of 2)

Before you install

The Broker should be installed, configured, and
operating.

EMC Smarts System Administration Guide

14 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Overview

The Global Console, Global Manager, and Service
Assurance products should be installed, configured, and
licensed.

EMC Smarts Installation Guide for SAM, IP, ESM, MPLS,
NPM, OTM, and VoIP Managers

EMC M&R product should be installed, configured, and
licensed.

• Service Assurance Suite Installation and Configuration
Guide for EMC M&R

• SolutionPack for EMC Smarts Summary Sheet article
• How to Set Up SAM, EMC M&R, and the SolutionPack

for EMC Smarts article

IP Manager should be installed, configured, and
licensed. After IP Manager is installed, you can install or
upgrade other Smarts products.

EMC Smarts Installation Guide for SAM, IP, ESM, MPLS,
NPM, OTM, and VoIP Managers

Review the important release issues for the product
being installed.

EMC Smarts Release Notes for SAM, IP, ESM, MPLS, NPM,
OTM, and VoIP Managers

Determine if the products are supported on your
platform.

EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP
Managers Support Matrix

Review the patch requirements for your operating system. EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP
Managers Support Matrix

Determine if your system meets the hardware
requirements.

EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP
Managers Support Matrix

Installation method

Install the product. Select one of the following installation methods:
• “Install using Wizard mode” on page 22
• “Install using CLI mode” on page 26
• “Install using Unattended mode” on page 28

After you install

If your product is part of a deployment that requires the
Federal Information Processing Standard (FIPS)
Publication 140-2, a U.S. government computer security
standard governing cryptographic modules, perform the
procedure to enable products in FIPS mode.

“Support for FIPS 140-2 for 9.6 products” on page 32

If you installed the products as services, start them for
the first time.

• “Starting services on UNIX” on page 95
• “Start programs” on page 96

Verify the current state of the products and the Broker. “Verify the product status” on page 100

Optional task:
After modifying your configuration files on one
installation, you can use the deployment utility to create
a deployment package of your configuration changes and
deploy the package on other installations.

“Deployment utility overview” on page 89

Table 1 Installation requirements and tasks (page 2 of 2)

Installation tasks overview 15

Overview

Upgrade tasks overview
To upgrade, you need to meet the requirements or perform the tasks that are listed in
Table 2 on page 16.

Table 2 Upgrade installation requirements and tasks (page 1 of 2)

Before you upgrade

Review the release notes for important issues. EMC Smarts Release Notes for SAM, IP, ESM, MPLS, NPM,
OTM, and VoIP Managers

Determine if the products are supported for your
platform.

EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP
Managers Support Matrix

Determine if your system meets the hardware
requirements.

EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP
Managers Support Matrix

Upgrade installation

The order in which you upgrade products depends on
whether the EMC M&R UI is included in your deployment.
Upgrade the products in the following order:
1. Top-most SAM server

If EMC M&R is included, this is the Presentation SAM
server.
If EMC M&R is not included, this is the top-most SAM
server and related Service Assurance products and
consoles in your deployment, either a SAM server or
the top SAM server in a hierarchical SAM deployment.

2. If EMC M&R is included, update EMC M&R platform
(core) components and the SolutionPack for EMC
Smarts.

Ensure that communication exists between the
Presentation SAM server and the SolutionPack for EMC
Smarts.

3. An Aggregation SAM server if it is a hierarchical SAM
deployment.

4. IP Manager.

5. Any order: Server Manager, MPLS Manager, Network
Protocol Manager, and VoIP Availability Manager.

Notice: Presentation SAM server is the server that is
configured in the SolutionPack for EMC Smarts for use
with the EMC M&R UI. This does not mean that a
hierarchical SAM is required.

• For EMC Smarts products: “Performing an Upgrade” on
page 49

• For EMC M&R platform components: Service
Assurance Suite Installation and Configuration Guide
for EMC M&R

• SolutionPack for EMC Smarts Summary Sheet article
• How to Set Up SAM, EMC M&R, and the SolutionPack

for EMC Smarts article

After you install

Evaluate your custom code and review the tools for
restoring user customization.

“Custom file migration use cases” on page 83

If your product is part of a deployment that requires the
Federal Information Processing Standard (FIPS)
Publication 140-2, a U.S. government computer security
standard governing cryptographic modules, perform the
procedure to upgrade products in FIPS mode.

“Upgrading 9.6 products in FIPS mode” on page 58

If you installed the products as services, start them for
the first time.

• “Starting services on UNIX” on page 95
• “Start programs” on page 96

16 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Overview

Migration tasks overview
To migrate to Version 9.6, you need to meet the requirements or perform the tasks that are
listed in Table 3 on page 17.

Verify the current state of the products and the Broker. “Verify the product status” on page 100

(Optional) After performing an upgrade and modifying
your configuration files on one installation, you can use
the deployment utility to create a deployment package of
your configuration changes and deploy the package on
other installations. After deploying the package on other
installations, you do not have to run the migrate utility to
merge your customizations.

“Deployment utility overview” on page 89

Table 2 Upgrade installation requirements and tasks (page 2 of 2)

Table 3 Migration requirements and tasks (page 1 of 2)

Before you migrate

Review the release notes for important issues. EMC Smarts Release Notes for SAM, IP, ESM, MPLS, NPM,
OTM, and VoIP Managers

Determine if the products are supported for your
platform.

EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP
Managers Support Matrix

Determine if your system meets the hardware
requirements.

EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP
Managers Support Matrix

Installation and migration

The order in which you migrate products depends on
whether the EMC M&R UI is included in your deployment.
Perform the migration in the following order:
1. Top-most SAM server

If EMC M&R is included, this is the Presentation SAM
server.
If EMC M&R is not included, this is the top-most SAM
server and related Service Assurance products and
consoles in your deployment, either a SAM server or
the top SAM server in a hierarchical SAM deployment.

2. If EMC M&R is included, migrate or update EMC M&R
platform (core) components and the SolutionPack for
EMC Smarts.

Ensure that communication exists between the
Presentation SAM server and the SolutionPack for EMC
Smarts.

3. An Aggregation SAM server if it is a hierarchical SAM
deployment.

4. IP Manager.

5. Any order: Server Manager, MPLS Manager, Network
Protocol Manager, and VoIP Availability Manager.

Notice: Presentation SAM server is the server that is
configured in the SolutionPack for EMC Smarts for use
with the EMC M&R UI. This does not mean that a
hierarchical SAM is required.

• For EMC Smarts products: “Performing a Migration” on
page 59.

• For EMC M&R platform components: Service
Assurance Suite Installation and Configuration Guide
for EMC M&R

• SolutionPack for EMC Smarts Summary Sheet article
• How to Set Up SAM, EMC M&R, and the SolutionPack

for EMC Smarts article

Migration tasks overview 17

Overview

Uninstallation tasks overview
To uninstall the product, you need to meet the requirements or perform the tasks that are
listed in Table 4 on page 18.

Table 4 Uninstallation requirements and tasks

Before you uninstall

Uninstallation

• “Uninstall using Wizard mode” on page 114
• UNIX only, “Uninstall using CLI mode” on page 115
• “Uninstall using Unattended mode” on page 116

After you install

Evaluate your custom code and review the tools for
restoring user customization.

“Custom file migration use cases” on page 83

If you installed the products as services, start them for
the first time.

• “Starting services on UNIX” on page 95
• “Start programs” on page 96

Verify the current state of the products and the Broker. “Verify the product status” on page 100

(Optional) After performing a migration and modifying
your configuration files on one installation, you can use
the deployment utility to create a deployment package of
your configuration changes and deploy the package on
other installations. After deploying the package on other
installations, you do not have to run the migrate utility to
merge your customizations.

“Deployment utility overview” on page 89

Table 3 Migration requirements and tasks (page 2 of 2)

Review uninstall prerequisites. “Performing an Uninstallation” on page 109

Uninstall the product.

18 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

CHAPTER 2
Performing an Installation

This chapter describes how to install a new installation of the EMC Smarts Service
Assurance Manager, EMC Smarts IP Manager, EMC Smarts MPLS Manager, EMC Smarts
Server Manager, EMC Smarts Network Protocol Manager, EMC Smarts Optical Transport
Manager, and EMC Smarts VoIP Availability Manager. It consists of the following topics:

◆ Installation overview... 20
◆ Installation prerequisites .. 21
◆ Install the product... 21
◆ Add additional features to a new installation .. 32
◆ Support for FIPS 140-2 for 9.6 products .. 32
◆ Next steps .. 36

Performing an Installation 19

Performing an Installation

Installation overview
The installation flow is shown in Figure 2 on page 20. A new installation installs a new
version of a product on a host system that either has no software installed or has a
previous version of the software installed. Chapter 5, “Performing an Upgrade,” provides
instructions to install an upgrade installation.

* Found by

installation program

Install new installation

Suite

already installed

 on host *

?

Yes

Install products to a new directory

Installation Directory Selection

Welcome

License Agreement

Installation Complete

Choose ProductsCustom

Complete

Services Selection

Broker Specification

Installation Criteria

 Installing . . .

Upgrade or Install

Install products to a new directory

Upgrade existing installation

Add additional features

Installation Type

Complete

Custom

No

Figure 2 New installation flowchart

20 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation

Installation prerequisites
Fulfill the following prerequisites before starting the installation:

◆ Ensure that you have superuser (User ID 0) or administrative privileges on the target
host. The installation program will halt if you do not have the appropriate privileges.

◆ Ensure that the required operating system patches have been installed. Clicking More
Information during the installation process will launch the System Information
window and the Pass/Fail status of the operating system patches. The EMC Smarts
SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers Support Matrix provides
information on operating system patches.

◆ Determine the location of the EMC Smarts Broker.

You must specify the location of the Broker during a new installation of EMC Smarts
software. Typically, this location is chosen during the design of the EMC Smarts
software deployment and before any installation begins. Consult with your
deployment planner or check the build guide that documents your deployment to
determine the name of the host where the Broker was installed and the port that the
Broker uses.

If the location is the same host where you are installing this product, the installation
program will automatically install the Broker if it is not already on the host.

◆ (Service Assurance Manager only) Decide whether your operators will use the Service
Assurance Manager Notification Console (classic SAM functionality) or the
SolutionPack for EMC Smarts (in EMC M&R) to view and acknowledge notifications. If
you plan to use the SolutionPack for EMC Smarts, you must install additional features
and services when you install Service Assurance Manager.

Install the product
You acquire the software for the EMC Smarts Service Assurance Manager, EMC Smarts IP
Manager, EMC Smarts MPLS Manager, EMC Smarts Server Manager, EMC Smarts Network
Protocol Manager, EMC Smarts Optical Transport Manager, and EMC Smarts VoIP
Availability Manager in one of two ways:

◆ From the installation CD/DVD-ROM.

Insert the CD/DVD-ROM into the optical drive of the host system. Appendix C,
“Procedures for CD/DVD-ROMs,” describes how to access the optical drive for various
operating systems.

When you insert the installation CD/DVD, several minutes might pass between the
InstallShield preparation screen and the EMC Smarts splash screen/installation
dialog boxes. Be patient. Do not eject/reinsert the CD/DVD to start a second install
process.

◆ From the EMC online support website.

Go to the EMC online support website and download the installation file that is
specific to your platform.

You install each product in one of three ways: Wizard mode, CLI mode, or Unattended
mode.

Installation prerequisites 21

Performing an Installation

Install using Wizard mode

Wizard mode provides a graphical user interface to the installation program for UNIX and
Windows platforms.

On UNIX systems, Wizard mode uses the X Window System to display the installation
wizard. The host on which you install the EMC Smarts software and the host where you log
in must be configured to run the X Window System. Before starting the installation
program using the Wizard mode, verify that the X Window System is running.

At the start of the installation, the installation program detects and stops all services,
scheduled jobs, and processes that use programs or libraries that are running from the
previous installation. It also stops the service daemon, sm_serviced, if it is running.

Be aware that In some cases, on Windows, services cannot be stopped by the installation
program because multiple threads are locking the services. In those cases, use the
Windows Control Panel to stop the services manually.

For instructions on installing the Service Assurance Manager Server in wizard mode,
complete the steps in the following section. To install other Service Assurance Manager
products after Server install, refer to “Installing the Service Assurance Manager Console,
or the Smarts NOTIF Editor, or both” on page 30, and “Add additional features to a new
installation” on page 32.

Running Wizard mode
1. Run the setup command that is appropriate for the operating system as shown in

Table 5 on page 22.

Table 5 Server setup command syntax for Wizard mode (page 1 of 2)

Product Operating system Setup command

Service Assurance Manager Server

Notice: For setup command syntax for other
Service Assurance Manager products, refer to
“Installing the Service Assurance Manager
Console, or the Smarts NOTIF Editor, or both”
on page 30.

Linux ./setup-SAM-9_6_0_0-linux64.bin

Windows setup-SAM-9_6_0_0-win64.exe

IP Manager Linux ./setup-IP-9_6_0_0-linux64.bin

Windows setup-IP-9_6_0_0-win64.exe

MPLS Manager Linux ./setup-MPLS-9_6_0_0-linux64.bin

Windows setup-MPLS-9_6_0_0-win64.exe

Server Manager Linux ./setup-ESM-9_6_0_0-linux64.bin

Windows setup-ESM-9_6_0_0-win64.exe

22 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation

UNIX users: If the current directory is not set in your PATH variable, prepend the
command with./ (a period followed by a forward slash).

The InstallShield wizard dialog box appears and closes. The Shutdown Programs
dialog box and the Welcome screen appear.

2. Click OK in the Warning dialog box.

If stopping services is necessary, you will be prompted with specific instructions later
in the installation process.

3. Click Next in the Welcome screen.

Next is disabled if you do not have administrative privileges and a message also
appears. To install, you must restart the installation with the appropriate privileges.

4. Read and accept the EMC Corporation end user license agreement and click Next.

5. If the installation program detects an existing installation of the same product, the
Upgrade or Install screen appears. In the Upgrade or Install screen, select Install
products to a new directory.

6. Click Next to accept the default installation directory or type your preferred directory
and click Next.

The default installation directory is:

If you specify a directory, the directory name cannot contain spaces. If the specified
directory does not exist, it will be created. If you do not have write privileges, an error
message appears.

Network Protocol Manager Linux ./setup-NPM-9_6_0_0-linux64.bin

Windows setup-NPM-9_6_0_0-win64.exe

Optical Transport Manager Linux ./setup-OTM-9_6_0_0-linux64.bin

Windows setup-OTM-9_6_0_0-win64.exe

VoIP Availability Manager Linux ./setup-VOIP-9_6_0_0-linux64.bin

Windows setup-VOIP-9_6_0_0-win64.exe

Table 5 Server setup command syntax for Wizard mode (page 2 of 2)

Product Operating system Setup command

Install the product 23

Performing an Installation

7. In the Installation Type screen, select:

• Complete to install all the products, including the EMC Data Access API (EDAA)
feature. Click Next.

• Custom to install a specific product. Click Next.

a. In the Choose Products screen, clear the checkboxes for products that you do
not want to install (by default, all products are selected).

b. (Service Assurance Manager only)

If you plan to use the EMC M&R UI and the Service Assurance Manager in this
installation as the Presentation SAM server (interoperate with the SolutionPack
for EMC Smarts), ensure you select Service Assurance Manager and EMC Data
Access API (EDAA).

If you want to use the Service Assurance Manager and the EMC Data Access API
(EDAA) feature without the EMC M&R UI, ensure you select Service Assurance
Manager and EMC Data Access API (EDAA).

c. Click Next.

8. In the Services Selection screen, select the products that you want to install as
services and click Next. If you do not install services at this point, you will need to
install them manually later.

For Service Assurance Manager services, you have two choices:

• Select EMC Smarts Service Assurance Manager Server if you plan to run only the
Service Assurance Manager.

• Select EMC Smarts Service Assurance Manager Server (notification cache
publishing) if you plan use the EMC M&R UI and the Service Assurance Manager.

When installed as services, the products start automatically whenever the host starts
up. EMC Corporation recommends that EMC Smarts products be installed as services
whenever possible.

If you are migrating from a previous version to 9.6 on the same host, you need to
decide whether to install services during the 9.6 installation or to install them
manually after the installation. Installing services during the installation will override
the services for the previous version of installed products.

For the same-host migration scenario, and assuming that you want to continue to run
the previous version of installed products, you have two choices:

• Install services during the 9.6 installation and then, after the installation, manually
install services with unique names for the previous version of installed products.

• Do not install services during the 9.6 installation and then, after the installation,
manually install services with unique names for the 9.6 products.

Appendix B, “Manually Installing Services,” describes how to install services
manually.

24 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation

9. (Service Assurance Manager only) If you selected the EMC Smarts Service Assurance
Manager Server (notification cache publishing) service, select the EMC Data Access
API services for:

• EMC Smarts Data Web Applications (Tomcat)

• EMC Smarts Notification Exchange (Rabbit MQ)

• EMC Smarts Notification Cache (ElasticSearch)

10. (MPLS Manager only) The Domain Group Naming screen is displayed. Either accept the
default (INCHARGE-MPLS) or enter a new name.

The domain group name is the name given to the MPLS Manager that is made up of
MPLS Topology Server, MPLS Monitoring Server, and MPLS Analysis Server. If you
change the name of the MPLS Manager, the names of the three servers are changed
accordingly.

You may want to define Domain Groups by geographical coverage. You could create a
Domain Group for corporate headquarters and change INCHARGE-MPLS to HQ-MPLS,
and later, a group for South America as SA-MPLS. The only requirement at this time is
that you must install all services for any Domain Group on the same host. Even if you
know that you are going to change the name of the Domain Group, you can perform
the renaming step later, either through the Global Console or through a script from the
command line. Appendix D, “Using the MPLS server_config Utility,” provides more
information.

11. In the Broker Specification screen, specify the EMC Smarts Broker.

• If you are installing the Broker as a service, specify the port. The hostname defaults
to localhost, where localhost is a literal name.

• If the Broker is already running on this host, keep the default values.

• If the Broker is running on another host, specify the hostname of that system and
the port that the Broker uses.

Click Next to continue.

12. The Installation Criteria screen appears. Review the list of products that will be
installed and the target installation directory. At the bottom of the list, the total
amount of disk space that is required for the selected products is provided so that you
can verify that adequate disk space is available. To install the products, click Next and
the Installation Progress screen appears.

13. Upon completion, the Installation Summary shows informational messages such as
successful confirmations, error messages, and warnings. Investigate any errors or
warnings.

If Next appears, your system needs to be rebooted because one or both of the
following tasks are pending on the system:

• A system-protected file was replaced during the installation and requires a restart.

• A pending restart was triggered by another application or by an operating system
patch installation.

Click Next and then reboot your system. Otherwise, click Finish to exit the installation.

Install the product 25

Performing an Installation

The installation program writes an install log file to the BASEDIR/smarts/setup/logs
directory, unless the installation fails at the very start, in which case the installation
program writes the log file to the /tmp directory. The log file is a text file with the
naming convention Install.<product>.<productversionNumber>.log.

14. If your product is part of a deployment that requires the Federal Information
Processing Standard (FIPS) Publication 140-2, a U.S. government computer security
standard governing cryptographic modules, follow the instructions in “Support for
FIPS 140-2 for 9.6 products” on page 32.

15. “Next steps” on page 36 provides post-installation tasks.

For instructions on installing the Service Assurance Manager Server in CLI mode, complete
the steps in the following section. To install other Service Assurance Manager products
after Server install, refer to “Installing the Service Assurance Manager Console, or the
Smarts NOTIF Editor, or both” on page 30.

Install using CLI mode

CLI mode provides a text-based method for invoking the installation program. This mode
is intended for UNIX platforms with non-graphics consoles. The CLI mode follows the same
process flow as the Wizard mode but uses text rather than graphics.

Running CLI mode
To start the CLI mode, invoke the setup command with the -console command-line option.

Table 6 Setup command syntax for CLI mode (page 1 of 2)

Product Operating system Executable

Service Assurance Manager
Server

Linux ./setup-SAM-9_6_0_0-linux64.bin -console

Windows setup-SAM-9_6_0_0-win64.exe -console

Service Assurance Manager
Console

Linux ./setup-CONSOLE-9_6_0_0-linux.bin -console

Windows setup-CONSOLE-9_6_0_0-win.exe -console

IP Manager Linux ./setup-IP-9_6_0_0-linux64.bin -console

Windows setup-IP-9_6_0_0-win64.exe -console

MPLS Manager Linux ./setup-MPLS-9_6_0_0-linux64.bin -console

Windows setup-MPLS-9_6_0_0-win64.exe -console

Server Manager Linux ./setup-ESM-9_6_0_0-linux64.bin -console

Windows setup-ESM-9_6_0_0-win64.exe -console

26 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation

User selections and navigation in CLI mode
During the installation and uninstallation processes, you are prompted with a series of
steps and menus:

◆ For prompts, accept the default value or select another choice. The default values are
indicated in brackets. To accept the default value, press Enter. To reply “yes,” enter y
or Y; to reply “no,” enter n or N. Do not press Delete because doing so will cause the
process to terminate with an error message.

◆ For selections in menus, accept the default selections or type the number of the item
and press Enter. The default values are indicated in brackets or as pre-defined
selections in menus. An X is used to indicate the selected item. When you are finished
making selections, type zero (0) and press Enter.

If you incorrectly type an entry, press 5 to repeat the prompt and select the correct value.
Arrow keys and the Backspace key are not supported.

To navigate between each step, use the keys described in Table 7 on page 27.

Table 7 Navigation keys

Key Operation

If your product is part of a deployment that requires the Federal Information Processing
Standard (FIPS) Publication 140-2, a U.S. government computer security standard
governing cryptographic modules, follow the instructions in “Support for FIPS 140-2 for
9.6 products” on page 32.

“Next steps” on page 36 provides post-installation tasks.

Network Protocol Manager Linux ./setup-NPM-9_6_0_0-linux64.bin -console

Windows setup-NPM-9_6_0_0-win64.exe -console

Optical Transport Manager Linux ./setup-OTM-9_6_0_0-linux64.bin -console

Windows setup-OTM-9_6_0_0-win64.exe -console

VoIP Availability Manager Linux ./setup-VOIP-9_6_0_0-linux64.bin -console

Windows setup-VOIP-9_6_0_0-win64.exe -console

Table 6 Setup command syntax for CLI mode (page 2 of 2)

Product Operating system Executable

1 Next, continue to the next step

2 Previous, go back to the previous step

3 Cancel, terminate the program

5 Redisplay, repeat the step

0 Accept the marked ([X]) menu choice

Install the product 27

Performing an Installation

Install using Unattended mode

Unattended mode is supported for all operating systems, but separate response files are
needed for UNIX and Windows systems. Unattended mode reads the selections and
settings for the installation from a user-modifiable response file, which enables you to
easily duplicate the installation on many computer systems. Manual intervention is not
necessary after you execute the setup command.

The response file, named <product>-response.txt, is located on the CD/DVD-ROM in the
/utils directory. The file provides instructions and examples of command line options that
are passed to the installation program in Unattended mode. The command line options
are organized by process flow, which is almost identical to that of Wizard mode or CLI
mode.

For instructions on installing the Service Assurance Manager Server in Unattended mode,
complete the steps in the following section. To install other Service Assurance Manager
products after Server install, refer to “Installing the Service Assurance Manager Console,
or the Smarts NOTIF Editor, or both” on page 30.

Modifying the response file
To modify the response file:

1. Copy the response file from the CD/DVD’s /utils directory to a directory on your host,
for example, to the /tmp directory.

2. Using a text editor, modify the values for the command line options in the response
file:

a. Specify the target directory.

b. Select a directory for the process log file.

c. Select the products to install. Ensure that the property value for the product is set
to true.

d. Select the products to start as services. Ensure that the property value for the
product is set to true.

e. Specify the location of the Broker. By default, the location is set to localhost at port
426.

3. Save the file.

Running Unattended mode
To start the Unattended mode, invoke the setup command with the -options
command-line option, followed by the full path to the response file as described in Table 8
on page 29.

28 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation

Table 8 Setup command syntax for Unattended mode

Product Operating system Executable

For example for MPLS Manager, to start the Unattended mode of installation on Linux
when the response file is located in /opt/home, enter:

./setup-MPLS-9_6_0_0-linux64.bin -options /opt/home/MPLS_SUITE-response.txt

If your product is part of a deployment that requires the Federal Information Processing
Standard (FIPS) Publication 140-2, a U.S. government computer security standard
governing cryptographic modules, follow the instructions in “Support for FIPS 140-2 for
9.6 products” on page 32.

“Next steps” on page 36 provides post-installation tasks.

Service Assurance
Manager Server

Linux ./setup-SAM-9_6_0_0-linux64.bin -options <path>/<product>-response.txt

Windows setup-SAM-9_6_0_0-win64.exe -options <path>\<product>-response.txt

Service Assurance
Manager Console

Linux ./setup-CONSOLE-9_6_0_0-linux.bin -options <path>/<product>-response.txt

Windows setup-CONSOLE-9_6_0_0-win.exe -options <path>\<product>-response.txt

IP Manager Linux ./setup-IP-9_6_0_0-linux64.bin -options <path>/<product>-response.txt

Windows setup-IP-9_6_0_0-win64.exe -options <path>\<product>-response.txt

MPLS Manager Linux ./setup-MPLS-9_6_0_0-linux64.bin -options <path>/<product>-response.txt

Windows setup-MPLS-9_6_0_0-win64.exe -options <path>\<product>-response.txt

Server Manager Linux ./setup-ESM-9_6_0_0-linux64.bin -options <path>/<product>-response.txt

Windows setup-ESM-9_6_0_0-win64.exe -options <path>\<product>-response.txt

Network Protocol Manager Linux ./setup-NPM-9_6_0_0-linux64.bin -options <path>/<product>-response.txt

Windows setup-NPM-9_6_0_0-win64.exe -options <path>\<product>-response.txt

Optical Transport Manager Linux ./setup-OTM-9_6_0_0-linux64.bin -options <path>/<product>-response.txt

Windows setup-OTM-9_6_0_0-win64.exe -options <path>\<product>-response.txt

VoIP Availability Manager Linux ./setup-VOIP-9_6_0_0-linux64.bin -options <path>/<product>-response.txt

Windows setup-VOIP-9_6_0_0-win64.exe -options <path>\<product>-response.txt

where <path> is the fully qualified path to the response file and <product> is the product name, for example, IP_NETWORK_SUITE,
MPLS_SUITE, or SAM_SUITE.

Install the product 29

Performing an Installation

Additional Service Assurance Manager installation tasks

If you are installing other Service Assurance Manager components such as the:

◆ Service Assurance Manager Console
◆ Smarts NOTIF Editor
◆ Both the Service Assurance Manager Console and the Smarts NOTIF Editor

follow one of the installation procedures for each component included in, “Installing the
Service Assurance Manager Console, or the Smarts NOTIF Editor, or both” on page 30.

You can view and acknowledge notifications in the Notification Console in Service
Assurance Manager or you can manage notifications from the EMC M&R user interface by
installing the SolutionPack for EMC Smarts. The SolutionPack for EMC Smarts Summary
Sheet article provides installation instructions. The How to Set Up SAM, EMC M&R, and
the SolutionPack for EMC Smarts article provides instructions on configuring Service
Assurance Manager to work with EMC M&R.

Installing the Service Assurance Manager Console, or the Smarts NOTIF Editor, or
both

This section describes the steps for installing the Service Assurance Manager Console, or
the Smarts NOTIF Editor, or both the Service Assurance Manager Console and the Smarts
NOTIF Editor. Make sure you install the Service Assurance Manager Server first.

Install Service Assurance Manager Console, or the Smarts NOTIF Editor, or both using Wizard mode
To install the Service Assurance Manager Console:

1. Run the Setup command appropriate for the operating system listed in Table 9 on
page 30.

Table 9 Console setup command syntax for Wizard mode

Operating system Setup command

The InstallShield wizard dialog box appears and closes. The Shutdown EMC Smarts
Programs dialog box and the Welcome screen appear.

2. Click OK in the Warning dialog box.

If stopping services is necessary, specific instructions prompts appear later in the
installation process.

3. Click Next in the Welcome screen.

Next is disabled if you do not have administrative privileges and a message also
appears. To install, you must restart the installation with appropriate privileges.

4. Read and accept the EMC Corporation end user license agreement and click Next.

Linux ./setup-CONSOLE-9_6_0_0-linux.bin

Windows setup-CONSOLE-9_6_0_0-win.exe

30 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation

5. If the installation program detects an existing installation of the same product, the
Installation Type screen appears.

Select Install the product to a new directory.

This screen does not display if you are installing the product for the first time on the
system.

6. Click Next to accept the default installation directory or type your preferred directory
and click Next.

If you specify a directory, the directory name cannot contain spaces. If the specified
directory does not exist, it will be created. If you do not have write privileges, an error
message appears.

7. In the Setup screen, select one of the following:

• Complete to install all Service Assurance Manager Console components. Click
Next.

• Custom to install a specific product. Click Next.

a. Clear products that you do not want to install (by default, all products are
selected). From this screen, you may choose to install either the Global Console
or the Smarts NOTIF Editor.

b. Click Next.

8. In the type of Global Console installation screen, select:

• Global Console, Web Console, and Business Dashboard. Click Next.

• Global Console. Click Next.

9. The Services Selection screen appears. Select the products that you want to install as
services and click Next. If you do not install services at this point, you must install
them manually later.

If you have an older version of a service running on the host, you must stop that
service before installing a new version of the service.

When installed as services, EMC Smarts products start automatically when the system
starts up. If the system is stopped and restarted, the EMC Smarts products restart
automatically. EMC Corporation recommends that EMC Smarts products be installed
as services whenever possible. If any of the products that are being installed can be
started as services, these products are displayed in the services selection screen.

10. Specify the EMC Smarts Broker:

• If the Broker is already running on this host, keep the hostname default value and
change the Broker port accordingly if it is not running on port 426.

• If the Broker is running on another host, specify the hostname of that system and
the port the Broker uses.

Click Next to continue.

Install the product 31

Performing an Installation

11. Review the list of products that will be installed and the target installation directory. At
the bottom of the list, the total amount of disk space required for the selected
products is provided so that you can verify that adequate disk space is available. To
install the products, click Next and the Installation Progress screen appears.

12. Upon completion, the Installation Summary displays informational messages such as
successful confirmations, error messages, and warnings. Click Finish to exit the
installation. It is not necessary to restart the system after installation.

Investigate any errors or warnings. The log file is a text file with the naming convention
Install.<product>.<productversionNumber>.log. It is located in the
BASEDIR/smarts/setup/logs directory. If the installation process fails, the log files are
located in the /tmp directory.

13. “Next steps” on page 36 provides information on post-installation tasks.

Install Service Assurance Manager Console, or the Smarts NOTIF Editor, or both using CLI mode
“Install using CLI mode” on page 26 provides information on installing Service Assurance
Manager Console, or the Smarts NOTIF Editor, or both using CLI mode.

Install Service Assurance Manager Console, or the Smarts NOTIF Editor, or both using unattended
mode

“Install using Unattended mode” on page 28 provides information on installing Service
Assurance Manager Console, or the Smarts NOTIF Editor, or both using unattended mode.

Add additional features to a new installation
If after installing a new installation you want to add products to the new installation, run
the installation again, select the Add additional features option in the Upgrade or install
screen, and select all products that are already installed plus any other products that you
would like to install in the new installation. Then proceed to “Next steps” on page 36.

Support for FIPS 140-2 for 9.6 products
The Federal Information Processing Standard (FIPS) Publication 140-2 is a U.S.
government computer security standard governing cryptographic modules. FIPS 140 is
required for any software purchased by the U.S government and U.S military. This release
specifically addresses U.S Government accounts which require FIPS 140 compliance.

A configuration parameter, SM_FIPS140, has been introduced for FIPS 140 in the
runcmd_env.sh file. The SAM or EMC Smarts administrator can enable or disable this
parameter as required. The default value of this parameter is FALSE.

32 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation

FIPS 140 mode allows you to use SNMP V1, SNMPV2C, SNMP V3, with SHA and AES 128
protocols. FIPS 140 does not support the DES privacy protocol or the MD5 authentication
protocol. When you discover an SNMPv3 device, you need to select the option “V3” in the
“Add Agent” window. The “Authentication Protocol” option lists only SHA and not MD5,
and the “Privacy Protocol” option lists only AES and not DES. This is because MD5 and
DES are not supported in FIPS 140 mode. When you discover SNMPv3 devices with MD5
and DES protocol as seed, the devices go to the Pending List and display as “Invalid” or
“Unsupported SNMP V3 protocol.”

FIPS 140 mode cannot be enabled or disabled after a server is started. FIPS 140-enabled
Domain Managers such as MPLS Manager, IP Manager, Service Assurance Manager, and
Server Manager can work only with the SAM Global Console 9.x or later for FIPS 140-2
mode.

A non-FIPS 140 mode Broker will not be able to communicate with a FIPS 140-enabled
Manager (IP server, SAM server, or Domain Manager). Trying to establish such a
connection will result in the enabled Manager going into a DEAD state after couple of
minutes. Communication should always happen between FIPS 140-enabled Brokers and
Managers.

Inter-domain and FIPS 140 Broker communication happens only when the Broker,
Managers, and the SAM Console are all in FIPS 140 mode, else the application will not be
operational.

This section covers the following scenarios for FIPS 140:

◆ “Enabling FIPS 140 mode on a new installation” on page 33

◆ “Disabling FIPS 140 mode” on page 36

◆ “Verify the FIPS 140 mode status” on page 101

Enabling FIPS 140 mode on a new installation

When you install a 9.6 product, FIPS 140 is not enabled by default. You must enable FIPS
140 on a clean installation or an upgrade, before the servers are started, using the
following procedure:

1. Back up the imk.dat, brokerConnect.conf, serverConnect.conf and clientConnect.conf
files from the existing installation. These files are located in the BASEDIR/local/conf
folder.

The backup is necessary in case you need to disable FIPS 140 mode and remove FIPS
140-2 encryption.

Support for FIPS 140-2 for 9.6 products 33

Performing an Installation

2. Run the following command at the command line prompt:

sm_rebond --upgrade --basedir=<BASEDIR>/smarts

For example for Service Assurance Manager, run the command:

UNIX

sm_rebond --upgrade --basedir=/opt/InCharge/SAM/smarts

Windows

sm_rebond --upgrade --basedir=C:\InCharge\SAM\smarts

The path must be set to the default install path. Regardless of the FIPS 140 state, the
sm_rebond command must be invoked from the BASEDIR where the software is
installed, not from any other product installation area which also has the sm_rebond
utility.

3. When prompted, type a password to regenerate the imk.dat file. The default password
is Not a secret.

4. Set the value for the parameter SM_FIPS140 to TRUE in the runcmd_env.sh file. The
file is located under the BASEDIR/smarts/local/conf directory.

Enabling FIPS 140 mode on SAM Web Console
1. Perform steps 1 - 3 as described in the section, “Enabling FIPS 140 mode on a new

installation” on page 33.

2. Go to the <BASEDIR>/smarts/jre/lib/security folder, and in the java.security file,
change:

“sun.security.rsa.SunRsaSign” to “com.rsa.jsafe.provider.JsafeJCE” and
“com.sun.net.ssl.internal.ssl.Provider” to “com.rsa.jsse.JsseProvider.”

3. Set the value for the parameter SM_FIPS140 to TRUE in the runcmd_env.sh file. This
file is located under the <BASEDIR>/CONSOLE/smarts/local/conf folder of your Global
Console installation.
or
Use "-Dcom.smarts.fips_mode=true" as a command line parameter for the sm_gui
command.

34 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation

Enabling FIPS 140 mode on SAM Dashboard
1. Perform steps 1 - 3 as described in the section, “Enabling FIPS 140 mode on a new

installation” on page 33.

2. Set the value for the com.smarts.fips_mode to TRUE in the corresponding
webconsole.properties file (located under
<BASEDIR>/InCharge/CONSOLE/smarts/tomcat/webapps/webconsole folder)
or
dashboard.properties file (located under
<BASEDIR>/InCharge/CONSOLE/smarts/tomcat/webapps/templates).

3. Set the value for the parameter SM_FIPS140 to TRUE in the runcmd_env.sh file. This
file is located under the <BASEDIR>/CONSOLE/smarts/local/conf folder of your Global
Console installation.
or
Use "-Dcom.smarts.fips_mode=true" as a command line parameter for the sm_gui
command.

Enabling FIPS 140 mode on SAM NOTIF
1. Perform steps 1 - 3 as described in the section, “Enabling FIPS 140 mode on a new

installation” on page 33.

2. Go to the <BASEDIR>/CONSOLE/smarts/notif/editor/ or the
<BASEDIR>/SAM/smarts/notif/editor folder, and edit the NotifGui.bat/NotifGui.sh file
to replace the string, “com.netmg.notif.gui.NotifApplication” with
“-Dcom.smarts.fips_mode=true com.netmg.notif.gui.NotifApplication.”

3. Set the value for the parameter SM_FIPS140 to TRUE in the runcmd_env.sh file. This
file is located under the <BASEDIR>/CONSOLE/smarts/local/conf folder of your Global
Console installation.
or
Use "-Dcom.smarts.fips_mode=true" as a command line parameter for the sm_gui
command.

If you install the servers as a service on Linux platforms, the services will start
automatically after you issue the sm_rebond command. First stop the services, modify
SM_FIPS140=TRUE in the runcmd_env.sh file, and then manually start the services.

After enabling FIPS 140 mode, when you start the broker and the SAM server, you may see
the following message in the server log:

“CI-W-NOCGSS-No certificate loaded for INCHARGE-AM, generating
self-signed certificate.”

This message is generated because FIPS 140 requires secure communication, which can
be achieved using SSL. If this certificate is not available, the SAM Manager generates a
self-signed certificate. This message is benign in nature and does not impact functionality.

Support for FIPS 140-2 for 9.6 products 35

Performing an Installation

Disabling FIPS 140 mode

To disable FIPS 140:

1. Replace the imk.dat, brokerConnect.conf, serverConnect.conf and clientConnect.conf
files in the BASEDIR/local/conf folder, with the copies saved from prior to ““Enabling
FIPS 140 mode on a new installation” on page 33”. If you do not have a copy of these
files saved, contact Technical Support.

2. Set the value for the SM_FIPS140 parameter to FALSE in the runcmd_env.sh file. This
file is located under BASEDIR/smarts/local/conf/runcmd_env.sh.

3. Restart all processes, such as the Broker, Domain Managers, SAM Global Manager,
and Global Console.

RPS files started under FIPS mode cannot be re-used in non-FIPS mode. Domains will need
to be started either from scratch or pre-FIPS RPS files can be used in cases where
topologies have not changed. Restoring from older RPS files may not be productive as it
will not contain any recent topology.

Next steps
Perform the following tasks:

◆ Chapter 6, “Performing a Migration,” describes additional tasks if you are migrating
from a previous version of the product.

◆ Chapter 8, “Verifying the Installation,” describes tasks for verifying the proper
installation of the software and starting services.

◆ For EMC Smarts Optical Transport Manager (OTM), complete the post-installation
configuration tasks as described in Appendix E, “EMC Smart Optical Transport
Manager Configuration.”

The 9.6 product suite includes the SM_LICENSE which is set to NULL in the
BASEDIR/local/conf/runcmd_env.sh file. The user now does not need to change these
because there is no license server/temporary license file needed for the 9.6 product suite.

36 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

CHAPTER 3
Performing an Installation in Docker Container

This chapter describes how to install the EMC Smarts Service Assurance Manager, EMC
Smarts IP Manager, EMC Smarts MPLS Manager, EMC Smarts Server Manager, EMC Smarts
Network Protocol Manager, EMC Smarts Optical Transport Manager, and EMC Smarts VoIP
Availability Manager. It consists of the following topics:

◆ Installation overview... 38
◆ Installation prerequisites .. 38
◆ Creating and starting Docker image... 39
◆ Operations on Docker container.. 39
◆ Performing Smarts upgrade inside Docker... 41

Performing an Installation in Docker Container 37

Performing an Installation in Docker Container

Installation overview
Docker is a tool for packaging and shipping applications. Based on the idea of a shipping
container, it provides a standardized way for administrators to create lightweight images,
or collections of images, for each element of an application, and then easily and quickly
deploy the image.

Since the image is standardized, it can be uniformly deployed in development or
production environment.

You can install the Smarts applications in docker container only on the Linux platform. The
Docker script is written with the CentOS as the base operating system. EMC supports
separate (explicit) Docker containers for each product, so individual Docker scripts are
written such that, on execution only the respective product gets installed.

Installation prerequisites
Fulfill the following prerequisites before starting the docker installation:

◆ Ensure that you have docker installed on your system.

◆ The response file, named <product>-response.txt and docker script file, are located in
the ISO file in the /utils directory.

◆ The binary files are located in the ISO file in the /suite directory.

◆ Docker script includes few basic OS utilities that are required to execute the Smarts
product functionality. Utilities like Telnet and SSH are required for CLI discovery
process. Any additional utilities which is required for specific requirement, can be
installed using “yum” inside container.

◆ Ensure that you placed the following mentioned files in any folder on your system:

Table 10 Files needed to install Smarts application in docker container.

Setup File Response File Docker File

setup-IP-9_6_0_0-linux64.bin IP_NETWORK_SUITE-response.
txt

IP_NETWORK_SUITE-Dockerfile
.txt

setup-SAM-9_6_0_0-linux64.bin SAM_SUITE-response.txt SAM_SUITE-Dockerfile.txt

setup-CONSOLE-9_6_0_0-linux.bin SAM_CONSOLE_SUITE-respon
se.txt

SAM_CONSOLE_SUITE-Dockerf
ile.txt

setup-ESM-9_6_0_0-linux64.bin ESM_SUITE-response.txt ESM_SUITE-Dockerfile.txt

setup-MPLS-9_6_0_0-linux64.bin MPLS_SUITE-response.txt MPLS_SUITE-Dockerfile.txt

setup-NPM-9_6_0_0-linux64.bin NPM_SUITE-response.txt NPM_SUITE-Dockerfile.txt

setup-OTM-9_6_0_0-linux64.bin OTM_SUITE-response.txt OTM_SUITE-Dockerfile.txt

setup-VOIP-9_6_0_0-linux64.bin VOIP_SUITE-response.txt VOIP_SUITE-Dockerfile.txt

38 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation in Docker Container

The docker file creates the docker image with the help of above files mentioned in the
table. In order to disable EDAA mode and change to the broker host, edit
<product>-response.txt. “Install using Unattended mode” on page 28 provides more
information on installing the product using Unattended mode.

Creating and starting Docker image
You can create and start docker image for the EMC Smarts Service Assurance Manager,
EMC Smarts IP Manager, EMC Smarts MPLS Manager, EMC Smarts Server Manager, EMC
Smarts Network Protocol Manager, EMC Smarts Optical Transport Manager, and EMC
Smarts VoIP Availability Manager by using the following steps:

1. Run the following command, to build the docker image:

docker build -t <image-name> -f <docker file name> ./

Where “.” represents the current directory where the docker related files are placed.
For example, In case of IP, it must be “setup-IP-9_6_0_0-linux64.bin”,
“IP_NETWORK_SUITE-response.txt”, and “IP_NETWORK_SUITE-Dockerfile.txt”.

Docker image name is case sensitive, provide the image name in the lower case only.

2. Run the following command, to start the docker container in the host mode:

docker run -it --net=host --name <container name>
<docker-image-name>

EMC Corporation recommends to start a docker container in host networking mode.

3. Start the "ic-serviced" so that services can be created:

/etc/init.d/ic-serviced start

4. Start your servers with your environment specific options.

The 9.6 product suite includes the SM_LICENSE which is set to NULL in the
BASEDIR/local/conf/runcmd_env.sh file. The user now does not need to change these
because there is no license server/temporary license file needed for the 9.6 product suite.

Operations on Docker container
You can perform various operations on docker container like add, remove, stop, and list
the docker container or docker image in the system. The docker commands used in this
chapter are docker specific and do not have any dependencies on Smarts product.

Creating and starting Docker image 39

Performing an Installation in Docker Container

In docker there is nothing called uninstallation, you just need to remove the container and
the image file from the system.

To remove the docker containers and the image files, you need to perform the following
series of task:

1. Search for the list of container present on your system, run the following command to
list the containers:

#docker ps -a

2. Run one of the following command, to attach the existing container (if any):

#docker attach <container ID>
or,
#docker attach <container name>

3. To stop the docker, run the following command:

• Invoke the following command, to stop all the containers running on your machine:

#docker stop $(docker ps -a -q)

• Invoke one of the following command, to stop the specific container:

#docker stop <container ID>
or,
#docker stop <container name>

4. To remove the container, run the following command:

• Invoke the following command, to remove all the containers on your machine:

#docker rm $(docker ps -a -q)

• Invoke one of the following command, to remove the specific container:

#docker rm <container ID>
or,
#docker rm<container name>

5. Search for the list of docker images present on your system, run the following
command to list the docker image:

#docker images --all

6. Invoke one of the following command, to remove the image:

#docker rmi <ImageID>
or,
#docker rmi <Image Name>

After performing all the steps mentioned above, all the docker image files and docker
container are removed from the system.

7. Invoke one of the following command in the Docker container to exit or stop the
container:

#exit
Ctrl + C
Ctrl + \

40 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Installation in Docker Container

Above commands helps you to close the SSH terminal directly.

Performing Smarts upgrade inside Docker
You can upgrade the EMC Smarts Service Assurance Manager, EMC Smarts IP Manager,
EMC Smarts MPLS Manager, EMC Smarts Server Manager, EMC Smarts Network Protocol
Manager, EMC Smarts Optical Transport Manager, and EMC Smarts VoIP Availability
Manager in docker, by using the following steps:

1. Invoke the following command, to copy the build inside the docker container:

docker cp <build file> <container name>:<Path inside docker
container>

2. Run the following command, to login to the docker container:

docker exec -it <container name> bash

3. To perform upgrade on the Linux platform, refer to Chapter 5, “Performing an
Upgrade,”.

The regular upgrade procedure needs to be followed once the files are copied inside
the docker. An upgrade installation needs to triggered inside the docker.

Performing Smarts upgrade inside Docker 41

Performing an Installation in Docker Container

42 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

CHAPTER 4
NAS Installation and Startup

This chapter covers installation and startup issues for the EMC Smarts IP Availability
Manager Extension for NAS. Topics in this chapter are:

◆ Overview... 44
◆ Installing and starting the HTTPS Adapter service.. 44

NAS Installation and Startup 43

NAS Installation and Startup

Overview
The NAS Extension is installed with the IP Availability Manager. After installation, the IP
Availability Manager can discover NAS devices, and perform root cause and impact
analysis on these devices.

Configuring the NAS Extension involves the tasks summarized in Table 11 on page 44.

Table 11 Steps for configuring the NAS Extension

Procedure Reference

Installing and starting the HTTPS Adapter service
The NAS Extension software includes an adapter process (the HTTPS Adapter), which
probes the Celerra devices using the HTTPS/XML probe to obtain internal topology
information. While the installation of this adapter is automatic, you must install the
service and start it manually. Install the HTTPS Adapter as a service and start the service
manually, as described next for UNIX and Windows.

Once started, the HTTPS Adapter registers with the Broker. The EMC Smarts System
Administration Guide provides more information about starting services.

UNIX:

To install the HTTPS Adapter as a service on UNIX, issue the following command:

sm_service install --force --unmanaged --startmode=manual \
'--name=<service_name>' \
'--description=<Smarts description>' \
'BASEDIR/smarts/bin/sm_adapter_java'
'--name=<HTTPS_Adapter_Name>' \
'--output=<HTTPS_Adapter_Name>.log' \
'-J' \
'nas_probe.jar'

If necessary, configure the HTTPS Adapter to
support access to the managed Celerra
devices.

For information about this requirement, refer to
the “Configuring Control Station usernames and
passwords” chapter in the EMC Smarts IP
Manager User Guide.

If necessary, configure external Control
Station and Data Mover IP addresses.

For information about this requirement, refer to
the “Configuring Control Station and Data Mover
IP addresses” chapter in the EMC Smarts IP
Manager User Guide, which also refers you to the
appropriate EMC documentation, if needed.

Install the HTTPS Adapter as a service and
start the service.

“Installing and starting the HTTPS Adapter
service” on page 44.

Start the IP Availability Manager. EMC Smarts Installation Guide for SAM, IP, ESM,
MPLS, NPM, OTM, and VoIP Managers

Start the Global Manager. EMC Smarts Installation Guide for SAM, IP, ESM,
MPLS, NPM, OTM, and VoIP Managers.
For configuration information, refer to the EMC
Smarts Service Assurance Manager Configuration
Guide.

Start the Global Console. EMC Smarts Installation Guide for SAM, IP, ESM,
MPLS, NPM, OTM, and VoIP Managers.

44 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

NAS Installation and Startup

Where:

<service_name> is the name registered to the service daemon. You may choose any
name you wish for this name; for example, ic-remote-nas. When you issue the
sm_service show command, this name appears.

<Smarts description> is the description of the service. You may create any description
you wish; for example, Smarts remote NAS adapter.

<HTTPS_Adapter_Name> is the name of the HTTPS Adapter, as registered with the
Broker; for example, the default name is remote-nas.

You can also specify the Broker and Port, if the IP Availability Manager with NAS Extension
is registered with a Broker and Port other than the default, localhost:426. To do this,
add the following arguments to the end of the command:

--broker=<IP Address or Hostname>:<Port Number>

where <IP Address or Hostname> identifies the host on which the Broker is running,
and <Port Number> identifies which port is used by the Broker. Please note that a
colon separates the hostname from the port.

To start the service, type the following command:

BASEDIR/smarts/bin/sm_service start <service_name>

To stop the service, issue the following command:

BASEDIR/smarts/bin/sm_service stop <service_name>

Windows:

To install the HTTPS Adapter as a service on Windows, type the following command on one
line:

▼ sm_service install --force --name=<service_name>
--description=<Smarts description>
--startmode=manual BASEDIR\smarts\bin\sm_adapter_java.exe
"--name=<HTTPS_Adapter_Name>"
"--output=<HTTPS_Adapter_Name>.log" "--jar=nas_probe.jar" ▲

Where:

<service_name> is the name registered to the service registry; this name must be
unique to the registry. You may choose any name you wish for this name so long as the
name has no white spaces. The following is an example, ic-remote-nas. When you
issue the sm_service show command, this name appears.

<Smarts description> is the description of the service. You may create any description
you wish but it is easier to find the service if all EMC Smarts services are grouped
together. An example service description is Smarts remote NAS adapter. Service
names display alphabetically in the Name column of the Services window located at
Control Panel/Administrative Tools, so the example description will follow Smarts
Performance Manager and precede Smarts Service Assurance Manager.

<HTTPS_Adapter_Name> is the name of the HTTPS Adapter, as registered with the
Broker; for example, the default name is remote-nas.

Installing and starting the HTTPS Adapter service 45

NAS Installation and Startup

You can also specify the Broker and Port, if the IP Availability Manager with NAS Extension
is registered with a Broker and Port other than the default, localhost:426. To do this,
add the following arguments to the end of the command:

--broker=<IP Address or Hostname>:<Port Number>

Where <IP Address or Hostname> identifies the host on which the Broker is running,
and <Port Number> identifies which port is used by the Broker. Please note that a
colon separates the hostname from the port.

To start the service, go to the Services window and select the service name, or issue the
following command at a command prompt:

BASEDIR\smarts\bin\sm_service start <service_name>

To stop the service, go to the Services window and select the service name, or issue the
following command:

BASEDIR\smarts\bin\sm_service stop <service_name>

Running HTTPs adapter in FIPS mode

The NAS subsystem was changed to provide FIPS 140 support. Hence you need to
download additional JAR (Java Archive) files, else errors are seen in the NAS log when you
run NAS discovery.

Example NAS Log Error Snippet:

MAIN_MSG-*-STDFD_OUT-stdout: javax.net.ssl.SSLException:
java.security.InvalidKeyException: Illegal key size

[June 17, 2011 6:37:49 PM GMT+05:30 +227ms] t@1084229984 platform
MAIN_MSG-*-STDFD_OUT-stdout:

at com.rsa.sslj.x.aJ.b(Unknown Source)
at com.rsa.sslj.x.aJ.a(Unknown Source)
at com.rsa.sslj.x.aJ.b(Unknown Source)
at com.rsa.sslj.x.aU.d(Unknown Source)
at com.rsa.sslj.x.aU.a(Unknown Source)
at com.rsa.sslj.x.aU.h(Unknown Source)
at com.rsa.sslj.x.cI.startHandshake(Unknown Source)
at
com.smarts.nas_probe.ControlStationInterface.getSSLSocket(ControlSt
ationInterface.java:314)
at
com.smarts.nas_probe.ControlStationInterface.post(ControlStationInt
erface.java:75)
at
com.smarts.nas_probe.ControlStationInterface.getReply(ControlStatio
nInterface.java:58)
at com.smarts.nas_probe.XMP.NasXML(XMP.java:25)

Caused by: com.rsa.sslj.x.ax: java.security.InvalidKeyException:
Illegal key size
at com.rsa.sslj.x.aJ.b(Unknown Source)
at com.rsa.sslj.x.cR.k(Unknown Source)
at com.rsa.sslj.x.t.f(Unknown Source)
at com.rsa.sslj.x.t$a.run(Unknown Source)
at com.rsa.sslj.x.aJaa.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method)
at com.rsa.sslj.x.aJ$a.run(Unknown Source)
... 7 more

[June 17, 2011 6:37:49 PM GMT+05:30 +229ms] t@1084229984 platform

46 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

NAS Installation and Startup

MAIN_MSG-*-STDFD_OUT-stdout: e
Caused by: java.security.InvalidKeyException: Illegal key size

at javax.crypto.Cipher.a(DashoA13*..)
at javax.crypto.Cipher.init(DashoA13*..)
at javax.crypto.Cipher.init(DashoA13*..)
at com.rsa.sslj.x.Y.<init>(Unknown Source)
......

With BSAFE SSL-J, some of the FIPS 140 cryptographic algorithms require Unlimited
Strength Jurisdiction Policy Files.

Unlimited Strength Jurisdiction Policy JAR Files for NAS discovery
Download and install the Unlimited Strength Jurisdiction Policy Files to run the NAS
adapter in FIPS mode using the following steps:

1. Download the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy
Files 8 from the Oracle website.

2. Extract the local_policy.jar and US_export_policy.jar files from the downloaded zip
file.

3. Go to the smarts/jre/lib/security directory and then back up the existing policy files in
this path.

4. Overwrite the local_policy.jar and US_export_policy.jar files to the
smarts/jre/lib/security directory.

If you want to switch back from FIPS mode to non-FIPS mode, reset SM_FIPS140 to FALSE.
You do not need to remove the Unlimited Strength Jurisdiction Policy Files.

Installing and starting the HTTPS Adapter service 47

NAS Installation and Startup

48 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

CHAPTER 5
Performing an Upgrade

This chapter describes how to install an in-place upgrade installation for the EMC Smarts
Service Assurance Manager, EMC Smarts IP Manager, EMC Smarts MPLS Manager, EMC
Smarts Server Manager, EMC Smarts Network Protocol Manager, EMC Smarts Optical
Transport Manager, and EMC Smarts VoIP Availability Manager. Upgrade topics include:

◆ Upgrade installation overview... 50
◆ Upgrade installation prerequisites .. 53
◆ Upgrade the product ... 53
◆ Add additional features to an upgrade installation.. 58
◆ Upgrading 9.6 products in FIPS mode ... 58
◆ Next steps .. 58

Performing an Upgrade 49

Performing an Upgrade

Upgrade installation overview
This chapter describes how to perform an upgrade installation for the IP Manager, Service
Assurance Manager, MPLS Manager, Server Manager, Network Protocol Manager, and VoIP
Availability Manager. An upgrade installation applies a new version of software to an
existing version in the same directory on the same host. An “upgrade installation” is also
known as an “in-place upgrade.” During an upgrade installation, new product services are
not available to install, unless you select additional products during the upgrade
procedure.

You can upgrade the versions of software listed in the EMC Smarts SAM, IP, ESM, MPLS,
NPM, OTM, and VoIP Managers Support Matrix to Version 9.6 using the in-place upgrade
instructions provided in this chapter.

The upgrade installation flow is shown in Figure 3 on page 51.

The order in which you upgrade products depends on whether the EMC M&R UI is included
in your deployment. When deciding which Global Manager or underlying Domain Manager
to upgrade first, perform the upgrade in the following order:

1. Start with the top-most SAM server.

• If EMC M&R is included, this is the Presentation SAM server.

• If EMC M&R is not included, this is the top-most SAM server and related Service
Assurance products and consoles in your deployment, either a SAM server or the
top SAM server in a hierarchical SAM deployment.

2. If EMC M&R is included, update EMC M&R platform (core) components and the
SolutionPack for EMC Smarts.

Ensure that communication exists between the Presentation SAM server and the
SolutionPack for EMC Smarts.

For information, consult the Service Assurance Suite Installation and Configuration
Guide for EMC M&R, the SolutionPack for EMC Smarts Summary Sheet article, and the
How to Set Up SAM, EMC M&R, and the SolutionPack for EMC Smarts article.

3. An Aggregation SAM server if it is a hierarchical SAM deployment.

4. IP Manager.

5. Any order: Server Manager, MPLS Manager, Network Protocol Manager, and VoIP
Availability Manager.

Presentation SAM server is the server that is configured in the SolutionPack for EMC
Smarts for use with the EMC M&R UI. This does not mean that a hierarchical SAM is
required.

50 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Upgrade

�
�
�

Upgrade Installation

Figure 3 Upgrade installation flowchart

Upgrade installation overview 51

Performing an Upgrade

Installer tasks

During an upgrade installation, the installation program performs the following tasks:

1. Detects and stops all services, scheduled jobs, and processes that use programs or
libraries that are running from the existing installation. It also stops the service
daemon, sm_serviced, if it is running.

Be aware that in some cases, on Windows, services cannot be stopped by the
installation program because multiple threads are locking the services. In those
cases, use the Windows Control Panel to stop the services manually.

If the broker is running on the host with a IP Manager, then it will have to be stopped
during an upgrade. The broker has to be stopped to prevent the impact on all the
other applications running on the system.

2. Creates a backup copy of your customizations in the
<BASEDIR>/smarts/.migrate.bkp.<version> directory.

3. Removes the patch, if any, from the existing installation.

4. Installs the software.

5. Prompts you to merge your customizations files in the
BASEDIR>/smarts/.migrate.bkp.<version> directory to the BASEDIR/smarts/local
directory.

Installer-called utilities

The installation program invokes the sm_migrate utility to backup the existing
user-customized files and base files. It also presents the sm_migrate command to be run
after the 9.6 installation to complete a three-way merge of the following sets of files:

◆ Existing user-customized files in the <BASEDIR>/smarts/.migrate.bkp.<version>
directory.

◆ Existing base files in the <BASEDIR>/smarts/.migrate.bkp.<version> directory.

◆ 9.6 base files in the BASEDIR/smarts directory

The sm_migrate utility invokes another utility, the sm_merge utility, for each of the files
that requires a three-way merge. Chapter 7, “Migration Utilities,” explains how the
sm_migrate and sm_merge utilities work.

52 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Upgrade

Upgrade installation prerequisites
Fulfill the following prerequisites before starting the upgrade installation:

◆ Ensure that you have superuser (User ID 0) or administrative privileges on the target
host. The installation program will halt if you do not have the appropriate privileges.

◆ Ensure that the required operating system patches have been installed. Clicking More
Information during the installation process will launch the System Information
window and the Pass/Fail status of the operating system patches. The EMC Smarts
SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers Support Matrix provides
information on operating system patches.

◆ Remove all the unused files in the /local directory. The unused files will also include
RPS files and custom files created by you. The upgrade process uses the sm_migrate
utility that creates a backup of all the files in the local directory and copies them back
to local directory after the upgrade. RPS and custom files can be large, and may slow
down the process.

◆ Disk space requirement—During an upgrade installation, the installer creates a
backup of files in actions, conf, model, repos, rules, script directories. Ensure that you
have disk space of twice the size of these directories available on the system. After
the upgrade and verifying the installation, you can archive or remove the backup
directories. This requirement is in addition to the minimum disc requirement outlined
for each product in the EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP
Managers Support Matrix.

◆ Patch uninstallation— You need to manually uninstall the 9.5.1.x patch before
upgrading to Smarts Suite 9.6. For example, if you have installed version 9.5.1.x
patch, then during the upgrade to Smarts Suite 9.6, you need to manually uninstall
the patch that was installed on top of 9.5.1.0. After that, you can proceed with the
usual upgrade task. For more information on the patch uninstallation procedure, refer
to the EMC Smarts Cumulative Patch Readme for IP, SAM, ESM, NPM, VoIP, MPLS, OTM
document.

Upgrade the product
You upgrade each product in one of three ways: Wizard mode, CLI mode, or Unattended
mode.

Post upgrade to 9.6, update the SM_LICENSE to NULL (for example:
/opt/NPMSer/NPM/smarts/local/conf/runcmd_env.sh, SM_LICENSE=NULL).

Perform the following tasks:

1. Review the important release issues found in your product-specific release notes.

2. On the host where the target existing installation resides, log in as superuser (User ID
0) or administrator.

3. Mount the CD/DVD-ROM. Appendix C, “Procedures for CD/DVD-ROMs,” provides more
information.

Upgrade installation prerequisites 53

Performing an Upgrade

4. Choose Wizard mode, CLI mode (UNIX only), or Unattended mode. The setup
commands for invoking Wizard mode, CLI mode, and Unattended mode are listed in
Table 5 on page 22, Table 6 on page 26, and Table 8 on page 29.

• In Wizard mode or CLI mode, make the following additional selections:

– In the Upgrade or Install screen, select Upgrade existing suite and click Next or
enter [1].

– In the Target Installation Selection screen (in which an existing product is
selected unless the product was previously installed to more than one
directory, in which case you will see multiple choices), select a target
installation directory and click Next or enter [1].

– In the Choose Products screen, all of the existing products are selected to be
upgraded. You can select additional products to add to the installation.

For Service Assurance Manager only, add EMC Data Access API (EDAA) if the
Service Assurance Manager in this upgrade is going to be configured in the
SolutionPack for EMC Smarts and will be used as the Presentation SAM server
for the EMC M&R UI.

– Specify any additional local directories created using SM_SITEMOD. Click Next
or enter [1].

• In Unattended mode, specify the following additional options in the response file
(<product>-response.txt). All previously installed products must have their product
options set to “true” in the response file.

– Uncomment the -W INSTALL_TYPE.INSTALL_CHOICE=UPGRADE option.

– Uncomment the -W SITEMOD_BEAN.SITEMODS_VAR option, and provide one or
more directory locations to perform an upgrade. You can provide the name of
the directories, or the directory name with absolute path.

For example, on Linux:

-W SITEMOD_BEAN.SITEMODS_VAR=local-1:/opt/InCharge/SAM/smarts/Local-2
:local-3

on Windows:

-W SITEMOD_BEAN.SITEMODS_VAR=C:\InCharge\smarts\SAM\local3
;C:\InCharge\SAM\smarts\local2

For specifying directory separators, use : on Linux and ; on Windows.

– Uncomment the -W MERGE_OPTION_UPGRADE.MERGE_CHOICE=MERGE option
to perform the merge.

– Uncomment the -W MERGE_OPTION_UPGRADE.MERGE_CHOICE=NOMERGE
option to not perform the merge.

– Uncomment the -P <product>.installLocation option and set its property value to
the installation directory of the target installation. The installation directory
must end with /<product>.

54 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Upgrade

– Ensure the property value is set to “true” for each product that is already
installed plus any other product that you would like to add to the installation.

5. The installation program displays the Directories created using SM_SITEMOD screen
which allows you to back up local directories that were created with SM_SITEMOD. If
you used SM_SITEMOD to create local directories, enter a list of local directories. Click
Next or enter [1].

The installation program then runs the sm_migrate utility to create a backup file of the
user-customized files and base files in the existing installation. The backup file,
named .migrate.bkp.<version>, is saved to the BASEDIR/smarts directory.

On a Windows-based host, extracting the sm_migrate utility and performing a
migration takes a considerable amount of time. Be patient. Do not stop the migration
process.

6. The installation program removes the patch, if any, from the existing installation and
installs the 9.6 software.

7. After the installation, the installation program shows the Restore User Configurations
Instructions screen, which presents the sm_migrate command for restoring the old
user-customizations in the .migrate.bkp.<version> backup file to the
BASEDIR/smarts/local directory. The screen provides two options:

a. Yes, merge the files - Select this option if you want the utility to automatically
merge the files modified by you.

b. No, I will merge them later - Select this option if you want to manually merge
the files modified by you.

Click Next or enter [1] to view the Installation Summary.

For Service Assurance Manager, the upgrade process inserts the _edaa user entry into
the security configuration file serverConnect.conf and the runcmd_env.sh file. The
upgrade process does not modify the clientConnect.conf, brokerConnect.conf, and
imk.dat files. The upgrade process does not insert the _edaa user entry into the files
of Domain Managers.

For Domain Managers, copying the security configuration files clientConnect.conf,
serverConnect.conf, brokerConnect.conf, runcmd_env.sh, and imk.dat is not
supported in an upgrade installation. You can manually copy the security
configuration files using sm_migrate utility as described in “Restoring customizations
after an upgrade installation” on page 81.

8. The Installation Summary shows informational messages such as successful
confirmations, error messages, and warnings. Investigate any errors or warnings.

If Next appears, your system needs to be rebooted because one or both of the
following tasks are pending on the system:

Upgrade the product 55

Performing an Upgrade

• A system-protected file was replaced during the installation and requires a restart.

• A pending restart was triggered by another application or by an operating system
patch installation.

Click Next or enter [1] and then reboot your system. Otherwise, click Finish or enter [1]
to exit the installation.

The installation program writes an install log file to the BASEDIR/smarts/setup/logs
directory, unless the installation fails at the very start, in which case the installation
program writes the log file to the /tmp directory. The log file is a text file with the
naming convention Install.<product>.<productversionNumber>.log.

9. Evaluate your custom code. Review the “Custom file migration use cases” on page 83.
The sm_migrate utility migrated all user-customized files from the existing installation
to the BASEDIR/smarts/local directory in the 9.6 installation. Review the output of the
sm_migrate utility and evaluate if you would like to keep the user-customized files in
the new installation.

“Configuration migration process logs” on page 87 provides more information on the
log files that are created after the migration of user-customized files.

10. Depending on your deployment, ensure that the
BASEDIR/smarts/local/conf/runcmd_env.sh file includes the environment variables,
SM_TLS_PROTOCOLS and SM_ALLOW_LEGACY_CRYPTO.

Use SM_TLS_PROTOCOLS set to the +TLSv1.1 value only if you need to interoperate
with EMC Smarts products based on Foundation 9.0.0.0 Build 1345 through 9.2.x.

Use SM_ALLOW_LEGACY_CRYPTO set to TRUE only if you need to interoperate with
EMC Smarts products based on Foundation versions prior to 9.0.0.0 Build 1345.

“Check the version number” on page 94 provides the sm_server --version command
to determine the Foundation (DMT) version.

To ensure that the runcmd_env.sh file includes the environment variables:

a. Go to the BASEDIR/smarts/bin directory and enter this command to open the
runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

b. Search for the environment variables. If they do not exist, add one or both
depending on your deployment:

SM_TLS_PROTOCOLS=+TLSv1.1
SM_ALLOW_LEGACY_CRYPTO=TRUE

c. Save and close the file.

11. If you plan to use the EMC M&R UI and the Service Assurance Manager in this upgrade
is the Presentation SAM server for the EMC M&R UI, you need to use the sm_service
command to install the ic-sam-server-pres service, and then remove the existing
ic-sam-server service.

56 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Upgrade

Presentation SAM server is the server that is configured in the SolutionPack for EMC
Smarts for use with the EMC M&R UI. This does not mean that a hierarchical SAM is
required.

In addition to the ic-sam-server-pres service, ensure that you have installed the
smarts-elasticsearch service, the smarts-rabbitmq service, and the smarts-tomcat
service if you did not select them during the upgrade installation.

Appendix B, “Manually Installing Services,” provides the sm_service syntax for the
Presentation SAM server, Tomcat, Rabbit MQ, and ElasticSearch.

To remove the ic_sam_service service, type this command from the
<BASEDIR>/smarts/bin directory:

sm_service remove --name=ic-sam-server

The EMC Smarts System Administration Guide provides more information about how
to use the sm_service command.

12. In this upgrade, if you plan use the EMC M&R UI and the Configuration Manager to
configure IP Manager settings, you need to register the Configuration Manager and the
IP Managers with the service command that includes the EMC Data Access API service
option (--edaa). The Service Assurance Suite How to Maintain IP Manager Settings
article explains how to use the Configuration Manager to configure IP Manager
settings.

13. Optional for IP Manager, run the repository file migration utility (sm_migraterps) to
make the repository file compatible with the newer 9.6 version of the software as
described in “Automatically migrate topology for IP Manager using RPS utility” on
page 88.

14. If your product is part of a deployment that requires the Federal Information
Processing Standard (FIPS) Publication 140-2, a U.S. government computer security
standard governing cryptographic modules, follow the instructions in “Upgrading 9.6
products in FIPS mode” on page 58.

15. If you installed the products as services, start the services. “Starting services on UNIX”
on page 95 or “Starting services on Windows” on page 95 provides more information.

16. Verify the current state of the products and Broker. “Verify the product status” on
page 100 provides more information.

17. Initiate a discovery. Consult the discovery guide or user guide for your product for
more information on this procedure.

18. For Server Manager,

a. In the Domain Manager Administration Console, right-click on the ESM server
(INCHARGE-ESM, by default) in the left pane and select the Load All ESM Host
monitoring data from Backup option.

b. Perform a discovery (Topology > Discover All) from the ESM server.

All of the applications that were configured prior to the upgrade are restored and
Server Manager starts to monitor those applications.

Upgrade the product 57

Performing an Upgrade

Add additional features to an upgrade installation
If after installing an upgrade installation you want to add products to the upgrade
installation, run the installation again, select the Add additional features option in the
Upgrade or install screen, and select all products that are already installed plus any other
products that you would like to install in the upgraded installation.

Upgrading 9.6 products in FIPS mode

Upgrading in FIPS mode is not available for Server Manager.

9.6 products do not use a Federal Information Processing Standard (FIPS 140-2) approved
encryption algorithm to protect the imk.dat file. By default, the 9.6 imk.dat file uses MD5,
which is not a FIPS-approved algorithm. Hence, while upgrading from previous versions of
products to Version 9.6, the imk.dat file needs to be regenerated in order to run in the FIPS
mode.

In order to convert an existing installation to FIPS, use the sm_rebond (in non-FIPS mode)
first to get everything re-encoded in a FIPS compatible way. The steps are as follows:

1. Run the following command at the command line prompt:

sm_rebond --upgrade --basedir=<BASEDIR>/smarts

The path must be set to the default install path. Regardless of the FIPS 140 state, you
must run the sm_rebond command from the BASEDIR where the software is installed,
not from any other product installation area which also has the sm_rebond utility.

For example for Service Assurance Manager, run the command:

Linux

sm_rebond --upgrade --basedir=/opt/InCharge/SAM/smarts

Windows

sm_rebond --upgrade --basedir=C:\InCharge\SAM\smarts

2. When prompted, type a password to regenerate the imk.dat file. The default password
is Not a secret.

3. Set the value for the parameter SM_FIPS140 to TRUE in the runcmd_env.sh file. The
file is located under the BASEDIR/smarts/local/conf directory.

Next steps
Chapter 8, “Verifying the Installation,” describes tasks for verifying the proper installation
of the software and starting services.

58 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

CHAPTER 6
Performing a Migration

This chapter provides instructions for migrating previous versions of the EMC Smarts
Service Assurance Manager, EMC Smarts IP Manager, EMC Smarts MPLS Manager, EMC
Smarts Server Manager, EMC Smarts Network Protocol Manager, EMC Smarts Optical
Transport Manager, and EMC Smarts VoIP Availability Manager to a new version. It consists
of the following topics:

◆ Migration overview.. 60
◆ Install and migrate on the same host .. 61
◆ Install and migrate on a different host... 64
◆ Post-migration tasks ... 67

Performing a Migration 59

Performing a Migration

Migration overview
Consult the EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers Support
Matrix for software versions that require a manual migration to Version 9.6.

Two methods are available:

◆ Install and migrate on the same host

◆ Install and migrate on a different host

After the installation, run the sm_migrate utility to backup the user-customized files in the
previous version and migrate the files to the new version. Chapter 7, “Migration Utilities,”
explains how the sm_migrate utility works.

Disk space requirement—During a migration, the sm_migrate creates a backup of files in
actions, conf, model, repos, rules, script directories. Ensure that you have disk space of
four times the size of these directories available on the system. After the migration and
verifying the installation, you can archive or remove the backup directories. This
requirement is in addition to the minimum disk requirement outlined for each product in
the EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers Support Matrix.

Server name requirement for migration—To preserve notification history and the original
Source attributes of notifications in the Service Assurance Manager, the server names of
underlying Domain Managers should remain the same. This way at the end of the
migration of all EMC Smarts Domain Managers, the SAM server can correctly associate the
pre-existing topology and notifications with the topology and events coming from
migrated Domain Managers. For example, if the 9.5 Server Manager has a server name
INCHARGE-ESM, do not change it to a different name for the 9.6 release.

Make sure that you read “Install and migrate on the same host” on page 61 and “Install
and migrate on a different host” on page 64 in their entirety before proceeding.

Remove all the unused files in the /local directory. The unused files will also include RPS
files and custom files created by you. The sm_migrate utility creates a backup of all the
files in the local directory and copies them back to local directory. RPS and custom files
can be large, and may slow down the process.

60 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing a Migration

Install and migrate on the same host
To migrate from a previous version of a product to the new, current 9.6 version on the
same host, you must:

1. Install the 9.6 product and specify an installation directory that is different from the
one that is used for the previous installation.

2. Stop the old services for the previous version, if necessary.

For UNIX, keep the service daemon (the sm_serviced component) running. If
sm_serviced is stopped, all EMC Smarts products will stop and will need to be
restarted.

In some cases, on Windows, the installation program cannot stop the services,
because multiple threads are locking the services. In those cases, use the Windows
Control Panel to stop the services manually.

For most cases, the installation program detects and stops all services, scheduled
jobs, and processes that use programs or libraries that are running from the existing
installation.

It also stops the service daemon, sm_serviced, if it is running.

3. Migrate user-customized files from the previous installation to the new installation.

4. Reuse the customized Polling and Thresholds settings from the old repository.

Detailed instructions are described in “Migration procedure for the same host” on
page 62.

For a test lab environment, since the two installations are on the same host, you can run
both installations in parallel. For parallel installations, both installations connect to the
same Broker and Global Manager, as long as the old and new product service and
sm_server names are unique. In this case, you will need to rename the service and
sm_server for the previous product version. Managers registered with the same Broker
must have unique names.

For a production environment, EMC Corporation recommends that you decommission the
previous version of product.

The order in which you upgrade products depends on whether the EMC M&R UI is included
in your deployment. When deciding which Global Manager or underlying Domain Manager
to migrate first, perform the migration in the following order:

1. Start with the top-most SAM server.

• If EMC M&R is included, this is the Presentation SAM server.

• If EMC M&R is not included, this is the top-most SAM server and related Service
Assurance products and consoles in your deployment, either a SAM server or the
top SAM server in a hierarchical SAM deployment.

2. If EMC M&R is included, migrate or update EMC M&R platform (core) components and
the SolutionPack for EMC Smarts.

Ensure that communication exists between the Presentation SAM server and the
SolutionPack for EMC Smarts.

Install and migrate on the same host 61

Performing a Migration

For information, consult the Service Assurance Suite Installation and Configuration
Guide for EMC M&R, the SolutionPack for EMC Smarts Summary Sheet article, and the
How to Set Up SAM, EMC M&R, and the SolutionPack for EMC Smarts article.

3. An Aggregation SAM server if it is a hierarchical SAM deployment.

4. IP Manager.

5. Any order: Server Manager, MPLS Manager, Network Protocol Manager, and VoIP
Availability Manager.

Presentation SAM server is the server that is configured in the SolutionPack for EMC
Smarts for use with the EMC M&R UI. This does not mean that a hierarchical SAM is
required.

Migration procedure for the same host

To migrate the previous version of the product to the new version on the same host,
perform the following tasks:

1. Review the important release issues for the 9.6 product, as described in the EMC
Smarts Release Notes for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers.

2. Determine that the products that you are installing are supported for your platform.
The EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers Support Matrix
provides more information.

3. Determine if the host has enough disk space and memory to accommodate so both
versions of the product can co-exist. The EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM,
and VoIP Managers Support Matrix provides more information.

4. Mount the CD/DVD-ROM on the host as described in Appendix C, “Procedures for
CD/DVD-ROMs.”

5. Uninstall any temporary test patches (TTPs), if they exist, in your old installation.

If a TTP has been installed on a Service Pack, you must first uninstall the TTP.
Otherwise, the TTP files will be treated as files modified by you and copied to the local
directory in the new installation area.

6. Install the new version of the product on the same host as described in Chapter 2,
“Performing an Installation.”

• Specify an installation directory that is different from the old installation directory
so both versions of the product can co-exist.

• Install products as services. These services overwrite the old stopped services.

If you need to continue to run the previous versions of the products, manually install
services for them with unique names and start them.

The installation program installs the 9.6 software.

62 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing a Migration

7. Run the sm_migrate utility to copy user-customized files from the previous installation
to the new 9.6 installation. “Migrating customizations on the same host” on page 76
provides instructions.

Run the sm_migrate utility immediately after the installation and before you start any
services or modify any files in the new installation. The sm_migrate utility will not
merge any files from the previous installation local directory, if the same files are
present in the new installation BASEDIR/smarts/local directory.

8. Evaluate your security settings. “Migration of security configuration files” on page 85
provides more information.

9. Evaluate the environment variables in the old runcmd_env.sh file. “Migration of
security configuration files” on page 85 provides more information.

10. Evaluate your custom code. Review the “Custom file migration use cases” on page 83
to plan your post-migration steps. The sm_migrate utility migrated all user-customized
files from the previous installation to the BASEDIR/smarts/local directory in the new
installation. It also made a backup copy of the files under the
BASEDIR/smarts/.migrate.bkp.x.x directory (for example, .migrate.bkp.2.0.0.0).
Review the output of the sm_migrate utility and evaluate if you would like to keep the
user-customized files in the new installation.

11. Depending on your deployment, ensure that the
BASEDIR/smarts/local/conf/runcmd_env.sh file includes the environment variables,
SM_TLS_PROTOCOLS and SM_ALLOW_LEGACY_CRYPTO.

Use SM_TLS_PROTOCOLS set to the +TLSv1.1 value only if you need to interoperate
with EMC Smarts products based on Foundation 9.0.0.0 Build 1345 through 9.2.x.

Use SM_ALLOW_LEGACY_CRYPTO set to TRUE only if you need to interoperate with
EMC Smarts products based on Foundation versions prior to 9.0.0.0 Build 1345.

“Check the version number” on page 94 provides the sm_server --version command
to determine the Foundation (DMT) version.

a. Go to the BASEDIR/smarts/bin directory and enter this command to open the
runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

b. Search for the environment variables. If they do not exist, add one or both
depending on your deployment:

SM_TLS_PROTOCOLS=+TLSv1.1
SM_ALLOW_LEGACY_CRYPTO=TRUE

c. Save and close the file.

12. Rename the repository file before reusing it.

a. Locate the existing repository file that was copied to the
BASEDIR/smarts/local/repos/icf directory in the new 9.6 installation.

b. Rename the repository file by removing the version number extension. For
example, the repository file INCHARGE-MPLS-ANALYSIS.rps.3.1.0.2 should be
renamed to INCHARGE-MPLS-ANALYSIS.rps without the version number extension.

Install and migrate on the same host 63

Performing a Migration

13. Optional for IP Manager, run the repository file migration utility (sm_migraterps) to
make the repository file compatible with the newer 9.6 version of the software as
described in “Automatically migrate topology for IP Manager using RPS utility” on
page 88.

14. If you installed the products as services, start them for the first time. “Starting services
on UNIX” on page 95 or “Starting services on Windows” on page 95 provide more
information.

15. Verify the current state of the products and Broker. “Verify the product status” on
page 100 provides more information.

16. For Server Manager,

a. In the Domain Manager Administration Console, right-click on the ESM server
(INCHARGE-ESM, by default) in the left pane and select the Load All ESM Host
monitoring data from Backup option.

b. Perform a discovery (Topology > Discover All) from the ESM server.

All of the applications that were configured prior to the migration are restored and
Server Manager starts to monitor those applications.

17. Decommission the previous version of the products. For instructions, refer to the
uninstallation chapter in the installation guide for the previous software version.

Install and migrate on a different host
If you want to run the new version of the 9.6 product before decommissioning the previous
version, you must:

1. Install the new version of the 9.6 product on a different host.

2. Migrate any customized configuration file changes to the new installation.

Detailed instructions are described in “Migration procedure for a different host” on
page 65.

Since the two installations are on different hosts, you can run both installations in
parallel. You have the option of:

◆ Having both installations connect to the same Global Manager and Broker.

Managers registered with the same Broker must have unique names. In this scenario,
stop and rename the services for the previous version and, when you install the 9.6
product, the installation program will use the default server names.

◆ Having multiple instances of the Global Manager and Broker with each instance
assigned to a different version of the product.

For a production environment, EMC Corporation recommends that you decommission the
previous version of product.

The order in which you upgrade products depends on whether the EMC M&R UI is included
in your deployment. When deciding which Global Manager or underlying Domain Manager
to migrate first, perform the migration in the following order:

1. Start with the top-most SAM server.

64 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing a Migration

• If EMC M&R is included, this is the Presentation SAM server.

• If EMC M&R is not included, this is the top-most SAM server and related Service
Assurance products and consoles in your deployment, either a SAM server or the
top SAM server in a hierarchical SAM deployment.

2. If EMC M&R is included, migrate or update EMC M&R platform (core) components and
the SolutionPack for EMC Smarts.

Ensure that communication exists between the Presentation SAM server and the
SolutionPack for EMC Smarts.

For information, consult the Service Assurance Suite Installation and Configuration
Guide for EMC M&R, the SolutionPack for EMC Smarts Summary Sheet article, and the
How to Set Up SAM, EMC M&R, and the SolutionPack for EMC Smarts article.

3. An Aggregation SAM server if it is a hierarchical SAM deployment.

4. IP Manager.

5. Any order: Server Manager, MPLS Manager, Network Protocol Manager, and VoIP
Availability Manager.

Presentation SAM server is the server that is configured in the SolutionPack for EMC
Smarts for use with the EMC M&R UI. This does not mean that a hierarchical SAM is
required.

Migration procedure for a different host

To migrate the previous version of the product to the new version on a different host,
satisfy or perform the following tasks:

1. Review the important release issues for the 9.6 product, as described in the EMC
Smarts Release Notes for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers.

2. Determine that the products that you are installing are supported for your platform.
The EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers Support Matrix
provides more information.

3. Determine if the host has enough disk space and memory to accommodate so both
versions of the product can co-exist. The EMC Smarts SAM, IP, ESM, MPLS, NPM, OTM,
and VoIP Managers Support Matrix provides more information.

4. Mount the CD/DVD-ROM on the host as described in Appendix C, “Procedures for
CD/DVD-ROMs.”

5. Uninstall any temporary test patches (TTPs), if they exist, in your old installation.

If a TTP has been installed on a Service Pack, you must first uninstall the TTP.
Otherwise, the TTP files will be treated as files modified by you and copied to the local
directory in the new installation area.

6. Install the new version of the product on the different host as described in Chapter 2,
“Performing an Installation.”

The installation program installs the 9.6 software.

Install and migrate on a different host 65

Performing a Migration

7. Run the sm_migrate utility to copy user-customized files from the previous installation
to the new 9.6 installation. “Migrating customizations to a different host” on page 78
provides instructions.

Run the sm_migrate utility immediately after the installation and before you start any
services or modify any files in the new installation. The sm_migrate utility will not
merge any files from the previous installation local directory, if the same files are
present in the new installation BASEDIR/smarts/local directory.

8. Evaluate your security settings. “Migration of security configuration files” on page 85
provides more information.

9. Evaluate the environment variables in the old runcmd_env.sh file. “Migration of
security configuration files” on page 85 provides more information.

10. Evaluate your custom code. Review the “Custom file migration use cases” on page 83
to plan your post-migration steps. The sm_migrate utility migrated all user-customized
files from the previous installation to the BASEDIR/smarts/local directory in the new
installation. It also made a backup copy of the files under the
BASEDIR/smarts/.migrate.bkp.x.x directory (for example, .migrate.bkp.2.0.0.0).
Review the output of the sm_migrate utility and evaluate if you would like to keep the
user-customized files in the new installation.

11. Depending on your deployment, ensure that the
BASEDIR/smarts/local/conf/runcmd_env.sh file includes the environment variables,
SM_TLS_PROTOCOLS and SM_ALLOW_LEGACY_CRYPTO.

Use SM_TLS_PROTOCOLS set to the +TLSv1.1 value only if you need to interoperate
with EMC Smarts products based on Foundation 9.0.0.0 Build 1345 through 9.2.x.

Use SM_ALLOW_LEGACY_CRYPTO set to TRUE only if you need to interoperate with
EMC Smarts products based on Foundation versions prior to 9.0.0.0 Build 1345.

“Check the version number” on page 94 provides the sm_server --version command
to determine the Foundation (DMT) version.

a. Go to the BASEDIR/smarts/bin directory and enter this command to open the
runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

b. Search for the environment variables. If they do not exist, add one or both
depending on your deployment:

SM_TLS_PROTOCOLS=+TLSv1.1
SM_ALLOW_LEGACY_CRYPTO=TRUE

c. Save and close the file.

12. Rename the repository file before reusing it.

a. Locate the existing repository file that was copied to the
BASEDIR/smarts/local/repos/icf directory in the new 9.6 installation.

b. Rename the repository file by removing the version number extension. For
example, the repository file INCHARGE-MPLS-ANALYSIS.rps.3.1.0.2 should be
renamed to INCHARGE-MPLS-ANALYSIS.rps without the version number extension.

66 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing a Migration

13. Optional for IP Manager, run the repository file migration utility (sm_migraterps) to
make the repository file compatible with the newer 9.6 version of the software as
described in “Automatically migrate topology for IP Manager using RPS utility” on
page 88.

14. If you installed the products as services, start them for the first time. “Starting services
on UNIX” on page 95 or “Starting services on Windows” on page 95 provide more
information.

15. Verify the current state of the products and Broker. “Verify the product status” on
page 100 provides more information.

16. For Server Manager,

a. In the Domain Manager Administration Console, right-click on the ESM server
(INCHARGE-ESM, by default) in the left pane and select the Load All ESM Host
monitoring data from Backup option.

b. Perform a discovery (Topology > Discover All) from the ESM server.

All of the applications that were configured prior to the migration are restored and
Server Manager starts to monitor those applications.

17. Decommission the previous version of the products. For instructions, refer to the
uninstallation chapter in the installation guide for the previous software version.

Post-migration tasks
Perform these tasks after the data migration steps are complete:

1. “Rename the repository file” on page 67

2. “Ensure that the Broker host:port is updated in the runcmd_env.sh files” on page 68

3. “Remove the old out-of-date service entries” on page 68

4. “Change the secret phrase to match rest of deployment” on page 69

5. “Uninstall the old software” on page 69

Rename the repository file

For a same host or different host migration, the old repository file is copied to the
BASEDIR/smarts/local/repos/icf directory in the 9.6 installation. Because the repository
file has a version number extension (for example, .2.0 extension), rename the repository
file without the .2.0 extension before using it.

As further information, regardless of whether the old installation is on a Windows system
or a UNIX system, sm_migrate saves the old repository file and all other customization
files in DOS (Windows) format. If the new installation is on a UNIX system, sm_migrate
automatically converts the repository file and all other customization files to UNIX format.

Post-migration tasks 67

Performing a Migration

Ensure that the Broker host:port is updated in the runcmd_env.sh files

If you are installing the 9.6 Broker during the installation to a location that is different from
where the Broker for the previous installation resides, for each server that is registered
with the Broker, you need to use the sm_edit utility to edit the SM_BROKER_DEFAULT
variable in the runcmd_env.sh file in each of those server’s BASEDIR/smarts/local/conf
directory with the hostname (and port) of the host system that is running the Broker:

If the Broker host is resolved using a DNS name, this step is not necessary. It is
recommended not to use Name Server Caching Daemon (NSCD) to cache DNS lookups
(the host’s database) in Linux.

1. Run BASEDIR/smarts/bin/sm_service show --cmdline (UNIX) or
BASEDIR\smarts\bin\sm_service.exe show --cmdline (Windows) from your older
product to get a listing of all installed services. Save the output. For example:

C:\InCharge\IP\smarts\bin\sm_service.exe show --cmdline

2. For each service that you have installed, you will see output similar to the following:

sm_service install --force --name=ic-broker
--description=”EMC Broker”
--env=SM_CLIENTCONNECT=brokerConnect.conf --startmode=runonce
C:\InCharge\IP\smarts\bin\brstart.exe --port=426
--restore=C:\InCharge\IP\smarts/local/repos/broker/broker.rps
--output

where ic-broker is the name of the service for which you are interested.

While performing a migration, if you select to retain the security configuration files, ensure
to update the parameters SM_LICENSE, SM_FIXED, SM_JAVAHOME in the runcmd_env.sh
file with the 9.6 installation path.

Remove the old out-of-date service entries

Use the following command to remove all old services that are going to be replaced by the
9.6 product:

<BASEDIR>/smarts/bin/sm_service remove <service name>

If you are installing under Windows operating systems, you must restart the server to
remove all traces of the services that you uninstalled. However, do not restart the server
before the 9.6 product configuration (renaming services, servers, editing settings, and so
on) is completed.

For UNIX, you also need to point the product to the new 9.6 services that will be installed.
Do this by making a copy of /etc/init.d/ic-serviced, change the SMHOME variable to point
to the 9.6 services, and place it in the 9.6 /etc/init.d directory.

68 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing a Migration

Change the secret phrase to match rest of deployment

If the rest of the deployment uses a different site secret, and assuming that you want to
employ secure communications between the component applications in the deployment,
you need to change the site secret of this installation to match the rest of deployment. You
do so by using the deployment’s site secret to recreate and encrypt the
clientConnect.conf, serverConnect.conf, brokerConnect.conf, and .imk.dat files in the
BASEDIR/smarts/local/conf directory of this installation.

Use the sm_rebond command to encrypt the files. For example, from the
BASEDIR/smarts/bin directory, enter:

sm_rebond --basedir=/opt/InCharge/IP/smarts

The EMC Smarts System Administration Guide provides complete information about the
security files and encryption.

Uninstall the old software

If the new version of the product is functioning properly, all data has been migrated to the
new version, and all services are functioning properly, you should uninstall the previous
version of the product.

For Windows only, if you use the Windows “Add/Remove Programs” capability at this
point, you will be incorrectly uninstalling version 9.6 instead of the previous version.
Therefore, you must uninstall the older product applications by using the uninstaller.exe
from the older base directory.

Uninstalling the previous version of the product will prevent conflicts if the previous
version is started by mistake while 9.6 is running. Chapter 9, “Performing an
Uninstallation,” provides more information.

Uninstall will display errors if services were installed by the installation program when the
old version was installed, but were removed manually in a later step. The uninstall process
will display errors because it will not find the services when it tries to remove them.

Post-migration tasks 69

Performing a Migration

70 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

CHAPTER 7
Migration Utilities

This chapter describes the migration utilities and provides procedures for using them. The
chapter consists of the following topics:

◆ Customization migration utility overview... 72
◆ sm_migrate function ... 74
◆ Customization migration procedures... 76
◆ Perform a rollback... 82
◆ Custom file migration use cases.. 83
◆ Three-way merge utility ... 86
◆ Automatically migrate topology for IP Manager using RPS utility.............................. 88
◆ Deployment utility overview .. 89

Migration Utilities 71

Migration Utilities

Customization migration utility overview
The sm_migrate utility is used to migrate user-customized files from an old installation to
a new installation, where the old installation and the new installation are in different
installation directories or, for an upgrade installation, in the same installation directory.
User-customized files include user-modified files (using sm_edit), user-introduced files,
and the repository file.

If TTPs (Temporary Test Patch) are installed on a previous installation of SAM, you must
first uninstall the TTP and then run the utility. Else, TTP files will be treated as files
modified by you and copied to the local directory in the new installation area.

When migrating a customized file from an old installation to a new installation, if a file
with the same name exists in the local directory of the new installation, the Customization
Migration Utility does not modify or overwrite it. The utility skips all such files being
considered for merging. For files being considered to be copied-over, the utility migrates
the files with the old version number appended to the file name.

sm_migrate modes of operation

The sm_migrate has seven command-line options:

◆ --old (or -o)

◆ --new (or -n)

◆ --archive (or -a)

◆ --upgrade (or -u)

◆ --rollback (or -r)

◆ --silent (or -s)

◆ --sitemod (or -l)

◆ --help (or -h)

These command-line options can be used in pairs in the command line to achieve eight
different modes of operation described below.

SAME HOST MODE
This mode is used when the new installation and the old installation are on the same host,
in two separate locations. In this mode, sm_migrate migrates all customizations
(non-binary files that have been modified or introduced by you in the old installation) from
the old installation to a new installation.

72 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

All files that were modified or newly introduced in the old installation must be present only
under the BASEDIR/smarts/ directory.

When you use the --sitemod option, the migration utility will migrate all customized old
files for all user created locals.

DIFFERENT HOST - OLD MODE
This mode is used when the new installation and the old installation are on different
hosts. In this mode, sm_migrate backs up and creates tar or a zip archive (file) of the
customizations in the old installation. The tar or zip file resides in the location specified by
you while executing the utility.

To run the utility from an older version of a Smarts product that does not have the
migration utility, you must copy the sm_migrate.pl script and certain Perl files (packaged
in migratePerlPkg.zip file) and place them in the appropriate locations. The sm_migrate.pl
must be placed in the bin directory and the Perl package must be placed under the
BASEDIR/smarts/local folder and extracted there.

When you use the --sitemod option, the migration utility will migrate all customized old
files for all user created locals.

After running DIFF_HOST_OLD mode and before running DIFF_HOST_NEW mode, you must
manually move the tar or zip archive from the old host to the new host, preferably under
the smarts directory of your new installation.

DIFFERENT HOST - NEW MODE
This mode is also used when the new installation and the old installation are on different
hosts. In this mode, sm_migrate migrates the customizations from the tar or zip archive
that was created in the old installation to the local directory under the new installation
and attempts to merge the files from your new installation with the files present in the
backup archive wherever applicable, and places them in your new local directory.

UPGRADE MODE
This mode is used during an in-place upgrade, where the installer creates a backup of the
files modified or newly introduced by you in the old installation into a
.migrate.bkp.<old_version> backup directory and merges them into a new installation. This
mode has been designed for the installer, but can be invoked by you too.

This mode must not be invoked by you if there are multiple .migrate.bkp.<version>
directories under the <BASEDIR/smarts directory.

Customization migration utility overview 73

Migration Utilities

ROLLBACK MODE
In any execution of the migration utility, before the utility migrates your customizations
from the backup directory to your new installation, it creates a backup of certain files in
your current new local and stores it in a .rollback_<version_timestamp> directory. Also, it
records the version and timestamp before any migration.

The rollback option allows you to reverse the changes made by the migration utility by
restoring the local version in your new installations using files from the
.rollback_<version_timestamp> directory. Rollback will contain only those locals which are
part of migration.

In some scenarios, if a file is copied to the new installation with .<old_version> extension,
then this file is not deleted when a rollback is performed.

The rollback action is restricted only to rollback points that were recorded in your current
version. For example if you upgrade from 9.4.0.0 to 9.5.0.0, and then install a patch (for
example, 9.5.0.1), the rollback utility will not allow you to rollback to your 9.5.0.0 local
version. You have to manually uninstall the patch in order to rollback to 9.5.0.0.

You can use the rollback option only after an in-place upgrade or if you have previously run
the migration utility either in the SAME_HOST, DIFFERENT_HOST or UPGRADE_NEW modes.

“Perform a rollback” on page 82 describes the procedure for carrying out a rollback.

sm_migrate function
The customization migration utility is capable of four major functions, which include:

◆ Copying all non-binary files from the <BASEDIR>/smarts/local folder that have been
modified or introduced by you in the previous version of the product into the
appropriate backup directories under the <BASEDIR>/smarts directory of the new
installation. Table 12 on page 74 provides details on the backup directories created
by the utility during the migration and upgrade process.

Table 12 Details of backup folders created by sm_migrate utility

Scenario
Name and location of backup folders under
<BASEDIR>/smarts

Migration on same host .migrate.bkp.<old_version>,
.rollback_<version_timestamp>

Migration on different host old mode user-defined tar or zip file name,

Migration on different host new mode .rollback_<version_timestamp>,
.migrate.bkp.<old_version>

Upgrade .migrate.bkp.<old_version>,
.rollback_<version_timestamp>

74 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

For files that have been modified by you, the utility also creates a copy of the base
files from the <BASEDIR>/smarts folder. These files are backed up into
.migrate.bkp.<old_version> directory. The original and the local versions of the files
from the old installation will be needed when the utility attempts to merge your
changes with the new installation files.

Under the smarts/.migrate.bkp.<old_version> and backup.tar or backup.zip directory
you can find files with the following extensions:

• .custom - files from the <BASEDIR>/smarts/local folder introduced by you and are
not part of the default installation

• .local - files from the <BASEDIR>/smarts/local folder that are part of the default
installation and have been modified from their original version, using sm_edit.

• .base - the <BASEDIR>/smarts version of these files with .local extension

“Custom file migration use cases” on page 83 provide details.

◆ Copying the cacert.sso certificate file from <BASEDIR>/smarts/jre/lib/security directory
into the .migrate.bkp.<old_version>/jre/lib/security directory to retain the certificate
file.

◆ Copying all files you have added into the <BASEDIR>/smarts/local folder of the new
installation. This allows for an easy and automatic migration of all customer files to
the new installation, so that no manual step is required for moving the files from the
backup directory.

All files, customized or newly introduced in the existing installation, must be present
under the <BASEDIR>/smarts/ folder only. The utility also copies the RPS files found in
the old_local.

◆ Merging .asl, .import, .conf, .xml, .pl, .sh and .cmd files modified by you into the new
installation. The utility first backs up the corresponding files from the old_base, and
then migrates the files from .migrate.bkp.<old_version> backup directory to the new
installation.

This is an optional function and you may skip it.

In order to merge the configurations from the existing installation into the new
installation, the utility uses files from:

• Original base installation (previous installation with <file_name>.base extension)

• Local directory of the previous installation (files you have modified with a
<file_name>.local extension)

• New installation (with <file_name> extension)

The files to be merged are put in the new_local after performing a three-way merge
between the two files in the backup directory and the corresponding file in the new
base.

sm_migrate function 75

Migration Utilities

◆ Rolling back changes made by the sm_migrate utility in your current installation. It
creates a backup of the new_local, and allows you to rollback to multiple stages of
backup, as long as the changes were carried out in your current version. The backup
consists of all .conf, .import, .asl, .mdl, .xml, .template, .sh, .conflict, .automerge,
.cmd, .dat, and .bat files found in the new_local.

Soft links created for product related files in the UNIX environment are not handled by
sm_migrate utility.

Customization migration procedures
Run the sm_migrate utility immediately after the installation and before you start any
services or modify any files in the new installation. Back up the BASEDIR/smarts/local
directory in the new installation before you run sm_migrate.

When you run the sm_migrate utility, ensure that you run only one instance of sm_migrate
utility.

On a Windows host, be aware that performing a migration takes a considerable amount of
time. Be patient. Do not stop the migration process.

Migrating customizations on the same host

Use the following steps to migrate customizations on the same host:

1. Go to the BASEDIR/smarts/bin directory of the new installation and type the following
command on one line to invoke the sm_migrate utility:

sm_perl sm_migrate.pl --old=<BASEDIR>/smarts (old installation)
--new=<BASEDIR>/smarts (new installation)
--sitemod=<BASEDIR>/smarts/local;local1

For example:

IP Manager c:\InCharge93\IP\smarts\bin>sm_perl sm_migrate.pl
--old=c:\Incharge93\IP\smarts --new=c:\Incharge94\IP\smarts
--sitemod=c:\Incharge94\IP\smarts\local1;
c:\Incharge94\IP\smarts\local2

Service Assurance
Manager

c:\InCharge\SAM\smarts\bin>sm_perl sm_migrate.pl
--old=c:\Incharge\SAM\smarts --new=c:\Incharge\sam\smarts
--sitemod=c:\Incharge94\SAM\smarts\local1;
c:\Incharge94\SAM\smarts\local2

MPLS Manager c:\InCharge93\MPLS\smarts\bin>sm_perl sm_migrate.pl
--old=c:\Incharge93\MPLS\smarts --new=c:\Incharge94\MPLS\smarts
--sitemod=c:\Incharge94\MPLS\smarts\local1;
c:\Incharge94\MPLS\smarts\local2

76 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

Server Manager c:\InCharge\ESM\smarts\bin>sm_perl sm_migrate.pl
--old=c:\Incharge\ESM\smarts --new=c:\Incharge\ESM\smarts
--sitemod=c:\Incharge94\ESM\smarts\local1;
c:\Incharge94\ESM\smarts\local2

Network Protocol
Manager

c:\InCharge\NPM\smarts\bin>sm_perl sm_migrate.pl
--old=c:\Incharge\NPM\smarts --new=c:\Incharge\NPM\smarts
--sitemod=c:\Incharge94\NPM\smarts\local1;
c:\Incharge94\NPM\smarts\local2

Optical Transport
Manager

c:\InCharge\OTM\smarts\bin>sm_perl sm_migrate.pl
--old=c:\Incharge\OTM\smarts --new=c:\Incharge\OTM\smarts
--sitemod=c:\Incharge\OTM\smarts\local1;
c:\Incharge\OTM\smarts\local2

VoIP Availability
Manager

c:\InCharge\VoIP\smarts\bin>sm_perl sm_migrate.pl
--old=c:\Incharge\VoIP\smarts --new=c:\Incharge\VoIP\smarts
--sitemod=c:\Incharge94\VoIP\smarts\local1;
c:\Incharge94\VoIP\smarts\local2

The utility carries out the following steps:

• Verifies the presence of the existing installations in the specified directories.

• Determines the files in the old installation that must be copied.

• Lists the files that were modified by you. The utility skips files that were introduced
by the patch but not modified by you.

• Copies the user-modified files to a backup directory in the
BASEDIR/smarts/.migrate.bkp.<old_version> directory in the new installation.

2. Press y or any other key to start the file merge utility (sm_merge), and then press
Enter. The sm_merge utility is invoked individually for each of the files that may
require a three-way merge. (“Three-way merge utility” on page 86 provides details.)
Once the utility completes merging the files, a message is displayed that indicates
successful completion of the process.

or

Press n to skip the invocation of the sm_merge utility.

3. Review the files (merged, auto-merged and .conflict) after the migration is over. Take
appropriate actions as mentioned in the “User Action” column in “Custom file
migration use cases” on page 83.

4. Press y or any other key to copy security configuration files, and then press Enter. This
will copy the security configuration files from .migrate.bkp.<version>/conf to local/conf
of the new installation.

or

Press n to skip the copying of security configuration files.

Customization migration procedures 77

Migration Utilities

Migrating customizations to a different host

Use the following steps to migrate customizations on remote hosts:

1. Prepare to archive the customizations made in the old installation into a tar or zip
archive by copying the following files:

• Perl packages: Copy migrateperlpkg.zip from the BASEDIR/smarts/perl directory in
the new installation to the BASEDIR/smarts/local directory of the old installation.
For Linux and CentOS, use the unzip migrateperlpkg.zip command, and on
Windows use the WinZip software to extract the contents in the zipped file to the
BASEDIR/smarts/local directory.

• sm_migrate.pl utility: Copy this file from the BASEDIR/smarts/bin directory of the
new installation to the BASEDIR/smarts/bin directory of your old installation.

2. Go to the BASEDIR/smarts/bin directory of your old installation and enter the
following command on one line to generate an archive of the customizations:

sm_perl sm_migrate.pl --old=<BASEDIR>/smarts (old installation)
--archive=<BASEDIR>/smarts/<tar or zip file to contain
customizations> ----sitemod==<BASEDIR>\smarts\local1;
=<BASEDIR>\smarts\local2

It is recommended to save the archive with .zip extension if you are installing the 9.6
product on a Windows platform and .tar extension if you are installing the 9.6 product
on Linux and CentOS platforms.

For example:

IP Manager c:\InCharge93\IP\smarts\bin>sm_perl sm_migrate.pl
--old=c:\InCharge93\IP\smarts
--archive=c:\InCharge93\IP\smarts\backup.zip
--sitemod=c:\InCharge93\IP\smarts\local1;c:\InCharge93\IP\
smarts\local2

Service Assurance
Manager

c:\InCharge\SAM\smarts\bin>sm_perl sm_migrate.pl
--old=c:\InCharge\SAM\smarts
--archive=c:\InCharge\SAM\smarts\backup.tar
--sitemod=c:\InCharge\SAM\smarts\local1;c:\InCharge\SAM\
smarts\local2

MPLS Manager c:\InCharge93\MPLS\smarts\bin>sm_perl sm_migrate.pl
--old=c:\InCharge93\MPLS\smarts
--archive=c:\InCharge93\MPLS\smarts\backup.zip
--sitemod=c:\InCharge93\MPLS\smarts\local1;c:\InCharge93\MPLS\
smarts\local2

Server Manager c:\InCharge\ESM\smarts\bin>sm_perl sm_migrate.pl
--old=c:\InCharge\ESM\smarts
--archive=c:\InCharge\ESM\smarts\backup.tar
--sitemod=c:\InCharge\ESM\smarts\local1;c:\InCharge\ESM\smarts\
local2

78 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

Network Protocol
Manager

c:\InCharge\NPM\smarts\bin>sm_perl sm_migrate.pl
--old=c:\InCharge\NPM\smarts
--archive=c:\InCharge\NPM\smarts\backup.tar
--sitemod=c:\InCharge\NPM\smarts\local1;c:\InCharge\NPM\
smarts\local2

Optical Transport
Manager

c:\InCharge\OTM\smarts\bin>sm_perl sm_migrate.pl
--old=c:\InCharge\OTM\smarts
--archive=c:\InCharge\OTM\smarts\backup.tar
--sitemod=c:\InCharge\OTM\smarts\local1;c:\InCharge\OTM\
smarts\local2

VoIP Availability
Manager

c:\InCharge\VoIP\smarts\bin>sm_perl sm_migrate.pl
--old=c:\InCharge\VoIP\smarts
--archive=c:\InCharge\VoIP\smarts\backup.tar
--sitemod=c:\InCharge\VoIP\smarts\local1;c:\InCharge\VoIP\smarts\
local2

The utility carries out the following functions:

• Verifies the presence of an existing installation in the specified directory.

• Determines the files that must be copied.

• Lists the files that were modified by you. The utility skips files that were introduced
by the patch but not modified by you.

• Archives the backup directory into the specified tar or zip archive.

3. Transfer the tar or zip archive that is created in step 2 to the BASEDIR/smarts directory
on the host with the 9.6 installation.

4. Go to the BASEDIR/smarts/bin directory of your new installation and enter the
following command on one line to migrate the customizations from the old installation
to your new installation:

sm_perl sm_migrate.pl --new=<BASEDIR>/smarts (new installation)
--archive=<BASEDIR>/smarts/<tar or zip file that contains
customizations>

For example:

IP Manager c:\InCharge93\IP\smarts\bin>sm_perl sm_migrate.pl
--archive=c:\InCharge93\IP\smarts\backup.zip
--new=c:\InCharge93\IP\smarts

Service Assurance
Manager

c:\InCharge\SAM\smarts\bin>sm_perl sm_migrate.pl
--archive=c:\InCharge\SAM\smarts\backup.tar
--new=c:\InCharge\SAM\smarts

MPLS Manager c:\InCharge93\MPLS\smarts\bin>sm_perl sm_migrate.pl
--archive=c:\InCharge93\MPLS\smarts\backup.zip
--new=c:\InCharge93\MPLS\smarts

Server Manager c:\InCharge\ESM\smarts\bin>sm_perl sm_migrate.pl
--archive=c:\InCharge\ESM\smarts\backup.tar
--new=c:\InCharge\ESM\smarts

Customization migration procedures 79

Migration Utilities

Network Protocol
Manager

c:\InCharge\NPM\smarts\bin>sm_perl sm_migrate.pl
--archive=c:\InCharge\NPM\smarts\backup.tar
--new=c:\InCharge\NPM\smarts

Optical Transport
Manager

c:\InCharge\OTM\smarts\bin>sm_perl sm_migrate.pl
--archive=c:\InCharge\OTM\smarts\backup.tar
--new=c:\InCharge\OTM\smarts

VoIP Availability
Manager

c:\InCharge\VoIP\smarts\bin>sm_perl sm_migrate.pl
--archive=c:\InCharge\VoIP\smarts\backup.tar
--new=c:\InCharge\VoIP\smarts

In a Windows environment, you may notice that it takes a longer time to extract the
sm_migrate.pl utility and carry out a migration. This behavior is expected and hence
do not stop the migration process.

The utility completes the following steps:

• Verifies the presence of the new installation in the specified directory and the
existence of the specified tar or zip archive.

• Reads the tar or zip archive and determines the files that must be copied.

• Copies the files from the tar or zip archive to a backup directory in
BASEDIR/smarts/.migrate.bkp.<old_version>.

• Creates <BASEDIR>/smarts/.rollback_<version_timestamp> directory

• Lists the files that were modified by you.

5. Press y or any other key to start the file merge utility (sm_merge), and then press
Enter. The sm_merge utility is invoked individually for each of the files that may
require a three-way merge. (“Three-way merge utility” on page 86 provides details.)
Once the utility completes merging the files, a message is displayed that indicates
successful completion of the process.

or

Press n to skip the invocation of the sm_merge utility.

6. Review the files (merged, auto-merged and .conflict) after the migration is over. Take
appropriate actions as mentioned in the “User Action” column in “Custom file
migration use cases” on page 83.

7. Press y or any other key to copy security configuration files, and then press Enter. This
will copy the security configuration files from .migrate.bkp.<version>/conf to local/conf
of the new installation.

or

Press n to skip the copying of security configuration files.

80 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

Restoring customizations after an upgrade installation

During an upgrade, the installer creates a backup of your customizations and places them
in the <BASEDIR>/smarts/.migrate.bkp.<version> directory.

If during the installation you choose to skip migrating the files back into your new local
directory, you may either manually migrate or merge the files into your new local
installation directory or run the sm_migrate utility in the UPGRADE mode to perform this
action.

Use the following steps to run the sm_migrate utility:

1. Go to the <BASEDIR>/smarts/bin folder.

2. Type the following command to migrate the backup directory to the new installation:

./sm_perl sm_migrate.pl
--new=<new installation location up to and including smarts>
--upgrade --silent

It is optional to specify the --silent option in the command. Setting the --silent option
does not print any messages to the screen. Using this option with sm_migrate utility
will invoke the sm_merge utility automatically and does not prompt for your input.

For example:

c:\InCharge\SAM\smarts\bin>sm_perl sm_migrate.pl
--new=c:\InCharge\SAM\smarts --upgrade

The utility carries out the following functions:

• Identifies the <BASEDIR>/smarts/.migrate.bkp.<old_version> directory. The
directory contains all files that were introduced by you in the previous version of
the application. It also contains files that have been modified by you in the
previous install under local and the version of those files from <BASEDIR>.

• Copies the files introduced by you back under <BASEDIR>/local.

• Prompts you to run the sm_merge utility and merges the files in your new
installation with the files contained in the backup directory wherever applicable,
and places the resultant files in your new local directory.

• Creates <BASEDIR>/smarts/.rollback_<version_timestamp> directory

• On completion, it lists the files which were introduced or modified by you and the
merge status of the files.

3. Press y or any other key to start the file merge utility (sm_merge utility), and then press
Enter. The utility is invoked individually for each of the files that may require a
three-way merge. “Three-way merge utility” on page 86 provides details. Once the
utility completes merging the files, a message is displayed indicating successful
completion of the process.

or

Press n to skip the invocation of the file merge utility.

Customization migration procedures 81

Migration Utilities

You may use an additional --silent option to avoid this prompt. In which case, by
default, the utility will attempt the three-way merge.

4. Press y or any other key to copy security configuration files, and then press Enter. This
will copy the security configuration files from .migrate.bkp.<version>/conf to local/conf
of the new installation.

or

Press n to skip the copying of security configuration files.

5. Review the files (merged, auto-merged and .conflict) after the migration is over. Take
appropriate actions as mentioned in the 'User Action' column in “Custom file
migration use cases” on page 83.

Perform a rollback
Use the following steps to rollback changes made by the sm_migrate utility:

1. Go to the <BASEDIR>/smarts/bin folder of your new installation, and type the following
command to rollback the changes made by sm_migrate utility to your new installation:

./sm_perl sm_migrate.pl --new=<new_installation location _upto_and
including smarts> --rollback [--silent]

It is optional to specify the [--silent] option in the command. The [--silent] option
allows you to carry out the rollback without any prompts.

For example:

c:\InCharge\SAM\smarts\bin>sm_perl sm_migrate.pl
--new=c:\InCharge\SAM\smarts --rollback

The utility carries out the following steps:

• Looks in the rollback record and displays the possible timestamps you can rollback
to. If the utility finds more than one possible rollback timestamp, it allows you to
choose a specific timestamp, and requests a confirmation for rollback. In the Silent
mode, the utility chooses the latest timestamp by default, and proceeds with the
rollback without an explicit request for confirmation.

• Cleans the current local directory - the utility traverses the current local directory
and deletes all the .conf, .import, .asl, .mdl, .xml, .template, .sh, .bat and .cmd
files, except the clientConnect.conf, serverConnect.conf, brokerConnect.conf and
runcmd_env.sh files.

• Traverses the backup directory for rollback and copies back all the files into the
current local directory.

82 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

Custom file migration use cases
The use cases for custom file migration and resulting backup and merge activities are
described in Table 13 on page 83.

<file_name> with no extension represents a base file that is present under the
BASEDIR/smarts directory of the new installation.

Table 13 Custom file migration use cases (page 1 of 3)

Use case Backup action Merge Action

User actionOld installation

New installation:
BASEDIR/smarts/
.migrate.bkp.<version>

New_installation:
BASEDIR/smarts/local

There is a local copy of a file,
and changes were introduced
by you. The file is also used in
the new base installation.

Back up the base and the local
copies of the file. The base
copy is backed up with “base”
extension, as
<file_name>.base.

The local copy will be backed
up with “local” extension, as
<file_name>.local.
Local name will be customized
name of local.
For example:
<file_name>.local123.

Run sm_merge for:
• <file_name>.base
• <file_name>.local
• <file_name>

Merge Outcome:
• Changes made by you are

merged into the new file
and placed in
<New_installation>/smarts/l
ocal/<file_name>.conf

• If the changes made by you
could not be merged
without a conflict, a .conflict
file is generated and placed
in
<New_installation>/smarts/l
ocal/<file_name>.conflict

• Because the three-way
merge utility works at a
string level and not at a
code level for files such as
.asl, .xml, .cmd, and .sh, the
merge result of these files is
appended with .automerge
extension. Review the files,
and if the changes are
acceptable, save the file
without .automerge
extension.

• Files with .import and .conf
extension are not appended
with an automerge
extension on successful
merge.

• For conflict files, review the
conflict file, manually
resolve the conflict, and
save the file without a
.conflict extension.

There is a file in old base, old
local and the same file exists in
new base.

No backup action. No merge. No user action required.

There is a file in old base and
the same file exists in new
base.

No backup action. No merge. No user action required.

The local copy of the file that
was introduced by a patch and
later modified by you. The file
exists in the new base, but
does not exist in the old base.

Back up the local copy of the
file. The local copy will be
backed up with “local”
extension, as
<file_name>.local.
Local name will be customized
name of local.
For example:
<file_name>.local123.

sm_merge utility will compare
<file_name>.local and
<file_name>.

Merge Outcome:
<file_name>.conflict

Review the conflict file,
manually resolve the conflict
and save the file without a
.conflict extension.

Custom file migration use cases 83

Migration Utilities

There is a local copy of the file,
and changes were introduced
by you, but the file is no longer
used in the new release.

Backup the base and the local
copies of the file. The base
copy is backed up with “base”
extension, as
<file_name>.base.

The local copy will be backed
up with “local” extension, as
<file_name>.local.
Local name will be customized
name of local.
For example:
<file_name>.local123.

No merge The files remain in the backup
directory. Determine if the
customization is still relevant
to the new installation.

The local copy of the file was
introduced by a patch, and
changes were made by you.
The file does not exist in either
the new or old base.

Backup the local copy of the
file. The local copy will be
backed up with “local”
extension, as
<file_name>.local.
Local name will be customized
name of local.
For example:
<file_name>.local123.

No merge Determine if the customization
is still relevant to the new
installation.

There is a local copy of the file,
and changes were made by
you. The file is also used in the
new version, and there is
already a local copy of the file
in the new local.

Backup the local copy of the
file. The local copy will be
backed up with “local”
extension, as
<file_name>.local.
Local name will be customized
name of local.
For example:
<file_name>.local123.

No merge The sm_merge gives
precedence to the files in
new_local. No changes will be
made to the files that are
already under new_local.
Key exceptions to the rule are
covered in the “Migration of
security configuration files” on
page 85.

There is a local copy of the file,
and custom code was
introduced by you. This code
does not exist in either the old
or the new base.

Back up the local copy of the
file. The local copy will be
backed up with “custom”
extension, as
<file_name>.custom.

No merge.
Copy the files (without the
.custom extension) from New
Installation:
BASEDIR/smarts/.migrate.bkp.
<version> to New installation:
BASEDIR/smarts/local

Determine whether these
custom files are still needed in
your new installation.

There is a local copy of the file,
and custom code was
introduced by you. This file is
also used in the new base.

Back up the local copy of the
file. The local copy will be
backed up with “custom”
extension, as
<file_name>.custom.

No merge.
Copy the files (without the
.custom extension) from New
Installation:
BASEDIR/smarts/.migrate.bkp.
<version> to New installation:
BASEDIR/smarts/local
The file is copied with
.<old_version> extension.

Determine whether these
custom files are still needed in
your new installation.

Table 13 Custom file migration use cases (page 2 of 3)

Use case Backup action Merge Action

User actionOld installation

New installation:
BASEDIR/smarts/
.migrate.bkp.<version>

New_installation:
BASEDIR/smarts/local

84 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

Migration of security configuration files

The sm_migrate utility prompts you for copying the security configuration files
serverConnect.conf, clientConnect.conf, brokerConnect.conf, runcmd_env.sh and imk.dat.
You can either choose to copy these files into the local directory of the new installation or
configure these files later, manually.

If you choose to copy and have changed the site secret in your previous installation, you
need to run the sm_rebond command to encrypt the files. For example:

./sm_rebond --basedir=C:\InCharge\IP\smarts

After copying the files, the data in the old runcmd_env.sh file is appended to the new
runcmd_env.sh file and the new 9.6 version data is commented.

Migration of security configuration files is not supported on cross platforms.

Migration of dynamic model files

The dynamic model files (files with .mdl and .ldm extension) are backed up in the
.migrate.bkp.<version> directory. These files are not considered by sm_migrate utility for
merging. Remove the .ldm file from the local directory of the new installation. Recompile
the .mdl file before it is used in the new installation. A new .ldm file will be generated once
you recompile the .mdl file.

There is a local copy of the file,
and changes were made by
you. The file is also used in the
new version, and there is
already a local copy of the file
in the new local introduced by
a patch.

Back up the base and the local
copies of the file. The base
copy is backed up with “base”
extension, as
<file_name>.base.
The local copy will be backed
up with “local” extension, as
<file_name>.local.
Local name will be customized
name of local.
For example:
<file_name>.local123.

Run sm_merge for:
• <file_name>.base
• <file_name>.local
• <file_name>

Merge Outcome:
• Changes made by you are

merged into the new file
and placed in
<New_installation>/smarts/l
ocal/<file_name>.conf

• If the changes made by you
could not be merged
without a conflict, a .conflict
file is generated and placed
in
<New_installation>/smarts/l
ocal/<file_name>.conflict

• Because the three-way
merge utility works at a
string level and not at a
code level for files such as
.asl, .xml, .cmd, and .sh, the
merge result of these files is
appended with .automerge
extension. Review the files,
and if the changes are
acceptable, save the file
without .automerge
extension.

• Files with .import and .conf
extension are not appended
with an automerge
extension on successful
merge.

• For conflict files, review the
conflict file, manually
resolve the conflict, and
save the file without a
.conflict extension.

Table 13 Custom file migration use cases (page 3 of 3)

Use case Backup action Merge Action

User actionOld installation

New installation:
BASEDIR/smarts/
.migrate.bkp.<version>

New_installation:
BASEDIR/smarts/local

Custom file migration use cases 85

Migration Utilities

The EMC Smarts Dynamic Modeling Tutorial explains the concepts and methods of
dynamic modeling.

Three-way merge utility
The three-way merge utility, sm_merge, helps incorporate configuration changes (made in
the .conf, .import .asl, .xml, .pl, .sh, and .cmd files) from an old installation into a new
installation of a product. The utility performs a three-way merge on each of the files that
you have modified.

The utility uses <file_name>.base, <file_name>.local, and <file_name>, and finds the largest
sequence of lines that is common to all three files (this sequence need not necessarily be
continuous lines). This largest sequence of lines is called the Longest Common
Subsequence (LCS). Then, for each of the three files, it finds groups of lines in between
two consecutive lines in the LCS. These groups are referred to as “content blocks.” The
utility compares these content blocks to decide on merge as given in Table 13 on page 83.

Use cases for content block comparison

The scenarios for comparison of content blocks during the three-way merge process are
described in Table 14 on page 86. In this table, X, Y, and Z represent the content blocks,
one from each of the three files.

Table 14 Content block comparison use cases (page 1 of 2)

Scenario Content block comparison Result

XYY
• Content block in the <file_name>.base

looks like X
• Content block in <file_name>.local

looks like Y
• Content block in the <file_name> looks

like Y

The following content blocks are picked up:
• Content block in <file_name>.base = X

AllowPrivateIPAsName FALSE

• Content block in <files_name>.local = Y
AllowPrivateIPAsName TRUE

• Content block in <file_name> = Y
AllowPrivateIPAsName TRUE

Result: Y
Since the <file_name>.local
version and the <file_name>
version of the content blocks
match, the Y version is picked.

XYX
• Content block in the <file_name>.base

looks like X
• Content block in the <file_name>.local

looks like Y
• Content block in <file_name> looks

like X

 The following content blocks are picked up:
• Content block in <file_name>.base = X

ERXIfExcludeSysPattern
router*

• Content block in <files_name>.local = Y
ERXIfExcludeSysPattern *

• Content block in <file_name> = X
ERXIfExcludeSysPattern
router*

Result : Y
This is the case where the file
modified by you (Y) is
preserved and is written to
new_local.

86 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

During this process, modifications done on each of the files in the old installation are
merged into the new installation. The utility identifies the files to be copied and copies
them into a predefined new directory in the new installation with an appropriate suffix.
Table 13 on page 83 provides details on the files which will be copied:

The utility performs the following functions:

◆ Automated analysis of the differences between any two files (for example, File A and
File B), while also considering the parent file.

◆ Incorporates the changes done to the parent file in File A and File B, and automatically
merges the two changes. This type of merge is used in revision control systems.

◆ It maintains a record of the conflicts encountered during the merge process in a
.conflict file.

In case the utility is unable to merge the files due to some conflict, it creates a .conflict file
for each file. The .conflict file provides details of the files which were not completely
merged by the three-way utility. Each conflicting instance is recorded in the .conflict file.
You can review the .conflict files to spot the conflicts, and manually resolve the
differences.

Configuration migration process logs

Table 15 on page 87 lists the logs files that are created for the modified customization
migration process. These files are available under the BASEDIR/smarts/setup/logs
directory.

X Y Z
• Content block in the <file_name>.base

looks like X
• Content block in the <file_name>.local

looks like Y
• Content block in the <file_name> looks

like Z. This is the case where a
.conflict file is created.

The following blocks sections are picked up:
• Content block in <file_name>.base = X

#Enable/Disable discovery of
VLANs
PropagateVRIfAlias FALSE

• Content block in <files_name>.local = Y
#Enable/Disable discovery of
Router
PropagateVRIfAlias TRUE

• Content block in <file_name> = Z
#Enable/Disable discovery of
Multicast # New install
changes
PropagateVRIfAlias FALSE

Result: Conflict
All three content blocks will be
written into a .conflict file.

Table 14 Content block comparison use cases (page 2 of 2)

Scenario Content block comparison Result

Table 15 Log file and description (page 1 of 2)

Log file name Description

Config_migration_copy.log Logs information about files that were modified during the
previous installation, and those which were backed up in the
new installation.

Config_migration_merge.log Logs information about the files on which three-way merge was
performed. It also mentions whether the merge process was
successful or if any conflicts arose during the process.

Three-way merge utility 87

Migration Utilities

Automatically migrate topology for IP Manager using RPS utility
The repository file (RPS) migration utility (sm_migraterps) automatically converts the RPS
file created by the previous version of the software to an RPS file compatible with the
newer version of the software. For example, you can use the utility to automatically
convert the IP 9.4.0.0 RPS file into a compatible version of IP Manager 9.5. This tool allows
the administrator to quickly migrate the product without going through a rediscovery of
the entire topology.

The RPS migration utility supports migration from IP Manager 9.x.x versions to IP Manager
9.5.x and later.

If you are migrating from IP Manager 9.4.x, running the RPS migration utility is optional.
For example, if you have an IP Manager 9.4 repository file that includes virtual switch
systems in the topology, use the sm_migraterps utility to remove VirtualSwitchSystemLink
and make the repository compatible for IP Manager 9.6.

This section covers the following:

◆ “Functions of RPS migration utility” on page 88

◆ “Running RPS migration utility” on page 88

Functions of RPS migration utility

The utility performs the following functions:

◆ Creates a temporary and a backup copy of the RPS file to be migrated. On successful
migration, the backup file is deleted. The tool then renames the temporary file as the
new RPS and, the original RPS file as the backup file with a .v70 suffix.

◆ Checks for the existence of the source RPS file. Users must ensure that they are using a
valid source RPS file.

Running RPS migration utility

It is recommended to run the RPS migration utility only once. A second run will overwrite
the older backup file.

To run the RPS migration utility:

1. Go to the <BASEDIR>/smarts/bin folder.

<file_name>.conf.MergeLog
<file_name>.asl.MergeLog
<file_name>.import.MergeLog
<file_name>.xml.MergeLog
<file_name>.sh.MergeLog
<file_name>.cmd.MergeLog

For each type of file (.conf, .import .asl, .xml, .sh, and .cmd)
merge logs are created. These logs record the lines which the
three-way merge process copied from the previous installation,
lines which were retained as-is, and those where conflicts were
observed.

Table 15 Log file and description (page 2 of 2)

Log file name Description

88 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

2. Copy the previous version of the RPS file to the <BASEDIR>/smarts/bin folder.

3. Type the following command:

sm_migraterps <rps_file> --trace <logfilename>

It is optional to specify the --trace option in the command. The --trace option provides
a line-by-line description with regard to the RPS migration processing.

The RPS file is converted and written to a temporary file. If no errors are detected
during the conversion, then the original RPS file will be renamed with a '.v70' suffix,
and the temporary file will be renamed to the original. If any errors are encountered
during file conversion, the original RPS file remains unchanged.

4. Copy the migrated RPS file into the <BASEDIR>/smarts/local/repos/icf folder.

5. Use the --ignore-restore-errors option in the sm_service command to start the IP
Manager with the migrated repository file. Otherwise, the IP Manager may generate
errors and may not start up with the migrated repository file.

6. Initiate a full discovery (Discover All). Consult the discovery guide or user guide for
your product for more information on this procedure.

A full discovery is required for the new version features and changes to take effect.

Deployment utility overview
The Deployment Utility allows you to deploy customizations and configuration changes
from an existing installation to another installation on the same version of a product. The
deployment can be carried out on the same host or between two different hosts running
the same operating system.

The utility is useful if you have to apply the same configurations on multiple installations
of a product. Use the utility if you have:

◆ Multiple new installation running on the same or multiple hosts that will need to share
the same configuration and customizations.

◆ Multiple installations on the same or multiple hosts that are upgraded and will share
the same configuration and customizations.

In both cases, you will need to start with one installation where you make all your
modifications to configuration files, <BASEDIR>/smarts/local files and, create and compile
dynamic models. Then, run the sm_deploy utility to create a package that contains your
modifications. Use the sm_deploy utility to apply the files collected from the first
installation to the rest of your installations.

The Deployment Utility performs the following three functions:

◆ Create a package

◆ Deploy the package

◆ Rollback

Deployment utility overview 89

Migration Utilities

Create a package

The utility enables you to create a deployment package which consists of all the
customizations made to files in an installation. In SAM, by specifying a broker and server
information when you run the utility, you can collect configuration settings from RPS into
the package.

Deploy the package

The utility enables you to deploy a previously collected deployment package into other
installations of the same product running on the same version and operating system as
the original installation. If you have collected configuration settings from SAM RPS, the
configurations will be available in the file, <SAM_server>.xml under local/conf/ics
directory.

Rollback

Before deploying the package into an installation, the utility creates a rollback directory
containing the backup copy of files from the current installation which will be used incase
of a rollback action. You can rollback your configuration to that in your rollback directory,
only if the version of your current installation is the same as the version of the installation
when the rollback directory was created.

Soft links created for product related files in the UNIX environment are not handled by
sm_deploy utility.

Running the Deployment utility

To run the Deployment utility, go to <BASEDIR>/smarts/bin directory and type the following
command:

./sm_perl sm_deploy.pl <options>

where, <options> refers to the options specified in the section,“sm_deploy modes of
operation” on page 90.

sm_deploy modes of operation

The sm_deploy has the following command-line options:

◆ --install=<dir> – To install the utility.

◆ --create=<file> – To create the deployment package.

◆ --deploy=<file> – To deploy the package.

◆ --rollback – To rollback the configuration changes.

◆ --broker – The broker to which the SAM server is attached. Use this option to collect
configuration settings from SAM RPS.

◆ --server – The SAM server whose configuration settings from RPS are to be collected.

◆ --clean – To clean the files in the local directory.

◆ --silent

90 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Migration Utilities

◆ --sitemod – To specify customer specific local directories.

◆ --help

The deployment utility must be used with at least one of these options.

If you want to run this utility from older versions of EMC Smarts products, you must copy
the sm_migrate.pl script, sm_deploy.pl script and, the Perl files packaged in a .zip file
from the 9.6 installation to the corresponding locations in the old installation.

To create a deployment package

1. Go to the <BASEDIR>/smarts/bin folder of your target installation, and type the
following command:

./sm_perl sm_deploy.pl --install=<BASEDIR>/smarts
--create=<archive-name.tar> --sitemod==<BASEDIR>/smarts/local

2. The utility identifies the files with customizations from the local directory under
<BASEDIR>/smarts directory of the installation that need to be copied to the
deployment package. Local directory can be local1, local2.

3. The utility copies the files from the local directory to the deployment backup directory
.deploy.bkp<pdt>.<version> under <BASEDIR>/smarts, archives these files to a specified
archive file and then deletes the backup directory.

Manage RPS file settings across multiple installations

The method of extracting the configuration settings from an RPS file into the deployment
package varies between SAM, IP, and VoIP Managers.

For SAM, use the deployment utility to extract the configuration settings from the RPS file.

Go to the <BASEDIR>/smarts/bin folder of your target installation, and type the following
command:

./sm_perl sm_deploy.pl --install=<BASEDIR>/smarts
--create=<archive-name.tar> --broker=<host:port>
--server=<SAM_server>

If a server is specified, the utility collects the configurations into the file,
<SAM_server>.xml under local/conf/ics directory.

This can be a convenient way to deploy the configurations of aggregate SAM domain since
they often share the same configuration.

For IP, use the sm_settings.pl script of the IP-Configuration Manager tool to export the
Polling and Threshold groups from an existing domain and import them into the
IP-Configuration Manager to be deployed further on other domains.

For more information on loading settings into IP-Configuration Manager, refer to the EMC
Smarts IP Manager User Guide.

For VoIP Availability Manager, Network Protocol Manager, MPLS Manager, and Server
Manager, the configuration settings from an RPS file must be manually configured in all
other installations of these products.

Deployment utility overview 91

Migration Utilities

To deploy the package

1. Go to the <BASEDIR>/smarts/bin folder of your target installation, and type the
following command:

./sm_perl sm_deploy.pl --install=<TargetBASEDIR>/smarts
--deploy=<archive-name.tar>

The utility extracts the archive into the backup directory .deploy.bkp<pdt>.<version>
under <BASEDIR>/smarts.

2. Creates a rollback directory with the backup of files from the target installation which
will be used incase of a rollback action. Rollback will contain local folders which are
part of the deployment package.

3. Copies all the files from the deployment package to the local directory of the target
installation.

4. Overwrites the files that are part of both, the deployment package and the local
directory of the target installation.

5. If the --clean option is specified, the files in the local directory of the target installation
that are not part of the deployment package are deleted.

Or

If --clean option is not specified, the files in the local directory of the target installation
that are not part of the deployment package are retained.

To deploy the SAM RPS settings,

◆ Manually import the <SAM_server>.xml file from local/conf/ics directory to the
directory in the target installation by typing the following sm_config command:

./sm_config --server=<SAM_server> import --force <SAM_server>.xml

To Rollback

1. Go to the <BASEDIR>/smarts/bin folder of your target installation, and type the
following command:

./sm_perl sm_deploy.pl --install=<TargetBASEDIR>/smarts --rollback

The utility displays all the rollback directory locations to which you can rollback.

2. Copies the files from the local directory of the installation whose rollback directory you
choose to rollback to, into the corresponding location in your current installation.

If your current directory is a rollback directory location, it will not be displayed in the list of
rollback directory locations to which you can rollback.

92 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

CHAPTER 8
Verifying the Installation

This chapter describes tasks for confirming proper installation of the Service Assurance
Manager, IP Manager, MPLS Manager, Server Manager, Network Protocol Manager, Optical
Transport Manager, and VoIP Availability Manager. It consists of the following topics:

◆ Check the version number .. 94
◆ Start services .. 94
◆ Start programs .. 96
◆ Service and program startup options .. 97
◆ Start Smarts NOTIF .. 98
◆ Verify the product status ... 100
◆ Verify the FIPS 140 mode status.. 101
◆ Collect system information.. 102
◆ Configuration Scanner Tool ... 106

Verifying the Installation 93

Verifying the Installation

Check the version number
When you run a utility to report the version number of the software, you will see both the
version number for the product as well as the version number for the underlying
foundation software. These two version numbers might differ.

To verify the version number, enter the following command from the
<BASEDIR>/smarts/bin directory:

sm_server --version

UNIX users: If the current directory is not set in your PATH variable, prefix the command
with ./ (a period followed by a forward slash).

This command should return the following information:

◆ Operating system (OS) name on which the product is running and the OS version
identifier.

◆ Version number of the product.

◆ Version number of the foundation (DMT) code, foundation build number, the date and
time that the build was made as well as whether you have installed a 64-bit version of
the software. If you installed the 64-bit version, you will see a “/64” after the
foundation and the product version number.

The “sm_server --version” output is the following:

Operating System <Identifier>
<product>: V<Number>(<InternalBuild>), <Date>
Copyright 1995-2018, EMC Corporation - Build <Build>
Foundation V<Number>(<InternalBuild>), <Date>
Copyright 1995-2018, EMC - Build <Build>

For example, for IP Manager, the output might look similar to:

linux_rhAS50-x86-64/206180000
IP_NETWORK_SUITE: V9.6.0.0(162267), 05-December-2018 15:47:27

Copyright 1995-2018, EMC Corporation - Build 28
Foundation V9.6.0.0(161826), 18-November-2018 07:26:21 Copyright

1995-2018, EMC Corporation - Build 11

The product version number is displayed during the Wizard mode installation on the
InstallShield screen.

Be aware that product versions vary and do not always match the software foundation
version number. For example, if you select the About from the Help menu in the Global
Console, you may see a different number.

Start services
EMC Corporation recommends installing EMC Smarts products as services. If you installed
the products as services, you must start them for the first time. These services start
automatically upon system reboot.

94 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Verifying the Installation

Start the Broker service first if it is not running.

Starting services on UNIX

Verify the status of the service daemon before starting a service.

Verifying the status of the service daemon
Use the ic-serviced command to check the status of the service daemon. The path to the
ic-serviced command varies by operating system.

CentOS

On CentOS systems, enter the following command to verify the status of the service
daemon:

/etc/init.d/ic-serviced status

If the sm_serviced process does not respond, the process is not running. Start the service
by entering the command:

/etc/init.d/ic-serviced start

Linux

On Linux systems, enter the following command to verify the status of the service daemon:

/etc/init.d/ic-serviced status

If the sm_serviced process does not respond, the process is not running. Start the service
by entering the command:

/etc/init.d/ic-serviced start

Starting services
To start or stop an EMC Smarts service, use the sm_service utility. Type the command from
the BASEDIR/smarts/bin directory:

sm_service start <service_name> [<service_name> ...]

where <service_name> is each service you need to start. Table 16 on page 97 provides a
list of service names.

Starting services on Windows

To start an EMC Smarts service from the Windows desktop:

1. Select Start > Settings > Control Panel > Administrative Tools.

2. Select Services.

3. Right-click the EMC Smarts service.

4. Select Start.

Start services 95

Verifying the Installation

Start programs
You can start EMC Smarts programs from the terminal when the program is not intended to
be long-running or to perform testing. EMC Corporation does not recommend using this
method in a production environment.

The EMC Smarts System Administration Guide provides a complete description of the
command syntax.

To start a program, type the command with the appropriate options on one line.

◆ For UNIX, invoke the command from the BASEDIR/smarts/bin directory. Prefix the
command with ./ (a period followed by a forward slash).

◆ For Windows, invoke the command from the C:\BASEDIR\smarts\bin directory.

Starting the EMC Smarts Broker

./brstart --port=426 --output

Starting a Manager

▼ ./sm_server --name=<server_name>
--config=<config_directory>
--port=0
--ignore-restore-errors
--output ▲

▼▲ indicates the command must be typed on one line.

For UNIX, to run the program in the background, use the daemon option.

Service Assurance Manager Console crashes when running commands on a Linux platform
since the FIPS library fails to load. SELinux prevents the shared libraries, libcryptocme2.so
and libccme_base.so from loading because of the existence of text relocation in the
library.

The following workarounds are available to avoid the SAM Console crash:

1. Run the following commands to change the file context for the shared libraries,
libcryptocme2.so and libccme_base.so to textrel_shlib_t:

chcon -t textrel_shlib_t libcryptocme2.so
chcon -t textrel_shlib_t libccme_base.so

2. Set the parameter setenforce to 0 to run SELinux in permissive mode.

3. Navigate to Edit /etc/selinux/config and set the parameter SELINUX to Disabled.

96 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Verifying the Installation

Service and program startup options
Table 16 on page 97 lists service names, server names, and configuration directories for
EMC Smarts products.

Table 16 Default service names, server names, and configuration directories (page 1 of 2)

Product Service name Server name Config directory

Broker ic-broker Not applicable Not applicable

IP Manager

IP Availability Manager ic-am-server INCHARGE-AM icf

IP Performance Manager ic-pm-server INCHARGE-PM icf

IP Availability and Performance
Manager

ic-am-pm-server INCHARGE-AM-PM icf

Service Assurance Manager

Service Assurance Manager Server ic-sam-server INCHARGE-SA ics

Service Assurance Manager Adapter
Platform Server

ic-icoi-server INCHARGE-OI icoi

SNMP Trap Adapter ic-trapd-receiver TRAP-INCHARGE-OI icoi

Syslog Adapter ic-syslog-adapter SYSLOG-INCHARGE-OI Not applicable

Business Impact Manager MBIM INCHARGE-MBIM bim

MPLS Manager

MPLS Analysis Server ic-mpls-analysis INCHARGE-MPLS-ANALYSIS mpls-a

MPLS Monitoring Server ic-mpls-monitoring INCHARGE-MPLS-MONITORING mpls-m

MPLS Topology Server ic-mpls-topology INCHARGE-MPLS-TOPOLOGY mpls-t

MPLS VPN-Tagging Server ic-vpn-tagging VPN-TAGGING vpn-tagging

Server Manager

Server Manager ic-esm-server INCHARGE-ESM esm

Network Protocol Manager products

Network Protocol Manager for BGP ic-npm-bgp-server INCHARGE-BGP conf/bgp

Network Protocol Manager for EIGRP ic-npm-eigrp-server INCHARGE-EIGRP conf/eigrp

Network Protocol Manager for IS-IS ic-npm-isis-server INCHARGE-ISIS conf/isis

Network Protocol Manager for OSPF ic-npm-ospf-server INCHARGE-OSPF conf/ospf

Optical Transport Manager

Optical Transport Manager for Next
Generation WDM

ic-wdm-ng-server OTM-WDM-NG wdm-ng

Optical Transport Manager for SDH
(Topology)

ic-sdh-topology-serv
er

OTM-SDH-TOPOLOGY osm-t

Optical Transport Manager for SDH
(Analysis)

ic-sdh-analysis-serv
er

OTM-SDH-ANALYSIS osm-a

Service and program startup options 97

Verifying the Installation

◆ Appendix B, “Manually Installing Services,” provides the default service and program
parameters that are used for the service install commands.

◆ The EMC Smarts System Administration Guide provides information in regard to the
sm_server, sm_adapter, and sm_trapd programs.

Start Smarts NOTIF
To start Smarts NOTIF:

1. Set an environment variable in the BASEDIR directory path to ensure that Java can be
successfully started for Smarts NOTIF. In BASEDIR/smarts/local/conf/runcmd_env.sh,
add the following line:

SM_JAVA_ENABLED=YES

2. Configure the SNMP Trap Adapter to use the Notif-trap_mgr_parse.asl script instead of
the default trap_mgr_parse.asl script so that Smarts NOTIF processes SNMP traps. For
example:

./sm_service install --force --unmanaged --startmode=runonce \
'--name=ic-notif-trap' \
'--description=Notif Trap Receiver' \
'/opt/InCharge/SAM/smarts/bin/sm_trapd' \
'--name=NOTIF-TRAP' \
'--server=INCHARGE-OI' \
'--output' \
'--config=icoi' \
'--port=1162' \
'--model=sm_actions' \
'--rules=icoi-trapd/Notif-trap_mgr_parse.asl'

Optical Transport Manager for PDH
(Topology)

ic-pdh-topology-serv
er

OTM-PDH-TOPOLOGY pdh-t

Optical Transport Manager for PDH
(Analysis)

ic-pdh-analysis-serv
er

OTM-PDH-ANALYSIS pdh-a

Optical Transport Manager for WDM
(Topology)

ic-wdm-topology-ser
ver

OTM-WDM-TOPOLOGY wdm-t

Optical Transport Manager for WDM
(Analysis)

ic-wdm-analysis-ser
ver

OTM-WDM-ANALYSIS wdm-a

Optical Transport Manager for IP
Cross Domain Analysis

ic-xd-otm-ip-server OTM-WDM-TOPOLOGY icxd-ao

TMF814 Cisco CTM Adapter for OTM ic-tmf814-cisco-ctm-
adapter

OTM-CISCO-ADAPTER tmf814Cisco

TMF814 Ciena On-Center Adapter
for OTM

ic-tmf814-ciena-onc
tr-adapter

OTM-CIENA-ADAPTER tmf814Ciena

VoIP Availability Manager

VoIP Availability Manager ic-voip-server VoIP-AM conf/voip

VoIP Notification Trap Adapter ic-voip-notification-
trapd-receiver

TRAP-INCHARGE-VOIP conf/voip

Table 16 Default service names, server names, and configuration directories (page 2 of 2)

Product Service name Server name Config directory

98 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Verifying the Installation

The --daemon option only works on UNIX systems, not Microsoft Windows systems.
Any customizations made by the customer to the original trap_mgr_parse.asl file in
the BASEDIR/smarts/rules/icoi-trapd directory must be incorporated into the
Notif-trap_mgr_parse.asl file in the BASEDIR/smarts/rules/icoi-trapd directory.

3. Configure the Syslog Adapter to use the Notif-SysLog_mgr.asl script instead of the
default SysLog_mgr.asl script in order for Smarts NOTIF to process Cisco system log
files.

For example:

./sm_service install --force --unmanaged --startmode=runonce \
'--name=ic-notif-syslog' \
'--description=Notif Syslog Adapter' \
'/opt/InCharge/SAM/smarts/bin/sm_adapter' \
'--name=NOTIF-SYSLOG' \
'--server=INCHARGE-OI' \
'--output' \
'--config=icoi' \
'--port=1162' \
'--model=sm_actions' \
'--model=sm_system'\
'--rules=icoi-syslog/Notif-SysLog_mgr.asl'\
'--tail=/opt/InCharge/SAM/smarts/local/logs/sample.txt'

One or more adapters can feed a single Smarts NOTIF server.

4. Launch the Smarts NOTIF Editor by selecting Start > Programs > InCharge > Smarts
NOTIF Editor.

You can also launch the editor by double-clicking the NotifGui.bat file (for Windows
systems) or the NotifGui.sh file (for UNIX systems) in the BASEDIR/smarts/notif/editor
directory.

5. Use the Smarts NOTIF Editor to connect to the running SAM server or Adapter Platform
server. Select Remote > Edit a server's settings in the Smarts NOTIF Editor. The Connect
to a Server dialog box appears, showing the list of available Adapter Platform and
SAM server connections.

6. Choose a server from the list of available server connections in the Connect to a Server
dialog box and click OK.

If server connections are not displayed, perform the following to populate the list of
server connections:

a. Click More in the Connect to a Server dialog box. The Manage Connections
dialog box appears where you can add server connections.

b. Click Add in the Manage Connections dialog box. The Input dialog box appears.

c. Enter a connection reference name (for example, “Remote Smarts NOTIF OI
server”) in the Input dialog box and click OK.

Start Smarts NOTIF 99

Verifying the Installation

d. Fill in the new connection record in the right pane of the Manage Connections
dialog box.

e. Click OK to save the connection setup.

The Remote Server Settings dialog box appears that shows the server's current
settings.

7. Select the Activate Smarts NOTIF checkbox, and then click OK.

You can also change other server settings in the Remote Server Settings dialog box if
necessary.

8. Restart your SAM server or Adapter Platform server.

Server setting changes made in the Smarts NOTIF Editor Remote Server Settings
dialog box are persistent. When you change server settings in the Remote Server
Settings dialog box and click OK, the changes are saved to the Notif_Settings.import
file that is generated and saved to the BASEDIR/smarts/local/conf/<icoi or ics>
directory in the Adapter Platform or SAM server where Smarts NOTIF is running. Server
setting changes made in the Smarts NOTIF Editor are preserved even if the repository
is deleted. For example, if the repository is erased because you used the --norestore
option for server startup, the server uses the last saved settings from the Smarts
NOTIF Editor saved in BASEDIR/smarts/local/conf/<icoi or ics>/Notif_Settings.import.

The EMC Smarts Notification Module User Guide includes information on how to use the
Smarts NOTIF Editor.

Verify the product status
You can determine the current state of the products that register with the Broker by typing
the following command from the BASEDIR/smarts/bin directory:

./brcontrol

This command displays a list of EMC Smarts Managers and adapters that are registered
with the Broker, their states (RUNNING, DEAD, UNKNOWN), process IDs, port numbers, and
the last time that their states changed.

Also check any log files for the products. Typically, these log files are in
BASEDIR/smarts/local/logs.

More than one log file may be generated due to changes in the foundation code that
supports internationalization. The EMC Smarts System Administration Guide provides
additional information on log files.

100 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Verifying the Installation

If only one log file per server is desired, use sm_edit to update the
BASEDIR/smarts/local/conf/runcmd_env.sh file. To get a single log file, set the following
environment variables:

export SM_LOCALE=en_US (or appropriate locale code)
export SM_ENCODING_OUTPUT=UTF-8

Verify the FIPS 140 mode status
To verify if the installation is running in FIPS-140 mode, run the following command in the
dmctl mode:

get SM_System::SM-System::FIPS

The value for this parameter must be TRUE.

You can also check for the status of FIPS 140 in the log files in the
BASEDIR/smarts/local/logs directory. When the Broker and server start in FIPS 140 mode,
a message similar to the following one is written to the Broker and server log files:

RSA BSAFE: MES 3.2.4 26-May-2012/64(0), FIPS: RSA BSAFE Crypto-C Micro
Edition FIPS 140-2 Module 3.0.0.0/64(0), May 31 2008 13:19:56

Common issues

Domain registers with the broker, but appears DEAD after a few minutes

The domain is in FIPS 140 mode but the broker is not.

Domain is not able to register with the broker

The Broker is in FIPS 140 mode but the domain is not.

Broker or Domain log entry

CI-N-EWHILE-While executing function "queue_work”CI-EFLOWID-For flow
CI_FlowTCP_U [Flow in negotiations Accepted physical flow] PHYSICAL
@0x0000000000a38db . *:v4:44445 KS N/A, KR N/A . Open fd=10, conn
August 17, 2011 3:27:43 PM EDT, disc N/A, . 127.0.0.1:44445 ->
127.0.0.1:58347, tmo 0 00:00:15 N/S 1/0 CI-EWHILE-While executing
function ""CI_FlowTLS_U::handshake””
CI-BSAFE-error:1407609C:SSLroutines:SSL23_GET_CLIENT_HELLO:http
request: ; in file "s23_srvr.c" at line 746

The entry might also appear as: SSL routines:SSL23_GET_CLIENT_HELLO:unknown protocol.

This may be because the Domain (or Broker) is in FIPS 140 mode but the client is not. It
may also be that the client is a non-Smarts client (for example a load balancer’s HTTP
check). In that case, switch the load balancer to HTTPS check.

Client error

CI-E-EWHILE-While executing function
""CI_FlowTLS_U::handshake””CI-BSAFE-error:1408F10B:SSL
routines:SSL3_GET_RECORD:wrong version number: ; in file "s3_pkt.c"
at line 553CI-TLSPE-TLS protocol error

This may be because the Domain or Broker is not FIPS 140 capable but the client is
operating in FIPS 140 mode.

Verify the FIPS 140 mode status 101

Verifying the Installation

Log errors

[July 11, 2011 5:09:41 PM EDT +385ms] t@31 PollingQueue
#8CI-E-EDECRYPT-Cannot decrypt.CI-EDECRYPT-Cannot decrypt.[July 11,
2011 5:09:41 PM EDT +386ms] t@31 PollingQueue
#8IA-E-ERROR_EXECUTING_ACTION-Error executing action
MA-PerlScript-sihou513a.CI-EDECRYPT-Cannot decrypt.

This may be because the Imk.dat version or the password does not match between
domains. Ensure that the password and the version matches across all installs that inter
operate.

Error on startup of domain or other tools

[August 8, 2011 8:29:07 PM EDT +466ms] t@3916876800 <Primary
Thread>CI-F-EBLACKSTRING_CONTEXT-While creating the
contextCRPT-CRYPTO_MD5_INIT_FAILED-Failed to initialize the context
for MD5 algorithm

This may be because you are trying to use a v1 imk.dat file in FIPS 140 mode. Ensure that
you use v2.1 for FIPS 140 compatibility.

Collect system information
The sm_getinfo utility is used to collect data for troubleshooting EMC Smarts Manager
(server) problems. The utility backs up the current configuration for a server by creating a
tar archive of all files and user customizations that are essential to troubleshooting the
server. Customers then email the tar archive to EMC Customer Support for problem
resolution.

sm_getinfo files

The sm_getinfo utility, which is supported on CentOS, Linux, and Windows, creates four
types of files in the installation directory area from which it is invoked. The files are shown
described in Table 17 on page 102.

Table 17 Files created by the sm_getinfo utility (page 1 of 2)

Filename Description

Files in BASEDIR/smarts/local/logs directory

sm_getinfo<date>.tar.gz
Example:
sm_getinfo26Mar2012-015952.tar.gz

A compressed tar archive in which the sm_getinfo utility stores a
server ‘s log files, repository files, core files (CentOS, Linux) or dump
files (Windows), user-modified files (using sm_edit), user-introduced
files, and system environment information. The actual content of the
tar archive depends on the user-specified options on the sm_getinfo
invocation command line.
The name of the tar archive includes the date when the tar archive
was created.

MANIFEST A text file that lists all of the files that the sm_getinfo utility includes
in the tar archive.

Files in BASEDIR/smarts/local/logs/smgetinfo_files directory

102 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Verifying the Installation

sm_getinfo command-line syntax

You run the sm_getinfo utility from the BASEDIR/smarts/bin directory. The options that
you specify on the invocation command line determine which files are included in the
sm_getinfo-created tar archive.

Here is the command line syntax for sm_getinfo:

sm_perl sm_getinfo.pl
| --server <server name> --pid <server process ID>
| --broker <location>
| --log [<number of latest logs>]
| --nolog
| --repos [--latest]
| --norps
| --core
| --all
| --version
| --help
| --smmonitor “<sm_monitor options>”
| --flush
| --smconfigscan

where:

◆ <> Angle brackets are user-supplied parameter values (variables).

◆ [] Square brackets are optional entries.

◆ | Vertical bar symbols are alternate selections.

smgetinfo-versions.log.<date>
Example:
smgetinfo-versions.log.26Mar2012-020004

Example of other files in smgetinfo_files:
TTP-Installed-versions.log.26Mar2012-020005

A log file in which the sm_getinfo utility writes information about a
server’s log file or repository file that is larger than 700 megabytes
(MB). The sm_getinfo utility does not include any log or repository file
in a server’s tar archive that exceeds 700 MB.
In addition, sm_getinfo writes system information to the log file.
The name of the log file includes the date when the log file was
created.

Final_sm_getinfo<timestamp>.tar
Example:
Final_sm_getinfo20Sep2012-005855.tar

The -k or --smconfigscan command invokes the Configuration
Scanner tool, and generates the Final_getinfo-<timestamp>.tar, along
with other Configuration Scanner tool-related files.

Notice: If the sm_getinfo utility is run without the -k or --smconfigscan
command, a getinfo-<timestamp>.tar output file will be generated
without Final_ appended to the output. This implies that you will be
running the sm_getinfo tool as usual.

Table 17 Files created by the sm_getinfo utility (page 2 of 2)

Filename Description

Collect system information 103

Verifying the Installation

The command-line options are described in Table 18 on page 104.

Table 18 Command-line options for the sm_getinfo utility (page 1 of 2)

Option Description

--server <server name> --pid <server
process ID> | -s <server name> -p <server
process ID>

Specifies the EMC Smarts server name and PID against which
the sm_getinfo utility will collect information. To dump a core file
for a running server on CentOS or Linux, the pid option must be
provided. Also, the server name is used to invoke the
sm_monitor tool.

--broker <location> | -b <location> Specifies an alternate broker location as host:port.

--pid <pid> | -p <pid> PID of Domain Manager used to run gcore.Not applicable on
Windows.

--log [<number of latest logs>] |
-l [<number of latest logs>]

For each EMC Smarts server, collects and stores a user-specified
number of latest logs or all generated log files that are in the
BASEDIR/smarts/local/logs directory.
Note that whenever collecting a log, the related .audit and
.archive files should be collected as well.
If a server name is specified, only the files that correspond to the
server will be collected. To avoid generating a too-large tar
archive (too large to email), any log file that is larger than 700
MB will be excluded and its information will be logged in
smgetinfo-versions.log<date>.

--nolog | -g Excludes log files when collecting local files. This option and
--log are mutually exclusive.

--repos [--latest] | -r [-t] For each EMC Smarts server, collects and stores the latest
repository file or all repository files. If a server name is specified,
only the file corresponding to the server will be collected. Any
repository file that is larger than 700 MB will be excluded and its
information will be logged in smgetinfo-versions.log<date>.

--norps | -n Excludes repository files when collecting local files. This option
and --repos are mutually exclusive.

--core | -c Collects and stores the core files (CentOS, Linux) or dump files
(Windows) that are generated by the EMC Smarts software, and
the corresponding logs.

--all | -a All data and files in BASEDIR/smarts/local and
BASEDIR/smarts/setup directories will be collected and stored.
If --all option is specified, the other options will be ignored
except --server and --pid.

--version | -v Print version information and exit.

--help | -h Print usage information and exit.

--smmonitor “<sm_monitor options>” |
-m “<sm_monitor options>”

Specifies the options for running sm_monitor, which will
override the default options “-m run-all -z.”
Approximately two cycles are run to collect the required
information. The collected information is output to the
BASEDIR/smarts/local/logs/SM-Monitor-<server name>
directory.

104 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Verifying the Installation

sm_getinfo invocation examples

To gather the five latest logs, enter:

sm_perl sm_getinfo.pl --logs 5

To gather the latest repository data and core files, enter:

sm_perl sm_getinfo.pl --repos --latest --core

To gather the entire BASEDIR/smarts/local directory, enter:

sm_perl sm_getinfo.pl --all

To invoke sm_monitor, enter:

On Linux:

sm_perl sm_getinfo.pl -s <server name> -m “-m correlation -z”

On Windows:

sm_perl sm_getinfo.pl -s <server name> -m “-m mem”

sm_getinfo data collection

If no command-line option is specified, the sm_getinfo utility will store the following
information in the tar archive:

◆ For each server, the latest server log file in BASEDIR/smarts/local/logs and the related
.audit and .archive files in BASEDIR/smarts/local/logs. If a server name is specified,
only the files that correspond to the server will be collected. To avoid generating a
too-large tar archive (too large to email), any log file that is larger than 700 MB will be
excluded and its information will be logged in smgetinfo-versions.log<date>.

◆ For each server, the latest repository file in BASEDIR/smarts/local/repos. If a server
name is specified, only the repository file for the server will be archived. Any
repository file that is larger than 700 MB will be excluded and its information will be
logged in smgetinfo-versions.log<date>.

◆ The local files that are not in the BASEDIR/smarts/local/logs and repos directories
and changed since last temporary test patch (TTP) and patch.

◆ The new local files that are not in the BASEDIR/smarts/local/logs and repos
directories and were added since the last TTP and patch.

--flush | -f Force a flush. Needed when the sm_getinfo utility is invoked
from a remote host.

--smconfigscan | -k

Notice: This option is available for IP
Manager only.

Invokes the configuration scanner tool to provide a snapshot of
all the customizations introduced by you in your current
installation. “Configuration Scanner Tool” on page 106 provides
more information on how to use the tool.

Table 18 Command-line options for the sm_getinfo utility (page 2 of 2)

Option Description

Collect system information 105

Verifying the Installation

◆ All local files except the files in logs and repos directories if no TTP or patch is
installed.

◆ All files in the BASEDIR/smarts/setup/info and BASEDIR/smarts/setup/logs
directories.

◆ Core files (UNIX) or dump files (Windows) that are generated by the EMC Smarts
software, and the corresponding server log files. On Linux, some library (lib) files that
are related to the cores are also collected.

◆ EMC Smarts TTP or patch version information. Additionally, it verifies MD5 checksum
for the installed TTP files and the files that are listed in manifest.md5 in the
BASEDIR/smarts/setup/info directory.

◆ The data collected by sm_monitor. If a server name is specified, only the files that
correspond to the server will be collected.

◆ The data generated by the EMC Smarts Health Monitor (SHM).

◆ System environment information.

Configuration Scanner Tool

This tool is available only for IP Manager.

The Configuration Scanner tool scans for configuration changes in your current
installation. It scans for customizations with regard to the following:

◆ Polling and threshold settings: The tool presents the non-default values and settings.
That is, the tool generates a list of polling settings and threshold parameters that
have changed from their default values, along with details of all the groups they are
associated with. The output also includes tagging settings. In case of CLI settings, the
tool collects and displays the username and the associated matching criteria.

◆ Configuration files: The tool generates a list of files that have changed from the default
installation. The tool scans the files in the SM_SITEMOD and base installation and
does a two-way difference analysis to figure out what files have changed, and displays
the list of files, flagged appropriately as modified or added. For discovery.conf,
name-resolver.conf and tpmgr-param.conf files, the tool parses through the content
and presents the difference at an attribute->value pair level.

The clientConnect.conf, serverConnect.conf, brokerConnect.conf, .imk.dat files and
the l10n classes and Perl directories are excluded from the scan.

The tool ignores service pack and patch files that are not modified by you.

106 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Verifying the Installation

Running the Configuration Scanner tool from the sm_getinfo utility

To run the Configuration Scanner tool:

1. Go to the <BASEDIR>/smarts/bin folder.

In this document, the term BASEDIR represents the location where EMC Smarts
software is installed. For example:

For UNIX, this location is: /opt/InCharge/<product>.

For Windows, this location is: C:\InCharge\<product>.

On UNIX operating systems, IP Availability Manager is, by default, installed to:
/opt/InCharge/IP/smarts. On Windows operating systems, this product is, by default,
installed to: C:\InCharge\IP\smarts. This location is referred to as BASEDIR\smarts.
Optionally, you can specify the root of BASEDIR to be something different, but you
cannot change the <product> location under the root directory.

2. Type the following command:

sm_perl sm_getinfo <options> -k (or --smconfigscan)

An example for the command is provided below:

sm_perl sm_getinfo --broker=localhost:5086 --server=INCHARGE-AM
--smconfigscan

or

sm_perl sm_getinfo -b localhost:5086 -s pserver --smconfigscan

The tool has four command-line options: --broker and --server. You can use these
options in various combinations and in any order. The details of the options are
provided below:

◆ --broker= <location> or -b <location> is the name of the broker if you are using a broker
other than your default broker. For example: localhost:400.

It is optional to specify a broker. If a broker is not specified, the tool picks up the
broker in the runcmd_env.sh file as the default.

◆ --server=<name> or -s <name> is the name of the Smarts server.
For example: --server=INCHARGE-AM.

It is optional to specify a server. If a server is not specified, the tool skips the scan for
polling and threshold settings, and does only a configuration file scan. However, if the
server is running from a location other than the current working directory, the tool
scans for polling and threshold settings, but skips the check for file differences and
proceeds with packaging the output.

Once you run the command, the tool carries out the following steps:

• Connects to the IP server and scans for changes to the polling and threshold
setting values, and writes the findings to an output file.

Configuration Scanner Tool 107

Verifying the Installation

When prompted for domain login credentials, type the username and password for
connecting to the domain.

• Maintains lists of files it has determined as modified or introduced by you and lists
of files that were changed by TTPs, if any.

• For some special files, that is, discovery.conf, tpmgr-param.conf and
name-resolver.conf), the tool invokes an adapter to parse the contents of the
modified and base version of these files. It presents a detailed account of the
changes you have made at an attribute->value pair level in the
sm_configscan_report-<time_stamp>.txt report file.

As the tool starts the adapter and accesses your running server to gather
information, you will be prompted for login credentials. Type the credentials you
provided earlier for connecting to the domain.

• Creates a sm_configscan.<time_stamp>.tar file at
<BASEDIR>/smarts/local/logs/sm_getinfo-<time_stamp>.tar, which contains the
.configscan.<version_number> directory, report file and the logs.

• Cleans up your environment by removing any directories and files it had created,
except for the tar file and the report file. It closes any servers or brokers it had
started.

108 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

CHAPTER 9
Performing an Uninstallation

This chapter describes how to uninstall the EMC Smarts Service Assurance Manager, EMC
Smarts IP Manager, EMC Smarts MPLS Manager, EMC Smarts Server Manager, EMC Smarts
Network Protocol Manager, EMC Smarts Optical Transport Manager, and EMC Smarts VoIP
Availability Manager. It consists of the following topics:

◆ Before uninstallation .. 110
◆ Uninstall EMC Smarts products ... 114

Performing an Uninstallation 109

Performing an Uninstallation

Before uninstallation
You should complete the following tasks before uninstalling the product:

◆ “Extracting JVM file” on page 110

◆ “Remove manually installed services” on page 110

◆ “Determine order for removing products (UNIX only)” on page 111

◆ “Uninstall when same product software is installed twice (Windows only)” on
page 111

◆ “Detect and stop programs” on page 111

Extracting JVM file

To uninstall the product software completely, you must extract the _jvm.zip (in Windows)
and _jvm.tar (in Linux) files manually before uninstalling the product software.

If uninstaller does not find the _jvm.zip/_jvm.tar folder in any of the directories, then you
may encounter errors in uninstallation. To avoid the errors, complete the following
procedure.

To extract the _jvm.tar or _jvm.zip, perform these steps:

For Linux:

1. Navigate to the /opt/InCharge/<product>.

2. Extract the _jvm.tar file, by invoking the following command:

sudo tar -xvf _jvm.tar

For Windows:

1. Navigate to the C:\InCharge\<product>.

2. Right-click on the _jvm.zip file, and then select Extract.

After uninstallation, if the _jvm.tar/_jvm.zip folder are present in the install location, then
remove it manually.

Remove manually installed services

Services that you manually installed with sm_service command are not removed by the
uninstallation program. You must remove these services manually before uninstalling the
product software.

To remove a service, invoke sm_service from the BASEDIR/smarts/bin directory:

1. Use sm_service to list installed services.

sm_service show

2. Remove the manually installed service.

sm_service remove ic-<service name>

110 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Uninstallation

where <service name> is the name of the service. For example, ic-am-server or
ic-sam-server.

Determine order for removing products (UNIX only)

When uninstalling EMC Smarts products from the same server, the product that was
installed first must be uninstalled last. During the installation of the first product, the
EMC Smarts Service Database is created and the other products subsequently access it.
Uninstalling the product installed first will also uninstall the Service Database that will
disable the sm_service command for those products, prevent their proper operation and
uninstallation.

You can determine what product software was installed first by performing this check:

1. Use a text editor to open the ic-serviced script.

• For CentOS, ic-serviced is located in the /etc/init.d directory

• For Linux, ic-serviced is located in the /etc/init.d directory

2. Find the value of the SMHOME variable.

The value of SMHOME indicates which product was installed first.

Uninstall when same product software is installed twice (Windows only)

If you installed the same product to different locations on the same host system, do not
use Add/Remove Programs to uninstall. Uninstall the EMC Smarts product as follows:

1. Open a command-line prompt, go to the BASEDIR_uninst directory of the target
EMC Smarts product, and enter the following command to initiate a Wizard mode
uninstallation:

uninstaller.exe

2. Complete the uninstallation beginning with step 2 as described in “Uninstall using
Wizard mode” on page 114.

Detect and stop programs

Before upgrading or uninstalling your product, you must stop all EMC Smarts services,
EMC Smarts scheduled jobs, and any other process that uses programs or libraries
running from the EMC Smarts product.

Detecting programs
The sm_plist utility identifies all EMC Smarts programs that are running for any product on
your machine. You can use the sm_plist utility whenever you need to identify EMC Smarts
programs that are running (for example, before applying a service pack or patch and
uninstalling the product software).

To use the utility, invoke it from the BASEDIR/smarts/script directory. The utility displays
active programs in a window:

1. Go to the BASEDIR/smarts/script directory.

2. Start the sm_plist utility:

Before uninstallation 111

Performing an Uninstallation

On UNIX, enter

./sm_plist.sh <BASEDIR2>

On Windows, enter

cscript sm_plist.vbs <BASEDIR2>

where BASEDIR is the directory where the sm_plist utility is installed and BASEDIR2
represents the location of any EMC Smarts product.

Stopping active programs (UNIX)
To stop active EMC Smarts programs (UNIX):

1. Stop active EMC Smarts services using the sm_service utility from
BASEDIR/smarts/bin:

./sm_service stop --all

sm_serviced waits 30 minutes after sending a shutdown request to a process. If the
process is still running after 30 minutes, sm_serviced terminates it.

2. Determine if any EMC Smarts services are still running by using the brcontrol utility
from BASEDIR/smarts/bin:

./brcontrol -b <host>:<port>

Based on the location of the Broker, go to the appropriate step, as indicated in
Table 19 on page 112.

Table 19 Next steps for detecting and stopping programs

The Broker is on the . . . And this displays . . . Do this . . .

• The Broker or service daemon did not shut
down.

• If any servers are still running on the host,
these did not shut down.

• If any servers are still running on the host
where you will install the EMC Smarts
software, these did not shut down. Go to
step 3 .

3. Stop any EMC Smarts server that is still running. If the Broker is on the host, stop the
local Broker:

• To stop any server that is still running, use the dmquit utility from
BASEDIR/smarts/bin:

./dmquit --server=<server name> -b <host>:<port>

• To stop the local Broker from BASEDIR/smarts/bin:

./brquit --broker=localhost:<port>

Same host “Error attaching to
Broker” message

The Broker is not running. Go to step 4 .

List of servers
registered with the
Broker

Go to step 3 .

Different host List of servers
registered with the
Broker

112 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Uninstallation

4. Determine if any other EMC Smarts processes are still running and shut the processes
down:

• Detect the processes using the following command:

ps -ef | grep “sm_”

If a list is displayed, note the process ID (pid) of these active EMC Smarts
processes.

Do not stop or kill the service daemon process, sm_serviced.

• Shut down these EMC Smarts processes (except sm_serviced) using the following
command:

kill <pid>

Stopping active programs (Windows)
To stop a service from the Windows desktop, use the Microsoft Management Console:

1. Select Settings > Control Panel.

2. At the Control Panel, select Administrative Tools.

3. At the Administrative Tools folder, select Services.

4. At the Services window, locate any running EMC Smarts services. These services start
with the words “EMC Smarts,” “Smarts,” or “InCharge.” For each of these services,
right-click the service and then select Stop.

Do not stop the Broker service.

5. Repeat step 4 until all EMC Smarts services are stopped.

6. Open a command prompt and determine if any Managers are running by using the
brcontrol utility from BASEDIR\smarts\bin:

brcontrol -b <host>:<port>

7. Stop any EMC Smarts server that is still running using the dmquit utility from
BASEDIR/smarts/bin:

./dmquit --server=<server name> -b <host>:<port>

8. If the Broker is installed on the same host, use the brquit utility from
BASEDIR/smarts/bin to stop it:

brquit --broker=localhost:<port>

9. Press Ctrl+Alt+Delete. The Windows Security dialog box appears.

10. Click Task Manager. The Windows Task Manager appears.

11. Select the Processes tab.

Before uninstallation 113

Performing an Uninstallation

Allow up to 30 minutes before performing the next step. EMC Smarts servers with
large topologies can take considerable time to stop while saving the topology to the
repository. Stopping processes prematurely may corrupt your repository file.

12. In the Processes tab, look in the column labeled Image Name for sm_server.
Right-click each sm_server, and then select End Process.

13. In the Processes tab, look for other Image Names that start with sm_, for example,
sm_notify, sm_adapter, sm_beacon, and so on. Right-click each instance, and then
select End Process.

Do not shut down any sm_authority or sm_logger processes. The sm_authority and
sm_logger processes are child processes of an EMC Smarts server. The child
processes will stop when the parent process stops.

Uninstall EMC Smarts products
EMC Smarts product software uses the InstallShield program to install and uninstall
products. For UNIX, you invoke the uninstallation program from the system prompt. For
Windows, you use the Add/Remove Programs, except when the same product is installed
in multiple locations on the same host system. Failure to use the appropriate method will
result in an unstable system and/or inconsistent product directories.

Do not manually delete the installed product directories. Before uninstallation, you must
stop all the EMC Smarts services.

Also, if you plan to reinstall the product, save all of the customized files that are in the
BASEDIR/smarts/local directory before performing the uninstallation. The uninstallation
program will remove all of the files and directories in the BASEDIR/smarts directory, and
then remove the smarts directory.

Uninstall using Wizard mode

Wizard mode provides a graphical user interface to the uninstallation program for UNIX
and Windows platforms.

On UNIX systems, Wizard mode uses the X Window System to display the installation
wizard. The host on which you install the EMC Smarts software and the host where you log
in must be configured to run the X Window System. Before starting the installation
program, verify that the X Window System is running.

1. Invoke the uninstaller program:

• On UNIX, go to the BASEDIR/_uninst directory and enter:

uninstaller.bin

114 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Performing an Uninstallation

• On Windows, use Windows Control Panel:

a. Click Start > Settings > Control Panel.

b. Double-click Programs and Features.

c. From the Program and Features window, select the appropriate product.

d. Click Uninstall/Remove.

2. Click Next in the Welcome screen to continue.

3. In the Product Selection screen, click Next to uninstall the entire product (by default,
all products are selected) or deselect products that should remain installed.

4. Review the list of products that will be uninstalled and the target installation directory.
Once you click Next, you cannot cancel the uninstallation process.

If necessary, click Back to return to the Product Selection screen to revise your
selections.

To uninstall the products, click Next; the Uninstallation Progress screen appears.

5. Upon completion, the Uninstallation Summary shows informational messages such as
successful confirmations, error messages, and warnings. Investigate any errors or
warnings.

If Next appears, your system needs to be rebooted. Click Next and then reboot your
system. Otherwise, click Finish to exit the uninstallation.

The uninstallation program will remove all of the files and directories in the
BASEDIR/smarts directory, and then remove the smarts directory.

The uninstallation program will also write an uninstall log file to the BASEDIR directory,
unless the uninstallation fails at the very start, in which case the installation program
will write the log file to the /tmp directory. The log file is a text file with the naming
convention Uninstall.<product>.<productversionNumber>.log.

Uninstall using CLI mode

To uninstall an EMC Smarts product or product:

1. Go to the BASEDIR/_uninst directory and enter the following command:

uninstaller.bin -console

During the uninstallation processes, you are prompted with a series of steps and
menus. You can either accept the default value or select another choice. The default
values are indicated in brackets or as predefined selections (checkmarks) in menus.
To accept the default value, press Enter.

When replying to a prompt, you can either accept the default value or select another
choice.
To reply yes, enter Y
To reply no, enter N.
Do not press Delete; doing so will cause the process to terminate with an error
message.

Uninstall EMC Smarts products 115

Performing an Uninstallation

For selections in menus, you can accept default selections or type the number of the
item and press Enter. An X appears next to the item. When you are finished making
selections, type zero (0) and press Enter.

If you incorrectly type an entry, press 5 to repeat the prompt and select the correct
value. Arrow keys and the backspace key are not supported.

Upon completion, the Uninstallation Summary displays informational messages such
as successful confirmations, error messages, and warnings.

2. Press Enter to continue. If necessary, the installation program will prompt to restart
your computer.

3. Press 1 to restart immediately or press 2 to restart later.

4. If you chose not to restart your computer, press 3 to finish.

5. Upon completion, the uninstallation program will remove all of the files and
directories in the BASEDIR/smarts directory, and then remove the smarts directory.

The uninstallation program will also write an uninstall log file to the BASEDIR directory,
unless the uninstallation fails at the very start, in which case the installation program
will write the log file to the /tmp directory. The log file is a text file with the naming
convention Uninstall.<product>.<productversionNumber>.log.

Uninstall using Unattended mode

The Unattended mode enables you to automate the removal of the EMC Smarts products.

1. Invoke the uninstallation program with appropriate options for the operating system:

• On UNIX systems, go to the BASEDIR/_uninst directory and enter the following
command:

uninstaller.bin -silent

• On Windows system, go to the BASEDIR_uninst directory and enter the following
command:

uninstaller.exe -silent

2. Upon completion, the uninstallation program will remove all of the files and
directories in the BASEDIR/smarts directory, and then remove the smarts directory.

The uninstallation program will also write an uninstall log file to the BASEDIR directory,
unless the uninstallation fails at the very start, in which case the installation program
will write the log file to the /tmp directory. A non-zero status indicates a failure. The
log file is a text file with the naming convention
Uninstall.<product>.<productversionNumber>.log.

116 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

APPENDIX A
The sm_edit utility

This appendix describes how to use the sm_edit utility. It consists of the following topics:

◆ sm_edit .. 118
◆ sm_edit example .. 118

The sm_edit utility 117

The sm_edit utility

sm_edit
As part of the EMC Smarts deployment and configuration process, you need to modify
certain files. User modifiable files include configuration files, rule set files, templates, and
seed files that contain encrypted passwords. Original versions of these files are installed
into appropriate subdirectories under the BASEDIR/smarts/ directory.

The original versions of files should not be altered. If a file must be modified, a new
version should be created and then stored as a local copy of the file in
BASEDIR/smarts/local or one of its subdirectories.

When EMC Smarts software requires one of these files, it is designed to first search for a
modified file in BASEDIR/smarts/local or one of its subdirectories. If a modified version of
a file is not found in the local area, EMC Smarts software then searches corresponding
BASEDIR/smarts directories for the original version of the file.

To ease file editing and storage, EMC Corporation provides the sm_edit utility with the
every EMC Smarts product. When invoked, sm_edit opens the specified file in a text
editor. This utility ensures that modified files are always saved to the appropriate local
area and that non-local copies of all files remain unchanged. If an appropriate
subdirectory does not exist for the file you are modifying, sm_edit creates the appropriate
subdirectory before saving the modified file to that location. For files with header
information set for encryption, sm_edit encrypts certain fields in the file. In addition,
sm_edit preserves the file permissions of modified files, which helps ensure that
important configuration files are not altered by unauthorized users.

The EMC Smarts System Administration Guide provides instructions on how to configure
the utility to use a specific editor.

sm_edit example
To use sm_edit from the command line, specify the file name and include the subdirectory
under BASEDIR/smarts/local where the file resides. For example, to edit the trapd.conf,
enter the following command from the BASEDIR/smarts/bin directory:

sm_edit conf/trapd/trapd.conf

In this example, sm_edit searches in the BASEDIR/smarts/local/conf/trapd directory for
the trapd.conf file. If it finds the trapd.conf file, it opens the file in a text editor. If sm_edit
does not find the trapd.conf file in the BASEDIR/smarts/local/conf/trapd directory, it
creates a local copy of the trapd.conf file and writes it to the
BASEDIR/smarts/local/conf/trapd directory.

The EMC Smarts System Administration Guide provides additional information about the
sm_edit utility.

118 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

APPENDIX B
Manually Installing Services

This appendix describes how to install services manually for the EMC Smarts Service
Assurance Manager, EMC Smarts IP Manager, EMC Smarts MPLS Manager, EMC Smarts
Server Manager, EMC Smarts Network Protocol Manager, EMC Smarts Optical Transport
Manager, and EMC Smarts VoIP Availability Manager. It consists of the following topics:

◆ Overview... 120
◆ Broker services ... 120
◆ Services for the IP Manager... 121
◆ Services for the Service Assurance Manager ... 127
◆ Services for the MPLS Manager ... 133
◆ Services for the Server Manager .. 135
◆ Services for the Network Protocol Manager installation ... 136
◆ Services for the Optical Transport Manager ... 139
◆ Services for the VoIP Availability Manager... 144

Manually Installing Services 119

Manually Installing Services

Overview
If you did not install services when you installed the EMC Smarts products, you may install
services manually. Services are programs that, once started, are generally intended to run
continuously. Components installed as services start automatically upon system reboot;
those not installed as services (manual processes or disabled processes) require that you
issue commands to start and stop them as necessary.

EMC Corporation recommends that EMC Smarts products be installed as services
whenever possible. Typical reasons to install products as services include the following
conditions:

◆ (IP Manager only) There is a need to install services for a single product instead of the
combined IP Availability Manager and IP Performance Manager products (for example,
IP Availability Manager alone or IP Performance Manager alone). “Selection of
bootstrap files when installing services” on page 120 provides more information.

◆ During installation of the product software, you chose to start product components
manually and now want to run the components as services.

◆ Multiple instances of a single product component running as a service are required.
During installation, you can install only a single instance of a product component as a
service.

To manually install a product as a service, use the sm_service install command with the
appropriate set of options.

The EMC Smarts System Administration Guide provides a complete description of the
command syntax.

Selection of bootstrap files when installing services

When you install IP Manager 9.6 with all services selected, both IP Availability Manager
and IP Performance Manager services are installed. The default configuration file,
bootstrap.conf, is used by the IP Manager 9.6 installer.

If your deployment supports only IP Availability Manager or IP Performance Manager, you
must manually install these services for the IP Manager(s) using a bootstrap file different
from bootstrap.conf.

Broker services
This section provides the default UNIX and Windows commands that are used to install
the service manually for the Broker. Type the command on one line.

UNIX ▼ BASEDIR/smarts/bin/sm_service install
--force
--name=ic-broker
“--description= EMC Smarts Broker”
--env=SM_CLIENTCONNECT=brokerConnect.conf
--startmode=runonce
BASEDIR/smarts/bin/brstart
--port=426
--output
--restore=BASEDIR/smarts/local/repos/ broker/broker.rps ▲

120 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

Windows ▼ BASEDIR\smarts\bin\sm_service install
--force
--name=ic-broker
“--description= EMC Smarts Broker”
--env=SM_CLIENTCONNECT=brokerConnect.conf
--startmode=runonce
BASEDIR\smarts\bin\brstart.exe
“--port=426”
“--output”
“--restore=BASEDIR\smarts\local\repos\ broker\broker.rps"▲

▼▲ indicates that this command must be typed as one line.

Services for the IP Manager
Here are the UNIX commands used to install services manually for the underlying servers
in the IP Manager.

IP Availability Manager-only server

UNIX ▼ /opt/InCharge/IP/smarts/bin/sm_service install
--force
--name=ic-am-server
“--description= EMC Smarts IP Availability Manager Server”
--startmode=runonce
/opt/InCharge/IP/smarts/bin/sm_server
--name=INCHARGE-AM
--config=icf
--bootstrap=bootstrap-am.conf
--port=0
--subscribe=default
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\IP\smarts\bin\sm_service install
--force
--name=ic-am-server
“--description= EMC Smarts IP Availability Manager Server”
--startmode=runonce
C:\InCharge\IP\smarts\bin\sm_server.exe
“--name=INCHARGE-AM”
“--config=icf”
“--bootstrap=bootstrap-am.conf”
“--port=0”
“--subscribe=default”
“--ignore-restore-errors”
“--output”▲

Services for the IP Manager 121

Manually Installing Services

IP Availability Manager-only server (interacting with EMC M&R)

Use this syntax for the IP Availability Manager if you plan use the EMC M&R UI to configure
IP Manager settings.

The Service Assurance Suite How to Maintain IP Manager Settings article explains how to
use the IP Availability Manager with the Configuration Manager to configure IP Manager
settings. The SolutionPack for EMC Smarts Summary Sheet article provide information on
viewing notifications from the EMC M&R user interface. The Service Assurance Suite
Documentation Index, available on the EMC Community Network (ECN), provides links to
related documentation.

UNIX ▼ /opt/InCharge/IP/smarts/bin/sm_service install
--force
--name=ic-am-server
“--description= EMC Smarts IP Availability Manager Server”
--startmode=runonce
/opt/InCharge/IP/smarts/bin/sm_server
--name=INCHARGE-AM
--config=icf
--bootstrap=bootstrap-am.conf
--port=0
--edaa=ip/2.0
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\IP\smarts\bin\sm_service install
--force
--name=ic-am-server
“--description= EMC Smarts IP Availability Manager Server”
--startmode=runonce
C:\InCharge\IP\smarts\bin\sm_server.exe
“--name=INCHARGE-AM”
“--config=icf”
“--bootstrap=bootstrap-am.conf”
“--port=0”
“--edaa=ip\2.0”
“--ignore-restore-errors”
“--output”▲

IP Performance Manager-only Server

UNIX ▼ /opt/InCharge/IP/smarts/bin/sm_service install
--force
--name=ic-pm-server
“--description= EMC Smarts IP Performance Manager Server”
--startmode=runonce
/opt/InCharge/IP/smarts/bin/sm_server
--name=INCHARGE-PM
--config=icf
--bootstrap=bootstrap-pm.conf
--port=0
--subscribe=default
--ignore-restore-errors
--output▲

122 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

Windows ▼ C:\InCharge\IP\smarts\bin\sm_service install
--force
--name=ic-pm-server
"--description= EMC Smarts IP Performance Manager Server"
--startmode=runonce
C:\InCharge\IP\smarts\bin\sm_server.exe
"--name=INCHARGE-PM"
"--config=icf"
"--bootstrap=bootstrap-pm.conf"
"--port=0"
"--subscribe=default"
"--ignore-restore-errors"
"--output"▲

IP Performance Manager-only Server (interacting with EMC M&R)

Use this syntax for the IP Performance Manager if you plan use the EMC M&R UI to
configure IP Manager settings.

The Service Assurance Suite How to Maintain IP Manager Settings article explains how to
use the IP Performance Manager with the Configuration Manager to configure IP Manager
settings. The SolutionPack for EMC Smarts Summary Sheet article provide information on
viewing notifications from the EMC M&R user interface. The Service Assurance Suite
Documentation Index, available on the EMC Community Network (ECN), provides links to
related documentation.

UNIX ▼ /opt/InCharge/IP/smarts/bin/sm_service install
--force
--name=ic-pm-server
“--description= EMC Smarts IP Performance Manager Server”
--startmode=runonce
/opt/InCharge/IP/smarts/bin/sm_server
--name=INCHARGE-PM
--config=icf
--bootstrap=bootstrap-pm.conf
--port=0
--edaa=ip/2.0
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\IP\smarts\bin\sm_service install
--force
--name=ic-pm-server
"--description= EMC Smarts IP Performance Manager Server"
--startmode=runonce
C:\InCharge\IP\smarts\bin\sm_server.exe
"--name=INCHARGE-PM"
"--config=icf"
"--bootstrap=bootstrap-pm.conf"
"--port=0"
"--edaa=ip\2.0"
"--ignore-restore-errors"
"--output"▲

Services for the IP Manager 123

Manually Installing Services

IP Availability and Performance Manager Server

UNIX ▼ /opt/InCharge/IP/smarts/bin/sm_service install
--force
--name=ic-am-pm-server
“--description= EMC Smarts IP Availability Manager and Performance
Manager Server”
--startmode=runonce
/opt/InCharge/IP/smarts/bin/sm_server
--name=INCHARGE-AM-PM
--config=icf
--bootstrap=bootstrap-am-pm.conf
--port=0
--subscribe=default
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\IP\smarts\bin\sm_service install
--force
--name=ic-am-pm-server
"--description= EMC Smarts IP Availability Manager and Performance
Manager Server"
--startmode=runonce
C:\InCharge\IP\smarts\bin\sm_server.exe
"--name=INCHARGE-AM-PM"
"--config=icf"
"--bootstrap=bootstrap-am-pm.conf"
"--port=0"
"--subscribe=default"
"--ignore-restore-errors"
"--output"▲

IP Availability and Performance Manager Server (interacting with EMC M&R)

Use this syntax for the IP Availability and Performance Manager if you plan use the EMC
M&R UI to configure IP Manager settings.

The Service Assurance Suite How to Maintain IP Manager Settings article explains how to
use the IP Availability and Performance Manager with the Configuration Manager to
configure IP Manager settings. The SolutionPack for EMC Smarts Summary Sheet article
provide information on viewing notifications from the EMC M&R user interface. The Service
Assurance Suite Documentation Index, available on the EMC Community Network (ECN),
provides links to related documentation.

UNIX ▼ /opt/InCharge/IP/smarts/bin/sm_service install
--force
--name=ic-am-pm-server
“--description= EMC Smarts IP Availability Manager and Performance
Manager Server”
--startmode=runonce
/opt/InCharge/IP/smarts/bin/sm_server
--name=INCHARGE-AM-PM
--config=icf
--bootstrap=bootstrap-am-pm.conf
--port=0
--edaa=ip/2.0
--ignore-restore-errors
--output▲

124 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

Windows ▼ C:\InCharge\IP\smarts\bin\sm_service install
--force
--name=ic-am-pm-server
"--description= EMC Smarts IP Availability Manager and Performance
Manager Server"
--startmode=runonce
C:\InCharge\IP\smarts\bin\sm_server.exe
"--name=INCHARGE-AM-PM"
"--config=icf"
"--bootstrap=bootstrap-am-pm.conf"
"--port=0"
"--edaa=ip\2.0"
"--ignore-restore-errors"
"--output"▲

IP Configuration Manager

UNIX /opt/InCharge/IP/smarts/bin/sm_service install
--force
--name=ic-ip-configuration
"--description=EMC Smarts IP Configuration Manager"
--startmode=runonce
/opt/InCharge/IP/smarts/bin/sm_server
--name=INCHARGE-CM
--config=icf-c
--bootstrap=bootstrap.conf
--port=0
--subscribe=default
--ignore-restore-errors
--nodx
--output

Windows C:\InCharge\IP\smarts\bin\sm_service install
--force
--name=ic-ip-configuration
"--description=EMC Smarts IP Configuration Manager"
--startmode=runonce
C:\InCharge\IP\smarts\bin\sm_server.exe
"--name=INCHARGE-CM"
"--config=icf-c"
"--bootstrap=bootstrap.conf"
"--port=0"
"--subscribe=default"
"--ignore-restore-errors"
"--nodx"
"--output"

Services for the IP Manager 125

Manually Installing Services

IP Configuration Manager (interacting with EMC M&R)

Use this syntax for the Configuration Manager if you plan use the EMC M&R UI to configure
IP Manager settings.

The Service Assurance Suite How to Maintain IP Manager Settings article explains how to
use the Configuration Manager to configure IP Manager settings. The SolutionPack for EMC
Smarts Summary Sheet article provide information on viewing notifications from the EMC
M&R user interface. The Service Assurance Suite Documentation Index, available on the
EMC Community Network (ECN), provides links to related documentation.

UNIX /opt/InCharge/IP/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-ip-configuration-edaa
"--description=EMC Smarts IP Configuration Manager for EDAA"
/opt/InCharge/IP/smarts/bin/sm_server
--name=INCHARGE-CM
--config=icf-c
--bootstrap=bootstrap.conf
--port=0
--edaa=ip/2.0
--ignore-restore-errors
--nodx
--output

Windows C:\InCharge\IP\smarts\bin\sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-ip-configuration-edaa
"--description=EMC Smarts IP Configuration Manager for EDAA"
C:\InCharge\IP\smarts\bin\sm_server.exe
"--name=INCHARGE-CM"
"--config=icf-c"
"--bootstrap=bootstrap.conf"
"--port=0"
"--edaa=ip\2.0"
"--ignore-restore-errors"
"--nodx"
"--output"

126 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

Services for the Service Assurance Manager
This section provides default service parameters for the EMC Smarts Service Assurance
Manager.

EMC Smarts Broker

UNIX ▼ /opt/InCharge/SAM/smarts/bin/sm_service install
--force
--startmode=runonce
--name=ic-broker
--description="EMC Smarts Broker"
--env=SM_CLIENTCONNECT=brokerConnect.conf
/opt/InCharge/SAM/smarts/bin/brstart
--port=426
--restore=/opt/InCharge/SAM/smarts/local/repos/broker/broker.rps
--output▲

Windows ▼ C:\InCharge\SAM\smarts\bin\sm_service.exe install
--force
--startmode=runonce
--name=ic-broker
--description="EMC Smarts Broker"
--env=SM_CLIENTCONNECT=brokerConnect.conf
C:\InCharge\SAM\smarts\bin\brstart.exe
--port=426
--restore=C:\InCharge\SAM\smarts\local\repos\broker\broker.rps▲

Service Assurance Manager (Presentation SAM server)

UNIX /opt/InCharge/SAM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-sam-server-pres
--description=”EMC Smarts Service Assurance Manager Server

(notification cache publishing)”
/opt/InCharge/SAM/smarts/bin/sm_server
-n INCHARGE-SA-PRES
--config=ics
--port=0
--edaa=sam-presentation/2.0
--bootstrap=bootstrap-amqp.conf
--ignore-restore-errors
--output

Windows C:\InCharge\SAM\smarts\bin\sm_service install --force --unmanaged
--startmode=runonce

“--name=ic-sam-server-pres”
“--description=EMC Smarts Service Assurance Manager Server

(notification cache publishing)”
C:\InCharge\SAM\smarts\bin\sm_server
“-n INCHARGE-SA-PRES”
“--config=ics”
“--port=0”
“--edaa=sam-presentation\2.0”
“--bootstrap=bootstrap-amqp.conf”
“--ignore-restore-errors”
“--output”

Services for the Service Assurance Manager 127

Manually Installing Services

Service Assurance Manager (Global Manager)

UNIX ▼ /opt/InCharge/SAM/smarts/bin/sm_service install
--force
--unmanaged
--name=ic-sam-server
--startmode=runonce
--description="EMC Smarts Service Assurance Manager

Server"
/opt/InCharge/SAM/smarts/bin/sm_server
--name=INCHARGE-SA
--config=ics
--port=0
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\SAM\smarts\bin\sm_service.exe install
--force
--name=ic-sam-server
--startmode=runonce
--description="EMC Smarts Service Assurance Manager

Server"
C:\InCharge\SAM\smarts\bin\sm_server.exe
--name=INCHARGE-SA
--config=ics
--port=0
--ignore-restore-errors
--output▲

Business Impact Manager server

UNIX ▼/opt/InCharge/SAM/smarts/bin/sm_service install
--startmode=runonce
--name=MBIM
--description=”EMC Smarts MBIM – Maintenance and Business Impact
Manager Server”
/opt/InCharge/SAM/smarts/bin/sm_server
--name=INCHARGE-MBIM
--config=bim
--port=0
--ignore-restore-errors
--output▲

Windows ▼C:\InCharge\SAM\smarts\bin\sm_service.exe install
--startmode=runonce
--name=MBIM
--description=”EMC Smarts MBIM – Maintenance and Business Impact
Manager Server”
C:\InCharge\SAM\smarts\bin\sm_server.exe
--name=INCHARGE-MBIM
--config=bim
--port=0
--ignore-restore-errors
--output▲

128 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

Adapter Platform

UNIX ▼ /opt/InCharge/SAM/smarts/bin/sm_service install
--force
--unmanaged
--name=ic-icoi-server
--startmode=runonce
--description="EMC Smarts SAM Adapter Platform Server"
/opt/InCharge/SAM/smarts/bin/sm_server
--name=INCHARGE-OI
--config=icoi
--port=0
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\SAM\smarts\bin\sm_service.exe install
--force
--name=ic-icoi-server
--startmode=runonce
--description="EMC Smarts SAM Adapter Platform Server"
C:\InCharge\SAM\smarts\bin\sm_server.exe
--name=INCHARGE-OI
--config=icoi
--port=0
--ignore-restore-errors
--output▲

Business Dashboard

UNIX ▼ /opt/InCharge/CONSOLE/smarts/bin/sm_service install
--force
--unmanaged
--name=ic-business-dashboard
--startmode=runonce
--description="EMC Smarts Servlet Engine"
/opt/InCharge/CONSOLE/smarts/bin/sm_tomcat
--output
start▲

Windows ▼ C:\InCharge\CONSOLE\smarts\bin\sm_service.exe install
--force
--name=ic-business-dashboard
--startmode=runonce
--description="EMC Smarts Servlet Engine"
C:\InCharge\CONSOLE\smarts\bin\sm_tomcat.exe
--output
start▲

Services for the Service Assurance Manager 129

Manually Installing Services

Syslog Adapter

Before you configure the Syslog Adapter, identify the location of the SYSFILE you want the
adapter to tail and parse and ensure that sm_service install command line for the
ic-syslog-adapter identifies this location. The EMC Smarts Service Assurance Manager
Adapter Platform User Guide provides more information on configuring the Syslog
Adapter.

UNIX ▼ /opt/InCharge/SAM/smarts/bin/sm_service install
--force
--unmanaged
--name=ic-syslog-adapter
--startmode=runonce
--description="EMC Smarts Syslog Adapter"
/opt/InCharge/SAM/smarts/bin/sm_adapter
--name=SYSLOG-INCHARGE-OI
--rserver=INCHARGE-OI
--tail=/var/log/syslog
--model=sm_system
--model=sm_actions
--output icoi-syslog/syslog_mgr.asl▲

Windows ▼ C:\InCharge\SAM\smarts\bin\sm_service.exe install
--force
--name=ic-syslog-adapter
--description="EMC Smarts Syslog Adapter"
--startmode=runonce
C:\InCharge\SAM\smarts\bin\sm_adapter.exe
--name=SYSLOG-INCHARGE-OI
--rserver=INCHARGE-OI
--tail=/var/log/syslog
--model=sm_system
--model=sm_actions
--output icoi-syslog/syslog_mgr.asl▲

SNMP Trap Adapter

UNIX ▼ /opt/InCharge/SAM/smarts/bin/sm_service install
--force
--unmanaged
--name=ic-trapd-receiver
--startmode=runonce
--description="EMC Smarts SNMP Trap Adapter"
/opt/InCharge/SAM/smarts/bin/sm_trapd
--name=TRAP-INCHARGE-OI
--server=INCHARGE-OI
--config=icoi
--port=162
--seed=seedfile
--model=sm_actions
--output
--rules=icoi-trapd/trap_mgr_parse.asl▲

130 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

Windows ▼ C:\InCharge\SAM\smarts\bin\sm_service.exe install
--force
--name=ic-trapd-receiver
--startmode=runonce
--description="EMC Smarts SNMP Trap Adapter"
C:\InCharge\SAM\smarts\bin\sm_trapd.exe
--name=TRAP-INCHARGE-OI
--server=INCHARGE-OI
--config=icoi
--port=162
--seed=seedfile
--model=sm_actions
--output
--rules=icoi-trapd/trap_mgr_parse.asl▲

Notif trap Adapter

UNIX ▼ /opt/InCharge/SAM/smarts/bin/sm_service install --force -unmanaged
--startmode=runonce
--name=ic-notif-trapd-receiver
--description="EMC Smarts NOTIF SNMP Trap Adapter"
/opt/InCharge/SAM/smarts/bin/sm_trapd
--name=NOTIF-TRAP-INCHARGE-OI
--server=INCHARGE-OI
--config=icoi
--port=162
--model=sm_actions
--rules=icoi-trapd/Notif-trap_mgr_parse.asl
--seed=seedfile
--output▲

Windows ▼ C:\InCharge\SAM\smarts\bin>sm_service install --force
--name=ic-notif-trapd-receiver
--description="EMC Smarts NOTIF SNMP Trap Adapter"
C:\InCharge\SAM\smarts\bin\sm_trapd.exe
--name=NOTIF-TRAP-INCHARGE-OI
--server=INCHARGE-OI
--config=icoi
--port=162
--model=sm_actions
--rules=icoi-trapd/Notif-trap_mgr_parse.asl
--seed=seedfile
--output▲

Notif syslog adapter

UNIX ▼ /opt/InCharge/SAM/smarts/bin/sm_service install --force --unmanaged
--startmode=runonce
--name=ic-notif-syslog-adapter
--description="EMC Smarts Syslog Adapter"
/opt/InCharge/SAM/smarts/bin/sm_adapter
--name=NOTIF-SYSLOG-INCHARGE-OI
--rserver=INCHARGE-OI
--tail=/var/log/syslog
--model=sm_system
--model=sm_actions
--output icoi-syslog/Notif-SysLog_mgr.asl▲

Services for the Service Assurance Manager 131

Manually Installing Services

Windows ▼ C:\InCharge\SAM\smarts\bin\sm_service install --force
--name=ic-notif-syslog-adapter
--description="EMC Smarts Syslog Adapter"
C:\InCharge\SAM\smarts\bin\sm_adapter.exe
--name=NOTIF-SYSLOG-INCHARGE-OI
--rserver=INCHARGE-OI
--tail=/var/log/syslog
--model=sm_system
--model=sm_actions
--output icoi-syslog/Notif-SysLog_mgr.asl▲

EMC Smarts Data Web Applications (Tomcat)

UNIX /opt/InCharge/SAM/smarts/bin/sm_service install --force --unmanaged
--startmode=runonce
--name=smarts-tomcat
--description=”EMC Smarts Data Web Applications (Tomcat)”
/opt/InCharge/SAM/smarts/bin/sm_tomcat
--ignoreme

Windows C:\InCharge\SAM\smarts\bin\sm_service install --force --unmanaged
--startmode=runonce
“--name=smarts-tomcat”
“--description=EMC Smarts Data Web Applications (Tomcat)”
C:\InCharge\SAM\smarts\bin\sm_tomcat
“--ignoreme”

EMC Smarts Notification Exchange (Rabbit MQ)

UNIX /opt/InCharge/SAM/smarts/bin/sm_service install --force
--unmanaged --startmode=runonce
--name=smarts-rabbitmq
--description=”EMC Smarts Notification Exchange (Rabbit MQ)”
/opt/InCharge/SAM/smarts/bin/sm_rabbitmq
--ignoreme

Windows C:\InCharge\SAM\smarts\bin\sm_service install --force
--unmanaged --startmode=runonce
“--name=smarts-rabbitmq”
“--description=EMC Smarts Notification Exchange (Rabbit MQ)”
C:\InCharge\SAM\smarts\bin\sm_rabbitmq
“--ignoreme”

EMC Smarts Notification Cache (ElasticSearch)

UNIX /opt/InCharge/SAM/smarts/bin/sm_service install --force
--unmanaged --startmode=runonce
--name=smarts-elasticsearch
--description=”EMC Smarts Notification Cache (ElasticSearch)”
/opt/InCharge/SAM/smarts/bin/sm_elasticsearch
--ignoreme

132 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

Windows C:\InCharge\SAM\smarts\bin\sm_service install --force
--unmanaged --startmode=runonce
“--name=smarts-elasticsearch”
“--description=EMC Smarts Notification Cache (ElasticSearch)”
C:\InCharge\SAM/smarts\bin\sm_elasticsearch
“--ignoreme”

Services for the MPLS Manager
This section provides the default UNIX and Windows commands that are used to install
services manually for the MPLS Manager. Type the command on one line.

For the MPLS Manager, when you install the services manually, if you specify custom
service and server names instead of the default names listed in Table 16 on page 97, you
must run a script next. Running the script is required so that proper domain
communication can be established. Appendix D, “Using the MPLS server_config Utility,”
provides information about the script.

MPLS Topology Server

When you start the MPLS Manager for the first time (and only the first time) after migrating
from the previous version to the new version, you must start the MPLS Topology Server
with the --ignore-restore-errors option.

UNIX ▼ /opt/InCharge/MPLS/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-mpls-topology
--description=”EMC Smarts MPLS Topology Server”
/opt/InCharge/MPLS/smarts/bin/sm_server
--name=INCHARGE-MPLS-TOPOLOGY
--config=mpls-t
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\MPLS\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-mpls-topology
--description=”EMC Smarts MPLS Topology Server”
C:\InCharge\MPLS\smarts\bin\sm_server.exe
--name=INCHARGE-MPLS-TOPOLOGY
--config=mpls-t
--ignore-restore-errors
--output▲

Services for the MPLS Manager 133

Manually Installing Services

MPLS Monitoring Server

UNIX ▼/opt/InCharge/MPLS/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-mpls-monitoring
--description=”EMC Smarts MPLS Monitoring Server”
/opt/InCharge/MPLS/smarts/bin/sm_server
--name=INCHARGE-MPLS-MONITORING
--config=mpls-m
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\MPLS\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-mpls-monitoring
--description=”EMC Smarts MPLS Monitoring Server”
C:\InCharge\MPLS\smarts\bin\sm_server.exe
--name=INCHARGE-MPLS-MONITORING
--config=mpls-m
--ignore-restore-errors
--output▲

MPLS Analysis Server

UNIX ▼ /opt/InCharge/MPLS/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-mpls-analysis
--description=”EMC Smarts MPLS Analysis Server”
/opt/InCharge/MPLS/smarts/bin/sm_server
--name=INCHARGE-MPLS-ANALYSIS
--config=mpls-a
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\MPLS\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-mpls-analysis
--description=”EMC Smarts MPLS Analysis Server”
C:\InCharge\MPLS\smarts\bin\sm_server.exe
--name=INCHARGE-MPLS-ANALYSIS
--config=mpls-a
--ignore-restore-errors
--output▲

134 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

MPLS VPN-Tagging Server

UNIX ▼ /opt/InCharge/MPLS/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-vpn-tagging
--description=”EMC Smarts MPLS VPN-Tagging Server”
/opt/InCharge/MPLS/smarts/bin/sm_server
--name=VPN-TAGGING
--config=vpn-tagging
--ignore-restore-errors
--output▲

Windows ▼ C:\InCharge\MPLS\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-vpn-tagging
--description=”EMC Smarts MPLS VPN-Tagging Server”
C:\InCharge\MPLS\smarts\bin\sm_server.exe
--name=VPN-TAGGING
--config=vpn-tagging
--ignore-restore-errors
--output▲

Services for the Server Manager
This section provides the default UNIX and Windows commands that are used to install
the service manually for the EMC Smarts Server Manager. Type the command on one line.

Server Manager

UNIX ▼ opt/InCharge/ESM/smarts/bin/sm_service install
--force
--unmanaged
--name=ic-esm-server
--description=”EMC Smarts Server Manager (ESM)”
--startmode=runonce
opt/InCharge/ESM/smarts/bin/sm_server
--name=INCHARGE-ESM
--config=esm
--subscribe=default
--output
--ignore-restore-errors▲

Windows ▼ C:\InCharge\ESM\smarts\bin\sm_service.exe install
--force
--unmanaged
--name=ic-esm-server
--description=”EMC Smarts Server Manager (ESM)”
--startmode=runonce
C:\InCharge\ESM\smarts\bin\sm_server.exe
--name=INCHARGE-ESM
--config=esm
--subscribe=default
--output
--ignore-restore-errors▲

Services for the Server Manager 135

Manually Installing Services

Services for the Network Protocol Manager installation
This section provides the default UNIX and Windows commands that are used to install
services manually for the Network Protocol Manager. Type the command on one line.

Network Protocol Manager for BGP

UNIX (IPv6 and IPv4
mode)

/opt/InCharge/NPM/smarts/bin/sm_service install
--force
--name=ic-npm-bgp-server
--description=”EMC Smarts NPM for BGP Server”
--startmode=runonce
/opt/InCharge/NPM/smarts/bin/sm_server
--name=INCHARGE-BGP
--config=bgp
--port=0
--subscribe=default
--output

Windows (IPv6 and
IPv4 mode)

C:\InCharge\NPM\smarts\bin\sm_service.exe install
--force
--name=ic-npm-bgp-server
--description=”EMC Smarts NPM for BGP Server”
--startmode=runonce
C:\InCharge\NPM\smarts\bin\sm_server.exe
--name=INCHARGE-BGP
--config=bgp
--port=0
--subscribe=default
--output

UNIX (IPv4 mode only) /opt/InCharge/NPM/smarts/bin/sm_service install
--force
--name=ic-npm-bgp-server
--description=”EMC Smarts NPM for BGP Server”
--startmode=runonce
/opt/InCharge/NPM/smarts/bin/sm_server
--name=INCHARGE-BGP
--config=bgp
--port=0
--bootstrap=bootstrap-ipv4.conf
--subscribe=default
--output

Windows (IPv4 mode
only)

C:\InCharge\NPM\smarts\bin\sm_service.exe install
--force
--name=ic-npm-bgp-server
--description=”EMC Smarts NPM for BGP Server”
--startmode=runonce
C:\InCharge\NPM\smarts\bin\sm_server.exe
--name=INCHARGE-BGP
--config=bgp
--bootstrap=bootstrap-ipv4.conf
--port=0
--subscribe=default
--output

136 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

Network Protocol Manager for EIGRP

UNIX /opt/InCharge/NPM/smarts/bin/sm_service install
--force
--name=ic-npm-eigrp-server
--description=”EMC Smarts NPM for EIGRP Server”
--startmode=runonce
/opt/InCharge/NPM/smarts/bin/sm_server
--name=INCHARGE-EIGRP
--config=eigrp
--port=0
--subscribe=default
--ignore-restore-errors
--output

Windows C:\InCharge\NPM\smarts\bin\sm_service.exe install
--force
--name=ic-npm-eigrp-server
--description=”EMC Smarts NPM for EIGRP Server”
--startmode=runonce
C:\InCharge\NPM\smarts\bin\sm_server.exe
--name=INCHARGE-EIGRP
--config=eigrp
--port=0
--subscribe=default
--ignore-restore-errors
--output

Network Protocol Manager for IS-IS

UNIX (IPv6 and IPv4
mode)

/opt/InCharge/NPM/smarts/bin/sm_service install
--force
--name=ic-npm-isis-server
--description=”EMC Smarts NPM for ISIS Server”
--startmode=runonce
/opt/InCharge/NPM/smarts/bin/sm_server
--name=INCHARGE-ISIS
--config=isis
--port=0
--subscribe=default
--output

Windows (IPv6 and
IPv4 mode)

C:\InCharge\NPM\smarts\bin\sm_service.exe install
--force
--name=ic-npm-isis-server
--description=”EMC Smarts NPM for ISIS Server”
--startmode=runonce
C:\InCharge\NPM\smarts\bin\sm_server.exe
--name=INCHARGE-ISIS
--config=isis
--port=0
--subscribe=default
--output

Services for the Network Protocol Manager installation 137

Manually Installing Services

UNIX (IPv4 mode only) /opt/InCharge/NPM/smarts/bin/sm_service install
--force
--name=ic-npm-isis-server
--description=”EMC Smarts NPM for ISIS Server”
--startmode=runonce
/opt/InCharge/NPM/smarts/bin/sm_server
--name=INCHARGE-ISIS
--config=isis
--port=0
--bootstrap=bootstrap-ipv4.conf
--subscribe=default
--output

Windows (IPv4 mode
only)

C:\InCharge\NPM\smarts\bin\sm_service.exe install
--force
--name=ic-npm-isis-server
--description=”EMC Smarts NPM for ISIS Server”
--startmode=runonce
--C:\InCharge\NPM\smarts\bin\sm_server.exe
--name=INCHARGE-ISIS
--config=isis
--port=0
--bootstrap=bootstrap-ipv4.conf
--subscribe=default
--output

Network Protocol Manager for OSPF

UNIX (IPv6 and IPv4
mode)

/opt/InCharge/NPM/smarts/bin/sm_service install
--force
--name=ic-npm-ospf-server
--description=”EMC Smarts NPM for OSPF Server”
--startmode=runonce
/opt/InCharge/NPM/smarts/bin/sm_server
--name=INCHARGE-OSPF
--config=ospf
--port=0
--subscribe=default
--output

Windows (IPv6 and
IPv4 mode)

C:\InCharge\NPM\smarts\bin\sm_service.exe install
--force
--name=ic-npm-OSPF-server
--description=”EMC Smarts NPM for OSPF Server”
--startmode=runonce
C:\InCharge\NPM\smarts\bin\sm_server.exe
--name=INCHARGE-OSPF
--config=ospf
--port=0
--subscribe=default
--output

138 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

UNIX (IPv4 mode only) /opt/InCharge/NPM/smarts/bin/sm_service install
--force
--name=ic-npm-OSPF-server
--description=”EMC Smarts NPM for OSPF Server”
--startmode=runonce
/opt/InCharge/NPM/smarts/bin/sm_server
--name=INCHARGE-OSPF
--config=ospf
--port=0
--bootstrap=bootstrap-ipv4.conf
--subscribe=default
--output

Windows (IPv4 mode
only)

C:\InCharge\NPM\smarts\bin\sm_service.exe install
--force
--name=ic-npm-OSPF-server
--description=”EMC Smarts NPM for OSPF Server”
--startmode=runonce
C:\InCharge\NPM\smarts\bin\sm_server.exe
--name=INCHARGE-OSPF
--config=ospf
--port=0
--bootstrap=bootstrap-ipv4.conf
--subscribe=default
--output

Services for the Optical Transport Manager
This section provides the default UNIX and Windows commands that are used to install
the services manually for the EMC Smarts Optical Transport Manager. Type the command
on one line.

EMC Smarts Optical Transport Manager for Next Generation WDM

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-wdm-ng-server
--description=”EMC Smarts Optical Transport Manager for Next
Generation WDM”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-WDM-NG
--config=wdm-ng
--subscribe=default
--ignore-restore-errors
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-wdm-ng-server
--description=”EMC Smarts Optical Transport Manager for Next
Generation WDM”
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-WDM-NG
--config=wdm-ng
--subscribe=default
--ignore-restore-errors
--output

Services for the Optical Transport Manager 139

Manually Installing Services

EMC Smarts Optical Transport Manager for SDH (Topology)

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-sdh-topology-server
--description=”EMC Smarts Optical Transport Manager for SDH
Topology”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-SDH-TOPOLOGY
--config=osm-t
--subscribe=default
--ignore-restore-errors
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-sdh-topology-server
--description=”EMC Smarts Optical Transport Manager for SDH
Topology”
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-SDH-TOPOLOGY
--config=osm-t
--subscribe=default
--ignore-restore-errors
--output

EMC Smarts Optical Transport Manager for SDH (Analysis)

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-sdh-analysis-server
--description=”EMC Smarts Optical Transport Manager for SDH
Analysis”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-SDH-ANALYSIS
--config=osm-a
--subscribe=default
--norestore
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-sdh-analysis-server
--description=”EMC Smarts Optical Transport Manager for SDH
Analysis”
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-SDH-ANALYSIS
--config=osm-a
--subscribe=default
--norestore
--output

140 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

EMC Smarts Optical Transport Manager for PDH (Topology)

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-pdh-topology-server
--description=”EMC Smarts Optical Transport Manager for PDH
Topology”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-PDH-TOPOLOGY
--config=pdh-t
--subscribe=default
--ignore-restore-errors
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-pdh-topology-server
--description=”EMC Smarts Optical Transport Manager for PDH
Topology”
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-PDH-TOPOLOGY
--config=pdh-t
--subscribe=default
--ignore-restore-errors
--output

EMC Smarts Optical Transport Manager for PDH (Analysis)

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-pdh-analysis-server
--description=”EMC Smarts Optical Transport Manager for PDH
Analysis”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-PDH-ANALYSIS
--config=pdh-a
--subscribe=default
--norestore
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-pdh-analysis-server
--description=”EMC Smarts Optical Transport Manager for PDH
Analysis”
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-PDH-ANALYSIS
--config=pdh-a
--subscribe=default
--norestore
--output

Services for the Optical Transport Manager 141

Manually Installing Services

EMC Smarts Optical Transport Manager for WDM (Topology)

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-wdm-topology-server
--description=”EMC Smarts Optical Transport Manager for WDM
Topology”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-WDM-TOPOLOGY
--config=wdm-t
--subscribe=default
--ignore-restore-errors
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-wdm-topology-server
--description=”EMC Smarts Optical Transport Manager for WDM
Topology”
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-WDM-TOPOLOGY
--config=wdm-t
--subscribe=default
--ignore-restore-errors
--output

EMC Smarts Optical Transport Manager for WDM (Analysis)

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-wdm-analysis-server
--description=”EMC Smarts Optical Transport Manager for WDM
Analysis”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-WDM-ANALYSIS
--config=wdm-a
--subscribe=default
--norestore
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-wdm-analysis-server
--description=”EMC Smarts Optical Transport Manager for WDM
Analysis”
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-WDM-ANALYSIS
--config=wdm-a
--subscribe=default
--norestore
--output

142 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

EMC Smarts Optical Transport Manager for IP Cross Domain Analysis

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-xd-otm-ip-server
--description=”EMC Smarts Optical Transport Manager - IP CrossDomain
Analysis Server”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-WDM-TOPOLOGY
--config=icxd-ao
--subscribe=default
--ignore-restore-errors
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-xd-otm-ip-server
--description=”EMC Smarts Optical Transport Manager - IP CrossDomain
Analysis Server
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-WDM-TOPOLOGY
--config=icxd-ao
--subscribe=default
--ignore-restore-errors
--output

EMC Smarts TMF814 Cisco CTM Adapter for OTM

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-tmf814-cisco-ctm-adapter
--description=”EMC Smarts TMF814 Cisco CTM Adapter for OTM”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-CISCO-ADAPTER
--config=tmf814Cisco
--subscribe=default
--norestore
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-tmf814-cisco-ctm-adapter
--description=”EMC Smarts TMF814 Cisco CTM Adapter for OTM”
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-CISCO-ADAPTER
--config=tmf814Cisco
--subscribe=default
--norestore
--output

Services for the Optical Transport Manager 143

Manually Installing Services

EMC Smarts TMF814 Ciena On-Center Adapter for OTM

UNIX opt/InCharge/OTM/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-tmf814-ciena-onctr-adapter
--description=”EMC Smarts TMF814 Ciena On-Center Adapter for OTM”
opt/InCharge/OTM/smarts/bin/sm_server
--name=OTM-CIENA-ADAPTER
--config=tmf814Ciena
--subscribe=default
--norestore
--output

Windows C:\InCharge\OTM\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-tmf814-ciena-onctr-adapter
--description=”EMC Smarts TMF814 Ciena On-Center Adapter for OTM”
C:\InCharge\OTM\smarts\bin\sm_server.exe
--name=OTM-CIENA-ADAPTER
--config=tmf814Ciena
--subscribe=default
--norestore
--output

Services for the VoIP Availability Manager
This section provides the default UNIX and Windows commands that are used to install
services manually for the VoIP Availability Manager. Type the command on one line.

VoIP Availability Manager

UNIX /opt/InCharge/VoIP/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-voip-server
--description=”EMC Smarts VoIP Availability Manager”
--env=SM_JAVA_ENABLED=YES
/opt/InCharge/VoIP/smarts/bin/sm_server
--name=VoIP-AM
--config=voip
--port=0
--subscribe=default
--ignore-restore-errors
--output

144 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Manually Installing Services

Windows C:\InCharge\VoIP\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-voip-server
“--description=EMC Smarts VoIP Availability Manager”
“--env=SM_JAVA_ENABLED=YES”
C:\InCharge\VoIP\smarts\bin\sm_server.exe
“--name=VoIP-AM”
“--config=voip”
“--port=0”
“--subscribe=default”
“--ignore-restore-errors”
“--output”

VoIP Notification Trap Adapter

UNIX /opt/InCharge/VoIP/smarts/bin/sm_service install
--force
--unmanaged
--startmode=runonce
--name=ic-voip-notification-trapd-receiver
--description=”EMC VoIP Notification Trap Adapter”
/opt/InCharge/VoIP/smarts/bin/sm_trapd
--name=TRAP-INCHARGE-VOIP
--server=INCHARGE-OI
--config=voip
--port=9002
--model=sm_actions
--rules=voip/voip_trap_mgr_parse.asl
--output=TRAP-INCHARGE-VOIP

Windows C:\InCharge\VoIP\smarts\bin\sm_service.exe install
--force
--unmanaged
--startmode=runonce
--name=ic-voip-notification-trapd-receiver
--description=”EMC VoIP Notification Trap Adapter”
C:\InCharge\VoIP\smarts\bin\sm_trapd.exe
--name=TRAP-INCHARGE-VOIP
--server=INCHARGE-OI
--config=voip
--port=9002
--model=sm_actions
--rules=voip\voip_trap_mgr_parse.asl
--output=TRAP-INCHARGE-VOIP

Services for the VoIP Availability Manager 145

Manually Installing Services

146 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

APPENDIX C
Procedures for CD/DVD-ROMs

This appendix includes commands and examples for working with a CD/DVD-ROM to
install or upgrade product software. It consists of the following topics:

◆ Mounting a CD/DVD-ROM on UNIX systems... 148
◆ Loading a CD/DVD-ROM on Windows .. 149

Procedures for CD/DVD-ROMs 147

Procedures for CD/DVD-ROMs

Mounting a CD/DVD-ROM on UNIX systems
Use the following procedure to find the instructions appropriate for your operating system:

1. Insert the CD/DVD-ROM into the optical drive.

2. If the CD/DVD-ROM is automatically mounted, continue to step 3 . Otherwise, select
the appropriate mount command as shown in Table 20 on page 148.

Table 20 Mounting the CD/DVD-ROM for UNIX operating systems

Operating
system Commands and examples

mount -o ro -F hsfs <device> /mnt

Example:
mount -o ro -F hsfs /dev/dsk/c0t6d0s0 /mnt

mount <device>

Example:
mount /dev/cdrom /mnt/cdrom

3. Change to the CD/DVD-ROM directory by typing the appropriate command from
Table 21 on page 148.

Table 21 Changing to the CD/DVD-ROM directory in UNIX operating systems

Operating
system Command

cd /cdrom/<os>/<product>_SUITE/suite

cd /mnt/suite

cd /cdrom/<os>/<product>_SUITE/suite

cd /mnt/cdrom/suite

CentOS

Linux

where <device> is the mount point for the optical drive.

CentOS If Volume Manager (VM) is running:

If VM is not running:

Linux If Automount is running:

If Automount is not running:

where: <os> is the operating system, for example, CentOS_64, linux_64, or winnt_64.
<product> is the product software, for example, IP or MPLS.

148 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Procedures for CD/DVD-ROMs

Loading a CD/DVD-ROM on Windows
The installation program starts automatically on Windows systems when AutoPlay or
AutoRun is enabled:

1. Insert the CD/DVD-ROM into the optical drive. If AutoPlay or AutoRun is enabled, the
installation program starts automatically using the Wizard mode.

2. If the installation program does not start, use Windows Explorer to locate the top-level
folder of the mounted CD/DVD-ROM.

3. Locate the \product directory on the CD/DVD-ROM and double-click the setup
executable.

If you want to run CLI mode or Unattended mode on a Windows system, you need to
disable the AutoPlay or AutoRun feature. To do so, press and hold the Shift key for
approximately 10 seconds while inserting the CD/DVD-ROM into the optical drive.

Loading a CD/DVD-ROM on Windows 149

Procedures for CD/DVD-ROMs

150 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

APPENDIX D
Using the MPLS server_config Utility

This appendix pertains to the MPLS Manager. It provides an overview of the split topology
architecture, an overview of the server_config utility used to rename domain groups and
domains, and instructions on how to run the script.

◆ Use the server_config.pl script to change domain names 152

Using the MPLS server_config Utility 151

Using the MPLS server_config Utility

Use the server_config.pl script to change domain names

Purpose

When installed and unless the default domain name is changed during installation, MPLS
Manager is configured with the default domain group name of INCHARGE-MPLS.

From this default domain group name, the three MPLS Manager server names are
constructed by appending the function specific suffix to the default domain group name:

◆ INCHARGE-MPLS-TOPOLOGY

◆ INCHARGE-MPLS-MONITORING

◆ INCHARGE-MPLS-ANALYSIS

TOPOLOGY, MONITORING, and ANALYSIS are always appended to the Domain Group name
to generate the three MPLS Manager domain managers.

A script (server_config.pl) is provided to make it easier to define server names, to update
names, and populate the domain names changes to the default configurations files. Once
updated, these new domain names are used by the TOPOLOGY, MONITORING and
ANALYSIS servers.

Run the script

After the different servers have been installed with the default domain manager's names,
you can use the server_config script to customize the domain managers’ names.

The MPLS Manager post installation script uses the sm_perl command from either the
MPLS BASEDIR/smarts/bin directory or from the location where the server_config.pl post
installation script is located.

From the Perl /bin directory
Invoke the post installation script from the directory where the MPLS Manager post
installation script is located.

sm_perl server_config.pl -o <OldGroupName> -n <NewGroupName> -b <BASEDIR>

From the MPLS installation directory
Invoke the post installation script from the directory where Perl is installed.

./sm_perl <BASEDIR>/smarts/script/mpls-tma/server_config.pl -o <OldGroupName> -n
<NewGroupName> -b <BASEDIR>

Invoke the command line script server_config.pl options from the BASEDIR/smarts/bin/
directory as follows:

◆ Install services with default name if they have not been installed previously (see
Example).

server_config.pl -i -o <OldGroupName> -n<NewGroupName> -b<BASEDIR>

◆ Rename services that have been installed previously (see Example).

152 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Using the MPLS server_config Utility

server_config.pl -o <OldGroupName> -n<NewGroupName> -b<BASEDIR>

◆ Generate a list of services that have been installed previously (see Example).

server_config.pl -s -b <BASEDIR>

◆ Display information on how to run the script with examples (see Example).

server_config.pl -h

Example 1 server_config.pl -i -o “INCHARGE-MPLS” -n “HQ-MPLS” -b
opt/InCharge/MPLS/smarts/

Example 2 server_config.pl -o “INCHARGE-MPLS” -n “HQ-MPLS” -b
opt/InCharge/MPLS/smarts/

Example 3 server_config.pl -s -b opt/InCharge/MPLS/smarts/

Example 4 server_config.pl -h

Script options

Following are the required and optional command line script parameters:

Avoid using the following special characters when entering text strings for
<OldGroupName> and <NewGroupName>: $ / \

Table 22 server_config.pl script command line options (page 1 of 2)

Option Purpose

--install-service
or
-i

Indicates that the service needs to be installed.
• This parameter must be used with the --old-group, --new-group, and

--basedir parameters.
• If the services are not installed, they are installed.
• If services are already installed, they are uninstalled and reinstalled with

the NewGroupName.

--old-group="<OldGroupName>"
or
-o "<OldGroupName>"

A required value that specifies the old group name to be changed.
• You must include the OldGroupName variable string in double quotes.
• This parameter must be used with the --new-group and --basedir

parameters.
• If services are running, will terminate without doing anything.

--new-group="<NewGroupName>"
or
-n "<NewGroupName>"

A required value that specifies the new group name.
• You must include the NewGroupName variable string in double quotes.
• This parameter must be used with the --old-group and --basedir

parameters.
• If services are running, will terminate without doing anything.

--basedir=<BASEDIR>
or
-b <BASEDIR>

A required value which specifies the installation base directory.
• This parameter must be used with the --old-group and --new-group

parameters.
• If services are running, will terminate without doing anything.

Use the server_config.pl script to change domain names 153

Using the MPLS server_config Utility

The order of the parameters is not important.

Always include the BASEDIR of the installed services in the command line. The only
instances where you do not have to include it is when using the Help (-h) option.

Following are the steps that the script performs once invoked:

1. If the local directory BASEDIR/smarts/local/conf/mpls-tma does not already exist, it is
created and a copy of the original mpls-tma.conf file from the
BASEDIR/smarts/conf/mpls-tma directory is copied to it.

2. If a service corresponding to the <OldGroupName> is installed, the following process is
initiated:

a. If the service is running and the user command line argument is not -s or --show,
the script displays an error message and exits. You must stop the services before
you can rename them.

b. If the service is not running and the Service Daemon is running, then the script
uninstalls the service for the current <OldGroupName>, installs the service for the
<NewGroupName>, then continues to step 4.

c. If the service is not running and the Service Daemon is not running, then the script
displays a warning that there is potential for mismatch, uninstalls the service for
the current <OldGroupName>, installs the service for the <NewGroupName>, then
continues to step 4.

3. If a service corresponding to the <OldGroupName> is not installed, the following
process is initiated:

a. If the installation option (--i or -install-service) is not specified, the scripts does not
install the service.

b. If the installation option (--i or -install-service) is specified and if the Service
Daemon is running, the script installs the service corresponding to the
<NewGroupName>.

c. If the installation option (--i or -install-service) is specified and if the Service
Daemon is not running, the script warns you that you must start it and exits without
further action.

--show
or
-s

Indicates that you want to see the current group names, services and Domain
Manager names.
• With this option, no changes are made to either the service or the

configuration file.
• This parameter must be used with the --basedir parameter.

--help
or
-h

--help or -h shows command line parameters and examples.
This parameter is used alone.

Table 22 server_config.pl script command line options (page 2 of 2)

Option Purpose

154 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Using the MPLS server_config Utility

4. After step 2 or step 3 are performed, the script copies the previous local
configuration file to a backup file named .<OldGroupName><.bak>

5. The script then replaces the <OldGroupName> with <NewGroupName> in
BASEDIR/smarts/local/conf/mpls-tma/mpls-tma.conf and terminates.

Use the server_config.pl script to change domain names 155

Using the MPLS server_config Utility

156 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

APPENDIX E
EMC Smart Optical Transport Manager
Configuration

This appendix provides instructions on configuring EMC Smarts Optical Transport Manager
to communicate with the Global Manager component of the EMC Smarts Service
Assurance Manager.

This appendix consists of the following topics:

◆ Prerequisites .. 158
◆ Configuring Optical Transport Manager ... 159
◆ Configuring the Service Assurance Manager.. 167
◆ Configuring the presentation layer Global Manager ... 168

EMC Smart Optical Transport Manager Configuration 157

EMC Smart Optical Transport Manager Configuration

Prerequisites

Optical Transport Manager

Before you configure Optical Transport Manager, one or more of the following Optical
Transport Manager domain managers must be installed:

◆ Optical Transport Manager for SONET/SDH

◆ Optical Transport Manager for PDH

◆ Optical Transport Manager for WDM

◆ Optical Transport Manager for Next Generation WDM

Except for the OTM for Next Generation WDM, each of the above domain managers has a
Topology/Monitoring server and an Analysis server.

If you installed the Optical Transport Manager for WDM NG (Next Generation), you must
install and configure EMC M&R, the SolutionPack for Optical Wavelength Services, and the
SolutionPack for EMC Smarts. The Service Assurance Suite Documentation Index,
available on the EMC Community Network (ECN), provides links to these documents.

Note: In each domain, except for the OTM for Next Generation WDM domain, both
Topology server and Analysis server must be installed and configured. In addition, OTM-IP
XD may be installed and configured.

Note: The Optical Transport Manager and adapters do not need to be installed on the
same host. However, you must register each component with the same EMC Broker that
the Global Manager which manages the component is registered with.

SAM servers used with OTM

When OTM is connected to an IP XD Manager (IP cross-domain manager), three SAM
servers should be started:

1. Connect the first SAM server to the OTM domains only.

2. Connect the second SAM server to the IP domain servers only.

3. Connect the third SAM server to the SAM servers described in steps 1 and 2
(connecting OTM domains and other analysis domains) and to the OTM-IP XD Manager
server.

Global Manager

To configure and use the Global Manager with OTM, the following components must be
installed on appropriate hosts in your network:

◆ Broker

◆ Global Console

◆ Global Manager

158 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

EMC Smart Optical Transport Manager Configuration

Configuring Optical Transport Manager

OTM settings

The various Optical Transport Manager Domain Manager servers, except for the Next
Generation WDM Domain Manager, need to know the names of the other servers in order
to communicate with each other for the following purposes:

◆ For importing topology from a Topology server to an Analysis server within a given
domain. For example, from the SDH Topology server to the SDH Analysis server.

◆ For running post-processing in one domain after a topology change or update in
another domain.

All OTM Domain Managers use this same file for configuration. The file is named
otm-settings.conf and is found in the BASEDIR/smarts/conf directory.

To modify the otm-settings.conf file, use the sm_edit utility as described in Appendix A,
“The sm_edit utility.”

The configurable parameters, by default, look like this:

wdmTopologyServerName="OTM-WDM-TOPOLOGY"
sdhTopologyServerName="OTM-SDH-TOPOLOGY"
pdhTopologyServerName="OTM-PDH-TOPOLOGY"
wdmAnalysisServerName="OTM-WDM-ANALYSIS"
sdhAnalysisServerName="OTM-SDH-ANALYSIS"
pdhAnalysisServerName="OTM-PDH-ANALYSIS"

Change the names of the servers as needed for your configuration. Comment out any
servers you are not using by adding a pound sign (“#”) at the beginning of the line.

IMPORTANT

You must specify both Topology and Analysis servers of any Domain Manager.

Configuring EMC M&R for the OTM Next Generation WDM Manager

To configure EMC M&R for the OTM Next Generation WDM Manager, you need to specify
the EMC M&R service location and EMC M&R login credentials. Perform these steps:

1. Specify the EMC M&R service location.

The OTM Next Generation WDM Manager fetches topology data from the EMC M&R
time-series database, using the EMC M&R Web-service APIs. You need to configure the
M&R host or hosts (in case of multiple databases) which run the Web Service Backend
with the OTM Next Generation WDM Manager.

a. Open the <BASEDIR>/smarts/mnr-adapter/MNR.conf file with the sm_edit utility:

bin/sm_edit conf/mnr-adapter/MNR.conf

Configuring Optical Transport Manager 159

EMC Smart Optical Transport Manager Configuration

b. Locate the following section. Remove the comment characters (#) and make the
required changes:

<MnR_InstanceName> {
HostName = <FQDN of the Host where the M&R server is running.
Default is "localhost">
Port = <The port on which the M&R frontend is running. Default
is 58080>
ListenerPort = <The port on which the M&R HTTP Listener is
running. Default is 55442>
Protocol = HTTP/HTTPS <Protocol for accessing the M&R server.
Default is HTTP>
}
#

For example:

itops-tco-116.lss.emc.com {
HostName = itops-tco-116.lss.emc.com
}

c. If your deployment has multiple M&R hosts (in case of multiple databases) which
run the Web Service Backend, copy the code section in Step b and modify it
accordingly.

d. Save the file.

2. Supply the EMC M&R login credentials for the OTM Next Generation WDM Manager.

a. Open the Service Assurance Manager Global Console attached to the OTM Next
Generation WDM Manager (OTM-WDM-NG, for example).

b. In the Topology Browser Console, select Configure > Domain Manager
Administration Console.

c. In the Domain Manager Administration Console, select Configure > Polling and
Thresholds.

d. Select the Device Access tab.

e. Expand EMC M&R Access Configuration > EMC M&R Access > Settings and select
MnR Access Setting.

f. Type the EMC M&R username (admin, for example) for the UserID field and the
password for the Password field.

g. Click Apply to save the changes.

h. (Required) Reconfigure the OTM Next Generation WDM Manager.

Once you specify the EMC M&R login credentials, they persisted in the domain
manager's repository in an encrypted format. Repeat this step only if the EMC M&R
access credentials need to be changed.

160 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

EMC Smart Optical Transport Manager Configuration

Configure the RabbitMQ service for the OTM Next Generation WDM Domain Manager

To configure the RabbitMQ service for OTM Next Generation WDM Manager, you need to
set the SM_AMQP_LOCATION environment variable in the runcmd_env.sh file and ensure
the RabbitMQ security credentials are correct in the clientConnect.conf file. Perform these
steps:

1. Specify the RabbitMQ location.

The OTM Next Generation WDM Domain Manager receives events from EMC M&R
though the RabbitMQ service. The default RabbitMQ service which is part of the
EMC Smarts Service Assurance manager is used for this purpose. You need to set
SM_AMQP_LOCATION environment variable in the OTM runcmd_env.sh file.

a. Go to the BASEDIR/smarts/bin directory and enter this command to open the
runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

b. Add the SM_AMQP_LOCATION environment variable with the RabbitMQ location:

SM_AMQP_URL=amqp://<host>:5672/

The default AMQP port is 5672. If a different port is in use for some reason, use
that port for the SM_AMQP_URL environment variable.

c. Save and close the file.

2. Ensure the RabbitMQ credentials are correct.

The security credentials for the RabbitMQ server are read from the OTM
clientConnect.conf file.

• If the default username or password is not changed in the RabbitMQ, this step is
not required.

• If the RabbitMQ credentials are changed for some reason, specify the new
credentials in the OTM clientConnect.conf file.

To do so, perform:

a. Go to the BASEDIR/smarts/bin directory and enter this command to open the
clientConnect.conf file:

sm_edit conf/clientConnect.conf

b. Add the following line in the clientConnect.conf file anywhere before the
"*:*:admin:changeme" line at the end.

:AMQP-C/:<username>:<password>

OTM-Extensions

The OTM-Extensions module is installed as part of the SAM installation. It provides
additional OTM functionality to an existing installation of the Service Assurance Manager.

Configuring Optical Transport Manager 161

EMC Smart Optical Transport Manager Configuration

Configuration scenarios

There are multiple scenarios in which OTM can be configured with SAM. These are covered
in the following sections:

◆ “Configuring OTM for a two-level hierarchical SAM” on page 162

◆ “Configuring OTM for a single SAM installation” on page 165

◆ “Configuring OTM for a three-level hierarchical SAM” on page 165

Configuring OTM for a two-level hierarchical SAM
Two-level hierarchy could mean either of the following scenarios:

MBIM SAM-PRES

IP, MPLS,… SAM-OTM

OTM

Figure 4 Two-level hierarchical SAM: Scenario A

162 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

EMC Smart Optical Transport Manager Configuration

MBIM SAM PRESMBIM SAM-PRES

SAM-AGG

MPLSIP OTM

Figure 5 Two-level hierarchical SAM: Scenario B

In Scenario B, the SAM-AGG configuration is the same as that for SAM-OTM in Scenario A
since this is the SAM that is directly attached to the OTM servers. Therefore, the
configuration procedure is the same for both scenarios.

To configure OTM for a two-level hierarchical SAM, perform the following steps:

1. Create a directory for SAM-PRES. For purposes of this procedure, the term top-sam is
used.

a. cd {SAM BASEDIR}/smarts/local/conf

b. mkdir top-sam

2. A new parameter XDUpdateImpactList is introduced. By setting this parameter to
TRUE, a synchronization between SAM-PRES and SAM-OTM (in case of Figure 1) or
SAM-PRES to SAM-AGG (in case of Figure 2) and SAM-OTM occurs whenever an OTM
notification status update is detected for processing.

From the {SAM BASEDIR}/smarts/local/conf/ics folder, edit the dxa-sam.conf file.

Note: Modifying the dxa-sam.conf file is applicable in all instances where a top-level
SAM installation communicates with an underlying SAM installation.

a. Open dxa-sam.conf

b. Add the following line to the end of the file:

XDUpdateImpactList TRUE

c. Save and close the file.

Configuring Optical Transport Manager 163

EMC Smart Optical Transport Manager Configuration

3. Traverse to the top-sam directory.

a. cd {SAM BASEDIR}/smarts/local/conf/top-sam

4. Copy the contents of the {SAM BASEDIR}/smarts/conf/ics and {SAM
BASEDIR}/smarts/local/conf/ics directories to the {SAM
BASEDIR}/smarts/local/conf/top-sam directory.

a. cp -p {SAM BASEDIR}/smarts/conf/ics/*.* .

b. cp -p {SAM BASEDIR}/smarts/local/conf/ics/*.* .

5. In the top-sam directory, edit the dxa-sam.conf file.

a. Open dxa-sam.conf using the sm_edit utility.

b. Add these lines to the bottom of the file after the "#Subscribe to a Notification List"
comment section.

NLName/n
sub Default/n
#sub ALL_NOTIFICATIONS/n
notification
attr UserDefined1
attr UserDefined2
attr UserDefined3
attr UserDefined4
attr UserDefined5
attr UserDefined6
attr UserDefined7
attr UserDefined8
attr UserDefined9
attr UserDefined10

6. In the top-sam directory, you must copy the following lines to the weights.conf file.

Note: This step is applicable for all top-level SAM installations.

a. Copy the following lines:

ClassWeight OpticalNetworkElement 0
ClassWeight TopologicalLink 0
NotificationClassWeight HighOrder_Circuit 1
NotificationClassWeight LowOrder_Circuit 1
NotificationClassWeight ClientCircuit 1
NotificationClassCheck TopologicalLink
NotificationClassCheck DropSideTopologicalLink
NotificationClassCheck BBFiberLink
NotificationClassCheck BBTopologicalLink
NotificationClassCheck BBDropSideTopologicalLink
NotificationClassCheck Equipment
NotificationClassCheck Card
NotificationClassCheck EquipmentProtectionGroup
NotificationClassCheck FiberLink
NotificationClassCheck FiberBundle
NotificationClassCheck OpticalNetworkElement
NotificationClassCheck HighOrder_Trail
NotificationClassCheck LowOrder_Trail
NotificationClassCheck Transponder
NotificationClassCheck Amplifier
NotificationClassCheck PTP
NotificationClassCheck Conduit

b. Open the weights.conf file using the sm_edit utility.

164 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

EMC Smart Optical Transport Manager Configuration

c. Paste the lines that you copied to the end of this file.

d. Save and close the file.

7. Restart the server for the new settings to take effect.

Note: This procedure is used as the baseline for other configuration scenarios in this
appendix.

Configuring OTM for a single SAM installation

MBIM SAM-PRESMBIM

IP, MPLS,… OTM

Figure 6 Single OTM and SAM installation

Note: The procedure for the standard two-level hierarchical SAM configuration,
“Configuring OTM for a two-level hierarchical SAM” on page 162, is used as the baseline
procedure for this configuration.

Perform step 6 from the standard two-level hierarchical SAM configuration to copy lines to
the weights.conf file. Ignore the reference to the top-sam directory in this step.

Configuring OTM for a three-level hierarchical SAM
Three-level hierarchical SAM includes SAM-presentation, SAM-AGG (aggregate), and
SAM-OTM (SAM to which OTM servers directly attach).

Configuring Optical Transport Manager 165

EMC Smart Optical Transport Manager Configuration

MBIM SAM-PRES

SAM-AGG

IP MPLS SAM-OTMIP, MPLS,… SAM-OTM

OTM

Figure 7 Three-level hierarchical SAM

In the three-level hierarchical configuration, SAM-Pres and SAM-AGG implementation
could be:

◆ running out of the same installation (same SAM BASEDIR) or

◆ running out of separate installations (two separate SAM BASEDIRs).

Configuring SAM-Pres and SAM-AGG having same SAM BASEDIR

Note: The procedure for the standard two-level hierarchical SAM configuration,
“Configuring OTM for a two-level hierarchical SAM” on page 162, is used as the baseline
procedure for this configuration.

The following would be the differences from the standard two-level hierarchical SAM
configuration and a three-level hierarchical SAM configuration using the same SAM
{BASEDIR} to prepare the configuration.

Note: As in the two-level SAM hierarchical configuration, the SAM base installation will be
considered to be the SAM-OTM area.

◆ Create and configure Presentation SAM by following the steps detailed in “Configuring
OTM for a two-level hierarchical SAM” on page 162.

◆ Start the SAM-PRES (presentation level SAM) using the following command:

./sm_server -b <broker name & Port No> -n SAM-PRES -c top-sam
--ignore-restore-errors --output --daemon

Where top-sam is the name of the configuration directory created for SAM-PRES.

166 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

EMC Smart Optical Transport Manager Configuration

Configuring SAM-Pres and SAM-AGG having different SAM BASEDIRs

Note: The procedure for the standard two-level hierarchical SAM configuration,
“Configuring OTM for a two-level hierarchical SAM” on page 162, is used as the baseline
procedure for this configuration.

The following would be the differences between the standard two-level hierarchical SAM
configuration and a three-level hierarchical SAM configuration using different SAM
{BASEDIR}.

◆ The server to be used for SAM-OTM (1st level SAM) must have the configuration steps
done that pertain to SAM-OTM from the two-level hierarchical configuration. See
“Configuring OTM for a two-level hierarchical SAM” on page 162.

◆ The server to be used for SAM-AGG (2nd level SAM) must have the configuration steps
done that pertain to top-sam directory level from the two-level hierarchical
configuration. This configuration must be done in the BASEDIR area (/local/conf/ics)
for this SAM installation. See “Configuring OTM for a two-level hierarchical SAM” on
page 162.

◆ The server to be used for SAM-PRES (3rd level SAM) must have the configuration steps
done that pertain to top-sam directory level from the two-level hierarchical
configuration. This configuration would be done in the BASEDIR area (/local/conf/ics)
for this SAM installation. See “Configuring OTM for a two-level hierarchical SAM” on
page 162.

Note: When starting the three SAMs which could be located on different machines, care
must be taken to use the same broker:port for all of them in the runcmd_env.sh files. For
example "SM_BROKER_DEFAULT=machinename:6666", where machinename is the name
of the machine, where the Broker and the OTM-SAM were started.

Configuring the Service Assurance Manager
Configure the Service Assurance Manager (Global Manager) to specify each Optical
Transport Manager as its source:

1. In the Global Console attached to the Global Manager, select Configure > Global
Manager Administration Console to open the Global Manager Administration Console.

2. In the left panel, select ICS Configuration > IC Domain Configuration > Domains.

3. Select the domain name for your Optical Transport Manager to display its
configuration window (right panel). Depending upon your deployment, the domain
names may include:

• OTM-SDH-ANALYSIS

• OTM-SDH-TOPOLOGY

• OTM-PDH-ANALYSIS

• OTM-PDH-TOPOLOGY

• OTM-WDM-ANALYSIS

Configuring the Service Assurance Manager 167

EMC Smart Optical Transport Manager Configuration

• OTM-WDM-TOPOLOGY

• OTM-IP-XD

4. In the configuration window, ensure that the Enabled checkbox is selected.

If the Enabled checkbox is not selected:

a. Select the Enabled checkbox.

b. Click the Reconfigure button, then the Yes button.

c. In the Server Reconfiguration information dialog box, click Close.

For complete information about the Global Manager Administration Console and Service
Assurance configuration tasks, consult the EMC Smarts Service Assurance Manager
Configuration Guide.

Configuring the presentation layer Global Manager
If you are deploying Optical Transport Manager in a hierarchical configuration, you will
need to configure the presentation layer Global Manager as described in this section.

The hierarchical aggregation configuration shown in Figure 8 on page 169, uses multiple
Global Managers at the aggregation layer to address the following configurations:

◆ More than 10 underlying domains: EMC Corporation recommends that each Global
Manager at the aggregation layer supports a maximum of 10 EMC Smarts domains.
The example in Figure 8 on page 169, therefore, could support 20 domains.

◆ Geographically separate groups of domains: Using a standard Global Manager
configuration would force some domains to connect to a Global Manager over a
high-latency link. Additional Global Managers at the aggregation layer would be
located in the same geographical area as the domains.

To ensure that acknowledgements and ownership of notifications are properly
propagated, Service Assurance clients should only connect to the Global Manager at the
top-level, presentation layer.

168 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

EMC Smart Optical Transport Manager Configuration

Aggregation
Layer

Presentation
Layer

Global

Manager

Global

Manager

Global

Manager

Global

Console

Underlying
DomainsUnderlying

DomainsOTM
Domain

Managers

Underlying
DomainsUnderlying

DomainsOTM
Domain

Managers

Figure 8 Hierarchical aggregation Domain Manager configuration

Hierarchical aggregation is one example of hierarchical configuration.

The presentation layer Global Manager, or any Global Manager that does not connect
directly to a OTM Domain Manager, needs to be configured using the following procedure
to avoid duplicate OTM processing in the top level.

Note: This configuration should only be made to the top-level Global Manager or
Managers, not the Global Managers which are directly connected to OTM servers.

Refer “Configuring OTM for a two-level hierarchical SAM” on page 162 for further
instructions.

Configuring the presentation layer Global Manager 169

EMC Smart Optical Transport Manager Configuration

170 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

APPENDIX F
Configuration Scanner tool Sample Output

This appendix provides sample output for the Configuration Scanner tool. It consists of the
following topics:

◆ Files created by Configuration Scanner tool... 172
◆ Sample outputs .. 172

Configuration Scanner tool Sample Output 171

Configuration Scanner tool Sample Output

Files created by Configuration Scanner tool
The following files are created by the tool:

◆ sm_configscan_report-<time_stamp>.txt: This is the report file created by the
Configuration Scanner tool. This file contains:

• List of files installed by the TTP, if any

• List of files introduced by the user

• Modifications made to the discovery.conf, tpmgr-param.conf and
name-resolver.conf files

• List of file differences for each modified file

• List of modifications found in the server

“Report when server is specified” on page 173 and “Report when server is not
specified” on page 178 provides sample outputs.

◆ sm_configscan-<time_stamp>.tar: This tar file contains the following:

• A copy of the Configuration Scanner report file

• sm_configscanner.log

• A copy of runcmd_env.sh

• ConfigScanAdapter.log

• PnTallOutput.txt: lists all the settings found on the server

• A directory containing the DIFF files for each modified files

The output files for the configuration scanner tool is available under the
<BASEDIR>/smarts/local/logs/Final_sm_getinfo<timesatamp>.tar file.

Sample outputs
This section provides sample outputs for the following:

◆ “Running Configuration Scanner tool with server name” on page 172

◆ “Report when server is specified” on page 173

◆ “Running Configuration Scanner tool without server name” on page 178

◆ “Report when server is not specified” on page 178

Running Configuration Scanner tool with server name

You can run the tool by specifying a running server in the command line. In this scenario,
the tool scans for changes you have made in the values of both the polling and threshold
settings and configuration files. A sample output is provided:

C:\InCharge\IP\smarts\bin>sm_perl sm_getinfo -s INCHARGE-AMPM -k
Executing sm_configscan ...
===sm_moni

tor about to run!
Please enter the correct credentials in clientConnect.conf
Or be prepared to enter the credentials below:

172 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Configuration Scanner tool Sample Output

===Getting
hardware Info...

Getting AMPM show-dm-process info...
MAIN-N-Closing this log file at August 28, 2012 4:02:24 AM EDT;

continuing in
C:\InCharge\IP\smarts\local\logs\AMPM-show-dm-proc-28Aug2012-040223_en

_US_UTF-8.log
Getting AMPM stacktrace info...
Exiting eval via last at C:/InCharge/IP/smarts/bin//sm_monitor.pl line

180.
Getting AMPM queues info...
Getting AMPM subscriptions info...
Getting AMPM threads info...
Getting AMPM flows info...
Getting AMPM clients info...
Getting netstat info...
Getting tasklist info...
Getting log file...
Getting rps files...
Getting Monitor...
Getting Accessor Ping...
Getting Accessor Poll...
Getting Problems...
Getting instrumentation for IP...
MAIN-N-Closing this log file at August 28, 2012 4:05:13 AM EDT;

continuing in
C:\InCharge\IP\smarts\local\logs\AMPM-instrumentation-28Aug2012-040223

_en_US_UTF-8.log
Deleting files:

C:\InCharge\IP\smarts\local\logs\smgetinfo_files*smgetinfo-version
s.log*

Getting the Smarts server version ...
Getting the Executable versions ...
Getting the Local lib versions ...
Getting the lib versions ...
Getting the list of installed TTPs ...
No TTPs currently installed
No patches currently installed.
Archiving the files...
Writing to sm_getinfo28Aug2012-040132.tar.zip ...
... Done writing to Final_sm_getinfo28Aug2012-040132.tar.zip
Please send the file:

C:\InCharge\IP\smarts\local\logs\Final_sm_getinfo28Aug2012-040132.t
ar.zip to EMC Support

Report when server is specified

The following is the sample of the report when the tool is run specifying a running server in
the command line:

Version: IP.9.1.0.0
These files have been modified in the installation:
===
C:/InCharge/IP/smarts/local/conf/discovery/discovery.conf
C:/InCharge/IP/smarts/local/conf/discovery/name-resolver.conf
C:/InCharge/IP/smarts/local/conf/discovery/oid2type_Cisco.conf
C:/InCharge/IP/smarts/local/conf/discovery/oid2type_Misc.conf
C:/InCharge/IP/smarts/local/conf/discovery/tpmgr-param.conf
These files have been introduced in the installation:
===
C:/InCharge/IP/smarts/local/repos/icf/INCHARGE-AMPM.rps
C:/InCharge/IP/smarts/local/repos/icf/INCHARGE-AMPM.rps.bak
Server Name: INCHARGE-AMPM
The following Polling and Threshold settings were modified in the

installation:

Sample outputs 173

Configuration Scanner tool Sample Output

==
POLLING::Polling Groups::5620 SAM Managed Systems::Connectivity

Polling - External Poller::InstrumentCards
 Current Value : TRUE
 Default Value : FALSE
POLLING::Polling Groups::ComputeFabric::Environment

Polling::PollingInterval
 Current Value : 120
 Default Value : 240
POLLING::Polling Groups::ComputeFabric::Environment Polling::Retries
 Current Value : 4
 Default Value : 3
POLLING::Polling Groups::ComputeFabric::Connectivity

Polling::PollingInterval
 Current Value : 30
 Default Value : 240
POLLING::Polling Groups::Routers::Environment Polling::PollingInterval
 Current Value : 30
 Default Value : 240
THRESHOLD::Interface Groups::1 Gb Ethernet::Ethernet Interface/Port

Performance::BroadcastThreshold
 Current Value : 10
 Default Value : 15
The following changes were made to some special configuration files:
==
File: C:/InCharge/IP/smarts/local/conf/discovery/discovery.conf
 Attribute Name : MetroEthernetEnabled
 Current Value : TRUE
 Default Value : FALSE
 Comment : Modified
 Attribute Name : defaultTimeout
 Current Value : 2000
 Default Value : 1000
 Comment : Modified
 Attribute Name : defaultRetries
 Current Value : 8
 Default Value : 5
 Comment : Modified
 Attribute Name : defaultSNMPAutoRetries
 Current Value : 4
 Default Value : 3
 Comment : Modified
 Attribute Name : DiscoveryAddrPref
 Current Value : "IPV4FIRST_IPV6NEXT"
 Default Value : "IPV6FIRST_IPV4NEXT"
 Comment : Modified
 Attribute Name : numberProbeThreads
 Current Value : 15
 Default Value : 10
 Comment : Modified
 Attribute Name : LicenseThresholdPercentage
 Current Value : 40
 Default Value : 90
 Comment : Modified
File: C:/InCharge/IP/smarts/local/conf/discovery/name-resolver.conf
 Attribute Name : NameFormat
 Current Value : "TM_USESEEDNAME"
 Default Value : "TM_USEAUTONAME"
 Comment : Modified
 Attribute Name : TM_USEAGENTADDRESS
 Current Value : 3
 Default Value : 4
 Comment : Modified
 Attribute Name : TM_USEPRIVATEIP
 Current Value : 4
 Default Value : 3

174 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Configuration Scanner tool Sample Output

 Comment : Modified
File: C:/InCharge/IP/smarts/local/conf/discovery/tpmgr-param.conf
 Attribute Name : maxOIDsPerPacketForASNMP
 Current Value : 15
 Default Value : 19
 Comment : Modified
 Attribute Name : GetBulkPattern-.1.3.6.1.4.1.1872.1.15
 Current Value : TRUE
 Default Value :
 Comment : Newly added
 Attribute Name : GetBulkRetriesOverrideRatio-.1.3.6.1.4.1.1872.1.15
 Current Value : 1.5
 Default Value :
 Comment : Newly added
 Attribute Name : GetBulkTimeoutOverrideRatio-.1.3.6.1.4.1.1872.1.15
 Current Value : 2.5
 Default Value :
 Comment : Newly added
 Attribute Name : IFTypePatternIFExt.1.3.6.1.4.1.119.1.3.13.4
 Current Value :
 Default Value : 39|53|1
 Comment : Removed
 Attribute Name : IFTypePattern-SwitchPort.1.3.6.1.4.1.119.1.14.8
 Current Value :
 Default Value : 37
 Comment : Removed
The following are two way text differences:
===
<--- C:/InCharge/IP/smarts/conf/discovery/discovery.conf --->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 54 to 54 >>>>>>>>>>>>>>
defaultRetries = 5
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 54 to 54 <<<<<<<<<<<<<<
defaultRetries = 8
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 61 to 61 >>>>>>>>>>>>>>
defaultTimeout = 1000
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 61 to 61 <<<<<<<<<<<<<<
defaultTimeout = 2000
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 82 to 82 >>>>>>>>>>>>>>
defaultSNMPAutoRetries = 3
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 82 to 82 <<<<<<<<<<<<<<
defaultSNMPAutoRetries = 4
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 97 to 97 >>>>>>>>>>>>>>
numberProbeThreads = 10
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 97 to 97 <<<<<<<<<<<<<<
numberProbeThreads = 15
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 280 to 280 >>>>>>>>>>>>>>
DiscoveryAddrPref = "IPV6FIRST_IPV4NEXT"
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<

Sample outputs 175

Configuration Scanner tool Sample Output

<<<<<<<<<<<<<< From line: 280 to 280 <<<<<<<<<<<<<<
DiscoveryAddrPref = "IPV4FIRST_IPV6NEXT"
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 287 to 287 >>>>>>>>>>>>>>
MetroEthernetEnabled = FALSE
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 287 to 287 <<<<<<<<<<<<<<
MetroEthernetEnabled = TRUE
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 290 to 290 >>>>>>>>>>>>>>
LicenseThresholdPercentage = 90
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 290 to 290 <<<<<<<<<<<<<<
LicenseThresholdPercentage = 40
<=============== End Difference ===============>
<--->
<--- C:/InCharge/IP/smarts/conf/discovery/name-resolver.conf --->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 19 to 18 >>>>>>>>>>>>>>
#NameFormat = "TM_USESEEDNAME"
NameFormat = "TM_USEAUTONAME"
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 18 to 19 <<<<<<<<<<<<<<
NameFormat = "TM_USESEEDNAME"
#NameFormat = "TM_USEAUTONAME"
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 30 to 29 >>>>>>>>>>>>>>
AutoNameOrder 3 TM_USEPRIVATEIP
AutoNameOrder 4 TM_USEAGENTADDRESS
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 29 to 30 <<<<<<<<<<<<<<
AutoNameOrder 3 TM_USEAGENTADDRESS
AutoNameOrder 4 TM_USEPRIVATEIP
<=============== End Difference ===============>
<--->
<--C:/InCharge/IP/smarts/conf/discovery/oid2type_Cisco.conf ->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 12369 to 12370 >>>>>>>>>>>>>>
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 12370 to 12384 <<<<<<<<<<<<<<
.1.3.6.1.4.1.9.1.916 {
TYPE = Firewall
VENDOR = Cisco
MODEL = ciscoASA5580sc
CERTIFICATION = CERTIFIED
CONT = Cisco-Entity
HEALTH = Cisco-Entity
INSTRUMENTATION:
CPU/Memory = CiscoRouter:DeviceID
Interface-Fault = MIB2
Interface-Performance = MIB2
}
<=============== End Difference ===============>
<--->
<--C:/InCharge/IP/smarts/conf/discovery/oid2type_Misc.conf -->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 8816 to 8806 >>>>>>>>>>>>>>

176 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Configuration Scanner tool Sample Output

.1.3.6.1.4.1.10734.1.3.8 {
TYPE = Firewall
VENDOR = TippingPoint
MODEL = TippingPointIPS
CERTIFICATION = CERTIFIED
CONT = MIB2-IfStack
INSTRUMENTATION:
Interface-Fault = MIB2
Interface-Performance = MIB2
}
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 8806 to 8816 <<<<<<<<<<<<<<
#.1.3.6.1.4.1.10734.1.3.8 {
TYPE = Firewall
VENDOR = TippingPoint
MODEL = TippingPointIPS
CERTIFICATION = CERTIFIED
CONT = MIB2-IfStack
#
#INSTRUMENTATION:
Interface-Fault = MIB2
Interface-Performance = MIB2
#}
<=============== End Difference ===============>
<--->
<--C:/InCharge/IP/smarts/conf/discovery/tpmgr-param.conf --->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 40 to 40 >>>>>>>>>>>>>>
IFTypePatternIFExt.1.3.6.1.4.1.119.1.3.13.4 39|53|1
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 40 to 40 <<<<<<<<<<<<<<
#IFTypePatternIFExt.1.3.6.1.4.1.119.1.3.13.4 39|53|1
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 125 to 125 >>>>>>>>>>>>>>
IFTypePattern-SwitchPort.1.3.6.1.4.1.119.1.14.8 37
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 125 to 125 <<<<<<<<<<<<<<
#IFTypePattern-SwitchPort.1.3.6.1.4.1.119.1.14.8 37
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 554 to 554 >>>>>>>>>>>>>>
#GetBulkPattern-.1.3.6.1.4.1.1872.1.15 TRUE
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 554 to 554 <<<<<<<<<<<<<<
GetBulkPattern-.1.3.6.1.4.1.1872.1.15 TRUE
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 565 to 565 >>>>>>>>>>>>>>
#GetBulkTimeoutOverrideRatio-.1.3.6.1.4.1.1872.1.15 2.5
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 565 to 565 <<<<<<<<<<<<<<
GetBulkTimeoutOverrideRatio-.1.3.6.1.4.1.1872.1.15 2.5
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 576 to 576 >>>>>>>>>>>>>>
#GetBulkRetriesOverrideRatio-.1.3.6.1.4.1.1872.1.15 1.5
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 576 to 576 <<<<<<<<<<<<<<
GetBulkRetriesOverrideRatio-.1.3.6.1.4.1.1872.1.15 1.5
<=============== End Difference ===============>

Sample outputs 177

Configuration Scanner tool Sample Output

<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 582 to 582 >>>>>>>>>>>>>>
maxOIDsPerPacketForASNMP 19
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 582 to 582 <<<<<<<<<<<<<<
maxOIDsPerPacketForASNMP 15
<=============== End Difference ===============>
<--->

Running Configuration Scanner tool without server name

You can run the tool without specifying a running server in the command line. In this
scenario, the tool only scans for changes you made to the configuration files. A sample
output is provided:

C:\InCharge\IP\smarts\bin>sm_perl sm_getinfo -k
Executing sm_configscan ...
Deleting files:

C:\InCharge\IP\smarts\local\logs\smgetinfo_files*smgetinfo-version
s.log*

Getting the Smarts server version ...
Getting the Executable versions ...
Getting the Local lib versions ...
Getting the lib versions ...
Getting the list of installed TTPs ...
No TTPs currently installed
No patches currently installed.
Archiving the files...
Writing to sm_getinfo28Aug2012-044639.tar.zip ...
... Done writing to Final_sm_getinfo28Aug2012-044639.tar.zip
Please send the file:

C:\InCharge\IP\smarts\local\logs\Final_sm_getinfo28Aug2012-044639.t
ar.zip to EMC Support

Report when server is not specified

The following is the sample of the report when the tool is run without specifying a running
server in the command line:

Version: IP.9.1.0.0
These files have been modified in the installation:
===
C:/InCharge/IP/smarts/local/conf/discovery/discovery.conf
C:/InCharge/IP/smarts/local/conf/discovery/name-resolver.conf
C:/InCharge/IP/smarts/local/conf/discovery/oid2type_Cisco.conf
C:/InCharge/IP/smarts/local/conf/discovery/oid2type_Misc.conf
C:/InCharge/IP/smarts/local/conf/discovery/tpmgr-param.conf
These files have been introduced in the installation:
===
C:/InCharge/IP/smarts/local/repos/icf/INCHARGE-AMPM.rps
C:/InCharge/IP/smarts/local/repos/icf/INCHARGE-AMPM.rps.bak
The following changes were made to some special configuration files:
===
File: C:/InCharge/IP/smarts/local/conf/discovery/discovery.conf
 Attribute Name : MetroEthernetEnabled
 Current Value : TRUE
 Default Value : FALSE
 Comment : Modified
 Attribute Name : defaultTimeout
 Current Value : 2000
 Default Value : 1000
 Comment : Modified
 Attribute Name : defaultRetries

178 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Configuration Scanner tool Sample Output

 Current Value : 8
 Default Value : 5
 Comment : Modified
 Attribute Name : defaultSNMPAutoRetries
 Current Value : 4
 Default Value : 3
 Comment : Modified
 Attribute Name : DiscoveryAddrPref
 Current Value : "IPV4FIRST_IPV6NEXT"
 Default Value : "IPV6FIRST_IPV4NEXT"
 Comment : Modified
 Attribute Name : numberProbeThreads
 Current Value : 15
 Default Value : 10
 Comment : Modified
 Attribute Name : LicenseThresholdPercentage
 Current Value : 40
 Default Value : 90
 Comment : Modified
File: C:/InCharge/IP/smarts/local/conf/discovery/name-resolver.conf
 Attribute Name : NameFormat
 Current Value : "TM_USESEEDNAME"
 Default Value : "TM_USEAUTONAME"
 Comment : Modified
 Attribute Name : TM_USEAGENTADDRESS
 Current Value : 3
 Default Value : 4
 Comment : Modified
 Attribute Name : TM_USEPRIVATEIP
 Current Value : 4
 Default Value : 3
 Comment : Modified

File: C:/InCharge/IP/smarts/local/conf/discovery/tpmgr-param.conf
 Attribute Name : maxOIDsPerPacketForASNMP
 Current Value : 15
 Default Value : 19
 Comment : Modified
 Attribute Name : GetBulkPattern-.1.3.6.1.4.1.1872.1.15
 Current Value : TRUE
 Default Value :
 Comment : Newly added
 Attribute Name : GetBulkRetriesOverrideRatio-.1.3.6.1.4.1.1872.1.15
 Current Value : 1.5
 Default Value :
 Comment : Newly added
 Attribute Name : GetBulkTimeoutOverrideRatio-.1.3.6.1.4.1.1872.1.15
 Current Value : 2.5
 Default Value :
 Comment : Newly added
 Attribute Name : IFTypePatternIFExt.1.3.6.1.4.1.119.1.3.13.4
 Current Value :
 Default Value : 39|53|1
 Comment : Removed
 Attribute Name : IFTypePattern-SwitchPort.1.3.6.1.4.1.119.1.14.8
 Current Value :
 Default Value : 37
 Comment : Removed
The following are two way text differences:
===
<--- C:/InCharge/IP/smarts/conf/discovery/discovery.conf --->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 54 to 54 >>>>>>>>>>>>>>
defaultRetries = 5
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<

Sample outputs 179

Configuration Scanner tool Sample Output

<<<<<<<<<<<<<< From line: 54 to 54 <<<<<<<<<<<<<<
defaultRetries = 8
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 61 to 61 >>>>>>>>>>>>>>
defaultTimeout = 1000
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 61 to 61 <<<<<<<<<<<<<<
defaultTimeout = 2000
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 82 to 82 >>>>>>>>>>>>>>
defaultSNMPAutoRetries = 3
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 82 to 82 <<<<<<<<<<<<<<
defaultSNMPAutoRetries = 4
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 97 to 97 >>>>>>>>>>>>>>
numberProbeThreads = 10
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 97 to 97 <<<<<<<<<<<<<<
numberProbeThreads = 15
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 280 to 280 >>>>>>>>>>>>>>
DiscoveryAddrPref = "IPV6FIRST_IPV4NEXT"
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 280 to 280 <<<<<<<<<<<<<<
DiscoveryAddrPref = "IPV4FIRST_IPV6NEXT"
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 287 to 287 >>>>>>>>>>>>>>
MetroEthernetEnabled = FALSE
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 287 to 287 <<<<<<<<<<<<<<
MetroEthernetEnabled = TRUE
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 290 to 290 >>>>>>>>>>>>>>
LicenseThresholdPercentage = 90
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 290 to 290 <<<<<<<<<<<<<<
LicenseThresholdPercentage = 40
<=============== End Difference ===============>
<--->
<--C:/InCharge/IP/smarts/conf/discovery/name-resolver.conf -->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 19 to 18 >>>>>>>>>>>>>>
#NameFormat = "TM_USESEEDNAME"
NameFormat = "TM_USEAUTONAME"
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 18 to 19 <<<<<<<<<<<<<<
NameFormat = "TM_USESEEDNAME"
#NameFormat = "TM_USEAUTONAME"
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 30 to 29 >>>>>>>>>>>>>>

180 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

Configuration Scanner tool Sample Output

AutoNameOrder 3 TM_USEPRIVATEIP
AutoNameOrder 4 TM_USEAGENTADDRESS
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 29 to 30 <<<<<<<<<<<<<<
AutoNameOrder 3 TM_USEAGENTADDRESS
AutoNameOrder 4 TM_USEPRIVATEIP
<=============== End Difference ===============>
<--->

<--C:/InCharge/IP/smarts/conf/discovery/oid2type_Cisco.conf-->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 12369 to 12370 >>>>>>>>>>>>>>
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 12370 to 12384 <<<<<<<<<<<<<<

.1.3.6.1.4.1.9.1.916 {
TYPE = Firewall
VENDOR = Cisco
MODEL = ciscoASA5580sc
CERTIFICATION = CERTIFIED
CONT = Cisco-Entity
HEALTH = Cisco-Entity

INSTRUMENTATION:
CPU/Memory = CiscoRouter:DeviceID
Interface-Fault = MIB2
Interface-Performance = MIB2
}
<=============== End Difference ===============>
<--->
<--C:/InCharge/IP/smarts/conf/discovery/oid2type_Misc.conf -->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 8816 to 8806 >>>>>>>>>>>>>>
.1.3.6.1.4.1.10734.1.3.8 {
TYPE = Firewall
VENDOR = TippingPoint
MODEL = TippingPointIPS
CERTIFICATION = CERTIFIED
CONT = MIB2-IfStack

INSTRUMENTATION:
Interface-Fault = MIB2
Interface-Performance = MIB2
}
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 8806 to 8816 <<<<<<<<<<<<<<
#.1.3.6.1.4.1.10734.1.3.8 {
TYPE = Firewall
VENDOR = TippingPoint
MODEL = TippingPointIPS
CERTIFICATION = CERTIFIED
CONT = MIB2-IfStack
#
#INSTRUMENTATION:
Interface-Fault = MIB2
Interface-Performance = MIB2
#}
<=============== End Difference ===============>
<--->

<--C:/InCharge/IP/smarts/conf/discovery/tpmgr-param.conf --->
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 40 to 40 >>>>>>>>>>>>>>

Sample outputs 181

Configuration Scanner tool Sample Output

IFTypePatternIFExt.1.3.6.1.4.1.119.1.3.13.4 39|53|1
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 40 to 40 <<<<<<<<<<<<<<
#IFTypePatternIFExt.1.3.6.1.4.1.119.1.3.13.4 39|53|1
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 125 to 125 >>>>>>>>>>>>>>
IFTypePattern-SwitchPort.1.3.6.1.4.1.119.1.14.8 37
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 125 to 125 <<<<<<<<<<<<<<
#IFTypePattern-SwitchPort.1.3.6.1.4.1.119.1.14.8 37
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 554 to 554 >>>>>>>>>>>>>>
#GetBulkPattern-.1.3.6.1.4.1.1872.1.15 TRUE
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 554 to 554 <<<<<<<<<<<<<<
GetBulkPattern-.1.3.6.1.4.1.1872.1.15 TRUE
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 565 to 565 >>>>>>>>>>>>>>
#GetBulkTimeoutOverrideRatio-.1.3.6.1.4.1.1872.1.15 2.5
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 565 to 565 <<<<<<<<<<<<<<
GetBulkTimeoutOverrideRatio-.1.3.6.1.4.1.1872.1.15 2.5
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 576 to 576 >>>>>>>>>>>>>>
#GetBulkRetriesOverrideRatio-.1.3.6.1.4.1.1872.1.15 1.5
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 576 to 576 <<<<<<<<<<<<<<
GetBulkRetriesOverrideRatio-.1.3.6.1.4.1.1872.1.15 1.5
<=============== End Difference ===============>
<============== Start Difference ==============>
>>>>>>>>>>>>>> Base File Contents >>>>>>>>>>>>>>
>>>>>>>>>>>>>> From line: 582 to 582 >>>>>>>>>>>>>>
maxOIDsPerPacketForASNMP 19
<<<<<<<<<<<<<< Local File Contents <<<<<<<<<<<<<<
<<<<<<<<<<<<<< From line: 582 to 582 <<<<<<<<<<<<<<
maxOIDsPerPacketForASNMP 15
<=============== End Difference ===============>
<--->

182 EMC Smarts Installation Guide for SAM, IP, ESM, MPLS, NPM, OTM, and VoIP Managers

		Overview

		Product contents

		Installation directory structure

		Product and version compatibility

		Installation tasks overview

		Upgrade tasks overview

		Migration tasks overview

		Uninstallation tasks overview

		Performing an Installation

		Installation overview

		Installation prerequisites

		Install the product

		Install using Wizard mode

		Install using CLI mode

		Install using Unattended mode

		Additional Service Assurance Manager installation tasks

		Installing the Service Assurance Manager Console, or the Smarts NOTIF Editor, or both

		Add additional features to a new installation

		Support for FIPS 140-2 for 9.6 products

		Enabling FIPS 140 mode on a new installation

		Disabling FIPS 140 mode

		Next steps

		Performing an Installation in Docker Container

		Installation overview

		Installation prerequisites

		Creating and starting Docker image

		Operations on Docker container

		Performing Smarts upgrade inside Docker

		NAS Installation and Startup

		Overview

		Installing and starting the HTTPS Adapter service

		Running HTTPs adapter in FIPS mode

		Performing an Upgrade

		Upgrade installation overview

		Installer tasks

		Installer-called utilities

		Upgrade installation prerequisites

		Upgrade the product

		Add additional features to an upgrade installation

		Upgrading 9.6 products in FIPS mode

		Next steps

		Performing a Migration

		Migration overview

		Install and migrate on the same host

		Migration procedure for the same host

		Install and migrate on a different host

		Migration procedure for a different host

		Post-migration tasks

		Rename the repository file

		Ensure that the Broker host:port is updated in the runcmd_env.sh files

		Remove the old out-of-date service entries

		Change the secret phrase to match rest of deployment

		Uninstall the old software

		Migration Utilities

		Customization migration utility overview

		sm_migrate modes of operation

		sm_migrate function

		Customization migration procedures

		Migrating customizations on the same host

		Migrating customizations to a different host

		Restoring customizations after an upgrade installation

		Perform a rollback

		Custom file migration use cases

		Migration of security configuration files

		Migration of dynamic model files

		Three-way merge utility

		Use cases for content block comparison

		Configuration migration process logs

		Automatically migrate topology for IP Manager using RPS utility

		Functions of RPS migration utility

		Running RPS migration utility

		Deployment utility overview

		Running the Deployment utility

		sm_deploy modes of operation

		To create a deployment package

		Manage RPS file settings across multiple installations

		To deploy the package

		To Rollback

		Verifying the Installation

		Check the version number

		Start services

		Starting services on UNIX

		Starting services on Windows

		Start programs

		Service and program startup options

		Start Smarts NOTIF

		Verify the product status

		Verify the FIPS 140 mode status

		Collect system information

		sm_getinfo files

		sm_getinfo command-line syntax

		sm_getinfo invocation examples

		sm_getinfo data collection

		Configuration Scanner Tool

		Running the Configuration Scanner tool from the sm_getinfo utility

		Performing an Uninstallation

		Before uninstallation

		Extracting JVM file

		Remove manually installed services

		Determine order for removing products (UNIX only)

		Uninstall when same product software is installed twice (Windows only)

		Detect and stop programs

		Uninstall EMC Smarts products

		Uninstall using Wizard mode

		Uninstall using CLI mode

		Uninstall using Unattended mode

		The sm_edit utility

		sm_edit

		sm_edit example

		Manually Installing Services

		Overview

		Selection of bootstrap files when installing services

		Broker services

		Services for the IP Manager

		IP Availability Manager-only server

		IP Availability Manager-only server (interacting with EMC M&R)

		IP Performance Manager-only Server

		IP Performance Manager-only Server (interacting with EMC M&R)

		IP Availability and Performance Manager Server

		IP Availability and Performance Manager Server (interacting with EMC M&R)

		IP Configuration Manager

		IP Configuration Manager (interacting with EMC M&R)

		Services for the Service Assurance Manager

		EMC Smarts Broker

		Service Assurance Manager (Presentation SAM server)

		Service Assurance Manager (Global Manager)

		Business Impact Manager server

		Adapter Platform

		Business Dashboard

		Syslog Adapter

		SNMP Trap Adapter

		Notif trap Adapter

		Notif syslog adapter

		EMC Smarts Data Web Applications (Tomcat)

		EMC Smarts Notification Exchange (Rabbit MQ)

		EMC Smarts Notification Cache (ElasticSearch)

		Services for the MPLS Manager

		MPLS Topology Server

		MPLS Monitoring Server

		MPLS Analysis Server

		MPLS VPN-Tagging Server

		Services for the Server Manager

		Server Manager

		Services for the Network Protocol Manager installation

		Network Protocol Manager for BGP

		Network Protocol Manager for EIGRP

		Network Protocol Manager for IS-IS

		Network Protocol Manager for OSPF

		Services for the Optical Transport Manager

		EMC Smarts Optical Transport Manager for Next Generation WDM

		EMC Smarts Optical Transport Manager for SDH (Topology)

		EMC Smarts Optical Transport Manager for SDH (Analysis)

		EMC Smarts Optical Transport Manager for PDH (Topology)

		EMC Smarts Optical Transport Manager for PDH (Analysis)

		EMC Smarts Optical Transport Manager for WDM (Topology)

		EMC Smarts Optical Transport Manager for WDM (Analysis)

		EMC Smarts Optical Transport Manager for IP Cross Domain Analysis

		EMC Smarts TMF814 Cisco CTM Adapter for OTM

		EMC Smarts TMF814 Ciena On-Center Adapter for OTM

		Services for the VoIP Availability Manager

		VoIP Availability Manager

		VoIP Notification Trap Adapter

		Procedures for CD/DVD-ROMs

		Mounting a CD/DVD-ROM on UNIX systems

		Loading a CD/DVD-ROM on Windows

		Using the MPLS server_config Utility

		Use the server_config.pl script to change domain names

		Purpose

		Run the script

		Script options

		EMC Smart Optical Transport Manager Configuration

		Prerequisites

		Optical Transport Manager

		SAM servers used with OTM

		Global Manager

		Configuring Optical Transport Manager

		OTM settings

		Configuring EMC M&R for the OTM Next Generation WDM Manager

		Configure the RabbitMQ service for the OTM Next Generation WDM Domain Manager

		OTM-Extensions

		Configuration scenarios

		Configuring the Service Assurance Manager

		Configuring the presentation layer Global Manager

		Configuration Scanner tool Sample Output

		Files created by Configuration Scanner tool

		Sample outputs

		Running Configuration Scanner tool with server name

		Report when server is specified

		Running Configuration Scanner tool without server name

		Report when server is not specified

EMC® Smarts®

Optical Transport Manager
Version 9.4

XD Manager for OTM to IP User Guide
P/N 302-001-511
REV 01

EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide2

Copyright © 2004 - 2015 EMC Corporation. All rights reserved. Published in the USA.

Published January, 2015

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

EMC2, EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

http://support.emc.com

CONTENTS

Chapter 1 Introduction

 Overview of cross-domain management.. 6
 XD Manager for OTM to IP architecture... 8
 Cross-domain analysis example .. 9

Chapter 2 XD Manager for OTM to IP Topology

 Cross-domain topology ... 12
 Topology creation.. 13
 Multiple domain servers ... 24
 Supported and unsupported NetworkConnections 24

Chapter 3 Event Processing

 Event notification handling ... 30
 Cross-domain failure scenarios ... 32

Appendix A Configuration

Appendix B Understanding the sm_edit Utility

Index

EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide 3

Contents

4 EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide

CHAPTER 1
Introduction

This chapter provides an overview of the topology, architecture, and correlation of events
between the Optical Transport Manager domain and the IP Manager domain in the
following sections:

? Overview of cross-domain management .. 6
? XD Manager for OTM to IP architecture... 8
? Cross-domain analysis example .. 9

Introduction 5

Introduction

Overview of cross-domain management
Figure 1 shows an IP connection between two routers riding over an optical network.

In the IP domain, the logical connection exists between two interfaces, but the underlying
optical network is unknown to the IP Domain Manager. The NetworkConnection element is
discovered and managed by IP Manager.

In the Optical domain, the Circuit traversing the network (shown in bold) is managed by an
OTM Domain Manager, but its purpose, and therefore impact, in the IP domain is
unknown. The Circuit element is managed by Optical Transport Manager.

Figure 1 Cross-domain domains and OSI layers 1 and 3

Just as failures in the Optical domain may result in symptoms in the IP domain, failures in
the IP domain may result in symptoms in the Optical domain. The XD Manager OTM to IP
correlates failures in the Optical and IP domains to determine the actual root cause and
associate the root cause to the impacts in other domains.

Layer 1 failures
The Layer 1 failures reported and analyzed by the Optical Transport Manager Domain
Managers are:

? Equipment problems

? Fiber cuts

IP IPOptical

Network view

Optical domain
Layer 1

IP domain
Layer 3

6 EMC XD Manager for OTM to IP User Guide

Introduction

? Circuit pack failure

? Port failure

? And any other problems that cause the Layer 1 circuit to fail

Layer 1 circuits are circuits that transport two Layer 3 devices at the following service
layers:

? DS3/VC3
? STS-3C/VC4
? STS-12C/VC4-4C
? STS-48/CVC4-16C
? STS-192C/VC4-64C
? OC-48/STM-16 (WDM wavelength)
? OC192/STM-64 (WDM wavelength)

Layer 3 failures
The Layer 3 failures reported and analyzed by the IP Manager include both physical and
logical failures. An example of a logical failure is “IP Network Connection failure.”

Cross-domain correlation provides root cause analysis that takes into account the failures
that occur in both Layer 3 and Layer 1 domains. The XD Manager OTM to IP provides root
cause analysis that links failures to a single root cause in the Optical domain, the IP
domain, or in the connection in between the optical and IP devices. In addition, the XD
Manager OTM to IP identifies the entities that are impacted by the failures.

Overview of cross-domain management 7

Introduction

XD Manager for OTM to IP architecture
Figure 2 shows EMC products as they relate to XD Manager OTM to IP.

Figure 2 EMC Smarts Optical Transport Manager architecture

The XD Topology Adapter imports topology objects from OTM and IP as topology proxies.
The XD Topology Adapter imports topology from IP and from OTM servers based on data
from the client’s Inventory and Provisioning database. The XD Topology Adapter imports
only the topology elements related to the connection points between the IP and Optical
Network.

XD Manager OTM to IP looks at topological data from the Topology Servers then imports
the cross-domain topology proxy objects from the OTM Analysis Servers and IP.

As failures occur, analysis is done by IP and by the Optical Transport Manager Domain
Managers. The output of this analysis is received by XD Manager OTM to IP which then
correlates the root cause problem of the failure to Service Assurance Manager (SAM).

Alarms/Notifications

Topology Data

WDM High Order
SONET/SDH

XD OTM-IP
EMC Smarts

Inventory &
Provisioning

IP AM
EMC Smarts

XD Topology
Adapter

IP

Topology Proxy for XD objects SAM
EMC Smarts

O
p
tic

a
l N

e
tw

o
rk

 D
o
m

a
in

s

WDM Analysis
EMC Smarts

SONET/SDH Analysis
EMC Smarts

PDH Analysis
EMC Smarts

WDM Topology
EMC Smarts

SONET/SDH Topology
EMC Smarts

PDH Topology
EMC Smarts

Low Order
SONET/SDH

T
o
p
o
lo

g
y

S
e
rv

e
rs

A
n
a
ly

s
is

S
e
rv

e
rs

WDM-NG
Analysis and

Topology

WDM dd

EMC Smarts

8 EMC XD Manager for OTM to IP User Guide

Introduction

Domain managers

EMC Smarts Optical Transport Manager has four Domain Managers:

? WDM (Wavelength Division Multiplexing) - Monitors WDM optical network elements.

? SONET/SDH - Monitors SONET or SDH elements that are faster than 34M such as VC-3
and AU-4 protocols.

? PDH - Also known more accurately as Low-order SONET/SDH, this domain monitors
SONET or SDH elements that are 6M or slower such as VC-2 and AU-2 protocols.

? WDM-NG (Next Gen) works with EMC M&R to collect data from EMS systems that
support TMF 864.

Each Domain Manager (except WDM NG) consists of a pair of servers: Topology server and
Analysis server. For WDM-NG, the Analysis & Topology servers are combined.

In a typical deployment, there may be multiple IP servers, SONET/SDH servers, WDM
servers, and Low-order SONET/SDH (PDH) servers. There may also be multiple adapters. In
Figure 2, the XD OTM-IP server appears to import topology from all Domain Managers. But,
in larger networks, you may need a separate XD OTM-IP server deployed for IP-to-WDM,
IP-to-WDM-NG, IP-to-PDH, and IP-to-SDH analysis.

Cross-domain analysis example
Initially, during topology creation, the XD Manager OTM to IP creates proxy object
instances corresponding to object instances in the Optical Transport Manager and in the IP
Manager. In this example we show a TopologicalLink Down problem in Optical Transport
Manager impacting a NetworkConnection in the IP network.

The XD Manager OTM to IP imports OTM and IP technology related to the Circuit and
NetworkConnection including the Circuit, NetworkConnection, Routers, Cards, and
Interfaces. XD Manager OTM to IP also creates relationships between the Optical topology
and the IP topology, such as a NetworkConnection is LayeredOver a Circuit.

In the example shown in Figure 3, a failure in the Optical network causes a failure in the
ability to communicate between two IP Routers. In order for XD Manager OTM to IP to
perform analysis, it monitors events in OTM and IP domains via remote instrumentation. In
this case, OTM notifies TopologicalLink Down, and Circuit ServiceUnavailable. IP notifies
NetworkConnection Down. XD Manager OTM to IP receives these events and determines
the true root cause. It determines that TopologicalLink Down in OTM causes the
NetworkConnection Down in IP and provides this to SAM. As a result, SAM shows the root
cause as TopologicalLink Down, and an impact of NetworkConnection Down and Circuit
ServiceUnavailalble.

Cross-domain analysis example 9

Introduction

Figure 3 Cross-domain analysis example

SONET/SDH

Circuit

Network Connection

IP
Layer 3

Layer 1

XD

Propagated
Impact

Imported
Event

Imported
Network
Connection

LayeredOver/
Underlying
Relationship

Impact

Imported
Circuit

Imported
Event

10 EMC XD Manager for OTM to IP User Guide

CHAPTER 2
XD Manager for OTM to IP Topology

This chapter describes populating the topology of the XD Manager OTM to IP.

? Cross-domain topology ... 12
? Topology creation.. 13
? Multiple domain servers ... 24
? Supported and unsupported NetworkConnections .. 24

XD Manager for OTM to IP Topology 11

XD Manager for OTM to IP Topology

Cross-domain topology
The Optical Transport Manager collects and builds the optical network topology while the
IP Manager collects and builds the IP network topology. In order to build the cross-domain
topology, XD Manager for OTM to IP must be provided data relating customer circuits in the
SDH, PDH and WDM domains to connections between Routers and Switches in the IP
domain.

The data must specify Circuit information from OTM and related IP connection information
from IP. The Circuit information may be specified in different ways including the Circuit
name, and PTPs for the Circuit. The IP connection information includes the Routers,
Switches and Interfaces or Ports connected to the Optical Circuit.

The XD Topology Adapter uses this data to import topology from Optical Transport
Manager and IP Manager only for the above objects. Figure 4 on page 12 shows the
topology imported into the XD Manager for OTM to IP.

Figure 4 Objects imported into XD Manager for OTM to IP

The data collected from Optical Transport Manager is:

? The Circuit object

? The DropSideToplogicalLinks (for SDH, PDH, and WDM-NG)

? The edge FiberLinks (for WDM)

The data collected from IP Manager is:

? The connections between the Router Interfaces or Switches, which may be
NetworkConnections, Cables, or TrunkCables.

? The Interfaces or Ports connected to the NetworkConnection or Cable

• If applicable, a physical port or interface may be underlying the interface or port
connected to the network connection

12 EMC XD Manager for OTM to IP User Guide

XD Manager for OTM to IP Topology

? The Cards realizing the Interfaces or Ports

? The Router or Switch containing the Interfaces, Ports, Cards

Topology creation
The XD Manager OTM to IP requires information on the connections between IP and OTM
components. This information must be provided in a topology file. The topology file format
is described in “XD Topology data format” on page 13.

The XD Topology Adapter is installed along with XD Manager OTM to IP

The topology file can be created from an external source such as the customer’s
proprietary inventory database and provisioning system.

The XD Topology Adapter processes this information and outputs the processed
information to data tables within XD Manager for OTM to IP. XD Manager for OTM to IP
reads the table data and interacts with IP and OTM to import the connections between IP
devices that have related underlying SDH, PDH and WDM circuits.

Once the topology is created, XD Manager for OTM to IP monitors attributes/events in the
Optical Transport Manager and IP Manager topologies using remote instrumentation.

XD Topology data format

The topology file can be easily created from the customer’s cross-domain data using
customer developed processing. For example, a customer may have their cross domain
information in a provisioning database. They can develop a database download script that
extracts the data from the database and format it into the specified format.

The following sections provide the layout of all the fields of data. There are several
different data format options of mandatory and optional fields.

? “Topology data format for SDH, PDH, and WDM-NG servers” on page 14

? “Topology data format for WDM servers” on page 16

Topology creation 13

XD Manager for OTM to IP Topology

Topology data format for SDH, PDH, and WDM-NG servers
Table 1 on page 14 describes the data file format which must be used to provide OTM-IP
connection information to XD Manager for SDH, PDH, and WDM-NG servers.

Table 1 XD Topology file format for SDH and PDH servers

Field
No. Field Name Sample Value Type Comments

1 Record Type ADD String This field is not specified at all for a full import, only for
an incremental import.
Valid values are “ADD” or “DELETE”

1 A-Router Router1 String IP A-side router. Required.

2 A-Router-IF Se1/1 String IP A-side router interface or switch port. Required.
• If “IF-” or “PORT-” is prefixed, an actual instance

name is assumed.
• If “IF-” or “PORT-” is not prefixed,

ICIM_ObjectFactory::findInterface or
ICIM_ObjectFactory::findPort locates the interface or
port.

3 A-ONE Node1 String A-side OpticalNetworkElement

4 A-ONE-Rack 1 Integ
er

Rack number of A-side OpticalNetworkElement

5 A-ONE-Shelf 1 Integ
er

Shelf number of A-side OpticalNetworkElement

6 A-ONE-Slot 1 Integ
er

Slot number of A-side OpticalNetworkElement

7 A-ONE-SubSl
ot

1 Integ
er

Subslot number of A-side OpticalNetworkElement.
Optional.

8 A-ONE-PTP A-side OpticalNetworkElement
PhysicalTerminationPoint.
This field is evaluated after A-ONE-CTP field 9.

8 Integ
er

PTP number. Used when Rack, Shelf, and Slot are
specified.

PTP-ONE2/1-1-4-3 String PTP instance name must start with “PTP-”.
When specified, all other OTM fields 3-7, 9-14, 16 are
ignored.
Must be used with Z-ONE-PTP field 15.

1-1-7-3 String PTP AID (Access Identifier)
A-ONE field 3 and Z-ONE field 10 must also be
specified.
All other OTM fields, 4-7, 9, 11-14, 16, must not be
specified.

14 EMC XD Manager for OTM to IP User Guide

XD Manager for OTM to IP Topology

9 A-ONE-CTP A-side OpticalNetworkElement
ConnectionTerminationPoint.
This field is evaluated before A-ONE-PTP field 8.

1 Integ
er

CTP number. Used when Rack, Shelf, and Slot are
specified.

CTP-ONE2/1-1-4-3/
3

String CTP instance name must start with “CTP-”.
When specifed, all other OTM fields 3-8, 10-16 are
ignored.
Must be used with Z-ONE-CTP field 16.

1-1-7-3/1 String CTP AID (Access Identifier)
A-ONE field 3 and Z-ONE field 10 must also be
specified.
All other OTM fields, 4-8, 11-15, must not be specified.

10 Z-ONE Node8 String Z-side OpticalNetworkElement

11 Z-ONE-Rack 1 Integ
er

Rack number of Z-side OpticalNetworkElement

12 Z-ONE-Shelf 1 Integ
er

Shelf number of Z-side OpticalNetworkElement

13 Z-ONE-Slot 1 Integ
er

Slot number of Z-side OpticalNetworkElement

14 Z-ONE-SubSl
ot

1 Integ
er

Subslot number of Z-side OpticalNetworkElement.
Optional.

15 Z-ONE-PTP A-side OpticalNetworkElement
PhysicalTerminationPoint.
This field is evaluated after Z-ONE-CTP field 16.

8 Integ
er

PTP number. Used when Rack, Shelf, and Slot are
specified.

PTP-ONE1/1-1-7-3 String PTP instance name must start with “PTP-”.
When specifed, all other OTM fields 3-7, 9-14, 16 are
ignored.
Must be used with A-ONE-PTP field 8.

1-1-7-3 String PTP AID (Access Identifier)
A-ONE field 3 and Z-ONE field 10 must also be
specified.
All other OTM fields, 4-7, 9, 11-14, 16, must not be
specified.

Table 1 XD Topology file format for SDH and PDH servers (continued)

Field
No. Field Name Sample Value Type Comments

Topology creation 15

XD Manager for OTM to IP Topology

Topology data format for WDM servers
Table 2 on page 16 describes the data file format which must be used to provide OTM-IP
connection information to XD Manager for WDM servers.

16 Z-ONE-CTP A-side OpticalNetworkElement
ConnectionTerminationPoint.
This field is evaluated before Z-ONE-PTP field 8.

1 Integ
er

CTP number. Used when Rack, Shelf, and Slot are
specified.

CTP-ONE1/1-1-7-3/
1

String CTP instance name must start with “CTP-”.
When specifed, all other OTM fields 3-8, 10-16 are
ignored.
Must be used with A-ONE-CTP field 9.

1-1-7-3/1 String CTP AID (Access Identifier)
A-ONE field 3 and Z-ONE field 10 must also be
specified.
All other OTM fields, 4-8, 11-15, must not be specified.

17 Z-Router Router2 String IP Z-side router. Required.

18 Z-Router-IF Se1/1 String IP Z-side router interface. Required.
• If “IF-” or “PORT-” is prefixed, an actual instance

name is assumed.
• If “IF-” or “PORT-” is not prefixed,

ICIM_ObjectFactory::findInterface or
ICIM_ObjectFactory::findPort locates the interface or
port.

19 Circuit-Name Node1-Node8/140
MB

String If specified, all other OTM fields (3-16) are ignored.
Must not be specified if other OTM fields (3-16) are
populated.
If not specified with “CRCT-“prefix, “CRCT-” prefix will
be added.

Table 1 XD Topology file format for SDH and PDH servers (continued)

Field
No. Field Name Sample Value Type Comments

Table 2 XD Topology file format for WDM servers

Field
No. Field Name Sample Value Type Comments

1 Record Type ADD String This field is not specified at all for a full import, only for
an incremental import.
Valid values are “ADD” or “DELETE”

1 A-Router qa-Vpls2 String IP A-side router. Required.

2 A-Router-IF IF-qa-Vpls2/26 String IP A-side router interface or switch port. Required.
• If “IF-” or “PORT-” is prefixed, an actual instance

name is assumed.
• If “IF-” or “PORT-” is not prefixed,

ICIM_ObjectFactory::findInterface or
ICIM_ObjectFactory::findPort locates the interface or
port.

3 A-ONE Node1 String A-side OpticalNetworkElement

16 EMC XD Manager for OTM to IP User Guide

XD Manager for OTM to IP Topology

4 A-ONE-Rack 1 Integ
er

Rack number of A-side OpticalNetworkElement

5 A-ONE-Shelf 1 Integ
er

Shelf number of A-side OpticalNetworkElement

6 A-ONE-Slot 1 Integ
er

Slot number of A-side OpticalNetworkElement

7 A-ONE-SubSl
ot

1 Integ
er

Subslot number of A-side OpticalNetworkElement.
Optional.

8 A-ONE-PORT A-side OpticalNetworkElement
PhysicalTerminationPoint.
This field is evaluated after A-ONE-CTP field 9.

8 Integ
er

PTP number. Used when Rack, Shelf, and Slot are
specified.

PORT-Node1/2-2-7
/OCN-IN-1

String PTP instance name must start with “PTP-”.
When specified, all other OTM fields 3-7, 9-14, 16 are
ignored.
Must be used with Z-ONE-PTP field 15.

1-2-2-7-OCN-IN-1 String PTP AID (Access Identifier)
A-ONE field 3 and Z-ONE field 10 must also be
specified.
All other OTM fields, 4-7, 9, 11-14, 16, must not be
specified.

9 NA NA NA NA

10 Z-ONE Node5 String Z-side OpticalNetworkElement

11 Z-ONE-Rack 5 Integ
er

Rack number of Z-side OpticalNetworkElement

12 Z-ONE-Shelf 2 Integ
er

Shelf number of Z-side OpticalNetworkElement

13 Z-ONE-Slot 2 Integ
er

Slot number of Z-side OpticalNetworkElement

14 Z-ONE-SubSl
ot

OCN-IN-1 Integ
er

Subslot number of Z-side OpticalNetworkElement.
Optional.

Table 2 XD Topology file format for WDM servers (continued)

Field
No. Field Name Sample Value Type Comments

Topology creation 17

XD Manager for OTM to IP Topology

Order of input evaluation
The OTM Circuit information in the topology data file, may be specified in several different
formats. The formats are the following and are evaluated in the order listed:

1. Circuit-Name, field 19. If this is specified, fields 3 - 16 values are ignored.

2. CTP instance names – A-ONE-CTP, field 9 and Z-ONE-CTP, field 16, contain CTP instance
names starting with a “CTP-” prefix. Fields 3-8, and 10-15 values are ignored.

3. PTP instance names – A-ONE-PTP, field 8 and Z-ONE-CTP, field 15, contain PTP instance
names starting with a “PTP-” prefix. Fields 3-7, 9-14, and 16 values are ignored.

4. Rack, Shelf and Slot numbers – A-ONE-Rack, Shelf, Slot, fields 4-6, and Z-ONE-Rack,
Shelf, and Slot, fields 11-13. (A-ONE-SubSlot and Z-ONE-SubSlot are optional.)

5. CTP AID – A-ONE-CTP, field 9, for AID string.

6. PTP AID – A-ONE-PTP, field 8, for AID string.

15 Z-ONE-PORT A-side OpticalNetworkElement
PhysicalTerminationPoint.
This field is evaluated after Z-ONE-CTP field 16.

8 Integ
er

PTP number. Used when Rack, Shelf, and Slot are
specified.

PORT-Node5/2-2-8
/OCN-IN-1

String PTP instance name must start with “PTP-”.
When specifed, all other OTM fields 3-7, 9-14, 16 are
ignored.
Must be used with A-ONE-PTP field 8.

5-2-2-8-OCN-IN-1 String PTP AID (Access Identifier)
A-ONE field 3 and Z-ONE field 10 must also be
specified.
All other OTM fields, 4-7, 9, 11-14, 16, must not be
specified.

16 NA NA NA NA

17 Z-Router qa-Vpls5 String IP Z-side router. Required.

18 Z-Router-IF IF-qa-Vpls5/3 String IP Z-side router interface. Required.
• If “IF-” or “PORT-” is prefixed, an actual instance

name is assumed.
• If “IF-” or “PORT-” is not prefixed,

ICIM_ObjectFactory::findInterface or
ICIM_ObjectFactory::findPort locates the interface or
port.

19 Circuit-Name TestCircuit String If specified, all other OTM fields (3-16) are ignored.
Must not be specified if other OTM fields (3-16) are
populated.
If not specified with “CRCT-“prefix, “CRCT-” prefix will
be added.

Table 2 XD Topology file format for WDM servers (continued)

Field
No. Field Name Sample Value Type Comments

18 EMC XD Manager for OTM to IP User Guide

XD Manager for OTM to IP Topology

Mapping of data to topology instances
? It is assumed that the A-Router and Z-Router name specified in the data file exactly

matches an object name in the topology. If it does not match an object in the
topology, a search is executed with the information given. There is a performance cost
for this search.

? If the A-Router-IF and Z-Router-IF fields begins with "IF-" or “PORT-” it is assumed that
this is the actual instance name. For example,
“IF-network:162.129.50.13:shlf-1:cdSt-1: card:dtrCdSt-3:dtrCd:port-15.” If the field
does not begin with "IF-" or “PORT-”, the logic performs a search within IP to locate the
related interface. There is a performance cost for this search.

? A-ONE and Z-ONE logic assumes that the data specified in the file exactly matches the
instance name in OTM.

? For A-Router-IF and Z-Router-IF, it is expected that the interface or port specified is
either a physical interface/port or an interface/port connected to a
NetworkConnection or Cable with an underlying Optical Circuit.

? If the A-Router-IF and Z-Router-IF specified are physical, it is assumed that there is only
one NetworkConnection or Cable between A-Router and Z-Router related to these
physical interfaces or ports, unless connections are layered over each other. If
NetworkConnections or Cables are LayeredOver each other, then the lowest level
NetworkConnection or Cable will be used.

? If there are multiple layers of NetworkConnections or Cables between A-Router-IF and
Z-Router-IF, it is assumed that the data will specify either the physical interface/port
or the interface/port connected to the lowest (closest to the physical level) of
NetworkConnection or Cable.

? If a Circuit name is not specified and CTP information is not specified, it is assumed
that there is only one Circuit related to the PTP information (A-ONE-PTP and
Z-ONE-PTP) provided.

? If A-ONE-PTP is specified, it is assumed that Z-ONE-PTP is also specified.

? If A-ONE-CTP is specified, it is assumed that Z-ONE-CTP is also specified.

? In WDM, the values in the following fields should belong to entity
TransponderInOcnPort:

• A-ONE-Rack, Z-ONE-Rack

• A-ONE-Shelf, Z-ONE-Shelf

• A-ONE-Slot, Z-ONE-Slot

• A-ONE-SubSlot, Z-ONE-SubSlot

• A-ONE-Port, Z-ONE-Port

Note: CTP references are not applicable for WDM. The sub-slot field need not be populated
and can be left blank.

Topology creation 19

XD Manager for OTM to IP Topology

? In WDM-NG, if Y-cable is configured, the client circuit will have two redundant paths
represented as two ClientTrail instances in the WDM-NG topology. If a circuit is not
specified then the end points specified (PTP/CTP) should correspond to any one of
the paths.

Data separators
The field separator between fields is "|". It is used in the following notes and examples.
The field separator is specified in the command line invoking the XD Adapter.

If there is no value for a given field, "||" (2 bars with no space between them) must be
specified in the record.

If the last field, Circuit-Name, is not specified, the record must include a trailing "|".

There should not be any new line characters within the data fields.

The "|" character should not be present in the data within the fields.

Examples

Circuit-Name is specified. Fields 3 - 16 are ignored.

1. Most ONE fields are specified, but the values will be ignored

Router1|Se1|ONE1|1|1|7||3|1|ONE2|1|1|4||1|1|Router2|Se1|Circuit1

2. None of the ONE fields are specified.

Router1|Se1|||||||||||||||Router2|Se1|Circuit1

CTP Instance Names are specified in fields 9 and 16. All other OTM related fields (fields
3-8, 10-15) are ignored.

3. Most other ONE fields are specified, but the values, will be ignored.

Router1|Se1|ONE1|1|1|7||3|CTP-ONE1/1-1-7-3/1|ONE2|1|1|4||1|
CTP-ONE2/1-1-4-1/1|Router2|Se1|

4. Only the CTP fields are specified.

Router1|Se1|||||||CTP-ONE1/1-1-7-3/1|||||||CTP-ONE2/1-1-4-1/1|
Router2|Se1|

PTP Instance Names are specified in fields 8 and 15. All other OTM related fields (fields
3-7, 9-14, 16) are ignored.

5. Most ONE fields are specified, but the values besides PTP will be ignored.

Router1|Se1|ONE1|1|1|7||PTP-ONE1/1-1-7-3||ONE2|1|1|4||PTP-ONE2/
1-1-4-1||Router2|Se1|

6. Only the PTP fields are specified.

Router1|Se1||||||PTP-ONE1/1-1-7-3|||||||PTP-ONE2/1-1-4-1||Router2|S
e1|

Rack, Shelf, Slot are specifed. The A-ONE and Z-ONE data is broken into components to
find the PTP or CTP endpoints related to a circuit.

7. All ONE fields are specified.

20 EMC XD Manager for OTM to IP User Guide

XD Manager for OTM to IP Topology

Router1|Se1|ONE1|1|1|7|1|3|1|ONE2|1|1|4|1|1|1|Router2|Se1|

8. All ONE fields except the subslot fields are specified.

Router1|Se1|ONE1|1|1|7||3|1|ONE2|1|1|4||1|1|Router2|Se1|

9. All ONE fields except the CTP fields are specified.

Router1|Se1|ONE1|1|1|7|1|3||ONE2|1|1|4|1|1||Router2|Se1|

10. All ONE fields except the subslot and CTP fields are specified.

Router1|Se1|ONE1|1|1|7||3||ONE2|1|1|4||1||Router2|Se1|

CTP AIDs are specified.

11. The A-ONE-CTP and Z-ONE-CTP fields contain AIDs used to locate CTPs. A-ONE and
Z-ONE fields (fields 3, 10) must also be specified. All other ONE fields must not be
specified (fields 4-8, 11-15).

Router1|Se1|ONE1||||||1-1-7-3/1|ONE2||||||1-1-4-1/1|Router2|Se1|

PTP AIDs are specified.

12. The A-ONE-PTP and Z-ONE-PTP fields contain AIDs used to locate PTPs. The A-ONE and
Z-ONE fields (fields 3,10) must also be specified. All other ONE fields must not be
specified (fields 4-7, 9, 11-14, 16)

Router1|Se1|ONE1|||||1-1-7-3||ONE2|||||1-1-4-1||Router2|Se1|

Full and incremental topology import

The topology adapter allows for both full and incremental topology processing. The
topology data file processed by the adapter must either be:

? A full topology data file, where the Record Type field is not included. In this case, the
extra separator character must not be included.

All existing topology in XD Manager for OTM to IP is assumed to be outdated. It will be
replaced by the set of entries in the current data file. Any entry in the old topology not
specified in the current data file will be deleted.

? An incremental topology data file, where all of the records have a Record Type field
specifying either "ADD" or "DELETE".

Only the connections specifically listed in topology file updated. For any given
connection the file can contain, either one ADD, one DELETE, or a DELETE and an ADD
record. There should never be multiple ADDs or DELETEs in a single data file related to
the same connection. To modify a record there must be a DELETE record to delete the
existing record, then an ADD record to add the modified version of the record.

Interface Lookup Script

To allow more flexibility in matching the customer’s IP interface data to actual IP topology,
the XD Topology Adapter provides for an interface lookup script. This is an ASL script to
allow a customer or professional services to develop custom rules for locating interface
objects by, for example, looking up an interface based on the interface DisplayName.

Topology creation 21

XD Manager for OTM to IP Topology

This script is executed by adding the -DAMHookScript=<script.asl> parameter in the
command invoking the adapter. The XD topology adapter passes a table to the IP interface
lookup script, <script.asl>. The IP interface lookup script may put data back into the
table to point to the matching interface. The table contains keys with the value
<aRouter>|<aRouterIf>|<zRouter>|<zRouterIf>. The script uses these values to find the actual
interface instance in the IP topology. When this instance is found, new values are inserted
into the table in the same format:
<newARouter>|<newARouterIf>|<newZRouter>|<newZRouterIf>.

The following example will show how the interface lookup script might work.

The customer’s provisioning system data contains the interface DisplayName field instead
of the instance name field. In this example, the customer’s cross-domain data contains
interface DisplayNames Se1.0 for router1 and Se2.0 for router2 while the actual interface
instance names are IF-router1/2 and IF-router2/5. The standard, built-in XD Manager
lookup tries to use the interface DisplayName data to match the interface instance name
in the topology. When the match is not found, the corresponding record is not processed.

Alternatively, the -DAMHookScript=rules/icxd-ao/otm-ip-if-hook.asl parameter
is used to invoke the interface lookup script. The existing sample otm-ip-if-hook.asl
script, provides a complete example for lookup based on matching the DisplayName field
of interfaces on the specified Router (or Switch). Simple modifications may be made to
this script to change lookup to a different field in an interface. Use sm_edit to edit the
otm-ip-if-hook.asl file. (For information on using the sm_edit utility, see Appendix B,
“Understanding the sm_edit Utility,”)

The FIND_ROUTER_IF rule looks like this:

// Sample find logic to match the interface by the interface
// display name.
FIND_ROUTER_IF(router_name, if_name) do {
 router_obj=object();
 router_obj=object(router_name)?IGNORE;
 if (router_obj->isNull()) {

router_obj=object_factory->findComputerSystem(router_name)?IGNORE;
 }
 if (!router_obj->isNull()) {
 foreach interface (router_obj->ComposedOf) {
 if_obj = object(interface);
 if (if_obj->isInstanceOf("ICIM_NetworkAdapter")) {
 disp_name = if_obj->DisplayName;
 logDebug("Checking if: ".if_name." ".disp_name);
 if (if_name == disp_name) {
 logDebug("Found if: ".if_name." ".disp_name);
 return if_obj;
 }
 }
 }
 }
 return object();
}

The script iterates through all interface instances in router1 to look for an interface with
the DisplayName of Se1.0 and through all interface instances in router2 to look for an
interface with the DisplayName of Se2.0. Once these are found, the lookup script table is
updated to indicate that the Se1.0 interface is actually named IF-router1/2 and Se2.0 is
actually named IF-router2/5. Then subsequent XD logic easily locates the correct interface
and can process the XD entry.

22 EMC XD Manager for OTM to IP User Guide

XD Manager for OTM to IP Topology

The rule FIND_ROUTER_IF may be customized easily to change the logic to compare the
data to the Description field of an interface instead, for example.

If you decide to create a new script instead of editing the existing one, the logic must
follow the conventions of the sample, in that the script is passed a table with keys. The
result table must be populated with the instance names of the interface objects, as
explained above.

Invoking the topology adapter

To invoke the topology adapter:

?sm_adapter -s <xd_server_name>
--field-separator="|"
--output=otm-ip-topology-import.log
--file=<xd_data_file>
icxd-ao/otm-ip-topology-import.asl?

Note: ?? indicates that this command must be typed as one line.

Or, to invoke the topology adapter with an interface lookup script:

?sm_adapter -s <xd_server_name>
--field-separator="|"
-DAMHookScript=icxd-ao/otm-ip-if-hook.asl
--output=otm-ip-topology-import.log
--file=<xd_data_file>
icxd-ao/otm-ip-topology-import.asl?

Note: ?? indicates that this command must be typed as one line.

“Interface Lookup Script” on page 21 provides details about using the interface lookup
script.

There will be some log messages related to this in the otm-ip-topology-import.log file, but
most of the log messages related to XD Topology Adapter processing are written to the XD
server log file.

Relationships in XD Manager

The following topology object and their relationships are created by XD topology
processing based on the cross-domain data.

? ICXD_UnitaryComputerSystem

• ConnectedVia NetworkConnection

• ConnectedVia Cable

• ComposedOf Card, NetworkAdapter

? NetworkConnection, Cable and TrunkCable (in the IP domain)

• ConnectedTo Ports/IFs on Routers/Switches

• LayeredOver Circuit

• LayeredOver Cable

Topology creation 23

XD Manager for OTM to IP Topology

• ConnectedSystems - two Routers, Switches

? Cable (in the XD domain)

• ConnectedTo Port/IF on Router or Switch (not connected to ONE)

• LayeredOver DSTL

• Underlying NetworkConnection

• ConnectedSystems Router or Switch

? Card

• ComposedOf Card (for DaughterCard BaseCard)

• PartOf Router or Switch

• Realizes Port, IF (Physical only)

? NetworkAdapter (Port or Interface)

• ConnectedVia NetworkConnection

• ConnectedVia Cable

• RealizedBy Card

• PartOf Router or Switch

• Peer

? DropSideTopologicalLink or FiberLink

• Underlying Cable

• Underlying Circuit

• FiberLink PeerLink - to associate the In and Out FiberLinks together

? Circuit (HighOrder_Circuit, or ClientCircuit)

• Underlying NetworkConnection

• LayeredOver DSTL or FiberLink

Multiple domain servers
The EMC Smarts XD Manager for OTM to IP solution assumes that each XD Manager OTM to
IP server will manage a unique subset of network connections. This means that if there are
multiple servers, each will manage a unique set of NetworkConnections, Cables, or
TrunkCables, layered over Circuits.

The XD Manager OTM to IP can manage a Circuit that has one end in a high-order
SONET/SDH domain server and the other end in a low-order SONET/SDH domain.

Supported and unsupported NetworkConnections
In an IP network, two Routers are connected by a NetworkConnection, Cable or
TrunkCable. The connection may be layered over an underlying set of
OpticalNetworkElements (ONEs). Figure 4 on page 12 shows these relationships.

24 EMC XD Manager for OTM to IP User Guide

XD Manager for OTM to IP Topology

Supported NetworkConnection

In the IP Manager, the NetworkConnection may be connected to the Routers via Cards,
Interfaces, and Sub-Interfaces. XD Manager OTM to IP supports several connection
methods between the Router and NetworkConnection.

The following connections are supported.

Figure 5 Interface to Interface connection

Figure 6 Sub-Interface1 to Sub-Interface1 connection

Additional levels of Sub-Interfaces are also supported.

Figure 7 Sub-Interface2 to Sub-Interface2 connection

Router1

IF1
Card1

Router2

IF1
Card1NetworkConnection

Router1

IF1
Card1

SubIF1

Router2

IF1
Card1

SubIF1

NetworkConnection

Router1

IF1
Card1

SubIF1

Router2

IF1
Card1

SubIF1NetworkConnection
SubIF2SubIF2

Supported and unsupported NetworkConnections 25

XD Manager for OTM to IP Topology

The connection in Figure 8 on page 26 is supported where the lowest level
NetworkConnection, NetworkConnection1, shown in orange, is the only one managed by
XD Manager OTM to IP. Compare with Figure 11 on page 27.

Figure 8 Lowest level connection only is supported with dual connections

In most cases there is symmetry in the devices used at either end of the
NetworkConnection. But asymmetric connections like the example shown in Figure 9 on
page 26 are also supported.

Figure 9 SubInterface to Interface asymmetric connection

The connection shown in Figure 10 on page 26 shows a Cable connecting the two switches
via ports.

Figure 10 Cable connection

Router1

IF1
Card1

SubIF1

Router2

IF1
Card1

SubIF1

NetworkConnection2

NetworkConnection1

Router1

IF1
Card1

SubIF1

Router2

Card1
IF1

NetworkConnection

Switch1

Port1
Card1

Switch2

Port1
Card1Cable

26 EMC XD Manager for OTM to IP User Guide

XD Manager for OTM to IP Topology

Unsupported NetworkConnections

The connection shown in Figure 11 is not supported if the NetworkConnection you want to
manage, NetworkConnection2, shown in orange, is at a higher level (that is, at a higher
logical level above the physical interface). NetworkConnection1 can be managed as
shown in Figure 8 on page 26.

Figure 11 Higher-level connection not supported in dual connection

Router1

IF1
Card1

SubIF1

Router2

IF1
Card1

SubIF1

NetworkConnection2

NetworkConnection1

Supported and unsupported NetworkConnections 27

XD Manager for OTM to IP Topology

28 EMC XD Manager for OTM to IP User Guide

CHAPTER 3
Event Processing

This chapter describes how the XD Manager OTM to IP correlates notifications from both
the Optical Transport Manager and the IP Manager to perform root-cause and impact
analysis. It also describes scenarios that illustrate cross-domain correlation, in which the
XD Manager OTM to IP correlates Layer 1 optical network failures to IP network connection
failures.

? Event notification handling ... 30
? Cross-domain failure scenarios ... 32

Event Processing 29

Event Processing

Event notification handling
The analysis of the XD Manager OTM to IP product correlates the events from IP Manager
and the events from Optical Transport Manager to determine the true root cause of the
failure and notifies the failure in SAM.

For example, a failure in a Fiber in the Optical Network may result in Router Interfaces on
either or both ends of the Routers connected to the Circuit being reported as Down. Within
IP Manager, the analysis will indicate a failure in the NetworkConnection. Within one of
Optical Transport Manager’s domains, a FiberCut failure is notified to SAM. The XD
Manager OTM to IP solution will correlate the fact that the NetworkConnection failure is
caused by the FiberCut in the Optical circuit.

Red dotted lines in Figure 12 shows the path of alarms and notifications propagation
among the components of XD Manager OTM to IP. These include the following:

? OTM Domain managers - Each consists of a pair of servers: Topology server and
Analysis server. Topology servers collect elements and monitor their health. Analysis
servers find root-causes and forward them to XD Manager OTM to IP and to Service
Assurance Manager.

? IP discovers IP elements and monitors the IP domain. It forwards topology and
notifications to XD Manager OTM to IP and SAM (Service Assurance Manager).

? SAM (Service Assurance Manager) - Collects the alarms and notifications from all OTM
Analysis servers, XD Manager OTM to IP, andIP Manager. SAM provides end-to-end
root cause and impact analysis and displays events on the Global Console.

? XD OTM-IP (XD Manager OTM to IP) - Contains overlapping elements from the Optical
Transport Manager and IP Manager. It receives events, cross-correlate them, and
forwards them to Service Assurance Manager.

Figure 12 Optical Transport Manager architecture

Alarms/Notifications

Topology Data

Topology Proxy for XD objects SAM
EMC Smarts

EMC SmartsEMC Smarts EMC Smarts EMC Smarts

Anal
Serv

XD OTM-IP

IP
EMC Smarts

XD Topology
Adapter

WDM Analysis
EMC Smarts

SONET/SDH Analysis
EMC Smarts

PDH Analysis
EMC Smarts

WDM Topology
EMC Smarts

SONET/SDH Topology
EMC Smarts

PDH Topology
EMC Smarts

Topology
Servers

ysis
vers

Inventory &

Optical Netw
ys

WDM High Order
SONET/SDH

Provisioning

Network

work Domains

Low Order
SONET/SDH

30 EMC XD Manager for OTM to IP User Guide

Event Processing

OTM Domain managers

Each Domain Manager (except WDM-NG) consists of a pair of servers: OTM Topology server
and OTM Analysis server. For WDM-NG, the Topology Server and the Analysis Server are
combined into one server.

OTM Topology server
OTM Topology servers discover the elements of their respective domains. A portion of the
discovered topology, necessary for cross-domain root-cause analysis, is passed to the
associated OTM Analysis server.

Topology servers poll for the status of the Layer 1 and Layer 3 network elements in their
respective domains.

Topology servers also interact with each other to share proxy objects of overlapping
elements, copies of elements that are common to both domains.

Events are sent to the OTM Analysis server.

OTM Analysis server
OTM Analysis servers contain only the topological elements needed for root-cause
analysis.

As events are sent from the OTM Topology server, the OTM Analysis server finds the
root-cause and forwards the events to XD Manager OTM to IP and to Service Assurance
Manager.

IP Manager

IP Manager discovers IP elements and protocols in the IP domain. Discovered elements
can be used by the XD Topology Adapter to forward on to XD Manager OTM to IP.

IP Manager monitors the IP domain and forwards events to XD Manager OTM to IP and
SAM (Service Assurance Manager).

Service Assurance Manager

The Global Manager, part of Service Assurance Manager (SAM), uses analysis information
from the Optical Transport Managers (SONET/SDH, PDH, WDM, and WDM-NG Domain
Managers) and the IP Managerto correlates and construct the final root-cause and impact
analysis.

The Global Console displays alarms and notifications on its Notification Log screen when
attached to the XD OTM-IP server.

When attached to one of the OTM Topology servers, the Global Console Topology Browser
screen displays element of topology from IP or OTM servers.

XD Manager OTM to IP

Because its topology contains proxy objects of overlapping elements from Optical
Transport Manager and IP Manager, XD Manager OTM to IP also receives events that effect
these elements. Events are cross-correlated and forwarded to Service Assurance Manager.

Event notification handling 31

Event Processing

The EMC Smarts XD Manager OTM to IP uses remote repository accessories to receive
events from a Optical Transport Manager OTM Analysis server and the IP Manager. When
events are received, these events are translated to set boolean attributes indicating the
state of the device or connection. The following tables show events which are subscribed
to and received by the XD Manager OTM to IP, and the corresponding attributes which are
set as a result:

Note: In the XD model, LineFailure and LineDegraded are both treated as a failure of the
FiberLink.

Cross-domain failure scenarios
To understand the cross-domain analysis, it is important to understand the analysis of the
IP and OTM domains. In particular, in the IP domain there are several different possible
analysis results as it relates to optical failures. The following are a set of cross domain
analysis scenarios that are handled by the EMC Smarts XD Manager OTM to IP solution.

Table 3 Events imported into XD Manager OTM to IP from IP Manager

IP Device Attribute set TRUE Notification

Router
Switch

IsDownInRemote Down

IsUnresponsiveInRemote Unresponsive

Interface/Port IsDownInRemote Down

IsLogicalDownInRemote LogicalConnectionDow
n

Card IsDownInRemote Down

NetworkConnection
Cable
TruckCable

IsDownInRemote Down

Table 4 Events imported into XD Manager OTM to IP from OTM SDH, PDH, WDM-NG

SDH Device Attribute set TRUE Notification

Circuit IsServiceUnavailable ServiceUnavailable

DropSideTopologicalL
ink

IsDownInRemote Down

Table 5 Events imported into XD Manager OTM to IP from OTM WDM

WDM Device Attribute set TRUE Notification

Circuit IsServiceUnavailable ServiceUnavailable

FiberLink IsLineDegraded LineDegraded

IsLineFailure LineFailure

32 EMC XD Manager for OTM to IP User Guide

Event Processing

Note: These scenarios show one type of topology: two Routers, Interfaces, a Network
Connection, SONET/SDH, and LO-SDH topology. The same scenarios also apply to
Switches, Ports, a Cable, WDM, and WDM-NG topology.

Case 1 - Failure inside the optical network

This case covers a failure within the optical network (not on the edge of the optical
network), such as Fiber cut, equipment (card) failure or port failure.

Figure 13 Case 1 - Failure inside the optical network

Depending on symptoms reported from the IP Manager, analysis may be:

? A-side or Z-side Router Down

? A-side or Z-side Router Interface Down

? IP NetworkConnection Down

? A-side or Z-side Router Interface LogicalConnectionDown

XD Manager OTM to IP analysis, in conjunction with Service Assurance Manager, is:

? Root cause: Fiber cut

? Impacts:

• Circuit ServiceUnavailable and

• IP Network Connection Down or

• A-side or Z-side Router Down or

• A-side or Z-side Router Interface Down

IP IPOptical

Network view

A-Side Z-Side

Cross-domain failure scenarios 33

Event Processing

Case 2 – Failure on the edge of the optical network

This case covers a failure of Equipment or Port that connects to the edge IP Router.

Figure 14 Case 2 – Failure on the edge of the optical network

Depending on symptoms reported from the IP Manager, analysis may be:

? A-side or Z-side Router Down

? A-side Router Interface Down

? IP NetworkConnection Down

XD Manager OTM to IP analysis, in conjunction with Service Assurance Manager, is:

? Root cause: Port or Equipment failure

? Impacts:

• Circuit ServiceUnavailable and

• IP Network Connection Down or

• A-side or Z-side Router Down or

• A-side Router Interface Down

Case 3 – Failure between the IP Router and the Optical network

This case covers a failure of a cable between an IP Router and the OpticalNetwork Element.
This scenario also covers a failure in the Port or Interface in the IP Router. There is no
distinguishing symptom between the IP Router Interface failure and a failure in the cable
between the IP Router and the Optical Network Element.

Figure 15 Case 3 – Failure between the IP Router and the Optical network

Depending on symptoms reported from the IP Manager, analysis may be:

? A-side or Z-side Router Down

IP IPOptical

Network view

A-Side Z-Side

IP IPOptical

Network view

A-Side Z-Side

34 EMC XD Manager for OTM to IP User Guide

Event Processing

? A-side Router Interface Down

? IP NetworkConnection Down

Optical Transport Manager analysis is:

? DropSideTopologicalLink Down (for SDH, PDH, and WDM-NG)

? FiberLink Down (for WDM)

XD Manager OTM to IP analysis, in conjunction with Service Assurance Manager, is:

? Root cause: Inter-Office Cable Down

? Impacts:

• Circuit ServiceUnavailable and

• IP Network Connection Down or

• A-side or Z-side Router Down or

• A-side Router Interface Down

Case 4 – Failure within the edge IP Router

This case covers a failure of a Card or Optical card on an edge IP Router.

Figure 16 Case 4 – Failure within the edge IP Router

The IP Manageranalysis reports:

? Card or Optical Card on the IP Router Down

Optical Transport Manager analysis is:

? Circuit ServiceUnavailable and

? DropSideTopologicalLink Down (for SDH, PDH, or WDM-NG)

? FiberLink Down (for WDM)

XD Manager OTM to IP analysis, in conjunction with Service Assurance Manager, is:

? Root cause: IP edge Router Card or Optical card Down

? Impacts:

• DropSideTopologicalLink Down (for SDH, PDH, WDM-NG)

• FiberLink Down (for WDM)

IP IPOptical

Network view

A-Side Z-Side

Cross-domain failure scenarios 35

Event Processing

• Circuit ServiceUnavailable

Case 5 – Failure of an edge IP Router

This case covers a failure of an edge IP Router.

Figure 17 Case 5 – Failure on the edge IP Router

The IP Manager analysis reports:

? Router Down

Optical Transport Manager analysis is:

? Circuit ServiceUnavailable and

? DropSideTopologicalLink Down (for SDH, PDH, or WDM-NG)

? FiberLink Down (for WDM)

XD Manager OTM to IP analysis, in conjunction with Service Assurance Manager, is:

? Root cause: Router Down

? Impacts:

• Circuit ServiceUnavailable and

• DropSideTopologicalLink Down (for SDH, PDH, or WDM-NG)

• FiberLink Down (for WDM)

IP IPOptical

Network view

A-Side Z-Side

36 EMC XD Manager for OTM to IP User Guide

APPENDIX A
Configuration

This appendix provides instructions for configuring EMC Smarts XD Manager for OTM to IP
for communication with the Optical Transport Manager and IP Manager servers which XD
Manager for OTM to IP needs to get topology and events.

This appendix contains the follow sections:

? Prerequisites... 38
? Starting the XD OTM to IP server manually ... 39
? Enabling the XD Manager OTM to IP in Service Assurance Manager.......................... 40
? Configuring the XD Manager OTM-to-IP AM .. 40
? Setting up two XD Manager for OTM to IP servers... 42

Note: You must also configure the Global Manager component of the Service Assurance
Manager for communication with the XD Manager for OTM to IP.

Configuration 37

Configuration

Prerequisites
Before you configure Global Manager for use with XD Manager for OTM to IP, the following
components must be installed on appropriate hosts in your network:

? XD Manager for OTM to IP

? IP Manager

? Broker

? Global Console (optional, depending on your deployment)

? Global Manager

In addition, one or more server pairs of the Optical Transport Manager domain managers
must be installed:

? Optical Transport Manager for SONET/SDH

• Topology Server

• Analysis Server

? Optical Transport Manager for PDH

• Topology Server

• Analysis Server

? Optical Transport Manager for WDM

• Topology Server

• Analysis Server

? Optical Transport Manager for WDM-NG

• Topology Server and Analysis server are combined

Both Topology and Analysis servers must be installed, though the services can be started
individually.

Server notes

? The XD Manager for OTM to IP does not need to be installed on the same host as the
Optical Transport Manager.

? The XD Manager for OTM to IP, IP Manager, Service Assurance Manager, and Optical
Transport Manager components must be registered with the same EMC Smarts Broker.

? XD Manager for OTM to IP must send its root cause events to a SAM Global Manager
which also is receiving notifications from IP and OTM servers.

? A single installation of XD Manager for OTM to IP server can cross-correlate IP Manager
with either WDM or WDM-NG or SONET/SDH and PDH. Cross-correlation of IP to WDM
or WDM-NG must be managed on a separate XD Manager for OTM to IP.

38 EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide

Configuration

Starting the XD OTM to IP server manually
If you did not install XD Manager OTM to IP as a service when you installed the EMC Smarts
products suite, you may install the service manually. When installed as a service, it will
start automatically upon system reboot; if not installed as a service you can issue a
command to start and stop it as necessary.

EMC Corporation recommends that EMC Smarts products be installed as services
whenever possible. Typical reasons to install products as services include the following
conditions:

? During installation of the suite, you choose to start product components manually and
now want to run the components as services.

? Multiple instances of a single product component running as a service are required.
During installation, you can install only a single instance of a product component as a
service.

To manually install a product as a service, use the sm_service install command with the
appropriate set of options.

The EMC Smarts System Administration Guide provides a complete description of the
command syntax.

Note: If you are running one instance of the OTM-XD server, the configuration file installed
by default is for use with the OTM SONET servers (OTM-SDH / OTM-PDH). If the OTM-XD
server is being configured for OTM-WDM to either run independent of the OTM-XD server or
with the OTM SONET server, then a change in the configuration file is needed. When
invoking the sm_service startup command, you must change the --config parameter. See
“Setting up two XD Manager for OTM to IP servers” on page 42.)

? /opt/InCharge/otm/smarts/bin/sm_service install
--force
--unmanaged
--name=OTM-IP-XD
--startmode=runonce
--description="EMC Smarts OTM IP XD Server"
/opt/InCharge/otm/smarts/bin/sm_server
--name=OTM-IP-XD
--config=icxd-ao
--port=0
--subscribe=default
--ignore-restore-errors
--output ?

Note: ?? indicates that this command must be typed as one line.

Starting the XD OTM to IP server manually 39

Configuration

Enabling the XD Manager OTM to IP in Service Assurance Manager
Access the Global Manager Administration Console of the Service Assurance Manager to
configure single or hierarchical SAM servers, IP servers, and OTM-XD for single or multiple
servers. For complete information about the Global Manager Administration Console and
Service Assurance configuration tasks, consult the EMC Smarts Service Assurance
Manager User Guide.

Guidelines to configure OTM-XD with SAM

? If only a single SAM server is to be used, all the domains (the OTM-XD server, IP server,
and OTM domains) involved with OTM-XD use can be connected to this SAM server.

? If multiple OTM-XD servers are to be used, a new domain server (for example, a server
named OTM-IP-XD-WDM) for OTM-XD must be configured in SAM.

? If the SAM configuration is hierarchical, the following must be considered:

• Both primary OTM-XD server (OTM-IP-XD) and the additional OTM-XD server
(OTM-IP-XD-WDM) must connect to the presentation level SAM.

• The SAM-OTM domain must be configured at the presentation level SAM.

• The IP server can be configured to connect to a separate lower level SAM server
that interfaces to the presentation level SAM.

Configuring the XD Manager OTM-to-IP AM
To support communications with the OTM and IP AM servers, the domain.conf file of the
XD Manager OTM to IP must be edited.

Editing the domain.conf file

The domain.conf file is located in the BASEDIR/smarts/conf/icxd-ao directory. BASEDIR
represents the installation directory for Optical Transport Manager.

To edit the configuration file, use the EMC Smarts sm_edit command. For information
about sm_edit, see Appendix B, “Understanding the sm_edit Utility”.

Adding a domain to XD Manager OTM-to-IP AM

To configure XD Manager OTM to IP to communicate with the Optical Transport Manager
servers and IP Manager servers, modify the existing domain server entries and comment
out or delete the extra domain entries that do not apply to your configuration.

You must have one “InChargeDomain” entry for each server from which XD Manager OTM
to IP will import topology or events.

1. From a command line, change to the BASEDIR/smarts/conf/icxd-ao directory.

2. Open domain.conf using sm_edit:

sm_edit domain.conf

The file, when it first opens, looks like this:

InChargeDomain::InChargeDomain_AM-1

40 EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide

Configuration

{
Type = "AM"
DomainName = "AM-1"
}

InChargeDomain::InChargeDomain_OTM-SDH-TOPOLOGY
{
Type = "SDH-T"
DomainName = "OTM-SDH-TOPOLOGY"
}

InChargeDomain::InChargeDomain_OTM-SDH-ANALYSIS
{
Type = "SDH-A"
DomainName = "OTM-SDH-ANALYSIS"
}

InChargeDomain::InChargeDomain_OTM-PDH-TOPOLOGY
{
Type = "LOSDH-T"
DomainName = "OTM-PDH-TOPOLOGY"
}

InChargeDomain::InChargeDomain_OTM-PDH-ANALYSIS
{
Type = "LOSDH-A"
DomainName = "OTM-PDH-ANALYSIS"
}

InChargeDomain::InChargeDomain_OTM-WDM-TOPOLOGY
{
Type = "WDM-T"
DomainName = "OTM-WDM-TOPOLOGY"
}

InChargeDomain::InChargeDomain_OTM-WDM-ANALYSIS
{
Type = "WDM-A"
DomainName = "OTM-WDM-ANALYSIS"
}

InChargeDomain::InChargeDomain_OTM-WDM-NG {
 Type = "WDM-NG"
 DomainName = "OTM-WDM-NG"
}

3. Modify the object name, the name following InChargeDomain::, to the name of your IP
Manager server. For example, change “InChargeDomain_AM-1” to
“IP_Domain_East-1”.

Note: Do not modify the parent part of the object name, that is, the
“InChargeDomain::” part should remain as is.

4. Modify the AM DomainName for the IP AM server to a name appropriate to your
system. This is the name of the IP AM server that the SAM Global Console will connect
to.

5. Modify the DomainName of the OTM servers, for example "OTM-SDH-TOPOLOGY", to a
name appropriate to your system. This is the name that the SAM Global Console will
connect to.

Configuring the XD Manager OTM-to-IP AM 41

Configuration

When specifying OTM domains (except WDM-NG), both the analysis and
topology/monitoring server for a given domain must be specified. For example, both
OTM-SDH-TOPOLOGY, and OTM-SDH-ANALYSIS must be listed in domain.conf.

6. Domain Type must be set as appropriate to match the 'ElementTypeGlob'
specifications for the DXA import drivers defined in topo-driver.conf. The Type field
should be one of the following:

• “AM” for the IP Availability Manager server

• “WDM-T” for the Optical Transport Manager WDM Topology server

• “WDM-A” for the Optical Transport Manager WDM Analysis server

• "LOSDH-T" for the Optical Transport Manager PDH Topology server

• "LOSDH-A" for the Optical Transport Manager PDH Analysis server

• “SDH-T” for the Optical Transport Manager SONET/SDH Topology server

• "SDH-A" for the Optical Transport Manager SONET/SDH Analysis server

• “WDM-NG” for the Optical Transport Manager WDM-NG combined server.

A given XD Manager for OTM to IP server can cross-correlate IP Manager with either
SONET/SDH servers (low-order or high-order), WDM, or WDM-NG servers but not
both. Low-order SONET/SDH (PDH) and high-order SONET/SDH servers are
compatible with each other connecting to a single XD Manager for OTM to IP server.

7. Comment out or delete any domains which are not being used in your configuration.

8. Save and exit the domain.conf file. The modified version of the file is saved to the
BASEDIR/smarts/local/conf/icxd-ao directory in the XD Manager OTM to IP installation
area.

Setting up two XD Manager for OTM to IP servers
In order to set up two XD Manager OTM-to-IP AM servers, one for SDH/PDH and one for
WDM, under the same OTM installation, follow the configuration procedures below. You
will need to do this to have a single installation run two instances, one for SDH/PDH and
one for WDM.

1. In the $BASEDIR/OTM/smarts/conf directory, create a icxd-ao-wdm sub-directory:

mkdir icxd-ao-wdm

2. Copy all files under $BASEDIR/OTM/smarts/conf/icxd-ao to the new directory using
the -p option to preserve rights and the -r option to include subdirectories.

cp –pr icxd-ao/* icxd-ao-wdm

3. Repeat the above ‘cp –pr’ step to create a icxd-ao-wdm sub-directory in
BASEDIR/OTM/smarts/local/conf as needed.

4. Configure cross-domain connections between IP and OTM SDH servers. Open
$BASEDIR/OTM/smarts/conf/icxd-ao/domain.conf using sm_edit.

sm_edit $BASEDIR/OTM/smarts/conf/icxd-ao/domain.conf

42 EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide

Configuration

AM-1 represents the IP server. You can modify the AM-1 entry with the IP server name
appropriate to your system

Comment out OTM-WDM-TOPOLOGY , OTM-WDM-ANALYSIS servers.

Save and close the file.

5. Configure cross-domain connections between IP and OTM WDM servers. Open
$BASEDIR/OTM/smarts/conf/icxd-ao-wdm/domain.conf using sm_edit:

sm_edit $BASEDIR/OTM/smarts/conf/icxd-ao-wdm/domain.conf

AM-1 represents the IP server. You can modify the AM-1 entry with the IP server name
appropriate to your system.

Comment out OTM-SDH-TOPOLOGY, OTM-SDH-ANALYSIS, OTM-PDH-TOPOLOGY, and
OTM-PDH-ANALYSIS entries.

Save and close the file.

6. Configure the cross domain icxd-ao-wdm/bootstrap.conf file:

sm_edit $BASEDIR/OTM/smarts/conf/icxd-ao-wdm/bootstrap.conf

Change

fileName = "$SM_SITEMOD/conf/icxd-ao/domain.conf
to

fileName = "$SM_SITEMOD/conf/icxd-ao-wdm/domain.conf

Save and close the file.

Note: The above configuration procedures are general guidelines. Please contact EMC
Support if further customizedconfiguration is needed.

Note: When invoking the sm_service startup command (as described in “Starting the XD
OTM to IP server manually” on page 39) with different XD servers, you must change the
--config=icxd-ao parameter to the name of the sub-directory containing the appropriate
domain.conf file. In this case, “icxd-ao-wdm.”

Setting up two XD Manager for OTM to IP servers 43

Configuration

44 EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide

APPENDIX B
Understanding the sm_edit Utility

As part of the EMC Smarts deployment and configuration process, you need to modify
certain files. User modifiable files include configuration files, rule set files, templates, and
seed files that contain encrypted passwords. Original versions of these files are installed
into appropriate subdirectories under the BASEDIR/smarts/ directory.

The original versions of files should not be altered. If a file must be modified, a new
version should be created and then stored as a local copy of the file in
BASEDIR/smarts/local or one of its subdirectories.

When EMC Smarts software requires one of these files, it is designed to first search for a
modified file in BASEDIR/smarts/local or one of its subdirectories. If a modified version of
a file is not found in the local area, EMC Smarts software then searches corresponding
BASEDIR/smarts directories for the original version of the file.

To ease file editing and storage, EMC Corporation provides the sm_edit utility with every
EMC Smarts product suite. When invoked, sm_edit opens the specified file in a text editor.
This utility ensures that modified files are always saved to the appropriate local area and
that non-local copies of all files remain unchanged. If an appropriate subdirectory does
not exist for the file you are modifying, sm_edit creates the appropriate subdirectory
before saving the modified file to that location. For files with header information set for
encryption, sm_edit encrypts certain fields in the file. In addition, sm_edit preserves the
file permissions of modified files, which helps ensure that important configuration files
are not altered by unauthorized users.

Example Modify ics.conf

To use sm_edit from the command line, specify the file name and include the subdirectory
under /local where the file resides. For example, to edit the ics.conf, enter:

BASEDIR/smarts/bin> sm_edit conf/ics/ics.conf

In this example, sm_edit searches in the BASEDIR/smarts/local/conf/ics directory for the
ics.conf file. If it finds the ics.conf file, it opens the file in a text editor. If sm_edit does not
find the ics.conf file in the BASEDIR/smarts/local/conf/ics directory, it creates a local copy
of the ics.conf file and writes it to the BASEDIR/smarts/local/conf/ics directory.

The EMC Smarts System Administration Guide provides additional information about the
sm_edit utility, including how to configure the utility to use a specific editor.

Understanding the sm_edit Utility 45

Understanding the sm_edit Utility

46 EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide

INDEX

A
Adapters, multiple 9
Analysis server 31
Architecture 8

B
Broker 38

C
Configure, Global Manager 38
Configuring, ics.conf 37
Cross-domain analysis 32
Cross-domain architecture 8
Cross-domain event analysis 9

D
Domain manager 30, 38
Domain servers, multiple 24

E
Event notification 30
Events imported 32
Example 9

F
Failure, between IP Router and Optical network 34
Failure, Card or Optical card on an edge 35
Failure, edge of network 34
Failure, IP edge router 36
Failure, within optical network 33
Failures

Layer 1 6
Layer 3 7

G
Global Manager 31, 38

I
ics.conf File 37
Impact analysis 29
Imported events 32
IP Manager 31

O
Object relationships 23
Overview, cross-domain 6

R
Relationship, among objects 23

Root cause events 38
Root-cause analysis 29

S
Service Assurance Manager 31
sm_edit 45

T
Topology adapter 13
Topology server 31
Topology, imported 12

EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide 47

Index

48 EMC Smarts Optical Transport Manager XD Manager for OTM to IP User Guide

		Contents

		Introduction

		Overview of cross-domain management

		XD Manager for OTM to IP architecture

		Domain managers

		Cross-domain analysis example

		XD Manager for OTM to IP Topology

		Cross-domain topology

		Topology creation

		XD Topology data format

		Full and incremental topology import

		Interface Lookup Script

		Invoking the topology adapter

		Relationships in XD Manager

		Multiple domain servers

		Supported and unsupported NetworkConnections

		Supported NetworkConnection

		Unsupported NetworkConnections

		Event Processing

		Event notification handling

		OTM Domain managers

		IP Manager

		Service Assurance Manager

		XD Manager OTM to IP

		Cross-domain failure scenarios

		Case 1 - Failure inside the optical network

		Case 2 – Failure on the edge of the optical network

		Case 3 – Failure between the IP Router and the Optical network

		Case 4 – Failure within the edge IP Router

		Case 5 – Failure of an edge IP Router

		Configuration

		Prerequisites

		Server notes

		Starting the XD OTM to IP server manually

		Enabling the XD Manager OTM to IP in Service Assurance Manager

		Guidelines to configure OTM-XD with SAM

		Configuring the XD Manager OTM-to-IP AM

		Editing the domain.conf file

		Adding a domain to XD Manager OTM-to-IP AM

		Setting up two XD Manager for OTM to IP servers

		Understanding the sm_edit Utility

		Index

Article

Service Assurance Suite
Release number 9.4

SolutionPack for Optical Wavelength Services
Summary Sheet

January, 2015

l Overview..2
l Technical specifications...2
l Where to find the latest SolutionPack software.. 2
l Installing a SolutionPack..3
l Troubleshooting...4

Overview
Learn how to install and configure the SolutionPack for Optical Wavelength Services. This
SolutionPack discovers and monitors TMF864-compliant Element Management Systems.

Use this SolutionPack as one component of your Optical Transport Manager (OTM)
deployment. Other components include

l EMC Smarts 9.4 Optical Transport WDM-NG domain manager

l EMC Smarts 9.4 Service Assurance Manager

l EMC M&R 6.5u1 with SolutionPack for EMC Smarts installed

Data flow among the OTM components
The SolutionPack for Optical Wavelength Services uses a Stream Collector (SC) to poll
TMF 864-compliant Element Management Systems (EMS) at a configurable polling
interval. The information that is collected is persisted in the EMC M&R database so that
the EMC Smarts WDM-NG domain manager can retrieve the data and build topology
based on the property information. The SC makes SOAP WebService requests to the EMS
to retrieve the topology and extract information. First the authentication / login request is
sent and then the security ID is extracted. This security ID (session ID) is sent as part of
the SOAP envelope in all the subsequent calls.

Technical specifications

SolutionPack version
1.0

Compatible EMC M&R versions
6.5u1 and later

Supported Element Management Systems (EMS)
TMF864-compliant Element Management Systems such as Coriant Intelligent Node
Manager SR 6.0 SP2

Data collection method

l Stream collector (for data parsing)

l Stream listener (for event processing)

Main reports
There are no reports associated with this SolutionPack. You must install the SolutionPack
for EMC Smarts to view reports and topology associated with data collected from TMF
864-compliant Element Management Systems. View Topology maps under Explore >
Network and Notifications under Operations > Notifications.

Where to find the latest SolutionPack software
Install the latest core software update for your product suite. SolutionPacks distributed
with core software have a 30-day free evaluation period. If you plan to use the software
longer than 30 days, you must install a SolutionPack license before the trial period ends.

This 30-day free evaluation only applies to new installations and is not available for
upgraded installations. If you upgrade the core software and want to try a new
SolutionPack, you must request a license for that SolutionPack by completing a Support

Article

2 Service Assurance Suite 9.4 Article

Request (SR) form, which is available on the EMC Online Support website at http://
support.emc.com.

Installing a SolutionPack
After you log in as an administrator, you can install a SolutionPack from Centralized
Management.

Before you begin

l Determine whether you need a SolutionPack license file by checking the feature
names and expiration dates listed in Centralized Management > License
Management. If not listed, obtain a license by completing a Support Request (SR)
form, which is available on the EMC support website http://support.emc.com.

l Ensure the core modules, such as the Module-Manager, are up-to-date on all servers
since not all module dependencies are validated during the SolutionPack
installation. See the EMC M&R (Watch4net) Installation and Configuration Guide for
more information.

l Obtain the login credentials and protocol information for the TMF864-compliant
Element Management System(s)

l Ensure all software for your EMC Smarts Optical Transport Manager deployment is
installed with services running.

Table 1 Software components required when collecting data from optical networks

Software component Purpose

EMC Smarts Optical Transport
Manager installed with WDM-NG
domain manager service

Analyzes the events collected by the SolutionPack for
Optical Wavelength Services and determines the root
cause of problems occurring in the optical network.

EMC Smarts Service Assurance
Manager installed with Notification
Cache Publishing

Converts events to notifications and sends the root cause
and impact to the SolutionPack for EMC Smarts.

SolutionPack for EMC Smarts Provides reports showing notifications and topology
collected from the optical network.

Procedure

1. Log in to the EMC M&R platform with your user name and password.

2. Select Administration.

3. Select Centralized Management.

4. Select SOLUTIONPACK CENTER.

5. Select the SolutionPack in the Browse and Install SolutionPacks screen.

6. Read the summary information and click Install.

7. Select the components to install.

a. Review the default instance name and edit if needed.

You may install more than one instance of the SolutionPack. Each instance name
must be unique and connected to different Element Management Systems.

b. Select the EMC M&R servers in one or more list boxes. For example, select the
collector host in the Data collection and the backend host in the Events list boxes.

SolutionPack for Optical Wavelength Services Summary Sheet

Installing a SolutionPack 3

http://support.emc.com

http://support.emc.com

http://support.emc.com

c. Click Next.

8. For each list box you select, a screen appears.

a. Click Next after you complete each screen.

Default RabbitMQ credentials are admin and changeme when using SAM with
Notification Cache Publishing enabled.

b. Click Install after you complete the last screen.

The installation process begins.

9. Select the maximize arrow next to each component to view the installation process.

When the installation successfully completes, green checkmarks appear.

10.Select Centralized Management > SolutionPack to verify the installed SolutionPack.

Troubleshooting

Viewing collector errors in the Collector-Manager log files
Review the Collector-Manager log files to troubleshoot problems with data collection.

Procedure

1. Click Administration.

2. Click Centralized Management.

3. Expand Collecting.

4. Click the Collector-Manager for your collector instance.

Collector-Manager::<Collector-Manager instance> - <physical_host_ID>

5. Expand Log Files and click the View File icon to review the configuration error
messages.

Viewing event errors in the Event-Processing-Manager log files
Review the Event-Processing-Manager log files to troubleshoot problems with events.

Procedure

1. Click Administration.

2. Click Centralized Management.

3. Expand Events.

4. Click the Event-Processing-Manager for your event instance.

Event-Processing-Manager::<Event-Processing-Manager instance> - <physical_host_ID>

5. Expand Log Files and click the View File icon to review the configuration error
messages.

Article

4 Service Assurance Suite 9.4 Article

Copyright © 2015 EMC Corporation. All rights reserved. Published in USA.

Published January, 2015

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with
respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a
particular purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software
license.

EMC², EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

SolutionPack for Optical Wavelength Services Summary Sheet

Viewing event errors in the Event-Processing-Manager log files 5

		Overview

		Technical specifications

		Where to find the latest SolutionPack software

		Installing a SolutionPack

		Troubleshooting

		Viewing collector errors in the Collector-Manager log files

		Viewing event errors in the Event-Processing-Manager log files

EMC® Smarts®
Foundation 9.4

MODEL Reference Guide
P/N 302-002-287

REV 01

EMC Smarts Foundation MODEL Reference Guide2

Copyright © 1996 - 2015 EMC Corporation. All rights reserved. Published in the USA.

Published October, 2015

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

EMC², EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

EMC Corporation
Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.EMC.com

CONTENTS

Chapter 1 About MODEL

 Overview... 12
 Modeling event-driven information ... 13

Detecting events ... 13
Determining which events are monitored .. 13

Chapter 2 Introduction by Example

 Overview... 16
 Class properties .. 16

Declaring a class in MODEL ... 17
Interface declarations ... 17

 Modeling an object’s properties.. 19
Attribute declarations ... 19
Relationship declarations ... 20
Propagate attribute declarations ... 21

 Modeling event-driven behavior .. 23
Event declarations .. 23
Problem declarations .. 24
Propagate symptom declarations .. 25
Aggregate declarations ... 26
Propagate aggregate declarations ... 26
Export declaration... 27
Refining an object’s properties.. 28

 The complete example .. 29

Chapter 3 Working with MODEL Libraries

 Overview... 34
 Tools for working with MODEL libraries.. 34

Using the dmctl command-line interface ... 34
 Loading a MODEL library ... 35

Location of MODEL libraries .. 35
Starting a Domain Manager ... 36
Methods for loading MODEL libraries .. 36

 Working with a MODEL library and a Domain Manager 38
Methods for listing models loaded into a Domain Manager 38
Listing classes in the MODEL library .. 38
Creating instances of a class ... 38
Modifying the properties of an instance .. 38
Notifying events .. 39

Chapter 4 Basic Lexical Elements of MODEL

 Overview... 42
 Keywords .. 42
 Identifiers ... 51
 Data types .. 51

Enumerations.. 52
Structures ... 53

EMC Smarts Foundation MODEL Reference Guide 3

Contents

Chapter 5 Declaring an Interface

 Overview... 56
 Forward declaration ... 56
 Interface declaration ... 56

Interface header declaration ... 57

Chapter 6 Attribute Declarations

 Overview... 60
 Access types for attributes .. 60
 When the value of an attribute is unavailable .. 61

Attributes propagated over a relationshipset... 61
Minimizing the effects of unavailable attributes 62

 Stored attributes... 63
Refine keyword ... 65

 Computed attributes ... 66
Refine keyword ... 67

 Instrumented attributes .. 68
Refine keyword ... 70
Example of instrumented attribute .. 70

 Propagated attributes ... 71
Refining an existing propagated attribute.. 72
Refining an attribute to be propagated .. 72

 Table attributes... 73

Chapter 7 Relationship Declarations

 Overview... 76
 Cardinality .. 76
 Declaring a relationship .. 77

Chapter 8 Declaring Event-Driven Behavior in MODEL

 Overview... 80
 MODEL declarations for defining event-driven behavior............................... 80
 Event declaration .. 81
 Problem declaration.. 83
 Symptom declaration.. 88
 Propagate symptom declaration.. 91
 Aggregate declaration ... 92

Logic for aggregate processing .. 93
 Propagate aggregate declaration... 94

Logic for propagate aggregate processing ... 95
 Export declaration... 95
 Imported events.. 96

Specifying imported events in MODEL ... 96

Chapter 9 Operation Declarations

 Overview... 100
 Declaring an operation.. 100
 Return_type parameter.. 102

Refine keyword ... 103
 Arguments .. 103
 Assignment and return_expression parameters... 105

4 EMC Smarts Foundation MODEL Reference Guide

Contents

 Repository locking states .. 105
No locking... 105
Repository-wide write lock... 105
Repository-wide read lock ... 105
Instance-only write lock... 106
Instance-only read lock ... 106

Chapter 10 Writing Expressions in MODEL

 Overview... 108
 Lexical elements for expressions... 108

Literals.. 108
Operators.. 109
Evaluation expression operators ... 110
Operators for set expressions.. 112
Precedence of operators.. 113
Built-in functions .. 113

 Syntax for expressions .. 118
Examples of set operators ... 119

 When the value of an expression is unavailable .. 120
Boolean attributes .. 120

Chapter 11 Constraints

 Overview... 124
 Syntax... 124

Chapter 12 Instrument Declarations

 Overview... 128
 Syntax... 128
 Summary of runtime requirements for SNMP instrumentation 129

Chapter 13 MODEL Pragmas

 Overview... 132
 Required pragmas... 132

#pragma include_c file-name .. 132
#pragma include_h file-name.. 132

 Additional pragmas... 133
#pragma Idempotent Get .. 133
#pragma ident “string” ... 133
#pragma import .. 133
#pragma include ... 133
#pragma Leaf File.. 133
#pragma Local Operation .. 134
#pragma Uses Propagation ... 134
#pragma Unlocked.. 134

 Pragmas used with SNMP instrumentation .. 135
#pragma WrapCounter .. 135
#pragma ObjectID ... 135
#pragma DotNotation.. 135
#pragma HexNotation ... 135

 Pragma warnings in the MODEL compiler .. 136
“Unrecognized Pragma” warnings ... 136
“Ignored Pragma” warnings... 136

EMC Smarts Foundation MODEL Reference Guide 5

Contents

Index

6 EMC Smarts Foundation MODEL Reference Guide

Title Page

FIGURES

1 Inheritance of properties by subclasses .. 16
2 Sample hierarchy .. 17

EMC Smarts Foundation MODEL Reference Guide 7

Figures

8 EMC Smarts Foundation MODEL Reference Guide

Title Page

TABLES

1 Library variables for supported operating systems... 35
2 MODEL keywords .. 42
3 C++ and other reserved words ... 50
4 Supported types.. 51
5 Identity result for aggregate operators... 61
6 MIB, SNMP, and MODEL Types .. 68
7 Types of events that can be exported .. 96
8 Operators supported by MODEL .. 109
9 Operators for set expressions.. 112
10 Precedence and associativity of operators... 113
11 Truth table for event E1 = A1 && A2 .. 120
12 Truth table for event E2 = A1 || A2.. 120

EMC Smarts Foundation MODEL Reference Guide 9

Tableses

10 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 1
About MODEL

This chapter consists of the following sections:

◆ Overview... 12
◆ Modeling event-driven information ... 13

About MODEL 11

About MODEL

Overview
This document is a reference guide for the EMC® Smarts® Managed Object Definition
Language (MODEL). It serves as a comprehensive reference for the syntax and use of
MODEL declarations.

The EMC Smarts Managed Object Definition Language (MODEL) is a descriptive language
used to develop correlation models for EMC Smarts Foundation applications. MODEL
provides constructs for defining classes of managed objects and describing their
properties. Properties include attributes, operations, relationships, basic events,
problems, and symptoms.

The main purpose of MODEL is to provide a means of describing the potential components
of a managed domain in a reusable object-oriented framework. Developing your
management application with EMC Smarts provides two advantages.

◆ MODEL is an object-oriented language in which you declare a static class from which
many objects (or instances) can be instantiated at runtime.

◆ EMC Smarts applications separate the generic correlation model from topology.
Because the model you develop is not tied to a particular topology, it can be used to
model different domains that consist of similar types of managed objects.

MODEL is based on CORBA IDL (The Common Object Request Broker: Architecture and
Specification, Object Management Group and Xopen, 1992). MODEL uses CORBA IDL
notation where possible, introducing new syntax to address semantic concepts not
provided by CORBA IDL. The new syntax supports event-driven information including
problems, symptoms, and their propagation.

EMC Smarts installation directory
In this document, the term BASEDIR represents the location where EMC Smarts software is
installed.

◆ For Windows, this location is C:\InCharge\<productsuite>.

◆ For UNIX, this location is /opt/InCharge/<productsuite>.

InCharge names the directory where the software is installed. The <productsuite>
represents the EMC Smarts product suite to which the product belongs. This location is
referred to as BASEDIR/smarts.

Optionally, you can specify the root of BASEDIR to be something other than:

◆ Windows: C:\InCharge

◆ UNIX: /opt/InCharge

However, you cannot change the <productsuite> location under the root directory.

The EMC Smarts System Administration Guide provides more information about the
directory structure.

Where to get help
EMC support, product, and licensing information can be obtained as follows:

Product information — For documentation, release notes, software updates, or
information about EMC products, go to EMC Online Support at:

https://support.emc.com

12 EMC Smarts Foundation MODEL Reference Guide

http://support.emc.com

About MODEL

Technical support — Go to EMC Online Support and click Service Center. You will see
several options for contacting EMC Technical Support. Note that to open a service request,
you must have a valid support agreement. Contact your EMC sales representative for
details about obtaining a valid support agreement or with questions about your account.

Modeling event-driven information
Events are observable conditions that occur in objects of the managed domain. Event
information is essential to the root-cause analysis that is performed by the Domain
Manager.

MODEL recognizes the importance of event modeling and supports the following concepts
as they relate to the occurrence and effect of events in a managed system.

1. Events occur in objects and are modeled as object properties. Events can also be
imported from an external source.

2. Events may be symptoms or problems and sometimes both. A symptom is a basic
event that is directly observable on a class instance. A problem, defined on a class,
causes symptoms that may be directly observable on the same class or on related
classes. When the problem is fixed, the symptoms that it causes no longer occur.

3. Events can propagate from one object to another through a relationship. Propagation
of events is important to understand because the symptoms of a problem cannot
always be observed in the object where the problem occurs. Instead, the symptoms of
such a problem must be detected in related objects to properly diagnose the problem.

Detecting events

An EMC Smarts application is event-driven. When an event is detected, the Domain
Manager sends a notification to its client(s) indicating that the event has occurred. When
the Domain Manager determines that the notified event is no longer occurring, it clears
the notification to indicate that the conditions that caused the event are no longer
present.

In MODEL, events are declared as Boolean expressions constructed with the values of
attributes or other events. When the Domain Manager monitors an event, it determines
which attributes are required to evaluate the event expression. The Domain Manager
builds a data structure that links these attributes to the event expression and monitors
those attributes. When the value of a monitored attribute changes, the Domain Manager
re-evaluates the event expression to determine if its truth value has changed.

Determining which events are monitored

A Domain Manager does not automatically monitor for every event declared in the
correlation model. Instead, the Domain Manager only monitors for events that have been
subscribed to by EMC Smarts clients, which include adapters.

When an EMC Smarts client requests to be notified of an event (by subscribing to the
event), the Domain Manager monitors only those attributes and events necessary to
determine when the event occurs. Attributes that do not affect the evaluation of a
subscribed-to event are not monitored. When the value of an attribute that is not
monitored changes, the Domain Manager does not re-evaluate any event expressions. The
values of all attributes, monitored or not, are accessible to EMC Smarts clients.

Modeling event-driven information 13

About MODEL

14 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 2
Introduction by Example

This chapter consists of the following sections:

◆ Overview... 16
◆ Class properties .. 16
◆ Modeling an object’s properties.. 19
◆ Modeling event-driven behavior .. 23
◆ The complete example .. 29

Introduction by Example 15

Introduction by Example

Overview
This chapter uses an example model to introduce the basic MODEL declarations that you
will use to develop correlation models. The detailed syntax of MODEL declarations is
described in later chapters.

Class properties
A Domain Manager’s Repository maintains a runtime database of managed objects
instantiated from MODEL classes. The Repository also maintains an index of all instances
of a class. Each class has properties that define it within the Repository. These properties
are as follows.

◆ Inheritance defines the hierarchy of classes. Object classes are related in a
subclass/superclass hierarchy. All of the properties defined for a superclass are
inherited by its subclasses. For example, in Figure 1 on page 16 the
UnitaryComputerSystem class has an attribute XYZ and an event Down. Each of the
subclasses (Router and Host) inherits the attribute XYZ and the Down event.

Figure 1 Inheritance of properties by subclasses

A subclass may refine existing properties or add new properties and operations to
introduce unique behavior or states. “Inheritance” on page 57 provides further
information.

◆ A class can be declared as abstract or concrete. Concrete classes can be directly
instantiated and must define implementations for all their properties. Abstract
classes cannot be instantiated and may have properties for which they do not define
implementations. “Interface header declaration” on page 57 provides further
information.

UnitaryComputerSystem

Attribute XYZ
Event Down

Host

Attribute XYZ
Event Down

Superclass

Subclasses
Router

Attribute XYZ
Event Down

16 EMC Smarts Foundation MODEL Reference Guide

Introduction by Example

Declaring a class in MODEL

A class defines the state and behavior for all its instances. In MODEL, a class is defined by
an interface declaration. MODEL constructs are specified within an interface declaration.

An interface declaration defines a managed object class in the Repository. Each interface
must inherit from another interface. There are two base classes from which you can
inherit: MR_ManagedObject and MR_MetaObject. MR_ManagedObject serves as the base
class for all managed objects. When you develop a correlation model, the classes that
represent types of managed objects should inherit from MR_ManagedObject.
MR_MetaObject serves as the base class for objects that do not correspond to managed
elements. Objects derived from MR_MetaObject may be used for configuration and control
purposes. As such, MR_MetaObject is used less often.

Interface declarations

An interface is composed of an interface header declaration followed by a sequence of
declarations enclosed in curly braces. Properties of the interface are specified between
the curly braces.

Examples of interface declarations
The following code fragment declares five interfaces. The first two interfaces, Department
and Person, are subclasses of MR_ManagedObject. Employee is a subclass of Person and
has two subclasses, Director and Manager.

Each subclass inherits all of the properties of its superclass. Because Person is declared
as abstract, instances of this class cannot be instantiated. Employee is a subclass of
Person but is not declared as abstract. Instances of Employee can be created to populate
the topology, as shown in Figure 2 on page 17.

Figure 2 Sample hierarchy

MR_ManagedObject

Department Person

Employee

ManagerDirector

Class properties 17

Introduction by Example

The quoted strings that appear in each declaration are descriptions. Most MODEL
declarations have an optional description field. The descriptions are stored in the
Repository and can be displayed by EMC Smarts clients. You can use more than one line
for a description, but each line must begin and end with quotation marks. When a
description spans more than one line, add an extra space before the quotation marks at
the end of each line. This ensures that the description is readable when the client
concatenates the lines that compose the description.

interface Department : MR_ManagedObject
"The departments forming the company"
{
}

abstract interface Person : MR_ManagedObject
"A generic description of a person"
{
}

interface Employee : Person
"A person who works for the company"
{
}

interface Manager : Employee
"An employee who has managerial responsibilities"
{
}

interface Director : Employee
"An employee who has directorial responsibilities"
{
}

18 EMC Smarts Foundation MODEL Reference Guide

Introduction by Example

Modeling an object’s properties
The state of an object is defined by the values of its state properties. Attributes of an
object and relationships between an object and one or more other objects are examples of
an object’s state properties.

Attribute declarations

The attribute declaration is one of the basic declarations that comprise an interface
declaration. An attribute declaration specifies a property that is present in all instances of
the interface.

The value of an attribute can be stored in the Repository, computed on demand,
propagated from other objects through a relationship, or instrumented. An instrumented
attribute is an attribute whose value is obtained, by using an accessor.

A stored attribute declaration includes the attribute’s type, and optionally, a description,
access type, access flag, and initial value. MODEL supports most built-in C++ data types.
“Supported types” on page 51 provides a list of the supported attribute types. At runtime
the attributes obtain values. These values describe the state of the instance.

Examples of attribute declarations
The following code fragment declares attributes for the interfaces from the previous
example. Each declaration specifies the attribute’s data type and access type, if it is not
stored. Note that an expression in a computed attribute must be defined in-line, as shown
by the attribute Wages in the class Employee. Intrinsically, computed attributes are read
only, and therefore, the readonly keyword is optional. Their value cannot be set through a
EMC Smarts client.

Note: In a MODEL file, “//” is used to comment a line. “/* and “*/” are used comment a
block of lines.

interface Department : MR_ManagedObject
"The departments forming the company"
{

// Attributes
attribute short DeptNumber
"Department Number"
= 0;
attribute float DeptBudget
"Budget for wages"
= 0;

}

abstract interface Person : MR_ManagedObject
"A generic description of a person"
{

// Attributes
attribute string LastName
"Person’s last name";

attribute string FirstName
"Person’s first name";

}

Modeling an object’s properties 19

Introduction by Example

interface Employee : Person
"The people that work for the company"
{

// Attributes
attribute float LowWage_Thr
"The minimum salary expected for an employee"
= 5.15;

attribute float HoursWorked_Thr
"The maximum number of hours an employee should be "
"allowed to work per week"
= 60;

attribute string EmployeeID
"Employee identification number"
= "0000";

attribute float HoursWorked
"Number of hours an employee works per week"
= 40;

attribute float HourlyRate
"The employee's hourly wage"
= 13;

readonly computed attribute float Wages
"The employee’s weekly salary"
= HoursWorked * HourlyRate;

}

Relationship declarations

A relationship maps instances of one class to instances of the same or another class. For
each relationship, an inverse relationship may also exist that maps from the related class
back to the originating class. The term relation refers to the pair of relationships between
two objects.

The cardinality of a relationship can be to-one or to-many. The cardinality of a relationship
from class C1 to class C2 is to-one when an object of class C1 can be mapped by the
relationship to, at most, one object of class C2. The cardinality of a relationship from class
C1 to class C2 is to-many when an object of class C1 can be mapped by the relationship to
zero or more objects of class C2.

The reciprocal relationship between two objects may have a different cardinality than the
original relationship. Because of this, the relation between classes C1 and C2 is
one-to-one when the pair of relationships that define the relation are to-one relationships.
The cardinality of the relation between two classes is one-to-many when one of the
relationships is to-one and the other relationship is to-many. The cardinality of the relation
is many-to-many when both relationships are to-many.

A relationship declaration includes the cardinality of the relationship, the name of the
relationship, the name of the related class, the name of the inverse relationship, and an
optional description. Cardinality is determined by the keyword relationship, which
declares a to-one relationship, or relationshipset, which declares a to-many relationship.

20 EMC Smarts Foundation MODEL Reference Guide

Introduction by Example

Examples of relationship declarations
The Department class declares two relationships: ManagedBy and Contains. ManagedBy
is a relationship between a Department and a Manager. Contains is a relationship
between a Department and the employees who work in the department. Because a
department potentially has many employees, Contains is declared as a relationshipset.

In the Employee class, the relationship WorksIn declares the inverse of the Contains
relationship in the Department class. It declares that an employee can work in one
department.

The Manager class contains the Manages relationshipset, which is the inverse of the
ManagedBy relationship.

interface Department : MR_ManagedObject
"The departments forming the company"
{

// Relationships
relationship ManagedBy, Manager, Manages
"The manager who manages this department";

relationshipset Contains, Employee, WorksIn
"The employees this department contains";

}

interface Employee : Person
"The people that work for the company"
{

relationship WorksIn, Department, Contains
"The department the employee works in";

}

interface Manager : Employee
"An employee who has managerial responsibilities"
{

relationshipset Manages, Department, ManagedBy
"The department this manager manages. "
"A manager manages one department";

}

Propagate attribute declarations

Relationships define connections between classes of managed objects.

The value of a propagated attribute can be obtained from a single object through a
relationship or it can be retrieved from multiple objects through a relationshipset. When
the value of the propagated attribute is obtained through a relationshipset, you must
specify an aggregate operator. The aggregate operator tells the Domain Manager how to
combine the set of values formed by the value it receives from each instance participating
in the relationshipset.

A propagate attribute declaration includes the relationship name the attribute is retrieved
over, the related class, and the name of the attribute that propagates.

Modeling an object’s properties 21

Introduction by Example

Examples of propagated attributes
The Department interface declares two propagated attributes. The first,
AverageDeptWage, computes the average salary of the employees who work in the
department. This requires retrieving the value of the Wages attribute from each instance of
the Employee class through the Contains relationshipset. Because Contains is a
relationshipset, an aggregate operator, avg (for average), must be specified.

The second propagated attribute, ManagerSalary, retrieves the salary of the manager who
manages this department. This is accomplished through the ManagedBy relationship.
Manager is a subclass of Employee and inherits the Salary attribute.

interface Department : MR_ManagedObject
"The departments forming the company"
{

// Propagated attributes
propagate attribute float avg AverageDeptWage
"The average salary of employees in this department "
= Employee, Contains, Wages;

propagate attribute float ManagerSalary
"The salary of the manager of this department"
= Manager, ManagedBy, Wages;

}

22 EMC Smarts Foundation MODEL Reference Guide

Introduction by Example

Modeling event-driven behavior
Events define the behavior for instances of a class. An event is an observable condition
that occurs within an object. MODEL provides the following declarations for specifying
event-driven behavior.

◆ Event declaration

◆ Problem declaration

◆ Propagate symptom declaration

◆ Aggregate declaration

◆ Propagate aggregate declaration

◆ Export declaration

Note: An object created with the event declaration is referred to as a basic event.
Repository objects created with event, problem, aggregate, symptom, propagate
symptom, and propagate aggregate declarations are all referred to generically as events.

Event declarations

An event declaration declares a basic event that is observable in instances of the class for
which it is defined. It is important to note that an event declaration specifies an
observable event. As such, the Domain Manager does not perform correlation to
determine when such an event occurs. Instead, events specified by an event declaration
are used by the Domain Manager to diagnose problems. By monitoring observable events,
the Domain Manager is able to pinpoint problems (specified by problem declarations),
which cause the observable events.

An event declaration specifies the name of the basic event, an event expression, and an
optional description. Event expressions are written as Boolean expressions defined over
attributes or other events. When an event expression evaluates to true, it means that the
basic event is occurring. When the event expression evaluates to false it either means that
the basic event has cleared or that the event is not active.

Examples of an event declaration
The Employee class declares three basic events: UnderPaidEmployee, OverWorked, and
UnderAchieved. UnderPaidEmployee occurs when the value of the attribute HourlyRate is
less than the attribute LowWage_Thr. Similarly, OverWorked occurs when the attribute
HoursWorked is greater than the attribute HoursWorked_Thr. UnderAchieved is defined
using two previously declared basic events. When either UnderPaidEmployee or
OverWorked occurs, the basic event UnderAchieved occurs.

interface Employee : Person
"The people that work for the company"
{

// Events
event UnderPaidEmployee
"This employee is making less than the minimum wage"
= HourlyRate < LowWage_Thr;

Modeling event-driven behavior 23

Introduction by Example

event OverWorked
"This employee is working too many hours during the "
"week"
= HoursWorked > HoursWorked_Thr;

event UnderAchieved
"The employee is not performing as expected"
= UnderPaidEmployee || OverWorked;

}

Problem declarations

A problem declaration declares an event that is detected by observing its symptoms.
Symptoms are observable events that uniquely identify the problem. Note that the
symptoms described here are not necessarily declared by a symptom declaration. The
symptoms of a problem can be declared by event, symptom, and other problem
declarations.

Like an event declaration, a problem declared by a problem declaration must be
subscribed to by an EMC Smarts client to make the Domain Manager monitor for it.

A problem declaration specifies the name of the problem, the list of symptoms that the
problem causes, and an optional description.

As noted earlier, the Domain Manager only monitors problems that an EMC Smarts client
has subscribed to. If a problem is not subscribed to, the Domain Manager does not
monitor the attributes and events that the problem depends on.

Example of a problem declaration
The PoorPerformance problem causes the UnderAchieved event, making UnderAchieved a
symptom of PoorPerformance. When the Domain Manager detects the UnderAchieved
event, it concludes that PoorPerformance is the problem and sends a notification for the
PoorPerformance problem.

“Examples of an event declaration” on page 23 describes the attributes and events the
Domain Manager would have to monitor to determine when UnderAchieved occurs.

interface Employee : Person
"A person who work for the company"
{

// Problems
problem PoorPerformance
"The employee is not able to complete his or "
"her activities. Therefore, the employee is "
"forced to work extra hours"
=> UnderAchieved;

}

24 EMC Smarts Foundation MODEL Reference Guide

Introduction by Example

Propagate symptom declarations

It is not unusual for a problem declared in one class to cause events in a related class.
MODEL supports this notion through the propagate symptom declaration.

The propagate symptom declaration specifies a set of events that are not observable in
the object where they occur but whose effects propagate to related objects. It is important
to note that although the name of the declaration is propagate symptom, it is more
accurate to think of it as a propagated event. This is because a propagate symptom
declaration can be used to propagate events from event, problem, and other propagate
symptom declarations.

A propagate symptom declaration specifies the name of the propagated symptom, the
name of the related class, the name of the relationship along which the event propagates,
and the name of the symptom. The symptom refers to the event, problem, or propagate
symptom declaration that specifies the event in the related class.

Example of a propagate symptom declaration
The Department class declares two propagated symptoms: UnderPaidEmployee and
UnderAchieved. Both these events occur in instances of the Employee class. However,
neither of these events is observable in instances of the Department class. Instead, they
are detected through their symptoms that propagate from instances of the Employee class
through the Contains relationship.

Unlike a propagate attribute declaration, a propagate symptom declaration does not use
an aggregate operator. A propagate symptom declaration causes all instances of the target
problem/symptom/event to be in the problem signature for the problem that causes the
propagated symptom.

interface Department : MR_ManagedObject
"The departments forming the company"
{

propagate symptom UnderPaidEmployee
"The employees in this department that are underpaid"
= Employee, Contains;

propagate symptom UnderAchieved
"The employees in this department that are not "
"performing as expected"
= Employee, Contains;

}

Note: If the name of the basic event that propagates from the related class is not
specified, it means that the basic event has the same name as the propagated symptom.

Modeling event-driven behavior 25

Introduction by Example

Aggregate declarations

An aggregate declaration specifies a set of events that are grouped into a single event by
disjunction. Therefore, when any one event in the set occurs, the aggregate event occurs.

Like event and problem declarations, an event specified by an aggregate declaration must
be subscribed to for the Domain Manager to monitor it. When an EMC Smarts client
subscribes to an aggregate event, the Domain Manager only monitors those attributes and
events necessary to determine when the aggregate occurs.

An aggregate declaration specifies the name of the aggregated event, an optional
description, and a list of one or more events that comprise the aggregate. Events specified
by event, problem, and aggregate declarations can be used in an aggregate declaration.

Example of an aggregate declaration
The LegalException aggregate is a single event declared with the UnderPaidEmployee and
OverWorked events. When either the UnderPaidEmployee or the OverWorked events
occur, the LegalException aggregate also occurs. Both events that compose the aggregate
are also declared in the Employee class.

interface Employee : Person
"The people that work for the company"
{

// Aggregate
aggregate LegalException
"The employee is experiencing an illegal condition in "
"his/her working environment"
= UnderPaidEmployee,
 OverWorked;

}

Propagate aggregate declarations

A propagate aggregate declaration specifies an event whose set of symptoms are events
declared in related classes. When one of the symptoms in the set occurs, it propagates to
the instance where the propagate aggregate is declared.

The syntax of the propagate aggregate declaration is similar to that of the propagate
symptom declaration. A propagate aggregate declaration specifies the name of the
propagated aggregate, an optional description, and the names of the related class, the
relationship along which the symptoms propagate, and the symptom in the related class.

Example of a propagate aggregate declaration
The LegalException propagate aggregate declared in the Department class propagates
from instances of the Employee class through the Contains relationship. LegalException is
also the name of the event in the event declaration in the Employee class, so it is not
necessary to provide its name. When LegalException occurs in any instance of Employee,
the LegalException becomes active in the Employee’s Department.

26 EMC Smarts Foundation MODEL Reference Guide

Introduction by Example

interface Department : MR_ManagedObject
"The departments forming the company"
{

propagate aggregate LegalException
"This department contains employees that work "
"under illegal conditions. The employment contract "
"for these employees must be reviewed"
= Employee, Contains;

Export declaration

Exported events are those events that are made visible to EMC Smarts clients. When you
declare an event as exported, it is accessible to EMC Smarts clients, so they can subscribe
to the event and receive notifications when the event occurs.

If an event is not exported, it remains private and is not accessible outside of the Domain
Manager’s Repository.

A single export declaration can declare all of the public events for a class. Table 7 on
page 96 specifies the types of events that can be exported.

The export declaration specifies, by name, the events that are to be exported.

Example of an export declaration
The Department class exports a single event, the aggregate Legal Exception, while the
Employee class exports one problem and three events. To make your MODEL code easier
to read, use separate declarations to export events and problems.

interface Department : MR_ManagedObject
"The departments forming the company"
{

// Exported Aggregates
export

LegalException;
{

interface Employee : Person
“The people that work for the company"
{

// Exported problems
export

PoorPerformance;

// Exported events
export

UnderPaidEmployee,
OverWorked,
UnderAchieved;

}

Modeling event-driven behavior 27

Introduction by Example

Refining an object’s properties

Refinement provides a method for modifying a class property in a subclass. Attribute,
relationship, event, problem, propagate symptom, aggregate, and propagate aggregate
declarations may be refined. The refinement must be declared in a subclass.

A refined property has the same name as the property it modifies and is indicated by the
keyword refine. A property’s description can always be changed through a refinement.

◆ For a stored attribute declaration, a refinement can change the attribute’s initial value
and its access type.

◆ For a relationship or relationshipset declaration, a refinement can change the class
that participates in the relationship. The interface where the relationship is originally
declared must be a superclass of the interface where the relationship is refined.
In addition, the cardinality of the refined relationship must remain the same as that of
the original relationship.

◆ For an event declaration, a refinement can change all the properties of the event.

◆ For a problem declaration, a refinement can change all the properties of the problem.

◆ For an aggregate declaration, a refinement can change all the properties of the
aggregate.

◆ For propagate aggregate and propagate symptom declarations, a refinement can
change all the properties of the declarations.

28 EMC Smarts Foundation MODEL Reference Guide

Introduction by Example

The complete example
The following is the complete model from which the examples in this chapter were taken.

#include <repos/managed_object.mdl>

#pragma include_h <repos/managed_object.h>
#pragma include_c "department.h"

interface Department : MR_ManagedObject
"The departments forming the company"
{

// Export Aggregates
export
 LegalException;

// Aggregates
propagate aggregate LegalException
"This department contains employees that work under "
"illegal conditions. The employment contract for "
"these employees must be reviewed"
= Employee, Contains;

// Relationships
relationship ManagedBy, Manager, Manages
"The manager who manages this department";

relationshipset Contains, Employee, WorksIn
"The employees this department contains";

// Attributes
attribute short DeptNumber
"Department Number"
= 0;

attribute float DeptBudget
"Budget for wages"
= 0;

// Propagated attributes
propagate attribute float avg AverageDeptWage
"The average salary of employees in this department"
= Employee, Contains, Wages;

propagate attribute float ManagerSalary
"The salary of the manager of this department"
= Manager, ManagedBy, Wages;

propagate symptom UnderPaidEmployee
"The employees in this department that are underpaid"
= Employee, Contains;

propagate symptom UnderAchieved
"The employees in this department that are not "
" performing as expected"
= Employee, Contains;

}
abstract interface Person : MR_ManagedObject
"A generic description of a person"
{

// Attributes
attribute string LastName
"Person's last name";

The complete example 29

Introduction by Example

attribute string FirstName
"Person's first name";

}

interface Employee : Person
"A person who works for the company"
{

// Exported problems
export
 PoorPerformance;

// Exported events
export
 UnderPaidEmployee,
 OverWorked,
 UnderAchieved;

// Problems
problem PoorPerformance
"The employee is not able to complete his or her "
"activities. Therefore, the employee is forced "
"to work extra hours "
=> UnderAchieved;

// Events
event UnderPaidEmployee
"This employee is making less than the minimum wage"
= HourlyRate < LowWage_Thr;
event OverWorked
"This employee is working too many hours during the "
"week"
= HoursWorked > HoursWorked_Thr;

event UnderAchieved
"The employee is not performing as expected"
= UnderPaidEmployee ||
 OverWorked;
// Aggregates
aggregate LegalException
"The employee is experiencing an illegal condition "
"in his/her working environment"
= UnderPaidEmployee,
 OverWorked;

// Relationships
relationship WorksIn, Department, Contains
"The department the employee works in";

// Attributes
attribute float LowWage_Thr
"The minimum wage for an employee"
= 5.15;

attribute float HoursWorked_Thr
"The maximum number of hours an employee should be "
"allowed to work per week"
= 60;

attribute string EmployeeID
"Employee identification number"
= "0000";

30 EMC Smarts Foundation MODEL Reference Guide

Introduction by Example

attribute float HoursWorked
"Number of hours an employee works per week"
= 40;

attribute float HourlyRate
"An employee's hourly wage"
= 13;

readonly computed attribute float Wages
"The employee's weekly salary"
= HoursWorked * HourlyRate;

propagate attribute float ManagerSalary
"The weekly salary of the employee's manager"

 = Department, WorksIn;

}
interface Manager : Employee
"An employee who has managerial responsibilities"
{

// Exported problems
export
 StingyManager;

// Problems
problem StingyManager
"This manager does not compensate employees properly, "
"or his/her managerial skills are not provding the "
"direction his employees require to perform better"
=> MyEmployeesUnderAchieved;

// Events
refine event OverWorked
"This employee is working too many hours during a "
"week period"
= HoursWorked > 1.5 * HoursWorked_Thr;

// Symptoms
propagate symptom MyEmployeesUnderAchieved
"The employees that are paid less than the minimun "
"wage"
= Department, Manages, UnderAchieved;

// Relationships
relationshipset Manages, Department, ManagedBy
"The department this manager manages. "
"A manager manages one department";

relationship ReportsTo, Director, Supervises
"The director this manager reports to";

}
interface Director : Employee
"An employee who has directorial responsibilities"
{

// Relationships
relationshipset Supervises, Manager, ReportsTo
"The manager this director supervises";

}

The complete example 31

Introduction by Example

32 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 3
Working with MODEL Libraries

This chapter consists of the following sections:

◆ Overview... 34
◆ Tools for working with MODEL libraries.. 34
◆ Loading a MODEL library ... 35
◆ Working with a MODEL library and a Domain Manager ... 38

Working with MODEL Libraries 33

Working with MODEL Libraries

Overview
After you successfully compile a correlation model, the next step is to load the MODEL
library into a Domain Manager and test it. The purpose of testing is to ensure that:

◆ The proper events are triggered when the values of attributes change

◆ The problems and aggregations occur when expected

◆ The events are propagating along relationships as expected

If your model includes complex expressions in event or attribute declarations, you should
test these expressions to ensure that they return the expected results.

You can use several different tools to load and test a MODEL library. This chapter briefly
describes these tools and explains various procedures for testing your correlation model.

Tools for working with MODEL libraries
You can perform the procedures for loading and testing a correlation model with any of the
tools described below. You can choose the tool you prefer to use and follow the
procedures for that tool. These tools include the dmctl utility, and adapters.

◆ The dmctl utility is a command-line tool for connecting to a Domain Manager.

◆ Adapters can also be used to load and test MODEL libraries. The methods for doing
this are not discussed in this book. The EMC Smarts ASL Reference Guide provides
further information.

Using the dmctl command-line interface

The dmctl utility provides a command line interface to a running Domain Manager. You can
use it to perform tasks such as adding or deleting objects, setting the value of attributes,
and inserting objects in or removing objects from relationships.

The dmctl utility can operate in two modes: you can establish a continuous connection
with a Domain Manager, or you can open and close a connection for each command.
When you perform multiple operations, a continuous connection is easier because you do
not have to specify the name of the Domain Manager for each operation.

To establish a continuous connection with a running Domain Manager, specify the name
of the Domain Manager with the --server option, where <domain> is the name of the
Domain Manager:

dmctl --server=<domain>

To use dmctl in such a way that it opens and closes the command for the operation,
specify the name of the Domain Manager and the command. The following command
shuts down the specified Domain Manager.

dmctl --server=<domain> shutdown

The dmctl utility can be used to create instances, insert instances into relationships,
supply values to attributes, and generate events for the example model described in “The
complete example” on page 29.

34 EMC Smarts Foundation MODEL Reference Guide

Working with MODEL Libraries

More information regarding dmctl is available in two places:

◆ The HTML documentation for EMC Smarts commands, which is installed into the
BASEDIR/smarts/doc/html/usage directory. The help file for dmctl is dmctl.html.

◆ Information is also available by specifying the --help option:

dmctl --help
You can retrieve the complete list of dmctl commands by specifying the
--commands option:

dmctl --commands

Loading a MODEL library
You can load a MODEL library into a Domain Manager when you start it or after it is already
running. For security purposes, the Domain Manager looks in a specific directory for
MODEL libraries. You can specify additional locations with an environment variable.

Location of MODEL libraries

Because the Domain Manager may run with root or administrator privileges, the Domain
Manager (and other EMC Smarts commands) is limited to loading libraries from specific
directories. When invoked, EMC Smarts programs append the SM_LIBPATH environment
variable and the BASEDIR/smarts/lib path to the system library variable described in
Table 1 on page 35.

You can specify additional directories by setting the SM_LIBPATH environment variable. By
default, the SM_LIBPATH environment variable is not set.

Setting SM_LIBPATH on Windows
On Windows systems, you can specify additional directories for the current user session
from the command prompt.

C:> SET SM_LIBPATH=<path>;<path>;<path>

Setting SM_LIBPATH on UNIX and Red Hat Linux
On UNIX and Red Hat Linux systems, the method for setting an environment variable
differs according to the shell. The instructions below assume sh or ksh.

% SM_LIBPATH=<path>:<path>:<path>
% export SM_LIBPATH

Where <path> is a directory where MODEL libraries are located. More than one path may be
specified by separating the paths with a colon (:).

Table 1 Library variables for supported operating systems

Operating system Library variable

Red Hat Linux LD_LIBRARY_PATH

Windows
(also used to locate main programs)

PATH

Loading a MODEL library 35

Working with MODEL Libraries

Starting a Domain Manager

The Domain Manager Toolkit includes a runtime license for a Domain Manager. This
enables you to test your model and any adapters you have developed. Follow the
procedures in the EMC Smarts System Administration Guide to obtain a permanent
license.

There are two commands available to start a Manager: dmstart and sm_server. The
sm_server command has more options, including the specification of a configuration
directory, and therefore is the command normally used in production. The dmstart
command is generally used early in the development cycle before configuration files have
been created.

Note: The dmstart and sm_server commands assume that the Broker is already running.

You can use the -help option for a complete list of command line options. Change to the
BASEDIR/smarts/bin directory and enter:

dmstart --help

or

sm_server --help

One of the required command line parameters of sm_server is the domain manager
configuration directory ("--config=<directory>"). The EMC Smarts software includes a
directory called BASEDIR/smarts/examples, which contains several different
subdirectories. Each subdirectory is for a separate example. Some of these examples
include a conf subdirectory, such as BASEDIR/smarts/examples/apollo13/conf. The
BASEDIR/smarts/examples/apollo13/conf directory contains a sample bootstrap.conf
and sample .import file. These files show how to instantiate key objects and set
parameters on them that may be useful for your application.

The installed versions of these files have their contents commented out. You may activate
these by running the sm_edit utility to bring up these files in an editor so that you can
uncomment selected lines. Alternatively, you can create a new configuration directory
named after your application by copying BASEDIR/smarts/conf/SDK to
BASEDIR/smarts/conf/<new-app-name>, and then running sm_edit to edit the files in this
new directory.

Methods for loading MODEL libraries

There are several methods for loading a MODEL library into a Domain Manager.

◆ You can load a MODEL library when you start the Domain Manager.

◆ You can use the dmctl utility to load a MODEL library into a running Domain Manager.

Regardless of what method you use, you only specify the base name of the library when
you load it into a Domain Manager. For example, the name of the MODEL library might be
libexample.so. When you load the library, simply use example to specify the library.

36 EMC Smarts Foundation MODEL Reference Guide

Working with MODEL Libraries

Loading a MODEL library at Domain Manager startup
To load a MODEL library when you start the Domain Manager, specify the MODEL library
with the --model option to the dmstart command.

BASEDIR/smarts/bin/dmstart --name=<domain> --model=<model>

where <domain> is the name of the Domain Manager, and <model> is the name of the
MODEL library.

Loading a MODEL library with dmctl
To load a MODEL library to a running Domain Manager, use the dmctl command-line
interface and the loadModel command.

BASEDIR/smarts/bin/dmctl --server=<domain> loadModel <model>

This command must be run on a single line. The <domain> parameter is the name of the
Domain Manager and <model> is the name of the MODEL library.

Loading a MODEL library 37

Working with MODEL Libraries

Working with a MODEL library and a Domain Manager
Once your model is compiled and loaded into a Domain Manager, you are ready to start
testing. This section describes different methods for viewing your model, listing its
contents, creating instances, and notifying events.

Methods for listing models loaded into a Domain Manager

You can use the dmctl utility to list the models loaded into a Domain Manager.

Use the getModels option to retrieve the list.

BASEDIR/smarts/bin/dmctl --server=<domain> getModels

Listing classes in the MODEL library

You can use the dmctl utility to list the classes declared in the model. If more than one
model is loaded into the Domain Manager, only the concrete classes from the loaded
models are retrieved.

The getClasses command can be used to list the classes.

BASEDIR/smarts/bin/dmctl --server=<domain> getClasses

Note: The list of classes retrieved by dmctl will also include classes used to configure and
control the operation of the Domain Manager. Removing these classes or modifying the
properties of their instances is not recommended.

Creating instances of a class

You can use the dmctl utility to create instances of classes declared in your model. By
creating instances, you build a topology of managed elements.

The create command is used to create an instance. You must specify the class name and
an instance name.

In this example, dmctl is already connected to a Domain Manager. This enables you to
type commands without having to first attach to the Domain Manager.

% dmctl> create <class_name>::<instance_name>

Modifying the properties of an instance

You can use the dmctl utility to modify the properties of instances. This includes changing
the values of attributes and inserting instances into relations.

Note: When you insert an instance into a relation, the instance that is on the other end of
the relation must already exist.

38 EMC Smarts Foundation MODEL Reference Guide

Working with MODEL Libraries

Changing an attribute value with the dmctl utility
You can change the value of an attribute by using the put command:

dmctl> put <class>::<instance>::<attribute> <value>

Note: The value of attributes declared as read-only, which includes computed attributes,
cannot be changed by an EMC Smarts client.

Insert an instance into a relation with the dmctl utility
To insert an instance into a relation with dmctl, use the insert command. You may find it
helpful to retrieve the class properties to verify the relations in which the instance can
participate.

To retrieve the properties of a class:

% dmctl> getProperties <class_name>

To insert an instance into a relation, you must specify an instance for each end of the
relation. For the instance to be inserted, specify the class name, instance, and relation. For
the other end of the relation, specify the class name and instance.

% dmctl> insert <class>::<instance>::<relation> \
<class>::<instance>

Notifying events

Notifying events provides a method for simulating the occurrence of events in a managed
system. The Domain Manager treats a notified event as though it were a real event.

You simulate events with the notify command. Events specified by problem or aggregate
declarations cannot be notified. Instead, you notify the symptoms, specified by event
declarations, that the problem would cause if it were to occur. If the problem affects other
objects, as specified by an aggregate declaration, then the Domain Manager notifies the
appropriate aggregate events as well.

To notify an event, by using dmctl, specify the class name, instance, and event.

% dcmtl> notify <class>::<instance>::<event>

Working with a MODEL library and a Domain Manager 39

Working with MODEL Libraries

40 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 4
Basic Lexical Elements of MODEL

This chapter consists of the following sections:

◆ Overview... 42
◆ Keywords .. 42
◆ Identifiers ... 51
◆ Data types .. 51

Basic Lexical Elements of MODEL 41

Basic Lexical Elements of MODEL

Overview
The remaining chapters of this document provide a reference for the syntax and usage of
MODEL declarations. This chapter describes the basic lexical elements of MODEL
including keywords, identifiers, and data types. Because MODEL files are compiled to C++,
the lexical elements follow many of the conventions for keywords, identifiers, and data
types established by C++.

Keywords
Table 2 on page 42 lists the MODEL keywords, and Table 3 on page 50 lists the C++
keywords and other words that are reserved and should not be used as identifiers.
Identifiers with a double underscore (_ _) or those that begin with an underscore and an
uppercase letter are also reserved for use by C++ implementations and standard libraries.
You should avoid C++ keywords because the code generated by the MODEL compiler is
compiled by a C++ compiler.

Note: Not all of the keywords in the following lists are currently used by MODEL. Unused
keywords are reserved for future use.

Table 2 MODEL keywords (page 1 of 8)

Keyword Description Refer to

_time Represents the current time as an
int in UNIX epoch format. Used in
expressions.

abstract Defines an interface for which
instances cannot be instantiated.

“Interface header declaration”
on page 57.

aggregate A type of declaration that groups
one or more basic events,
problems, aggregates or
propagated aggregates declared for
the same class into a single abstract
event by disjunction.

“Aggregate declaration” on
page 92.

and An aggregate operator that is used
to determine the results when
propagating attributes over a
relationshipset.

“Attributes propagated over a
relationshipset” on page 61.
“Propagated attributes” on
page 71.

apriori Indicates the probability of a
problem occurring before looking at
any of the symptoms as evidence.

“apriori keyword” on page 85.

ascending Indicates the direction when an
access key has been defined for a
table.

The description of ascending on
page 74.

attribute Attributes describe the state of a
managed object. Their values can
be queried and manipulated by
EMC Smarts clients and displayed
in a console.

Chapter 6, “Attribute
Declarations”on page 59.

42 EMC Smarts Foundation MODEL Reference Guide

Basic Lexical Elements of MODEL

avg An aggregate operator that is used
to determine the results when
propagating attributes over a
relationshipset.

“Attributes propagated over a
relationshipset” on page 61.
“Propagated attributes” on
page 71.

binary A data type supported by MODEL. “Data types” on page 51.

boolean A data type supported by MODEL. “Data types” on page 51.

byte A data type supported by MODEL. “Data types” on page 51.

case The case operator uses the value of
a selection expression to select one
of a number of keys and the value
expression associated with that key.

“Case operator” on page 111.

check A separator used to identify a
guarded expression.

“Guarded events” on page 82.

computed Specifies an access type for an
attribute. The value of a computed
attribute is calculated on demand
by evaluating an expression, when
the value of the attribute is
required.

“Computed attributes” on
page 66.

const Indicates that the operation does
not change the instance in the
repository, it cannot assign to
attributes of the class. However, it
may change other parts of the
repository.

“Operation Declarations” on
page 99.
“Instance-only read lock” on
page 106.

const value Declares a constant value.

constraint Constraint expressions are used to
enforce limits on the values of
attributes or combinations of
attributes. Constraints are enforced
at runtime, unlike ranges.
Constraints can also be used for
relationshipsets.

“Constraints” on page 123.

default A key in a case evaluation
expression operator.

“Case operator” on page 111.

definition A keyword used when defining an
operation.

“Operation Declarations” on
page 99.

delta A built-in function that is supplied
by MODEL. The term delta(A),
where A is an attribute, returns
the difference between the
current value of A and its
previous value.

“Built-in functions” on
page 113.

descending Indicates the direction when an
access key has been defined for a
table.

The description of descending on
page 74.

double A data type supported by MODEL. “Data types” on page 51.

Table 2 MODEL keywords (page 2 of 8)

Keyword Description Refer to

Keywords 43

Basic Lexical Elements of MODEL

else An operator that is used when
evaluating expressions.

“Else operator” on page 110.

enum A data type supported by MODEL.
Enumerated type assigns integer
values to each of its tags.

“Enumerations” on page 52.

event A type of declaration that defines a
basic event, meaning it is
observable in the object where it
occurs.

“Event declaration” on
page 81.

events_only Indicates that a proxy declaration is
restricted to proxy only events, as
opposed to events and attributes.

explains Indicates that this symptom of a
problem is used for display
purposes and does not affect the
analysis.
Indicates that this member of the
<symptom_list> of a symptom is
used for display purposes and does
not affect the analysis.

“explains keyword” on
page 86.
“explains keyword” on
page 89.

export Indicates that the associated
event-driven behavior is visible
outside of the Repository.
EMC Smarts clients, such as the
Global Console and adapters, can
subscribe to exported event-driven
behavior and receive notifications
when they occur.

“Export declaration” on
page 95.

external Indicates whether the literal text
specified as the initial value of a
string attribute will be externalized.
The external keyword implies both
static and readonly. When including
the external keyword in a
declaration, do not include the
static and readonly keywords.

“Stored attributes” on
page 63.

FALSE A valid value for a boolean data
type.

“Data types” on page 51.

float A data type supported by MODEL. “Data types” on page 51.

foreach This keyword is used in constraint
expressions to iterate over the
contents of a relationshipset,
applying a test to each element.

“Constraints” on page 123.

fragment A computation expression that my
be embedded in other expressions.

get_row A keyword used in expressions to
get a row from a table.

hard Modifies a constraint to indicate
that it is always enforced and fatal
to violate.

“Constraints” on page 123.

Table 2 MODEL keywords (page 3 of 8)

Keyword Description Refer to

44 EMC Smarts Foundation MODEL Reference Guide

Basic Lexical Elements of MODEL

idempotent Indicates that the operation, if
called multiple times without an
intervening put, will return the same
value each call.

The description of idempotent on
page 101.

if Indicates a guard clause in an event
expression.

“Guarded events” on page 82.

implementation Designates text that is copied
verbatim to the generated C++ code.
This keyword is used at the end of
an interface declaration.

“Interface header declaration”
on page 57.

imported Reserved for future use.

in When the in keyword is included
with an argument to an operation, it
indicates that information passes
from the caller to the operation.

“in keyword” on page 103.

inout An operation argument direction
modifier.

“inout keyword” on page 104.

instrument A type of declaration that specifies
the access method for all of the
instrumented attributes of the class
for which it is declared.

“Instrument Declarations” on
page 127.

instrumented Indicates an access type for an
attribute. An instrumented attribute
obtains its value through a standard
protocol, such as SNMP, and
requires a separate instrumentation
declaration that ties the attribute to
the protocol.

“Instrumented attributes” on
page 68.

instrumented_op Reserved for future use.

int A data type supported by MODEL. “Data types” on page 51.

interface Defines a managed object class or a
type of managed element in the
Repository.

“Declaring an Interface” on
page 55.

internal Indicates that the attribute or
operation is not visible outside of
the repository.

“Operation Declarations” on
page 99.

key A means to access a table. If a key is
declared, then the table row must
be a struct and the key must be a
field of the struct.

“Table attributes” on page 73.

long A data type supported by MODEL. “Data types” on page 51.

loss Specifies the probability that the
observable basic event is lost or not
observed (its expression does not
evaluate to true) even though it is
occurring.

“Event declaration” on
page 81.

Table 2 MODEL keywords (page 4 of 8)

Keyword Description Refer to

Keywords 45

Basic Lexical Elements of MODEL

max An aggregate operator that is used
to determine the results when
propagating attributes over a
relationshipset.

“Attributes propagated over a
relationshipset” on page 61.
“Propagated attributes” on
page 71.

min An aggregate operator that is used
to determine the results when
propagating attributes over a
relationshipset.

“Attributes propagated over a
relationshipset” on page 61.
“Propagated attributes” on
page 71.

obj A built-in function in MODEL. The
term obj(
<string_expression> returns
the object whose name matches the
result of the string expression.

“Object” on page 114.

old The old keyword can be used before
an attribute name in a constraint
expression. When used, it indicates
“check the attribute’s old value”.

“Constraints” on page 123.

or An aggregate operator that is used
to determine the results when
propagating attributes over a
relationshipset.

“Attributes propagated over a
relationshipset” on page 61.
“Propagated attributes” on
page 71.

out When the out keyword is included
with an argument to an operation, it
indicates that value of the argument
is set by the operation and returned
to the caller.

“out keyword” on page 104.

polling_frequency A built-in function in MODEL. The
term polling_frequency(A),
where A is an attribute, returns the
interval, in seconds, between
successive polls of an attribute’s
value.

“Polling frequency” on
page 114.

problem A type of declaration that declares
an event that may occur in instances
of a class. A problem causes a set of
symptoms and the problem
declaration specifies these
symptoms and a probability that
each symptom will be observed
when the problem occurs.

“Problem declaration” on
page 83.

prod An aggregate operator that is used
to determine the results when
propagating attributes over a
relationshipset.

“Attributes propagated over a
relationshipset” on page 61.
“Propagated attributes” on
page 71.

propagate Declares that the value of the
attribute is computed or copied
from other objects through a
relation.

“Propagated attributes” on
page 71.

proxy Declares an interface (class) whose
instances represent the information
of other interfaces.

Table 2 MODEL keywords (page 5 of 8)

Keyword Description Refer to

46 EMC Smarts Foundation MODEL Reference Guide

Basic Lexical Elements of MODEL

rate A built-in function in MODEL. The
term rate(A,T), where A is an
attribute and T is a time interval,
returns the rate at which A changed
during the last T seconds.

“Rate” on page 116.

rate_last An alternative to rate(A,T) that may
be used for polled attributes in
cases when rate interval T equals
the polling period of A.

“Rate_last” on page 116

readonly Prevents write access to an
attribute’s value.
Provided for computed
relationships.
Performs a repository-wide read
lock when used with an operation.
The readonly keyword, when used in
conjunction with #pragma Local
Operation, locks (for reading) only
the object on which the operation is
invoked.

“Propagated attributes” on
page 71.
“Computed attributes” on
page 66.
“Instrumented attributes” on
page 68.
“Relationship Declarations”
on page 75.
“Repository-wide read lock”
on page 105.
“Instance-only read lock” on
page 106.

refine All properties defined for a class are
inherited by its subclasses. The
refine keyword is used to modify the
properties specified by attribute,
relationship, and event declarations
in the subclass.

“Attribute Declarations” on
page 59.
“Relationship Declarations”
on page 75.
“Declaring Event-Driven
Behavior in MODEL” on
page 79.

relationship Defines a to-one connection
between classes

“Relationship Declarations”
on page 75.

relationshipset Defines a to-many connection
between classes.

“Relationship Declarations”
on page 75.

REMOTE_REPOSITORY The REMOTE_REPOSITORY keyword
is used in conjunction with the
instrument keyword.

“Instrument Declarations” on
page 127.

required Indicates that an attribute’s value
must be initialized when an
instance of the class is created. A
transaction must be used to create
and initialize the attribute.

The description of the required
keyword on page 64.

return Specifies a return value from a
function written in MODEL.

“Operation Declarations” on
page 99.

row Declares an identifier in an SNMP
row.

self A reference to the current instance
in an expression.

“Syntax for expressions” on
page 118.

set Indicates that the operation returns
a set of values.

“Return_type parameter” on
page 102.

short A data type supported by MODEL. “Data types” on page 51

Table 2 MODEL keywords (page 6 of 8)

Keyword Description Refer to

Keywords 47

Basic Lexical Elements of MODEL

SNMP The SNMP keyword is used in
conjunction with the instrument
keyword.
The instrument SNMP declaration
connects the instrumented
attributes to an SNMP object
identifier (OID).

“Instrument Declarations” on
page 127.
“Instrumented attributes” on
page 68.

soft Constraints may be either hard or
soft. Soft constraints are currently
treated similar to hard constraints.

“Constraints” on page 123.

spurious Specifies the probability that this
observable basic event is not
occurring, even though the event
expression evaluates to true.

“Event declaration” on
page 81.

static Declares the scope of a stored
attribute. If the stored attribute is
declared static, a single copy of the
attribute value is shared by all
instances of the interface.

“Stored attributes” on page 63

stored Specifies an access type for an
attribute. The value of a stored
attribute is specified in the
model or set at runtime when
the instance is created.
It is also a keyword used to specify
the access type of a relationship. It
specifies where and how
information about the relationship
is obtained.

“Stored attributes” on
page 63.
“Relationship Declarations”
on page 75.

string A data type supported by MODEL. “Data types” on page 51.

struct A data type supported by MODEL. “Structures” on page 53.

sum An aggregate operator that is used
to determine the results when
propagating attributes over a
relationshipset.

“Attributes propagated over a
relationshipset” on page 61.
“Propagated attributes” on
page 71.

symptom A type of declaration that groups a
set of basic events, symptoms,
propagated symptoms and other
problems that it can cause into a
single event by conjunction.

“Symptom declaration” on
page 88.

table A type of data attribute. It is a
collection of rows, each of which
can be a scalar or a structure.

“Table attributes” on page 73.

timestamp The term timestamp(A), where A
is an attribute, returns the time
when the value of A was last
changed. Used in conjunction with
the timestamped keyword.

“Timestamp” on page 117.

Table 2 MODEL keywords (page 7 of 8)

Keyword Description Refer to

48 EMC Smarts Foundation MODEL Reference Guide

Basic Lexical Elements of MODEL

timestamped When an attribute is declared with
the optional keyword timestamped,
the Domain Manager creates a
read-only unsigned integer whose
value is the time that the attribute
was last updated.

“Stored attributes” on
page 63.

TRUE A valid value for a boolean data
type.

“Data types” on page 51.

unique Defines an interface where only one
instance of the interface, or any
derived interface, may be
instantiated at any given time.
When used with a table, it specifies
that each row must have a
unique key.
There is also a unique operator for
set expressions.

“Interface header declaration”
on page 57.
The description of the unique
keyword on page 74.
“Operators for set
expressions” on page 112.

unsigned Indicates an unsigned int data type
in a class declaration.

unstringable Indicates an external type has no
means to convert to/from a string
representation.

void The value type returned when an
operation has no return value.

“Return_type parameter” on
page 102.

with An alternative to events_only. It is
used in a proxy declaration to proxy
all of the events and attributes of an
interface (class).

Table 2 MODEL keywords (page 8 of 8)

Keyword Description Refer to

Keywords 49

Basic Lexical Elements of MODEL

Table 3 C++ and other reserved words

and_eq extern sizeof

asm external static_cast

auto for switch

bitand friend template

bitor function this

bool goto throw

break handler try

catch inline type

causes mutable typedef

char namespace typeid

class new typename

compl not union

const_cast not_eq using

continue operator value

CORBA or_eq virtual

delete private volatile

do protected wchar_t

dynamic_cast public while

error_code register xor

explicit reinterpret_cast xor_eq

extern signed

50 EMC Smarts Foundation MODEL Reference Guide

Basic Lexical Elements of MODEL

Identifiers
A MODEL identifier must start with an upper or lowercase letter but may contain any
number of letters, numbers, and underscores after the first letter. You cannot use any
MODEL or C++ keyword as an identifier.

The scope of an identifier declared in an interface is limited to the scope of that interface.
Subclasses, however, extend the scope of an interface. All identifiers of a class are visible
to its subclasses.

Data types
Table 4 on page 51 lists the data types supported by MODEL.

Table 4 Supported types

Data Type Definition

Fundamental Types binary Binary data.

boolean Two possible values: TRUE or FALSE.

byte An unsigned 8-bit integer ranging from 0 to
255.

double Any double-precision floating point
number (similar to C++).

float Any single-precision floating point number
(similar to C++).

int A 32-bit integer ranging from -2^31 to
+(2^31 -1).

long A 64-bit integer ranging from -2^63 to
+(2^63 -1).

short A 16-bit integer ranging from -32,768 to
32,767.

string A NUL-terminated array of UTF-8 data.

unsigned int Unsigned 32-bit integer ranging from 0 to
(2^32 - 1).

unsigned long Unsigned 64-bit integer ranging from 0 to
(2^64 - 1).

unsigned short Unsigned 16-bit integer ranging from 0 to
65,535.

User-defined Types enum Enumerated type that assigns integer
values to each of its tags. Integer values
may be positive, negative or zero.

struct A collection of fields, each field specifies
its own type.

Identifiers 51

Basic Lexical Elements of MODEL

Enumerations

An enumerated type contains a list of tags and assigns integer values to each of the tags.
The integer values may be positive, negative or zero. Enumerations that are declared
without numerical assignments start with 0 and increase by 1.

Each tag must be unique within a namespace (global or within an interface); you cannot
have two enumerations in the same namespace that contain the same tag.

The format for declaring an enumeration is as follows:

The following example defines the enumeration OperationalState.

enum OperationalState {OFF, ON, UNKNOWN, TESTING};

Since the declaration does not specify values for any of the tags, the first tag is assigned
the value 0. The value of each subsequent tag increments by one. Therefore, OFF is equal
to 0, ON is equal to 1, UNKNOWN is equal to 2, and TESTING is equal to 3.

In this example, ON is assigned a specific value in the declaration.

enum OperationalState {OFF, ON = 4, UNKNOWN, TESTING};

OFF is equal to 0, and ON is equal to 4. Since UNKNOWN and TESTING have not been
declared with a specific value, they increment by 1 from the value of the preceding tag.
Therefore, UNKNOWN is equal to 5, and TESTING is equal to 6.

Enumerations can also be defined outside of an interface, in the global name space.
However, as a best practice you should avoid global enumerations. You can declare an
abstract interface and then define all of your enumerations in that one interface.

Once you have an enumeration defined, you can use the enumeration as a data type in
other declarations, such as attributes and events. For example, the enumeration state_e is
declared in the MyEquip class. The attribute OperationalState is then declared with the
state_e data type, and initialized to one of the tags in the state_e enumeration.

interface MyEquip : ICIM_ManagedElement
{

enum state_e { OK, MALFUNCTION, UNKNOWN };
attribute state_e OperationalState = UNKNOWN;
event malfunctioning

= OperationalState == MALFUNCTION;
}

You can also reference enumerations that are defined in other classes. If the class
containing the enumeration is in another model file, then the model file with the
enumeration must be referenced in your model file with the #include and #pragma
include_h statements.

<enum> ::= enum

<enum_name>

“{“ <tags_list> “}”

“;”

<tags_list> ::= <tag>

[“,” <tags_list>]

<tag> ::= <tag_name>

[<tag_value>]

<tag_value> ::= “=”

int

52 EMC Smarts Foundation MODEL Reference Guide

Basic Lexical Elements of MODEL

An enumeration can be used as a data type in other interface declarations, using the
syntax <interface_name>::<enumeration_name>.

An enumeration tag can also be declared in one interface and referenced in another
interface declaration, using the syntax <interface_name>::<tag_name>.

In this example, the class OtherEquipment is defining an attribute that will use the
enumeration defined in the MyEquip class. In addition, the UNKNOWN and MALFUNCTION
tags are also referenced.

interface MyEquip : ICIM_ManagedElement
{

enum state_e { OK, MALFUNCTION, UNKNOWN };
attribute state_e OperationalState = UNKNOWN;
event malfunctioning

= OperationalState == MALFUNCTION;
}

interface OtherEquipment : ICIM_ManagedElement
{

attribute MyEquip::state_e OperState = MyEquip::UNKNOWN;
event Down

= OperState == MyEquip::MALFUNCTION;
}

Structures

Structures can be defined within an interface or outside of an interface, in the global name
space. Within a namespace (interface or global), the structure name must be unique.
However, as a best practice you should avoid global structures.

Each structure defines a namespace for their fields. Therefore, two or more structures can
have the same field names.

The format for declaring a structure is as follows:

<struct> ::= struct

<struct_name>

“{“

<fields_list>

“}”

“;”

<fields_list> ::= <field>

[<fields_list>]

<field> ::= <field_type>

<field_name>

“;”

<field_type> ::= double

| float

| [unsigned] int

| [unsigned] long

| [unsigned] short

| boolean

| binary

| byte

| string

| <enum_type_name>

Data types 53

Basic Lexical Elements of MODEL

In this example, the structure AuditTrailEntry is declared. This structure contains five
fields.

struct AuditTrailEntry
{
 unsigned SerialNumber;
 unsigned Timestamp;
 string User;
 string ActionType;
 string Text;
};

You can declare an attribute with a struct type:

attribute demoStruct AuditTrailEntry;
When you get the values, you use a dotted notation on the attribute name and the field
name.

You can also use a structure when declaring a table attribute. In this example, each row in
the AuditTrail table consists of the five fields of the AuditTrailEntry structure. In addition,
the SerialNumber field is used as the unique key in the table.

table AuditTrail AuditTrailEntry
descending unique key SerialNumber
"The audit trail for the event.";

54 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 5
Declaring an Interface

This chapter consists of the following sections:

◆ Overview... 56
◆ Forward declaration .. 56
◆ Interface declaration ... 56

Declaring an Interface 55

Declaring an Interface

Overview
An interface defines a managed object class or a type of managed element in the
Repository. An interface can be defined by an interface declaration or a forward
declaration.

Forward declaration

A forward declaration declares the name of an interface and indicates that its definition
appears later in the MODEL file. A MODEL class cannot be referenced before it is declared.
You can use the forward declaration to declare a class whose full declaration appears
later. A forward declaration includes the keyword interface and the name of the interface.

Note: The relationship declaration is an exception to the rule that dictates that a MODEL
class cannot be referenced before it is declared. A relationship declaration may declare a
reciprocal class for the relationship, and the reciprocal class may not yet be declared.

Interface declaration
An interface declaration is composed of an interface header statement followed by a
series of interface definition statements enclosed by curly braces. Interface definition
statements describe the properties of the class.

◆ Attributes, relationships, and operations on instances of the class.

◆ Problems and events associated with instances of the class and the causal relations
among the instances.

◆ Access types for the attributes of the interface.

The syntax of an interface declaration:

The declarations that define the properties of an interface are described in the following
chapters.

The names of each of these properties, such as an attribute, problem, relationship and so
on, must be unique within an interface. For example, if you have an attribute named
“Target1”, then you cannot name any other property of this class “Target1”.

<interface> ::= <interface_dcl>

| <forward_dcl>

<forward_dcl> ::= interface <interface_name>

<interface_dcl> ::= <interface_header>

<interface_description>

"{"

<declarations>

[<opt_implementation>]

"}"

[;]

<opt_implementation> ::= implementation

“:”

<user-entered text>

56 EMC Smarts Foundation MODEL Reference Guide

Declaring an Interface

The optional <opt_implementation> parameter defines text that is copied verbatim to the
generated C++ code when the MODEL is compiled. In this example, the text “void init ()”
would be copied into the C++ file that is generated from the .mdl file.

interface MyClass1: TopClass
{
 refine FileName
 = "mymod/layout.xml";

 implementation:
 void init();
};

IMPORTANT

Do not call a Java implemented construct from within the C++ init() class.

Interface header declaration

An interface header declaration specifies the name of an interface and its inheritance
specification.

The optional keyword abstract defines an interface for which instances cannot be
instantiated. Classes that can be directly instantiated must define implementations for all
of their attributes. Classes that are declared as abstract and cannot be directly
instantiated may specify attributes for which implementations are not defined. To
instantiate instances of a subclass of an abstract class, the subclass must define
implementations for all of its attributes. By default, an interface is not abstract.

The optional keyword unique defines an interface where only one instance of the
interface, or any derived interface, may be instantiated at any given time. If you create an
instance, and destroy it, you can then create another instance.

Inheritance
MODEL is a single-inheritance language: an interface can only inherit from one other
interface. There are two base classes from which you can inherit: MR_ManagedObject and
MR_MetaObject. MR_ManagedObject serves as the base class for all managed objects.
When you develop a correlation model, the classes that represent types of managed
objects should inherit from MR_ManagedObject. MR_MetaObject serves as the base class
for objects that do not correspond to managed elements. Objects derived from
MR_MetaObject may be used for configuration and control purposes.

Interfaces are related in a subclass/superclass tree. The inheritance specification,
<inheritance_spec>, declares the class that the interface inherits from. The inheritance
specification parameter is specified with a colon (:) followed by the name of the
superclass.

<interface_header> ::= [abstract][unique]

interface

<interface_name>

<inheritance_spec>

<inheritance_spec> ::= ":" <parent_class>

Interface declaration 57

Declaring an Interface

All properties defined for a class are inherited by its subclasses. You can refine properties
specified by attribute, relationship, and event declarations in the subclass. You can also
add properties to a subclass to introduce a unique behavior or state.

interface NetworkAdapter; /* Forward Declaration */

abstract interface ComputerSystem : MR_ManagedObject
{
}

interface Router : ComputerSystem
{
}

58 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 6
Attribute Declarations

This chapter consists of the following sections:

◆ Overview... 60
◆ Access types for attributes .. 60
◆ When the value of an attribute is unavailable .. 61
◆ Stored attributes... 63
◆ Computed attributes ... 66
◆ Instrumented attributes .. 68
◆ Propagated attributes ... 71
◆ Table attributes... 73

Attribute Declarations 59

Attribute Declarations

Overview
Attributes describe the state of a managed object. Their values can be queried and
manipulated by EMC Smarts clients and displayed in a console.

A data attribute can have a value of scalar, structure, or table type. A scalar value is one of
the pre-defined set of types. A table is a collection of rows, each of which can be a scalar
or a structure.

Access types for attributes
The value of an attribute can be accessed using one of four methods: stored in the
Repository, computed on demand, instrumented (that is, accessed using an accessor), or
propagated from other objects through a relationship.

◆ Stored attributes can have an initial value that is a constant. If the stored attribute is
not declared as readonly, an EMC Smarts client such as an adapter can update or
change the attribute’s value.

◆ The value of a computed attribute is calculated on demand, when the value of the
attribute is required.

◆ Instrumented attributes obtain their value through an accessor. Instrumented
attributes require a separate instrumentation declaration that ties the attribute to the
protocol.

◆ The value of a propagated attribute is obtained from one or more instances of a
related class through a relationship or relationshipset. A propagated attribute whose
value is retrieved through a relationship returns a single value from the related object.
A propagated attribute whose value is retrieved through a relationshipset is
computed by applying an aggregate operator to a set of values, one value from each
related object.

60 EMC Smarts Foundation MODEL Reference Guide

Attribute Declarations

When the value of an attribute is unavailable
A Domain Manager monitors those attributes necessary to determine when events that
have been subscribed to occur. When the status of a monitored attribute changes, the
Domain Manager evaluates the event expressions that depend on this attribute. If the
Domain Manager is unable to retrieve the value of a monitored attribute, for whatever
reason, the Domain Manager marks the attribute as unavailable.

When an attribute is marked as unavailable, the Domain Manager no longer attempts to
retrieve its value. An event expression that uses the value of this attribute may also
become unavailable, depending on how the attribute value is used in the event
expression. “When the value of an expression is unavailable” on page 120 provides
additional information regarding unavailable events.

There are several reasons why a Domain Manager might not be able to retrieve the value of
an attribute.

◆ An instance that contains the attribute does not exist (was not created or was
deleted). Typically, this affects propagated attributes whose value is retrieved through
a relationship or a relationshipset.

◆ If the attribute is instrumented, the Domain Manager may not be able to retrieve its
value because of external problems. For example, network congestion may impede
the Domain Manager's attempts to retrieve the value of an attribute that is
instrumented through a protocol.

When the status of an unavailable attribute changes, the Domain Manager automatically
retrieves its value and evaluates any dependent event expressions.

MODEL also provides a default value for an attribute whose value is obtained by
propagation from an empty relationshipset. In this case, the default value of the attribute
is the identity value for the aggregate operator.

Attributes propagated over a relationshipset

Attributes that propagate over a relationshipset must be of a numeric or Boolean type. The
results returned by propagation over an empty relationshipset depend on the aggregate
operator. Table 5 on page 61 lists the identity value of an empty relationshipset and the
corresponding aggregate operator.

Table 5 Identity result for aggregate operators

Aggregate Operator Identity Value

and True

or False

max Lowest possible value

min Highest possible value

sum 0

prod 1

avg Error

When the value of an attribute is unavailable 61

Attribute Declarations

The following example interface declares one propagated attribute for each aggregate
operator. The value of each attribute propagates from a related class through a
relationshipset. This example explains the identity values listed in Table 5 on page 61.

interface Ex2 : MR_ManagedObject
{

propagate attribute boolean and A3 <= C3, R3;
propagate attribute boolean or A4 <= C4, R4;
propagate attribute int max A5 <= C5, R5;
propagate attribute int min A5 <= C6, R6;
propagate attribute int sum A7 <= C7, R7;
propagate attribute int prod A8 <= C8, R8;
propagate attribute int avg A9 <= C9, R9;

}

The and aggregate operator returns true for an empty set. You expect that inserting a true
value to any set leaves the and aggregate unchanged. This can only occur if the identity
value of the and aggregate operator is true. Similarly, the or aggregate operator returns a
value of false when R4 is empty. You expect that inserting a value of false to any set leaves
the or aggregate unchanged. This can only occur if the identity value of or is false.

The max aggregate operator returns the lowest possible value for an empty set. When you
insert a value that is higher than the current maximum to R5, the value of A5 increases to
reflect the new maximum value. This can only occur if the identity value of the max
operator is the lowest possible value. Similarly, when you insert a value that is lower than
the current minimum to R6, you expect the value of A5 to change accordingly. This can
only occur if the identity value of the min operator is the highest possible value.

The sum aggregate operator returns a zero for an empty set. If you insert a value of one to
R7, you expect the value of A7 to increase by one. This can only occur if the identity value
of the sum operator is zero.

The prod aggregate operator returns a value of one for an empty set. When you insert a
value of two to R8, you expect its value to double. This can only occur if the identity value
of the prod operator is one.

The avg aggregate operator is different from the other aggregate operators in that it has no
identity value. If A9 is initially empty and you insert a value of one, the average should be
one, the only value in the set. However, the value of A9 in this case is A9 + 1/2. For A9 to
equal one, its initial value would have to be one. If you substitute two for the one, the
same result occurs. Because of this, there is no identity value that works with every
possible value inserted into A9.

Minimizing the effects of unavailable attributes

You can, for certain situations, write MODEL code that prevents an attribute from
becoming unavailable. For example, when the value for an attribute propagates from a
related instance, you can write an event expression that determines whether that related
instance exists before the Domain Manager retrieves the value of the attribute.

The following example illustrates this technique. The value of attribute A1 propagates
from a related instance through relationship R1. Event E1 is only evaluated when the
number of instances participating in R1 is greater than zero. The vertical bars (||)
surrounding R1 produce a count of the related instances. If the count of R1 is not greater
than zero, the Boolean expression evaluates to False. If the count of R1 is greater than

62 EMC Smarts Foundation MODEL Reference Guide

Attribute Declarations

zero, the first term of the Boolean expression evaluates to True and the Domain Manager
can safely retrieve the value of A1 to determine whether the second term, and the entire
event expression, evaluate to true.

interface Example : MR_ManagedObject
{

relationship R1, Example2;
propagate attribute boolean A1 = Example2, R1;
event E1 = |R1| > 0 && A1;

}

Stored attributes
The value of a stored attribute is specified in the model or set at runtime when the
instance is created. If the attribute is declared as readonly, its value cannot be updated or
changed by an EMC Smarts client. A typical use of a stored attribute is to provide a name
for an object as a string.

The internal keyword indicates that this attribute is only visible within the generated C++
code. The attribute is not visible through an external interface, and therefore it cannot be
viewed in a console.

<attribute_dcl> ::= [internal]

[static][readonly]

[stored]

attribute

[external]

<attribute_type>

[<value_range>]

<attribute_name>

[required]

[timestamped]

[<attribute_description>]

["=" <initial_value>]

";"

|

refine

stored

<attribute_name>

[required]

[timestamped]

[<attribute_description>]

[“=” <initial_value>]

";"

<value_range> ::= "["

<integer_literal>

“ “

".."

“ “

<integer_literal>

"]"

Stored attributes 63

Attribute Declarations

Note: A computed attribute that is not marked as internal can use the internal attribute in
an expression, thus making the internal attribute’s value visible to an external interface.

The optional keyword static declares the scope of the attribute. If the stored attribute is
declared static, a single copy of the attribute value is shared by all instances of the
interface.

The optional keyword readonly prevents write access to an attribute’s value. In this
example, the value of the attribute is set to 865.0 and cannot be changed.

readonly attribute float LowOxygenPressureThreshold
 "Minimum operational oxygen pressure (psi)."
 = 865.0;

Note: A readonly attribute must be given an initial value.

The keyword attribute identifies this as an attribute declaration. The keyword stored
declares the attribute’s access type. The stored keyword is optional because if you declare
an attribute without a keyword specifying the access type, a stored attribute is created, by
default.

The keyword external indicates whether the literal text specified as the initial value of a
string attribute will be externalized. The external keyword implies both static and
readonly. When including the external keyword in a declaration, do not include the static
and readonly keywords. In this example, the <initial value>, Jim Smith, will be externalized.

interface Pitcher : MR_ManagedObject
“The man who throws the baseball”
{
 attribute external string Name
 “The name of the pitcher” = “Jim SMith”;
}

The <attribute_type> parameter specifies an attribute’s data type. A stored attribute can be
any one of the supported types listed in “Data types” on page 51.

The required keyword indicates that the value of the attribute must be initialized when an
instance of the class is created. Therefore, the creation and initialization must be done
using a transaction. Transactions can be written in ASL or using one of the remote APIs
(Java, Perl or C). To set values it must be a write-transaction (read only transactions cannot
create instances or assign values). This example shows the basic format of a
write-transaction in ASL:

tx = transaction(WRITE_LOCK);
create instance
set instance's required attribute(s)' s values.
tx->commit();

When an attribute is declared with the optional keyword timestamped, the Domain
Manager creates a readonly unsigned integer whose value is the time that the attribute
was last updated. To retrieve this value, use the timestamp() function described in
“Timestamp” on page 117. The time is calculated by counting the number of seconds that
have elapsed since Midnight of 1 January 1970 (GMT). The last update is the most recent
call to the put method for a stored attribute and the most recent poll for an instrumented
attribute.

64 EMC Smarts Foundation MODEL Reference Guide

Attribute Declarations

Note: Attributes that are declared as stored cannot use the timestamped keyword with the
keyword readonly. Only attributes declared as instrumented can use the timestamped
keyword with the readonly keyword, as described in “Instrumented attributes” on
page 68.

The optional <initial_value> parameter sets an initial value for the attribute when the
object is instantiated. In this example, whenever an instance of the Engine class is
created, the Temperature attribute for that instance will have an initial value of 0.

interface Engine : ICIM_Managed_Element
{

stored attribute float Temperature
 "Internal gas temperature (fahrenheit)."
 = 0;
}

The optional <value_range> parameter indicates the expected range of the value. Currently,
it does not impose any constraints on the variable’s value. However, you can use the
range to set things, such as the end-points of slider bar. In this example, the
MaxResponseTime attribute has a range of 0 to 60 with an initial value of 2.

attribute unsigned long [0 .. 60] MaxResponseTime
"The maximum response time (in seconds). The actual
response time is compared against this threshold to
determine if the process is running slow."
= 2;

In this example, the enumeration state_e is defined. state_e is then used as the
<attribute_type> in the attribute declaration.

enum state_e { OK, MALFUNCTION, UNKNOWN };
readonly attribute state_e OperationalState

"Operational State of this device. Possible states are: "
" OK, MALFUNCTION, or UNKNOWN "
= UNKNOWN;

You can also define a structure and then use the name of the struct as the <attribute_type>
in your attribute declaration.

Refine keyword

The keyword refine declares this attribute as a refinement of an attribute declared in a
superclass of this class.

The stored keyword is required if you are refining the access type of an attribute to the
stored access type.

The stored keyword is optional if you declared or refined the attribute to be the stored
access type in the parent class. If you do not specify the access type in the refine
statement, the access type defaults to the access type defined in the previous
specification going up the class hierarchy. The previous specification is either a
refinement of the attribute that includes the access type keyword or the original attribute
declaration.

You can add/modify the description and the initial value of the attribute.

Stored attributes 65

Attribute Declarations

Computed attributes
A Domain Manager determines the value of a computed attribute by evaluating an
expression. You define an expression using the operators, functions, and types supported
by MODEL. “Lexical elements for expressions” on page 108 provides additional
information regarding operators, and “Data types” on page 51 describes the supported
data types.

Computed attributes are used for calculating rates and displaying the information to an
EMC Smarts client or for presenting information in readable format.

The internal keyword indicates that this attribute is only visible within the generated C++
code. The attribute is not visible through an external interface, and therefore it cannot be
viewed in a console.

The optional keyword readonly prevents write access to an attribute’s value. The default
behavior of a computed attribute is readonly, even if the readonly keyword is omitted.
However, when you refine a computed attribute the readonly flag will only be applied if
you specifically set the readonly keyword in the original computed attribute. The refined
computed attribute inherits the readonly flag from the computed attribute in the parent
class.

The keyword attribute indicates that this is an attribute declaration. The keyword
computed declares the access type of the attribute.

<attribute_dcl> ::= [internal]

[readonly]

computed

attribute

<attribute_type>

[<value_range>]

<attribute_name>

[required]

[timestamped]

[<attribute_description>]

["=" <expression>]

";"

|

refine

computed

<attribute_name>

[required]

[timestamped]

[<attribute_description>]

"=" <expression>

";"

<value_range> ::= "["

<integer_literal>

“ “

".."

“ “

<integer_literal>

"]"

66 EMC Smarts Foundation MODEL Reference Guide

Attribute Declarations

The <attribute_type> parameter specifies an attribute’s data type. A stored attribute can be
any one of the supported types listed in “Data types” on page 51.

The MODEL syntax for a computed attribute and a stored attribute are similar. One
important difference is the <expression> parameter. This parameter provides a way for you
to write an expression that the Domain Manager uses to compute the attribute’s value.
This expression must be a MODEL expression; it cannot be procedural code. “Syntax for
expressions” on page 118 describes the syntax of expressions.

This example computes a value for the attribute CurrentUtilization.

computed attribute float CurrentUtilization
= ((TotalRate * 8) / (MaxSpeed + 0.001)) * 100;

Refine keyword

The keyword refine declares this attribute as a refinement of an attribute declared in a
superclass of this class.

The computed keyword is required if you are refining the access type of an attribute to the
computed access type.

The computed keyword is optional if you declared or refined the attribute to be the
computed access type in the parent class. If you do not specify the access type in the
refine statement, the access type defaults to the access type defined in the previous
specification going up the class hierarchy. The previous specification is either a
refinement of the attribute that includes the access type keyword or the original attribute
declaration.

When you refine a computed attribute the readonly flag will only be applied if you
specifically set the readonly keyword in the original computed attribute. The refined
computed attribute inherits the readonly flag from the computed attribute in the parent
class.

Computed attributes 67

Attribute Declarations

Instrumented attributes
The value of an instrumented attribute is retrieved by a Domain Manager through a
standard protocol. The runtime support for instrumentation is provided by a component
called an accessor. A Domain Manager includes an SNMP accessor for retrieving the
values of SNMP MIB variables.

When an attribute is instrumented through the SNMP accessor, the accessor retrieves the
value of the attribute from a remote SNMP agent. The SNMP accessor does this by polling
the values of the SNMP MIB variables that correspond to the instrumented attribute. Only
attributes necessary to evaluate events that have been subscribed to are actually polled.

The type of an instrumented attribute must match the type of the MIB variable retrieved by
the SNMP accessor. When the SNMP accessor retrieves a MIB variable, it verifies that its
type matches the type declared for the corresponding MODEL attribute. The SNMP
accessor rejects a MODEL attribute of type enum because the type it retrieves from the
SNMP agent is an integer. When the SNMP accessor detects a type mismatch, the Domain
Manager logs an error and the user receives the error SNMP_EAGENTBUG.

The variable types that appear in MIBs are defined by Abstract Syntax Notation 1 (ASN.1).
SNMP defines a base set of types on top of the ASN.1 types. Table 6 on page 68 lists the
common MIB types, the corresponding SNMP type, and the corresponding MODEL
attribute type.

Table 6 MIB, SNMP, and MODEL Types

MIB Type SNMP Type MODEL Attribute Type

DisplayString OCTET STRING string

IpAddress OCTET STRING string - Requires the #pragma DotNotation.
“#pragma DotNotation” on page 135 provides
additional information.

Counter INTEGER unsigned int - Requires the #pragma WrapCounter.
“Pragmas used with SNMP instrumentation”
on page 135 provides additional information.

Gauge INTEGER unsigned int

TimeTicks INTEGER unsigned int

Integer32 INTEGER int

Counter32 INTEGER unsigned int - Requires the #pragma WrapCounter.
“Pragmas used with SNMP instrumentation”
on page 135 provides additional information.

Gauge32 INTEGER unsigned int

Unsigned32 INTEGER unsigned int

OID OBJECT IDENTIFIER string - Requires the #pragma Object ID. “#pragma
ObjectID” on page 135 provides additional
information.

Counter64 COUNTER64 unsigned long

68 EMC Smarts Foundation MODEL Reference Guide

Attribute Declarations

Developing a MODEL with instrumented attributes is a two-step process that requires you
to complete steps during both MODEL development and at runtime. This section describes
the MODEL requirements for attribute declarations and the syntax of instrumented
attributes. A summary of the runtime requirements appears in “Summary of runtime
requirements for SNMP instrumentation” on page 129.

To properly instrument an attribute, MODEL code must meet two conditions:

◆ It must contain attributes declared as instrumented. Furthermore, all of the
instrumented attributes of a given instance must get their value from the same SNMP
agent. When you retrieve values from an SNMP table, such as ifTable, the rule of
thumb is to map a MODEL class to a row of an SNMP table. In the class, declare a
separate instrumented attribute for each column of the table and create an instance
to represent each row.

◆ It must contain an instrumentation declaration for each class with instrumented
attributes. For SNMP instrumentation, the instrumentation declaration maps the
instrumented attributes of a class to OIDs. “Instrument Declarations” on page 127
describes the syntax of an instrumentation declaration.

The syntax of an instrumented attribute declaration is shown below.

The internal keyword indicates that this attribute is only visible within the generated C++
code. The attribute is not visible through an external interface, and therefore it cannot be
viewed in a console.

The keyword attribute identifies this as an attribute declaration. The keyword
instrumented declares the access type of this attribute.

The <attribute_type> parameter specifies an attribute’s data type. An instrumented
attribute can be any one of the supported types listed in “Data types” on page 51.

<attribute_dcl> ::= [internal]

[readonly]

instrumented

attribute

<attribute_type>

[<value_range>]

<attribute_name>

[<attribute_description>]

";"

|

refine

instrumented

<attribute_name>

[<optional_description>]

";"

<value_range> ::= "["

<integer_literal>

“ “

".."

“ “

<integer_literal>

"]"

Instrumented attributes 69

Attribute Declarations

Note: SNMP does not support enumeration types. They may appear in a MIB as a list,
however, they come across the network as integers.

An instrumented attribute does not require the use of the keyword timestamped because
the SNMP accessor automatically maintains this information. You can retrieve the most
recent time at which the value of an instrumented attribute changed as you would for a
stored or computed attribute declared as timestamped. “Timestamp” on page 117
provides additional information.

Refine keyword

The keyword refine indicates that this declaration is a refinement of an attribute in a
related class.

The instrumented keyword is required if you are refining the access type of an attribute to
the instrumented access type.

The instrumented keyword is optional if you declared or refined the attribute to be the
instrumented access type in the parent class. If you do not specify the access type in the
refine statement, the access type defaults to the access type defined in the previous
specification going up the class hierarchy. The previous specification is either a
refinement of the attribute that includes the access type keyword or the original attribute
declaration.

Example of instrumented attribute

The following example shows an instrumented attribute, sysUpTime, whose value is
retrieved from an SNMP-enabled device that supports MIB-II. The connection between this
attribute and the sysUpTime MIB variable is demonstrated in “Instrument Declarations”
on page 127.

interface AgentStatus
{

instrument SNMP{
sysUpTime = "1.3.6.1.2.1.1.3"

};

#pragma WrapCounter
readonly instrumented attribute unsigned sysUpTime

"The time (in hundredths of a second) since "
"the network management portion of the system "
"was last re-initialized.";

}

The WrapCounter pragma is used with instrumented attributes of an unsigned numeric
type that get their value from a MIB counter variable. This pragma prevents rates and
deltas that are computed over the attribute from returning a negative value. If the current
value of the attribute is smaller than the previously retrieved value, the Domain Manager
assumes that the counter has wrapped.

“MODEL Pragmas” on page 131 describes the available MODEL pragmas. “Built-in
functions” on page 113 describes the rate and delta operators.

70 EMC Smarts Foundation MODEL Reference Guide

Attribute Declarations

Propagated attributes
An attribute declared as propagated obtains its value from an attribute in one or more
instances of a related class. The value is retrieved from one instance for a relationship and
one or more instances for a relationshipset. The type of a propagated attribute must be
compatible with the type of the attribute in the related class. For example, you could
declare a propagated attribute with the sum, prod, or avg aggregate operator as a float or
a double, even if the values propagate from an attribute declared as an int.

MODEL supports two types of relationships: to-one, which are declared with the
relationship keyword; and to-many, which are declared with the relationshipset keyword.
The cardinality of a relationship determines the attribute type that can propagate.

◆ Any MODEL-supported type can propagate through a to-one relationship.

◆ Only Boolean or numeric types can propagate through a to-many relationshipset. You
can, however, use a computed attribute or a set expression to avoid this limitation.

<attribute_dcl> ::= [internal]

propagate

attribute

<attribute_type>

[<aggregate_operator>]

<attribute_name>

[<attribute_description>]

"<="

<class_name>

","

<relationship_name>

["," <attribute_name>]

";"

| refine

propagate

attribute

[<aggregate_operator>]

<attribute_name>

[<attribute_description>]

"<="

<class_name>

","

<relationship_name>

["," <attribute_name>]

";"

<aggregate_operator> ::= max

| min

| sum

| prod

| avg

| and

| or

Propagated attributes 71

Attribute Declarations

The internal keyword indicates that this attribute is only visible within the generated C++
code. The attribute is not visible through an external interface, and therefore it cannot be
viewed in a console.

The keyword attribute identifies this as an attribute declaration.

The keyword propagate declares that the value of this attribute is computed or copied
from other objects through a relation. If the relation that the attribute propagates through
is a relationshipset, then the <aggregate_operator> parameter is required to specify how
the attribute values from related objects are to be handled. An attribute that propagates
through a relationshipset must be a numeric or Boolean type.

The <class_name> and <relationship_name> parameters specify the class and the
relationship that the value of the attribute propagates from. The optional <attribute_name>
parameter identifies the original attribute if it has a different name. If you do not provide a
name, then the assumption is that the attribute has the same name in the related class.

Refining an existing propagated attribute

The keyword refine identifies this declaration as a refinement of a propagate attribute
declared in a superclass.

The keyword attribute is required for a refinement of a propagate attribute declaration. A
refinement can modify the class from which values propagate, the relationship through
which the values propagate, the attribute that the value propagates from, and the
aggregate operator.

Refining an attribute to be propagated

When you refine the access type of a stored or computed attribute to propagate, you need
to provide the class name and relation name that the value propagates from. In addition,
you must place a #pragma Uses Propagation before the attribute declaration in the parent
class. If the pragma is not provided, a warning message is issued when the MODEL is
compiled. “#pragma Uses Propagation” on page 134 provides additional information
regarding this pragma.

72 EMC Smarts Foundation MODEL Reference Guide

Attribute Declarations

Table attributes
Tables provide a useful means for storing configuration and other data in a persistent and
accessible manner. Because the Domain Manager’s Repository is persistent across
restarts, the information is always available to an EMC Smarts client.

Tables should not be used to access variables from SNMP tables if you want to use this
data in an event expression. Data stored in a MODEL table cannot be accessed through an
event expression. “Instrumented attributes” on page 68 describes the technique for
accessing and storing data from an SNMP table.

A table is a collection of rows. Table parameters, and their definitions, are similar to those
of the attribute declaration.

<table_dcl> ::= [readonly]

table

<table_name>

<row_type>

[<table_key>]

[<table_description>]

";"

| refine

<table_name>

[<table_description>]

";"

| propagate

table

<table_name>

<row_type>

[<table_key>]

[<table_description>]

"<="

<class_name>

","

<relationship_name>

["," <table_name>]

";"

| refine

propagate

table

<table_name>

[<table_description>]

"<="

<class_name>

","

<relationship_name>

["," <table_name>]

";"

<row_type> ::= double

| float

| [unsigned] int

| [unsigned] long

Table attributes 73

Attribute Declarations

The keyword table declares this attribute as a table.

The <row_type> parameter specifies the type of table row. For example, this declaration
defines the SupportedRates table with a <row_type> of string.

table SupportedRates string

You can also declare a structure and then use the structure as the <row_type> in a table
declaration. In this example, the structure circuit_alarms is declared in the Circuit class.
The table AlarmTable is then declared in the MyNet class, using the circuit_alarms
structure as its row type.

Interface Circuit : LogicalConnection
{
struct circuit_alarms
 {

string tableKey;
string Name;
int End;
unsigned receivedAt;
int Alarm;

 };
}
Interface MyNet
{
table AlarmTable Circuit::circuit_alarms unique key tableKey;
}

The optional <table_key> parameter, which includes the keyword key followed by the key’s
name, specifies that the table can be accessed by a key. If a key is declared, then the table
row must be a struct and the key must be a field of the struct. In the example above, the
<row_type> is the structure circuit_alarms, and the key is the field tableKey.

You can also declare a direction for the key, ascending or descending, which affects how
the table is read. When the optional keyword unique is specified, each row must have a
unique key.

The keyword refine declares this table as a refinement of a table declared in a superclass.
A refinement can change the table’s access type, name, and description. For a propagated
table, a refinement can change the class from which the table propagates, the relationship
through which the values propagate, and the table from which the values propagate.

| [unsigned] short

| byte

| binary

| string

| enum

| struct

<table_key> ::= [ascending | descending]

[unique]

key

<key_name>

74 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 7
Relationship Declarations

This chapter consists of the following sections:

◆ Overview... 76
◆ Cardinality .. 76
◆ Declaring a relationship .. 77

Relationship Declarations 75

Relationship Declarations

Overview
A relationship declaration defines a connection between classes. A relation can connect
instances of different classes or instances of the same class. Relationships are important
because attributes and events propagate along the traversal path specified by the
relationship.

When you declare a relationship from classA to classB, you are implicitly declaring a
reciprocal relationship from classB to classA. This relationship pair is referred to as a
relation.

Cardinality
Both relationships and relations have a cardinality. The cardinality of a relation is
determined by the cardinality of its constituent relationships. A relationship from classA to
classB may have cardinality of to-one or to-many. A cardinality of to-one means there is a
single instance of classB related to a given instance of class A. A cardinality of to-many
means that one or more instances of classB are related to a given instance of classA. The
cardinality of the relation is one-to-one if both relationships are to-one, one-to-many or
many-to-one if one relationship is to-one and the other is to-many, or many-to-many if
both relationships are to-many.

MODEL provides two keywords to indicate the cardinality of a relationship: relationship
and relationshipset. As you might expect, relationshipset declares a to-many relationship.

If you insert an instance into one end of a two-way relationship, the Repository guarantees
that the inverse traversal path is correctly set. When an object is added or removed from
the Repository, the Repository maintains the integrity of the relationship. If an object that
participates in a relationship is deleted, the Domain Manager automatically removes it
from the inverse traversal path.

76 EMC Smarts Foundation MODEL Reference Guide

Relationship Declarations

Declaring a relationship
Relationship declarations, like attribute declarations, are a basic building block for
describing real-world objects. Attribute and relationship declarations share a similar
syntax.

The internal keyword indicates that this relationship is only visible within the interface
(class) in which it is declared. The relationship or relationshipset is not visible through an
external interface, and therefore it cannot be viewed in a console.

The optional keyword readonly is provided for computed relationships. Computed
relationships are treated as readonly, even if the keyword readonly is omitted.

The optional <access_type> parameter specifies where and how information about this
relationship is obtained. By default, relationships are stored. Relationships declared as
computed are limited to operators that result in a single object reference. The expression
for a computed relationshipset can return a set of object references. The result of the
expression is assigned to the other end of the relationship or ends of the relationshipset.

The <cardinality> parameter specifies whether the traversal path of this relationship
declaration refers to one class instance or many class instances. The keyword relationship
specifies a connection to, at most, one class instance; the keyword relationshipset
specifies a connection to any number of class instances.

<relation_dcl> ::= [internal]

[readonly]

[<access_type>]

<cardinality>

<relationship_name>

","

<class_name>

["," <inverse_name>]

[<optional_key_spec>]

[required]

[<relationship_description>]

["=" <expression>]

";"

| refine

[<access_type>]

<relationship_name>

["," <class_name>]

[required]

<relationship_description>

";"

<access_type> ::= stored

| computed

<cardinality> ::= relationship

| relationshipset

<optional_key_spec> ::= [ascending | descending]

[unique]

key

<key_name>

Declaring a relationship 77

Relationship Declarations

The <class_name> parameter specifies the class with which the declaration establishes a
relationship.

The optional <inverse_name> parameter specifies the name of the inverse traversal path in
the other class. If specified, you must also declare the corresponding relationship or
relationshipset in the other class. If the <inverse_name> parameter is omitted, a one-way
relationship or relationshipset is created.

The <optional_key_spec> parameter is only provided for relationshipsets. The <key_name>
parameter specifies the name of an attribute in the class. The attribute name must have a
separate declaration in the class.

readonly attribute string KeyStr;

stored relationshipset
 MemberOf, FurnitureStore, Members
 descending key KeyStr;

The required keyword indicates that the relationship must not be empty. If a class
contains a required relationship, whenever an instance of the class is created, the
relationship must be populated.

The following example declares a relation between engines and a space craft module.
Each engine only provides thrust to maneuver one space craft module: a to-one
relationship. However, each space craft module can be maneuvered by one or more
engines: a to-many relationship.

interface Engine : ICIM_ManagedSystemElement
{

relationship Maneuvers, SpaceCraftModule, ManeuveredBy;
}
interface SpaceCraftModule
{

relationshipset ManueveredBy, Engine, Maneuvers;
}

The keyword refine declares this relationship as a refinement of an inherited relationship.
To refine a relationship, both ends of the relationship must belong to the same inheritance
hierarchy. A refined relationship uses the name of the inverse traversal path that appears
in the original relationship declaration and its cardinality must be the same as that of the
original relationship.

78 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 8
Declaring Event-Driven Behavior in MODEL

This chapter consists of the following sections:

◆ Overview... 80
◆ MODEL declarations for defining event-driven behavior... 80
◆ Event declaration .. 81
◆ Problem declaration.. 83
◆ Symptom declaration .. 88
◆ Propagate symptom declaration.. 91
◆ Aggregate declaration ... 92
◆ Propagate aggregate declaration... 94
◆ Export declaration... 95
◆ Imported events.. 96

Declaring Event-Driven Behavior in MODEL 79

Declaring Event-Driven Behavior in MODEL

Overview
This chapter describes the MODEL declarations that are used to model the behavior of
objects in a managed system. These constructs enable you to specify the static knowledge
required for event management.

When you begin adding event-driven behavior to your model, remember three important
points:

◆ Problems propagate across related objects.

◆ A single problem can cause numerous observable basic events (symptoms).

◆ Problems may not be observable in the object where they occur.

MODEL declarations for defining event-driven behavior
MODEL provides a number of declarations for defining event-driven behavior in a
managed system. Each of these has a particular purpose, as described below.

◆ An object created with the event declaration is referred to as a basic event. Repository
objects created with event, problem, aggregate, symptom, propagate symptom, and
propagate aggregate declarations are all referred to generically as events.

◆ An event declaration defines a basic event, meaning it is observable in the object
where it occurs. An event declaration is defined by an expression over attributes or
other events of the class, as described in “Event declaration” on page 81.

◆ A problem declaration is defined by the <symptom-list > parameter (lists the basic
events, symptoms, propagated symptoms and other problems that it can cause). You
can specify a probability for each member in the <symptom-list > because the causal
relationship between the problem and its symptoms may be probabilistic. “Problem
declaration” on page 83 describes how to declare a problem in MODEL.

◆ A symptom declaration groups a set of basic events, symptoms, propagated
symptoms, and other problems that it can cause into a single event by conjunction.
The event defined using the symptom declaration is then used as a member of the
<symptom-list > parameter in a problem declaration. “Symptom declaration” on
page 88 describes how to declare a symptom in MODEL.

◆ A propagate symptom declaration defines an event that propagates from a related
object through a relationship. An event declared as a propagated symptom is
intended to be used as one of the members of the <symptom-list> parameter in a
problem declaration. “Propagate symptom declaration” on page 91 describes how to
declare a propagate symptom in MODEL.

80 EMC Smarts Foundation MODEL Reference Guide

Declaring Event-Driven Behavior in MODEL

◆ An aggregate declaration groups one or more basic events, problems, aggregates, or
propagated aggregates declared for the same class into a single abstract event by
disjunction. “Aggregate declaration” on page 92 describes how to declare an
aggregate.

◆ A propagate aggregate declaration defines a set of events that are not observable in
the object where they occur but whose effects propagate to related objects through a
given relationship. “Propagate aggregate declaration” on page 94 describes how to
declare a propagate aggregate.

The table, “Types of events that can be exported” on page 96, lists the types of events that
may be exported to EMC Smarts clients that request to be notified when the event occurs.

Event declaration
An event declaration declares a basic event that is defined using an expression. A basic
event declared using an expression is defined over attributes and other events of its class.

Basic events declared by an event declaration are intended to be used as a member of the
<symptom-list> parameter in problem declarations. The Domain Manager creates a data
structure called a codebook that lists the problems to which EMC Smarts clients have
subscribed. The codebook also includes the basic events, specified by event declarations,
that each problem can cause. These basic events are used by the Domain Manager to
determine when a problem occurs. The Domain Manager reduces the codebook so that
each problem is identifiable by a unique set of symptoms.

<event_dcl> ::= event

<event_name>

[<event_description>]

[<opt_loss>]

[<opt_spurious>]

<event_implementation>

";"

| refine

event

 <event_name>

[<event_description>]

[<opt_loss>]

[<opt_spurious>]

[<event_implementation>]

";"

<opt_loss> ::= loss

"(" <expression> ")"

<opt_spurious> ::= spurious

"(" <expression> ")"

<event_implementation> ::= "="

[<event_guard>]

<event_expression>

<event_guard> ::= if

<expression>

check

Event declaration 81

Declaring Event-Driven Behavior in MODEL

The <opt_loss> parameter, indicated by the keyword loss, specifies the probability that this
observable basic event is lost or not observed (its expression does not evaluate to true)
even though it is occurring. Setting a value closer to one increases the likelihood that the
basic event will be lost. The loss expression must evaluate to a floating point number
greater than or equal to zero but less than or equal to one.

The <opt_spurious> parameter, indicated by the keyword spurious, is the converse of
<opt_loss>. It specifies the probability that this observable basic event is not occurring,
even though the event expression evaluates to true. The expression must evaluate to a
floating point number greater than or equal to zero but less than or equal to one.

The <event_implementation> parameter specifies the expression that defines the basic
event and, optionally, whether the event is guarded.

The optional keyword refine declares this basic event as a refinement of a basic event
declared in a superclass. You can change all the parameters of a basic event through a
refinement.

Event expressions
An <event_expression> can be declared using the names of other events, as well as the
operators and syntax described in “Syntax for expressions” on page 118. There is one
notable constraint on event expressions: they must return a Boolean value.

When the basic event is evaluated, the expression is computed. If the return value
changes the status of the event (from true to false or from false to true), the Domain
Manager sends the appropriate notify or clear notification to each client. The Domain
Manager only sends a notification when the status of a basic event changes.

When the attributes used to create an event expression depend on values within the
Repository, the Domain Manager can compute those expressions as necessary and send a
notification precisely when the status of the basic event changes. However, if the
attributes are instrumented and obtain their values from an external source, the process
for obtaining those attribute values can affect when the Domain Manager determines that
an event’s status has changed. For example, if the value of an attribute is retrieved by
polling an SNMP agent, the responsiveness of the SNMP agent and the duration of the
polling interval can affect when the basic event is recognized.

Guarded events
The <event_guard> parameter provides a method for preventing an event expression from
being evaluated unless a specified condition is met. If the guard expression specified by
the <event_guard> parameter, which must return a Boolean value, is true, then the event
expression is evaluated. Guarded events are useful when there is a high cost associated
with evaluating an event expression. Factors that can contribute to a high cost include
expensive computations or operations such as SNMP polling.

In the following example, LowInboundUtilization is a guarded event. The expression
(CurrentInboundUtilization < LowInboundThreshold) will not be evaluated unless
ifOperStatus == 1. When ifOperStatus does not equal 1, then the two computed attributes
will not be evaluated. This also saves on polling because the computed attributes are
based on instrumented attributes.

82 EMC Smarts Foundation MODEL Reference Guide

Declaring Event-Driven Behavior in MODEL

stored attribute int LowInThreshold
“Threshold for incoming traffic ” = 5;

computed attribute float ifInOctetsRate
"Rate that interface is receiving octets."

 = rate(ifInOctets, PollingInterval);

computed attribute float CurrentInUtilization
"The total number of input bits transmitted to this
interface in seconds expressed as a “
“ percentage of total bandwidth. "
= ((ifInOctetsRate * 8) / (ifSpeed + 0.01)) * 100;

event LowInboundUtilization
"Traffic flowing into this interface is below the
utilization threshold. "
= if ifOperStatus = = 1

check (CurrentInUtilization < LowInThreshold);

Problem declaration
A problem declaration declares an event that may occur in instances of a class. A problem
causes a set of symptoms and the problem declaration specifies these symptoms and a
probability that each symptom will be observed when the problem occurs. There are three
types of symptoms.

◆ Locally observable symptoms can be observed in the same object where the problem
occurs. Local symptoms must be declared by separate event declarations in the same
class as the problem declaration.

◆ A problem can cause a second problem within the same object. The second problem
must be declared by a separate problem declaration in the same class as the original
problem.

◆ A propagated event or problem can only be observed in related objects. A propagated
event must be declared by a propagate symptom declaration in the same class as the
problem. In addition, the events or problems must be declared in the class to which
they propagate.

Symptoms are events specified by event, symptom, propagate symptom, and problem
declarations. Note that a symptom can be a problem that causes other symptoms.

Problem declaration 83

Declaring Event-Driven Behavior in MODEL

When an EMC Smarts client subscribes to a problem, the Domain Manager adds the
problem to its codebook. The Domain Manager also adds the set of symptoms necessary
to uniquely identify this problem from other problems listed in the codebook.

The keyword problem indicates that this is a problem declaration.

The <symptoms_list> parameter lists the basic events, problems, symptoms and
propagated symptoms that this problem causes. Each member in the <symptoms_list> can
include optional parameters:

◆ A <probability> parameter or explains keyword

◆ A <condition> parameter

The <probability> parameter specifies the probability that the problem causes this
symptom to occur. The <probability> parameter must evaluate to a floating point number
greater than or equal to zero but less than or equal to one. The default probability is one,
meaning that the problem always causes this symptom.

The optional <condition> parameter provides a method for conditionally removing a
symptom from a problem. The <expression> parameter must return a Boolean value. When
the expression evaluates to false, the event is removed from the list of symptoms that this
problem causes. When the expression evaluates to true, the event remains in the list of
symptoms caused by the problem. Note that the value of the Boolean expression can
change during runtime. However, the codebook must be recomputed before the correlator
recognizes the change.

<problem_dcl> ::= problem

<problem_name>

[<problem_description>]

[<apriori>]

[<symptoms_list>]

";"

| refine

problem

<problem_name>

[<problem_description>]

[<apriori>]

<symptoms_list>

";"

<apriori> ::= apriori"(" <expression> ")"

<symptoms_list> ::= "=>"

<symptoms>

<symptoms> ::= <symptom>

["," <symptoms>]

<symptom> ::= <problem_name> | <event_name> |
<propagated_symptom_name> |
<symptom_name>

[<probability> | explains]

[<condition>]

<condition> ::= if

<expression>

84 EMC Smarts Foundation MODEL Reference Guide

Declaring Event-Driven Behavior in MODEL

The optional keyword refine declares this problem as a refinement of a problem declared
in a superclass of this class. You can change all the parameters of a problem declaration
through a refinement. The refine declaration, however, must include at least one item in
its <symptoms_list>.

apriori keyword
The apriori keyword indicates the probability of the problem occurring before looking at
any of the symptoms as evidence. The apriori value must be a floating point number
greater than or equal to zero but less than or equal to one, and it can be an attribute that
varies in value.

Setting the apriori to 0.0 removes the problem from the codebook. Setting the apriori to
1.0 indicates that the problem is always active, as long as there is one active symptom,
and any required symptoms are active. A symptom is required when its <probability>
parameter is set to 1.0 and the <opt_loss> parameter for the underlying basic event(s) that
comprise the member is set to 0.0. Symptoms that are declared as required must be
active for the problem to be active.

If the apriori keyword is not included in the problem declaration, an apriori of 0.05 is
applied.

For example, a light bulb can be either on or off. The light bulb can be off because the
switch controlling the light is turned off or because of faulty wiring. The following classes,
events, relationships, and problems are defined to describe this behavior:

interface Bulb {

event LightOff = LightStatus == FALSE;

problem Out apriori(0.01) =>
LightOff;

relationship ControlledBy, Switch, Controls;

relationship SuppliedBy, Wiring, Supplies;
}

interface Switch {

relationship Controls, Bulb, ControlledBy;

propagate symptom LightOff =>
Bulb,
Controls;

problem Off apriori(0.5) =>
LightOff;

}

interface Wiring {

relationship Supplies, Bulb, SuppliedBy;

propagate symptom LightOff =>
Bulb,
Supplies;

problem Bad apriori(0.000001) =>
LightOff;

}

Problem declaration 85

Declaring Event-Driven Behavior in MODEL

The apriori values indicate that the probability that the switch is turned off is much higher
than the probability that the wiring is faulty. For the switch, the apriori is set to 0.5
because it is off about half the time.

The apriori value can also be an attribute:

interface Bulb {

event LightOff = LightStatus == FALSE;

problem Out apriori(out_apriori) =>
LightOff;

attribute float out_apriori = (outPossible ? 0.01 : 0.0);

attribute boolean outPossible = TRUE;
}

explains keyword
When determining the most likely problem set that causes the currently observed
symptoms, a problem becomes more unlikely as it has more and more missing symptoms.
Because of that, you want to model the important causal symptoms, and not all of the
consequential symptoms.

The causal symptoms are those symptoms that, when active, indicate that the problem is
active. These symptoms are part of the codebook and play a role in correlation. This is the
causality and these symptoms are considered when determining whether the problem is
the root-cause.

However, you still want the system to relate the problem to the consequential symptoms
and the explains keyword in the problem declaration is used to provide this linkage. The
explains keyword indicates that the problem can explain (impact) the associated
symptom, but that this explained symptom is not part of the codebook and is not used
when determining whether the problem is active or the root-cause.

For example, an Unresponsive problem is declared:

problem Unresponsive =>
 UnresponsiveActivatorEvent,
 AgentUnresponsive explains,
 HostedServicesImpact explains;

export UnresponsiveActivatorEvent, AgentUnresponsive;

export HostedServicesImpact;

In this case, only the UnresponsiveActivatorEvent is added to the codebook as one of the
causal symptoms of the Unresponsive problem.

The AgentUnresponsive and HostServicesImpact events have the explains keyword after
them. This indicates that the Unresponsive problem explains (impacts) the
AgentUnresponsive and HostServicesImpact events, but these two events are not added
to the codebook or considered when determining whether the Unresponsive problem is
active. However, the AgentUnresponsive and HostServicesImpact events will be displayed
on the Impacts tab of the Unresponsive notification in the Global Console.

86 EMC Smarts Foundation MODEL Reference Guide

Declaring Event-Driven Behavior in MODEL

You can also have a symptom in a problem be both a causal symptom and an explained
symptom. In this example, the AgentUnresponsive event is added to the codebook as one
of the core symptoms. However, it is also linked to the problem as a consequential
symptom.

problem Unresponsive =>
UnresponsiveActivatorEvent,
AgentUnresponsive,
AgentUnresponsive explains,
HostedServicesImpact explains;

export UnresponsiveActivatorEvent, AgentUnresponsive;

export HostedServicesImpact;

Whenever the problem Unresponsive is active, if the AgentUnresponsive and
HostedServicesImpact events are active, they will appear under the Impacts tab of the
Notification Properties dialog for the Unresponsive problem.

The UnresponsiveActivatorEvent problem will not appear under the Impacts tab, but it is
added to the codebook as one of the causal symptoms of the Unresponsive problem.

Problem declaration 87

Declaring Event-Driven Behavior in MODEL

Symptom declaration
A symptom declaration groups a set of basic events, problems, symptoms, and
propagated symptoms under a single name to be used in a problem declaration. This is
especially useful if the same set of basic events, problems, symptoms, and propagated
symptoms are referenced in multiple problem declarations.

An event defined by a symptom declaration is not added to the codebook and the
correlator does not diagnose its occurrence. Furthermore, a symptom declaration cannot
be exported and is not available by subscription to EMC Smarts clients.

The keyword symptom identifies this as a symptom declaration.

The <symptoms_list> parameter lists the basic events, problems, symptoms and
propagated symptoms that this symptom declaration causes. Each member of the
<symptoms_list> can include optional parameters:

◆ A <probability> parameter or explains keyword

◆ A <condition> parameter

The <probability> parameter must evaluate to a floating point number greater than or equal
to zero but less than or equal to one. The default probability is one, meaning that the
symptom always causes this event.

<symptom_dcl> ::= symptom

<symptom_name>

[<symptom_description>]

[<symptoms_list>]

";"

| refine

symptom

<symptom_name>

[<symptom_description>]

[<symptoms_list>]

";"

<symptoms_list> ::= "=>"

<symptoms>

<symptoms> ::= <symptom>

["," <symptoms>]

<symptom> ::= <problem_name> | <event_name> |

<propagated_symptom_name> |

<symptom_name>

[<probability> | explains]

[<condition>]

<condition> ::= if

<expression>

88 EMC Smarts Foundation MODEL Reference Guide

Declaring Event-Driven Behavior in MODEL

The optional <condition> parameter provides a method for conditionally removing an event
from a symptom declaration. The <expression> parameter must return a Boolean value.
When the expression evaluates to false, the event is removed from the list of events that
are caused by this symptom. When the expression evaluates to true, the event remains in
the list of events caused by the symptom. Note that the value of the Boolean expression
can change during runtime. However, the codebook must be recomputed before the
correlator recognizes the change. “Syntax for expressions” on page 118 provides
information about the correct syntax for an expression.

The optional keyword refine declares this symptom as a refinement of a symptom
declared in a superclass of this class. You can change all of the parameters of a symptom
declaration through a refinement.

explains keyword
The explains keyword is used for display purposes and does not affect the analysis. It
indicates that this member of the <symptoms_list> is explained by (impacted by) the
symptom being declared. When this member of the <symptoms_list> is exported and
active, it is displayed in the Global Console under the Impacts tab of the Notification
Properties dialog for the problem that references this symptom declaration. However, it is
not added to the codebook as one of the symptoms of the problem that references the
symptom declaration, and therefore, is not considered when determining whether the
problem is a root cause. Table 7 on page 96 provides a list of which types of events can be
exported.

For example, a NoFuelSupply problem and a NoFuelSupplySymptom symptom are
declared:

problem NoFuelSupply =>
 NoFuelSupplySymptom;

symptom NoFuelSupplySymptom =>
FuelTanksEmpty,
EngineDown explains;

event FuelTanksEmpty = FuelTanksLevel < 0.01 == FALSE;

event EngineDown == FALSE;

export FuelTanksEmpty, EngineDown, NoFuelSupply;

In this case, the FuelTanksEmpty event is added to the codebook as one of the symptoms
of the NoFuelSupply problem.

The EngineDown basic event has the explains keyword after it. This indicates that the
NoFuelSupply problem explains (impacts) the EngineDown basic event, and this event will
be displayed on the Impacts tab of the NoFuelSupply notification in the Global Console.
However, the EngineDown event is not considered when determining whether the
NoFuelSupply problem is a root cause. In this example, only the FuelTanksEmpty event is
added to the codebook and considered when determining a root cause.

Symptom declaration 89

Declaring Event-Driven Behavior in MODEL

You can also have a member of the <symptoms_list> be both caused and explained by this
symptom.

problem NoFuelSupply =>
 NoFuelSupplySymptom;

symptom NoFuelSupplySymptom =>
FuelTanksEmpty,
EngineDown,
EngineDown explains;

event FuelTanksEmpty = FuelTanksLevel < 0.01 == FALSE;

event EngineDown == FALSE;

export FuelTanksEmpty, EngineDown, NoFuelSupply;
In this example, both the FuelTanksEmpty and EngineDown events are added to the
codebook as symptoms of the NoFuelSupply problem. But the EngineDown event is also
included with the explains keyword after it. In this case, if the NoFuelSupply problem is
active and the EngineDown event is active, the EngineDown event will be displayed on the
Impacts tab of the NoFuelSupply notification in the Global Console.

90 EMC Smarts Foundation MODEL Reference Guide

Declaring Event-Driven Behavior in MODEL

Propagate symptom declaration
A propagate symptom declaration defines an event that is not observable in the object
where it occurs. The symptoms of this event propagate to one or more objects of related
classes. The events that comprise a propagate symptom must be declared by basic event,
problem, or propagate symptom declarations in the class where they occur.

The keywords propagate and symptom identify this as a propagate symptom declaration.

The <class_name> and <relationship_name> parameters identify the class and the
relationship that the symptom propagates from. The <symptom_name> parameter must be
used when the propagated symptom has a different name from the basic event in the
originating class.

The keywords refine and propagate identify this declaration as a refinement of a
propagate symptom declared in a superclass of this class. You can change all the
parameters of a propagate symptom through a refinement.

An event created with a propagate symptom declaration cannot be exported and is not
available by subscription to EMC Smarts clients.

The following example creates two classes: one class representing a light bulb, and a
second class that represents a light switch. When the light switch is turned off, the light
bulb is off.

The Bulb class has a basic event, LightOff, that is active when the light bulb is off. The
Switch class propagates the value of the LightOff basic event from the Bulb Class, over the
Controls relationship. The LightOff propagated symptom is then used to determine
whether the Off problem is the root cause.

<propagate_symptom_dcl> ::= propagate

symptom

<symptom_name>

[<symptom_description>]

"=>"

<class_name>

","

<relationship_name>

["," <symptom_name>]

";"

| refine

propagate

<symptom_name>

[<symptom_description>]

"=>"

<class_name>

","

<relationship_name>

["," <symptom_name>]

";"

Propagate symptom declaration 91

Declaring Event-Driven Behavior in MODEL

interface Bulb {

event LightOff = LightStatus == FALSE;

problem Out => LightOff;

relationship ControlledBy, Switch, Controls;
}

interface Switch {

relationship Controls, Bulb, ControlledBy;

propagate symptom LightOff => Bulb, Controls;

problem Off => LightOff;
}

Aggregate declaration
An aggregate declaration groups one or more basic events, problems, aggregates or
propagated aggregates into a single abstract event by disjunction. The aggregate becomes
active when any one of the events in the set is active. The events grouped into an
aggregate must be declared in basic event, problem, aggregate or propagate aggregate
declarations in the same class.

Aggregates are not used in codebook correlation but they can be exported for subscription
by other EMC Smarts clients.

The keyword aggregate identifies this as an aggregate declaration.

The <events_list> parameter lists the basic events, problems, propagated aggregates, and
aggregates that comprise the aggregate.

The optional keyword refine identifies this declaration a refinement of an aggregate
declared in a superclass of this class. You can change all the parameters of an aggregate
through a refinement.

<aggregate_dcl> ::= aggregate

<aggregate_name>

[<aggregate_description>]

["<=" <events_list>]

";"

| refine

aggregate

<aggregate_name>

[<aggregate_description>]

"<="

<events_list>

";"

<events_list> ::= <event>

["," <event_list>]

<event> ::= <event_name> | <problem_name> |
<propagated_aggregate_name>

| <aggregate_name>

92 EMC Smarts Foundation MODEL Reference Guide

Declaring Event-Driven Behavior in MODEL

The following example declares an aggregate, FuelSupplyCondition, that groups together
the different types of events that indicate an error condition with the fuel supply. A
problem with the fuel supply is indicated whenever the FuelTanksEmpty basic event or
FuelSupplyBlocked problem is active.

event FuelTanksEmpty "The fuel tanks are out of propellant."
 = TotalPropellantLevel < 0.01;

problem FuelSupplyBlocked
"No propellant can reach the engine group."
=> EnginesDownSymptom;

propagate symptom EnginesDownSymptom
 => Engine, ConsistsOf, EngineDown;

aggregate FuelSupplyCondition
"Problem with the engine group's fuel supply"
<= FuelTanksEmpty, FuelSupplyBlocked;

export FuelSupplyBlocked,FuelTanksEmpty,FuelSupplyCondition;

Logic for aggregate processing

The value of an aggregate is determined as follows:

◆ If all underlying events are inactive, then the aggregate is inactive.

◆ If any underlying event has an error, then this event overrides all inactive events.
Therefore, if one underlying event is an error and the rest are inactive, the aggregate is
an error (the same error that the underlying event is). If more than one underlying
event has an error, then the error of the aggregate will be any one of those. An error
value of pending takes precedence over all other error values (in the case of multiple
underlying events with errors).

◆ An active event overrides errors. Therefore, if one underlying event is active, the
aggregate is active, regardless of the rest of the underlying events.

Aggregate declaration 93

Declaring Event-Driven Behavior in MODEL

Propagate aggregate declaration
A propagate aggregate is an event or group of events that are not observable in the object
where it occurs. Instead, its symptoms occur in related objects and propagate to the
object where the propagate aggregate is declared. Depending on how many symptoms of
a propagate aggregate occurs, the codebook calculates a certainty (percentage value) that
the propagate aggregate has occurred.

The events that comprise a propagate aggregate must be defined as basic event, problem,
aggregate or propagated aggregate declarations in the class where they originate.

The keywords propagate and aggregate identify this as a propagate aggregate declaration.

The <class_name> parameter identifies the class the event propagates from and
<relationship_name> identifies the relationship that the event traverses. The <event_name>
parameter must be used if the name of the propagate aggregate is different from the name
of the event in the originating class.

The keywords refine and propagate identify this declaration as a refinement of a
propagate aggregate declared in a superclass of this class. You can change all the
parameters of a propagate aggregate declaration through a refinement.

<propagate_aggregate_dcl> ::= propagate

aggregate

<prop_aggregate_name>

[<description>]

"<="

<class_name>

","

<relationshipset_name>

["," <event_name>]

";"

| refine

propagate

<prop_aggregate_name>

[<description>]

"<="

<class_name>

","

<relationship_name>

["," <event_name>]

";"

94 EMC Smarts Foundation MODEL Reference Guide

Declaring Event-Driven Behavior in MODEL

Logic for propagate aggregate processing

The value of a propagate aggregate is determined as follows:

◆ If all underlying events are inactive, then the propagate aggregate is inactive.

◆ If any underlying event has an error, then this event overrides all inactive events.
Therefore, if one underlying event is an error and the rest are inactive, the propagate
aggregate is an error (the same error that the underlying event is). If more than one
underlying event has an error, then the error of the propagate aggregate will be any
one of those. An error value of pending takes precedence over all other error values (in
the case of multiple underlying events with errors).

◆ An active event overrides errors. Therefore, if one underlying event is active, the
propagate aggregate is active, regardless of the rest of the underlying events.

Export declaration
An export declaration is required to make the event-driven behavior declared for a class
visible outside of the Repository. EMC Smarts clients, such as the Global Console and
adapters, can subscribe to exported event-driven behavior and receive notifications when
they occur. Table 7 on page 96 describes which types of event-driven behavior can be
exported.

The keyword export identifies this as an export declaration.

The <events> parameter lists the events to be exported. Each event must be declared in the
same class as the export declaration. You can list multiple events, separating them with a
comma, in a single export declaration. You can also specify multiple export declarations
for a class.

The following example exports the FuelTanksEmpty event:

event FuelTanksEmpty = FuelTanksLevel < 0.01 == FALSE;

export FuelTanksEmpty;

<export> ::= export

<events>

";"

<events> ::= <event_name>

["," <events>]

Export declaration 95

Declaring Event-Driven Behavior in MODEL

Table 7 on page 96 lists the types of event-driven behavior that can be exported.

Imported events
Imported events allows you to specify events for which the state reflects the state of the
event with the same name, on an instance of the same name and class in another
Manager. In addition to reflecting the state of the remote event, whenever the connection
between the two Managers is severed, the imported event will be suspended, and
automatically resumed as soon as the connection is resumed.

There are two steps you need take to ensure the correct operation of imported events.

1. Make sure the interface names for the classes are the same, and that the instance
names of the instance you want to import the events are the same.

2. Assign the remote Manager name to the ServiceName attribute in the Manager that
will be importing the events.

Specifying imported events in MODEL

The following example shows how to specify imported events in MODEL. Note that the
interface names for the classes are the same in both Manager MODEL files, as are the
event names that are being imported.

interface TestIF : MR_ManagedObject
{
 event e1 "This event is imported " imported;
 export e1;

 event e2 "This one also" imported;
 export e2;

 event a1 "This event is really an aggregate in the remote domain
manager" imported;

 export a1;

 aggregate a2
 "I can use all these events normally in this MODEL"
 = e1, e2, a1;
 export a2;
}

Table 7 Types of events that can be exported

Type of event Can It be exported

Basic Event Yes

Problem Yes

Symptom No

Propagate Symptom No

Aggregate Yes

Propagate Aggregate Yes

96 EMC Smarts Foundation MODEL Reference Guide

Declaring Event-Driven Behavior in MODEL

The remote Domain Manager MODEL could look like:

interface TestIF : MR_ManagedObject
{

 attribute boolean p1 = FALSE;
 event e1 = p1;
 export e1;

 attribute boolean p2 = FALSE;
 event e2 = p2;
 export e2;

 aggregate a1 = e1, e2;
 export a1;
}

Imported events 97

Declaring Event-Driven Behavior in MODEL

98 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 9
Operation Declarations

This chapter consists of the following sections:

◆ Overview... 100
◆ Declaring an operation.. 100
◆ Return_type parameter.. 102
◆ Arguments .. 103
◆ Assignment and return_expression parameters... 105
◆ Repository locking states .. 105

Operation Declarations 99

Operation Declarations

Overview
Operations provide a method for manipulating objects and their properties. You can
retrieve data based on attributes and topology, and you can also Get or Set attribute
values (including internal attributes). Operations also allow you to perform computations,
traverse relationships, and call other operations.

Operations may be called by client programs, such as:

◆ dmctl

◆ ASL scripts

◆ Java API Client

◆ PERL API Client

In addition, get operations (readonly) may appear in computed attribute expressions.

Declaring an operation
An operation declaration includes the name of the operation, the type of its arguments,
and the type of any returned values.

Note: There is no operation keyword.

<operation_dcl> ::= [internal]

[static]

[const | readonly | idempotent]

<return_type>

<operation_name>

"(" [<arguments>] ")"

[<operation_description>]

<operation_definition>

";"

| refine

[instrumented | stored]

<operation_name>

[<operation_description>]

<op_definition_refinement>

<return_type> ::= void

| error_code

| <value_type>

| set "(" <value_type> ")"

| <class_name>

| set "(" <class_name> ")"

<arguments> ::= <argument>

[","<arguments>]

<argument> ::= <in_argument>

| <inout_argument>

| <out_argument>

100 EMC Smarts Foundation MODEL Reference Guide

Operation Declarations

The internal keyword indicates that this operation is only visible within the generated C++
code. The result of the operation is not visible through an external interface, and therefore
it cannot be viewed in a console.

Note: You can view the results of an internal operation in an external interface if you set
the value of a computed attribute (not an internal computed attribute) equal to the results
of the internal operation.

The optional keyword static declares the scope of the operation. If the operation is
declared static, a single copy of the operation is shared by all instances of the interface.

The const keyword indicates that the operation does not change the instance in the
repository, so it cannot assign values to attributes of the class. The const keyword is also
used to obtain an instance-only read lock. “Instance-only read lock” on page 106 provides
additional information on this type of repository lock.

The readonly keyword is used to obtain a repository-wide read lock. It indicates that the
operation leaves the repository unchanged. A readonly operation may not assign to
attributes of a class. “Repository-wide read lock” on page 105 provides additional
information on this type of repository lock.

The idempotent keyword indicates that the operation, if called multiple times without an
intervening put, will return the same value each call.

<in_argument> ::= in

<argument_type>

<argument_name>

["="<expression>]

<inout_argument> ::= inout

<argument_type>

<argument_name>

<out_argument> ::= out

<argument_type>

<argument_name>

<argument_type> ::= <value_type>

| set "(" <value_type> ")"

| <class_name>

| set "(" <class_name> ")"

<operation_definition> ::= definition: <assignments>

<assignments> ::= <assignment>”,”<assignments>

| <assignment>

| <return_expression>

<assignment> ::= <identifier>"="<expression>

<return_expression> ::= return <expression>

<op_definition_refinement> ::= <operation_definition>

| "=" <expression>

Declaring an operation 101

Operation Declarations

The <value_type> parameter can be one of the supported types listed in “Data types” on
page 51. The <class_name> parameter can be the name of any class in the repository, such
as Engine, Host or Router. Examples are described in “Return_type parameter” on
page 102.

The <expression> parameter has to be an EMC Smarts expression; it cannot be procedural
code. “Writing Expressions in MODEL” on page 107 provides additional information.

Return_type parameter
The <return_type> parameter declares the type of value returned by the operation. The
return value can either be one of the supported types listed in “Data types” on page 51 or
it can be a class type.

The following example defines the getCelsiusTemperature operation, which has a
<return_type> of float.

readonly float getCelsiusTemperature()
definition:
// Convert from Fahrenheit to Celsius
return (Temperature - 32) / 1.8;

This operation would be called on a class instance that contained the attribute
Temperature. This operation gets the value of the local attribute Temperature (in degrees
Fahrenheit) and returns the equivalent celsius temperature.

If the operation has no return value, use the keyword void. In this example, the operation
doesn’t return any value, but it does set the Temperature attribute of the instance to the
results of the expression.

void setCelsiusTemp (in float CTemp)
 definition:
// Convert from input Celsius to Fahrenheit
 Temperature = CTemp * 1.8 + 32;

An operation can also return a set of values or class objects. If this is the case, the
keyword set should precede the <value_type> or <class_name> parameter. Sets are
supported for every data type in Table 4 on page 51, except boolean and enumerations.

For example, an Engine class has a ManeuveredBy relationshipset to a ServiceModule
class (each ServiceModule can maneuver one or more Engines). In this example, the
getEngines operation returns the set of Engine instances that share the ManeuveredBy
relationship with this instance of ServiceModule class.

readonly set(Engine) getEngines()
definition:
return Engine(ManeuveredBy);

102 EMC Smarts Foundation MODEL Reference Guide

Operation Declarations

Refine keyword

The keyword refine declares this operation as a refinement of an operation declared in a
superclass of this class.

You can change the access to instrumented using the instrumented keyword or to
non-instrumented using the stored keyword.

If you do not specify the access type in the refine statement, the access type of the
operation defaults to the access type defined in the original declaration of this operation
(the first definition going up the hierarchy class, in case the operation is successively
refined.)

You can provide multiple assignments and/or a return expression by specifying an
<operation_definition> for the <op_definition_refinement>.

If you specify an <expression> for the <op_definition_refinement> all assignments are
removed and the return expression is replaced with the expression that has been
provided.

Arguments
An operation declaration takes a list of arguments. Each argument requires one of the
following keywords:

◆ in

◆ inout

◆ out

These keywords indicate the direction in which information passes between the caller and
the operation.

The <argument_type> parameter specifies the argument’s type, The argument’s type can
either be one of the supported types listed in “Data types” on page 51 or it can be a class
type. You can declare a set expression with the <argument_type> parameter, in which case
the keyword set precedes the <value_type>. Sets are supported for every data type in
Table 4 on page 51, except boolean and enumerations. The syntax for set expressions is
the same as that for logical or arithmetic expressions. However, a special group of
operators must be used. “Syntax for expressions” on page 118 describes the syntax of
expressions, and “Operators for set expressions” on page 112 describes set operators.

in keyword
The in keyword indicates that the information passes from the caller to the operation. You
can use the <expression> parameter to specify a default value, which may be either a literal
or a more complicated expression. The syntax of <expressions> is described in “Syntax for
expressions” on page 118. If you declare an argument with a default value, any successive
arguments must also have a default value.

In this example, the operation setCelsiusTemp is passed the value of the variable CTemp
(whose data type is float). This operation doesn’t return any value, but it does set the
Temperature attribute of the instance to the results of the expression (CTemp * 1.8 + 32).

Arguments 103

Operation Declarations

void setCelsiusTemp (in float CTemp)
 definition:
 // Convert from input Celsius to Fahrenheit
 Temperature = CTemp * 1.8 + 32;

inout keyword
The inout keyword indicates that the parameter has an initial value that is passed into the
operation, but the value of the argument is then set by the operation and returned to the
caller. The value of an inout parameter may be assigned to in the operation definition. You
cannot define a default value for an inout argument.

In this example, an invokeDrivers operation is defined. It has two in parameters: the name
of the element and the type of the element. It also includes an inout parameter: the object
name.

#pragma Unlocked
 boolean invokeDrivers(in string elementName,
 in string elementType,
 inout string objectName);

Note: At this time, the remote API does not support the use of inout parameters.

out keyword
The out keyword indicates that the value of the argument is set by the operation and
returned to the caller. You cannot define a default value for an out argument.

In this example, a findElement operation is defined. It has two in parameters: the name of
the element and the type of the element. It also includes one out parameter, and the
operation sets the value of this parameter.

boolean findElement(in string elementName,
in string elementType,
out MR_Object element);

Note: At this time, the remote API does not support the use of out parameters.

104 EMC Smarts Foundation MODEL Reference Guide

Operation Declarations

Assignment and return_expression parameters
For <assignment>, the <identifier> is an attribute name with <expression> described in
“Syntax for expressions” on page 118, where the result of <expression> is assigned to
<identifier>.

If there is no <return_expression> defined and the operation has a return type other than
void, the last <assignment> is used to provide the return value.

Repository locking states
An operation in a class instance may use one of five locking states with the repository:

◆ “No locking”

◆ “Repository-wide write lock” (the default)

◆ “Repository-wide read lock”

◆ “Instance-only write lock”

◆ “Instance-only read lock”

No locking

Using #pragma Unlocked before your operation results in no repository lock at all. You can
lock the repository in your own code. However, even if you do your own locking, if you
delete the object just as the operation or attribute is being dispatched to your code, you
may get a crash.

Repository-wide write lock

A repository-wide write lock is the default lock obtained when invoking an operation.

Repository-wide read lock

The readonly keyword is used to obtain a repository-wide read lock.

In this example, an Engine class has a ManeuveredBy relationshipset to a ServiceModule
class (each ServiceModule can maneuver one or more Engines). The getEngines operation
returns the set of Engine instances that share the ManeuveredBy relationship with this
instance of ServiceModule class.

readonly set(Engine) getEngines()
definition:
return Engine(ManeuveredBy);

The getEngines() operation doesn’t change the values of any attributes, but it does need
to read all of the Engine instances that have a ManeuveredBy relationship to the instance
that is calling the operation. Therefore, the readonly keyword is used to obtain a
repository-wide read lock.

Assignment and return_expression parameters 105

Operation Declarations

Instance-only write lock

The #pragma Local Operation locks only the object on which the operation is invoked.
“#pragma Local Operation” on page 134 provides an example and further discussion.

Instance-only read lock

There are two different methods to obtain a read lock on only the instance that is invoking
the operation.

The readonly keyword, when used in conjunction with #pragma Local Operation, locks (for
reading) only the object on which the operation is invoked.

The const keyword, when used in conjunction with the #pragma Local Operation, also
obtains a read lock on only the object on which the operation is invoked.

106 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 10
Writing Expressions in MODEL

This chapter consists of the following sections:

◆ Overview... 108
◆ Lexical elements for expressions... 108
◆ Syntax for expressions .. 118
◆ When the value of an expression is unavailable .. 120

Writing Expressions in MODEL 107

Writing Expressions in MODEL

Overview
Unlike other chapters that discuss specific MODEL declarations, expressions are not a
declaration in and of themselves. Expressions are used to define computed attributes, set
expressions, operations, assignments, return expressions, and event expressions. The
purpose of this chapter is to describe the syntax for these types of expressions.

Expressions allow you to manipulate information by combining it, comparing it, and
performing other operations on it. The expressions in MODEL are composed of terms and
operators. Terms are the basic units that you can combine and operators describe what
actions are to be performed on the terms.

Set expressions are a special type of expression that enable you to evaluate, compare,
and perform operations on sets of values. The operators for set expressions are described
in “Operators for set expressions” on page 112. The syntax for set expressions is the same
as that for expressions.

Lexical elements for expressions
The lexical elements for expressions include literals, operators, and the built-in functions
provided by MODEL, as described in “Built-in functions” on page 113.

Literals

A literal is a value that represents a constant. Literals in MODEL may be integers,
floating-point numbers, strings, or character literals.

Integer literals
Integer literals may be decimal, hexadecimal or octal. Integer literals may start with an
optional unary minus sign or unary plus sign.

A decimal integer is a sequence of the digits zero through nine; the first digit cannot be a
zero. An octal integer starts with a zero and may contain the numbers zero through seven.
A hexadecimal integer starts with a zero followed by the upper or lowercase letter x. It may
contain the digits zero through nine and the upper or lowercase letters A through F.

Floating-point literals
Floating-point literals have many parts, some of which may be omitted. A floating-point
literal may start with an optional minus sign followed by a series of digits, a decimal point,
another series of digits, an upper or lowercase E, an optional plus or minus sign, a series
of digits representing the exponent, and an optional upper or lowercase F. The decimal
point is required, but you can omit the digits that appear before the decimal point or the
digits that appear after the decimal point, but not both. The exponent, which starts with
the letter E, may also be omitted. By default, a floating-point literal is treated as a 64 bit,
floating-point number. When the trailing F is included, it is treated as a 32 bit,
floating-point number.

108 EMC Smarts Foundation MODEL Reference Guide

Writing Expressions in MODEL

String literals
String literals are a sequence of characters enclosed by double quotes. You can create a
multi-line string literal by terminating the first line of a large string literal with a double
quote and a new line and enclosing the remaining section of the literal in double quotes
on the next line, and so on, until the string is complete. This technique is used to provide
descriptions for MODEL classes and their properties. You can also use escape characters
in a string literal. An escape character consists of a backslash followed by one of the
characters: n, t, v, b, r, f, a, \, ?, ", or up to three octal digits representing the octal value
of a character.

Character literals
Character literals are enclosed in single quotes. They may be either a single character, or
an escape character. The escape characters for character literals are the same as for string
literals.

Enumeration literals
Enumeration literals are named integer literals. You can use negative values within the
enumeration declaration. While you can assign fixed values to the enumerators,
EMC Smarts does not recommend declaring multiple enumerators with the same value.

Operators

MODEL supports the C and C++ operators listed in Table 8 on page 109. These operators
behave the same in MODEL and C++ except where noted below. The precedence of
operators, also similar to C++, is described in “Precedence of operators” on page 113.

Table 8 Operators supported by MODEL (page 1 of 2)

Operator Type Symbol Definition

Unary +
-
!
~

unary plus
unary minus
logical negation
bitwise complement

Arithmetic *
/
%
+
-

multiply
divide
modulus
plus
minus

Shift >>
<<

right shift
left shift

Relational <
>
<=
>=

less than
greater than
less than or equal
greater than or equal

Equality ==
!=

equal to
not equal to

Lexical elements for expressions 109

Writing Expressions in MODEL

MODEL does not use the following operators:

◆ Assignment operators (=, +=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

MODEL defines special behavior for the operators listed below.

◆ In MODEL, an expression that divides by zero produces an error result. For example, if
an expression involving a zero divide defines a computed attribute, a get of that
attribute’s value will return an error.

◆ The logical negation operator (!) may only be used on Boolean values.

Evaluation expression operators

The following evaluation operators differ slightly in MODEL from how they are generally
used in C++ compilers.

Else operator
The else operator evaluates the left-hand expression; if that result is not an error, then the
value becomes the result of the else expression. The result types of the left and right-hand
expressions must agree. If the left-hand expression does not return an error, the
right-hand expression is not evaluated. For example:

instrumented attribute int i_state "In MIB as an enum, SNMP int";

computed attribute state_e safe_state
"Give a default value for failed get or conversion"
= state_e(i_state) else UNKNOWN;

Logic &&
||

logical and
logical or

Bitwise |
^
&

bitwise or
bitwise exclusive or
bitwise and

Conditional ?: conditional evaluation; if the test proves invalid, the
result is the error from the test.
operand1 ? operand2 : operand3;

On Error else on error evaluation

Selection case
 key
 default

selective evaluation

Table 8 Operators supported by MODEL (page 2 of 2)

Operator Type Symbol Definition

110 EMC Smarts Foundation MODEL Reference Guide

Writing Expressions in MODEL

Case operator
The case operator uses the value of a selection expression to select one of a number of
keys and the value expression associated with that key. At runtime, an error is produced if
the selection expression value does not match any of the key expression values.

Keys within a case operator can only be enumeratons or integers.

An example of the case operator:

interface MiddleClass : ConvClass
{

enum state_e {
UP = 1
DOWN = 4
UNKNOWN = 6

};
attribute state_e tEnum;

computed attribute int tCaseInt
=
case (tEnum) {

 key UP : 1;
 key DOWN :4;
 default : //falls through to key UNKNOWN
 key UNKNOWN : 6;

};
};

Combining expression operators
You can combine the previous operators with other expression operators. The following
example illustrates how to convert an integer, instrumented attribute coming over the
network to an enumeration:

readonly instrumented attribute int ifAdminStatus;

refine computed AdminStatus =
case (ifAdminStatus) {

key 1: UP;
key 2: DOWN;
key 3: TESTING;
default: OTHER;

} else UNKNOWN;

Lexical elements for expressions 111

Writing Expressions in MODEL

Operators for set expressions

Set expressions use their own group of terms and operators, as shown in Table 9 on
page 112. The precedence of set operators is at the same level as the corresponding
symbol for logical and arithmetic operators. Table 10 on page 113 provides additional
information.

Table 9 Operators for set expressions

Set Operator Definition

<term> in <setA>
<term> in <vector_expression>

Returns a Boolean value. The in operator checks that
the given value from the left term is a member of the
right term. The left term must be a scalar; the right
term must be a set or vector expression.

| <setA> | Returns an integer that is the count of the number of
members in setA.

<class_name>(<relationshipset>) Returns a set of all the objects in the relationshipset
whose class matches the specified class name.

<setA> & <setB> Returns the set of elements that are members of both
setA and setB. Both sets must have the same
underlying type.

<setA> | <setB> Returns a set that includes all of the elements of both
setA and setB. The members of both sets must be of
the same type.

<setA> - <setB> Returns the members of setA that are not members of
setB. Both sets must have the same underlying type.

<setA> -> <relationship> Determines the number of elements each member of
setA is related to through the relationship. All these
individual sets are then combined into a multiset.
setA must be a set of objects.

unique(<vector_expression>) Returns a set of elements from the multiset where no
element in the set appears more than once.

112 EMC Smarts Foundation MODEL Reference Guide

Writing Expressions in MODEL

Precedence of operators

Operators have rules of precedence and associativity to determine how expressions are
evaluated. You can put expressions in parentheses to change the order in which
operations are performed.

Outside of parentheses, unary operators have the highest precedence followed by
arithmetic operators. The convention of arithmetic operators is that the multiplicative
operators have precedence over the additive operators. Table 10 on page 113 lists the
exact order of precedence and associativity for operators in MODEL.

Built-in functions

The following terms are built-in functions supplied by MODEL. They typically appear in
expressions, as described in “Syntax for expressions” on page 118. Although the syntax
of MODEL permits you to use a function as a term in a complex expression, it is better to
use a function in one attribute and store it in a variable.

Table 10 Precedence and associativity of operators

Operator Precedence Associativity

conversion, case, key, default Right to left

+ - ! ~ (unary) Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= in Left to right

== ! = Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

else Left to right

?: Right to left

Lexical elements for expressions 113

Writing Expressions in MODEL

Delta
The term delta(A), where A is an attribute, returns the difference between the current
value of A and its previous value. This is typically used for an instrumented attribute
whose value is obtained by polling.

interface EthernetInterfaceStats : Instrumentation
{
 instrument SNMP{
 ifInOctets = "1.3.6.1.2.1.2.2.1.10",
 };

#pragma WrapCounter
 readonly instrumented attribute unsigned ifInOctets
 "The total number of octets received on the "
 "interface.";

 /* Compute Delta
 --------------- */
 readonly computed attribute int deltaifInOctets
 = delta(ifInOctets);
};

Conversion
The term type_name () allows you to convert an expression to a predefined numeric
type or to an enumeration type. Write the type name followed by the expression in
parentheses. For example:

enum state_e {UP, DOWN, UNKNOWN};

attribute state_e tEnum;

attribute int tInt;

attribute int tEnum2Int "Convert to int"
=int(tEnum);

attribute state_e tInt2Enum "Convert to state_e"
=state_e(tInt);

Object
The term obj(<string_expression>)returns the object whose name matches the
result of the string expression. This is useful for determining whether a particular object
exists at runtime.

Polling frequency
The term polling_frequency(A), where A is an attribute, returns the interval, in
seconds, between successive polls of an attribute’s value.

interface EthernetInterfaceStats : Instrumentation
{
 instrument SNMP{
 ifInOctets = "1.3.6.1.2.1.2.2.1.10",
 };

114 EMC Smarts Foundation MODEL Reference Guide

Writing Expressions in MODEL

#pragma WrapCounter
 readonly instrumented attribute unsigned ifInOctets
 "The total number of octets received on the "
 "interface.";

 /* Compute Polling Frequency
 --------------------------- */
 readonly computed attribute int frequencyifInOctets
 = polling_frequency(ifInOctets);
};

Errnum
The term errnum(attribute_name) returns the error number for the last get of the
attribute. For stored attributes the return value will always be zero (0). For all other
attributes the return value can be either zero or non-zero.

Errstr
The term errstr(attribute_name) returns the string representation of the error for the
last get of the attribute.

No_response
The no_response(attribute_name) returns TRUE if the error number for the last get of
the attribute was MR_TIMEOUT or if the agent is marked unavailable.

abstract interface ICIM_Instrumentation : ICIM_MetaObject
"Instrumentation is the mechanism whereby information" "regarding a

SystemElement is retrieved from the managed" "domain."
{

attribute boolean InstrumentationOK
"TRUE if the instrumentation is functioning” "properly."
=TRUE

abstract interface NetworkAdapter_Fault_SNMP : NetworkAdapter_Fault
"Instrumentation super-class for instrumented Network" "Adapters using

SNMP."
{

instrument SNMP;

readonly instrumented attributes int ifAdminStatus;

refine computed InstrumentationOK
=errnum(ifAdminStatus) ==0 && no_response(ifAdminStatus) ==

FALSE
}

For both rate() and average(), below, arguments other than the first argument may be
either an integer literal or the name of a numeric attribute whose value can be converted
to an integer. That is, the value cannot be a string but may be integer, float, or unsigned. If
the arguments are attribute names, then the value of the attribute is obtained at runtime
by the monitoring system.

Lexical elements for expressions 115

Writing Expressions in MODEL

Rate
The term rate(A,T), where A is an attribute and T is a time interval, returns the rate at
which A changed during the last T seconds. The time interval may be an expression that
evaluates to a numeric value.

interface EthernetInterfaceStats : Instrumentation
{
 instrument SNMP{
 ifInOctets = "1.3.6.1.2.1.2.2.1.10",
 };

#pragma WrapCounter
 readonly instrumented attribute unsigned ifInOctets
 "The total number of octets received on the "
 "interface.";

 attribute unsigned pollingPeriod
 "The interval, in seconds, between "

 "successive polls."
 = 120;

 /* Compute the rate of ifInOctets
 ------------------------------- */
 computed attribute float ifInOctetsRate
 = rate(ifInOctets, pollingPeriod);
};

Rate_last
The term rate_last(A, T) is an alternative to rate(A, T) that can be used for polled attributes
in cases when rate interval T equals the polling period of A.

The term rate_last(A,T) returns the difference between the current and the previous values
of A divided by the time difference between when the two values were polled.

If A was polled early, or if A was polled late on one polling cycle and polled on time on the
next polling cycle, the two consecutive samples of A may not cover the rate interval T, in
which case rate(A, T) will be calculated over the two polling cycles.

The term rate_last(A, T), always uses two consecutive samples.

Average
The term average(A, T, N, P), where A is an attribute, T is a time interval, N is a count,
and P is a percent, computes the average value of A over the interval T.

A is an attribute name whose values will be sampled and averaged.

T is the window size and is an integer representing the number of seconds over which the
samples of A are collected and averaged.

N is the minimum number of samples. It is an integer that represents the minimum
number of samples of A to collect during T. N and T are used to provide input to the polling
period for A. For example, if T is 600 and N is 10 then you want a sample every 600/10 =
60 seconds. Picking a small T and large N will cause very frequent polling of the attribute.
The actual number of samples collected over an interval T is at least N. If you choose a
large T and small N, then the actual number of samples may be many more than N
because the repository collects one sample each time A is polled.

116 EMC Smarts Foundation MODEL Reference Guide

Writing Expressions in MODEL

P is the percentage of samples required without error to compute the average. It is an
integer between 0 and 100. The check is the percentage of the actual number of samples
that do not have an error. As noted above, the actual number of samples may be many
more than N.

Timestamp
The term timestamp(A), where A is an attribute, returns the time when the value of A was
last changed. A timestamp is returned in UNIX time format: an integer representing
seconds since Midnight, 1 January, 1970 (GMT). You can only use the timestamp()
operator on an attribute that is instrumented or has been declared with the timestamped
keyword.

interface EthernetInterfaceStats : Instrumentation
{
 instrument SNMP{
 ifInOctets = "1.3.6.1.2.1.2.2.1.10",
 };

#pragma WrapCounter
 readonly instrumented attribute unsigned ifInOctets
 "The total number of octets received on the "
 "interface";

 readonly computed attribute unsigned ifInOctetsTimestamp
 = timestamp(ifInOctets);
};

Previous
The previous(attribute_name) function returns the previous value. Therefore,
previous(A), where A is an attribute, returns the previous value of attribute A.

This can be used for an instrumented attribute to retain the previous value of the attribute
when the value cannot be obtained from the instrumentation source.

Is_server_disconnected
The is_server_disconnected(attribute_name) function returns TRUE if the error
number for the last get of the attribute was MR_SUBSCRIPTION_SUSPENDED and the
reason for being suspended is that the remote server was disconnected.

interface XYZ {

instrumented attribute boolean IsFlapping;
computed attribute boolean X_IsFlapping =

is_server_disconnected(IsFlapping) ? previous(IsFlapping) :
isFlapping;

...
}

Lexical elements for expressions 117

Writing Expressions in MODEL

Syntax for expressions
The <expression> parameter is the top level of the expression hierarchy. The way the
grammar is constructed embeds the operator precedence as well as describes the
expressions.

The operands on either side of the operator distinguish between set expressions and
mathematical or logical expressions.

The <binary_operator> and <unary_operator> parameters represent the operators described
in “Operators” on page 109. With minor exceptions, the syntax of MODEL operators is
similar to those of C and C++.

Literals, indicated by the <literal> parameter, include the familiar arithmetic, string, and
character literals of C and C++. These are described in “Literals” on page 108.

The <function_name> and <arg_list> parameters refer to operations defined in the MODEL
code and “Built-in functions” on page 113.

The vertical bars around an expression, | <expression> |, return a count of the number of
members in a set. “Operators for set expressions” on page 112 describes the list of set
operators.

The <identifier> . <identifier> parameters select a field in a previously declared struct.

The self keyword references the current instance in the expression.

<expression_syntax> ::= <term>

| <term>

<binary_operator>

<expression>

<term> ::= <simple_term>

| <unary_operator>

<simple_term>

<simple_term> ::= <literal>

| <reference>

| "(" <expression> ")"

<reference> ::= <name>

| <function_name>

"(" <arg_list> ")"

| "|" <expression> "|"

<name> ::= <identifier>

| <identifier> "." <identifier>

| self

118 EMC Smarts Foundation MODEL Reference Guide

Writing Expressions in MODEL

Examples of set operators

You can perform operations on sets to evaluate and compare their contents. This section
provides examples for the operators listed in Table 9 on page 112.

Count
The use of count is illustrated in the declaration of nPath, which is the number of members
in Path.

computed attribute int nPath = |Path|;

Subset
The subclasses Target_Layer2a and Target_Layer2b and the computed relationshipsets
isLayer2a and isLayer2b use the subset operator to get their values.

computed relationshipset isLayer2a, Target_Layer2a
= Target_Layer2a(Path);

computed relationshipset isLayer2b, Target_Layer2b
= Target_Layer2b(Path);

Intersection
The computed relationship SetIntersection uses the intersection operator to produce the
intersection of the computed relationshipset isLayer2a and the relationship AltPath.

computed relationship SetIntersection, Target_Layer2a
= AltPath & isLayer2a;

Union
The computed relationship SetUnion uses the union operator to produce the union of the
computed relationshipset isLayer2a and the relationship AltPath.

computed relationship SetUnion, Target_Layer1
= AltPath | isLayer2a;

Difference
The computed relationship SetDifference uses the difference operator to produce a set
that includes the members of isLayer2a that are not members of AltPath.

computed relationship SetDifference, Target_Layer2a
= isLayer2a - AltPath;

Unique
The UniqueInt declaration uses the unique operator to return a set of values from the vInt
attribute without any duplicate values.

set(int) UniqueInt
definition : return unique(Path->vInt);

Syntax for expressions 119

Writing Expressions in MODEL

When the value of an expression is unavailable
When the Domain Manager marks an attribute as unavailable, it does so because it cannot
determine the attribute’s value. For event expressions written with Boolean operators, the
result of the expression, in certain situations, can be determined when the value of one of
the attributes is known.

Boolean attributes

There are three possible results for an event expression written with a Boolean operator:
True, False, and Unavailable.

Events E1 and E2 are both defined using attributes A1 and A2. The expression for event E1
uses the Boolean AND operator while the expression for event E2 uses the Boolean OR
operator.

interface Ex1 : MR_ManagedObject
{

event E1 = A1 && A2;
event E2 = A1 || A2;

attribute boolean A1;
attribute boolean A2;

}

When either attribute A1 or A2 has a value of unavailable, the result of expressions E1 and
E2 may not be unavailable. The following tables illustrate how the Domain Manager
evaluates each event expression.

Table 11 on page 120 shows all possible outcomes for event expression E1 when the
value for one of its attributes, A1 or A2, is known.

Table 12 on page 120 shows all of the possible outcomes for event expression E2 when
the value for one of its attributes, A1 or A2, is known.

Table 11 Truth table for event E1 = A1 && A2

Attribute A1

Attribute A2 True False Unavailable

True True False Unavailable

False False False False

Unavailable Unavailable False Unavailable

Table 12 Truth table for event E2 = A1 || A2

Attribute A1

Attribute A2 True False Unavailable

True True True True

False True False Unavailable

Unavailable True Unavailable Unavailable

120 EMC Smarts Foundation MODEL Reference Guide

Writing Expressions in MODEL

When the value of an unavailable attribute does not affect the result of the event
expression, that result is given. For example, when A1 is False and A2 is True for event
E2, the result is True because the Boolean OR operator requires that only one of the terms
evaluate to True.

MODEL also applies a short circuit logic to expressions written with Boolean operators. For
an event defined with Boolean AND, A2 is not evaluated when A1 is False because the
result of the expression is already False. If A1 is True or Unavailable, the Domain
Manager evaluates A2. For an event defined with Boolean OR, the Domain Manager does
not evaluate A2 when A1 is True because the result is True regardless of the value of A2.
If A1 is False or Unavailable, then the Domain Manager evaluates A2.

When the value of an expression is unavailable 121

Writing Expressions in MODEL

122 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 11
Constraints

This chapter consists of the following sections:

◆ Overview... 124
◆ Syntax... 124

Constraints 123

Constraints

Overview
A constraint is a Boolean expression that is evaluated at the end of a write transaction or
anytime a change (write) is made to an attribute or relationship. When the constraint is
checked, the expression must evaluate to TRUE or the transaction fails and an error is
returned.

Constraint expressions are used to enforce limits on the values of attributes or
combinations of attributes. Constraints are enforced at runtime, unlike ranges. Constraints
can also be applied to relationshipsets.

Syntax
The syntax for a constraint on an attribute is:

The hard keyword modifies a constraint to indicate that it is always enforced and fatal to
violate. The hard keyword is the default.

The soft keyword is currently treated the same as the hard keyword.

The old keyword can be used before an attribute name in a constraint expression. When
used, it indicates “check the attribute’s old value”.

The <expression> parameter must evaluate to TRUE or an error is returned when the
constraints are checked. The <expression> may not include &&, ||. ?:, or “else” operators.

attribute double timeOut= 0.0;
constraint timeOutNonNegative

= timeOut >= 0.0;

In this example, the constraint timeOutNonNegative was applied to the attribute timeOut.
Therefore, if there is an attempt to assign a negative value to the attribute timeOut, the
assignment will fail, the attribute will retain its old value, and an error will be returned.

The following example has the expression checking the old value of vChar when
evaluating the constraint. In this example, the value of the attribute, vChar, must never be
set to the same value twice in a row.

attribute int vChar;

hard constraint NotOld
“Requires that vChar never be set to the same value twice
in a row”
= old vChar != vChar;

<constraint> ::= [hard | soft]

constraint

<constraint_name>

[<constraint_description>]

“=”

[old]

<expression>

“;”

124 EMC Smarts Foundation MODEL Reference Guide

Constraints

The syntax for a constraint on a relationshipset is:

For each object in the relationshipset, the <expression> parameter must evaluate to TRUE
or an error is returned when the constraints are checked. This form of constraint constrains
the related class, therefore, you cannot use a unidirectional relationshipset; the inverse
path must be available.

In the <expression> parameter, you get the value of the specified attribute in the related
class using:

<iterator_name> @ <relatedClass> :: <attribute>

If the related class is a subclass of the one to which the relationshipset relates, then only
instances of that class in the relationshipset are examined. The attribute must be
declared, not inherited, in the related class. The expression may not include &&, ||, ?:, or
‘else’ operators.

In this example, the constraint checks that every object in the relationshipset DrivenBy is a
driver whose age is greater than 18.

interface Driver;

interface Car : MR_ManagedObject
{

relationshipset DrivenBy, Driver, Drives;

constraint age_constraint
= foreach i (DrivenBy) i@Driver::age > 18;

}

interface Driver : MR_ManagedObject
{

relationshipset Drives, Car, DrivenBY;

attribute int age;
}

<constraint> ::= [hard | soft]

constraint

<constraint_name>

[<constraint_description>]

“=”

foreach

<iterator_name>

“(“ <relationshipset_name> “)”

<expression”

“;”

Syntax 125

Constraints

126 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 12
Instrument Declarations

This chapter consists of the following sections:

◆ Overview... 128
◆ Syntax... 128
◆ Summary of runtime requirements for SNMP instrumentation 129

Instrument Declarations 127

Instrument Declarations

Overview
An instrumentation declaration specifies the access method for all of the instrumented
attributes of the class for which it is declared. All of the attributes for a class must use the
same instrumentation access method. For example, with SNMP an instrumentation
declaration connects the instrumented attributes to an SNMP object identifier (OID). The
SNMP accessor, the Domain Manager component that performs SNMP polling, retrieves
the value of the corresponding MIB variable and updates the value of the instrumented
attribute.

The Domain Manager automatically manages the interconnection between the SNMP
accessor, the monitoring system, and the subscription mechanism. As noted previously,
the Domain Manager only monitors for those attributes and events necessary to diagnose
the problems to which an EMC Smarts client has subscribed. The SNMP accessor is aware
of the monitoring structures connected to attributes that it instruments. If the value of an
instrumented attribute is not required to evaluate an event expression, the SNMP
accessor does not retrieve or update the value of that attribute.

Syntax

The keyword instrument indicates that this is an instrumentation declaration. The
keywords SNMP and REMOTE_REPOSITORY declare the type of instrumentation, however,
it is informational only.

Each optional <instrument_mapping> parameter joins an instrumented attribute with the
OID of the SNMP object. The syntax for declaring an instrumented attribute is described in
“Instrumented attributes” on page 68.

The following example declares the instrumentation for three variables: if Descr, ifInOctets
and ifOutOctets.

interface EthernetInterfaceStats : Instrumentation
{
 instrument SNMP{
 ifDescr = "1.3.6.1.2.1.2.2.1.2",
 ifInOctets = "1.3.6.1.2.1.2.2.1.10",
 ifOutOctets = "1.3.6.1.2.1.2.2.1.16"
 };

 relationship Instruments,EthernetInterfac,InstrumentedBy;

 readonly instrumented attribute string ifDescr
 "User-settable description of this interface";

<instrumentation_dcl> ::= instrument

[SNMP | REMOTE_REPOSITORY]

["{" <instrument_mapping> "}"]

“;”

<instrument_mapping> ::= <instrument_pair>

["," <instrument_mapping>]

<instrument_pair> ::= <attribute_name> "="

<instrumentation_string>

128 EMC Smarts Foundation MODEL Reference Guide

Instrument Declarations

#pragma WrapCounter
 readonly instrumented attribute unsigned ifInOctets
 "The total number of octets received on the "
 "interface.";

#pragma WrapCounter
 readonly instrumented attribute unsigned ifOutOctets
 "The total number of octets transmitted on the "
 "interface.";
}

Summary of runtime requirements for SNMP instrumentation
The MODEL requirements for SNMP instrumentation include instrumented attributes and
SNMP instrumentation. When you are ready to load your model into a Domain Manager,
there are several additional steps you must complete.

The SNMP accessor is the component within the Domain Manager responsible for polling
SNMP agents. You must provide the SNMP accessor with the following information.

◆ The polling parameters for the SNMP accessor. These include how often to poll, the
number of retries to attempt for unsuccessful polls, and how long to wait before a
timeout.

◆ The read community string for the SNMP agent.

◆ The IP address or hostname of the SNMP agent.

◆ Index number of the SNMP table. This is optional.

There are two methods for configuring the SNMP accessor. The recommended method is
to use the EMC Smarts Framework. You may also connect an instance to the SNMP
accessor through the EMC Smarts Manager’s C API.

Summary of runtime requirements for SNMP instrumentation 129

Instrument Declarations

130 EMC Smarts Foundation MODEL Reference Guide

CHAPTER 13
MODEL Pragmas

This chapter consists of the following sections:

◆ Overview... 132
◆ Required pragmas... 132
◆ Additional pragmas... 133
◆ Pragmas used with SNMP instrumentation .. 135
◆ Pragma warnings in the MODEL compiler... 136

MODEL Pragmas 131

MODEL Pragmas

Overview
Pragmas are added to MODEL files to guide the MODEL compiler. In many cases, pragmas
are required. Neglecting to use them will result in errors and code that does not properly
compile.

Required pragmas
The pragmas described in this section are almost always required for meaningful MODEL
code. There are two required pragmas:

◆ #pragma include_c

◆ #pragma include_h

#pragma include_c file-name

This pragma, which may appear anywhere in a MODEL file, causes the MODEL compiler to
add a C preprocessor include statement for the given file-name to the generated .c file.
The filename must be enclosed by quotes (““) or angle brackets (<>). The quotes or
brackets are preserved in the generated file.

#pragma include_h file-name

This pragma, which may appear anywhere in the MODEL file, causes the MODEL compiler
to add a C preprocessor include statement for the given file-name to the generated .h file.
The filename must be enclosed by quotes (““) or angle brackets (<>). The quotes or
brackets are preserved in the generated file.

Example of #pragma include_h and #pragma include_c
The example below is from the department.mdl file.

#include <repos/managed_object.mdl>

#pragma include_h <repos/managed_object.h>
#pragma include_c "department.h"

132 EMC Smarts Foundation MODEL Reference Guide

MODEL Pragmas

Additional pragmas
The pragmas described in this section are not always required. However, you may be
required to use these pragmas in certain situations to produce correct MODEL code.

#pragma Idempotent Get

This pragma is used with computed attributes, where you supply the code for the attribute
put and get. It tells the monitoring system that the value of the attribute will change only if
there is a put to the object. Thus, the monitoring system can treat this attribute as a stored
attribute in terms of monitoring. If the user-defined attribute can change arbitrarily, then
the monitoring system has to poll to detect changes.

#pragma ident “string”

This pragma provides a string for constructing an “RCS ident” comment in the generated
code. The MODEL compiler will generate the following code in the generated .c file:

static const char SM_RCSIDSTRING[] = "string";

You can use a string of the form RCS $Id: $ to be substituted by RCS. Strings of this form
can be extracted from the MODEL library and printed by the UNIX what program.

#pragma import

This pragma terminates a #pragma include block.

#pragma include

This pragma treats the input file, from this point until either the end of the file or a
#pragma import, as part of the main file. Therefore, code is generated for declarations in
included files. Normally, code is not generated for declarations in included files.

#pragma Leaf File

This pragma, which may appear anywhere in a MODEL file, helps the MODEL compiler
generate more efficient code. It tells the MODEL compiler that the classes declared in this
file do not have subclasses declared for them in any other file. The MODEL compiler
generates an error message if another source file includes the file with this pragma and
declares subclasses.

Additional pragmas 133

MODEL Pragmas

#pragma Local Operation

This pragma locks only the object on which the operation is invoked. Normally, the MODEL
compiler generates code so that invoking an operation implicitly locks the entire
repository.

#pragma Local Operation
 readonly string HighUtilization_attributes()

"Returns event format data for the HighUtilization event."
definition:

return "THRESHOLD PCT UtilPct > MaxUtilPct"
 "PCT MaxUtilPct - -"

"KB StorageSize - -"
 "KB StorageUsed - -";

#pragma Uses Propagation

This pragma, which must appear before the attribute declaration to which it applies, tells
the MODEL compiler that access to this attribute may require access to other Repository
instances. This pragma should be used before any attribute that can be refined as
propagated or as computed with an expression referring to other propagated attributes.
This pragma locks the entire repository, however, the lock type (read/write) will be
according to the type operation called on the attribute. For example, if you are setting the
value of an attribute it will be a write lock.

#pragma Unlocked

This pragma can be used for either interfaces, attributes or operations. It tells the MODEL
compiler not to lock the repository at all. You can lock the repository in your own code.
However, even if you do your own locking, if you delete the object just as the operation or
attribute is being dispatched to your code, you may get a crash. In addition, this is
inherited, meaning that once you have marked an attribute or operation as unlocked, you
cannot change it back to locked, even in a derived class.

Note: You can also use this pragma for interfaces, however, it is not recommended to
unlock an entire interface.

134 EMC Smarts Foundation MODEL Reference Guide

MODEL Pragmas

Pragmas used with SNMP instrumentation
The following pragmas typically appear before instrumented attributes whose values are
retrieved from an SNMP agent.

#pragma WrapCounter

This pragma appears before attributes of type unsigned int that represent a wrapping
counter, such as an octets counter on a router interface. This means that rates and deltas
computed over this attribute can never be negative; if the later value is smaller than the
earlier value, it is assumed that the counter has wrapped and the value is adjusted
accordingly.

traced interface EthernetInterfaceStats : Instrumentation
{
 instrument SNMP{

ifInOctets = "1.3.6.1.2.1.2.2.1.10",
ifOutOctets = "1.3.6.1.2.1.2.2.1.16"

 };

#pragma WrapCounter
 readonly instrumented attribute unsigned ifInOctets
 "The total number of octets received on the interface.";

#pragma WrapCounter
 readonly instrumented attribute unsigned ifOutOctets
 "The total number of octets transmitted on the interface.";
}

#pragma ObjectID

This pragma appears before an instrumented attribute declaration of type string whose
value is the OID of an SNMP device. This pragma tells the Repository to convert the OID
type returned by the SNMP agent into a MODEL string.

#pragma DotNotation

This pragma appears before an instrumented attribute declaration of type string whose
value is an IP address. This pragma tells the Repository to convert the OCTECT STRING type
returned by the SNMP agent into a MODEL string.

#pragma HexNotation

This pragma appears before an instrumented attribute declaration of type string whose
value is in hexadecimal form. This pragma tells the Repository to convert the hexadecimal
value into a string. The only legal characters in such a string are the digits zero through
nine and the letters A through F. Successive pairs represent the value of a single byte.

Pragmas used with SNMP instrumentation 135

MODEL Pragmas

Pragma warnings in the MODEL compiler
Using the proper pragmas is necessary to make MODEL generate the correct code. The
MODEL compiler issues warnings about unrecognized pragmas as well as pragmas that
are ignored.

“Unrecognized Pragma” warnings

The MODEL compiler issues “Unrecognized Pragma” warnings for the following pragma
syntax errors:

◆ Incorrect spelling

◆ Incorrect capitalization

◆ Missing or extra spaces

“Ignored Pragma” warnings

Pragmas must be applied to top-level declarations. If you try to apply a pragma to a
declaration refinement, it is ignored when you run the compiler. If the MODEL compiler
discovers a pragma applied to a refinement, it will ignore it and issue a warning.

136 EMC Smarts Foundation MODEL Reference Guide

INDEX

Symbols
“The complete example” on page 30 34

A
Abstract 16
abstract keyword 57
Accessor

SNMP 68, 128
Adapter 34
Aggregate

Declaration 26, 81, 92
Operator 61, 72

and 62
avg 62
Identity value 61
max 62
min 62
or 62
prod 62
sum 62

Refine 92
aggregate keyword 92
and aggregate operator 62
apriori keyword 85
Arithmetic operator 109
Attribute 19, 60

Access type 60
Computed 60, 66, 108

Default behavior 66
Refine 67, 103

Instrumented 60, 68, 82
Refine 70
Type 68

Propagate 60, 71
Refine 72

Stored 60, 63
Refine 65

Table 73
Refine 74

Unavailable value 61
attribute keyword 64, 66, 69, 72
average() 116
avg aggregate operator 62

B
Bitwise operator 110
Boolean

Expression 23
Operator 120

Broker 36

C
C preprocessor 132

Cardinality 20, 76
case operator 111
Character literal 109

Escape character 109
check keyword 82
Class 16

Abstract 16
Concrete 16
Inheritance 16
Interface declaration 17
Listing 38
see also Interface

Codebook 84
Recompute 84

Compiler
Preprocessor 132

Computed
Attribute 60, 66, 108

Default behavior 66
Relationship 77

computed keyword 66, 77
Concrete 16
const keyword

operation 101
Constraint expressions 124
Constraints 124
CORBA IDL 12
Correlator 84

D
Data type 51
Declaration

Aggregate 26, 81, 92
Refine 92

Attribute 19
Computed 66
Instrumented 68
Propagate 21, 71
Stored 63
Table 73

Event 23, 80
Refine 82

Export 27, 95
Forward 56
Instrument 128
Interface 17, 56
Interface header 17, 57
Operation 100
Problem 24, 80, 83

Refine 85
Propagate aggregate 26, 81, 94

Refine 94
Propagate symptom 25, 80, 91

Refine 91

EMC Smarts Foundation MODEL Reference Guide 137

Index

Relationship 20, 56, 76
Refine 78

Symptom 80, 88
Refine 89

delta() 43, 114
dmctl 34

Changing attribute values 39
create command 38
Creating instances 38
getClasses command 38
Help 35
insert command 39
Inserting into a relation 39
List classes 38
Listing models 38
Loading MODEL library 37
notify command 39
Notifying events 39
put command 39
Starting 34

dmstart
Loading MODEL library 37

Domain Manager
list of loaded models 38

Domain manager
Codebook 84

Recompute 84
Correlator 84
Listing models 38
Loading MODEL library 37
Repository 16, 76

E
else operator 110
Enumerations 52

Examples 52
Environment variable

SM_LIBPATH 35
Equality operator 109
Escape character 109
Evaluation expression operators

case 111
else 110

Event 13
Declaration 23, 80

Refine 82
Expression 13, 23, 61, 82
Guard 82
Modeling 23
Notification 13, 44, 82, 95
Notifying 39
Subscribe 13, 44, 95

Events
Imported 96

Example model 29
explains keyword

problem declaration 86
symptom declaration 89

Export declaration 27, 95
export keyword 95

Expression 108
Boolean 23
Set 100, 103, 108, 112

Operator 112
Syntax 118
Unavailable value 120
Event

see Event expression
external keyword 64

F
file.c 132
file.h 132
Floating point literal 108
Forward declaration 56
Function

delta() 43, 114
obj() 114
polling_frequency() 46, 114
rate() 47, 116
timestamp() 48, 64, 117

H
hard keyword 124
Hexadecimal integer 108

I
idempotent keyword 101
Identifier 51
Identity value 61

List of 61
if keyword 82
Imported events 96
in keyword 103
Inheritance 16, 57
inout keyword 104
Instance

Creating 38
Modifying properties 38

Instrument
Declaration 128

instrument keyword 128
Instrumented

Attribute 60, 68, 82
Refine 70
Type 68

instrumented keyword 69
Integer

Hexadecimal 108
Literal 108
Octal 108

Interface 56
Abstract 16
Declaration 17, 56
Header declaration 17, 57

interface keyword 56
internal keyword 63, 66, 69, 72, 77, 101

138 EMC Smarts Foundation MODEL Reference Guide

IndexIndex

K
key keyword 74
Keyword

abstract 57
aggregate 92
Alphabetical list 42
apriori 85
attribute 64, 66, 69, 72
check 82
computed 66, 77
const 101
explains

symptom 89
export 95
external 64
idempotent 101
if 82
in 103
inout 104
instrument 128
instrumented 69
interface 56
internal 63, 77
key 74
List of 42
loss 82
out 104
problem 84
propagate 72, 91, 94
propagate aggregate 94
propagate symptom 91
readonly 64, 65, 66, 77

Operation 101
refine 28
relationship 20, 71, 76
relationshipset 20, 71, 76
required 64
set 102
SNMP 128
spurious 82
stored 64, 77
symptom 88
table 74
timestamped 49, 64, 70, 117
unique

Interface 57
Table 74

void 102

L
Lexical element 108
Literal 108

Character 109
Escape character 109

Floating point 108
Integer 108
String 109

Escaped character 109
Logic operator 110

loss keyword 82

M
max aggregate operator 62
min aggregate operator 62
MODEL 12

Built-in functions 113
Compiler

Preprocessor 132
Data type 51
Identifier 51
Keyword 42
Lexical element 108
Library

Loading 35, 36
Location 35

Operator 109
Model

Example 29
model

list in Domain Manager 38
MODEL compiler

Pragma warnings 136
Preprocessor 132

MR_ManagedObject 17, 57
MR_MetaObject 17, 57

N
Notification 13, 44, 82, 95
Notifying events 39

O
obj() 114
Object identifier 48, 128
Octal integer 108
OID 48, 128
old keyword 46, 124
Operation

Declaration 100
Instance-only read lock 106
Instance-only write lock 106
No locking the repository 105
Repository-wide read lock 105
Repository-wide write lock 105

Operator 109
Arithmetic 109
Associativity 113
Bitwise 110
Boolean 120
Equality 109
Logic 110
Precedence 113
Relational 109
Set expression 112
Shift 109
Unary 109
Aggregate

see Aggregate Operator
or aggregate operator 62

EMC Smarts Foundation MODEL Reference Guide 139

Index

out keyword 104

P
polling_frequency() 46, 114
Pragma 132

#pragma DotNotation 135
#pragma HexNotation 135
#pragma Idempotent Get 133
#pragma ident 133
#pragma import 133
#pragma include 133
#pragma include_c 132
#pragma include_h 132
#pragma Leaf File 133
#pragma Local Operation 134
#pragma ObjectID 135
#pragma Unlocked 134
#pragma Uses Propagation 72, 134
#pragma WrapCounter 70, 135

Preprocessor 132
Problem

Declaration 24, 80, 83
Refine 85

problem keyword 84
prod aggregate operator 62
Propagate

Aggregate
Declaration 26, 81, 94
Processing logic 95
Refine 94

Attribute 60
Declaration 21, 71
Refine 72

Symptom
Declaration 25, 80, 91
Refine 91

propagate aggregate keywords 94
propagate keyword 72, 91, 94
propagate symptom keywords 91

R
Rate_last 116
rate() 47, 116
readonly keyword 64, 65, 66, 77

Operation 101
Refine 28, 58

Aggregate 92
Attribute

Computed 67, 103
Instrumented 70
Propagate 72
Stored 65

Event 82
Problem 85
Propagate aggregate 94
Propagate symptom 91
Relationship 78
Symptom 89

refine keyword 28

Refinement
see Refine

Relation 20, 76
Cardinality 76

Relational operator 109
Relationship 71

Cardinality 20, 76
Computed 77
Declaration 20, 56, 76

Refine 78
Stored 77

relationship keyword 20, 71, 76
Relationshipset 71

Empty 61
Refine 78

relationshipset keyword 20, 71, 76
Repository 16, 76
Repository locking states 105

Instance-only read lock 106
Instance-only write lock 106
No locking 105
Repository-wide read lock 105
Repository-wide write lock 105

required keyword 64

S
Set

Expression 100, 103, 108, 112
Syntax 118

Operator 112
set keyword 102
Shift operator 109
SM_LIBPATH 35
SNMP

Accessor 68, 128
OID 48, 128

SNMP keyword 128
soft keyword 124
spurious keyword 82
Stored

Attribute 60
Relationship 77

stored keyword 64, 77
String literal 109

Escaped character 109
Structure 53
Subscribe 13, 24, 44, 95
sum aggregate operator 62
Symptom

Declaration 80, 88
Refine 89

symptom keyword 88

T
Table 73

refine 74
table keyword 74
timestamp() 48, 64, 117
timestamped keyword 49, 64, 70, 117

140 EMC Smarts Foundation MODEL Reference Guide

IndexIndex

U
Unary operator 109
unique keyword

Interface 57
Table 74

V
void keyword 102

EMC Smarts Foundation MODEL Reference Guide 141

Index

142 EMC Smarts Foundation MODEL Reference Guide

		About MODEL

		Overview

		Modeling event-driven information

		Detecting events

		Determining which events are monitored

		Introduction by Example

		Overview

		Class properties

		Declaring a class in MODEL

		Interface declarations

		Modeling an object’s properties

		Attribute declarations

		Relationship declarations

		Propagate attribute declarations

		Modeling event-driven behavior

		Event declarations

		Problem declarations

		Propagate symptom declarations

		Aggregate declarations

		Propagate aggregate declarations

		Export declaration

		Refining an object’s properties

		The complete example

		Working with MODEL Libraries

		Overview

		Tools for working with MODEL libraries

		Using the dmctl command-line interface

		Loading a MODEL library

		Location of MODEL libraries

		Starting a Domain Manager

		Methods for loading MODEL libraries

		Working with a MODEL library and a Domain Manager

		Methods for listing models loaded into a Domain Manager

		Listing classes in the MODEL library

		Creating instances of a class

		Modifying the properties of an instance

		Notifying events

		Basic Lexical Elements of MODEL

		Overview

		Keywords

		Identifiers

		Data types

		Enumerations

		Structures

		Declaring an Interface

		Overview

		Forward declaration

		Interface declaration

		Interface header declaration

		Attribute Declarations

		Overview

		Access types for attributes

		When the value of an attribute is unavailable

		Attributes propagated over a relationshipset

		Minimizing the effects of unavailable attributes

		Stored attributes

		Refine keyword

		Computed attributes

		Refine keyword

		Instrumented attributes

		Refine keyword

		Example of instrumented attribute

		Propagated attributes

		Refining an existing propagated attribute

		Refining an attribute to be propagated

		Table attributes

		Relationship Declarations

		Overview

		Cardinality

		Declaring a relationship

		Declaring Event-Driven Behavior in MODEL

		Overview

		MODEL declarations for defining event-driven behavior

		Event declaration

		Problem declaration

		Symptom declaration

		Propagate symptom declaration

		Aggregate declaration

		Logic for aggregate processing

		Propagate aggregate declaration

		Logic for propagate aggregate processing

		Export declaration

		Imported events

		Specifying imported events in MODEL

		Operation Declarations

		Overview

		Declaring an operation

		Return_type parameter

		Refine keyword

		Arguments

		Assignment and return_expression parameters

		Repository locking states

		No locking

		Repository-wide write lock

		Repository-wide read lock

		Instance-only write lock

		Instance-only read lock

		Writing Expressions in MODEL

		Overview

		Lexical elements for expressions

		Literals

		Operators

		Evaluation expression operators

		Operators for set expressions

		Precedence of operators

		Built-in functions

		Syntax for expressions

		Examples of set operators

		When the value of an expression is unavailable

		Boolean attributes

		Constraints

		Overview

		Syntax

		Instrument Declarations

		Overview

		Syntax

		Summary of runtime requirements for SNMP instrumentation

		MODEL Pragmas

		Overview

		Required pragmas

		#pragma include_c file-name

		#pragma include_h file-name

		Additional pragmas

		#pragma Idempotent Get

		#pragma ident “string”

		#pragma import

		#pragma include

		#pragma Leaf File

		#pragma Local Operation

		#pragma Uses Propagation

		#pragma Unlocked

		Pragmas used with SNMP instrumentation

		#pragma WrapCounter

		#pragma ObjectID

		#pragma DotNotation

		#pragma HexNotation

		Pragma warnings in the MODEL compiler

		“Unrecognized Pragma” warnings

		“Ignored Pragma” warnings

		Index

EMC® Smarts®
Foundation 9.4

ASL Reference Guide
P/N 302-002-289

Rev 01

EMC Smarts Foundation ASL Reference Guide2

Copyright © 2003, 2004, 2006 - 2015 EMC Corporation. All rights reserved. Published in the USA.

Published October, 2015

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

EMC², EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

EMC Corporation
Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.EMC.com

CONTENTS

Chapter 1 Overview

 Adapters and ASL ... 12
Adapter components... 13
Adapter Scripting Language .. 14
Introduction to running adapters... 14

 Setting the locale .. 15
Locale effects on message rendering... 15
Default locale when setLocale() is not called ... 15

 String support... 16
Obtaining externalized strings... 16
Applying substitutions .. 16

 Printing and logging.. 17
Retrieving and setting log, error and trace levels at runtime................... 17

Chapter 2 Rule Sets

 Rule set construction .. 20
Special rules ... 21

 Rule execution .. 23

Chapter 3 Operators and Expressions

 Data and comments.. 26
Data.. 26
Comments .. 26

 Variables and their values... 27
Type conversions .. 28
Lists and tables... 28
Scope of variables... 29
Default variable values.. 34
Variable assignment at startup.. 35

 Operators.. 36
Arithmetic operators ... 36
String operators .. 37
Relational and logical operators .. 37
Precedence and order of evaluation .. 38

Chapter 4 Pattern Matching and Filters

 Patterns .. 40
Using a function in a pattern ... 41

 Pattern operators .. 41
White space handling.. 41
Assignment operator... 42
Dot operator.. 43
Double-dot operator.. 44
Alternative operator .. 45
Maybe operator... 46
Grouping patterns ... 47
Precedence of pattern operators ... 47

EMC Smarts Foundation ASL Reference Guide 3

Contents

 Pattern elements... 48
String matches.. 48
Any character matches .. 49
Notany character matches... 50
Char matches.. 50
Word matches... 51
Integer matches .. 52
Floating-point number matches... 52
Hexadecimal matches ... 53
Field-separator matches.. 54
End-of-line matches .. 55
Repeated pattern matches .. 55
Boolean expressions... 57
Positional matching .. 58
Peek() function.. 60
Not() function.. 61
Matching through other rules .. 61
End-of-file matches ... 63

 Special variables... 63
Customizing the delimiter ... 63
Making patterns case-sensitive or case-insensitive 64
Switching the input of a pattern .. 64

 Filters.. 66

Chapter 5 Actions

 Action block.. 70
Operators.. 70

 Iteration and control statements ... 70
foreach statement ... 70
while statement .. 72
if else statement ... 73
break statement.. 74
continue statement ... 75

 Function reference .. 76
glob() function .. 76
stop() function .. 78
quit() function ... 78
defined() function ... 79
undef() function .. 80
sizeof() function .. 80
substring() function... 81
toLower() function... 82
toUpper() function... 83
print() function.. 83
sleep() function... 84
time() function .. 85
trace() function ... 86
hexToString() function... 86
getRuleFileName() function ... 87

 Returning values ... 87
 Passing arguments to functions .. 88
 Calling rules as functions from do blocks... 89
 Exception handling ... 90

4 EMC Smarts Foundation ASL Reference Guide

Contents

Chapter 6 Interfacing with a Domain Manager

 ASL and the MODEL language ... 94
Correlation model used for example scripts... 95

 Objects and instances... 99
Creating objects .. 99
Listing instances ... 100
Creating handles for existing objects... 100
Attributes, relationships, and operations of objects 101
Deleting objects .. 103
Testing for null objects .. 104
Testing relationships... 104
Modifying relationshipsets.. 105
Retrieving description texts ... 106

 Tables, structures and enumerations... 106
Accessing tables in MODEL from ASL... 106
Clearing the members of a table.. 107
Updating and accessing structure attributes in MODEL........................ 107
Accessing enumerated data types in MODEL 108

 Type conversions between ASL and MODEL... 109
 Domain Manager control ... 110

consistencyUpdate() function.. 110
correlate() function.. 110

 Events... 111
getCauses() function ... 111
getClosure() function... 111
getEventClassName() function .. 111
getEventDescription() function .. 112
getEventType() function... 112
getExplainedBy() function ... 112
getExplains() function ... 112
getChildren() function ... 112

 Transactions, commit, and abort ... 113
 Error handling ... 115

feError() function ... 115
feErrorMsg() function .. 115
feErrorReset() function .. 115

 Repositories.. 116
self-> ... 116

 Naming and identity.. 116
getRuleFileName() function ... 116
getServerName() function.. 116
thread() function ... 116

 Tracing ASL scripts .. 117

Chapter 7 Running Adapters

 The sm_adapter command.. 120
Basic options .. 120

 Front end .. 122
File front end... 122
File tail front end ... 123
Program front end ... 123
Subscriber front end ... 124
Object create record.. 125
Subscriber front end with a restartable Domain Manager 126

EMC Smarts Foundation ASL Reference Guide 5

Contents

Sample front end invocations.. 127
sm_adapter front end options ... 128

 Rule set... 129
sm_adapter rule set options.. 129

 Back end... 129
Behavior of the restart-enabled Domain Manager................................ 130
Back end options .. 130

 Tracing operations .. 131
Rule set... 131
Back end... 131
Trace options .. 131

 Stopping adapters .. 132

Appendix A ASL Reference

 Syntax... 134
 Reserved words .. 140

Appendix B dmctl Reference

 Description ... 142
ASL and dmctl ... 142
Setting the locale .. 142

 dmctl syntax ... 143

Appendix C Card-Port MODEL Code

 Card-Port MODEL example... 148

Index

6 EMC Smarts Foundation ASL Reference Guide

Title Page

FIGURES

1 Adapter overview .. 12
2 Adapter components... 14
3 Example of a variable with a static lifetime.. 30
4 Example of a variable with a record lifetime... 31
5 Local variables used in a recursive rule ... 33
6 Progression of a pattern being compared to data .. 40
7 Example of positional matching .. 59
8 Domain Manager with a model and repository... 95
9 Relationship between cards and ports... 96
10 Events that affect ports and their related card ... 97
11 Diagram of the card and port model .. 98

EMC Smarts Foundation ASL Reference Guide 7

Figures

8 EMC Smarts Foundation ASL Reference Guide

Title Page

TABLES

1 Type conversion functions... 28
2 Arithmetic operators ... 36
3 Relational and logical operators .. 37
4 Match syntax for special characters... 49
5 Samples of the rep() function .. 56
6 Filter operators.. 66
7 Symbols for a glob pattern .. 77
8 Print function special characters ... 84
9 Valid values for string.. 86
10 Exception handling keywords.. 90
11 List operators .. 105
12 Correspondence between types of data in MODEL and ASL 109
13 Transaction keywords ... 113
14 sm_adapter basic options... 120
15 Other sm_adapter options .. 121
16 Sample front end invocations.. 127
17 sm_adapter front end options ... 128
18 sm_adapter rule set options.. 129
19 sm_adapter back end options ... 130
20 Trace options .. 131
21 ASL syntax .. 134
22 ASL reserved words... 140
23 dmctl options.. 143
24 dmctl commands .. 144

EMC Smarts Foundation ASL Reference Guide 9

Tableses

10 EMC Smarts Foundation ASL Reference Guide

CHAPTER 1
Overview

This chapter consists of the following sections:

◆ Adapters and ASL ... 12
◆ Setting the locale .. 15
◆ String support... 16
◆ Printing and logging.. 17

Overview 11

Overview

Adapters and ASL
This document shows users how to create or modify custom adapters for EMC® Smarts®
Domain Managers.

EMC Smarts adapters facilitate the communication of information between devices or
applications and a Domain Manager. Adapters exist as either inflow adapters or outflow
adapters.

◆ Inflow adapters collect information and send it to a Domain Manager. These adapters
can be used to initialize a Domain Manager with data such as topology information.
They also can send, as they occur, event information and topology changes to a
Domain Manager.

◆ Outflow adapters subscribe to a Domain Manager for a set of notifications. These
adapters then pass the information to devices or other applications.

Figure 1 on page 12 shows the flow of information through an inflow adapter, a Domain
Manager, and an outflow adapter.

1. The inflow adapter collects information and passes it to the Domain Manager.

2. The Domain Manager generates notifications.

3. The outflow adapter subscribes to a set of notifications.

4. The Domain Manager passes those notifications to the adapter.

5. The outflow adapter passes the information to another entity.

Figure 1 Adapter overview

EMC Smarts installation directory
In this document, the term BASEDIR represents the location where EMC Smarts software is
installed.

◆ For Windows, this location is C:\InCharge\<product>.

◆ For UNIX, this location is /opt/InCharge/<product>.

Optionally, you can specify the root of BASEDIR to be something other than:

◆ Windows: C:\InCharge

◆ UNIX: /opt/InCharge

However, you cannot change the <product> location under the root directory.

Domain Manager

X Y Z
0 1 0
1 1 0
0 0 1

Correlation
Engine

TopologyModel and

Outflow adapters

Inflow adapters

12 EMC Smarts Foundation ASL Reference Guide

Overview

The EMC Smarts System Administration Guide provides more information about the
directory structure.

Where to get help
EMC support, product, and licensing information can be obtained as follows:

Product information — For documentation, release notes, software updates, or
information about EMC products, go to EMC Online Support at:

https://support.emc.com

Technical support — Go to EMC Online Support and click Service Center. You will see
several options for contacting EMC Technical Support. Note that to open a service request,
you must have a valid support agreement. Contact your EMC sales representative for
details about obtaining a valid support agreement or with questions about your account.

Adapter components

All adapters, regardless of type, consist of three basic components: front end, rule set and
back end. These three components must be included as part of any adapter.

Front end
The front end collects information for processing in the rule set of the adapter.

◆ The front end of an inflow adapter collects information an external entity.

◆ The front end of an outflow adapter collects information from Domain Manager
notifications.

Rule set
Rule sets match, filter, and process information received from the front end. The
processed information is handled by the back end.

Back end
The back end passes information processed by the rule set to other programs or devices.

◆ The back end of an inflow adapter passes information to a Domain Manager.

◆ The back end of an outflow adapter passes information from a Domain Manager to
another device or location.

For example, in Figure 2 on page 14, if an adapter is designed to move SNMP data to a
Domain Manager, its front end communicates with an SNMP device and its back end
passes data to a Domain Manager.

Adapters and ASL 13

http://support.emc.com

Overview

Figure 2 Adapter components

Adapter Scripting Language

The EMC Smarts Adapter Scripting Language (ASL) is used to construct the rule sets of
adapters. These rule sets are responsible for matching incoming data with patterns and
processing the matched data. ASL provides an easy-to-use method of moving data into or
out of a Domain Manager.

Introduction to running adapters

The sm_adapter command starts ASL scripts. The file sm_adapter (sm_adapter.exe for
Windows) is found in BASEDIR/smarts/bin. Adapters can receive information from files
and send output to a file or to the screen. To run most of the sample scripts found in this
guide, use this syntax:

sm_adapter --file=<input_file> <ASL_script_file>

The command starts an adapter that runs a user-supplied script <ASL_script_file>, reading
data from the file, <input_file>.

Chapter 7, “Running Adapters,” provides additional information about the sm_adapter
command.

14 EMC Smarts Foundation ASL Reference Guide

Overview

Setting the locale
A locale is the RFC-1766/3066 compliant specification for language and country.

The scope of execution of an ASL script is within the context of a Domain Manager. Once
connected, the locale can be changed by using the setLocale() function. The syntax is:

<var> = setLocale(<locale>)

The return value is a string representation of the previous setting of the locale, or a default
value if setLocale() has not yet been called.

The following example sets the locale to French as spoken in France.

old_locale = setLocale(”fr_FR”);
print(“The old locale was “.old_locale);

When setLocale() is called in ASL, the value of the locale is saved in thread-local storage.
When an ASL script connects to a Domain Manager, the same thread is used for the
lifetime of the connection session. Therefore, if you call setLocale(“fr_FR”) from an ASL
script, then the locale is fr_FR for the duration of the ASL script. When the script ends, the
Domain Manager thread goes away. Other ASL scripts, and other clients each have their
own connection/session in their own thread, so each thread is independent of the others.

Locale effects on message rendering

Currently, the scope of the setLocale() operation influences text sent from the Domain
Manager to the ASL script. Specifically, setLocale() affects textual data of these types:

◆ MODEL descriptions obtained from the following operations on SM_System:

• getOpDescription

• getEventDescription

• getPropDescription

• getClassDescription

◆ Error text obtained from the following operations on SM_API_Support:

• getErrorText

The scope of the setLocale() operation has no influence on any other textual data
communicated between the ASL script and the Domain Manager. Textual elements
defined as part of modeled applications (aside from entity description data) are not
affected by this operation.

Default locale when setLocale() is not called

The default locale to set for an ASL script is determined as follows:

1. The value of the SM_LOCALE environment variable.

2. If SM_LOCALE is not set equal to a value, then the default locale is set equal to en_US.

Setting the locale 15

Overview

String support
The ASL interpreter assumes that ASL Script files are UTF-8 encoded. The interpreter will
recognize a valid UTF-8 BOM if it is present. The file may contain a valid UTF-8 BOM, but it
is not required.

ASL is assumed to be working with UTF-8 strings all the time. The string type in ASL is
assumed to be a UTF-8 string.

You can print a string by performing the following:

◆ Extract the localized string.

◆ Apply substitutions to the string.

◆ Print the final rendered string.

Obtaining externalized strings

A built-in function for use by internal applications only (EMC Smarts and other EMC
adopting applications) may be used to retrieve an externalized string. The
getExternalString() function extracts a string, based on the table name, key, and locale
that is passed to the function. The getExternalString() function then renders the extracted
string given a list of substitutions (up to six).

<var> = getExternalString(<table>, <key>, <locale>)

The <table> and <key> arguments are required. The <locale> argument is optional. The
default value is the value of the SM_LOCALE environment variable. The return value is the
UTF-8 encoded string that contains the text of the message defined in the table.

The ASL script may then use the returned string as an argument in the print() built-in
function, as shown in the following example:

msg = getExternalString("SMS_MSG","SUCCESS","fr_FR");
print(msg);

Applying substitutions

Applying substitutions may be accomplished by using the formatString() built-in function.
The formatString() function takes up to seven arguments:

<var> = formatString(<msg>[,<sub_1>][,<sub_2>][,<sub_3>][,<sub_4>][,<sub_5>][,<sub_6>])

The <msg> argument is the string variable which was extracted from a message table. Up to
six substitution arguments may be specified.

The example below shows the use of the getExternalString() and formatString() built-in
functions.

message table entry:
#
message_table MY_TABLE
message_code OPER_FAIL_MSG,
 "Operation &1 failed. Reason: &2"

16 EMC Smarts Foundation ASL Reference Guide

Overview

// ASL fragment. An attempt to perform some operation failed.
// the variable 'operation' holds the name of the operation that
// failed, the variable 'reason' indicates the reason for the failure.
//
// extract the string using the default locale (SM_LOCALE)
//

format = getExternalString("MY_TABLE","OPER_FAIL_MSG");

//
// format the substitutions
//

output = formatString(format,operation,reason)

//
// print the resulting string
//

print(output);

Printing and logging
Messages that are printed by using the ASL print() built-in function are printed to each of
the active logs in the Domain Manager process. There is no automatic translation of the
message text. For example, if the message was obtained by calling getExternalString() by
using a French locale, the message will appear both in the English log and the French log
in French. The section provides additional information.

Retrieving and setting log, error and trace levels at runtime

There are three computed attributes available to get and set the log, error, and trace levels
of a Domain Manager at runtime. These computed attributes, described in Table 1 on
page 28, are available on the SM_JIIM_Support object. The SM_System object is a
subclass of SM_JIIM_Support and also inherits these computed attributes.

The values of these computed attributes can be retrieved and set, and valid values are:

◆ None

◆ Emergency

◆ Alert

◆ Critical

◆ Error

◆ Warning

◆ Notice

◆ Informational,

◆ Debug

Fatal is a synonym for Critical.

Printing and logging 17

Overview

Retrieving the current level
You can retrieve the current levels of SM_System::SM-System::logLevel,
SM_System::SM-System::errLevel, or SM_System::SM-System::traceLevel. A string is
returned which represents the current level, such as "Warning", "Error", or "Fatal". For
example:

sm_system = object("SM_System", "SM-System");
curr_error_level = sm_system->errLevel;

Setting the level
To change the current levels, obtain a pointer to the object, and then set the value of
SM_System::SM-System::logLevel, SM_System::SM-System::errLevel, or
SM_System::SM-System::traceLevel to the appropriate level.

In this example, the trace level setting is changed to None.

sm_system = object("SM_System", "SM-System");
sm_system->traceLevel = "None";

When you change the log, error or trace levels a message is printed in the log file. The log
message will appear similar to the following:

[April 8, 2009 5:03:41 PM EDT +122ms] t@1149000000 SM_ProtocolEngine-6
JM_MSG-*-JM_TRACE_LEVEL_CHANGED-User 'user1', using remote dmctl
client (id 6), on host host1 with credentials tpadmin1 has changed
the Trace level to None; in file
"/mypath/repos/jiim/SM_JIIM_Support_Impl.c" at line 458

18 EMC Smarts Foundation ASL Reference Guide

CHAPTER 2
Rule Sets

This chapter consists of the following sections:

◆ Rule set construction .. 20
◆ Rule execution .. 23

Rule Sets 19

Rule Sets

Rule set construction
A rule set is a group of rules that may match, filter, and execute actions to process data
received from an adapter’s front end.

An ASL rule consists of blocks of patterns, filters, and actions. Patterns select the data to
process by applying a pattern matching to the incoming datastream. Filters control
whether actions are performed on matched data. Actions process the data.

An ASL rule has the basic form:

<RULE-NAME> {
<pattern-list>
}
filter {
<filter-list>
}
do {
<action-list>
}

Rules begin with a rule name. A rule name must consist of alphanumeric characters
and/or an underscore (_). The first character of a rule cannot be a number.

In this guide, by convention, no rule names contain lowercase letters.

Pattern, filter, and action blocks comprise the contents of a rule. None of the blocks are
required.

Certain ASL words are reserved and should not be used, as described in “Reserved words”
on page 140.

Braces surround the pattern list and demarcate the pattern block. A pattern block can
contain one or more action blocks, but cannot contain any filter blocks. For actions
performed before any pattern matching, an action block can be included inside of the
pattern block before any pattern matching statements.

The word “filter” followed by a brace ({) marks the beginning of a filter block. Another
brace (}) marks the end. A rule can contain no more than one filter block, and that block
must appear after the pattern block.

The word “do” followed by a brace ({) marks the beginning of an action block. Another
brace (}) marks the end. A rule can contain multiple action blocks placed inside a pattern
block or outside of a pattern block. However, only one action block can appear outside of
a pattern block.

In this example, the following rule associates a specific pattern with a specific action:

<RULE-NAME> {
<pattern-list> do {<action-list>}
<pattern-list> do {<action-list>}
<pattern-list> do {<action-list>}
}

20 EMC Smarts Foundation ASL Reference Guide

Rule Sets

The pattern block shown in the example encompasses all of the patterns and all of the
action blocks. In order to add a filter block, the brace marking the end of the pattern block
has to follow the last pattern list. Filter information can be added before the last action
block.

<RULE-NAME> {
<pattern-list> do {<action-list>}
<pattern-list> do {<action-list>}
<pattern-list>
}
filter {<filter-list>}
do {<action-list>}

Rules can be called from other rules or in an action block. Rules cannot be called from a
filter.

<RULE-NAME> {
<OTHER-RULE>
}
filter {
<filter-list>
}
do {
<action-list>
}

Patterns and called rules can be interspersed with action blocks.

<RULE-NAME> {
<pattern-list>
do {<action-list>}
<OTHER-RULE>
}

Rules referenced by other rules are considered subordinate to the rule that references
them. The rule that references a subordinate rule is referred to as superior. The flow of
control of ASL processing passes from superior rules to subordinate rules and back.

Special rules

Three special rules exist: START, DEFAULT and EOF. Each of these rules must be in
uppercase letters.

START rule
All rule sets must include a rule named START. The START rule marks the starting point of
the ASL script when the adapter receives input. However, the START rule does not have to
be the first rule listed in the script.

START {
<pattern-list>
}
filter {
<filter-list>
}
do {
<action-list>
}

Rule set construction 21

Rule Sets

DEFAULT rule
If the input fails to match any patterns specified by the START rule and the rules called by
the START rule, a rule named DEFAULT runs automatically. The purpose of the DEFAULT rule
is to resynchronize the input stream. The DEFAULT rule has the same structure as any other
rule. However, if the pattern matching of the DEFAULT rule fails, the ASL script aborts.

If the DEFAULT rule is not explicitly defined and the START rule fails, there is an implicit
DEFAULT rule that is executed. This implicit DEFAULT rule matches the current line of input.

If the implicit DEFAULT rule was added to an ASL script, it would look like this:

DEFAULT {
..eol
}

The string "..eol" is an ASL pattern that, from a starting point, matches all characters up to
and including an end-of-line. Chapter 4, “Pattern Matching and Filters,” provides
additional information about patterns.

EOF rule
A rule named EOF runs at the end of an input file. The EOF rule can but should not include
a pattern matching block. At the end of a file, there is no data for a pattern to match. The
EOF rule is not required in an ASL script.

EOF
do {
<action-list>
}

The EOF rule shown in the example does not include a pattern matching section. The
braces associated with the pattern block are not needed if there is no pattern.

22 EMC Smarts Foundation ASL Reference Guide

Rule Sets

Rule execution
The first rule executed in an ASL script is the START rule. The START rule runs repeatedly
until all of the data input is processed. Data input is processed as it is matched with all of
the patterns of a rule.

Patterns are components either of the START rule or of other rules called from the START
rule. As data matches patterns, the starting position for the next pattern match moves to
the end of the matched data. The next match is tested from this new position and so forth.

The new starting position for pattern matches is permanent when all of the patterns
associated with the START rule match. Patterns associated with the START rule include
patterns from all of the rules subordinate to START. If the START rule and all of its
subordinate rules have executed, the START rule executes again at the new starting
position.

If patterns in subordinate rules fail to match, control passes to the immediately superior
rule where an alternate, if it exists, is tried. If an alternate does not exist, the starting point
for the match is reset to the point when the superior rule executed. Control is passed to
the next superior rule and the next alternate is tested. This continues until a match is
made or until the START rule does not match.

The DEFAULT rule runs when the START rule fails. The DEFAULT rule contains its own pattern
matching. When the DEFAULT rule matches, the starting point is permanently advanced
and the START rule is executed. If the DEFAULT rule pattern match fails, the ASL script
aborts.

The EOF rule runs when the data input is exhausted. It is not necessarily the last rule to
execute because other rules might be subordinate.

Rule execution 23

Rule Sets

24 EMC Smarts Foundation ASL Reference Guide

CHAPTER 3
Operators and Expressions

This chapter consists of the following sections:

◆ Data and comments.. 26
◆ Variables and their values ... 27
◆ Operators.. 36

Operators and Expressions 25

Operators and Expressions

Data and comments
This section describes the input datastream and the format of comments.

Data

The ASL input datastream consists of characters and markers. Characters include any
character in the extended ASCII character set. Markers demarcate the boundaries of fields
and records.

Comments

There are two different formats for comments. A comment is text that begins with two
slashes (//) and all information to the right of the slashes is ignored.

// ASL Script to read card information

A comment can also be marked as a block by using a slash followed by an asterisk at the
beginning (/*) and an asterisk followed by a slash at the end (*/) of the comment block.

/* ASL Script to read card information
 created 1/30/2009 by FTW */

26 EMC Smarts Foundation ASL Reference Guide

Operators and Expressions

Variables and their values
Variables are assigned values in an ASL script or at adapter startup. “Variable assignment
at startup” on page 35 describes how to specify variable values at startup.

ASL variables do not have a declared type, the values assigned to them are typed. Variable
values can have the following types:

◆ numeric

ASL stores all numbers as double-floating point.

◆ string

◆ binary

◆ Boolean

◆ list

◆ table

◆ object handle

The section Chapter 6, “Interfacing with a Domain Manager,” provides additional
information.

◆ datetime

The section “time() function” on page 85 provides additional information.

A variable name can consist of a letter or an underscore, followed by any number of
letters, underscores, and digits. A variable name is case-sensitive. Uppercase and
lowercase letters are distinct.

Certain ASL words are reserved and should not be used as identifiers or variables, as
described in “Reserved words” on page 140.

Any variable can be assigned different types of values. For example, starting with a basic
ASL statement:

x = ”string”;

The variable x can then be used to store a value:

x = 5.62;

It can also store a Boolean value:

x = TRUE;

For most values, ASL converts one type of value to the appropriate data type for use in a
function or expression. In this example, the var_w variable is assigned a string of numeric
characters.

var_w = ”3498”;

The variable, var_w, can be added to a number.

var_y = var_w+100;

Variables and their values 27

Operators and Expressions

This statement is valid. The number 100 is added to the numeric equivalent of the value
stored in var_w. There is no intermediate step.

The semicolon terminates the end of these assignment actions in ASL.

Type conversions

In some instances, automatic type conversion does not occur. Some functions return
values of different types depending on the type of the value passed. For these cases, there
are variable type conversion functions. Table 1 on page 28 shows the type of conversion
functions.

Lists and tables

Lists and tables are special types of values that can store sets of values. Any variable can
store lists and tables. A value of any type can be assigned to a list or table.

List values
A list is an ordered set of values that are indexed numerically, starting with zero (0). The
value assigned to a member of a list can be any value regardless of whether it is variable,
constant value, a table, a list, or other value type. The list() function initializes the variable
type to be of type list. An example is:

x = list();

Using this syntax, the list is empty.

There are three methods to add members to a list.

◆ The first method is:

x = list(<value_1>,<value_2>,<value_3>,...,<value_n>);

The list() function initializes a list.

◆ The second method specifies an index and assigns a value. This method can also be
used to change the existing value of a member in a list.

x[100] = value_1;

x[57] = value_2;
◆ The third method appends the value to the list. Using this method, ASL keeps track of

the index value.

Table 1 Type conversion functions

Syntax Description

string(value) Converts the values as a string type.

boolean(value) Converts the values as a Boolean type. Any nonzero number is
converted to TRUE. The only strings that convert are “true” and
“false” including all capitalization variations.

numeric(value) Converts the values as a numeric type. All numeric values are
stored as double-floating point.

28 EMC Smarts Foundation ASL Reference Guide

Operators and Expressions

x += value_1;

Table values
Tables are associative lists. They exist as hashed arrays with a key and value pair
(<key>,<value>) for each member. The keys for a table must be unique.

A variable may be initialized to be of type table. An example is:

y = table();

To add a value to a table, use the following syntax:

<table_name>[<key>] = <value>;

The value specified for the <key> or for the <value> can be of any value type.

Multicolumn tables can be implemented in two ways.

The first method implements the multicolumn table as a table of tables:

START {
 .. eol
} do {
 x = table();
 x["a"] = table();
 x["a"]["b"] = 1;
 x["a"]["c"] = 2;
 print(x["a"]["b"]);
 print(x["a"]["c"]);
}

The second method implements the multicolumn table as a single table with joined key:

START {
 .. eol
} do {
 x = table();
 x["a|b"] = 1;
 x["a|c"] = 2;
 print(x["a|b"]);
 print(x["a|c"]);
}

The use of the vertical line character (“|”) to join the keys has no special meaning. Any
character can be used.

Scope of variables

The scope of variables determines where the value associated with the variable can be
accessed. In ASL, there are three scope levels:

◆ Local-scoped variables are accessible only from the rule where the variable is
assigned a value and can be referenced in subordinate rules.

◆ Driver-scoped variables are accessible from any rule in an ASL script.

◆ Global-scoped variables are accessible from any adapter that runs on the same
process where the variable is assigned a value.

Variables and their values 29

Operators and Expressions

A local-scope variable cannot have the same name as a global-scoped variable.

Driver-scope
Driver-scoped variables are accessible from any rule in an ASL script. There are two
lifetimes for driver-scoped variables:

◆ Static

◆ Record

The difference between the two lifetimes depends on where the variable is assigned a
value.

The longer lifetime for a driver-scoped variable is static. When a variable is assigned a
value at the beginning of an ASL script, before the START rule is executed, it is static. Static
variables maintain their value across uses of the START rule or until a new value is
assigned. In Figure 3 on page 30, each time the START rule is invoked, the variable retains
its value.

Figure 3 Example of a variable with a static lifetime

In the following example, the script counts the number of lines of data in a file. A variable
is assigned to zero at the beginning of the script. The variable’s value is incremented for
each line of input. At the end of the script, the value of the variable is printed. In this
script, the START rule is invoked five times and the variable is not reset.

ASL Script (static_var.asl):
lines=0;
START {

.. eol
}
do {

lines = lines+1;
}

EOF do{
print("Number of lines ".lines);

}

30 EMC Smarts Foundation ASL Reference Guide

Operators and Expressions

Input: (static_var.txt):
line 1
line 2
line 3
line 4
line 5

Output:
$ sm_adapter --file=static_var.txt static_var.asl
Number of lines 5
$

The shorter lifetime for a driver-scoped variable is record. A driver-scoped variable has a
record lifetime when it is assigned a value in a rule. The value of this variable does not
change until it is reassigned a value or when the START rule exits. A driver-scoped variable
with a record lifetime is undefined each time the START rule exits. In Figure 4 on page 31,
each time the START rule is invoked, the variable is undefined.

Figure 4 Example of a variable with a record lifetime

In the next example, the script demonstrates that driver-scoped variables keep their value
until the START rule is invoked. In the script, a variable is assigned when the HI rule runs
(x=TRUE). This variable holds its value when the action block of the program is invoked
after the HI rule. When the START rule is invoked again, the input fails to match the pattern
specified by the HI rule so the alternate rule to HI, the THERE rule, is invoked and the
variable is not assigned a value in this rule. When the execution of the script reaches the
action block, no variable exists.

ASL Script (record_var.asl):
START {

print("Starting again")
/* print returns TRUE so can be
 * used outside of a do*/

HI|THERE
}
do {

if (defined(x))
//Tests whether variable exists
{print("x is defined");}

else {print("x is not defined");}

Variables and their values 31

Operators and Expressions

}

HI {
"hi" eol

}
do { x=TRUE;}

THERE {
"there" eol

}

Input (record_var.txt):
hi
there

Output:
$ sm_adapter --file=record_var.txt record_var.asl
Starting again
x is defined
Starting again
x is not defined
$

A driver-scoped variable with a static lifetime remains static, even when a new value is
assigned in a rule.

Local-scope
Driver-scoped variables have some limitations. For instance, they are not suitable for
recursion, but local-scoped variables are suitable.

The following example shows a script that uses recursion and a driver-scoped variable. At
first glance, the script looks like it reverses the order of words that are passed to it. A
driver-scoped variable x with a record lifetime is used to store a value each time a rule is
executed. Unfortunately, each time the recursion executes, the word assigned to the
variable overwrites the existing value. The last value assigned to x is the value that is used
for all of the recursions. Only the last word appears as output.

ASL Script (2ndrule_var.asl):
START {

READANDPRINT
}
READANDPRINT {

x:word READANDPRINT|eol
}
do {

print(x);
}

Input (2ndrule_var.txt):
The dog ran.

Output:
$ sm_adapter --file=2ndrule_var.txt 2ndrule_var.asl
ran.
ran.
ran.

32 EMC Smarts Foundation ASL Reference Guide

Operators and Expressions

ran.

$

Local variables are defined in a rule and have a separate value each time the rule runs.
Local variables can be referenced in any subordinate rules. They cannot be accessed in
any other rule. A local variable cannot have the same name as a global variable.

If a local variable is used in a recursive rule, each recursion contains an exclusive value for
the variable, as shown in Figure 5 on page 33.

Local variables are declared in the pattern block of a rule. These declarations must occur
before any pattern matching statements. Local variables override variables with the same
name. Use this syntax to declare a local variable:

local <variable_name>;

Figure 5 Local variables used in a recursive rule

The following example demonstrates how use of a local variable instead of a driver-scoped
variable changes the output of the script.

The script reverses the order of words. The rule READANDPRINT iterates until it does not
match. For each iteration, the value of the word scanned is stored in a local variable. When
the end-of-line (eol) marker is reached, the READANDPRINT rule no longer matches and the
recursive rules are completed with the action block. Each value of x is printed, which has
the effect of reversing the order of the input. The section “End-of-line matches” on
page 55 provides additional more information about eol markers.

ASL Script (local_var.asl):
START {

READANDPRINT
}
READANDPRINT {

local x = “end”;
x:word
READANDPRINT|eol

}
do {

print(x);
}

Input: (local_var.txt):
The dog ran.

Output:
$ sm_adapter --file=local_var.txt local_var.asl
end

Variables and their values 33

Operators and Expressions

ran.
dog
The

$

Global-scope
Adapters in the same server or threads in a single process can share global variables.
Global variables can be of type numeric, string or boolean.

Lists and tables can also be used as global variables but it is not recommended. The ASL
programmer must exercise caution when using global lists or tables to ensure that a single
thread or adapter is the "writer" of the list or table. If more than one thread or adapter
attempts to assign values to a list or table, the likely result will be data loss due to
rewriting the variables’ values. There is no inherent mutex or lock arrangement in ASL to
prevent this and it is up to the programmer to ensure against this.

Global variable declarations must be made in the static section of the script file, before
any rules are declared.

A local variable cannot have the same name as a global variable.

Adapters in the same server or threads in a single process can share global variables.
Global variables can be of type numeric, string or boolean.

Use this syntax to declare a global variable:

global <variable_name>;

Default variable values

A default assignment assigns a value only if the variable is undefined.

default <variable_name>=<value_or_expression>;

The scope of a default variable is restricted to driver-scoped with a static lifetime. A value
must be assigned to a variable declared as default. The value cannot be blank. An
example of declaring a default variable is:

default x = 5;

Default variables assigned in an ASL script can be overridden by the value of the variables
specified during the startup of an adapter with the -D option.

Any variable assignment not defined as default can override the default value and, if one
exists, the value that was assigned by using the -d option.

The following code fragment prints the number 1 if there is no integer value to assign to y.

x = 1;
default y = 1;

START
do
{ print("x=".x);
 print("y=".y);
 stop();
}

34 EMC Smarts Foundation ASL Reference Guide

Operators and Expressions

Output with the -D option:

$ sm_adapter -Dx=2 -Dy=2 default.asl
x=1
y=2

Output without the -D option:

$ sm_adapter default.asl
x=1
y=1

Variable assignment at startup

Variable values can be assigned when the adapter is started by using the -D option.
Variables assigned by using this method have a static lifetime. Default variables that are
locally scoped cannot be assigned a value by using this method.

sm_adapter -D<variable_name>=<value>

The value that is assigned by the switch can be overridden by a standard variable
assignment through either pattern matching or by a variable assignment statement. To
define a variable so that the -D option overrides the value set in the ASL script, define the
variable as a default variable in the ASL script.

Variables and their values 35

Operators and Expressions

Operators
This section describes operators and their order of evaluation.

Arithmetic operators

The addition, subtraction, multiplication, division, and modulus operators can only be
used with numeric values. The arithmetic operators are described in Table 2 on page 36.

Note: You can isolate the decimal portion of a number with the modulus operator by using
the syntax: number%1.

For example, this script assigns numeric values to two variables. These numbers are used
in addition, subtraction, multiplication, division, and modulus operations.

ASL Script (mathematic_do.asl):
START
do {

a = 36;
b = 4;
print(“Addition “.a+b);
c = a-b;
print(“Subtraction “.c);
d = a*b;
print(“Multiplication “.d);
print(“Division “.b/a);
e = 10%b;
print("Modulus ".e);
stop();

}

Output:
$ sm_adapter mathematic_do.asl
Addition 40
Subtraction 32
Multiplication 144
Division 0.111111111111111
Modulus 2

$

Table 2 Arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

36 EMC Smarts Foundation ASL Reference Guide

Operators and Expressions

String operators

The concatenation operator is the period (.). The concatenation operator forms a new
string composed of two values. Variable conversion is handled automatically.

In the pattern block of a rule, a period is not an operator that concatenates two strings. It
forces two patterns to match together, as described in Chapter 4, “Pattern Matching and
Filters.”.

For example, in this script, four variables are assigned values. The first concatenation
occurs within the first print statement. The second concatenation is a combination of two
numbers and is assigned to the variable c. The new string represents a number and can be
used in calculations.

ASL Script (concat_do.asl):
START
do {

a = 657;
b = 9283;
x = “cat”;
y = ”dog”;
print(x.y);
c = a.b;
print(c);
stop();

}

Output:
$ sm_adapter concat_do.asl
catdog
6579283

$

Relational and logical operators

The relational and logical operators are described in Table 3 on page 37.

Table 3 Relational and logical operators

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

&& Logical AND

|| Logical OR

Operators 37

Operators and Expressions

Precedence and order of evaluation

ASL evaluates operators in the following order:

1. ()

2. * /

3. %

4. + -

5. == != < > <= >=

6. && || .

Parentheses are evaluated first. The logical AND, logical OR, and the concatenation
operator are evaluated last. ASL evaluates operators with the same level of precedence
from left to right.

38 EMC Smarts Foundation ASL Reference Guide

CHAPTER 4
Pattern Matching and Filters

This chapter consists of the following sections:

◆ Patterns .. 40
◆ Pattern operators .. 41
◆ Pattern elements... 48
◆ Special variables... 63
◆ Filters.. 66

Pattern Matching and Filters 39

Pattern Matching and Filters

Patterns
A pattern is a mechanism for matching input. A combination of markers, operators, and
characters describes a pattern. This combination includes the data to match and the
operators that control how and when the data matches. More complicated patterns are
made from simpler patterns.

ASL compares patterns to an input of markers and characters. As each component of a
pattern matches with data, the next pattern component is compared with the next
segment of input. If all of the components of a pattern match, the pattern is considered a
match. If any component of a pattern fails to match its corresponding data component, the
pattern is not considered a match.

A pattern that does not match fails. In most cases, when a pattern fails, the rest of the rule
following that pattern does not execute.

As ASL matches patterns with data, the starting point for the next match moves to the
position after the data that was matched. When a pattern fails, the starting position does
not advance and may or may not go back to its original position, depending on how the
rule containing the pattern is defined.

Figure 6 on page 40 shows that for the first match, the pattern is compared, starting with
the left-most position in the data. The pattern matches.

Figure 6 Progression of a pattern being compared to data

40 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

As the result of the successful match, the starting point for the next comparison, the
second match, is immediately after the last successful data match. The pattern matches.

For the third match, the starting position is in a different location again because of the
previous successful match. This comparison fails and the start position resets. Depending
on the pattern, the start position resets to either the starting point for this comparison or
to the beginning of the data.

Using a function in a pattern

Most ASL functions used in the action block of a script can be included in an ASL pattern
match. The syntax of these functions, when used in a pattern block, is slightly different
than when used in an action block. To use a function in a pattern block, use the following
syntax:

function([<value>])

In a pattern block, do not use a semicolon with functions.

Pattern operators
This section describes pattern operators and their order of their order of precedence.

White space handling

White space is defined as one or more of any of the characters assigned to the delimiter
variable, as described in “Customizing the delimiter” on page 63. By default, the space
and tab characters are assigned to the delimiter variable. That means any number of
contiguous space or tab characters constitute white space in the data.

A pattern is made up of one or more pattern elements. There are many types of pattern
elements. For example, keywords such as “word”, and “integer” are elements. An element
can be a literal string (text surrounded by quotes). By default, ASL will ignore any white
space in the data as it tries to match pattern elements. You can use the dot operator to
keep ASL from ignoring white space in a pattern match, as described in “Dot operator” on
page 43.

When a literal pattern element contains whitespace, ASL does not ignore it.

For example, if the pattern to match is:

"John" "Doe" integer “st” “Street”

Then ASL will match the following data equally.

John Doe 121st street
JohnDoe121stStreet
John Doe 121 st Street

Pattern operators 41

Pattern Matching and Filters

The following script matches a word followed by an integer and another word. The dot
operator is not used, so the delimiters between the words in the data are automatically
skipped (if they exist). The end-of-line (eol) for each line of data is not matched, which
causes the START rule to fail. Notice that the second line of input matches even though
there is no delimiter between the number, 42343, and the title, Manager.

ASL Script (wspace_match.asl):
START {

a:{word integer word}
}
do {

print("Matched with ".a");
}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (wspace_match.txt):
Tony 25234 Employee
John 42343Manager
Output:
$ sm_adapter --file=wspace_match.txt wspace_match.asl
Matched with Tony 25234 Employee
Failed match
Matched with John 42343Manager
Failed match

Assignment operator

The characters matched to a pattern can be placed into a variable by using a colon (:) as an
operator. The syntax of a variable assignment is:

<variablename>:<pattern>

ASL assigns all of the characters that match the pattern to the variable. If the pattern does
not match, the variable is not assigned a value.

To assign patterns that have more than one element, use braces to group the elements. All
the components within the braces must successfully match before the variable is assigned
a value. The syntax is:

<variablename>:{<pattern_1> <pattern_2> <pattern_3> <pattern_4>}

The following script contains three variable assignments. The first and second variables
are assigned the first and second word, respectively, in the datafile. The last variable is
assigned an integer followed by two words.

This last variable demonstrates how patterns can be grouped by using braces. Without the
braces, the variable is assigned only the integer.

42 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

The last name in the input file causes the pattern to fail because there is no address
information.

ASL Script (assign_match.asl):
START {

f_name:word l_name:word
address:{integer word word}
eol

}
do {

print(f_name);
print(l_name);
print(address);

}

DEFAULT {
..eol

}
do {

print("Failed match");
}

Input (assign_match.txt):
John Doe 11 Main St.
Jane Doe 35 Oak Dr.
Bill Jones

Output:
$ sm_adapter --file=assign_match.txt assign_match.asl
John
Doe
11 Main St.
Jane
Doe
35 Oak Dr.
Failed Match
$

Dot operator

A single dot (.) between two elements of a pattern indicates that the second element must
be matched immediately after the first. The dot can be separated from the two elements
with white space. However, in this case, the white space does not indicate an optional
delimiter. If a delimiter exists in the input data, this delimiter must be included as part of
either the first or second element when using the dot operator.

The following script matches an integer followed by a word. Only the integer is assigned to
a variable and printed. In this example, the first two lines of data match this pattern. When
a space is added between the integer and the word, as in line 3 of the data, the pattern
fails.

ASL Script (sngldot_match.asl):
START {

a:integer.word
eol

}

Pattern operators 43

Pattern Matching and Filters

do {
print("Matched with ".a);

}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (sngldot_match.txt):
95627XFR
34036TFR
11536 GBH

Output:
$ sm_adapter --file=sngldot_match.txt sngldot_match.asl
Matched with 95627
Matched with 34036
Failed match
$

Double-dot operator

The double-dot operator (..) matches all characters except for an end-of-line (eol). White
space can surround the double-dot, but the dots must be together. This operator cannot
stand alone. Another pattern must follow. The parser matches as few characters as
possible before matching the pattern that follows.

The following script matches any string of characters up to and including the word, Smith.
The pattern fails on the second line of data because there is no Smith before the
end-of-line (eol) is reached. In the DEFAULT rule, the double-dot operator matches
everything until the end of the line.

ASL Script (dbldot_match.asl):
START {

a:{
.."Smith"} eol

}
do {

print("Matched with ".a);
}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (dbldot_match.txt):
3400 John V. Smith
3502 Kathy McCue
1401 Bruce Smith

Output:
$ sm_adapter --file=dbldot_match.txt dbldot_match.asl
Matched with 3400 John V. Smith
Failed match
Matched with 1401 Bruce Smith
$

44 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

Alternative operator

The alternative operator (|) is used to specify an alternate pattern to match if the first
pattern fails. This operator can be used in a series to create a list of alternatives. When a
pattern in a list of alternatives matches, the remaining alternatives are not tested.

The alternative operator has the lowest level of precedence of all the pattern matching
operators. Even the white space operator has a higher level of precedence.

Once an alternate matches, ASL does not back up to test other combinations. For example,
if the input to an ASL script is:

abc

and the pattern matching is:

{"a"|"ab"} "c"

No match occurs because once “a” matches, “ab” is not tested. ASL compares the pattern
“c” with the input character “b” and the pattern fails. In general, when constructing a
series of alternates, it is better to place the more complex (or longer) patterns ahead of
other patterns.

In the example, braces are used around the alternate expression to control how the
pattern is evaluated because the alternate operator has the lowest level of precedence.
Without the braces, the alternate to the pattern "a" is the pattern "ab" "c". “Grouping
patterns” on page 47 provides additional information on controlling pattern evaluation.

The following script matches one of three numbers followed by an end-of-line. For the first
number of the input file, the data matches the first alternative so nothing else is checked.
The second number of the input file does not match any of the alternatives so the pattern
fails. The third number does not match either the first or second alternative, but it does
match the third.

ASL Script (alt_match.asl):
START {

a:{
"3400"|"4500"|"4127"} eol

}
do {

print("Matched with ".a);
}
DEFAULT {

..eol
}

do {
print("Failed match");

}

Input (alt_match.txt):
3400
3908
4127

Pattern operators 45

Pattern Matching and Filters

Output:
$ sm_adapter --file=alt_match.txt alt_match.asl
Matched with 3400
Failed match
Matched with 4127
$

Maybe operator

In cases where data to be matched might or might not exist in the input, use the maybe
operator, which is a question mark (?). The maybe operator indicates that a pattern
matches regardless of whether the matching data exists. ASL assigns a NULL string to a
variable if a pattern with a maybe operator has no match.

The following script matches an employee number (an integer) and a name (of multiple
words). The first and third lines of input match. An employee ID and a name exists. Even
though there is no employee ID number, the second input line matches because ASL
assigns the variable a NULL string.

ASL Script (0to1_match.asl):
START {
/* (The rep keyword indicates Repeated Pattern Matches) */

a:integer? b:rep(word) eol
}
do {

print("Employee ".b);
print("Employee ID ".a);

}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (0to1_match.txt):
4120 Kathy Jones
John L. Doe
3901 David Smith

Output:
$ sm_adapter --file=0to1_match.txt 0to1_match.asl
Employee Kathy Jones
Employee ID 4120
Employee John L. Doe
Employee ID
Employee David Smith
Employee ID 3901
$

46 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

Grouping patterns

Patterns can be grouped by using braces {}.

Grouping patterns together can extend the information assigned to a variable. For
example,

x:{word word word}

The variable is assigned if the input consists of three strings. Without the braces, x is
bound only to the value of the first word match.

Braces also can control how patterns are evaluated. The use of braces can be combined
with operators:

{word integer}

The braces used in this example force the pattern to match a word followed by an integer
or nothing at all. A single word or a single integer will not match this pattern.

Precedence of pattern operators

The order of precedence for pattern matching is as follows:

1. {}

2. :

3. whitespace . ..

4. ?

5. |

The alternative operator has the lowest precedence. For example, suppose there are four
patterns: A, B, C, and D.

A B|C D

is equivalent to

{A B}|{C D}

The example matches an input of A followed by B, or it matches an input of C followed by
D.

Grouping patterns by using the braces has the highest level of precedence. For the
patterns A, B, C, and D:

{A|B} C D

is not equivalent to

A|B C D

Pattern operators 47

Pattern Matching and Filters

Pattern elements
Pattern elements are the building blocks for more complex patterns.

String matches

A string match is a match to one or more characters. An example of a string match is:

RULE {
“def”

}

In the example, the string is surrounded by double quotation marks. For every instance
where quotation marks are used, they can be single or double quotation marks.

If the “def” pattern is compared with an input string of “defdefeedef,” the rule matches
twice and fails when it reaches the “eedef.”

In the following script, the pattern used for matching is def. The pattern matches def twice
and fails with the input of eed. When the pattern fails in this script, the DEFAULT rule runs,
which matches the entire line.

In most of the examples in this chapter, the pattern to match is surrounded by the
following, which assigns the matched data to the variable a:

a:{
}

“Assignment operator” on page 42 provides additional information.

It is not necessary to include a variable assignment as part of pattern matching. The
matched data is printed by printing the contents of the variable a.

ASL Script (str_match.asl):
START {

a:{
"def"}

}
do {

print("Matched with ".a);
}

DEFAULT {
..eol

}
do {

print("Failed match");
}

Input (str_match.txt):
defdefead

Output:
$ sm_adapter --file=str_match.txt str_match.asl
Matched with def
Matched with def
Failed match

$

48 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

The match for some characters requires a special syntax. Table 4 on page 49 contains the
special characters.

Pattern matches are by default case-sensitive. “Making patterns case-sensitive or
case-insensitive” on page 64 discusses how to override the default.

Any character matches

The any() function returns a match if the character that is being evaluated matches any
character in <character_string>.

any(<character_string>)

In the following script, the any() function matches with the first four characters of the input
file. The next character causes the pattern to fail and the DEFAULT rule runs.

ASL Script (any_match.asl):
START {

a:any("abc")
}
do { print("Matched with ".a);
}
DEFAULT { ..eol
}
do {

print("Failed match");
}

Input (any_match.txt):
bbacxy

Output:
$ sm_adapter --file=any_match.txt any_match.asl
Matched with b
Matched with b
Matched with a
Matched with c
Failed match
$

Table 4 Match syntax for special characters

Character Syntax Notes

tab \t

single quotation mark (') \' The quotation marks surrounding the string that
contains this code must be double quotes.

double quotation mark (") \" The quotation marks surrounding the string that
contains this code must be single quotes.

backward slash (\) \\

carriage return \r In most cases, use the eol pattern match instead
of carriage return. “End-of-line matches” on
page 55 provides additional information.

line feed \n In most cases, use the eol pattern match instead
of line feed. “End-of-line matches” on page 55
provides additional information.

Pattern elements 49

Pattern Matching and Filters

Notany character matches

The notany() function returns a match if the character that is being evaluated does not
match any character in the <character_string>.

notany(<character_string>)

In the following script, the notany() function matches the first three characters of the input
file. The next character causes the pattern to fail and the DEFAULT rule runs.

ASL Script (notany_match.asl):
START {

a:notany("cx")
}
do {

print("Matched with ".a);
}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (notany_match.txt):
bbacbxy

Ouput:
$ sm_adapter --file=notany_match.txt notany_match.asl
Matched with b
Matched with b
Matched with a
Failed match
$

Char matches

A char match is a match to any character except for a field-separator or an end-of-line. To
replace the char() function, the any() function has to have a character string that is 256
characters long. In the following script, the character pattern matches with the letter a, the
tab, the letter b, the space and finally the letter c before failing when it tries to match the
eol.

ASL Script (char_match.asl):
START {

a:char
}
do {

print("Matched with ".a);
}
DEFAULT {

..eol
}
do {

print("Failed match");
}
Input (char_match.txt):
a <tab> b c

50 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

Output:
$ sm_adapter --file=char_match.txt char_match.asl
Matched with a
Matched with
Matched with b
Matched with
Matched with c
Failed match

Word matches

A word match is a match to a sequence of characters that ends with, but does not include,
a delimiting character. Spaces, tabs, field-separators, and ends of line are the default
delimiting characters. The delimiting characters can be redefined, as described in
“Customizing the delimiter” on page 63.

The following script is an example of a word pattern that is a match of all characters up to,
but not including the delimiter. The second time the rule is evaluated, the pattern
matching starts with the delimiter. The second word match fails because there are no
characters found before the delimiter is found.

ASL Script (word_match.asl):
START {

a:word
}
do {

print("Matched with ".a);
}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (word_match.txt):
city state country

Output:
$ sm_adapter --file=word_match.txt word_match.asl
Matched with city
Failed match
$

Pattern elements 51

Pattern Matching and Filters

Integer matches

The integer pattern matches a string of numeric characters that may or may not be
preceded by a minus sign. Any non-numeric character except for a dash (minus sign) is not
valid for integer matches. The integer pattern matches the first part of the string:

83294IVBXR

For example, the following script matches each integer and the end-of-line. The match fails
on the third line of data because there is a decimal point. At that point, the integer is
matched with 214 and the pattern fails because eol is not a match for .56.

ASL Script (int_match.asl):
START {

a:integer eol
}
do {

print("Matched with ".a);
}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (int_match.txt):
12300
-375
214.56

Output:
$ sm_adapter --file=int_match.txt int_match.asl
Matched with 12300
Matched with -375
Failed match
$

Floating-point number matches

The floating-point number pattern matches a string of numeric characters that may or may
not be preceded by a minus sign, and that may or may not include a decimal point
followed by other numbers. Any non-numeric character except for a period or a dash
(minus sign) is not valid for floating-point matches.

For example, this script matches each number and the corresponding end-of-line. Only the
value of float is assigned to the variable so there are no extra lines between the lines of
output.

ASL Script (float_matches.asl):
START {

a:float eol
}
do {

print("Matched with ".a);
}

52 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

DEFAULT {
..eol

}
do {

print("Failed match");
}

Input (float_match.txt):
173
-3.95
3453.45

Output:
$ sm_adapter --file=float_match.txt float_match.asl
Matched with 173
Matched with -3.95
Matched with 3453.45
$

Hexadecimal matches

The hexadecimal pattern matches a string of hexadecimal characters. These characters
cannot be preceded by a minus sign. The hexadecimal pattern matches any numeric
character and the letters a through f. The pattern does not match anything else. When ASL
assigns a hexadecimal pattern to a variable, the numeric value is kept but not the
hexadecimal value.

The following script matches each hexadecimal number and the corresponding
end-of-line.

ASL Script (hex_match.asl):
START {

a:hex eol
}
do {

print("Matched with ".a);
}

DEFAULT {
..eol

}
do {

print("Failed match");
}

Input (hex_match.txt):
ff2234
FF
23

Output:
$ sm_adapter --file=hex_match.txt hex_match.asl
Matched with 16720436
Matched with 255
Matched with 35
$

Pattern elements 53

Pattern Matching and Filters

Field-separator matches

A field-separator is inserted into input data by an adapter’s front end. When using input
files, a field-separator is defined to replace a character of input such as a comma, colon, or
a vertical bar (|). A field-separator represents a division of data that can include multiple
words, integers, strings, and even end-of-line (eol). You can use fs to pattern match a
field-separator, as described in “Field-separator translation” on page 123.

Do not confuse a field-separator with a delimiter. Even though a delimiter can be used to
separate multiple words, it is best used as a word separator. A field-separator separates
fields that can contain one or more words. Regardless of the value of the delimiting
characters, a field-separator is implicitly defined as a delimiter.

For example, the following script matches a name and an address, which are separated by
a field-separator. In the input, the field-separator is a colon (:). The name is assigned from
one or more repeated words that come before the field-separator. The address is assigned
from the repeated words that follow the field-separator.

The field-separator is defined when the adapter is run with the following option:

--field-separator

The input is parsed by the front end and the field-separator is placed into the data.

ASL Script (fs_match.asl):
START {

a:rep(word) fs
b:rep(word) eol

}
do {

print("Name ".a);
print("Address ".b);

}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (fs_match.txt):
Jay Ray:11 Main St
Jane Doe:34 Oak Dr

Output:
$ sm_adapter --field-separator=: --file=fs_match.txt fs_match.asl

Name Jay Ray
Address 11 Main St
Name Jane Doe
Address 34 Oak Dr
$

54 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

End-of-line matches

One of the markers included in the input is the end-of-line (eol). The eol is added to the
input data by the front end of the adapter. To match an end-of-line, use eol.

The following script matches a word and an end-of-line. Notice that the output is different
from many of the previous examples.

◆ The first difference is that there were no messages for Failed match. All of the data
matched.

◆ The second difference is that there is a space between successive lines of output. This
is because the eol match is included as part of the output.

ASL Script (eol_match.asl):
START {

a:{word eol}
}
do {

print("Matched with ".a);
}

DEFAULT {
..eol

}
do {

print("Failed match");
}
Input (eol_match.txt):
switch
router
card

Output:
$ sm_adapter --file=eol_match.txt eol_match.asl
Matched with switch

Matched with router

Matched with card
$

Repeated pattern matches

The rep() function repeats pattern matches or a rule for a specific number or for one or
more matches. The syntax is:

rep(<ruleorpattern>[,<number>])

The rule or pattern to repeat is specified by using <ruleorpattern>. The <number> is optional
and indicates the number of times to match the pattern. If the <number> is not included,
the pattern is matched one or more times until it fails or until the pattern following it is
matched. The pattern must match at least once.

Pattern elements 55

Pattern Matching and Filters

Table 5 on page 56 shows some sample uses of the rep() function. Each sample uses the
letter P to denote a pattern.

The following ASL script matches two numbers, one or more words, and then an
end-of-line.

◆ The first line of input is matched. There are two numbers followed by two words.

◆ The second line of input is matched. There are two numbers and three words. The
second rep() function is repeated until the end-of-line is reached.

◆ The third line of input fails. The line does not contain two numbers at the front of the
line.

ASL Script (repeat_match.asl):
START {

a:rep(integer,2)
b:rep(word) eol

}
do {

print("Matched numbers ".a);
print("Matched with ".b);

}
DEFAULT {

..eol
}

do {
print("Failed match");

}

Input (repeat_match.txt):
3400 4127 cat dog
4 5 goat lamb cow
1 chicken horse

Output:
$ sm_adapter --file=repeat_match.txt repeat_match.asl
Matched numbers 3400 4127
Matched with cat dog
Matched numbers 4 5
Matched with goat lamb cow
Failed match
$

Table 5 Samples of the rep() function

Example Behavior Note

rep(P) P P P P P P ... Behaves as if a white space operator appears between each
occurrence of P.

rep(.P) P.P.P.P.P.P.P. ... Behaves as if a dot operator appears between each occurrence
of P.

rep(..P) ..P..P..P..P..P..P ... The double-dot operator ignores all patterns except for P.

56 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

Boolean expressions

Boolean expressions can be added to a pattern list. If a Boolean expression fails, the
pattern match also fails.

Boolean expressions are more commonly used in the filter section of a rule than in the
pattern matching block. Unlike Boolean expressions in a pattern, a failing Boolean
expression in a filter does not cause the rule to fail.

The following script matches a name and an integer. The Boolean expression is:

number>2

If the integer is greater than two, the match succeeds.

For every line in the input, the word, the integer and the eol are successfully matched.
When the Boolean expression causes the pattern to fail, the DEFAULT rule is executed and
Failed Match is printed.

ASL Script (bool_match.asl):
START {

animal:word
number:integer
eol
number>2

}
do {

print("Animal ".animal);
print("Number ".number);

}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (bool_match.txt):
elephants 4
moose 1
tigers 2
giraffes 3

Output:
$ sm_adapter --file=bool_match.txt bool_match.asl
Animal elephants
Number 4
Failed match
Failed match
Animal giraffes
Number 3
$

Pattern elements 57

Pattern Matching and Filters

Positional matching

As ASL matches input data, each character is evaluated until a pattern matches or fails.
You can use two positional matching functions to specify the position where the parser
starts to test a pattern.

◆ The tab() function

◆ The len() function

tab() function
With the tab() function, you can skip characters of input data by using the following
syntax:

tab(<char_num>)

The value of <char_num> is the number of characters to skip from the starting position
when the START rule is invoked. If <char_num> is not specified, the function returns the
value of the position where the parser starts to test a pattern.

It is not possible to use the tab() function to move backward (right to left) in the
datastream. For example, from the first position of a string, you use the tab() function to go
to position 20, but, you then cannot go back to position 15. You cannot use the tab()
function to return to data already parsed. Also, the tab() function does not skip over
markers.

With the assignment operator (:), you can assign all of the characters skipped to the
variable or the current position if no characters are specified by using the following syntax:

<variable>:tab(<char_num>)

In the following script, the tab() function in this pattern is used to skip the first and middle
names. The parser goes directly to the last name of each person in the list. In the input
datafile, each field has a fixed length. The last name field starts at position 16.

At position 16, a single word is matched and assigned to a variable. Then, the current
starting position of the next pattern is returned. This position varies because the word
lengths are not equal.

ASL Script (tab_match.asl):
START {

tab(16) lname:word
locate:tab() eol

}
do {

print("Last Name ".lname);
print("Tab ".locate);}

DEFAULT {
..eol

}

do {
print("Failed match");

}

Input (tab_match.txt):
John Doe
Jane Deborah Smith

58 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

Output:
$ sm_adapter --file=tab_match.txt tab_match.asl
Last Name Doe
Tab 19
Name Smith
Tab 21
$

len() function
Another positional matching function is len(). The len() function advances the starting
position from its current position, unlike the tab() function that works from the original
starting position when the START rule is invoked. The syntax is as follows:

len(<char_num>)

The value of <char_num> is the number of characters to advance from its current position.
If <char_num> is not specified, the function returns the value of the position where the
parser would start to test a pattern.

Like the tab() function, use of the assignment operator assigns all characters skipped to
the variable. The len() function does not skip over markers.

In Figure 7 on page 59, because of the white space operator between each variable
assignment, the space between fox and jumps is skipped. The len() function starts with
the letter j. It ends at position 14, forcing tab (14) to return an empty string. This problem
could be avoided by eliminating the delimiters, as described in “Customizing the
delimiter” on page 63.

Figure 7 Example of positional matching

Pattern elements 59

Pattern Matching and Filters

Peek() function

The peek() function returns a value of TRUE or FALSE depending on whether the pattern
passed to it matches the current input string. Use of the peek() function does not advance
the starting position, so input can be scanned before other pattern matching. The peek()
function stops scanning for a pattern when it reaches a marker.

peek(<pattern>)

The following script looks for the word horse in each input string. The double-dot operator
is necessary in the pattern so that the peek() function will match any occurrence of the
word horse in a pattern and not just when it appears first.

If the word horse is found in the input string, the peek() function is TRUE and the rule
GETLINE executes. GETLINE assigns every word in the string to the variable a. The value of
a is printed and the peek() function starts with the next input string. If the peek() function
is FALSE, the rule GETLINE does not execute, but the DEFAULT rule does execute.

ASL Script (peek_match.asl):
START {

peek(..'horse') GETLINE
}
GETLINE{

a:rep(word) eol
}
do {

print("Horse found: ".a);
}

DEFAULT {
..eol

}
do {

print("Failed match");
}

Input (peek_match.txt):
moose horse camel
elephant mule camel
goat llama horse
horse goat llama

Output:
$ sm_adapter --file=peek_match.txt peek_match.asl
Horse found: moose horse camel
Failed match
Horse found: goat llama horse
Horse found: horse goat llama
$

60 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

Not() function

The not() function acts as a logical NOT. If the pattern argument of the function matches,
the not() function returns failure to the match. When the argument does not match, the
not() function returns a successful match. The starting point does not advance when the
not() function is used.

For example, the following script looks for input strings that do not contain the word
horse.

◆ If the word horse is found in the input string, the peek() function matches but the not()
function returns a failed match. In this case, the rule GETLINE does not execute.

◆ If the peek() function does not match, the not() function returns a successful match so
the rule GETLINE executes.

ASL Script (not_match.asl):
START {

not(peek(..'horse'))
GETLINE

}
GETLINE{

a:rep(word) eol
}
do {

print("No horse: ".a);
}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (not_match.txt):
moose horse camel
elephant mule camel
goat llama horse
horse goat llama

Output:
$ sm_adapter --file=not_match.txt not_match.asl
Failed match
No horse: elephant mule camel
Failed match
Failed match
$

Matching through other rules

Pattern matching can be divided among various rules. From the START rule, other rules can
be called. Rules that are called can have any or all of these sections: patterns, filters, or
actions.

Operators or functions that work with patterns also work with rules. For example, the rep
function can repeat a rule:

START {
rep(<RULE1>) <RULE2>
}

Pattern elements 61

Pattern Matching and Filters

In the following script, two rules are called from the START rule, PERSON and LOCATION.
Each rule uses the same pattern to find words until an end-of-line, but assigns values to
different variables. The values of the variables are printed from an action block under
START.

ASL Script (other_rules.asl):

START {
PERSON LOCATION

}
do {

print("Name: ".name);
print("Address: ".address);

}
PERSON {

name:rep(word) eol
}
LOCATION {

address:rep(word) eol
}

Input (other_rules.txt):
Jay Ray
11 Main St
Jane Doe
34 Oak Dr

Output:
$ sm_adapter --file=other_rules.txt other_rules.asl
Name: Jay Ray
Address: 11 Main St
Name: Jane Doe
Address: 34 Oak Dr
$

In the next example, the DATE and PLACE rules are called from START. The DATE and PLACE
rules are separated by an alternative operator. For each line of text where DATE matches,
PLACE is not tested. If DATE does not match, PLACE is tested.

Notice how the variable assignment works in this example. When either DATE or PLACE
matches, the entire matched string is returned and assigned to x. The end-of-line is added
to the string, which affects the output.

ASL Script (operators_rules.asl):
START {

x:{DATE|PLACE}
}
do {

print("Day or place ".x);
}
DATE {

integer.rep("/".integer,2)
eol

}
PLACE {

integer word word eol
}
DEFAULT {

..eol
}
do {

print("Failed match");
}

62 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

Input (operators_rules.txt):
01/05/99
11 Main St
camel horse mule
10/31/01
34 Oak Dr

Output:
$ sm_adapter --file=operators_rules.txt operators_rules.asl
Day or place 01/05/99

Day or place 11 Main St

Failed match
Day or place 10/31/01

Day or place 34 Oak Dr
$

End-of-file matches

The end of a file cannot be matched through pattern matching. However, there is a special
rule, EOF, that runs when the end of a file is reached. “Special rules” on page 21 provides
additional information about the EOF rule.

Special variables
Special variables control how ASL evaluates patterns. These variables define the
delimiters between words, case-sensitivity, and even the data input.

Customizing the delimiter

You can redefine the delimiters by assigning a string to the built-in variable delim. Use the
following syntax to define new delimiters:

delim=<string>;

The <string> defines the set of characters to use as delimiters.

The delimiter is specified at the beginning of a script or at the beginning of a rule, before
any pattern matching.

◆ If a delimiter statement is placed before all of the rules, the delimiters apply to all
rules.

◆ If a delimiter statement is placed in a rule, ASL overrides any previous delimiter
definitions.

In this example, the delimiter is ":?" for RULE2, but "|" for RULE1 and RULE3.

delim=":?";

START {
 RULE1 RULE2
}

RULE1 {
 delim="|";

RULE3
}

Special variables 63

Pattern Matching and Filters

The new delimiters override all of the default delimiters except for eol and fs. Each
character included in the <string> is a separate delimiter.

delim = ":?";

When the string :? is assigned to delim, it defines two delimiters: a colon and a question
mark. If input data contained the combination (“:?”), ASL interprets the data as two
delimiters in series.

The match for some characters requires a special syntax. To use tabs and returns as
delimiters, use the special syntax within the quotation marks, as described in Table 4 on
page 49.

For most cases, use the eol pattern match instead of line feed or carriage return. The eol
character is a delimiter by default and cannot be overridden.

An alternative to using the delim variable is to use a combination of the rep() function and
the notany() function. For example:

x:rep(notany(":?"))

In the example, ASL assigns to the variable x everything that appears up to a question
mark or a colon.

Making patterns case-sensitive or case-insensitive

By default, pattern matching is case-sensitive. To override the default case-sensitivity, use
the case variable. This variable can be used at the beginning of a script or at the beginning
of a rule, before any pattern matching. The syntax of the case variable is:

case=[exact]|[ignore];

To match case-sensitive patterns, set case equal to exact. For patterns where case does
not matter, set case equal to ignore.

If a case variable is placed before all of the rules, the case setting applies to all rules. This
can be overridden in a rule by using another case variable.

Switching the input of a pattern

For complicated inputs, the pattern matching can be divided among different rules by
using the input variable. The input variable is assigned to a value which ASL uses for the
pattern matching that follows the input. The input variable must come at the beginning of
a rule, before any pattern matching but not at the beginning of a script. If the value
assigned to the input variable does not end with an eol, an eol is appended to the value.
The syntax is as follows:

input=<value>;

For example, the following script looks for lines of input that start with the string “Error:”.
When it finds those strings, the rest of the words are assigned to the variable desc and the
rule PROCESSDESC is called.

PROCESSDESC takes the variable desc as its input and performs pattern matching based
on the input. The error level and error message are printed.

64 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

The START rule processes the next line data and, if it is an error, PROCESSDESC runs again.
At the end of the input file, the rule EOF runs. This rule prints a statement that the errors
are processed.

ASL Script (input_ex.asl):
START {

"Error:" desc:rep(word) eol
PROCESSDESC

}
PROCESSDESC {

input=desc;
errornumber:integer
errorlevel:word
errormsg:rep(word)
eol

}
do {

print(errorlevel." ".errormsg);
}
DEFAULT {

..eol
}
do {

print("No Error");
}
EOF
do {

print();
print("Errors Processed");

}

Input (input_ex.txt):
Error: 2568 Severe Can't process
Status: 2358 Starting backup
Error: 1202 Warning Bad data
Error: 923 Critical Wrong Number

Output:
$ sm_adapter --file=input_ex.txt input_ex.asl
Severe Can't process
No Error
Warning Bad data
Critical Wrong Number

Errors Processed
$

Special variables 65

Pattern Matching and Filters

Filters
A filter determines whether the action block of a rule executes. When a filter fails, the
subsequent action block does not execute. Unlike a pattern, if a filter fails, the rule it is
called from does not fail.

A filter has the form:

filter {
{<filter-list>}
}

The <filter-list> must be a single Boolean expression. ASL evaluates this expression from
left to right. If it is TRUE, ASL executes the actions in the do block. If it is FALSE, ASL does
not execute the actions in the do block.

Filter operators are listed in Table 6 on page 66.

◆ Parentheses have the highest level of precedence.

◆ The logical operators && and || have the lowest level of precedence.

Although the filter-list must be a single Boolean expression, you can use the logical AND
and logical OR to test for more than one condition.

In the following script example, the filter controls whether an action is performed. The
script matches a word and an eol. The value of the word is assigned to x.

The filter is true when x has the value “switch.” For the input file, this occurs in the first
line and the fourth line. The action block is executed twice. The DEFAULT rule is never
executed because the pattern always matches.

Table 6 Filter operators

Operator Definition

() Grouping operators

+ - * / % Arithmetic operators

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

&& Logical AND

|| Logical OR

66 EMC Smarts Foundation ASL Reference Guide

Pattern Matching and Filters

ASL Script (simple_filter.asl):
START {

x:word eol
}
filter {

x=="switch"
}
do {

print("Filter match: ".x);
}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (simple_filter.txt):
switch
router
card
switch

Output:
$ sm_adapter --file=simple_filter.txt simple_filter.asl
Filter match: switch
Filter match: switch
$

In the next example, the script matches a word and an eol. The value of the word is
assigned to x. The filter is true when x has the value “switch,” or when it has the value
“router.”

ASL Script (other_filter.asl):
START {

x:word eol
}
filter {

x=="switch" || x=="router"
}
do {

print("Filter match: ".x);
}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (other_filter.txt):
switch
router
card
switch

Output:
$ sm_adapter --file=simple_filter.txt simple_filter.asl
Filter match: switch
Filter match: router
Filter match: switch
$

Filters 67

Pattern Matching and Filters

Filters can be useful for debugging. Setting a single variable at the beginning of a script
can affect the actions that a script performs.

debug = TRUE;
START {
x:word eol
}
filter {
debug==TRUE
}

68 EMC Smarts Foundation ASL Reference Guide

CHAPTER 5
Actions

This chapter consists of the following sections:

◆ Action block.. 70
◆ Iteration and control statements ... 70
◆ Function reference .. 76
◆ Returning values ... 87
◆ Passing arguments to functions .. 88
◆ Calling rules as functions from do blocks... 89
◆ Exception handling ... 90

Actions 69

Actions

Action block
The action block is executed for a rule when pattern matching succeeds (or does not exist)
and the filter is TRUE (or does not exist). An action block uses the following form:

do {
<action-list>
}

Action lists can occur only within a do block. An action list is composed of statements.
Statements include variable assignments, conditional actions, and rules. Each statement
must end with a semicolon. An example of an action block is as follows:

do {
statement_1;
statement_2;
statement_3;
}

Operators

In the action block, statements are terminated with a semicolon (;). Although a semicolon
is not required to immediately follow the statement, it must occur before the next
statement.

All other operators used in the action block are described in “Operators” on page 36.

Iteration and control statements
Iteration and control statements are not followed by a semicolon. They may control other
statements that require the use of semicolons.

foreach statement

The foreach statement iterates through all of the members of a list or a table. The syntax
is:

foreach <variable> (<list_or_table_name>) {statements}

When the foreach statement is used with a list, the variable stores the value of each
member of the list every time the foreach statement loops. The members returned are in
numerical order by their list indices.

The following script matches numbers from an input file and stores the values in a list. The
foreach statement cycles through every value stored in the list. Each value is printed and
added to a subtotal, which is also printed.

ASL Script (foreachlist_do.asl):
data = list();
total = 0;
START {

rep(NUMBERS)|eol
}

70 EMC Smarts Foundation ASL Reference Guide

Actions

NUMBERS {
x:integer

}
do {

data += x;
}

DEFAULT {
..eol

}
do {

print("Failed match");
}

EOF
do {

foreach i (data) {
total = total + i;
print("Number: ".i);
print("Subtotal ".total);

}
}

Input (foreachlist_do.txt):
2 4 8

Output:
$ sm_adapter --file=foreachlist_do.txt foreachlist_do.asl
Number: 2
Subtotal: 2
Number: 4
Subtotal: 6
Number: 8
Subtotal: 14
$

When the foreach statement is used with a table, the variable receives the keys to the
members of the table. Tables have no inherent order.

The next script matches numbers and words from an input file and stores the values in a
table. The foreach statement cycles through every key stored in the table. Each key is
printed as well as the associated value. The order in which the members of the table are
printed is not necessarily the order in which the members were added to the table.

ASL Script (foreachtable_do.asl):
pop = table();
total = 0;
START {

rep(NUMBERS)
}
NUMBERS {

count:integer animal:word
eol

}
do {

pop[animal] = count;
}
DEFAULT {..eol}
do {print("Failed match");}

EOF

Iteration and control statements 71

Actions

do {
foreach w (pop)
{

print("Animal ".w);
print("Number ".pop[w]);

}
}

Input (foreachtable_do.txt):
2 cows
4 cats
6 dogs
8 chickens

Output:
$ sm_adapter --file=foreachtable_do.txt foreachtable_do.asl
Animal chickens
Number 8
Animal cows
Number 2
Animal cats
Number 4
Animal dogs
Number 6
$

while statement

The while statement repeats a block of statements while a condition is true. The syntax is
as follows:

while <condition> {<statements>}

The following script has no pattern matching. The variable x is printed and incremented by
one until it is no longer less than five.

ASL Script (while_do.asl):
x=0;
START
do {

while x < 5
{

print(x);
x=x+1;

}
stop();

}

Input:
none

Output:
$ sm_adapter while_do.asl
0
1
2
3
4
$

72 EMC Smarts Foundation ASL Reference Guide

Actions

if else statement

The if else statements control what actions are performed based on the results of a
conditional test. The syntax is as follows:

if (<conditional_test>) {<statements>} [else {<statements>}]

◆ If the conditional test is true, the statements following the test are executed.

◆ If the conditional test is false, the statements following the else are executed.

The else portion of the statement is optional.

Note: The braces around the statements are required, even if there is only one statement.

In the following example, the if statements check whether a value to use in a table exists
as a key or not. Each key in a table must be unique. In the script, if a key exists, the value
associated with the key is added to the new value.

This script uses two if statements.

◆ The first if statement tests whether any of the existing keys match the name of the
animal ready to be loaded into the table. If the animal name matches any of the
existing keys, a flag is set to TRUE.

◆ The second if statement tests whether the flag is FALSE. If the flag is FALSE, the animal
name and number are added to the table. If the flag is TRUE, the number of animals
are added to the animal count already stored in the table.

ASL Script (if_do.asl):
z = table();
START {

rep(IMPORT)
}
IMPORT {

animal:word
count:integer
eol

}

do {
test="FALSE";
foreach i (z)
{

if (i == animal)
{

test="TRUE";
}

}
if (test=="FALSE")
{

z[animal]=count;
}
else
{

z[animal]=z[animal]+count;
}

}
EOF

Iteration and control statements 73

Actions

do {
foreach i (z)
{

print(i." count ".z[i]);
}

}

Input (if_do.txt):
dog 3
cat 4
canary 3
cat 2
dog 5
dog 1
cat 1

Output:
$ sm_adapter --file=if_do.txt if_do.asl
dog count 9
cat count 7
canary count 3
$

break statement

The break statement stops processing statements inside of a loop and exits the loop. The
break statement is valid only inside of foreach or while loops.

This example is similar to the if statement example except that a break statement has
been added. “if else statement” on page 73 provides additional information about the if
statement.

The break statement causes the test in the foreach statement to stop once the condition is
TRUE rather than continuing to test.

ASL Script (break_do.asl):
z = table();
START {

rep(IMPORT)
}

IMPORT {
animal:word
count:integer
eol

}
do {

test="FALSE";
foreach i (z)
{

if (i == animal)
{

test="TRUE";
break;

}
}
if (test=="FALSE")
{

z[animal]=count;
}

74 EMC Smarts Foundation ASL Reference Guide

Actions

else
{

z[animal]=z[animal]+count;
}

}

EOF
do {

foreach i (z)
{

print(i." count ".z[i]);
}

}

break_do.txt (Input):
dog 3
cat 4
canary 3
cat 2
dog 5
dog 1
cat 1

Output:
$ sm_adapter --file=break_do.txt break_do.asl
dog count 9
cat count 7
canary count 3
$

continue statement

The continue statement starts the next iteration of a foreach statement or while statement.
When ASL invokes the continue statement, the remaining statements in the foreach or
while loop are skipped. The continue statement is not valid outside of a loop.

In the following example, an if statement checks whether values in a table are positive. For
any number less than or equal to 0, the continue statement advances the foreach loop.

ASL Script (continue_do.asl):
x = table();

START {
LOAD

}
LOAD {

y:word z:integer eol
}

do {
x[y] = z;

}
EOF
do {

foreach w (x)
//skip if not positive
{if (x[w]<=0)

{continue;
}

print(w." ".x[w]);
}

}

Iteration and control statements 75

Actions

Input (continue_do.txt):
elephant 0
goat -1
worm 100
chicken 7
dog 2
cat 0
moose 9

Output:
$ sm_adapter --file=continue_do.txt continue_do.asl
dog 2
moose 9
chicken 7
worm 100
$

Function reference
This section discusses the different types of functions that are available.

glob() function

The glob() function returns a TRUE or FALSE based on whether a pattern matches a string.
The glob() function can be used as a conditional test for an if or while statement. The
syntax is as follows:

glob(<pattern>, <string>)

The expression for a glob() function is a series of characters (or patterns) that are matched
against incoming character strings. You use these expressions when you define matching
criteria.

Matching is done strictly from left to right, one character or basic glob expression at a
time. Characters that are not part of match constructs will match themselves. The pattern
and the incoming string must match completely. For example, the pattern abcd does not
match the input “abcde” or” abc”.

A compound glob pattern consists of one or more basic wildcard patterns separated by
ampersand (&) or tilde (~) characters. A compound wildcard pattern is matched by
attempting to match each of its component basic wildcard patterns against the entire
input string.

76 EMC Smarts Foundation ASL Reference Guide

Actions

The pattern used in the glob() function is not the same pattern used in the pattern block of
an ASL script. The symbols that describe the pattern are described in Table 7 on page 77.

Spaces are interpreted as characters and are subject to matching even if they are adjacent
to operators like “&.”

If the first character of a compound wildcard expression is an ampersand (&) or tilde (~)
character, the compound is interpreted as if an asterisk (*) appeared at the beginning of
the pattern. For example, the following two expressions are equivalent to each other:

~*[0-9]*

~[0-9]*

Both of these expressions match any string that does not contain any digits.

A trailing instance of an ampersand character (&) can match only the empty string. A
trailing instance of a tilde character (~) can be read as “except for the empty string.”

Table 7 Symbols for a glob pattern

Symbol Description

* Matches an arbitrary string of characters. The string can be empty.

? Matches any single character.

^ Acts as a NOT. Use this in conjunction with other symbols or characters.

[set] Matches:
• Any single character that appears within [set], or
• Any single character that is not in the set if the first character of [set] is (^).
A hyphen (-) within [set] indicates a range, so that [a-d] is equivalent to [abcd].
The character before the hyphen (-) must precede the character after it or the range
will be empty.
The character (^) in any position except the first, or a hyphen (-) at the first or last
position, has no special meaning.

<n1-n2> Matches numbers in a given range. Both n1 and n2 must be strings of digits,
which represent non-negative integer values. The matching characters are a
non-empty string of digits whose value, as a non-negative integer, is greater than
or equal to n1 and less than or equal to n2. If either end of the range is omitted, no
limitation is placed on the accepted number.

| Matches alternatives. For example, ”ab|bc|cd” without spaces matches exactly the
three following strings: “ab”, “bc”, and “cd”. A vertical bar (|) as the first or last
character of a pattern accepts an empty string as a match.

\ Removes the special status, if any, of the following character. Backslash (\) has no
special meaning within a set ([set]) or range (<n1-n2>) construct.

& “And Also” for a compound wildcard pattern. If a component basic wildcard
pattern is preceded by & (or is the first basic wildcard pattern in the compound
wildcard pattern), it must successfully match.

~ “Except” for a compound wildcard pattern (opposite function of &). If a
component basic wildcard pattern is preceded by ~, it must not match.

Function reference 77

Actions

The following script prints sentences that contain the characters “Ship” or “ship.”

ASL Script (glob_do.asl):
START {

sentence:rep(word) eol
}
do {

if (glob("*[Ss]hip*",sentence))
{print(sentence);}

}

Input (glob_do.txt):
I have a ship that floats.
Shipping is a big industry in Hong Kong.
The dog ate my homework.
I fell down and hurt my hip.
A boat is much smaller than a ship.

Output:
$ sm_adapter --file=glob_do.txt glob_do.asl
I have a ship that floats.
Shipping is a big industry in Hong Kong.
A boat is much smaller than a ship.
$

stop() function

The stop() function stops the current thread. No arguments are passed to the function. A
call to the stop() function does not return.

If you call stop() in an ASL thread, and that thread is in a process that has other threads,
the effect is to simply stop that thread. However, when the thread that is being stopped is
the only thread that is running, then stopping that thread effectively shuts down the
adapter (because the adapter shuts down when there are no more active threads).

The syntax is as follows:

stop()

quit() function

The quit() function stops the back end, or the Domain Manager in the case of inflow
adapters. No arguments are passed to the function. When the quit() function is
encountered, the ASL script immediately ceases execution.

A call to the quit() function does not return, except when you run sm_adapter with the -s
option to connect the adapter to a remote Domain Manager, and then you call quit(). In
this case, the remote Domain Manager initiates its shutdown procedure and the function
does return. The calling script continues running while the remote Domain Manager shuts
down (which may take more than a few seconds). The script may even interact with the
back-end Domain Manager during the interval between calling quit() and the Domain
Manager actually shutting down. And so long as the script never tries to interact with the
back-end Domain Manager once it has shut down, the script can continue running
indefinitely.

78 EMC Smarts Foundation ASL Reference Guide

Actions

The syntax to stop a remote adapter is as follows:

quit();

The syntax to stop the current adapter is as follows:

self->quit();

If you launch sm_adapter and do not specify a back end, the adapter
becomes its own back end. In such cases, quit() does the same thing
as self->quit().

defined() function

The defined() function returns TRUE if a variable has a value.

This example is a refinement of the if example. The section “if else statement” on page 73
provides additional information.

By using the defined() function, several lines of the script are removed, including a foreach
statement and an if statement.

The single if statement verifies whether a table key entry exists in the table. If the name
exists, the number of animals is added to the animal count already stored in the table. If
the name does not exist, the animal name and number are added to the table.

ASL Script (defined_do.asl):
z = table();
START {

rep(IMPORT)
}
IMPORT {

animal:word
count:integer
eol

}

do {
if (defined(z[animal]))
{

z[animal]=z[animal]+count;
}
else
{

z[animal]=count;
}

}
EOF
do {

foreach i (z)
{

print(i." count ".z[i]);
}

}

Input (defined_do.txt):
dog 3
cat 4
canary 3
cat 2
dog 5
dog 1
cat 1

Function reference 79

Actions

Output:
$ sm_adapter --file=defined_do.txt defined_do.asl
dog count 9
cat count 7
canary count 3
$

undef() function

The undef() function clears a variable, including lists and tables, or a table member. A list
entry cannot be undefined. An undefined variable has no value. Other statements and
functions cannot use it until it is reassigned a value.

The undef() function cannot be used to undefine a global or static variable.

sizeof() function

The sizeof() function returns a number depending on the value passed to the function. The
sizeof() function converts any values (except for a list or a table) to a string, and returns
the number of characters in the string. For lists and tables, the sizeof() function returns the
number of defined members.

The syntax is one of the following:

◆ sizeof(<value>)

◆ sizeOf(<value>)

The following script matches a line of text in a file. The length of each line is measured and
printed.

ASL Script (sizeOf_do.asl):
START {

x:rep(word) eol
}
do {

y = sizeof(x);
print("Length ".y);

}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (sizeOf_do.txt):
This has a size of 21
size of 9

Output:
$ sm_adapter --file=sizeof_do.txt sizeof_do.asl
Length 21
Length 9
$

80 EMC Smarts Foundation ASL Reference Guide

Actions

substring() function

The substring() function returns a string. The returned string is a piece of the string passed
to the function. The syntax is as follows:

substring(<string>, <starting_position>, <characters_to_return>)

The <starting_position> value indicates the beginning of the new substring taken from the
<string>. The first position of a string is position 0. The <characters_to_return> value
indicates the number of characters to return starting with starting_position.

For the following script, the input is a 12-line text file. Each line has 10 characters.

For the first line of input, the substring() function returns the entire string. For subsequent
lines of input, a character is removed from the beginning of the string.

When the starting position is greater than the number of characters in the original string,
no characters are returned.

ASL Script (substring_do.asl):
y=0;
START {

x:word eol
}
do {

newstring=substring(x,y,10);
print("New string ".newstring);
y = y+1;

}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (substring_do.txt):
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789

Output:
$ sm_adapter --file=substring_do.txt substring_do.asl
New string 0123456789
New string 123456789
New string 23456789
New string 3456789
New string 456789
New string 56789
New string 6789
New string 789

Function reference 81

Actions

New string 89
New string 9
New string
New string
$

toLower() function

The toLower() function returns a string, converting any uppercase letters in the original
string to lowercase. The syntax is as follows:

toLower(<string>);

For example, this script converts strings so that all of the letters following the first
character in each word are lowercase.

For each word in a person’s name, the initial character is assigned to the initial variable
and the remaining characters (if there are any) are assigned to the rest variable. The
toLower() function converts the string stored in the rest variable to lowercase letters. Then,
the characters stored in the initial and the rest variables are assigned to the fullname
variable.

Once each name has been read and converted, ASL prints it before the next name is read
and converted.

ASL Script (toLower_do.asl):
START {
do {fullname="";}

rep(READNAME) eol
}
do {

print(fullname);
}

READNAME {
initial:char.rest:word?

}

do {
rest = toLower(rest);
name=initial.rest;
fullname = fullname.name." ";

}
DEFAULT {

..eol
}
do {

print("Failed match");
}

Input (toLower_do.txt):
JOHN DOE
JANE Q PUBLIC

Output:
$ sm_adapter --file=toLower_do.txt toLower_do.asl
John Doe
Jane Q Public
$

82 EMC Smarts Foundation ASL Reference Guide

Actions

toUpper() function

The toUpper() function returns a string, converting any lowercase letters in the original
string to uppercase. The syntax is as follows:

toUpper(<string>);

The following script assigns the first letter of each word to the variable a. The a variable is
concatenated with another variable, name, to form an acronym. The toUpper() function
capitalizes the entire acronym before it is printed.

ASL Script (toUpper_do.asl):
name="";
START {

rep(FIRSTLETTER) eol
}
do {

print(toUpper(name));
}

FIRSTLETTER {
a:char.word?

}
do {

name=name.a;
}

DEFAULT {
..eol

}
do {

print("Failed match");
}

Input (to Upper_do.txt):
I see several tall buildings
New York City

Output:
$ sm_adapter --file=toUpper_do.txt toUpper_do.asl
ISSTB
NYC
$

print() function

The print() function sends strings it receives to each of the active logs in the Domain
Manager process. There is no automatic translation of the message text. The syntax is as
follows:

print(<argument>);

The value of the argument passed to the print() function can be any data type. The
argument passed to a print() function is converted to a string before it is printed.

Function reference 83

Actions

To print special characters, use the syntax listed in Table 8 on page 84.

The output of the print() function is dependent on the value of the computed attribute,
enableLegacyPrint, in GA_Driver. When ASL scripts are run by using sm_adapter, the
enableLegacyPrint attribute is set to TRUE. In all other cases it is set to FALSE. The default
value of the enableLegacyPrint attribute is FALSE.

When the enableLegacyPrint is set to FALSE, the print output includes the time, date,
thread id, and ASL script. When enableLegacyPrint is set to TRUE, only the string that is
sent to the print() function is printed.

You need an object handle to a GA_Driver object to set the enableLegacyPrint attribute.
You can use "Null GA_Driver" which always exists.

In this example, the value of the enableLegacyPrint attribute is changed. The output of the
print() function is also included.

START { } do {
print("default");
drv = object("GA_Driver", "Null GA_Driver");
drv->enableLegacyPrint = FALSE ? LOG,STOP;
print("new style");
drv->enableLegacyPrint = TRUE ? LOG,STOP;
print("legacy");
stop();

}

Output for "sm_adapter --output /tmp/foo.asl" :

default
[February 6, 2009 12:19:03 AM EST +527ms] t@1088432480 main
ASL_MSG-*-ASLP-/tmp/foo.asl: new style

legacy

sleep() function

The sleep() function temporarily stops the adapter. The syntax is:

sleep(<time_in_seconds>);

The sleep() function is passed a number, which represents the amount of seconds to
sleep. The sleep() function returns TRUE.

Table 8 Print function special characters

Character Syntax Notes

tab \t

single quote (') \' The quotation marks surrounding the string
containing this code must be double quotes.

double quote (") \" The quotation marks surrounding the string
containing this code must be single quotes.

backward slash (\) \\

carriage return \r

line feed \n

84 EMC Smarts Foundation ASL Reference Guide

Actions

time() function

The time() function works with and without an argument. Without an argument, this
function returns the current system time. With a numeric argument, the time() function
adds the argument (as seconds) to the date and time January 1, 1970 00:00:00 GMT and
returns the new time and date based on the current time zone information.

The output type of the time() function can be controlled through type casting. By default,
the function returns a string. If the function is converted to a numeric, the output is
converted into an integer that represents the number of seconds since January 1, 1970
00:00:00 GMT.

For example:

x = string(time());
print(x);

The string() function returns the time in the following format:

DD-MONTH-YYYY HH:MM:SS

However, the following numeric function returns a number similar to 958159632.

x = numeric(time());
print(x);

Type conversions also work when a value is passed as an argument to the function.

The following script prints the date and time, waits five seconds, and prints the date and
time again. It also converts a number read from the input file into a date and time.

ASL Script (time_do.asl):
START {

y:integer eol
}
do {

print(time());
sleep(5);
print(time());
x = time(y);
print(x);

}

DEFAULT {
..eol

}
do {

print("Failed match");

Input (time_do.txt):
987517893

Output:
$ sm_adapter --file=time_do.txt time_do.asl
12-May-2000 03:28:47
12-May-2000 03:28:52
17-Apr-2001 10:31:33
$

Function reference 85

Actions

trace() function

The trace() function turns on or off an internal trace() function that traces how the code is
parsing the passed parameters. You can turn on the function at a specific point in the code
to validate that line. This function is useful when creating a rule and validating what is
being matched.

The trace() function gives you access, from within ASL, to command line options available
with the sm_adapter command with the following exceptions:

◆ There is no analog of sm_adapter - -traceRules because all rules have already been
compiled by the time you could turn on tracing of rule compilation.

◆ Calling the trace() function as trace(“input”,TRUE), turns on tracing at the front end,
and has no command line equivalent under sm_adapter.

The syntax is as follows:

trace(<string>, <BOOLEAN>)

The <BOOLEAN> argument determines whether tracing is turned on or off.

Table 9 on page 86 lists valid values for <string>.

For example:

START {
 x:rep(word) eol
 }
 do {
 trace ("parser", TRUE);
 trace ("input", TRUE);
 trace ("server", TRUE);
 }

hexToString() function

The hexToString() function converts values with a hexadecimal format into their equivalent
ASCII characters. The function pairs the hexadecimal values and converts each pair. The
syntax is as follows:

hexToString(<value>)

Table 9 Valid values for string

Value Description

parser Matches the input stream against the rule.

input Traces input from the front end.

server Traces the interaction of the remote wire protocol with the server.

86 EMC Smarts Foundation ASL Reference Guide

Actions

getRuleFileName() function

The getRuleFileName() function returns the filename of the currently executing rule file.
The syntax is as follows:

getRuleFileName([<fullname>])

The <fullname> argument is optional. If it is omitted or passed as FALSE, only the base
name of the rule filename is returned. Otherwise, the full name, including the path, is
returned.

Returning values
By default, a rule returns the characters it matches. A patternless rule returns an empty
string. Like other patterns, the returned value from a rule can be assigned to a variable.

a:RULE_A

The return statement overrides values returned by a rule. The syntax is:

return <value>;

ASL exits a rule immediately after a return statement. It does not execute any statements
that follow a return statement.

The next script reads input that consists of a person’s name followed by a field-separator
and an address. Both the name and address are corrected for capitalization: an uppercase
letter at the beginning of a word, followed with lowercase letters for the rest of the word.

In the START rule, two variables are assigned values returned from the READWORDS rule.
Every time the pattern in the START rule matches, the two variables are printed.

The READWORDS rule is a repetition of pattern matching followed by an action block. The
action block converts the data so that the first letter of a word is capitalized and the rest of
the letters are lowercase. The word is added to a string called tempstr.

At the end of the READWORDS rule, the return statement returns the correctly capitalized
string. If there was no return statement, the READWORDS rule would return the string as it
was read during the pattern matching.

ASL Script (return_do.asl):
START {

fullname:READWORDS fs
address:READWORDS eol

}
do {

print(fullname.address);
}

READWORDS {
do {tempstr = "";}
rep(READ_FIX)

do {return tempstr;
}

}

Returning values 87

Actions

READ_FIX {
initial:char.rest:word?

}
do {

initial = toUpper(initial);
rest = toLower(rest);
fixed=initial.rest;
tempstr = tempstr.fixed." ";

}

DEFAULT {
..eol

}
do {

print("Failed match");
}
Input (return_do.txt):
John Q Doe:11 MAin St.
JANE PUblic:387 OAK DR.
HENry HUDSON:9 ELM rd.

Output:
$ sm_adapter --field-separator=: --file=return_do.txt return_do.asl
John Q Doe 11 Main St.
Jane Public 387 Oak Dr.
Henry Hudson 92 Elm Rd.
$

Passing arguments to functions
Rules can act as functions, which can be called from both a pattern block and an action
block. You can pass values to rules in ASL and receive values back by using the return
statement, as described in “Returning values” on page 87. The syntax is as follows:

RULE(<variablename>)

The argument of a rule is a local variable.

The following script reads and counts the words in a file. The READWORD rule is passed an
argument that is used as a counter. The count variable behaves as a local variable.

ASL Script (rule_arg.asl):
START {

READWORD(1)
}

READWORD(count) {
local y = "end";
y:word
READWORD(count+1)|eol

}
do {

print(y." ".count);
}

Input (rule_arg.txt)
dog cat goat

88 EMC Smarts Foundation ASL Reference Guide

Actions

Output:
$ sm_adapter --file=rule_arg.txt rule_arg.asl
end 4
goat 3
cat 2
dog 1
$

Calling rules as functions from do blocks
Another rule may be called within any do block. Functions have the following generalized
syntax.

FunctionName (arguments)
do
{

... ASL statement(s) ...

}

Any valid ASL expression may be used in the body of a function. This includes calls to
other functions and recursive function calls.

Function may have any number of arguments, including no arguments, which are any data
type that is supported by ASL.

Functions optionally return a value, which are also of any ASL data type. The return value
may be a constant, or a variable declared within the scope of the function do block, as
described in “Returning values” on page 87.

A function must be defined in the same ASL script where it is called, and may be defined
before or after the location where it is referenced. The general syntax used to invoke a
function references the function by name, passes the number and type of arguments
expected by the function, and handles the return value, as shown.

Not all functions are required to return a value as shown in the example.

do {
... ASL statement(s) ...

arg1 = x;
arg2 = y;
ReturnValue = FunctionName (arg1, arg2);

... handle ReturnValue ...
}

A function may be defined only outside of a do block. That is, a function may not be
defined within another function with the intent of referencing the inner function from
another do block.

Calling rules as functions from do blocks 89

Actions

The following is an example of a recursive function definition and call.

START
{ .. eol }
do {

foreach i (list(0,1,2,3,4,5)) {
print (i.”! = “.factorial(i));

}
}

factorial(x)
do {

if (x > 1)
return (x * factorial(x-1));

else
return (x);

}

This example produces the following results.

0! = 0
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120

Exception handling
Exception handling can be added to any action components. Exception handling
determines how errors from statements or functions are treated. The syntax is as follows:

<action> ? [LOG][,][FAIL|STOP|NEXT|IGNORE]

The question mark handles errors generated by the function. The keywords, that control
how an exception is handled are described in Table 10 on page 90.

You can specify the LOG keyword with any of the other keywords.

Table 10 Exception handling keywords

Keyword Description

LOG The exception is reported to the English log file and the non-English log file, if
specified. When a remote exception chain is logged by ASL, the locale defined
in the SM_LOCALE environment variable will be used. The EMC Smarts System
Administration Guide provides further information concerning the log files.

FAIL The current rule exits with a failure status. If the failed expression is associated
with the START rule, the DEFAULT rule is executed.

STOP This is equivalent to calling the stop() function.

NEXT The processing of actions in the current expression block stops. The rule,
however, is not treated as failed rule.

IGNORE The current action is ignored and processing continues as if nothing happened.

90 EMC Smarts Foundation ASL Reference Guide

Actions

To define the severity of the exception, arguments can be passed to LOG. Logging levels
are set by using the syntax:

LOG("<logging_level>")

Valid logging keywords are (in increasing level of severity):

◆ Debug

◆ Notice or Informational

◆ Warning (Default log value)

◆ Error

◆ Fatal or Critical

When the exception is not specified, the default behavior for exceptions is LOG, NEXT. In
other words, when an exception occurs, the error is logged and no other actions are
performed in the current action block.

Do not confuse the question mark (?) used for exception handling with the question mark
(?) used with patterns. “Maybe operator” on page 46 provides additional information.

The following script demonstrates two different keywords to use for exception handling.
The first exception occurs for:

print(x) ? IGNORE;

There is no value assigned to the variable x, so the function causes an exception. Since
the keyword is IGNORE, the current line is skipped and the next line is executed.

The second exception occurs for:

print(y) ? FAIL;

There is no value assigned to the variable y, so the function causes an exception. Since
the keyword is FAIL, the current action block is not completed (and the following print
statement is not executed) and the START rule fails. Whenever the START rule fails, the
DEFAULT rule is executed.

ASL Script (exception_do.asl)
START
do {

print("Hello");
print(x) ? IGNORE;
print("OK");
print(y) ? FAIL;
print(“Here I am”);

}
DEFAULT
do {

print("Default rule");
stop();

}

Exception handling 91

Actions

Input:
none

Output:
$ sm_adapter exception_do.asl
Hello
OK
Default rule
$

92 EMC Smarts Foundation ASL Reference Guide

CHAPTER 6
Interfacing with a Domain Manager

This chapter consists of the following sections:

◆ ASL and the MODEL language ... 94
◆ Objects and instances... 99
◆ Tables, structures and enumerations... 106
◆ Type conversions between ASL and MODEL... 109
◆ Domain Manager control ... 110
◆ Events... 111
◆ Transactions, commit, and abort ... 113
◆ Error handling ... 115
◆ Repositories.. 116
◆ Naming and identity.. 116
◆ Tracing ASL scripts .. 117

Interfacing with a Domain Manager 93

Interfacing with a Domain Manager

ASL and the MODEL language
In order to create adapters that interact with a Domain Manager, it is necessary to
understand how the Domain Manager is configured. The adapter creates, deletes, and
interacts with instances of objects that are defined by using the MODEL language.

The MODEL language is an object-oriented language used to construct a correlation model
to describe a managed domain. The language is used to define a set of classes and the
attributes, relationships, and events that are associated with the classes.

Classes describe the objects that are modeled for use in a Domain Manager. Instances are
specific occurrences of a class. For example, a class might describe a human and an
instance of the class is someone named Bill.

Attributes describe a class and, for an instance of the class, include information about its
present state. Examples of attributes include an element’s name and a counter that
counts the number of packets traversing an interface.

Relationships define how instances are related to other instances. Relationships can be
one-to-one, one-to-many, many-to-one, or many-to-many. When only a single instance can
be related to another instance (or instances), it is a relationship. When multiple instances
can be related to another instance (or instances), it is a relationshipset.

Events describe the failures that can occur for a class, the symptoms that these failures
can cause, and the effect of failures.

Symptoms can be described a follows:

◆ Local, meaning they are observed in the instance of the class.

◆ Propagated, meaning they are observed in instances related to the failing instances.

Once classes are specified, the model is loaded and run on a Domain Manager. Instances
are created for each entity that is modeled. Each instance is associated with a class and
has values for its attributes, relationships, and events.

The models stored in a Domain Manager are static. Instances are dynamic and are stored
in the repository, as shown in Figure 8 on page 95.

94 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

Figure 8 Domain Manager with a model and repository

Instances in a Domain Manager consist of a table entry and data. The table entry includes
the name of each instance and its class. Each instance name must be unique. The table of
names always contains an entry for the NULL object.

The data associated with each instance includes properties such as attributes, operations,
and the relationships between instances. The data also includes event information such
as problems, symptoms, and events.

EMC Smarts MODEL Reference Guide provides additional information about MODEL.

Correlation model used for example scripts

All of the ASL script examples used in this chapter interact with a small correlation model.
The model defines two types of objects: cards and ports, as shown in Figure 9 on page 96.

ASL and the MODEL language 95

Interfacing with a Domain Manager

Figure 9 Relationship between cards and ports

Cards and ports are separate classes. Each class has its own set of attributes and events.
An instance of one class can be related to an instance of another class.

Cards have the following:

◆ A single attribute, CardDesc. This attribute is a string and has no default value.

◆ Two types of events.

• The first type is a problem called Down. When all of a card’s ports are
OperationallyDown, the card is Down.

• The second type is an aggregate called Impaired. If any of the ports associated
with a card is Down or if the card is Down, the card is Impaired.

Ports have the following:

◆ A single attribute, OperStatus. This attribute has a special data type that limits the
values of the attribute to TESTING, UP, and DOWN. DOWN is the default value.

◆ Two types of events.

• The first type is a problem called Down. A port is Down when it is
OperationallyDown.

• A second type is a symptomatic event called OperationallyDown. When the port’s
OperStatus attribute is set to DOWN, it causes the OperationallyDown event.

In Figure 10 on page 97, the port’s attribute OperStatus is equal to DOWN.

96 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

Figure 10 Events that affect ports and their related card

The attribute’s value causes the event OperationallyDown, which, in turn, causes the
problem Down. Since the port participates in a PartOf relationship with the card, the card
is also affected. The port has the problem Down and, as a result, the card has the
compound event (aggregate), Impaired. The card is probably not down, because only one
port (not all ports) is experiencing a problem.

Appendix C, “Card-Port MODEL Code,” describes the MODEL language code for this
example. Figure 11 on page 98 is a diagram of this card and port model.

ASL and the MODEL language 97

Interfacing with a Domain Manager

Figure 11 Diagram of the card and port model

98 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

Objects and instances
This section discusses how to create, delete and manipulate objects and instances.

Creating objects

The create() function creates an instance of a class or an instance with an object handle.
The syntax is one of the following:

◆ create(<classname>, <objectname>);

◆ create(<objhandle>);

If the object being created already exists, the create() function returns a reference to that
object or an error if the object exists and belongs to different class.

If you specify an object handle (objhandle) and the object does not exist, the create()
function creates the object and the object handle.

You can assign the result of the function to a variable (for example, objRef). This defines
an object handle for the object.

objRef = create(<classname>, <objectname>);

The following script example loads instances of ports and cards. The name of the Domain
Manager that contains the model is JS1.

ASL Script (create_obj.asl):
START {

CARD rep(PORT)
}

CARD {
"CARD:" cardname:word eol

}
do {

create("Card",cardname);
}

PORT {
portname:word eol

}
do {

create("Port",portname);
}

DEFAULT {
err:{..eol}

}
do {

print(err." Failed");
}

EOF
do {print("Complete");
}

Input (create_obj.txt):
CARD: CARD0

PORT00
PORT01
PORT02

Objects and instances 99

Interfacing with a Domain Manager

PORT03
CARD: CARD1

PORT10
PORT11
PORT12

CARD: CARD2
PORT20
PORT21
PORT22
PORT23
PORT24
PORT25

Output:
$ sm_adapter --server=JS1 --file=create_obj.txt create_obj.asl
Complete
$

Listing instances

The getInstances() function returns a list of object names for the given class, but does not
return object handles. The syntax is as follows:

<listname> = getInstances(<classname>);

The following script example retrieves the names of all instances of the class “Card” and
stores them in a list. The names stored in the list cannot be used by ASL to reference
objects.

ASL Script (get_obj.asl):
START {

..eol
}

do {
x = getInstances("Card");
print(x);

}

Input:
none

Output:
$ sm_adapter --server=JS1 get_obj.asl
{ CARD0, CARD1, CARD2 }

$

Creating handles for existing objects

The object() function returns an object handle for existing objects. An object handle is a
distinguished data type in ASL that represents a model class name and an object name.
The syntax is one of the following:

◆ <objectRef> = object([<classname>,] <objectname>);

The name of the instance must be unique, therefore, the class name is optional.

◆ <objectRef> = object(<objhandle>);

100 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

There are three ways to obtain a handle for an existing object:

◆ If you specify a class name and an object name, then the object() function returns the
object handle for the specified object. ASL stores that information as <class>::<name>.

◆ If you specify an object handle (objhandle), then the object() function returns the
object handle unchanged.

◆ If you specify an object name only, then the object() function returns the handle object
and assumes the object name and the class name, MR_Object.

You can also create an object handle for future use for an object that does not exist.

For example:

objref = object();

The following script retrieves the names of all instances of the class “Card” and stores
them in a list. A foreach loop cycles through the list and adds each object, including its
class, to a different list. The script prints both lists.

The lists demonstrate the difference between the getInstances() function and the object()
function. The getInstances() function returns only the name of the object. The object()
function returns the object handle for the object and ASL stores that information as
<class>::<name>. The section “Listing instances” on page 100 describes the getInstances()
function.

ASL Script (handle_obj.asl):
y = list();

START {
..eol

}
do {

x = getInstances("Card");
print(x);

foreach mem (x)
{y += object("Card",mem);
}

print(y);
}

Input:
none

Output:
$ sm_adapter --server=JS1 handle_obj.asl
{ CARD0, CARD1, CARD2 }
{ Card::CARD0, Card::CARD1, Card::CARD2 }

Attributes, relationships, and operations of objects

The attributes, relationships, and operations of an object are its properties. ASL assigns
values to properties by using the following syntax:

<objectRef>-><property> = <value>;

The <objectRef> is the object handle for the object. You assign the object handle by using
the create() or object() functions or through a relationship.

Objects and instances 101

Interfacing with a Domain Manager

The following script loads the names of all instances of the classes “Card” and “Port” into
a Domain Manager. The datafile contains a card name followed by the ports associated
with the card. As this script loads cards and ports, it creates a relationship between a card
and its ports.

Relationships between objects in MODEL are paired. It is not necessary to define both
relationships. Define one relationship. Its converse is defined by default.

ASL Script (properties_obj.asl):
START {

CARD rep(PORT)
}

CARD {
"CARD:" cardname:word eol

}
do {

cardObj = create("Card",cardname);
}

PORT {
portname:word eol
}

do {
portObj = create("Port",portname);
cardObj->ComposedOf += portObj;
print(portObj." ".cardObj);

}

Input (create_obj.asl):
CARD: CARD0

PORT00
PORT01
PORT02
PORT03

CARD: CARD1
PORT10
PORT11
PORT12

CARD: CARD2
PORT20
PORT21
PORT22
PORT23
PORT24
PORT25

Output:
$ sm_adapter --server=JS1 --file=create_obj.txt properties_obj.asl
Port::PORT00 Card::CARD0
Port::PORT01 Card::CARD0
Port::PORT02 Card::CARD0
Port::PORT03 Card::CARD0
Port::PORT10 Card::CARD1
Port::PORT11 Card::CARD1
Port::PORT12 Card::CARD1
Port::PORT20 Card::CARD2
Port::PORT21 Card::CARD2
Port::PORT22 Card::CARD2
Port::PORT23 Card::CARD2
Port::PORT24 Card::CARD2
Port::PORT25 Card::CARD2
$

The value stored in <objectRef>-><property >can also be assigned to an ASL variable.

102 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

<variable> = <objectRef>-><property>;

You can refer to properties indirectly. This is a two-step process. First, assign the property
to a variable. Second, the variable can be used in place of the property in conjunction with
an indirection operator (->*).

propertyname = “property”;
objRef->*propertyname = "UP";

The syntax objRef->*variable allows you to access an attribute by variable. The following
code sample assigns the attribute name to a variable, then makes a reference to that
attribute through the indirection operator. The output is the creation class name of the
given object.

variable = “CreationClassName”;
c = objRef->*variable;
print(c);

When you run this ASL script on a router object, the output is “Router”.

Deleting objects

The delete() method deletes an instance of a class. This function does not delete objects
that are related to the deleted object. ASL creates an error if the object handle used with
the delete() method points to an object that does not exist. The syntax of the delete()
method is:

<objectRef>->delete();

The undef() function does not affect objects. Its use removes an assigned value from a
variable. The section “undef() function” on page 80 provides additional information.

You can use += or -= operators to add or delete an object from a list of object handles in
ASL or from a relationshipset in MODEL. “Modifying relationshipsets” on page 105
provides additional information.

The following script deletes a card and its related ports. The script contains a default
variable that specifies the card to delete. When the ComposedOf relationship is used, the
ASL script creates a list of port objects to delete. The card is deleted first, followed by its
ports. Exception handling causes the script to stop if the card object does not exist.

ASL Script (delete_obj.asl):
default delthis = "CARDX";

START {
..eol

}

do {
delthisObj = object(delthis);
relObj = delthisObj->ComposedOf?LOG,STOP;
x = delthisObj->delete();
foreach mem (relObj)

{
mem->delete();
}

print("Deleted ".delthis." and related ports");
}

Objects and instances 103

Interfacing with a Domain Manager

Input:
none

Output:
$ sm_adapter --server=JS1 -Ddelthis="CARD2" delete_obj.asl
Deleted CARD2 and related ports
$

Testing for null objects

The isNull() method tests whether an object handle points to a valid object. If this function
returns TRUE, the object does not exist. The syntax is as follows:

<objectRef>->isNull();

For example, this script deletes the object PORT25 from the Domain Manager if it exists.
The if statement uses the isNull() function to test if the object exists. An exclamation point
is a logical NOT, so that if the object does exist, the condition is true for the if statement.
The output demonstrates the case where the object exists and is deleted.

ASL Script (isnull_obj.asl):
START {

..eol
}

do {
delthisObj = object("Port","PORT25");
if (!delthisObj->isNull())

{
 delthisObj->delete();

 print("Deleted ".delthisObj);
}

else { print(delthisObj." does not exist");}
}

Input:
none

Output:
$ sm_adapter --server=JS1 isnull_obj.asl
Deleted Port::PORT25
$

Testing relationships

The is() function tests whether an object is a member of a relationship. The syntax is as
follows:

is(<objectRef>-><Relationship>,<objectRef2>)

The <relationship> used in the is() function must be a valid relationship for the object or an
error occurs. If <objectRef2> is related to <objectRef> by <Relationship>, the function returns
TRUE. Otherwise, the function returns FALSE.

This script tests objects of the class Port to see if they are related to CARD2. The script gets
the list of ports by using the class Port. When the ports are printed, the class that is
printed is MR_Object, which is the parent class of the Port and Card classes. The
MR_Object class appears because a class is not specified for the object() function.

ASL Script (relation_obj.asl):
START {

104 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

..eol
}
do {

cardObj = object("CARD2");
x = getInstances("Port");
foreach mem (x)

{
portObj = object(mem);
if (is(cardObj->ComposedOf,portObj))

{print(portObj." is related to ".cardObj);
}

}
}

Input:
none

Output:
$ sm_adapter --server=JS1 relation_obj.asl
MR_Object::PORT20 is related to MR_Object::CARD2
MR_Object::PORT21 is related to MR_Object::CARD2
MR_Object::PORT22 is related to MR_Object::CARD2
MR_Object::PORT23 is related to MR_Object::CARD2
MR_Object::PORT24 is related to MR_Object::CARD2
MR_Object::PORT25 is related to MR_Object::CARD2
$

In MODEL, all classes have a built-in property named CreationClassName. This property
contains the class name.

Modifying relationshipsets

When a model relates many objects to one or more objects, it is a relationshipset. A
relationshipset in MODEL is a list of object handles in ASL. You can manipulate this list by
using the list operators described in Table 11 on page 105.

Accessing a particular relationship in a relationshipset is a two-step process. First, load
relationshipset into a list in ASL. Then, access a specific element in the list. For example:

x = objRef->rela_prop;
print(x[0]);

Table 11 List operators

Syntax Description

objRef->rela_prop += value; Adds a value to a relationshipset.

objRef->rela_prop -= value; Removes a value from a relationshipset.

x->rela_prop = object(""); Clears a single relationship.

x->rela_prop = list(y,z); Adds a list of object handles to a
relationshipset.

x->rela_prop=list(); Clears a relationshipset.

Objects and instances 105

Interfacing with a Domain Manager

Retrieving description texts

There are several operations of the class SM_System that can be used to retrieve
description texts or objects. The texts that are retrieved will be in the locale that was set
either by the initial connection, or by the locale set by the most recent call to the
setLocale().

If these operations are run outside of the context of a remote session, then the effective
locale is CI_Locale::DEFAULT.

The getClassDescription() operation retrieves the descriptive text associated with the
MODEL class name.

/// get model class description
string getClassDescription(in string className);

The getOpDescription() operation retrieves the descriptive text associated with a MODEL
operation.

/// get model operation description
string getOpDescription(in string className, in string opName);

The getPropDescription() operation retrieves the descriptive text associated with a class
property, such as an attribute.

/// get model property description
string getPropDescription(in string className, in string propName);

The getEventDescription operation retrieves the descriptive text associated with a MODEL
event.

/// get model event description
string getEventDescription(in string className, in string eventName);

In this example, the description of the Attr1 attribute in the MyClass class is printed, in
Japanese.

sysObj = object("SM_System","SM-System");
setLocale("ja_JP");
foo = sysObj->getPropDescription("MyClass","Attr1");
print(foo);

Tables, structures and enumerations
This section describes how to access, and how to clear the members of a MODEL table. It
also describes how to access and update structures and enumerations.

Accessing tables in MODEL from ASL

Tables in MODEL are represented as lists in ASL. In MODEL, a table of structures is a list of
lists in ASL.

To return the structure in the MODEL table given the key (“F”), use the following syntax:

print(x->f[“F”]);

106 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

Clearing the members of a table

To clear the members of a MODEL table, use the following syntax:

x->rela_prop=list();

Updating and accessing structure attributes in MODEL

Structures in MODEL are represented as lists in ASL. The number of items in the list in the
ASL is equal to the number of fields in the corresponding structure of the MODEL. The first
item in the list will correspond to the first field defined within the structure, and so on for
each subsequent item.

For example, if the following structure is defined in Example.mdl, the following ASL code,
Example.asl, shows how to reference the structure.

Example.mdl
interface Example_Struct:MR_ManagedObject
{

struct model_struct
{

int valueType;
string Value;

};

attribute model_struct asl_list;
};

Example.asl
START
{

do
{

// create an instance, ‘example’, of Example_struct
example = create (“Example_Struct”, “Example-Struct”);

// put values into a ‘model_struct’ structure:
// structure element ‘valueType’ is list element [0]
// structure element ‘value’ is list element [1]
struct_value = list();
struct_value[0] = 1;
struct_value[1] = “Structure Example”;

// set the value in the Example_struct instance
example->asl_list = struct_value;

// get values from a ‘model_struct’ structure
accessed_struct = list();
accessed_struct = example->asl_list;

// display the retrieved structure elements
print (accessed_struct);
stop();

}
}

The output of the example is the following:

$sm_adapter -M Example Example.asl
{1, Structure Example }

Tables, structures and enumerations 107

Interfacing with a Domain Manager

Accessing enumerated data types in MODEL

Enumerated data types are represented as strings in ASL.

The following example shows the syntax to update an enumerated attribute with an enum
value of TESTING:

x->enum_variable = “TESTING”;

108 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

Type conversions between ASL and MODEL
MODEL cannot convert data from one type to another. The types of data available in
MODEL are not the same as the types of data available in ASL. Table 12 on page 109
shows how types of data in MODEL and ASL correspond.

There is no MODEL type that corresponds to an ASL table.

Table 12 Correspondence between types of data in MODEL and ASL

MODEL ASL

Numeric (any type) Numeric (double)

binary binary

Table List

Relationship Object handle

Relationshipset List of object handles

boolean boolean

string string

External (User-defined) Type string

struct (a structure) List

enum string

Type conversions between ASL and MODEL 109

Interfacing with a Domain Manager

Domain Manager control
The following functions allow you to trigger Domain Manager actions from ASL. These
actions either rebuild the correlation model or cause the Domain Manager to correlate
events.

consistencyUpdate() function

The consistencyUpdate() function causes the Domain Manager to recompute the
correlation rules. This function always returns, as soon as the request has been registered,
with a TRUE value. The actual recomputation can take some time, and continues on the
Domain Manager independently of the adapter. The syntax is:

consistencyUpdate()

correlate() function

The correlate() function causes the Domain Manager to correlate events. This function
always returns, as soon as the request has been registered, with a TRUE value. The actual
correlation computation continues on the Domain Manager independently of the adapter.
The syntax is:

correlate()

110 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

Events
This section describes how to retrieve event information.

getCauses() function

The getCauses() function returns a list of problems that cause an event. The function
receives three arguments: class, instance, and event. The function returns the problems
that cause the event based on the relationships among instances defined in the Domain
Manager. The syntax is as follows:

getCauses(<classname>,<instancename>,<eventname>,[<oneHop>])

The <oneHop> parameter is optional. If it is omitted or passed as FALSE, the full list of
problems that explain <eventname>, whether directly or indirectly, is returned. If it is
passed as TRUE, only those problems that directly list <eventname> among the events they
explain are returned.

The function returns a list of lists with the format:

{ <classname>,<instancename>,<problemname> },
{ <classname>,<instancename>,<problemname> },

...

getClosure() function

The getClosure() function returns a list of symptoms associated with a problem or
aggregation. The function receives three arguments: class, instance, and event. The
function returns the symptoms associated with the problem or aggregate based on the
relationships among instances defined in the Domain Manager. The syntax is as follows:

getClosure(<classname>,<instancename>,<eventname>,[<oneHop>])

The <oneHop> parameter is optional. If it is omitted or passed as FALSE, the full list of
problems that explain <eventname>, whether directly or indirectly, is returned. If it is
passed as TRUE, only those problems that directly list <eventname> among the events they
explain are returned.

The function returns a list of lists with the format:

{ <classname>,<instancename>,<symptomname> },
{ <classname>,<instancename>,<symptomname> }

getEventClassName() function

The getEventClassName() function returns a string with the name of the ancestor class
associated with a class and an event. The ancestor class is where the event was originally
defined. That is, the class in which the event definition statement, not any refinement,
appeared. The syntax is as follows:

getEventClassName(<classname>,<eventname>)

Events 111

Interfacing with a Domain Manager

getEventDescription() function

The getEventDescription() function returns a string, defined in MODEL, that describes an
event. The syntax is as follows:

getEventDescription(<classname>,<eventname>);

getEventType() function

The getEventType() function returns a string that classifies an event as a PROBLEM, EVENT,
AGGREGATION, or SYMPTOM. The syntax is as follows:

getEventType(<classname>,<eventname>);

getExplainedBy() function

The getExplainedBy() function is the inverse of the getExplains() function. It returns those
problems that the MODEL developer has listed as explaining this problem. The syntax is
as follows:

getExplainedBy(<classname>,<instancename>,<eventname>[,<oneHop>])

The <oneHop> parameter is optional. If it is omitted or passed as FALSE, the full list of
problems that explains <eventname>, whether directly or indirectly, is returned. If it is
passed as TRUE, only those problems that directly list <eventname> among the events that
they explain are returned.

The function returns a list of lists with the format:

{ <classname>,<instancename>,<symptomname> },
{ <classname>,<instancename>,<symptomname> }

getExplains() function

MODEL developers can add information to a problem in order to emphasize events that
occur because of a problem. The getExplains() function returns a list of these events. The
syntax is as follows:

getExplains(<classname>,<instancename>,<eventname>,[<oneHop>])

The <oneHop> parameter is optional. If it is omitted or passed as FALSE, the full list of
problems that explains <eventname>, whether directly or indirectly, is returned. If it is
passed as TRUE, only those problems that directly list <eventname> among the events that
they explain are returned.

getChildren() function

The getChildren() function provides the list of classes derived from a particular class.

getChildren(<classname>[,recursive])

The recursive parameter is optional. If omitted or false, only the immediate child classes
are retrieved. If true, all children, including those of derived classes are retrieved.

112 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

Transactions, commit, and abort
When you modify objects in ASL scripts, the objects change as each modification occurs.
Using transactions, you can commit many changes to the objects in a Domain Manager as
a single change or choose to abort all of them. Use the following syntax to create a
transaction:

<variable> = transaction();

You cannot assign a transaction to a global variable or to a statically scoped variable. After
you assign the transaction to a variable, every change made to an object does not affect
the object until you commit the transaction. If the you abort the transaction, any changes
made will not affect the object. Use the following syntax to commit a transaction:

<variable>->commit()

Use the following syntax to abort a transaction:

<variable>->abort()

The changes made with a transaction are not visible outside of the ASL script until you
commit the changes. Within a transaction, the same ASL script can see the proposed
changes. Transactions also can control how other applications see objects before changes
are committed or aborted by adding a single keyword. The syntax of a transaction with a
keyword is:

<variable> = transaction([WRITE_LOCK|READ_LOCK|NO_LOCK]);

A keyword can be any one of those listed in Table 13 on page 113.

You can nest transactions. When you nest a transaction, you must commit or abort the
nested transaction before you commit or abort the previous transaction.

ASL aborts any open transactions when the START rule completes.

A maximum of 16 transactions may be open concurrently.

The following script deletes a card and its related ports. The script contains a default
variable that specifies the card to delete. Using the ComposedOf relationship, the ASL
script creates a list of port objects to delete. The script deletes the card and its related
ports at the same time through a transaction.

Table 13 Transaction keywords

Keyword Description

WRITE_LOCK While the transaction is open, no other process can modify or access
information in the repository.

READ_LOCK Currently behaves as WRITE_LOCK.

NO_LOCK This is the default behavior. No locks exist until the ASL commits the
transaction.

Transactions, commit, and abort 113

Interfacing with a Domain Manager

ASL Script (deltrans_obj.asl):
default delthis = "CARDX";

START

do {
delthisObj = object(delthis);
relObj = delthisObj->ComposedOf?LOG,STOP;
deltrans=transaction();

x = delthisObj->delete();
foreach mem (relObj)

{
mem->delete();
}

deltrans->commit();
print("Deleted ".delthis." and related ports");
stop();

}

Input:
none

Output:
$ sm_adapter --server=JS1 -Ddelthis="CARD2" deltrans_obj.asl
Deleted CARD2 and related ports
$

114 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

Error handling
This section describes functions that allow you to determine whether an error occurred, to
get a description of the error and to reset the error state.

feError() function

Invoke the feError() function to determine if the front end has reported a failure to read
data.

The function returns a Boolean value, where TRUE indicates an error occurred and FALSE
indicates no error occurred. If an error occurred, invoke feErrorMsg() for a description of
the error.

feErrorMsg() function

Invoke the feErrorMsg() function to get a description of the error indicated by the feError()
function. feError() returns TRUE.

This function returns a string that describes the error. If no error condition exists, an empty
string is returned.

feErrorReset() function

The feErrorReset() function is used with the feError() and feErrorMsg() functions to reset
the error state. There is no return value for this function.

Error handling 115

Interfacing with a Domain Manager

Repositories

self->

Directs functions that interact with the repository to use the adapter’s repository and not
the Domain Manager’s. Used in conjunction with adding objects to the adapter’s
repository.

Naming and identity
This section describes functions used to retrieve names and identity of the rule which is
running, what Domain Manager the script is running on, and the thread ID of the adapter.

getRuleFileName() function

The getRuleFileName() function returns the filename of the currently executing rule file as
an argument.

Usage:

getRuleFileName ([<fullname>]);

where <fullname> is a string containing the complete path-qualified filename.

getServerName() function

The getServerName() function returns a string, which is the name of the Domain Manager
associated with adapter that is invoking the ASL script.

thread() function

The thread() function returns the operating system thread ID that is associated with the
adapter that is invoking the ASL script.

116 EMC Smarts Foundation ASL Reference Guide

Interfacing with a Domain Manager

Tracing ASL scripts
The ASL_Trace Model object is used to start and stop a trace from dmctl, the Java API,
bootstrap.conf, and ASL. The ASL_Trace model object contains three methods.

◆ start() method starts the tracing

◆ stop() method stops the tracing

◆ isActive() method checks to see if a trace is in progress

interface ASL_Trace
start()
stop()
isActive()

The trace contains timestamps for:

◆ Entry into ASL scripts

◆ Exit to ASL scripts

◆ Exit from ASL scripts

For example, to use the tracing capability from dmctl:

1. Create an instance of the Model object. An instance named ASL-Trace is customary.

dmctl –s serverName create ASL_Trace::ASL-Trace

2. Invoke start/stop/isActive as needed.

dmctl –s serverName invoke ASL_Trace::ASL-Trace start
dmctl –s serverName invoke ASL_Trace::ASL-Trace stop

The output will appear similar to the following:

1 2009/02/26 13:26:15.175714600 1 000:00:00.000000000 NoteASLThread ThreadName=adapter
1 2009/02/26 13:26:15.175714600 2 000:00:00.000000000 NoteLayout Record prefix fields:
1 2009/02/26 13:26:15.175714600 3 000:00:00.000000000 NoteLayout Thread id, Date, Time, Seq,
1 2009/02/26 13:26:15.175714600 4 000:00:00.000000000 NoteLayout Delta since prior record in
thread,
1 2009/02/26 13:26:15.175714600 5 000:00:00.000000000 NoteLayout RecordType.
1 2009/02/26 13:26:15.175714600 6 000:00:00.000000000 NoteLayout Trace records continue with:
1 2009/02/26 13:26:15.175714600 7 000:00:00.000000000 NoteLayout
Entry|Exit|StopExit|ThrowExit|ThrowExit1|ThrowExit2,
1 2009/02/26 13:26:15.175714600 8 000:00:00.000000000 NoteLayout
Constructor|Destructor|Initialize|Multiplex,
1 2009/02/26 13:26:15.175714600 9 000:00:00.000000000 NoteLayout this for ASL_Parser, Nest
depth, Rule file name.
1 2009/02/26 13:26:15.175714600 10 000:00:00.000000000 StartTrace
1 2009/02/26 13:26:15.186840900 11 000:00:00.011126300 NoteDriver CreationClassName=GA_Driver
Name=ASL-Trace1-Driver
1 2009/02/26 13:26:15.187012400 12 000:00:00.000171500 Trace Entry Constructor 00000001002CA120
0 tasl_trace1.asl
1 2009/02/26 13:26:15.187184600 13 000:00:00.000172200 Trace Exit Constructor 00000001002CA120
0 tasl_trace1.asl
1 2009/02/26 13:26:15.187535500 14 000:00:00.000350900 Trace Entry Initialize 00000001002CA120
0 tasl_trace1.asl

Tracing ASL scripts 117

Interfacing with a Domain Manager

1 2009/02/26 13:26:15.187703000 15 000:00:00.000167500 Trace Exit Initialize 00000001002CA120
0 tasl_trace1.asl
1 2009/02/26 13:26:15.188291200 16 000:00:00.000588200 Trace Entry Destructor 00000001002CA120
0 tasl_trace1.asl
1 2009/02/26 13:26:15.188457500 17 000:00:00.000166300 Trace Exit Destructor 00000001002CA120
0 tasl_trace1.asl
1 2009/02/26 13:26:45.193438300 18 000:00:30.004980800 StopTrace

The log file is written to BASEDIR/smarts/local/logs as <serverName>.ASL_Trace.log.

◆ If the BASEDIR/smarts/local/logs directory cannot be found, the log is written to the
current working directory.

◆ If the <serverName> is not available, the file name becomes ASL_Trace.log_<pid>.

The trace is written chronologically. Thus, traffic for several threads may be intermingled. A
sort of the first 4 fields will produce traces for individual threads.

The record layout is noted when the trace is started. The prolog of each record is fixed.
After that, each record contains a record type to provide summary program processing.

The ‘this’ pointer is logged, and can be used when tying the ASL trace to pstack samples.

Startup is automatic if the SM_ASL_TRACE environment variable is set to anything that
does not lower case to 0, false, no, or off.

118 EMC Smarts Foundation ASL Reference Guide

CHAPTER 7
Running Adapters

This chapter consists of the following sections:

◆ The sm_adapter command.. 120
◆ Front end .. 122
◆ Rule set... 129
◆ Back end... 129
◆ Tracing operations .. 131
◆ Stopping adapters .. 132

Running Adapters 119

Running Adapters

The sm_adapter command
The sm_adapter command starts ASL scripts. To run the command, you must specify the
ASL rules file to run as well as choosing how the front end and back end of the adapter
operate. The command syntax is:

sm_adapter [options...] [<rule set>]

The <rule set> is the ASL script that the adapter follows when it receives information.

The options control which Domain Manager and Broker the adapter connects to, and it
also configures how the adapter runs. An adapter can run by using a variety of front end
and back end components. The options are described in Table 14 on page 120.

The file, sm_adapter (sm_adapter.exe for Windows), is found in BASEDIR/smarts/bin.

Basic options

Table 14 on page 120 shows the options which enable you to name the adapter and
control which Broker, MODEL library, and port the adapter uses.

Table 14 sm_adapter basic options

Option Description

--broker=<location> Alternate Broker location as host:port. Also -b <location>.

--model=<model> Name of MODEL library to load. Also -M <model>.

--name=<name> Start a server registered under <name>. Also -n <name>.

--port=<xxxx> Alternate registration port. Use with --name.

--timeout=<secs> Set the timeout for server interaction. The timeout applies to the
back end connection except when using the subscriber front end, in
which case it applies to the front end. The argument is in seconds,
and can be a decimal value. If the --timeout option appears with no
value, 600 seconds is used. By default, there is no timeout.

--wait Wait for initial driver to complete.

120 EMC Smarts Foundation ASL Reference Guide

Running Adapters

Table 15 on page 121 describes additional sm_adapter options.

Table 15 Other sm_adapter options

Option Description

--accept=<host-list> Accept connections only from hosts on host-list, a comma-separated
list of hostnames and IP addresses. You can also specify any instead of
host-list to allow any host to connect. Default: --accept=any.

--daemon Run process as a daemon.

--errlevel=<level> Specify the minimum level at which error events are written to the
standard error output. Possible values include: none, emergency, alert,
fatal, critical, error, warning, notice, informational, debug. The default
is warning. (Note that fatal is equivalent to emergency, alert, or
critical.)

--help Print help and exit.

--loglevel=<level> Specify the minimum level at which event messages are written to the
system logging facility. Possible values include: none, emergency,
alert, fatal, critical, error, warning, notice, informational, debug. The
default is error. (Note that fatal is equivalent to emergency, alert, or
critical.)

--logname=<name> Specify the name used to identify the Smarts program in the system
log.On UNIX systems, the default is the program name. On Windows
systems, the default is the registered service name.

--output[=<file>] Messages generated from internal logging calls are directed to a log
file. Log files are written to the BASEDIR/smarts/local/logs directory. If
<file> is not specified, the value of --logname is used.
If a log file with specified name already exists, it is moved to a backup
file, BASEDIR/smarts/local/logs/<file>.bak. If the backup file already
exists, it is deleted.

--tracelevel=<level> Specify the minimum level at which a process stack trace is written to
the standard error output. Possible values include: none, emergency,
alert, fatal, critical, error, warning, notice, informational, debug. The
default is fatal. (Note that fatal is equivalent to emergency, alert, or
critical.)

--version Print program version and exit.

The sm_adapter command 121

Running Adapters

Front end
The front end of the adapter is responsible for reading data from an input source and
formatting it for processing by an ASL rule set. The adapter can run with one of the
following front ends:

◆ File—Reads data from an ASCII file.

◆ File tail—Is designed to read the log files of long-running Domain Managers. Like the
file front end, the file tail front end reads data from an ASCII file. But instead of
opening the file, reading the contents and closing the file, this front end opens the
file, skips to its end and waits for additional lines to be written to the file.

◆ Program—Reads data from the output of a command pipeline.

◆ Subscribe—Is used in outflow adapters. This front end connects to a Domain Manager
and issues a set of subscription requests. Subsequent notifications received from the
Domain Manager are formatted and delivered to the ASL rule set. There are many
configuration options available with this front end. The options include selecting the
subscription set to performing sophisticated smoothing and filtering of events.

Each front end is described in a subsequent subsection. A list of options is provided in
“sm_adapter front end options” on page 128. Examples of the sm_adapter command with
front ends are provided in “Sample front end invocations” on page 127.

File front end

The file front end reads data from an ASCII file. The front end opens and reads the file,
feeds its contents to the rule set, then closes the file and terminates. This front end
performs two special formatting translations:

◆ End-of-line translation

◆ Field-separator translation

The --file option of the sm_adapter command invokes this front end.

End-of-line translation
One of the more troublesome aspects of using a cross-platform file adapter is dealing with
the end-of-line problem. On Windows systems, \r\n represents an end-of-line. On UNIX, a
single \n represents an end-of-line. The file front end translates either a single \n or the
\r\n sequence to an ASL end-of-line marker (eol), which eliminates this problem.

Consider a file with one line, “hello world.” In a Windows system, this file contains the
characters:

h e l l o w o r l d \r \n

Whereas, on a UNIX system, this file contains the characters:

h e l l o w o r l d \n

Using the file front end on either system feeds the following input stream into the rule set:

h e l l o w o r l d eol

122 EMC Smarts Foundation ASL Reference Guide

Running Adapters

Field-separator translation
Many input files are structured as a series of records, where each record is represented as
one line in the file. Each record (line) may be further separated into fields. The fields are
normally delimited by a special character, such as the TAB character or perhaps the colon
(:) character.

To simplify the parsing of such files, you can specify a field-separator character with the
--field-separator option of the sm_adapter command. Each occurrence of this character in
the input file is replaced with an ASL field-separator marker (fs). By default, ASL does not
translate characters to field-separator markers.

Consider the following line taken from the UNIX /etc/passwd file:

root:*:0:0:Admin:/:/bin/sh

Reading this line and using the file front end with the field-separator character set to the
colon (:), feeds the following input stream into the rule set:

r o o t fs * fs 0 fs 0 fs A d m i n fs / fs / b i n / s h eol

This line can then be parsed with an ASL pattern:

word fs word fs integer fs integer fs word fs word fs word eol

The character replaced with an fs can never be seen by the rule set of the ASL script. The
following pattern does not match the input stream:

word “:” word “:” integer fs integer fs word fs word fs word eol

File tail front end

The file tail front end is designed to read the log files of long-running Domain Managers.
All of the characteristics of the file front end are present in the file tail front end. Unlike the
file front end, however, the file tail front end does not simply open the file, read its
contents, and then terminate. Rather it opens the file, seeks to the end of the file, and
waits for additional lines to be written to the end of the file. As new lines appear, the front
end feeds them to the rule set. The --tail option of the sm_adapter command invokes this
front end.

Rotating Domain Manager log files
One of the difficulties in parsing Domain Manager log files is dealing with log file rotation.
By their nature, Domain Manager log files grow over time. Most system administrators set
up periodic jobs to remove or rename the log files to avoid consuming too much disk
space. The file tail front end periodically checks if the file has been rotated. If so, the file is
closed and reopened. The file is then read from the beginning. All entries in the newly
opened file are fed into the rule set.

Program front end

The program front end reads data from the output of a command pipeline. Like the file
front end, the program front end performs end-of-line and field-separator translations.
This front end, for example, can parse the results of a SQL query issued by using a
command-line SQL program.

Front end 123

Running Adapters

The --program option of the sm_adapter command invokes the program front end. This
command string is executed by using the native command interpreter for the system. On
UNIX, this is normally /bin/sh. On Windows, this is cmd.exe. When the front end object is
created, the command is executed and a pipeline is created between the command and
the front end. This pipeline combines both the stdout and stderr streams from the
command into a single stream.

Once the command exits (or once it closes stderr and stdout) the front end terminates.

Subscriber front end

The subscriber front end subscribes to a Domain Manager and feeds the subsequent
notifications from the Domain Manager to the rule set. Subscriptions can be used for
events, topology changes, and attribute changes.

Notification formatting
The Domain Manager generates a number of different kinds of notifications. Each
notification received from the Domain Manager is streamed as a single record with an eol
marker that identifies the end of the notification. Individual fields within each notification,
for example the class name or instance name in an event notification, are separated by fs
markers. The first field of all notifications is an integer timestamp in the standard UNIX
format which indicates when the Domain Manager originally created the notification. The
remaining fields of the notification record differ depending on the type of record.

Event notification records
Event notifications are received from the Domain Manager when the status of an event
changes. In order to receive these notifications, you must subscribe to events in the
Domain Manager.

The ASL format of the notification record is:

 timestamp: integer fs
 “NOTIFY” fs
 class: word fs
 instance: word fs
 event: word fs
 certainty: float fs
 eol

Normally, the Domain Manager sends the following:

◆ Single notification message when an event becomes active

124 EMC Smarts Foundation ASL Reference Guide

Running Adapters

◆ Single clear message when the event is no longer active.

If an event corresponds to a root-cause problem, it is possible that the certainty of the
diagnosis will change over time. If the diagnosis certainty changes, the Domain Manager
generates another notification. Notifications of this type are streamed in a slightly
different manner:

timestamp: integer fs
 “CERTAINTY_CHANGE” fs
class: word fs
instance: word fs
event: word fs
certainty: float fs
 eol

The subscriber front end normally discards certainty changes that are less than 1% (0.01).
This behavior can be disabled.

When the Domain Manager clears an event, the ASL format of the notification record is:

timestamp: integer fs
 “CLEAR” fs
class: word fs
instance: word fs
event: word fs
 eol

Object create record

When a new object is created in the Domain Manager’s repository, the Domain Manager
sends an object create message. The ASL format of an object create record is:

timestamp: integer fs
 “CREATE” fs
class: word fs
instance: word fs
 eol

Object delete record
When an object is deleted from the Domain Manager’s repository, the Domain Manager
sends an object delete message. The ASL format of an object delete record is:

timestamp: integer fs
 “DELETE” fs
class: word fs
instance: word fs
 eol

Class load record
When a new class is created in the Domain Manager’s repository, the Domain Manager
sends a class load message. Classes are created when new MODEL-generated libraries are
loaded. The ASL format of a class load record is:

timestamp: integer fs
 “CLASS_LOAD” fs
class: word fs
 eol

Front end 125

Running Adapters

Class unload record
When a class is deleted from the Domain Manager’s repository, the Domain Manager
sends a class unload message. Deleting of classes is not currently supported in the
Domain Manager so this message is not used.

timestamp: integer fs
 “CLASS_UNLOAD” fs
class: word fs
 eol

Relation change record
When a relationship changes between objects, the Domain Manager sends a relation
change message. The ASL format of a relation change record is:

timestamp: integer fs
 “RELATION_CHANGE” fs
class: word fs
instance: word fs
relation: word fs
 eol

Property change record
When an object’s property changes, the Domain Manager sends a property change
message. The ASL format of a property change record is:

 “ATTR_CHANGE” fs
class: word fs
instance: word fs
attribute: word fs
value: word fs
 eol

Subscriber front end with a restartable Domain Manager

If the Domain Manager that is being sent subscriptions by the subscriber front end is a
restartable Domain Manager, two additional messages are sent to the rule set:

◆ One when a connection is made to the Domain Manager.

◆ The other when the connection to the Domain Manager is lost.

Domain Manager connect record
When the connection to the Domain Manager is established, the Domain Manager sends a
Domain Manager connect record. These records are sent to the rule set even if the front
end issues no subscriptions. In fact, it is sometimes useful to use a subscriber front end
with no subscriptions just for the purpose of being notified when the Domain Manager
terminates and restarts. The ASL format of the Domain Manager connect record is:

timestamp: integer fs
 “CONNECT” fs
server: word fs
 eol

126 EMC Smarts Foundation ASL Reference Guide

Running Adapters

Domain Manager disconnect record
When the connection to the Domain Manager is lost, the Domain Manager sends a
Domain Manager disconnect record. Like the Domain Manager connect record, these
records are generated even if no subscriptions to the Domain Manager are issued. The ASL
format of the Domain Manager disconnect message is:

timestamp: integer fs
 “DISCONNECT” fs
server: word fs
 eol

Sample front end invocations

This section provides sample front end invocations, as described in Table 16 on page 127.

Table 16 Sample front end invocations

Type of front end Invocation

File front end $ sm_adapter --file=/etc/passwd --field-separator=: passwd.asl

File tail front end $ sm_adapter --tail=/var/adm/messages syslog.asl

Program front end $ sm_adapter --program=”/bin/ps -ef” ps.asl

Subscriber front end $ sm_adapter --subscribe=”.*::.*::.*” --server=myDomainManager notify.asl

The value of the subscribe parameter is parsed into class, instance, and
event expressions. The “::” string separates the individual patterns.
Subscriptions are sent to the Domain Manager specified with the --server
option. In addition to the event patterns, the subscribe option also allows
you to qualify the types of events included in the subscription set. A
qualification has the form:

--subscribe=”.*::.*::.*/paev”

The trailing /paev qualifies the subscription to include problems (p),
aggregates (a), symptoms (e) in the subscription set, and verbose mode (v)
which turns on subscription control messages. You can specify any
combination of the letters p, a, e, and v. If no qualifier is specified, the
default is problems only (/p).
To use the subscription front end in conjunction with a restartable Domain
Manager, use the --rserver option in place of the --server option.

Front end 127

Running Adapters

sm_adapter front end options

Table 17 on page 128 describes the available sm_adapter front end options.

Table 17 sm_adapter front end options

Option Description

--file=<path> Read input from a file. Also -f <path>.

--tail=<path> Read input by tailing a file. Also -t <path>.

--program=<cmd> Read input from a command pipeline. Also -p <cmd>.

--field-separator=C Translate 'C' to the field-separator (FS) marker. Valid only in conjunction
with --file, --tail or --program. Also -F <C>.

--subscribe=<sub> Use the subscriber front end. Subscriptions are sent to the server
specified with the --server option. The <sub> parameter is the subscription
request.
• If <sub> is 'topology', then a subscription for topology changes is

requested.
• If <sub> is of the form '<name>/n', then a subscription to NL <name> is

requested.

Note: Only one NL subscription may be specified.

• If <sub> is of the form C::I::E[/paev], 'C', 'I', 'E' are regexp patterns
representing the classes, instances, and events to which to subscribe.
The letters following a slash (/) are subscription qualifiers: 'p' means
subscribe to problems; 'a' means subscribe to aggregates (impacts);
and 'e' means subscribe to events. If none of these are present, 'p' is
assumed. 'v' means run in verbose mode, which turns on subscription
control messages.

Otherwise, <sub> is a profile name in which the profile specifies what
subscriptions are to be requested. A profile name may be optionally
followed by the /v qualifier.
Multiple --subscribe options can be specified.

--smoothing=<num> Event smoothing interval. This parameter is used by the subscriber front
end to smooth event notifications (and clears) received from the server.
Only events (or clears) that stay active (or cleared) for <num> seconds are
fed into the input stream. The <num> must be a non-negative integer. The
default value is 0 which disables smoothing.

--ignoreOld Ignore old notifications. This parameter is used by the subscriber front
end. Notifications for events that were active before this adapter
connected are not fed to the input stream.

128 EMC Smarts Foundation ASL Reference Guide

Running Adapters

Rule set
The rule set parameter is used to specify the ASL parse rules that are applied to the input
data. The name of the file that contains the ASL parse rules is added at the end of the
sm_adapter command. For example:

sm_adapter [<options>] myRules.asl

sm_adapter rule set options

The sm_adapter rule set options are listed in Table 18 on page 129.

Back end
The back end of an adapter represents a Domain Manager. Object manipulations (for
example, setting an attribute) within an ASL rule set are translated into EMC Smarts
Remote API requests. The Domain Manager to which the API transmits the request is
determined by the back end. Two back ends are available:

◆ Remote Domain Manager —Specifies a remote Domain Manager.

◆ Restart-enabled Domain Manager — Specifies a remote Domain Manager, but the
adapter handles automatic reconnects if the connection to the Domain Manager is
broken.

The --server option to the sm_adapter command creates a remote Domain Manager back
end.

% sm_adapter --server=myServer rules.asl

The restart-enabled Domain Manager back end is a specialization of the remote Domain
Manager that adds automatic reconnect capabilities. When using a normal remote
Domain Manager back end, the adapter terminates if one of the following occurs:

◆ Domain Manager is unavailable when the adapter starts.

◆ Domain Manager disconnects while the adapter is running.

The restart-enabled Domain Manager should be used in cases where you want the adapter
to remain active when the Domain Manager is unavailable. The back end of a
restart-enabled Domain Manager periodically attempts to reconnect to the Domain
Manager. Once it succeeds, the connection is restored and the adapter continues to
function.

The restart-enabled back end is most useful in conjunction with the subscriber front end.
The section “Subscriber front end with a restartable Domain Manager” on page 126
provides additional information about using the restart-enabled Domain Manager with the
subscriber front end.

Table 18 sm_adapter rule set options

Option Description

--D<var>=<value> Override the default value for a rule set variable.

--verify Validate rules only.

Rule set 129

Running Adapters

Behavior of the restart-enabled Domain Manager

The restart-enabled Domain Manager provides a way to create an adapter that is robust in
the face of communication problems with the Domain Manager.

Normally, errors encountered during the transmission of an operation to the Domain
Manager result in an exception to the rule set. This exception normally terminates the
adapter. With a restart-enabled Domain Manager, however, the exception is treated as a
non-fatal error and it does not automatically terminate the parser. Once the Domain
Manager connection is re-established, operations no longer result in exceptions but begin
working properly again.

Using the restart-enabled Domain Manager from the command line
You can use the --rserver option of the sm_adapter command to create a restart-enabled
Domain Manager back end.

$ sm_adapter --rserver=<Domain Manager_name> rules.asl

Back end options

Table 19 on page 130 describes the available back end options.

Table 19 sm_adapter back end options

Option Description

--server=self Connect driver to local repository, the default.

--server=null Do not connect to any server. Useful for debugging offline in
combination with --traceServer.

--server=<name> Connect driver to remote server. Also -s <name>.

--rserver=<name> Auto-reconnect driver to remote server. Also -S <name>.

--description=<desc> Description of this adapter, sent to remote server.

--mcast=<name> Connect driver to a local subscription server.

130 EMC Smarts Foundation ASL Reference Guide

Running Adapters

Tracing operations

Rule set

When the adapter starts, rules contained in the rule set file are read in and compiled into
an internal form. The compilation enables the adapter to parse the input data efficiently. If
the trace attribute of the rule set object is set to TRUE, the adapter dumps a trace of the
compiled rules after it has converted them to the internal form. This option is used for
debugging purposes only.

Specify the --traceRules option with the sm_adapter command to set the trace attribute of
the rule set object to TRUE.

Back end

All back ends of an adapter can trace all API operations transmitted to the Domain
Manager. This is a very useful option for debugging a rule set. If you are using the
sm_adapter command, specify the --traceServer option to enable back end tracing. The
trace output includes the following:

◆ Timestamp

◆ Name of the Domain Manager

◆ Description of the operation sent to the Domain Manager

If the operation returns a value (for instance, if you are retrieving an object property), the
retrieved value is also printed.

For example, when the following ASL commands,

obj = object(“MyClass”,“MyObject”);
obj->attr = TRUE;

are executed in a rule set that is connected to a Domain Manager with the name,
ServerName, the commands result in the following trace output:

2-Feb-2009 14:26:11 ServerName: put(MyClass,MyObject,attr,TRUE)

Trace options

Table 20 on page 131 describes the available trace options.

Table 20 Trace options

Option Description

--traceRules Trace rule compilation.

--traceServer Trace interactions with the back end server.

--traceParse Trace rule matching.

--trace Enable all tracing. Also -d.

Tracing operations 131

Running Adapters

Stopping adapters
Adapters that do not stop on their own can be stopped by using SIGTERM for UNIX systems
and the Task Manager for Windows.

You can create ASL scripts that include a stop() or quit() function. “stop() function” on
page 78 and “quit() function” on page 78 provide additional information for the stop() and
quit() functions, respectively.

132 EMC Smarts Foundation ASL Reference Guide

APPENDIX A
ASL Reference

This appendix provides a summary of ASL syntax and a list of reserved words. It consists
of the following sections:

◆ Syntax... 134
◆ Reserved words .. 140

ASL Reference 133

ASL Reference

Syntax
Table 21 on page 134 lists available ASL syntax.

Table 21 ASL syntax (page 1 of 6)

Syntax Description

!= Indicates not equal to.

+ Indicates an addition operator.

- Indicates a subtraction operator.

* Indicates a multiplication operator.

/ Indicates a division operator.

% Indicates a modulus operator. Calculates by using
integer or floating-point numbers.

&& Indicates a logical AND.

. (Period) pattern matching. Indicates that the next
pattern must be matched immediately.

. (Period) action block. Concatenates two strings.

.. (Double period) Used to indicate an undefined
string of characters up to the next pattern match.

|| Indicates a logical OR.

+= Adds an object to a relationship.

? Pattern matching. Matches one or zero times.

? Action block. Exception handling operator.

< Indicates less than.

<= Indicates less than or equal to.

-= Removes an object from relationship.

== Indicates equal to.

> Indicates greater than.

-> Used to reference properties of an object.

->* Used to reference properties of an object by using a
variable for the property name.

>= Indicates greater than or equal to.

any(<string>) Represents any character in its argument string.

boolean(<value>) Converts the argument to a TRUE or FALSE. All
nonzero numbers are TRUE. Any other type is
converted to an uppercase string and compared to
TRUE or FALSE. If it does not match either, it returns
an error.

break Used to break out of a loop.

134 EMC Smarts Foundation ASL Reference Guide

ASL Reference

case = [exact]|[ignore] A variable that determines whether string matches
are case-sensitive (default is exact) or not.

char Represents a character, not an eol or fs.

consistencyUpdate() Causes the Domain Manager to recompute the
correlation rules.

continue Used to move to start of loop and start with the next
element.

correlate() Causes the Domain Manager to correlate events.

create(<classname>,<objectname>) Creates an object.

create(<objhandle>) Creates an object handle which represents an
instance.

default Defines the value to use for a variable if the
variable is not assigned a value.

defined(<variable>) Determines whether a variable is defined.

delete() Deletes an object on the Domain Manager.

delim Defines delimiters.

do Marks the beginning of an action block.

else {<statements>} Alternative actions when an if statement fails.

else if (<conditional expression>)
{<statements>}

Represents a conditional statement that provides
alternative actions when an if statement fails.

eol Represents the end of a line of data.

exact Used in conjunction with “case” to make all string
matches case-sensitive.

FAIL Keyword for exception handling. Causes a rule to
fail when an exception occurs.

FALSE A Boolean false.

feError() Returns a Boolean value. TRUE if the front end has
reported a failure to read data.

feErrorMsg() If the feError() function is true, the feErrorMsg()
function returns a string that describes the error.

feErrorReset() Resets the error state so that there is no error.

filter Marks the beginning of a filter block.

float Represents a floating number, including an
optional minus sign.

foreach <variable> (<list_or_table>)
{<statements>}

Iterates over the values of a list or the index of a
table. Variable is assigned successive values of the
list of table.

fs Represents a field-separator.

Table 21 ASL syntax (page 2 of 6)

Syntax Description

Syntax 135

ASL Reference

getCauses(<classname>,<objectname>,
<eventname>[,<oneHop>])

Returns a list of problems that can cause that
event. Each element of the list is a list that contains
classname, objectname, and eventname of the root
cause that causes that event.

getChildren(<classname>[,recursive]) Retrieves the list of classes derived from the
specified class.
The recursive parameter is optional.
• If omitted or false, only the immediate child

classes are retrieved.
• If true, all children, including those of derived

classes are retrieved.

getClosure(<classname>,<objectname>,
<eventname>[,<oneHop>])

Given a root cause or aggregation (compound),
returns a list of symptoms for that root cause.
Returned list is similar to the getCauses() function.

getEventClassName(<classname>,
<eventname>)

Returns a string with the name of the ancestor class
associated with a class and an event.

getEventDescription(<classname>,
<eventname>)

Returns a description for an event. The description
string is defined in MODEL.

getEventType(<classname>, <eventname>) Returns a string that indicates the type of the event
(PROBLEM, EVENT, AGGREGATE).

getExplainedBy(<classname>,
<instancename>,<eventname>[,<oneHop>])

Returns those problems which the MODEL
developer has listed as explaining this problem.

getExplains(<classname>,
<objectname>,<eventname>[,<oneHop>])

Given a root cause, returns the alternate closure as
defined in MODEL.

getInstances(<classname>) Returns a list of strings (not object handles) that
are the names of the instances of that class.

getRuleFileName([<fullname>]) Returns the filename of the currently executing rule
file.

getServerName() Returns the name of the Domain Manager.

getExternalString(<table>, <key>, <locale>) Extracts a string given a table name, key, and
locale, and renders the string given a list of
substitutions (up to six).

glob(<pattern>,<string>) Enables glob style pattern matching. Standard glob
syntax. Returns a Boolean.

global Defines the scope of a variable as global. If more
than one adapter for a repository, global values can
be shared.

hex Represents a hexidecimal number. There is no
minus sign.

hexToString(<hexadecimal>) Converts a hexidecimal number (the argument) to a
string.

if (<conditional expression>) {<statements>} Represents a conditional statement.

ignore Used in conjunction with “case” to make all string
matches NOT case-sensitive.

Table 21 ASL syntax (page 3 of 6)

Syntax Description

136 EMC Smarts Foundation ASL Reference Guide

ASL Reference

IGNORE Exception handling, ignores exception and
continue.

input=string Defines the input for parsing.

integer Represents an integer, including an optional minus
sign.

is(<objecthandle>-><Relate>,<object2handle>) Tests whether an object is a member of a
relationship.

isNull() Tests whether an object handle points a valid
object. If TRUE, object does not exist.

len(<number>) Moves the current starting position of an input
string a number of characters.

list(<listitem1>,<listitem2>,<listitem3>,etc.) Creates a list variable. Can either be used with
arguments or without.

local Variable scoping keyword.

LOG Keyword for exception handling. Writes to the
system log when an exception occurs.

LOG(<loglevel>) Keyword for exception handling. Writes to the
system log when an exception occurs and allows
the classification of the exception’s severity.

NEXT Keyword for exception handling. Skips remaining
actions in do block and goes to next rule.

NO_LOCK Argument passed to the transaction() function.

not(<pattern>) Does not match if pattern matches. Matches if the
pattern does not.

notany(<string>) Matches any character not included its argument
<string>.

numeric() Attempts to convert the argument to a number. If it
is a Boolean, it returns 1 if TRUE and 0 is FALSE. If it
is a string, it tries to interpret it as a number. If it
cannot, an error occurs.

object([<classname>,]<objectname>) Converts a name to an object handle.

object(<objhandle>) Returns an object handle.

peek(<pattern>) Prescan input for a pattern and match or fail it. The
search position does not change by using peek.

print(<string>) Prints the argument string to the screen.

quit() Shuts down the EMC Smarts process the adapter is
talking to. This can be the adapter or a Domain
Manager.
Tells the back end to shut down.If you launch
sm_adapter and do not specify a back end, the
adapter becomes its own back end. In such cases,
quit() does the same thing as self->quit().

READ_LOCK Argument passed to the transaction() function.

Table 21 ASL syntax (page 4 of 6)

Syntax Description

Syntax 137

ASL Reference

rep(<pattern>[,<Number>]) Repeat pattern or rule a defined number of times or
until it fails.

return <string> Returns a value from a do block.

self Same as self->.

self-> Directs functions that interact with the repository to
use the adapters repository and not the Domain
Manager's. Used in conjunction with adding
objects to the adapter's repository.

setLocale(<locale>) The <locale> is the RFC-1766/3066 compliant
specification for language and country. The return
value is a string representation of the previous
setting of the locale, or a default value if setLocale()
has not yet been called.

sizeOf(<string>) Counts the number of characters in a string.

sizeof(<string>) Counts the number of characters in a string.

sleep(<number>) Causes the adapter to sleep for a certain number of
seconds.

STOP Exception handling. Stops the ASL script.

stop() Stops the current thread. If you call stop() in an ASL
thread, and that thread is in a process that has
other threads, the effect is to simply kill that
thread. But if that thread is the only thread, which
is the typical case when using sm_adapter,
stopping that thread effectively kills the adapter
(because the adapter shuts down when there are
no more active threads).

string(<value>) Converts the argument to a string.

substring(<string>,<start_pos>,
<num_chars_to_remove>)

Returns a new string that is a piece of the string
passed to it.

tab(<integer>) Moves the starting position in an input string to the
position passed to the function. This cannot be
used to go backwards. If no argument is specified,
this function returns the starting position for
pattern matching in an input string.

table() Creates a table variable.

thread() Returns the thread ID of the thread that is running
the adapter.

time() Returns the system time.

toLower(<string>) Converts string to lowercase letters.

toUpper(<string>) Converts string to uppercase letters.

trace(<string>,BOOLEAN) Makes tracing available from with ASL

Table 21 ASL syntax (page 5 of 6)

Syntax Description

138 EMC Smarts Foundation ASL Reference Guide

ASL Reference

transaction([<WRITE_LOCK|READ_LOCK|
NO_LOCK>])

Starts a repository transaction. Allows updates to a
Domain Manager to be entered and then
committed all at once. Needs to be committed
before changes in the Domain Manager are
accepted. Use the abort() function instead of the
commit() function to remove changes. If a START
rule begins before things are committed, they are
automatically aborted. NO_LOCK is the default.

TRUE Boolean true.

undef() Undefines a variable. Appears as if the variable was
never assigned.

while Conditional statement causes loop while condition
is true.

word Represents a series of characters ending with, but
not including, a delimiter.

WRITE_LOCK Argument passed to the transaction() function.

Table 21 ASL syntax (page 6 of 6)

Syntax Description

Syntax 139

ASL Reference

Reserved words
Table 22 on page 140 lists the ASL words that are reserved and should not be used as
identifiers or variables. The reserved words are case-sensitive. Parentheses () indicate
functions. Not all of the reserved words are currently used.

Table 22 ASL reserved words

any() float ignore sizeOf()

boolean() foreach IGNORE sizeof()

break formatString() input rep()

case fs integer repository

char getCauses() is() sleep()

clear() getChildren() isNull() STOP

consistencyUpdate() getClassDescription() len() stop()

continue getClosure() list() string()

correlate() getEventClassName() local substring()

create() getEventDescription() LOG tab()

default getEventType() NEXT table()

defined() getExplainedBy() NO_LOCK thread()

delete() getExplains() not() time()

delim getExternalString() notany() toLower()

do getInstances() notify() toUpper()

else getOpDescription() numeric() trace()

eol getPropDescription() object() transaction()

exact getRuleFileName() peek()

FAIL getServerName() print() TRUE

FALSE glob() quit() undef()

feError() global READ_LOCK while

feErrorMsg() hex return() word

feErrorReset() hexToString() self WRITE_LOCK

filter if setLocale()

140 EMC Smarts Foundation ASL Reference Guide

APPENDIX B
dmctl Reference

This appendix describes the Domain Manager Control Program (dmctl) and how it
interacts with a Domain Manager. It consists of the following sections:

◆ Description ... 142
◆ dmctl syntax ... 143

dmctl Reference 141

dmctl Reference

Description
The Domain Manager Control Program or dmctl is a command line tool for interacting with
a Domain Manager. “dmctl syntax” on page 143 provides additional information. The
dmctl can be used to query, modify, or receive notifications from a Domain Manager.

The tool can do any of the following:

◆ Execute commands typed at the command line

◆ Execute commands read from a batch file

◆ Interactively read commands typed in

If no batch file or command is specified, dmctl enters an interactive mode in which it
prints a prompt and accepts typed user commands. If a batch file is specified, dmctl
executes the commands in the batch file. Single commands can also be specified.

Command names can be abbreviated, usually to the shortest unique prefix. There are
exceptions to allow a common command to be typed easily when an uncommon one
conflicts with it, and conversely, to prevent the accidental typing of some commands. For
example, getE is getEvents. The minimum abbreviation for getEventDescription is
getEventD. The quit and exit commands cannot be abbreviated, and shutdown must
appear as at least shut. Uppercase letters in command names are shown for clarity only.
They can be typed in lowercase, with the same meaning.

In non-interactive mode, dmctl also accepts commands that subscribe to notifications
from the Domain Manager. In that case, dmctl does not return, but continuously waits for
notifications and prints them to standard out (stdout).

◆ In a command-line mode, the Domain Manager to interact with must be specified with
the --server=<name> or -s <name> option.

◆ In batch or interactive mode, the Domain Manager to interact with can be specified
later with the attach command.

ASL and dmctl

Issuing dmctl instructions is a good method to use to find out about the classes,
attributes, events, relationships, and methods available in a Domain Manager. When you
debug ASL scripts, dmctl is an effective tool to monitor the state of a Domain Manager.

Setting the locale

Locale is the RFC-1766/3066 compliant specification for language and country. For
example, “fr_FR” refers to French as spoken in France.

The setLocale command can be used in dmctl to set the locale of a session, as described
in “Setting the locale” on page 15. The types of text that the locale affects is the same as
those described for an ASL script. The section “Locale effects on message rendering” on
page 15 provides additional information.

142 EMC Smarts Foundation ASL Reference Guide

dmctl Reference

dmctl syntax
The basic syntax is:

dmctl [options...] [<command>]

When given a command or batch file to run, dmctl executes the commands and exits.

The options include those listed in Table 23 on page 143.

Table 23 dmctl options

Option Description

--server=<name> Name of Domain Manager. This argument is used to identify
the Domain Manager to connect to. If it is not specified, it can
be set later, in interactive mode, by using the attach
command. If it is in a host:port/name format, the specified
host:port is used to locate Domain Manager name. Otherwise,
if it is in a simple name format, name is located by the Broker.
Also -s <name>.

--broker=<location> Alternate Broker <host>:<port> location. If it is not specified, the
Broker is located by the standard search order, as follows:
If the SM_BROKER environment variable is defined, use its
value. Otherwise, use the default smarts-broker:426 location.
Either <host> or :<port> portions may be omitted, in which case
the defaults smarts-broker and :426 are used, respectively.
Also -b <location>.

--file=<file> Input batch file. Given this option, dmctl executes the
commands in the file and exits.
Also -f <file>.

--timeout[=<seconds>] Set a timeout on the remote execution of each command. A
value of 0 specifies no limit. The default is 0 (no limit) in
interactive mode, 60 (1 minute) in non-interactive mode. If
--timeout is specified without an argument, a value of 60
seconds is used. If a remote command takes too long, an error
message is printed and dmctl immediately exits with the
status ETIME.

--traceServer Trace actions performed in the Domain Manager.

--commands List dmctl commands and exit.
Also -c.

--help Print help and exit.

--version Print program version and exit.

dmctl syntax 143

dmctl Reference

At any given time, dmctl can be attached to (at most) one Domain Manager. The dmctl
forwards all accepted commands to the attached Domain Manager, receives a response,
and prints it to stdout. It is important to remember that the commands are invoked in the
server process. The commands include those in Table 24 on page 144.

Table 24 dmctl commands (page 1 of 3)

Command Description

attach domain Attaches to the specified Domain
Manager. Once a Domain Manager is
attached, other commands can be
invoked.

clear <class>::<instance>::<event> Forces a clear of the specified event.

create <class>::<instance> Creates a new instance in the
repository.

consistencyUpdate Recomputes the codebook.

correlate Correlates now.

delete <class>::<instance> Deletes an instance from the
repository.

detach Detaches from the Domain Manager.
Another Domain Manager can now be
attached with the attach command.

execute <program> [<arg1> ...] Executes a program. Program should
be the base name of the program file,
without the suffix or directory. For
example, use “name” to load the
program name.po.

exit Exits dmctl.

findInstances <class-pattern>::<instance-pattern> Lists instances that match given class
and instance patterns.

get <class>::<instance>[::<property>] Lists all properties values or a given
property value for a particular class
instance.

getClasses Lists all classes in the repository.

getEvents <class> Lists all exported events defined in
given class.

getEventDescription <class>::<event> Prints description of given event.

getInstances [<class>] Lists all instances in the repository,
or all instances of the given class.

getModels Lists all models loaded to the
Domain Manager.

getOperations <class> Lists all operations defined in given
class.

getPrograms Lists all programs loaded to the
Domain Manager.

getProperties <class> Lists all properties defined in given
class.

144 EMC Smarts Foundation ASL Reference Guide

dmctl Reference

getThreads Lists all threads that are running in
the Domain Manager.

insert <class>::<instance>::<property> <value> Inserts a value into a table or
relationship.

invoke <class>::<instance> <op> [<arg1> ...] Invokes an operation of given
instance.

loadModel <model> Loads a new MODEL library. The
<model> should be the base name of
the library. Do not specify a prefix or
suffix with the name.
Once a MODEL library is loaded, a
prefix or suffix is added to the name.
For example, libname.so (UNIX) or
name.dll (Windows).
After a MODEL library is loaded, the
repository can be populated with
instances of classes defined in that
library.

loadProgram <program> Loads a new program.The <program>
should be the base name of the
program file. Do not specify a prefix
or suffix with the name.
Once a program is loaded, a prefix or
suffix is added to the name. For
example, name.po.
After a program is loaded, it can be
executed with the execute command.

notify <class>::<instance>::<event> Forces notification of a given event.

ping Verifies that the Domain Manager is
still alive.

put <class>::<instance>::<property> <value1>
[<value2> ...]

Sets value of given property.

quit Quits dmctl.

remove <class>::<instance>::<property> <value> Removes a value from a table or
relationship.

restore <file> Restores the repository from a file.
The <file> should not contain a
directory portion; it is read from
BASEDIR/smarts/local/repos.

shutdown Shuts down the Domain Manager.

save <file> [<class>] Saves the repository to a file. The
<file> should not contain a directory
portion. It is saved to
BASEDIR/smarts/local/repos. If
<class> is specified, then save only
the sub-tree rooted at class.

Table 24 dmctl commands (page 2 of 3)

Command Description

dmctl syntax 145

dmctl Reference

setLocale <locale> Allows you to set the locale before a
Domain Manager attach operation,
and to change the locale while the
session is open. The setLocale
command will print the value of the
previous setting on completion of the
API call.
The default locale is set for a dmctl
session as follows:
1. The value of the SM_LOCALE

environment variable.

2. If SM_LOCALE is not set equal to a
value, then the default locale is
set equal to en_US.

status Displays the connection status.

subscribe
<class-regexp>::<instance-regexp>::<event-regexp> ...

Subscribes to problems and events
that match the given patterns. The
dmctl sends the subscription
requests, and then loops indefinitely,
printing the received notifications.
The program exits only when the
Domain Manager is shut down, or
when interrupted.

subscribeEvents
<class-regexp>::<instance-regexp>::<event-regexp> ...

Subscribes to events that match the
given patterns. The dmctl sends the
subscription requests, and then
loops indefinitely, printing the
received notifications. The program
exits only when the Domain Manager
is shut down, or when interrupted.

subscribeProblems
<class-regexp>::<instance-regexp>::<event-regexp> ...

Subscribes to problems that match
the given patterns. The dmctl sends
the subscription requests, and then
loops indefinitely, printing the
received notifications. The program
exits only when the Domain Manager
is shut down, or when interrupted.

Table 24 dmctl commands (page 3 of 3)

Command Description

146 EMC Smarts Foundation ASL Reference Guide

APPENDIX C
Card-Port MODEL Code

This appendix provides the Card-Port MODEL as described in “Correlation model used for
example scripts” on page 95. It consists of the following sections:

◆ Card-Port MODEL example... 148

Card-Port MODEL Code 147

Card-Port MODEL Code

Card-Port MODEL example
The following example provides the Card-Port MODEL as described in “Correlation model
used for example scripts” on page 95.

/* card.mdl -
 *
 * Copyright (c) 2000, EMC Corporation
 * All Rights Reserved
 *
 * A simple model file for use as an example of writing and
* building a small model.
 *
 */

// Include the "resource" class from the netmate heirarchy.

#include "nm/nm.mdl"

// Since we include nm.mdl for purposes of derivation, we must
// have the generated .h file include nm.h

#pragma include_h "nm/nm.h"

///
//
// This is a very simple card.
//
///

// The class Card
interface Card : MR_ManagedObject {

 // Attributes maintained for the class Card
 attribute string CardDesc
 "A brief description of the card";

 // Relationship between the class Card and
 // the class Port
 relationshipset ComposedOf, Port, PartOf
 "The ports in this card";

 // The notifications for the class Card
 export
 Down, // Problems
 Impaired; // Compound Notification

 problem Down
 "The card is down, causing all its ports to be "
 "operationally down"
 = OperationallyDown;

 propagate symptom OperationallyDown
 "Symptom observed on the ports in this card"
 = Port, ComposedOf, OperationallyDown;

 // Compound notification
 aggregate Impaired
 "The card or a port on this card is Down"
 = Down,
 PortDown;

148 EMC Smarts Foundation ASL Reference Guide

Card-Port MODEL Code

 propagate aggregate PortDown
 "The Down problem on ports in this card"
 = Port, ComposedOf, Down;

}

// The class Port
interface Port : MR_ManagedObject {

 // Attributes maintained for the class Port
 enum operStatus_e {
 TESTING = 0,
 UP = 1,
 DOWN = 2
 };

 attribute operStatus_e operStatus
 "The operational status of the port"
 = TESTING;

 // relationship between the class Port and
 // the class Card
 relationship PartOf, Card, ComposedOf
 "The card this port is part of";

 // The notifications for the class Port
 export
 OperationallyDown, // Symptom
 Down; // Problem

 event OperationallyDown
 "This port is not operational"
 = operStatus == DOWN;

 // Problem
 problem Down
 "The port is down"
 = OperationallyDown;

}

Card-Port MODEL example 149

Card-Port MODEL Code

150 EMC Smarts Foundation ASL Reference Guide

INDEX

A
abort() 113
accept option, sm_adapter 121
Action

Role in a rule 20
Action block 20, 90
Adapter

Back end 13, 129
Components 13
Flow of information 12
Front end 13, 122
Inflow 12
Miscellaneous options 121
Outflow 12
Rule set 13, 129
Stopping 78, 132

quit() 78
Suspending operations 84
Temporarily stopping 84
Trace options 131
Use adapter repository 116

Adapter Scripting Language (ASL) 14
Addition operator 36
Alternate to delimiter 64
Alternative operator 45
Ancestor class 111
AND 37
any 49
Arithmetic operator

Table of 36
ASL

Reserved words
Table of 140

Setting locale 15
ASL and MODEL type conversion 109
Assignment operator 42, 58
Associative list 29
Attribute, class 94

B
Back end 13, 129
Backward slash 49
Block

Action 20
do 20
Filter 20

Boolean
Expression in a filter 66

boolean
Conversion 28

brace character
In pattern evaluation 47

break statement 74

C
Carriage return 49
case variable 64
Case-sensitivity 64
char match 50
Character

Number of 80
Skipping 58, 59

Character match 50
any 49

Character, special 49
see also Special

Class 94
Get children 112

Client locale, specifying 15
Comment

Informational text 26
commit() 113
Concatenation operator 37
Conditional statement

if else 73
while 72

consistencyUpdate() 110
continue statement 75
Control and iteration 70
Conversion 28

Automatic 27
boolean 28
Hexadecimal to string 86
numeric 28
string 28

Converting string
To lowercase 82
To uppercase 83

correlate() 110
Correlation model 94
create() 99
Critical

Error handling 91
customizing the delimiter 63

D
daemon option, sm_adapter 121
Data type 27
Debug

Log keyword 91
Tracing 131
With filter 68

Decimal portion of a number 36
Default

Locale 15
Variable 34
Variable from sm_adapter command 35

Default locale 15

EMC Smarts Foundation ASL Reference Guide 151

Index

Default variable and sm_adapter 35
DEFAULT, special rule 22
default() 34
defined() 79
delete() 103
delim 63
delim variable 63
Delimiter

Accounting for in a pattern 41
Alternate 64
And field-separator 54
Customization 63
For character and word matching 51

Delimiter, defining 63
Division operator 36
dmctl

Command-line tool 142
do block 20, 90
Domain Manager

dmctl commands 142
Functions to control 110
Get name of which one is running the script 116
Interacting 94
Remote 129
Restartable 126, 129, 130
Rotating log files 123

Dot operator 43
Double-dot operator 44
Driver-scoped variable 30

E
Empty list 28
Empty table 29
End-of-file (EOF) 22

Matches 63
End-of-line (eol)

Matches 55
Translation 122

Enumerated data types 108
Equal to operator 37
errLevel computed attribute

Retrieving current level at runtime 18
Setting level at runtime 18

Error handling 90
Determine if front end reported failure 115
Get description of error 115
Logging levels 91
Resetting error state 115

Error keyword 91
Event 94

Associated with a problem 112
Class where defined 111
Classification 112
Description 112
List of symptoms 111
Notification record format 124
Problems that cause 111
Symptom 111

Event correlation 110
exact 64

Example
Adding a value to a table 29
Alternate patterns 45
any character match 49
Appending a member to a list 28
break statement 74
Calling other rules 62
char match 50
Concatenation operator 37
continue statement 75
Create an object 99
Default variable 34
Defining a field-separator with sm_adapter 54
Delimiter 63
Dot operator 43
Double-dot operator 44
Driver-scoped variable 31

Limitations 32
Empty list 28
Empty table 29
End-of-line (eol) 55
Exception handling 91
Field-separator match 54
Filter 66
Filter with OR 67
Floating-point number match 52
foreach 70
foreach with a table 71
Front end invocations 127
getPropDescription() 106
Getting description of MODEL attribute 106
Getting handles 101
Getting instances 100
glob() 78
if statement 73
Integer match 52
isNull 104
Local variable 33
Looking ahead in the input stream 60
Lowercase 82
Mathematic operators 36
MODEL card-port 147
Multi-column table 29
not in a pattern 61
Passing arguments to rules 88
peek() 60
Properties 102
Record variable 31
rep() 56
return statement 87
setLocale() 15
Setting the locale 15
sizeof() 80
Static variable 30
String match 48
substring() 81
tab() 58
Time and its conversion 85
Transactions 113
Uppercase 83

152 EMC Smarts Foundation ASL Reference Guide

IndexIndex

Using operators on rules 62
Variable assignment from a pattern 42
while statement 72

Exception handling 90
Logging levels 91

Exit
A loop 74

F
FAIL 90
Fatal 91
feError() 115
feErrorMsg() 115
feErrorReset() 115
Field-separator

And delimiter 54
Matches 54
Translation 123

File front end 122
File tail front end 122, 123
Filename

getRuleFileName() 87
Filter

Block 20
Operator 66
Role in a rule 20

filter 66
Floating-point number match 52
Flow of information through adapter 12
foreach statement 70
formatString() 16
Front end 13

Type 122
fs 54

Translation 123
Function

Combining with rules and operators 61
consistencyUpdate() 110
Control Domain Manager action 110
correlate() 110

G
getCauses() 111
getChildren() 112
getClassDescription(), SM_System operation 15, 106
getClosure() 111
getErrorText() 15
getEventClassName() 111
getEventDescription() 112
getEventDescription(), SM_System operation 15, 106
getEventType() 112
getExplainedBy() 112
getExplains() 112
getExternalString() 16
getInstances() 100
getOpDescription(), SM_System operation 15, 106
getPropDescription(), SM_System operation 15, 106
getRuleFileName() 87, 116
getServerName() 116

glob() 76
Symbols 77

Global-scoped variables 34
Greater than operator 37
Greater than or equal to operator 37

H
Hashed array 29
help option, sm_adapter 121
Hexadecimal matches 53
Hexadecimal to string conversion 86
hexToString() 86

I
if else statement 73
IGNORE 90
ignore 64
Immediate match 43
Inflow adapter 12
Informational

Error handling 91
input 64
Input datastream 26

Re-synchronize 22
Instance 94

Deleting 103
Listing 100

Integer
Matches 52

is() 104
isNull() 104
Iteration

A list 70
And control 70

K
Key in table 29

L
len() 58, 59
Less than operator 37
Less than or equal to operator 37
Line feed 49
List

Adding members 28
Associative 29
Index 28
MODEL equivalent 109
Number of members 80

Locale
Default 15
Setting in ASL 15

Local-scope variable 32
LOG 90
Log file

Rotating 123
Logging level 91
Logical AND operator 37, 66

EMC Smarts Foundation ASL Reference Guide 153

Index

Logical OR operator 37, 66
logLevel computed attribute

Retrieving current level at runtime 18
Setting level at runtime 18

looking ahead in the input stream 60
Loop

break 74
Stopping 74

Lowercase conversion 82

M
Markers 26
Match

All characters 44
Delimiter 51
Fails 40
Succeeds 40
Through other rules 61

Mathematical operator
Table of 36

MODEL 94
Accessing and updating structure attributes 107
Accessing enumerated data types 108
And ASL type conversion 109
Card-port example 147
Get class description 15, 106
Get event description 15, 106
Get operation description 15, 106
Get property description 15, 106
Retrieve descriptions 106
Tables 106, 107

Model
Correlation 94

Modulus operator 36
MR_Object class 101, 104
Multiplication operator 36

N
NEXT 90
Next iteration 75
NO_LOCK 113
Not equal to operator 37
Notany

Character matches 50
Notice

Error handling 91
Notification format 124

Class load record 125
Class unload record 126
Domain Manager connect record 126
Domain Manager disconnect record 127
Event notification records 124
Object create record 125
Object delete record 125
Property change record 126
Relation change record 126

NULL object 95, 104
NULL string 46
Number of

Characters 80
Defined members 80
Elements 80

numeric 28

O
Object

Attributes 101
Controlling transactions 113
Creating 99
Creating a handle 100
Deleting 103
Operations 101
Properties 101
Relationships 101, 104
Test for NULL 104
Test relationship member 104

Object handle 100, 137
By relationship 101
Create for existing objects 100, 101
Creating 99
Drop 103
MODEL equivalent 105, 109
Test 104

object() 100
Operator

Arithmetic 36
Combining with rules and functions 61
Logical 37
Mathematical 36
Precedence 38, 47
Relational 37
String 37

Operators
Indirection 103

Outflow adapter 12
Output of print 83
overriding delimiters 63

P
Pattern 40

Alternates 45
And variables 42
Behavior of repeated 56
Case-sensitive/insensitive 64
Elements 48
Fails 40
Input 64
Matches 40
Matching in action blocks 76
Multiple matches 55
Precedence of operators 47
Repeated matches 55
Role in a rule 20
Starting point 40
Switching the input 64
Wildcard 76

peek() 60
peeking 60

154 EMC Smarts Foundation ASL Reference Guide

IndexIndex

Percentage sign 36
Positional matching 58
Precedence

Operator evaluation 38
print() 83
Program front end 122, 123

Q
Question mark 90
quit() 78
Quotation mark, single or double 48, 49

R
READ_LOCK 113
Recompute correlation rules 110
Record lifetime variable 31, 32
Recursion and variable 32
Relational operator 37
Relationship 94, 104
Relationshipset 94

Modifying 105
Remainder 36
rep() 55

Behavior 56
Repository

How to use adapter’s 116
Reserved words

Table of 140
Restartable Domain Manager 127, 130
Restart-enabled Domain Manager 130
Re-synchronizing the input datastream 22
Retrieving externalized string 16
return statement 87
Rule

Call another rule 61
Combining with operators and functions 61
DEFAULT 22
EOF 22
Naming conventions 20
Order of execution 23
Passing arguments 88
Returning from a value 87
START 21
Subordinate 21
Superior 21

Rule file
Get name of executing rule file 116
getRuleFileName() 87

Rule set 13, 20

S
self 116
Semicolon 70
setLocale()

Data types affected 15
Example 15
Specifying client locale 15

sizeOf() 80
sizeof() 80

Skipping characters 59
Slash

For comment 26
sleep() 84
sm_adapter 14, 120

accept option 121
Back end options 130
Basic options 120
daemon option 121
Default variable 35
Defining a field-separator 54
Front end options 128
help option 121
Miscellaneous options 121
rserver option 130
Rule set options 129
trace function 86
Trace options 131
Tracing options 131
Variable assignment 35
version option 121

SM_LOCALE environment variable 15
SM_System

getClassDescription() 15
getEventDescription() 15
getOpDescription() 15
getPropDescription() 15
Retrieve MODEL descriptions 106

Special
Characters 49

Special character
For glob function 77

Special rule
EOF 22
START 21

Special rules 21
START 21
Starting point 40
Static lifetime variable 30
Stop

A loop 74
Stop adapter

Temporarily 84
STOP, error handle 90
stop() 78
Stopping 132
String

Cutting into substrings 81
Matches 48
Operators 37
Size of 80

string 28
String substitution 16
Structures 107
Subordinate rule 21
Subscriber front end 122, 124, 126
Substitution

In ASL string 16
substring() 81
Subtraction operator 36

EMC Smarts Foundation ASL Reference Guide 155

Index

Superior rule 21
Symptom associated with an event 111
System time 85

T
Tab, special character 49
tab() 58
Table 29

Clearing 107
Columns 29
foreach statement 71
In MODEL 106
Key 29
Multi-column 29
Number of members 80
Value 29

Thread id for adapter running script 116
thread() 116
time() 85
toLower() 82
toUpper() 83
Trace options 131
trace() 86
traceLevel computed attribute

Retrieving current level at runtime 18
Setting level at runtime 18

Tracing how code parses parameters 86
Tracing operations 131
Transaction

controlling 113
transaction() 113
Type 27
Type conversion 28

And time 85
ASL and MODEL 109
Automatic 27

U
undef() 80, 103
Undefine variable 80
Uppercase conversion 83

V
Validate matching in rule 86
Variable 27

Assigning patterns 42
Assignment 35
case 64
Default 34
Defined 79
Defined at beginning of script 30
Defined in rule set 30
delim 63
Driver 30
For recursions 32
Global 34
Local-scope 32
Naming convention 27
Object property assignment 102

Overriding values 34
Record 31, 32
Scope 29
Special 63
Static 30
Undefine 80

version option, sm_adapter 121

W
Warning 91
while statement 72
White space operator 41
Wildcard 76
Wildcard pattern 76
Word

Matches 51
word 51
WRITE_LOCK 113

156 EMC Smarts Foundation ASL Reference Guide

		Overview

		Adapters and ASL

		Adapter components

		Adapter Scripting Language

		Introduction to running adapters

		Setting the locale

		Locale effects on message rendering

		Default locale when setLocale() is not called

		String support

		Obtaining externalized strings

		Applying substitutions

		Printing and logging

		Retrieving and setting log, error and trace levels at runtime

		Rule Sets

		Rule set construction

		Special rules

		Rule execution

		Operators and Expressions

		Data and comments

		Data

		Comments

		Variables and their values

		Type conversions

		Lists and tables

		Scope of variables

		Default variable values

		Variable assignment at startup

		Operators

		Arithmetic operators

		String operators

		Relational and logical operators

		Precedence and order of evaluation

		Pattern Matching and Filters

		Patterns

		Using a function in a pattern

		Pattern operators

		White space handling

		Assignment operator

		Dot operator

		Double-dot operator

		Alternative operator

		Maybe operator

		Grouping patterns

		Precedence of pattern operators

		Pattern elements

		String matches

		Any character matches

		Notany character matches

		Char matches

		Word matches

		Integer matches

		Floating-point number matches

		Hexadecimal matches

		Field-separator matches

		End-of-line matches

		Repeated pattern matches

		Boolean expressions

		Positional matching

		Peek() function

		Not() function

		Matching through other rules

		End-of-file matches

		Special variables

		Customizing the delimiter

		Making patterns case-sensitive or case-insensitive

		Switching the input of a pattern

		Filters

		Actions

		Action block

		Operators

		Iteration and control statements

		foreach statement

		while statement

		if else statement

		break statement

		continue statement

		Function reference

		glob() function

		stop() function

		quit() function

		defined() function

		undef() function

		sizeof() function

		substring() function

		toLower() function

		toUpper() function

		print() function

		sleep() function

		time() function

		trace() function

		hexToString() function

		getRuleFileName() function

		Returning values

		Passing arguments to functions

		Calling rules as functions from do blocks

		Exception handling

		Interfacing with a Domain Manager

		ASL and the MODEL language

		Correlation model used for example scripts

		Objects and instances

		Creating objects

		Listing instances

		Creating handles for existing objects

		Attributes, relationships, and operations of objects

		Deleting objects

		Testing for null objects

		Testing relationships

		Modifying relationshipsets

		Retrieving description texts

		Tables, structures and enumerations

		Accessing tables in MODEL from ASL

		Clearing the members of a table

		Updating and accessing structure attributes in MODEL

		Accessing enumerated data types in MODEL

		Type conversions between ASL and MODEL

		Domain Manager control

		consistencyUpdate() function

		correlate() function

		Events

		getCauses() function

		getClosure() function

		getEventClassName() function

		getEventDescription() function

		getEventType() function

		getExplainedBy() function

		getExplains() function

		getChildren() function

		Transactions, commit, and abort

		Error handling

		feError() function

		feErrorMsg() function

		feErrorReset() function

		Repositories

		self->

		Naming and identity

		getRuleFileName() function

		getServerName() function

		thread() function

		Tracing ASL scripts

		Running Adapters

		The sm_adapter command

		Basic options

		Front end

		File front end

		File tail front end

		Program front end

		Subscriber front end

		Object create record

		Subscriber front end with a restartable Domain Manager

		Sample front end invocations

		sm_adapter front end options

		Rule set

		sm_adapter rule set options

		Back end

		Behavior of the restart-enabled Domain Manager

		Back end options

		Tracing operations

		Rule set

		Back end

		Trace options

		Stopping adapters

		ASL Reference

		Syntax

		Reserved words

		dmctl Reference

		Description

		ASL and dmctl

		Setting the locale

		dmctl syntax

		Card-Port MODEL Code

		Card-Port MODEL example

		Index

EMC® Smarts®
Foundation 9.4

Perl Reference Guide
P/N 302-002-290

REV 01

EMC Smarts Foundation Perl Reference Guide2

Copyright © 1996 - 2015 EMC Corporation. All rights reserved. Published in the USA.

Published October, 2015

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

EMC², EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

EMC Corporation
Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.EMC.com

CONTENTS

Chapter 1 Introduction

 Fundamental concepts.. 12
Classes ... 13
Instances .. 13
Properties - Attributes and relationships ... 13
Operations.. 14
Events... 14
Primitives - Basic Domain Manager interface ... 14
Encryption... 14
“Keep Alive” messaging .. 14
Transcoding character data ... 15
Setting environment variables... 15

 Overview of a simple API Perl script... 15
 Using primitives and object references.. 17
 Event subscription .. 17

Registering an observer... 18
Subscribing to notifications .. 19
Receiving notifications .. 19

Chapter 2 InCharge::Object

 Overview... 26
 Functions and methods... 28

object ... 28
get .. 28
get_t ... 29
put .. 30
isNull .. 30
invoke... 30
invoke_t.. 31
insertElement.. 31
removeElement ... 31
delete ... 31
notify .. 32
clear.. 32
countElements .. 32

Chapter 3 InCharge::Session

 Overview... 34
 Function groups .. 35

Session management functions .. 35
Domain Manager primitive functions... 35
Utility functions... 35
Wrapper functions... 35
Specifying the client locale.. 36

 Error handling ... 36
 Session management functions .. 36

new... 36
init .. 38

EMC Smarts Foundation Perl Reference Guide 3

Contents

broken .. 39
reattach .. 39
detach .. 40
observer.. 40
receiveEvent ... 40
object ... 41
create ... 42
callPrimitive .. 42

 Utility functions... 43
TYPE.. 43
getFileno ... 43
getProtocolVersion.. 43
primitiveIsAvailable .. 44
select .. 44

 Specifying the locale while connected... 45
 Retrieving and setting log, error and trace levels at runtime......................... 45

Retrieving the current level.. 46
Setting the level .. 46

 Wrapper functions... 46
save.. 46
put .. 47
invoke... 47
invoke_t.. 48
findInstances .. 48
getCauses ... 49
getClosure... 50
getExplains ... 50
getExplainedBy ... 51
subscribe and unsubscribe ... 51
transaction, abortTxn and commitTxn.. 53
delete ... 54
getEventType .. 54
getServerName ... 55
insertElement.. 55
removeElement ... 55

Chapter 4 Primitives

 Primitive naming conventions ... 58
Name .. 58
Conventions.. 58

 Primitive calling conventions... 58
 Error handling ... 59
 Error codes ... 60
 Data types .. 61

$session ... 61
$object ... 61
@objects .. 62
$symptom, @symptoms ... 62
$symptomData, @symptomData... 63
$type, @types... 63
$freshness.. 64

 Primitives.. 65
classExists .. 65
consistencyUpdate ... 65

4 EMC Smarts Foundation Perl Reference Guide

Contents

correlate ... 65
countChildren ... 65
countClassInstances ... 65
countClasses .. 65
countElements .. 66
countInstances ... 66
countLeafInstances... 66
countf ... 66
createInstance .. 66
deleteInstance .. 66
deleteObserver ... 67
eventIsExported .. 67
execute ... 67
executeProgram .. 67
exists .. 68
findInstances_P .. 68
forceNotify .. 68
get .. 69
get_t and get_T ... 69
getAggregationEvents ... 69
getAllEventNames ... 69
getAllInstances ... 70
getAllProperties and getAllProperties_t ... 70
getArgDirection ... 71
getArgType .. 71
getAttributes ... 71
getAttributeNames .. 71
getAttributeTypes.. 72
getByKey... 72
getByKey_t and getByKey_T... 72
getByKeyf.. 72
getByKeyf_t and getByKeyf_T... 72
getChildren ... 73
getClassDescription .. 73
getClassHierarchy ... 73
getClassInstances ... 73
getClasses .. 74
getCorrelationParameters.. 74
getEnumVals... 74
getEvents .. 75
getEventCauses .. 75
getEventClassName .. 75
getEventDescription .. 75
getEventExplainedBy... 75
getEventExported .. 76
getEventNames ... 76
getEventSymptoms ... 76
getEventType_P... 76
getInstances ... 77
getInstrumentationType .. 77
getLeafInstances... 77
getLibraries... 78
getModels... 78
getMultipleProperties and getMultipleProperties_t................................ 78
getObserverId ... 78

EMC Smarts Foundation Perl Reference Guide 5

Contents

getOpArgType ... 79
getOpArgs ... 79
getOpDescription .. 79
getOperationArguments .. 79
getOperationArgumentType... 79
getOperationDescription ... 80
getOperationFlag... 80
getOperationReturnType ... 80
getOperations ... 80
getOpFlag ... 80
getOpNames ... 80
getOpReturnType .. 81
getParentClass.. 81
getProblemClosure.. 81
getProblemExplanation ... 81
getProblemNames... 82
getProblemSymptomState... 82
getPrograms.. 82
getPropAccess .. 82
getPropDescription ... 83
getProperties .. 83
getPropertyDescription.. 83
getProperties .. 83
getPropertyType .. 84
getPropIsReadonly .. 84
getPropIsRelationship ... 84
getPropIsRequired... 84
getPropNames .. 84
getPropRange.. 84
getPropType.. 85
getPropertySubscriptionState.. 85
getRelatedClass .. 85
getRelationNames... 85
getRelations.. 86
getRelationTypes... 86
getReverseRelation ... 86
getSubscriptionState .. 86
getThreads.. 86
getf ... 87
getf_t and getf_T ... 87
getfAllProperties and getfAllProperties_t ... 87
getfMultipleProperties and getfMultipleProperties_t.............................. 88
hasRequiredProps... 88
insertElement_P.. 88
instanceExists... 89
invoke... 89
invoke_t and invoke_T .. 89
invokeOperation ... 89
invokeOperation_t and invokeOperation_T.. 90
isAbstract.. 90
isBaseOf ... 90
isBaseOfOrProxy ... 90
isInstrumented.. 91
isMember.. 91
isMemberByKey .. 91

6 EMC Smarts Foundation Perl Reference Guide

Contents

isMemberByKeyf ... 91
isMemberf... 91
isSubscribed... 92
loadLibrary.. 92
loadModel .. 92
loadProgram ... 92
noop ... 92
notify .. 93
ping .. 93
propertySubscribe... 93
propertySubscribeAll... 93
propertyUnsubscribe... 93
propertyUnsubscribeAll... 93
purgeObserver .. 94
put_P .. 94
quit ... 94
removeElement_P ... 94
removeElementByKey.. 95
restoreRepository.. 95
setCorrelationParameters.. 95
shutdown.. 95
storeAllRepository... 95
storeClassRepository .. 96
subscribeEvent ... 96
subscribeAll .. 96
topologySubscribe .. 96
topologyUnsubscribe .. 97
transactionAbort ... 97
transactionCommit.. 97
transactionStart .. 97
unsubscribeAll .. 98
unsubscribeEvent ... 98

Appendix A IPv6 Considerations

 Conventions for specifying IPv6 addresses.. 100
 Controlling name resolution .. 101

The SM_IP_VERSIONS environment variable.. 101

Index

EMC Smarts Foundation Perl Reference Guide 7

Contents

8 EMC Smarts Foundation Perl Reference Guide

Title Page

TABLES

1 Subscription methods summary.. 19
2 Notification record - NOTIFY... 20
3 Notification record - CERTAINTY_CHANGE .. 20
4 Notification record - CLEAR .. 21
5 Notification record - CREATE .. 21
6 Notification record - DELETE .. 21
7 Notification record - CLASS_LOAD ... 22
8 Notification record - RELATION_CHANGE.. 22
9 Notification record - ATTR_CHANGE ... 22
10 Notification record - DISCONNECT.. 23
11 Notification record - ACCEPT, REJECT, (PROPERTY).. 23
12 Notification record - SUSPEND (PROPERTY) .. 24
13 Notification record - TIMEOUT.. 24
14 Return type for call syntax and Perl evaluation context .. 29
15 Computed attributes to retrieve and set log, error, and trace levels at runtime............. 45
16 Subscription flag parameter values ... 52
17 Transaction lock options ... 53
18 Event types ... 54
19 Error codes.. 60
20 Formats to specify a repository object ... 62
21 Symptom data codes .. 63
22 Type codes.. 63
23 Class hierarchy descriptor ... 73
24 getCorrelationParameters return values... 74
25 getEventType return codes .. 77
26 getOpFlag return codes ... 80
27 getPropAccess return codes .. 82
28 getPropertySubscriptionState return codes ... 85
29 getSubscriptionState return codes .. 86
30 getThreads return codes.. 87
31 Lock code literals .. 98
32 Acceptable values for the SM_IP_VERSIONS environment variable 102

EMC Smarts Foundation Perl Reference Guide 9

Tableses

10 EMC Smarts Foundation Perl Reference Guide

Introduction

CHAPTER 1
Introduction

This chapter consists of the following sections:

◆ Fundamental concepts.. 12
◆ Overview of a simple API Perl script... 15
◆ Using primitives and object references.. 17
◆ Event subscription .. 17

11

Introduction

Fundamental concepts
The EMC® Smarts® Perl API provides a programmable interface with EMC Smarts Domain
Managers. You can use it to perform various actions such as:

◆ Getting information about a running Domain Manager

◆ Creating or deleting objects in the domain topology

◆ Getting or setting data about objects in the topology

◆ Executing operations that are declared for an object class

The EMC® Smarts® Remote Application Programming Interface (API) for Perl allows
developers to create Perl scripts that connect to Domain Managers as clients to exchange
information, manipulate data, or drive Domain Manager actions. The API provides access
to all Domain Manager features, by using a syntax and logic that mirrors what is available
through the Adapter Scripting Language (ASL) and the dmctl utility in a way that is natural
to Perl developers. The API runs on Windows and UNIX platforms that support Perl 5.6.1
and Perl 5.8.x.

When using the provided Perl 5.8.8 version, the API uses a Flow module, which replaces
IO::Socket and enables encryption and “keep alive” functionality. If you use Perl 5.6.1
there is no encryption or keep alive functionality.

The API also supports IPv4 and IPv6 environments.

In order to create scripts that interact with a Domain Manager, it is necessary to
understand how the manager is configured.

A script developed using the Perl API can create, delete and interact with instances of
interfaces in a Domain Manager. The interfaces are defined using the MODEL language,
compiled and loaded into a Domain Manager. The MODEL language is an object-oriented
language used to construct a data model to describe a managed domain. The language is
used to define a set of classes and the attributes, relationships, operations, and events
that are associated with the classes.

EMC Smarts installation directory
In this document, the term BASEDIR represents the location where EMC Smarts software is
installed.

◆ For Windows, this location is C:\InCharge\<product>.

◆ For UNIX, this location is /opt/InCharge/<product>.

Optionally, you can specify the root of BASEDIR to be something other than:

◆ Windows: C:\InCharge

◆ UNIX: /opt/InCharge

However, you cannot change the <product> location under the root directory.

The EMC Smarts System Administration Guide provides more information about the
directory structure.

Where to get help
EMC support, product, and licensing information can be obtained as follows:

12 EMC Smarts Foundation Perl Reference Guide

Introduction

Product information — For documentation, release notes, software updates, or
information about EMC products, go to EMC Online Support at:

https://support.emc.com

Technical support — Go to EMC Online Support and click Service Center. You will see
several options for contacting EMC Technical Support. Note that to open a service request,
you must have a valid support agreement. Contact your EMC sales representative for
details about obtaining a valid support agreement or with questions about your account.

Classes

Classes describe the objects that are modeled for use in a Domain Manager. For example,
Router is the name of a class, and all routers that are managed by a domain are
represented as Router objects in the domain. Every object in a class shares the same set
of attributes, although the values of the attributes differ. Hence, every router has an IP
address, an attribute, but the actual addresses are different. PowerSupply is also a class,
but power supplies do not have IP addresses. However, the event, power outage, is
relevant to the PowerSupply class but not to routers. Therefore, a model class is a
grouping of all objects that are similar in nature but not in detail.

Every model class has a number of properties, events and operations defined for them.
The API provides functions for obtaining details of these definitions.

Instances

Object instances are specific occurrences of a class. For example, a class might describe a
human, and an instance of the class could be an object named Bill.

Properties - Attributes and relationships

Every instance in a EMC Smarts domain has a set of properties associated with it. These
are values that describe the object. There are two distinct types of class properties
supported by EMC Smarts software: attributes and relationships.

Attributes
Attributes describe a class and for an instance of the class include information about its
present state. Examples of attributes include an element’s name and a counter that
counts the number of packets traversing an interface. Attributes are simple strings,
integers, booleans, or enumerations.

Relationships
Relationships define how instances are related to other instances. Relationships can be
one-to-one, one-to-many, many-to-one or many-to-many.

◆ When only a single instance can be related to another instance, or instances, it is
known as a relationship.

◆ When multiple instances can be related to another instance, or instances, it is known
as a relationshipset.

Fundamental concepts 13

http://support.emc.com

Introduction

Operations

Operations are actions that are specific to a class of object. For example, you can get the
associated network adapter name for a MAC address but not for a router.

The API provides a mechanism for invoking these class-specific actions, by passing
information to them through arguments, and by obtaining the results of the action.

Events

Events describe the failures that can occur for a class, the symptoms that these failures
create, and the effect of such failures. Symptoms can be local, observed in the instance of
the class, or propagated, observed in instances related to the failing instances.

Primitives - Basic Domain Manager interface

Primitives are Perl functions that provide the basic interface between a client application
and the Domain Manager.

A number of these are likely to be used directly by scripts and will be familiar to ASL
developers. These include getInstances(), getChildren(), getExplainedBy().

Others are normally hidden from view because higher level features can be used instead,
which ultimately call the primitives. For example, primitives that are not normally used
directly are get() and invoke(). These are the calls that allow an instance's properties to be
queried and its operations to be called. In both the API for Perl and ASL, these calls are
normally invoked by using a classic object-oriented syntax.

The EMC Smarts ASL Reference Guide provides further information about the EMC Smarts
data structures.

The Perl API is implemented as a set of Perl modules, which individual Perl scripts may
access, by using the familiar “use” directive. InCharge::session and InCharge::object offer
the principal interface, which respectively provide connection sessions to Domain
Managers and access to objects within those managers. Simultaneous sessions to
multiple Domain Managers may be established within a single Perl script. Properties and
methods of objects within those managers may be accessed as with C++, offering
somewhat broader functionality than that afforded by ASL.

Encryption

Messaging between the client and Domain Manager can be encrypted, by using the Perl
API. Encryption is dependent upon the values set for the environment variables
SM_INCOMING_PROTOCOL and SM_OUTGOING_PROTOCOL. If these values are not
specified, encryption is automatically negotiated between the client and Domain
Manager. The EMC Smarts System Administration Guide provides further information
about encryption.

“Keep Alive” messaging

The Perl API also supports “Keep Alive” messaging to maintain active connections
between the client and DM, as discussed in the EMC Smarts System Administration Guide.

14 EMC Smarts Foundation Perl Reference Guide

Introduction

Transcoding character data

You must transcode character data from your code page to UTF-8 before placing the
character data into the remote API buffer. Data will be returned to your Remote API client
application bindings as UTF-8 strings.

Setting environment variables

You must define the following variables to run a Perl script within the EMC Smarts
environment from the command line.:

◆ SM_HOME
◆ SM_WRITABLE
◆ SM_AUTHORITY
◆ SM_BROKER
◆ SM_BROKER_DEFAULT
◆ SM_SITEMOD
◆ SM_INCOMING_PROTOCOL
◆ SM_OUTGOING_PROTOCOL

You can find further information on these variables in the EMC Smarts System
Administration Guide.

To set these variables, enter the following command to start the bash environment:

BASEDIR/smarts/bin/runcmd bash

bash$>

A Perl script to define the variables can now be run within this bash environment.

“Keep Alive” and encryption requirements
The Perl API now supports “Keep Alive” and encrypted communications when run with the
version of Perl supplied by EMC. You should use the sm_perl command that is shipped
with the EMC Smarts software, in order to successfully run the Perl API.

You can use a pure Perl implementation without keepalive or encryption by setting the
environment variable SM_DISABLE_FLOW_WRAPPER.

Overview of a simple API Perl script
The general approach to writing a script that uses the Remote Perl API is to follow these
basic steps:

1. Open a session.

Initialize a session, and obtain a reference to it, by using either
InCharge::session->init() or InCharge::session->new(), as appropriate.

use InCharge::session;
$session = InCharge::session->init();

Overview of a simple API Perl script 15

Introduction

• To have the script’s user supply the session connection details on the command
line (such as the broker, domain name, username and password), choose the init()
method. The init() method will parse the command line arguments supplied to the
Perl script and use them to setup the connection. The section “init” on page 38
provides additional information.

• To give the script greater control over the details that are used to establish the
connection, choose the new() method. The section “new” on page 36 provides
additional information.

2. Work with the domain.

Call the primitives required, by using the session reference obtained in step 1, and
manipulate the data. For example,

foreach $class (sort $session->getClasses()) {
foreach $inst (

sort $session->getInstances($class))
{

print $class . "::" . $inst . "\n”;
}

}

3. Close the session.

Once the script has finished working with the domain, the session should be closed.

$session->detach();

Where access to the operations or properties of domain objects (such as routers and
interfaces) is required, you use the features of the InCharge::object module. The script
obtains an InCharge::object reference, and then uses it to access the required
information. For example.

1. Establish a session.

use InCharge::session;
$session = InCharge::session->init();

2. Obtain an object reference.

Before an object in the domain can be accessed, the script needs to obtain an
InCharge::object reference to the object of interest, by using the object() method of
the session handle.

$obj = $session->object("Router::gw1");

3. Manipulate the object.

The reference obtained in step 2 can now be used to access the properties and
operations of the object. Properties can be accessed, by using Perl's hashing syntax
and operations can be invoked, by using Perl's object-oriented syntax conventions.

$type = $obj->{Type};
$obj->{Vendor} = "Cisco";
$fan1 = $obj->findFan(1);

4. Close the session.

As before, the session should be closed when no longer required.

$session->detach();

16 EMC Smarts Foundation Perl Reference Guide

Introduction

Using primitives and object references
The API provides function calls for accessing all the low-level facilities of Domain
Managers. Each of these primitives can be invoked with reference to the InCharge::session
handle, described in step 1 on page 15, and takes arguments that exactly match the API
syntax.

The API also provides an object-oriented abstraction layer that allows Perl code to access
the Domain Manager, by using a syntax that is very similar to ASL. For example, in ASL you
can list the vendors of all routers, by using this logic:

routers = getInstances("Router");
foreach router (routers) {

obj = object("Router", router);
vendor = obj->Vendor;
print(router . " - " . vendor);

}

When using the Perl API to perform the same action, the code looks like this:

@routers = $session->getInstances("Router");
foreach $router (@routers) {

$obj = $session->object("Router", $router);
$vendor = $obj->{Vendor};
print $router . " - " . $vendor . "\n”;
}

The two code fragments in the ASL and Perl API example are very similar. The first main
difference is a matter of syntax. Perl uses ``$'' and ``@'' to denote scalar and array
variables, and {..} to denote object properties, which are hash table lookups. The second
difference is that the object(..) and getInstances(..) functions are called with reference to
a session handle in the Perl code.

Event subscription

The Perl API provides mechanisms for subscribing to and acting upon events generated by
Domain Managers.

The EMC Smarts programming model delivers two different modes of client/server
communication. The most direct is where a client makes a request of the Domain Manager
which acts on the request and responds. A simple example of this is an object query or
update. For example, the action of obtaining the vendor of a particular device is one such
query. In Perl, this query would be encoded in a manner similar to the following fragment.

use InCharge::session;
use InCharge::object;

$session = InCharge::session->init();
$device = "Router::gw1";
$obj = $session->object($device);
$vendor = $obj->{Vendor};
print $vendor . "\n”;

The second mechanism provides asynchronous notifications through subscriptions and is
used when the client program needs to listen for events generated by the Domain
Manager in response to other external events. One example would be a script that waits
for the Vendor field of a particular router to change. In Perl, this could be coded in the
following way.

Using primitives and object references 17

Introduction

use InCharge::session;
use InCharge::object;

$session = InCharge::session->init();
$observer = $session->observer();
$device = "Router::gw1";
$session->propertySubscribe($device, "Vendor", 30);
while (1) {
@event = $observer->receiveEvent();
print "Vendor $event[2]::$event[3] is now \

$event[5]\n”;
}

The following sections provide an overview of mechanisms for creating and controlling a
number of different types of subscriptions.

Registering an observer

In order to allow a Domain Manager to send subscribed events to a client program, the
client must first register itself with the Domain Manager as an event observer.

In Perl, this is done by using the observer() method of the InCharge::session module. Two
steps are required:

1. Connect to the Domain Manager and get a valid session object handle.

First, the client must connect to the Domain Manager which establishes a new
InCharge::session connection. This is done by using either the
InCharge::session->new() or InCharge::session->init() methods.

Here are some example code fragments that achieve this goal:

$session = InCharge::Session->init()

The following example uses the InCharge::session->new() method to establish a
connection, and provides the broker and server options.

$session = InCharge::session->new(
broker=>"192.168.0.3",
domain=>"INCHARGE"

);

Establishing a connection with the InCharge::session->new() method allows the
connection options to be specified explicitly by the script itself.

2. Attach an observer to the Domain Manager session.

Once the script has obtained a handle that references the script/server connection
($session in step 1 on page 18), it can be used to obtain a second connection to the
notification engine of the Domain Manager. This is obtained by using the observer()
method on the InCharge::session handle just obtained. The following code performs
this action.

$observer = $session->observer();

This $observer handle now references a second link between the client script and the
Domain Manager, which is used to pass subscribed events to the client in real time.

The observer connection can be closed, detached, or destroyed by using the detach()
object method:

$observer->detach();

18 EMC Smarts Foundation Perl Reference Guide

Introduction

This action has the side effect of cancelling any outstanding subscriptions.

Subscribing to notifications

Once the client has registered itself as an observer, the next step is to inform the Domain
Manager about which events the observer wants to receive notifications. EMC Smarts
allows clients to subscribe to a number of different types of events. These are listed in
Table 1 on page 19.

This table gives the names of the methods used to subscribe to and unsubscribe from
different types of notifications.

The following code segment is an example script that subscribes to changes of the Vendor
field of every device in the topology:

$session = InCharge::session->init();
$obs = $session->observer();
foreach $name ($session->getClassInstances(

"ICIM_UnitaryComputerSystem")) {
$session->propertySubscribe("::$name", "Vendor", 30);
}

Receiving notifications

Once the script has registered as an observer, and subscribed to the notifications of
interest, it then proceeds to listen for events and process them as required. The event
reception method call is receiveEvent(). This returns an array of up to five values.

For the purposes of the descriptions that follow, assume that events are returned in the
array @event, as shown in the following script fragment:

@event = $observer->receiveEvent();

Should the script require the event to be a single string with a separator used to delimit
the fields, in the style of the ASL language, then the application can use the standard Perl
join function:

$fs = "|";
$event = join($fs, $observer->receiveEvent());

Table 1 Subscription methods summary

Method type Description Method API call

property Notifications about changes to specified object
properties in the ICIM database. For example,
when the “Vendor” field of Router::gw1 changes

propertySubscribe
propertyUnsubscribe

topology Notifications about changes to the topology,
such as the creation and deletion of objects. This
does not refer to object property changes.

topologySubscribe
topologyUnsubscribe

event Notifications about the posting and clearing of
events and changes to their state.

subscribe
unsubscribe
subscribeAll
unsubscribeAll
getSubscriptionState
IsSubscribed

Event subscription 19

Introduction

The receiveEvent() method can take an optional parameter to specify a timeout in
seconds, which may be fractional. If no event arrives within the specified time, a
pseudo-event of type TIMEOUT is returned. For example,

@event = $observer->receiveEvent(0.25);

If no timeout is specified, the call waits forever.

The first element of the @event array, accessed by using the Perl syntax: $event[0],
contains the event's timestamp measured by using normal UNIX time_t semantics
(number of seconds since midnight January 1, 1970).

The second element of the @event array, $event[1], contains a text string that describes
the type of event received.

The array elements from $event[2] to $event[$#event] have meanings that depend on the
semantics of the event type given in $event[1].

Event notification records
Event notifications are received from the Domain Manager when the status of an event
changes. The format of the notification record is shown in Table 2 on page 20.

Normally, the Domain Manager sends a single notification message when an event
becomes active and a single clear message when the event is no longer active. If an event
corresponds to a root-cause problem, it is possible that the certainty of the diagnosis will
change over time. If the diagnosis certainty changes, the Domain Manager generates
another notification. Notifications of this type are streamed in a slightly different manner.
This difference in behavior is a feature of the front-end Perl API, not the Domain Manager.
The Domain Manager sends NOTIFY messages in both cases. The API keeps internal notes
about active events, and changes the event type accordingly, as shown in Table 3 on
page 20.

Table 2 Notification record - NOTIFY

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “NOTIFY”

$event[2] Object class name (STRING)

$event[3] Object instance name (STRING)

$event[4] Event name (STRING)

$event[5] Event certainty (FLOAT)

Table 3 Notification record - CERTAINTY_CHANGE (page 1 of 2)

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “CERTAINTY_CHANGE”

$event[2] Object class name (STRING)

20 EMC Smarts Foundation Perl Reference Guide

Introduction

Table 4 on page 21 describes the format of the record when an event is cleared by the
Domain Manager.

Object create/delete records
An object create message is sent by the Domain Manager when a new object is created in
the manager’s repository. Table 5 on page 21 describes the format of an object create
record.

An object delete message is sent by the Domain Manager when an object is deleted from
the manager’s repository. Table 6 on page 21 describes the format of an object delete
record.

$event[3] Object instance name (STRING)

$event[4] Event name (STRING)

$event[5] Event certainty (FLOAT)

Table 3 Notification record - CERTAINTY_CHANGE (page 2 of 2)

Event record entry Description

Table 4 Notification record - CLEAR

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “CLEAR”

$event[2] Object class name (STRING)

$event[3] Object instance name (STRING)

$event[4] Event name (STRING)

Table 5 Notification record - CREATE

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “CREATE”

$event[2] Object class name (STRING)

$event[3] Object instance name (STRING)

Table 6 Notification record - DELETE

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “DELETE”

$event[2] Object class name (STRING)

$event[3] Object instance name (STRING)

Event subscription 21

Introduction

Class load records
A class load message is sent by the Domain Manager when a new class is created in the
manager’s repository. Classes are created when new MODEL-generated libraries are
loaded. Table 7 on page 22 describes the format of a class load record.

Relation/property change records
A relation change message is sent by the Domain Manager when a relationship between
objects changes. Table 8 on page 22 shows the format of a relation change record.

A property change message is sent by the Domain Manager when an object’s property
changes. The format of a property change record is shown in Table 9 on page 22.

Table 7 Notification record - CLASS_LOAD

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “CLASS_LOAD”

$event[2] Class name (STRING)

Table 8 Notification record - RELATION_CHANGE

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “RELATION_CHANGE”

$event[2] Object class name (STRING)

$event[3] Object instance name (STRING)

$event[4] Relation name (STRING)

Table 9 Notification record - ATTR_CHANGE

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “ATTR_CHANGE”

$event[2] Object class name (STRING)

$event[3] Object instance name (STRING)

$event[4] Property name (STRING)

22 EMC Smarts Foundation Perl Reference Guide

Introduction

Domain Manager connect/disconnect records
A Domain Manager disconnect record is generated when the connection to the server is
lost. This differs somewhat from ASL operation. The “observer” on page 40 describes the
proper handling of DISCONNECT events if the restartableServer operation is appropriate.
These records are generated even if no subscriptions to the Domain Manager are issued.
The format of the Domain Manager disconnect message is shown in Table 10 on page 23.

Note: There is no CONNECT record. In ASL, these are an artifact of the resartableServer
front-end that the Perl API does not provide. The restartableServer affords a means of
invisibly attempting a reconnection. The CONNECT message is an indication of success.
The Perl API instead gives an immediate error on failure of the InCharge::session-->init()
method or similar. It remains for the developer to provide retry logic to successfully
connect.

Subscription status records
When the Domain Manager receives a subscription request, it normally sends a
notification back to the client to indicate whether or not the request was accepted. In the
event of an error, such as an invalid event name being specified, the Domain Manager
does not report an error by using normal Perl die semantics. Instead, a notification is used
to report that the subscription was rejected. The format of the ACCEPT/REJECT message is
shown in Table 11 on page 23.

Table 10 Notification record - DISCONNECT

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “DISCONNECT”

$event[2] Domain name (STRING)

Table 11 Notification record - ACCEPT, REJECT, (PROPERTY)

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “ACCEPT” or “REJECT” or “PROPERTY_ACCEPT” or “PROPERTY_REJECT”

$event[2] Object class name (STRING)

$event[3] Object instance name (STRING)

$event[4] Event or property name (STRING)

Event subscription 23

Introduction

Event suspension records
Under certain circumstances, the Domain Manager will elect to suspend events if they are
temporarily irrelevant. For example, when an aggregation contains no triggering events, a
SUSPEND message is sent to the subscribed client. The format of the SUSPEND message
is shown in Table 12 on page 24.

Timeout records
If no event arrives within the time specified as the optional argument to receiveEvent(), a
TIMEOUT record is returned, whose message format is shown in Table 13 on page 24.

Table 12 Notification record - SUSPEND (PROPERTY)

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “SUSPEND” or “PROPERTY_SUSPEND”

$event[2] Object class name (STRING)

$event[3] Object instance name (STRING)

$event[4] Event or property name (STRING)

$event[5] Descriptive message (STRING)

Table 13 Notification record - TIMEOUT

Event record entry Description

$event[0] Timestamp (INTEGER)

$event[1] “TIMEOUT”

$event[2] Domain name (STRING)

24 EMC Smarts Foundation Perl Reference Guide

InCharge::Object

CHAPTER 2
InCharge::Object

This chapter consists of the following sections:

◆ Overview... 26
◆ Functions and methods... 28

25

InCharge::Object

Overview
The InCharge::object module provides the interface to Domain Manager repository
objects. With it you can:

◆ Get or set an object’s attributes

◆ Invoke an object’s operations

Name
InCharge::object

Synopsis
use InCharge::session;
$obj = $session->object($class, $instance);
$value = $obj->get("PropertyName");
$value = $obj->{PropertyName};
$obj->put("PropertyName", $value);
$obj->{PropertyName} = $value;
$rtn = $obj->invoke("OperationName", .. arguments ..);
$rtn = $obj->OperationName(.. arguments ..);

The InCharge::object module allows objects in the Domain Manager repository to be
manipulated in an object-oriented style, similar to the ASL language.

Description
An InCharge::object reference is required to access the properties or methods of a Domain
Manager object. This reference is returned from the object() or create() methods of the
InCharge::session module. Both methods allow access to preexisting objects, but the
create() method will also create the object if it does not already exist. While create()
always accesses the Domain Manager, object() may or may not depending on the
invocation technique.

$obj = $session->object("Router", "edgert1");
$obj = $session->object("Router::edgert1");
$obj = $session->create("Router", "newrouter");

Whenever you specify the details of a repository instance to work within the API you have a
choice of two syntaxes. You can either specify the object class and instance names as
individual arguments, or run them together with a delimiting double-colon (::). The API
handles these two forms identically.

If you do not know the class to which an object belongs, you can either use a class
argument of undef, or a string with nothing before the double-colon (::). For example,

$obj = $session->object(undef, "edgert1");
$obj = $session->object("::edgert1");

The option of omitting the class name does not work with the InCharge::session->create()
method because the Domain Manager cannot create an object without knowing which
class to use. It does work with InCharge::session->object() and related calls because the
process of referring to an existing instance can legitimately include a query to identify the
object's class.

26 EMC Smarts Foundation Perl Reference Guide

InCharge::Object

If you choose not to provide the class name in these calls, the API does additional work to
determine the object's class, which imposes a slight performance penalty.

Once an object reference has been created, it can be used to invoke the object's
operations or access its properties. Access to an object's attributes or properties can be
obtained by using calls shown in the following example.

$vendor = $obj->get("Vendor");
$vendor = $obj->{Vendor};
($vendor,$model) = $obj->get("Vendor", "Model");
%properties = $obj->get();
$obj->put("Vendor", "Cisco");
$obj->{Vendor} = "Cisco";
$obj->put(Vendor => "Cisco", Model => "2010");

These examples show that object properties can be accessed by using either the get() and
put() methods or the psuedo-hash syntax. The latter syntax is preferred because it is
closer to the original built-in ASL language logic.

Two special internal properties can be accessed by using the hash syntax only. These give
the name of the class and instance to which the object reference refers. Treat them as
read-only fields.

$obj->{_class} BUT NOT: $obj->get("_class")
$obj->{_instance} BUT NOT: $obj->get("_instance")

Object operations can be invoked by using the invoke() method, or directly, as in the
example:

@ports = $obj->invoke("findPorts");
@ports = $obj->findPorts();
$port = $obj->

invoke("makePort", "1.0", "PORT-rt1/1.0", "Port");
$port = $obj->makePort("1.0", "PORT-rt1/1.0", "Port");

Again, the latter syntax, calling the operation directly, is preferred.

Use the invoke() method to access an object operation that duplicates the name of any of
the built-in methods of the InCharge::object class.

◆ The first of these calls the new() operation of the object in the repository.

◆ The second calls the built-in new() method of the InCharge::object class.

$obj->invoke("new", "qtable");
$obj->new("qtable");

Note that InCharge::object is used for accessing ICIM instance operations and properties
only. If you make other ICIM calls that refer to instances, such as subscribe(), use the
features of InCharge::session directly. The following line of code is invalid:

$obj->propertySubscribe("Vendor");

Instead, use one of the following:

◆ The first alternative:

$session->propertySubscribe($class, $instance, "Vendor");

◆ The second alternative:

Overview 27

InCharge::Object

$session->propertySubscribe($obj, ``Vendor'');

The reason you have to use one of these two alternative methods is because the
propertySubscribe is not a repository class operation, but rather it is a primitive.

dmctl -s <domain> getOperations <classname> | more

Likewise, to determine what properties can be accessed by using the InCharge::object
module use:

dmctl -s <domain> getProperties <classname>

Functions and methods

object

$object = $session->object($class, $instance);

The object() method creates a new object reference.

get

The get() method is used to retrieve the value of the specified properties of the object,
such as the value of an attribute. In addition, the call “get_t” on page 29 also extends the
functionality of the get() method by returning additional information that identifies the
data type (for example, STRING) of the property value.

The get() and get_t() primitives throw an error when used to access a nonexistent property
or one that cannot be retrieved for any reason, whereas the psuedo-hash syntax simply
returns an undef value. This difference allows the Data::Dumper logic to display an entire
object without an error even when some properties cannot be retrieved.

Single property
You can access the content of a property whose name is held in a variable by using the
Perl typical logic, as shown:

$result = $obj->{$property_name};

In this example, the value of the $propname variable is retrieved:

$propname = "Vendor";
$value = $obj->{$propname};

Multiple properties
You can also get multiple values in a single get() call by listing all the property names as
arguments, by using the following syntax:

$result = $obj->get($property_name [, $property_name ...])

The results are returned in an array. This is faster than using multiple single-property get()
calls. In this example, the value of the Vendor and Type attributes are retrieved:

($vendor, $type) = $obj->get("Vendor", "Type");

28 EMC Smarts Foundation Perl Reference Guide

InCharge::Object

All properties and relationships
You can also call get() with no arguments, in which case, a hash is created that contains all
the object properties and relations, as shown:

%all_properties = $obj->get()

There is no syntactical advantage, but there is a significant speed advantage.

Return value types
The type of return value depends on the calling syntax used, get() or hash(), and the Perl
evaluation context, scalar or array, as shown in Table 14 on page 29.

For example, if the attribute MyValue is declared as an integer in the MODEL code, then
the return type for that property will be an integer. Multiple values are always returned in
an array or array reference.

get_t

The get_t() method is like the get() method, except that it returns the type of return value
as well as the value itself. The data types are encoded as integer numbers. If the return is
an array, then $value will receive a reference to the array. If the return is a scalar, then
$value will hold it. The $session->TYPE() method can be used to convert the $type integer
value to a mnemonic string.

($type, $value) = $obj->get_t($property_name);

There is a second syntax that gets the types and values for multiple properties. Each
type/value pair is held in a two-element subarray within the returned data.

@types_and_values =
$obj->get_t($prop1 [, $prop2 [, prop3 ..]])

There is also a third syntax gets the types and values for all the properties and relations of
the object and stores them in a hash, indexed by the property names.

%all_property_types_and_values = $obj->get_t();

Example:

$obj = $session->object("Router::gw1");
($type, $value) = $obj->get_t("Vendor");
print "Vendor value ='$value', \

type = ".$session>TYPE($type)."\n”;

This example will print:

Table 14 Return type for call syntax and Perl evaluation context

Expression syntax Property type
Return type in scalar
context Return type in array context

$obj->{prop} scalar scalar scalar in [0]

$obj->{prop} array array ref array ref in [0]

$obj->get(“prop”) scalar scalar scalar in [0]

$obj->get(“prop”) array array ref array

Functions and methods 29

InCharge::Object

Vendor value='CISCO', type = STRING

put

$object->put($property_name, $value);

The put() method allows fields of the object to be modified in the Domain Manager
repository.

This method is used in a number of ways. However, the use of the pseudo-hash syntax is
the preferred option for syntactic equivalence with the Domain Manager native ASL
language, as shown:

$obj->put("Vendor", "Cisco");
$obj->{Vendor} = "Cisco";

$obj->{ComposedOf} = [];

To set more than one property in a single call, use multiple name:value pairs, such as:

$obj->put(Vendor => "Cisco",
PrimaryOwnerContact => "Joe Bloggs");

You can also set more than one property in a single call, by using the following syntax:

%updates = (Vendor => "Cisco",
PrimaryOwnerContact => "Joe Bloggs");

$obj->put(%updates);

When using either syntax to set a relationship or list property, use a reference to a Perl
array, such as:

$obj->{ComposedOf} = [$a, $b, $c];
$obj->put("ComposedOf", \@things);

Use insertElement() and removeElement() to add or remove elements from a list.

isNull

$boolean = $object->isNull();

The isNull() method tests to see whether the object is present in the repository.

TRUE means that the object is not present. FALSE means it is present.

invoke

reply = $object->invoke($operation, ... arguments ...);

The invoke() method calls the named repository class operation on the object.

The arguments passed should be as expected by the operation. If the operation returns a
scalar value, the call should be called in a scalar context. If it returns an array, it should be
invoked in an array context.

The preferred way of achieving the same result is to use the operation name directly. Thus,
the following are equivalent but the latter is preferred.

30 EMC Smarts Foundation Perl Reference Guide

InCharge::Object

$obj->invoke("makePort", "1.0", "First port", "Port");
$obj->makePort("1.0", "First port", "Port");

You can also use the invoke_t() method, described in “invoke_t” on page 31 to return
additional information.

invoke_t

($type, $value) =
$object->invoke_t($operation, .. args ..)>

Invokes the named class operation on the object in the same way as invoke(), but
invoke_t() also returns the type of data returned by the call.

The data types are encoded as integer numbers. If the return is an array, then the $value
will receive a reference to the array. If the return is a scalar, then $value will hold it.

insertElement

$obj->insertElement($relation, @object[s]);

Inserts the specified objects into an object relationship.

One or more can be specified to be inserted.

$obj->insertElement("ComposedOf",
"Interface::IF-ether1",
"Interface::Loopback/0");

$obj->insertElement("ComposedOf", @interfaces);

removeElement

$obj->removeElement($relation, @item[s]);

Removes the specified items from an object relationship.

One or more items can be specified to be removed.

$obj->removeElement("ComposedOf",
"Interface::IF-ether1",
"Interface::Loopback/0");

$obj->removeElement("ComposedOf", @interfaces);

delete

$obj->delete()

Deletes the specified item from the repository, and from any relationships it belongs to.
The delete() function does not remove any objects that had a “contains” type of
relationship with the object being deleted. For example, calling delete() on a Router
instance would remove that instance from the repository and remove that instance from
any relationships that it was part of. However, the delete() function would not remove the
Card objects to which the Router instance shares a “ComposedOf” relationship.

Consider using the remove() operation, if one exists, instead for a more complete action.
For example, calling remove() on a Router will cause the Card objects it is composed of to
be removed (which in turn could cause the Ports/Interfaces to be removed, and so on).

Functions and methods 31

InCharge::Object

notify

$obj->notify($event_name);

Notifies the specified event for the object.

$objref->notify("Unresponsive");

clear

$obj->clear($event_name);

Clears the specified event for the object.

$objref->clear("Unresponsive");

countElements

$count = $obj->countElements($relation)

Counts the number of elements in the given relationship. The countElements method will
throw an error if $relation is not a relationship.

$count = $obj->countElements("ComposedOf");

32 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

CHAPTER 3
InCharge::Session

This chapter consists of the following sections:

◆ Overview... 34
◆ Function groups .. 35
◆ Error handling ... 36
◆ Session management functions .. 36
◆ Utility functions... 43
◆ Specifying the locale while connected... 45
◆ Retrieving and setting log, error and trace levels at runtime..................................... 45
◆ Wrapper functions... 46

33

InCharge::Session

Overview
The InCharge::session module provides the interface to Domain Managers. With it you
can:

◆ Attach to a Domain Manager

◆ Create and destroy objects

◆ Invoke operations

◆ Subscribe to Domain Manager events

Name
InCharge::session

Synopsis
 use InCharge::session;

There are three different syntaxes that you can then choose from to connect to the Domain
Manager:

◆ $session = InCharge::session->init();

◆ $session = InCharge::session->new("INCHARGE");

◆ $session = InCharge::session->new(

broker=>"localhost:426",

domain=>"INCHARGE",

username=>"noddy",

password=>"bigears",

traceServer => 1

locale=>”en_US”

);

 $object = $session->object("Host::toytown1");
 $object = $session->create("Router::crossroads");

(... and continuing with the methods described in the following
sections...)

Description
This module provides the mechanisms for accessing a Domain Manager in a manner that
is similar to that employed by the ASL language. It provides the main access point to
domains, allowing scripts to establish client/server connections and to obtain
InCharge::object references that can be used to manipulate the objects in the topology.

The locale argument to the InCharge::session module allows you to set the locale of the
session (the client locale).

34 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

You can use the InCharge::session->setLocale() method to change the locale for the
session, while it is connected.

The default locale to set for a Perl client is determined by looking in the following places.

1. The value of the SM_LOCALE environment variable.

2. The default is en_US.

Chapter 1, “Introduction,” provides an overview of this and the other InCharge::* modules
and a simple tutorial description of how they are used.

Function groups
InCharge::session provides access to five kinds of functions: session management,
Domain Manager primitives, utility, wrapper, and locale specification.

Session management functions

Functions in this group are the principle functions of the module. They are used for
managing the Perl client/Domain Manager connection. You can use these functions within
a script to attach, detach, listen for events, and create InCharge::object references.

Domain Manager primitive functions

The InCharge::session module permits access to the low-level primitive functions of the
Domain Manager, allowing actions such as getClasses() and getInstances() to be
performed. These primitives do not all exactly mirror the interface provided by dmctl or the
native ASL language. For example, dmctl has a save command that does not have an exact
primitive equivalent, but there are two primitives that can be invoked to give the same
results. These are storeClassRepostity() and storeAllRepository(). Where primitives exist
that semantically match dmctl or ASL commands but differ in name, aliased names are
provided to give syntactic compatibility.

Utility functions

This group includes functions to provide additional logical assistance to writers of Perl
scripts to be used with the Resource Package software.

Wrapper functions

This group of functions provides wrappers around the primitives to provide an interface
that is more consistent with the ITOps native ASL language and dmctl utility.

Wrapper functions of this type are provided only for functions where the syntax and
semantics of the primitive are not compatible with ASL or dmctl. The save example,
described in “Domain Manager primitive functions” on page 35, is one such function.

Function groups 35

InCharge::Session

Specifying the client locale

The InCharge::session module provides a function that enables you to set the locale of the
session (the client locale).

Error handling
Errors are reported back to the invoking script by using Perl's die mechanism, and can be
caught by using Perl’s eval function. This is typical Perl coding practice and mimics the
try-throw-catch logic of Java and C++. “Error handling” on page 59 provides further
information.

Session management functions
The following session management functions are provided.

new

$session = InCharge::session->new(.. options ..);

The new function first establishes a connection between the calling Perl script and a
Domain Manager. It then returns a tied reference that can be used thereafter to
manipulate the domain and the entities contained in its repository.

If the domain name is the sole option passed, it can be specified without the domain=>
key.

The username and password options are required if connecting to a server with
authentication features enabled. If neither of these arguments is given, the
clientConnect.conf file is used to determine the username and password or the
mechanism to obtain them.

Option to specify the Broker
broker => $host[:$port]

This option specifies the Broker from which the domain details are to be lifted. The string
consists of a hostname or IP address followed by an optional port number, delimited by a
colon. The section “Conventions for specifying IPv6 addresses” on page 100 describes
how to specify an IPv6 address.

The default host is localhost, and the default port is 426.

Option to specify the domain
This option specifies the name of the domain to be used. If the host and port details are
also given, then the API does not refer to the broker to determine them. The default
domain name is INCHARGE.

There are two different syntaxes that can be used to specify the domain:

◆ domain => [$host:$port/]$domain

◆ server => [$host:$port/]$domain

36 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

The option name “server” can be used in place of “domain” and the two options have the
same meaning.

Option to specify the username
This option specifies the name of the user to be used in connecting to the domain. If user
or username is specified, then password must also be specified, as described in “Option
to specify the password” on page 37. If the username is not given, then the API refers to
the clientConnect.conf file to determine the authentication information to use when
establishing the connection.

There is no default username.

There are two different syntaxes that can be used to specify the username:

◆ user => $user_name

◆ username => $user_name

If no username is specified, the script inspects and interprets the SM_AUTHORITY
environment variable in the same way that the main ITOps software does and may
prompt the user for the username and password by using the standard I/O device.

Option to specify the password
This option specifies the password for the user given with the username option.

password => $password

The username and password must both be supplied, or neither of them must be specified.

Option to specify a description of the script
This option describes the role of the script and is noted by the Domain Manager for use in
debug and other logging messages. Its contents are not significant, otherwise. The default
is Perl-Client.

description => $description

Option for specifying server-level tracing
If this option is specified and given a true value, non-zero, then server-level tracing is
turned on. This causes the Domain Manager to log information about every primitive call
invoked by the script.

When server-level tracing is turned on, it results in a large amount of data written to the
server's log file.

It is recommended to use this sparingly since it also has a negative impact on the Domain
Manager's performance.

traceServer => 1

Session management functions 37

InCharge::Session

Option for specifying response timeout
This option specifies the timeout to be enforced while waiting for responses from the
Domain Manager to primitive requests. The default value is 120 seconds. You may
increase the value, if necessary, but do not set it to a value below 120 seconds.
Otherwise, slow to-process requests will fail in a manner that looks like a communication
link failure between the script and the Domain Manager.

timeout => $timeout

Option for specifying the session locale
The locale option allows you to set the locale of the session (the client locale).

locale=>locale

You can use the InCharge::session->setLocale() method to change the locale for the
session, while it is connected.

init

$session = InCharge::session->init();

This function is the simplified version of InCharge::session->new(). It parses the script’s
command line, looking for options that specify the Broker, Domain Manager username,
password, trace, timeout, and locale options. Then it invokes the primitive
InCharge::session->new() with those arguments and passes back the result.

InCharge::session->init() looks for the following script command line arguments.

--broker=<brokerIP[:bokerPort]> (also: -b)
--server=<domain-name> (also: -s)
--user=<username> (also: -u)
--password=<password> (also: -p)
--traceServer
--timeout
--locale=<locale>

If neither the --user (or -u) and --password (or -p) are specified, the script makes use of the
SM_HOME/conf/clientConnect.conf file to determine the username and password to be
employed. Comments are included in the file for detailing this mechanism. This
mechanism is turned on by specifying the value <STD> for the SM_AUTHORITY environment
variable.

If the InCharge::session->init() functions encounters a command line syntax error, it calls
usageError, in the main script, which the developer must provide. A single large text string
that contains a description of the standard options handled is passed as the argument to
usageError, which enables the author to include information about the standard options
as well as any nonstandard ones provided. If the usageError subroutine does not exist, a
default error message is printed on STDERR.

38 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

Note that the init() function consumes (removes) the command line arguments it handles
from @ARGV as it processes them. Therefore you can access the @ARGV array after its
execution to process additional arguments without needing to skip the standard ones.
However, you cannot use the init command twice in the same script without first saving
and restoring the contents @ARGV, as in the example:

@SAVE = @ARGV;
$session1 = InCharge::session->init();
@ARGV = @SAVE;
$session2 = InCharge::session->init();

The locale argument to the InCharge::session init method allows you to set the locale of
the session (the client locale).

You can use the InCharge::session->setLocale() method to change the locale for the
session, while it is connected.

The default locale to set for a Perl client is determined as follows:

1. The value of the SM_LOCALE environment variable.

2. If the SM_LOCALE variable is not set, then the default is en_US.

broken

$flag = $session->broken();

The broken() function returns non-zero (TRUE) if the session with the Domain Manager is
broken in some way.

A return value of non-zero indicates connection or protocol failures. To continue working
with a broken session, the script should call the reattach() function, and then reestablish
the event subscription profiles required.

reattach

$session->reattach();

Reestablishes a connection that has been detached or broken.

The reattach() function can be called to reconnect to a server to which the connection has
been lost. Reestablishing the connection does not automatically reestablish observer
sessions, subscriptions, transactional or other session state information.

If the call is used to reattach a session that had an active observer, the observer
connection is closed as a side effect of the action and must be reopened separately.

This function should be called after a [13] I/O Error is thrown by any of the Domain
Manager access calls in order to shut down and reopen the socket, leaving the session in
a working state. If this step is not taken, there is a danger that residual packets on the
connection would cause synchronization problems between the client and Domain
Manager. “Error handling” on page 59 describes error prefixes, including the [13] prefix.

Session management functions 39

InCharge::Session

The reattach() primitive does not return a new session identifier, but does refresh the
referenced one. This is not a dup() style of action.

detach

$session->detach();

The detach() function enables you to detach from the domain referred to by $session.

This function can be used for either a session, created using InCharge::session->new(), or
an observer session, created using InCharge::session->observer().

If this is used to detach a session with an active observer, the observer is also closed.

This call does not completely destroy the $session reference contents but retains enough
information to allow the session to be reestablished. Thus, it is possible to call
$session->reattach() to reconnect to the Domain Manager by using the same parameters
as were used in the initial connection. However, the event subscriptions need to be
reestablished explicitly in this event.

observer

$observer_session = $session->observer(.. options ..);

The observer() function creates and returns a reference to a connection to a Domain
Manager on which subscribed events can be received.

This establishes a new socket between the client and Domain Manager. Once connected,
events can be subscribed to by using the various subscribe methods, and they can be
received by using:

@event_info = $observer_session->receiveEvent();

Specifying the option connectEvents => 1 to the observer() function causes server
disconnection to be notified as a DISCONNECT event rather than an [13] I/O Error.
However, unlike ASL, the reconnection is not performed automatically. The script can use
the $session->reattach() call to attempt an explicit reconnection and must then reestablish
any event subscriptions and other contexts.

Specifying the option ignoreOld => 1 causes events generated before the connection was
established to be discarded automatically. The use of this option is not generally
recommended since the atomicity of time measurement on Windows NT and UNIX makes
its results somewhat unpredictable.

Repeated calls to the observer() method of a session return references to the same
observer. It is not possible to create multiple observers on the same session.

receiveEvent

@event = $observer_session->receiveEvent([$timeout]);

Listen for subscribed events from the Domain Manager.

40 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

The received events are returned as an array or, in scalar context, a reference to an array
containing three or more elements. “Event subscription” on page 17 describes the
different events to which you can subscribe.

The first element of all events is the timestamp, on the Domain Manager's system clock,
and not the client's clock. The second element is a string defining the event type. The
other elements are event-specific.

The $timeout is optional, and specifies a timeout period, in seconds, that the script is
prepared to wait for an incoming event. If no event arrives in this time period, an event of
type TIMEOUT is returned. The $timeout can be specified in fractions of a second, or
“float”; for example, 0.25 = a quarter second.

object

$obj = $session->object($objectname);

Creates a new InCharge::object reference that can be used to invoke methods of the
InCharge::object module.

As an example, to obtain the value of the Vendor field for a particular object, use:

$obj = $session->object("::gw1");
$vendor = $obj->{Vendor};

You can even combine these into a single line, such as:

$vendor = $session->object("::gw1")->{Vendor};

The $objectname parameter can be specified in any of the styles shown in the following
examples:

◆ object('Router::gw1')

In this example, the $objectname parameter is a single string where both the class
and instance names are specified with double colons (::) delimiting them. If variables
are to be used to specify the relevant parts of the string, then it is important that at
least the variable before double-colon (::) is encased in braces because without them,
Perl will give the (::) characters its own meaning.

◆ object('Router', 'gw1')

In this example, the $objectname parameter is specified as two strings with one for
the class and one for the instance name.

◆ object('::gw1')

In this example, the $objectname parameter is specified as one string with the class
name missing. The API will make a query to the Domain Manager to discover the actual
class for the object which causes a minor performance penalty.

◆ object(undef, 'gw1')

In this example, the $objectname parameter is specified as two parameters with the
first one undefined. This also results in the API performing a Domain Manager query.

◆ object('gw1')

Session management functions 41

InCharge::Session

In this example, the $objectname parameter is specified as a single parameter that
does not include the double-colon (::) delimiter, which must contain just the instance
name. A Domain Manager query is performed to determine the relevant class name.

An important difference between the API and the native ASL language is that if you create
an object, using object(), in native ASL without specifying the class name, the language
assumes that the class MR_Object can be applied. This restricts the level of property and
operation access that can be used. The API queries the repository to determine the actual
class for the instance, giving complete access to the resulting object's features.

create

$obj = $session->create($objectname);

Similar to the object() call, described in “object” on page 41, the create() call creates an
InCharge::object valid reference through which a specified instance can be manipulated.
However, unlike object(), the create() method creates the object if it does not already
exist.

Since it has the ability to create objects, it is important that the object name specified as
an argument includes both the instance name and the class name. You cannot use the
::instance or (undef, $instance) syntaxes for specifying the object name. You can,
however, use either the Class::Instance or ($class, $instance) syntax described for the
object() method.

Unlike the createInstance() primitive, it is not an error to call the create() method for an
object instance that already exists. In this case, the call is equivalent to the
$session->object() call and it simply returns the InCharge::object valid reference to the
instance.

callPrimitive

RESULT = $session->callPrimitive($primitiveName, @arguments)

Calls the specified Domain Manager primitive, passing the primitive the arguments and
returning its result.

For most primitives, this is a complex invocation sequence. However, it is only actually
needed when a primitive and a method of the InCharge::session module share the same
name, and you wish to use the primitive version.

The following are equivalent, although the first is preferred.

@list = $session->getInstances("Router");
@list =

$session->callPrimitive("getInstances", "Router");

The put() primitive is one of the few primitives where these two ways of calling it are not
equivalent. This is because the InCharge::session module exports its own variant of the
method. If you must gain access to the primitive version, you will need to use the
callPrimitive() mechanism. However, this is not recommended, since the syntax is
complex. The “put” on page 47 provides further details.

42 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

The type of the RESULT in array or scalar context is dependant on the primitive that is
being called. In general:

◆ If the primitive returns a scalar you get a scalar or, in array context, a single element
array.

◆ If the primitive returns an array you get an array, in array context, or array reference, in
scalar context.

Utility functions
The following utility functions are provided.

TYPE

$number = $session->TYPE($string);
$string = $session->TYPE($number);

The TYPE() function converts a Domain Manager data type symbolic name to its internal
numeric code, or converts an internal numeric code to its symbolic name. So the following
prints “13”:

print $session->TYPE("STRING") . "\n”;

The following code prints “STRING”:

print $session->TYPE(13) . "\n”;

getFileno

$fno = $session->getFileno();

The getFileno() function returns a number that refers to the socket used for the
script/server connection.

On Windows platforms, this function returns a unique number associated with the
connection handle that refers to the socket used by the script/server connection.

Do not use this function with the Perl select statement to listen for events from multiple
domains by using multiple observer objects. Instead, use the new select function:
InCharge::session::select.

getProtocolVersion

$ver = $session->getProtocolVersion();

The getProtocolVersion() function returns the protocol version number supported by the
Domain Manager. This is a single integer number derived by the following calculation.

(major * 10000) + (minor * 100) + revision

Hence, version “V5.1” is represented by the number 50100, and version “V4.2.1” is
represented by 40201.

Utility functions 43

InCharge::Session

primitiveIsAvailable

$boolean = $session->primitiveIsAvailable($primitive_name)

The primitiveIsAvailable() function checks whether the named primitive is available in the
Domain Manager.

A value of 1 means that it is available, and value of 0 means that it is not available, either
because it is an undefined primitive or it was introduced in a later version of the Domain
Manager software.

if ($session->primtiveIsAvailable (
"getMultipleProperties") {

$vendor, $model) = $session->getMultipleProperties (
$obj, ["Vendor", "Model"]);

} else {
$vendor = $obj->{Vendor};
$model = $obj->{Model};

}

select

@ret = InCharge::session::select(\@observerList, $timeout);

The select() function checks if there are data to be read for each observer in
@observerList.

@ret returns a list of handles in which the value:

◆ 1 represents that the observer has data to read

◆ 0 indicates that there are no data to be read.

The $timeout parameter indicates how many seconds the function select should wait
before returning the result. It can be called with an undef value for no wait time.

Example of usage:

@ret = InCharge::session::select(<ref_list>,<timeout>);

where:

◆ <ref_list> is a reference to the list of observers that will be checked.

◆ <timeout> is the number of seconds to wait before returning. For immediate return, use
the argument undef.

The following script returns an array with the result for each checked observer.

use InCharge::session;
use Data::Dumper;
my %common = (user => "admin", password => "changeme");
$mask = "";
$i=0;
foreach $dom ("INCHARGE-AM", "INCHARGE-SA") {

$sess{$dom} = InCharge::session->new(%common, domain => $dom);
$obs{$dom} = $sess{$dom}->observer();
@obsList[$i]= $obs{$dom};

 $sess{$dom}->subscribe(".*::.*::.*/pa");
#$fn{$dom} = $obs{$dom}->getFileno()."\n";
#vec($mask, $fn{$dom}, 1) = 1;
$i++;

}

44 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

$i=0;
for (; ;) {
 $i=0;

@obsRet = InCharge::session::select(\@obsList, undef);
foreach $obsR (@obsRet) {

#next unless (vec($rout, $fn{$dom}, 1));
@event = $obsR->receiveEvent();
print "$obsR->{domain} - ".join(", ", @event). "\n";
$i++;

}
}

Specifying the locale while connected
The setLocale() method may be used to indicate the locale in which text will be returned to
the client for the session, while it is connected.

If the locale has not been set for the session while connecting or the setLocale() method
has not been called, then the session locale is determined as follows:

1. The value of the SM_LOCALE environment variable.

2. The default is en_US.

Retrieving and setting log, error and trace levels at runtime
There are three computed attributes available to get and set the log, error, and trace levels
of a Domain Manager at runtime. These computed attributes, described in Table 15 on
page 45, are available on the SM_System object.

The values of these computed attributes can be retrieved and set, and valid values are:

◆ None

◆ Emergency

◆ Alert

◆ Critical

◆ Error

Table 15 Computed attributes to retrieve and set log, error, and trace levels at runtime

Computed Attributes Description

logLevel The minimum exception level for sending messages to the system error
logger. The logLevel attribute is a string, and can be any one of the values
set for the --loglevel command line option:

errLevel The minimum exception level for writing messages to the log files. The
errLevel attribute is a string, and can be any one of the values set for the
--errlevel command line option.

traceLevel Used to print a stack trace to the ITOps log file when an exception at this
level or above occurs. Exceptions below this level do not write a stack
trace. The traceLevel attribute is a string, and can be any one of the values
set for the --tracelevel command line option.

Specifying the locale while connected 45

InCharge::Session

◆ Warning

◆ Notice

◆ Informational,

◆ Debug

Fatal is a synonym for Critical.

Retrieving the current level

You can retrieve the current levels of SM_System::SM-System::logLevel,
SM_System::SM-System::errLevel, or SM_System::SM-System::traceLevel. A string is
returned which represents the current level, such as "Warning", "Error", or "Fatal". For
example:

my $smsystem = $session->object("SM_System","SM-System");
my $curr_error_level = $sm_system->{errLevel};

Setting the level

To change the current levels, obtain a pointer to the object, and then set the value of
SM_System::SM-System::logLevel, SM_System::SM-System::errLevel, or
SM_System::SM-System::traceLevel to the appropriate level.

In this example, the trace level setting is changed to None.

my $smsystem = $session->object("SM_System","SM-System");
$sm_system->{traceLevel} = "None";

When you change the log, error or trace levels a message is printed in the log file. The log
message will appear similar to the following:

[April 8, 2009 5:03:41 PM EDT +122ms] t@1149000000 SM_ProtocolEngine-6
JM_MSG-*-JM_TRACE_LEVEL_CHANGED-User 'user1', using remote dmctl
client (id 6), on host host1 with credentials tpadmin1 has changed
the Trace level to None; in file
"/mypath/repos/jiim/SM_JIIM_Support_Impl.c" at line 458

Wrapper functions
The following functions add varying degrees of wrapper logic round the ITOps primitives,
to make them more compatible with the native ASL language.

save

$session->save($filename [, $class]);

The save() function saves the repository in the specified file. If a class name is specified,
then only the instances of that class are saved.

46 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

put

$session->put($object, $property, $value);

It is not recommended that the put() method be used extensively. Instead, use the
features of InCharge::object.

This method changes the value of an object property. This version differs from the put_P()
primitive in that the latter requires the value type to be specified explicitly, whereas this
version determines and caches the type. The following calls are, therefore, equivalent,
although the first is preferred.

$obj = $session->object("Router::gw1");
$session->{Vendor} = "Cadbury";
$obj->put("Vendor", "Cadbury");
$obj->put(Vendor => "Cadbury");
$session->put("Router::gw1", "Vendor", "Cadbury");
$session->object("Router::gw1")->{Vendor} = "Cadbury";
$session->callPrimitive("put_P", "Router", "gw1",

"Vendor",["STRING", "Cadbury"]);

When giving a value to an array property, such as the ComposedOf relationship, pass an
array reference as shown in the following example:

$obj->{ComposedOf} = [
"Interface::IF-if1",
"Interface::IF-if2"
];

Also, you can set more than one property in a single call. This can reduce complexity in the
script layout but has minimal performance advantage.

$obj->put(
Vendor => "CISCO",
Model => "2500",
Location => "Behind the coffee machine"

);

invoke

RESULT = $session->invoke($object, $operation[, @arguments]);

It is not recommended that this method be used extensively. Instead, use the features of
InCharge::object.

This method invokes the specified object operation, passing it the listed arguments and
returning the RESULT.

The type of the RESULT depends on the usual Perl concept of array or scalar context, as
well as the definition of the operation being called. In general:

◆ If it returns a scalar you get a scalar or, in array context, a single element array.

◆ If it returns an array you get an array, in array context, or array reference, in scalar
context.

Wrapper functions 47

InCharge::Session

This method's semantics and syntax differ from the primitive method invokeOperation() in
that the latter needs to have the types of the arguments specified explicitly. Whereas for
this method, the InCharge::session module version discovers and caches the operation
argument types and does not require the arguments to be listed in arrays of array
references.

Additional documentation about the operations that exist for a particular class can be
obtained by using the dmctl utility, as shown:

dmctl -s DOMAIN getOperations CLASSNAME

The following examples are equivalent; the first example is preferred.

◆ Example 1:

$obj = $session->object("Router::gw1");
$fan= $obj->findFan(2);

◆ Example 2:

$fan = $session->invoke("Router::gw1", "findFan", 2);

◆ Example 3:

$fan = $session->callPrimitive("invokeOperation","Router", "gw1",
"findFan",[["INT", 2]]
);

invoke_t

($type, $value) =
$session->invoke_t($object, $operation [, @arguments]

);

The invoke_t() function is identical to invoke() except that the return indicates both the
type and the value of the returned data.

The value is a Perl scalar, if the operation returns a scalar, or an array reference, if the
operation returns an array. The type will contain one of the Domain Manager internal type
codes. For example, “13” is the code for a string.

findInstances

@instances =
$session->findInstances($c_patn, $i_patn [, $flags])

or

@instances =
$session->findInstances("${c_patn}::${i_patn}" [, $flags])

Finds instances that match the class and instance patterns, according to rules specified in
the flags.

The $flags is a set of characters that modifies the way the call works.

48 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

A flag of “n” means that subclasses are not recursed into. Therefore, instances in
matching classes only are returned. Without “n”, instances of matching classes and their
subclasses are returned.

A flag of “r” means that UNIX-like RegEx matching is used during the search. If the “r” flag
is not specified, the search uses glob pattern matching.

The RegEx version that is supported is the UTF-8 and Unicode regexp compliant engine
(coming from ICU).

The default is no flags, therefore, the search uses glob pattern matching and recursion.

Results are returned as a list of strings, each of which contains a class and instance name
delimited with double-colon (::).

The search strings are anchored as if the “^” and “$” had been used in the UNIX-style
pattern. Therefore, “rr*” matches “rred” but not “herring”, whereas “`*rr*” matches both
of them.

Example:

@found = $session->findInstances("Router::gw*", "n");

getCauses

@events = $session->getCauses($objectname, $event [, $oneHop]);

The getCauses() function returns a list of problems that cause an event.

The function arguments are class, instance (possibly combined into one, for example,
SM_System::SM-System), and event. The function returns the problems that cause the
event based on the relationships among instances defined in the Domain Manager.

The oneHop parameter is optional:

◆ If it is omitted or passed as FALSE, the full list of problems that explain eventname,
whether directly or indirectly, is returned.

◆ If it is passed as TRUE, only those problems that directly list eventname among the
events they explain are returned.

The function returns an array of array references with the format:

[
[<classname::instancename>,<problemname>],
[<classname::instancename>,<problemname>],
...

]

The class and instance names are returned as a single double-colon (::) delimited string,
giving two strings per returned event in total. This is different from the native ASL language
which returns the class and instance names separately, giving three strings for each event.

Wrapper functions 49

InCharge::Session

Example:

@causes =
$session->getCauses("Router::gw1",

"MightBeUnavailable"
);

getClosure

@events = $session->getClosure($object, $eventname[, $oneHop]);

The getClosure() function returns a list of symptoms associated with the problem or
aggregate based on the relationships among instances defined in the Domain Manager.

The oneHop parameter is optional:

◆ If it is omitted or passed as FALSE, the full list of problems that explain eventname,
whether directly or indirectly, is returned.

◆ If it is passed as TRUE, only those problems that directly list eventname among the
events they explain are returned.

The function returns an array of array references with the format:

[
[<classname::instancename>,<problemname>],
[<classname::instancename>,<problemname>],
...

]

The class and instance names are returned as a single double-colon (::) delimited string,
giving two strings per returned event in total. This is different from the native ASL language
which returns the class and instance names separately, giving three strings for each event.

Example:

@symptoms =
$session->getClosure("Router::gw1", "Down", 0);

getExplains

@events = $session->getExplains($object, $eventname[, $onehop]);

MODEL developers can add information to a problem in order to emphasize events that
occur because of a problem. The getExplains() function returns a list of these events.

The $onehop parameter is optional:

◆ If it is omitted or passed as FALSE, the full list of problems that explain $eventname,
whether directly or indirectly, is returned.

◆ If it is passed as TRUE, only those problems that directly list eventname among the
events they explain are returned.

The function returns an array of array references with the format:

[
[<classname::instancename>,<problemname>],

50 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

[<classname::instancename>,<problemname>],
...

]

The class and instance names are returned as a single double-colon (::) delimited string,
giving two strings per returned event in total. This is different from the native ASL language
which returns the class and instance names separately, giving three strings for each event.

getExplainedBy

@events = $session->getExplainedBy($object, $event[, $onehop]);

The getExplainedBy() function is the inverse of the getExplains() function.

It returns those problems (or events) which the MODEL developer has listed as explaining
this event.

The $onehop parameter is optional:

◆ If it is omitted or passed as FALSE, the full list of problems that explain $event,
whether directly or indirectly, is returned.

◆ If it is passed as TRUE, only those problems that directly list $event among the events
they explain are returned.

The function returns an array of array references with the format:

[
[<classname::instancename>,<problemname>],
[<classname::instancename>,<problemname>],
...

]

The class and instance names are returned as a single double-colon (::) delimited string,
giving two strings per returned event in total. This is different from the native ASL language
which returns the class and instance names separately, giving three strings for each event.

subscribe and unsubscribe

$session->subscribe($C, $I, $E [, $flags]);
$session->subscribe("$C::$I::$E[/$flags]");
$session->unsubscribe($C, $I, $E [, $flags]);
$session->unsubscribe("$C::$I::$E[/$flags]");

These functions subscribe, or unsubscribe, to notifications of the specified events. “$C”,
“$I”, “$E” must be regexp patterns that represent the classes, instances, and events to
which to subscribe.

The unsubscribe() function is the inverse of subscribe().

Wrapper functions 51

InCharge::Session

The $flags value is a bitwise combination of the values or a more mnemonic string as
shown in Table 16 on page 52.

As a compatibility aid, the $flag can also be specified as a string of letters. In this case,
each of the letters are subscription qualifiers:

◆ “p” means subscribe to problems

◆ “a” means subscribe to aggregates (impacts)

◆ “e” means subscribe to events.

If “p”, “a” or “e” are not present, “p” is assumed.

◆ “v” means run in verbose mode, which turns on subscription control messages.

The action of these options is the same as that provided by the sm_adapter program’s
--subscribe= option.

Examples:

$session->subscribe("Router", ".*", ".*", "/pev");
$session->subscribe("Router::.*::.*/peav");
$session->subscribe($obj, ".*", 0x3);
$session->unsubscribe($obj, ".*", 0x3);

Table 16 Subscription flag parameter values

Flag bitfield value Description

0x000001 Simple event

0x000002 Simple aggregation

0x000010 Problem

0x000020 Imported event

0x000040 Propagated aggregation

0x0000ff All

0x001000 Expand subclasses

0x002000 Expand subclasses events

0x004000 Expand aggregations

0x008000 Expand closures

0x010000 Sticky

0x020000 Undo all

0x040000 Quiet accept

0x080000 Quiet suspend

0x100000 Glob

52 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

transaction, abortTxn and commitTxn

$session->transaction([$flag]);
$session->abortTxn();
$session->commitTxn();

These functions start, commit, and abort transactions.

Using transactions, you can commit many changes to the objects in a Domain Manager as
a single atomic transaction, or choose to abort all of them. Use the following syntax to
create a transaction:

$session->transaction();

After initiating the transaction, every change made to an object does not affect the object
until you commit the transaction. If the transaction is aborted, any changes made will not
affect the object. Use the following syntax to either commit or abort a transaction.

$session->commitTxn();

or

$session->abortTxn();

The changes made with a transaction are not visible outside of the script until the changes
are committed. Within a transaction, the same script can see the proposed changes.
Transactions also can control how other applications see objects before changes are
committed or aborted by adding a single keyword.

The syntax of a transaction with a keyword is:

$session->
transaction(["WRITE_LOCK"|"READ_LOCK"|"NO_LOCK"]);

A keyword can be any one of those described in Table 17 on page 53.

Transactions may be nested. When you nest a transaction, you must commit or abort the
nested transaction before you commit or abort the previous transaction.

The API aborts any open transactions when the script terminates.

Example:

#! /usr/local/bin/Perl
$session = InCharge::session->init();
$delthis = shift @ARGV;
$delthisObj = $session->object($delthis);
@relObj = @{ $delthisObj->{ComposedOf} };
$session->transaction();
$x = $delthisObj->delete();

Table 17 Transaction lock options

Keyword Description

WRITE_LOCK While the transaction is open, no other process can modify or access
information in the repository.

READ_LOCK The behavior of READ_LOCK is the same as WRITE_LOCK.

NO_LOCK This is the default behavior. No locks exist until the script commits the
transaction.

Wrapper functions 53

InCharge::Session

foreach $mem (@relObj) {
$mem->delete();

}
$session->commitTxn();
print("Deleted ".delthis." and related ports\n”);

In the example, the script deletes a card and its related ports. The script is invoked with an
argument that specifies the card to delete. Using the ComposedOf relationship, the script
creates a list of port objects to delete. The script deletes the card and its related ports at
the same time through a transaction that ensures that no other script can see the
intermediate stage with an incompletely deleted suite of objects.

delete

$session->delete($object);

The delete() function deletes the specified object instance from the repository.

This does not clean up all the object interdependencies and links. For a cleaner object
deletion, use the remove() operation, if one exists, for the object class in question. The
section “invoke” on page 89 also provides additional information to the related invoke()
primitive.

The delete() method can be called in one of two ways.

$session->delete($object);

or

$object->delete();

getEventType

$type = $session->getEventType($class, $event);

Given a class and event name, the getEventType() function returns a string that describes
the type of the event. The possible strings returned are described in Table 18 on page 54.

Example:

$type = $session->getEventType("Router", "Down");

To obtain the low-level numeric type codes, instead of descriptive strings, use the
getEventType() primitive, as shown.

Table 18 Event types

Event type literal Description

EVENT Event

AGGREGATION Aggregation

SYMPTOM Symptom

PROBLEM Problem

UNKNOWN Error indication

54 EMC Smarts Foundation Perl Reference Guide

InCharge::Session

$type =
$session->primitive("getEventType", "Router", "Down");

getServerName

$session->getServerName();

The getServerName() function returns the name of the Domain Manager to which the
session is connected.

insertElement

$session->insertElement($object, $relation, @item[s]);

The insertElement() function inserts one or more elements into an object relationship.

It is suggested that the insertElement() feature of the InCharge::object module be used
instead, as shown.

$obj->insertElement($relation, @item[s]);

removeElement

$session-E>removeElement($object, $relation, @item[s]);

The removeElement() function removes one or more elements from an object relationship,
such as ComposedOf.

It is recommended that the removeElement() feature of the InCharge::object module be
used instead, as shown.

$obj->removeElement($relation, @item[s]);

Wrapper functions 55

InCharge::Session

56 EMC Smarts Foundation Perl Reference Guide

Primitives

CHAPTER 4
Primitives

This chapter consists of the following sections:

◆ Primitive naming conventions ... 58
◆ Primitive calling conventions... 58
◆ Error handling ... 59
◆ Error codes.. 60
◆ Data types .. 61
◆ Primitives.. 65

57

Primitives

Primitive naming conventions
The Domain Manager primitives are low-level remote calls that are supported by the API.
These primitives provide the standard protocol between client applications, such as
dmctl, ASL adapters, API scripts, and the Domain Manager.

Name

InCharge::primitives

Conventions

The names given to the primitives follow a convention of using lowercase, except for the
first letter of the second and subsequent words of multiword names. For example, to get
operation arguments, the name of the primitive is getOperationArguments.

Where the resulting names are overly long, the API provides shorter aliases;
getOperationArguments() has the alias getOpArgs(). Typically, the word “Operation” is
shortened to “Op”, and “Property” is shortened to “Prop”, however, both the long and
shortened name can be used. Both forms are described in the following sections.

Since primitives are designed to be called by using the InCharge::session, where a
primitive name conflicts with a module function, the name of the primitive has the string
“_P” concatenated onto it in order to differentiate the two. Script authors are discouraged
from using these “_P” versions since higher-level versions are available through
InCharge::session and, in some cases, InCharge::object that are easier to use.

Where a primitive returns a value that may be of any type, a second version of the call is
provided that returns both the numeric type code and the return value. The name of this
extended version is the same as the lesser original but with “_t” appended. You can also
specify “_T” instead of “_t”, in which case when the primitive returns an
ANYVAL_ARRAY_SET (that is, a structure of structures), the fields of the structures are also
accompanied by their types. This is a reference to a two-element array containing type and
value for each structure field.

The primitive names are similar to those used in the C++ API. Where the names do not
match those used by ASL or dmctl, aliases are provided. For example, the ASL command
get Instances() is called get Leaf Instances() in the C++ API. Therefore, the API allows both
names to be used. The C++ name is the name used for the actual primitive and the ASL
name is provided as an alias.

The C interface for EMC Smarts software, on the other hand, uses function names that look
like sm_property_unsubscribe(). They start with “sm_” and use all lowercase words
delimited by underscores. This set of functions is less complete than the C++ equivalent
interface and does not provide a one-to-one match of all the Domain Manager primitives.
The API for Perl does not provide a match for the C interface function names.

Primitive calling conventions
All the functions described in this document must be invoked with reference to a valid
object of the InCharge::session module. These object references are created by using
InCharge::session->object(), InCharge::session->create(), or
InCharge::session->getInstances().

58 EMC Smarts Foundation Perl Reference Guide

Primitives

The general approach used for calling primitives is as follows:

1. Initialize a session and obtain a reference to it.

$session = InCharge::session->init();

2. Call the primitives required, by using the session reference. For example:

foreach $class (sort $session->getClasses()) {
foreach $inst (

sort $session->getInstances($class))
{

print $class . "::" . $inst . "\n”;
}

}

3. Close the session.

$session->detach();

Where access to operations or properties of Domain Manager repository objects is
required you are discouraged from using the get(), put() and invokeOperation() primitives,
but encouraged to use the features of the InCharge::object module instead. Using this
approach, the script obtains an InCharge::object reference, which is used to access the
required information. For example,

1. Establish a session.

$session = InCharge::session->init();

2. Create an InCharge::object valid reference to the object of interest.

$obj = $session->object("Router::gw1");

3. Manipulate the object by using the reference.

$type = $obj->{Type};
$obj->{Vendor} = "Cisco";
$fan1 = $obj->findFan(1);

4. Close the session.

$session->detach();

Error handling
All the functions and methods of objects in the API modules throw errors by using the Perl
die command. In order to catch any errors that may occur, the eval() function can be used
and the “$@” variable inspected after the event. This is common Perl scripting practice.
The error message is rendered in the locale set by the client session.

The example shown in the following script will abort if the router “gw1” does not exist in
the topology at the line where the name of the vendor is queried, and the last line will not
be executed.

use InCharge::session;
$session = InCharge::session->init();
$vendor = $session

->object("Router::gw1")
->get("Vendor”);

print "Vendor is $vendor\n”;

Error handling 59

Primitives

To trap this possible error, the code can be modified as follows.

use InCharge::session;
$session = InCharge::session->init();
$vendor = eval{

$session ->object("Router::gw1") ->get(Vendor);
};
if ($@) {

print "Error obtaining the Vendor property\n”;
} else {

print "Vendor is $vendor\n”;
}

For more details about using this mechanism, refer to the section on the eval and die
functions in the Perl function man pages.

All error messages thrown by the API start with a number in square brackets. This is the
error code and classifies the error as being one of those listed in Table 19 on page 60. The
remainder of the error text gives a verbose description of the specific error that was
thrown. Where additional numeric codes are relevant, these are included in a second or
subsequent set of square brackets.

The following example script attempts a connection with a Domain Manager and prompts
for a username and password if the connection fails due to an authentication error: code 4.

my $domain = "SAM1";
my $user = undef;
my $passwd = undef;
for (; ;) {

$session = eval{ InCharge::session->new(
domain => $domain,
username => $user,
password => $passwd);

}
if ($@ =~ m/^\[4\]/) {

print "Login: "; chomp $user = <STDIN>;
print "Password: "; chomp $passwd = <STDIN>;

} elsif ($@) {
die $@; # Some other fault

} else {
last; # Success !

}
}

Error codes
Table 19 on page 60 provides a description of the different error codes and their
associated types.

Table 19 Error codes

Error code Error type Description

1 Syntax error Wrong number of arguments, missing argument, or too many
arguments

2 System error System call error; e.g., socket creation failed

3 Connection error Socket connection error

60 EMC Smarts Foundation Perl Reference Guide

Primitives

Data types
The names of the variables used in the primitive descriptions, in the following sections, to
denote the arguments and return values indicate the data type passed or expected.
Although every effort has been made to use self-descriptive argument names in this
guide, some need further explanation.

$session

The $session data type is a reference to a valid InCharge::session object - created by using
InCharge::session->new() or InCharge::session->init(). All Domain Manager primitives
should be called with reference to an InCharge::session object, as shown:

$session = InCharge::session->init();
@list = $session->getClassInstances("Router");

$object

The $object data type is the specification of a repository object to be acted upon.

4 Authentication error Authentication error

5 HTTP error Other session init failure (HTTP error in second number, such
as “[5][301]”

6 Bad argument Argument content or type error, or invalid name, invalid
option, or wrong type, such as a scalar argument being
passed but a reference was required

7 Broker error Cannot attach to Broker

8 No domain Domain not registered with Broker

9 Protocol error Protocol error, data size error, or unsupported protocol format

10 Isolated Not attached

11 Invalid operation Invalid or illegal operation

12 Bad function Bad function call or primitive name

13 IO error Socket IO error

14 Timeout Timer expired

15 DM error Error returned by Domain Manager

16 Not cached Reply missing from cache

17 Configuration error A required configuration element, such as an environment
variable, is either missing or contains invalid data

Table 19 Error codes (continued)

Error code Error type Description

Data types 61

Primitives

This can be given in one of the formats described in Table 20 on page 62.

@objects

The @objects data type is a list of objects is to be returned, which is only used as a return
type.

The return is an array of object name strings in the “ClassName::InstanceName” format.

$symptom, @symptoms

A number of calls return lists of symptoms. These are represented as an array of array
references. Each subarray consists of four elements, each of which has the following
significance:

$x[0] = type (INT)
$x[1] = certainly (FLOAT)
$x[2] = object (STRING - class::instance)
$x[3] = event/symptom name (STRING

You can gain access to the elements by using one of the following syntaxes:

◆ $list[$record_number] -> [$field_number]

◆ $listref -> [$record_number] -> [$field_number]

The first syntax is used where the list is held in an array variable. The second syntax is
used when the list is held in an array pointed to by a reference.

Table 20 Formats to specify a repository object

Format Description

'class::instance' This format uses a single string, containing both the class and instance
name with two colons between them.
$n =

$session->countElements("Router::gw1",
"ComposedOf");

'::instance' This format uses two parameters, where the first contains the class and
the second contains the name of the instance.
$n = $session->countElements("::gw1",

"ComposedOf");

$class, $instance This format uses two parameters, where the first contains the class and
the second contains the name of the instance.
$n =

$session->countElements("Router",
"gw1", "ComposedOf");

undef, $instance This format uses two parameters. The first parameter contains the Perl
undef value, to indicate that it is unknown. This causes the API to
perform a query to determine that name of the object's class. This
syntax can only be used to refer to existing objects.
$n = $session->countElements(undef, "gw1",

"ComposedOf");

InCharge::object
reference

This format is used whenever an object name is required. It is also
possible to pass an InCharge::object reference.
$obj = $session->object("Router::gw1");
$n = $session->countElements($obj,

"ComposedOf");

62 EMC Smarts Foundation Perl Reference Guide

Primitives

$symptomData, @symptomData

Symptom data is returned as an array of nine values, as described in Table 21 on page 63.
When a list of symptoms is returned, it is formatted as an array of array references where
each subarray contains the nine fields for a single symptom.

$type, @types

The Domain Manager protocol uses a range of integer values to identify the types of data
being passed. These are used when a primitive is permitted to handle more than one data
type as an argument or return value. For example, the invoke() primitive can take
arguments of any type, such as integer, string, and Boolean. When specifying a type as a
primitive function argument you can either use the numeric value or the mnemonic string,
as shown in the following example. For a string, either use “13” or “STRING”. When type
codes are returned by primitives, they are always returned as the numeric code.

To convert from the numeric code to the mnemonic string and back, use one of the built-in
TYPE methods of the InCharge::session module, as shown:

◆ $mnemonic = $session->TYPE($code)

◆ $code = $session->TYPE($mnemonic)

Table 22 on page 63 describes the type code values that are used.

Table 21 Symptom data codes

Symptom data code Description and type

$x[0] state (INTEGER)
0 = active
1 = inactive
2 = suspended
3 = not monitored

$x[1] last occurrence (LONG INTEGER)

$x[2] instance display name (STRING)

$x[3] class display name (STRING)

$x[4] event type (INTEGER)

$x[5] event certainty level (FLOAT)

$x[6] event class (STRING)

$x[7] event instance (STRING)

$x[8] event name (STRING)

Table 22 Type codes (page 1 of 2)

Constant Literal Description

0 VOID void (nothing)

1 ERR error condition

2 BOOLEAN boolean (1 = true, 0 = false)

3 INT signed integer

Data types 63

Primitives

$freshness

Where the function argument list takes a freshness parameter, this refers to how fresh the
property being accessed by the function should be. This applies to polled or derived
properties that may need recalculating or repolling if the property was last updated more
than the specified $freshness seconds ago.

4 UNSIGNED unsigned integer

5 LONG signed long integer

6 UNSIGNEDLONG unsigned long integer

7 SHORT signed short integer

8 UNSIGNEDSHORT unsigned short integer

9 FLOAT floating point

10 DOUBLE double length floating point

12 CHAR 1-byte character

13 STRING string

14 OBJREF object (class and instance)

15 OBJCONSTREF constant object reference

16 BOOLEAN_SET set of booleans

17 INT_SET set of signed integers

18 UNSIGNED_SET set of unsigned integers

19 LONG_SET set of signed long integers

20 UNSIGNEDLONG_SET set of unsigned long integers

21 SHORT_SET set of signed short integers

22 UNSIGNEDSHORT_SET set of unsigned short integers

23 FLOAT_SET set of floating point numbers

24 DOUBLE_SET set of double length floats

26 CHAR_SET set of 1-byte characters

27 STRING_SET set of strings

28 OBJREF_SET set of objects (class and instance)

29 OBJCONSTREF_SET set of constant object references

30 ANYVALARRAY set of values (types included)

31 ANYVALARRAY_SET two-dimensional array of values

Table 22 Type codes (page 2 of 2)

Constant Literal Description

64 EMC Smarts Foundation Perl Reference Guide

Primitives

Primitives

classExists

$boolean = $session->classExists($class)

The classExists function returns 1 if the specified class exists or 0 otherwise.

if ($session->classExists("Router")) {
print "Router class exists\n”;

}

consistencyUpdate

$session->consistencyUpdate()

The consistencyUpdate() function causes the Domain Manager to recompute the
correlation codebook.

correlate

$session->correlate()

The correlate() function triggers the “Code book” correlation actions, where symptoms are
analyzed and correlated into problems.

countChildren

$count = $session->countChildren($class)

The countChildren() function counts the child classes of the specified class.

$class = "ICIM_UnitaryComputerSystem";
$n = $session->countChildren($class);

countClassInstances

$count = $session->countClassInstances($class)

The countClassInstances() function counts the number of objects that exist for a specified
class, or those that would be returned by a call to getClassInstances().

$n = $session->countClassInstances("Router");

countClasses

$count = $session->countClasses()

The countClasses() function counts the number of classes present in the system.

$n = $session->countClasses();

Primitives 65

Primitives

countElements

$count = $session->countElements($object, $relation)

The countElements() function counts the number of elements in the specified
relationship.

$n = $session->countElements("Router::gw1","ComposedOf");

countInstances

$count = $session->countInstances()

The countInstances() function counts the total number of objects in the repository, of all
classes.

$n = $session->countInstances();

countLeafInstances

$count = $session->countLeafInstances($class)

The countLeafInstances() function counts the number of leaf objects that exist for a
specified class, those that would be returned by a call to getLeafInstances().

$n = $session->countLeafInstances("Router");

countf

$count =
$session->countf($object, $relationship, $freshness)

The countf() function counts the number of elements in the specified relationship, such as
countElements(). The contents of the relationship will be refreshed if the values are older
than $freshness seconds. The section “$freshness” on page 64 provides additional
information.

createInstance

$session->createInstance($object)

Use the InCharge::session->create() function instead, as described in Chapter 3,
“InCharge::Session.”

The createInstance() function creates a new ICIM object instance. The object specification
must include both a class name and unique instance name.

$session->createInstance("Router::fred");

deleteInstance

$session->deleteInstance($object)

66 EMC Smarts Foundation Perl Reference Guide

Primitives

Use the InCharge::session->delete() or InCharge::object->delete() function instead, as
described in Chapter 2, “InCharge::Object” and Chapter 3, “InCharge::Session.”

Deletes the specified object instance from the repository. Note that this does not clean up
all the object interdependencies and links. When the Domain Manager has a MODEL
based on ICIM, for a cleaner object deletion, you can use the remove() operation, if one
exists for the object class in question. The section “invoke” on page 89 provides
additional information.

$session->deleteInstance("ACT_File::myFile");

deleteObserver

$session->deleteObserver()

The deleteObserver() function is an alias for purgeObserver(). The section
“purgeObserver” on page 94 provides additional information.

Consider this an internal call. Use $session->detach() instead, as discussed in Chapter 3,
“InCharge::Session.”

The deleteObserver() function reverses the effect of getObserverId(), deregistering the
script as an observer.

$session->deleteObserver();

eventIsExported

The eventIsExported() function is an alias for getEventExported(). The section
“getEventExported” on page 76 provides additional information.

execute

The execute() function is an alias for executeProgram(). The section “executeProgram” on
page 67 provides additional information.

executeProgram

@thread = $session->executeProgram($program, \@args)

The executeProgram() function is an alias for execute(). The section “execute” on page 67
provides additional information.

The executeProgram() function executes an EMC Smarts program, passing arguments to it.

The following example runs the dmdebug plug-in, displaying statistics information on the
stdout file of the sm_server process.

@thread = $session->executeProgram (
"dmdebug", ["dmdebug", "--stats"]);

Primitives 67

Primitives

exists

The exists() function is an alias for instanceExists(). The section “instanceExists” on
page 89 provides additional information.

findInstances_P

Use the findInstances() function from the InCharge::session module instead.

@objects = $session->findInstances_P(
$class-pattern, $instance-pattern, $flag)

Finds instances that match the class and instance patterns, according to rules specified in
the flags.

When used by the console GUI, the $flag value is 0x101000, which requests subclass
expansion and glob pattern matches. When used by dmctl, the value 0x001000 is used
which requests RegEx pattern matches and subclass expansion.

The value of $flag consists of the following values OR’d in any combination, according to
the options required.

0x001000 = Expand-subclasses. With this flag set, the contents of subclasses of those
classes that match are also returned.

0x100000 = Glob. This causes the match to be done by using ICIM glob() matches rather
than UNIX regex syntax, which is used otherwise.

@list = $session->findInstances_P(
"Router", "s*", 0x100000);

@list = $session->findInstances_P(
 "ICIM_UnitaryComputerSystem", ".*", 0x001000);

forceNotify

forceNotify($object, $event, $notified, $expires)

Notifies, or clears, the specified event.

The $notified and $expires parameters are both timers:

◆ If $notified is greater than or equal to $expires, then the event is cleared.

◆ If $notified is less-than $expires then the event is notified, or raised. The actual values
of these parameters are not significant.

to notify an event:
$session->forceNotify("Router::gw1",

 "Unresponsive", 0, 1);
to clear an event:
$session->forceNotify("Router::gw1",

 "Unresponsive", 0, 0);

68 EMC Smarts Foundation Perl Reference Guide

Primitives

get

RETURN = $session->get($object, $property)

Use the features of the InCharge::object module instead, as described in Chapter 2,
“InCharge::Object” and Chapter 3, “InCharge::Session.”

Gets the contents of the specified property of the object.

The return type is scalar, array, or array reference as appropriate.

$vendor = $session->get("Router::gw1", "Vendor");
@parts = $session->get("Router::gw1", "ComposedOf");

The preferred implementation is:

$object = $session->object("Router::gw1");
$vendor = $object->{Vendor};
@parts = $object->{ComposedOf};

get_t and get_T

($type, $value) = $session->get_t($object, $property)

Like get(), this returns the contents of the specified property, however, get_t() also returns
a code for the type of the data. The returned value will be a scalar or array reference, as
appropriate.

($type, $value) = $session->get_t(
"Router::gw1", "Vendor");

($type, $value) = $session->get_t(
"Router::gw1", "ComposedOf");

The get_t() variant of this call also returns the types of values contained in complex
structures. Where get_t() returns a value, get_T() returns a type code and value in a
two-element array.

getAggregationEvents

@list = $session->getAggregationEvents($object,
$eventname, $flag)

The getAggregationEvents() function gets the names of the events that are aggregated to
the specified event, which must be an aggregation event type.

◆ If $flag is false, then the events directly aggregated are returned.

◆ If $flag is true, then the aggregation tree is walked, and the names of all
nonaggregation events that the specified event ultimately depends on are returned.

@list = $session->getAggregationEvents(
"Router::gw1", "PowerSupplyException", 1);

getAllEventNames

@events = $session->getAllEventNames($class)

Primitives 69

Primitives

The getAllEventNames() function is an alias for getEvents(). The section “getEvents” on
page 75 provides additional information.

The getAllEventNames() function gets the list of all events of all types, including
symptoms, problems, aggregates, and events, in no particular order.

The getEventNames() call is similar but omits the problems from the list.

@list = $session->getAllEventNames("Router");

getAllInstances

@instances = $session->getAllInstances()

The getAllInstances() function gets the names of all instances present in the ICIM
database.

The getAllInstances() function can potentially return a very large array and should not be
used.

getAllProperties and getAllProperties_t

@properties = $session->getAllProperties($object, $flag);

The getAllProperties() function returns the names and values of all the properties of the
specified object:

◆ If $flag is 0, attributes only are returned.

◆ If $flag is 1, relations only are returned.

◆ If $flag is 2, both attributes and relations are returned.

The @properties array contains an even number of elements, where the odd-numbered
ones are the property names, and the even-numbered are the matching values. This
convention means that you can treat the result as a Perl hash, as shown in the following
examples:

◆ The first example:

%props = $s->getAllProperties($obj, 2);
print "Object Name is $props{Name}\n”;

◆ The second example:

use Data::Dumper;
print Dumper(\%props);

The “_t” variation of the call returns data types as well as values.

Consider using the get() or get_t() functions of the InCharge::object module with no
arguments instead of this call, as shown in the following example:

%props = $obj->get();
print Dumper(\%props);

70 EMC Smarts Foundation Perl Reference Guide

Primitives

getArgDirection

$direction = $session->getArgDirection($class, $operation, $argname)

The getArgDirection() function gets a flag to indicate whether the specified operation
argument is an IN or OUT argument:

◆ IN arguments are denoted by the value 0 and refer to argument values passed from
the script to the Domain Manager.

◆ OUT arguments are denoted by the value 1 and refer to variables into which the
operation puts result information.

Nearly all arguments to all operations of all classes are IN arguments.

OUT arguments are not supported by the remote access protocol, which is beyond the
scope of the API, dmctl, and ASL.

$direction = $session->getArgDirection(
"Router", "getFan", "identifier");

getArgType

$type = $session->getArgType($class, $operation, $argname)

The getArgType() function is an alias for getOpArgType() and getOperationArgumentType().
The sections “getOpArgType” on page 79 and “getOperationArgumentType” on page 79
provide additional information.

The getArgType() function gets the type of the specified argument for the specified class
operation. The section “$type, @types” on page 63 describes the possible data types.

$type = $session->getArgType("Router", "makeFan", "className");

getAttributes

The getAttributes() function is an alias for getAttributeNames(). The section
“getAttributeNames” on page 71 provides additional information.

getAttributeNames

@properties = $session->getAttributeNames($class)

The getAttributeNames() function is an alias for getAttributes(). The section
“getAttributes” on page 71 provides additional information.

The getAttributeNames() function gets the list of all attributes for the specified class.

Attributes are properties that are not relations. For class Router, Vendor is an attribute but
ComposedOf is not, however, both are properties. The getAttributeTypes() call returns the
types of these attributes.

@list = $session->getAttributeNames("Router");

Primitives 71

Primitives

getAttributeTypes

@types = $session->getAttributeTypes($class)

The getAttributeTypes() function gets the list of type codes associated with the attribute
names returned by getAttributeNames().

The types returned by this call and the names returned by getAttributeNames() are in the
same order, such that the type of $property[$n] is given in $type[$n]. The section “$type,
@types” on page 63 provides a description of the possible values.

@list = $session->getAttributeTypes("Router");

getByKey

RESULT = $session->getByKey($object, $table,
 [$keytype, $keyvalue])

The getByKey() function gets the entry in the named table from the object, indexed by its
key.

Tables are properties that can contain arrays of values.

@driver = $session->getByKey(
"GA_CompoundDriver::Bridge-Generic-Driver",
"drivers", ["INT", 10]);

getByKey_t and getByKey_T

($type, $value) = $session->getByKey_t($object, $table,
 [$keytype, $keyvalue])

Identical to getByKey() but returns a code for the type of the result as well.

($type, $data) = $session->getByKey_t(
"GA_CompoundDriver::Bridge-Generic-Driver",
"drivers", ["INT", 10]);

getByKeyf

RESULT = $session->getByKeyf($object, $table,
 [$keytype, $keyvalue], $freshness)

Identical to getByKey() but takes the “freshness” of the entry into account. The section
“$freshness” on page 64 provides additional information.

@driver = $session->getByKeyf(
"GA_CompoundDriver::Bridge-Generic-Driver",
"drivers", ["INT", 10], 120);

getByKeyf_t and getByKeyf_T

($type, $value) = $session->getByKeyf_t($object, $table,
 [$keytype, $keyvalue], $freshness)

Identical to getByKey_t() but takes the “freshness” of the entry into account. The section
“$freshness” on page 64 provides additional information.

72 EMC Smarts Foundation Perl Reference Guide

Primitives

($type, $data) = $session->getByKeyf_t(
"GA_CompoundDriver::Bridge-Generic-Driver",
"drivers", ["INT", 10], 120);

getChildren

@classes = $session->getChildren($class)

The getChildren() function gets the list of classes that are child classes of a specified one,
that is, classes derived from the base class.

$class = "ICIM_UnitaryComputerSystem";
@list = $session->getChildren($class);

getClassDescription

$text = $session->getClassDescription($class)

The getClassDescription() function gets a textual description of the class.

The fixed string “no description available” is returned if the class programmer has not
provided a description message for the class.

$description = $session->getClassDescription("Router");

getClassHierarchy

@hierarchy = $session->getClassHierarchy();

The getClassHierarchy() function returns an array of information that provides a complete
description of the hierarchy of domain model classes.

Each element of the array is a reference to a three-element subarray, as described in
Table 23 on page 73.

getClassInstances

@instances = $session->getClassInstances($class)

The getClassInstances() function gets the list of instances of a specified class.

The return is a list of strings that contain the instance names without the class name. For
example, “fred” is returned rather than “Router::fred”. This differs from getLeafInstances()
in that this call returns the members of the class and any derived classes, whereas
getLeafInstances() returns only the members of the specified class.

@names = $session->getClassInstances("Router");

Table 23 Class hierarchy descriptor

Array element Description

$x[0] name of ICIM class

$x[1] name of the class’s parent class

$x[2] class is abstract flag: 1 = yes, 0 = no

Primitives 73

Primitives

getClasses

@classes = $session->getClasses()

The getClasses() function gets the list of classes present in the system.

The following code fragment displays the list of all instances of all classes in the database.

foreach $class ($session->getClasses()) {
foreach ($session->getClassInstances($class)) {
print "${class}::$_\n”;

}
}

getCorrelationParameters

@info = $session->getCorrelationParameters()

The getCorrelationParameters() function returns a nine-element array, each element of
which contains a parameter relating to the Domain Manager correlation mechanism.

The array elements are described in Table 24 on page 74.

getEnumVals

@strings = $session->getEnumVals($class, $property)

The getEnumVals() function returns the list of strings that represent the possible values for
an enumerated property.

The returned list of strings can be used to present a list of valid values to the user in the
form of a selection menu. If this primitive is used to refer to a property that is not an
enumerated one, an error is thrown.

@values = $session->getEnumVals("Router", "Type");

Table 24 getCorrelationParameters return values

Element Description

info[0] max problems (INT)

info[1] correlation interval (INT)

info[2] codebook radius (FLOAT)

info[3] correlation radius (FLOAT)

info[4] lost symptom probability (FLOAT)

info[5] spurious symptom probability (FLOAT)

info[6] time limit (INT)

info[7] suspend correlation (BOOLEAN)

info[8] provide explanation (BOOLEAN)

74 EMC Smarts Foundation Perl Reference Guide

Primitives

getEvents

The getEvents() function is an alias for getAllEventNames(). The section
“getAllEventNames” on page 69 provides additional information.

getEventCauses

@symptoms = $session->getEventCauses($object, $eventname, $flag)

The getEventCauses() function gets a list of the Root causes, or problems, that the
specified event can be considered to be a symptom of.

The getProblemClosure() primitive provides the reverse mapping. This is the mechanism
used to populate the codebook tab for an event property sheet in the administrative
console.

The $flag parameter is optional:

◆ If it is passed as TRUE, the full list of problems explaining eventname, whether directly
or indirectly, is returned.

◆ If it is passed as FALSE, only those problems that directly list eventname among the
events they explain are returned.

@causes = $session->getEventCauses(
"Router::gw1", "MightBeUnavailable", 1);

getEventClassName

$class = $session->getEventClassName($class, $event)

The getEventClassName() function returns a string with the name of the ancestor class
associated with a class and an event. The ancestor class is where the event was originally
defined, that is, the class in which the event definition statement, not any refinement,
appeared.

$class = $session->getEventClassname("Router", "Down");

getEventDescription

$text = $session->getEventDescription($class, $event)

The getEventDescription() function returns a string, defined in MODEL, that describes an
event.

$descr = $session->getEventDescription("Router", "Down");

getEventExplainedBy

@symptoms = $session->getEventExplainedBy($object, $event, $flag)

Use InCharge::session->getExplainedBy instead, as discussed in Chapter 3,
“InCharge::Session.”

Primitives 75

Primitives

The getEventExplainedBy() function returns the list of symptoms that are explained by the
specified impact event.

The $flag is a boolean that indicates whether the event impact tree is to be walked during
the processing of the request.

@list = $session->getEventExplainedBy(
"Router::gw1", "DownImpact", 1);

getEventExported

$boolean = $session->getEventExported($class, $event)

The getEventExported() function is an alias for eventIsExported(). The section
“eventIsExported” on page 67 provides additional information.

Returns one of the following:

◆ 1 if the specified event is exported by the class
◆ 0 if it is not exported.

Events that are not exported are hidden from view in the GUI.

if ($session->getEventExported("Router", "Down")) {
print "Event is exported\n”;

}

getEventNames

@events = $session->getEventNames($class)

The getEventNames() function gets the list of events handled by the specified class.

Some of the returned events are exported while others are not, as described in
“getEventExported” on page 76. Unlike getAllEventNames(), this call does not return
problems names.

@list = $session->getEventNames($class);

getEventSymptoms

@events = $session->getEventSymptoms($class, $event)

The getEventSymptoms() function returns the list of events that are symptoms of the
specified one.

@symptoms =
 $session->getEventSymptoms("Router", "Down");

getEventType_P

$eventtype = $session->getEventType_P($class, $event)

76 EMC Smarts Foundation Perl Reference Guide

Primitives

Consider using InCharge::session->getEventType instead, as discussed in Chapter 3,
“InCharge::Session.” The “_P” is included in the name to avoid confusion with the
InCharge::session function of the same name.

This primitive returns a numeric code that indicates the type of the specified event.
Possible values are shown in Table 25 on page 77.

$eventtype = $session->getEventType_P("Router", "Down");

The primitive version of this call must be called by using the primitive function as shown
because there is an InCharge::session method of the same name, provided for functional
compatibility with ASL.

getInstances

The getInstances() function is an alias for getClassInstances(). The section
“getClassInstances” on page 73 provides additional information.

getInstrumentationType

$type = $session->getInstrumentationType($object)

The getInstrumentationType() function returns the instrumentation type for a specified
object.

$type =
$session->getInstrumentationType("Router::gw1");

getLeafInstances

@instances = $session->getLeafInstances($class)

Table 25 getEventType return codes

Return code Event type

0 Event

1 Aggregation

2 Symptom

3 Causality

4 Problem

5 Imported event

6 Propagated Aggregation

7 Propagated Symptom

8 Same type

Primitives 77

Primitives

The getLeafInstances() function is an alias for getInstances(). The section “getInstances”
on page 77 provides additional information.

The getLeafInstances() function gets the list of instances of a specified class.

The return is a list of strings that contain the instance names without the class name. For
example, “fred” is returned rather than “Router::fred”. This differs from
getClassInstances() in that this call returns only the members of the specified class,
whereas the getClassInstances() call returns the members of the class and its derived
classes.

@names = $session->getLeafInstances("Router");

getLibraries

@libs = $session->getLibraries()

The getLibraries() function is an alias for getModels(). The section “getModels” on
page 78 provides additional information.

The getLibraries() function gets the list of libraries loaded into the system.

getModels

The getModels() function is an alias for getLibraries(). The section “getLibraries” on
page 78 provides additional information.

getMultipleProperties and getMultipleProperties_t

Use the get() and get_t() functions of the InCharge::object module with multiple
arguments instead of this call, as shown in the example.

($vendor, $model) = $obj->get("Vendor", "Model");

The syntax of the primitive itself is:

◆ @values = $session->getMultipleProperties($object, \@propnames);

◆ @values = $session->getMultipleProperties_t($object, \@propnames);

For example:

($vendor,$model) =
$session->getMultipleProperties($obj,

 ["Vendor", "Model"]);

The argument is a reference to an array that contains the names of the properties to be
returned.

getObserverId

$id = $session->getObserverId()

78 EMC Smarts Foundation Perl Reference Guide

Primitives

Do not call this primitive directly, but make use of the InCharge::session->observer()
function instead.

The getObserverId() function creates and returns a new observer ID.

The deleteObserver() primitive reverses this action. The section “deleteObserver” on
page 67 provides additional information.

getOpArgType

The getOpArgType() function is an alias for getArgType(). The section “getArgType” on
page 71 provides additional information.

getOpArgs

@argnames = $session->getOpArgs($class, $operation)

The getOpArgs() function is an alias for getOperationArguments(). The section
“getOperationArguments” on page 79 provides additional information.

The getOpArgs() function gets the names of the arguments for a specified class operation.

The argument names are returned in the order in which they should appear in the
argument list when invoking the operation.

@list = $session->getOpArgs("Router", "makeIP");

getOpDescription

$text = $session->getOpDescription($class, $operation)

The getOpDescription() function is an alias for getOperationDescription(). The section
“getOperationDescription” on page 80 provides additional information.

The getOpDescription() function returns a textual description of the specified class
operation.

$description = $session->getOpDescription(
"Router", "makeIP");

getOperationArguments

The getOperationArguments() function is an alias for getOpArgs(). The section
“getOpArgs” on page 79 provides additional information.

getOperationArgumentType

The getOperationArgumentType() function is an alias for getArgType(). The section
“getArgType” on page 71 provides additional information.

Primitives 79

Primitives

getOperationDescription

The getOperationDescription() function is an alias for getOpDescription(). The section
“getOpDescription” on page 79 provides additional information.

getOperationFlag

The getOperationFlag() function is an alias for getOpFlag(). The section “getOpFlag” on
page 80 provides additional information.

getOperationReturnType

The getOperationReturnType() function is an alias for getOpReturnType(). The section
“getOpReturnType” on page 81 provides additional information.

getOperations

The getOperations() function is an alias for getOpNames(). The section “getOpNames” on
page 80 provides additional information.

getOpFlag

$flag = $session->getOpFlag($class, $operation)

The getOpFlag() function is an alias for getOperationFlag(). The section “getOperationFlag”
on page 80 provides additional information.

The getOpFlag() function gets the flag associated with the specified class operation.

The value returned is between 0 and 3, as defined Table 26 on page 80.

$flag = $session->getOpFlag("Router", "makeIP");

getOpNames

@operations = $session->getOpNames($class)

The getOpNames() function is an alias for getOperations(). The section “getOperations”
on page 80 provides additional information.

The getOpNames() function gets the list of operations for the specified class.

The operations are returned as an array of strings that contain their names.

@list = $session->getOpNames("Router");

Table 26 getOpFlag return codes

Return code Operation

0 No flag

1 Idempotent

2 Constant

3 Read only

80 EMC Smarts Foundation Perl Reference Guide

Primitives

getOpReturnType

$type = $session->getOpReturnType($class, $operation)

The getOpReturnType() function is an alias for getOperationReturnType(). The section
“getOperationReturnType” on page 80 provides additional information.

The getOpReturnType() function returns the return type code for the specified class
operation.

By using this function, you can determine whether the operation returns an integer, a
string, an object, or a list. The type codes returned are integer numbers, as described in
Table 22 on page 63.

$type_code = $session->getOpReturnType(
"Router", "makeIP");

getParentClass

$class = $session->getParentClass($class)

The getParentClass() function returns the name of the class from which the specified class
is derived.

This is the logical inverse of getChildren().

$parent = $session->getParentClass("Router");

getProblemClosure

@symptoms = $session->getProblemClosure($object, $eventname, $flag)

Use InCharge::session->getClosure() in preference to this call.

Lists the events, or symptoms, that contribute to a specified problem. The
getEventCauses() primitive is the inverse of this one. The section “getEventCauses” on
page 75 provides additional information.

@list = $session->getProblemClosure(
"Router::gw1", "Down", 1);

getProblemExplanation

@list = $session->getProblemExplanation($object, $eventname, $flag)

Use InCharge::session->getExplains() in preference to this call.

MODEL developers can add information to a problem in order to emphasize events that
occur because of a problem. This function returns a list of these events.

Primitives 81

Primitives

@list = $session->getProblemExplanation("Router::gw1",
"Down", 1);

getProblemNames

@list = $session->getProblemNames($class)

The getProblemNames() function gets the event names of problems associated with the
specified class.

@problems = $session->getProblemNames("Router");

getProblemSymptomState

@symptomData = $session->getProblemSymptonState($object, $eventname)

The getProblemSymptomState() function returns data about all the symptoms that
indicate the specified problem, including significant state information.

@list = $session->getProblemSymptonState("Router::gw1", "Down");

getPrograms

@list = $session->getPrograms()

The getPrograms() function gets the list of ``programs'' that are running in the Domain
Manager.

Typically the reply list includes “dmboot” and “icf.”

@progs = $session->getPrograms();

getPropAccess

$access = $session->getPropAccess($class, $property)

The getPropAccess() function returns a number that indicates the level of access to the
specified property.

$access = $session->getPropAccess("Router", "Vendor");

The return value effectively identifies the method by which the property value is obtained
internally. Possible values and their meanings are listed in Table 27 on page 82.

Table 27 getPropAccess return codes

Return code Property access level

0 No access

1 Stored

2 Computed

3 Instrumented

82 EMC Smarts Foundation Perl Reference Guide

Primitives

getPropDescription

$text = $session->getPropDescription($class, $property)

The getPropDescription() function is an alias for getPropertyDescription(). The section
“getPropertyDescription” on page 83 provides additional information.

The getPropDescription() function returns a textual description of the named class
property.

$descr =
$session->getPropDescription("Router", "Vendor");

getProperties

The getProperties() function is an alias for getPropNames(). The section “getPropNames”
on page 84 provides additional information.

The functionality of the C++ function getProperties() is available through the
getMultipleProperties() primitive, and more easily through the get() method of the
InCharge::object module.

Primitive getProperties() is aliased to getPropNames() in order to provide dmctl syntax
compatibility.

getPropertyDescription

The getPropertyDescription() function is an alias for getPropDescription(). The section
“getPropDescription” on page 83 provides additional information.

getProperties

The getProperties() function is an alias for getPropNames(). The section “getPropNames”
on page 84 provides additional information.

For C++ developers, the C++ API call getProperties() is referred to as
getMultipleProperties(). However, the InCharge::object->get() is an easier way to use this
functionality.

4 Propagated

5 Uncomputable

6 Computed with expression

Table 27 getPropAccess return codes (continued)

Return code Property access level

Primitives 83

Primitives

getPropertyType

The getPropertyType() function is an alias for getPropType(). The section “getPropType” on
page 85 provides additional information.

getPropIsReadonly

$boolean = $session->getPropIsReadonly($class, $property)

The getPropIsReadonly() function indicates whether the specified class property is
read-only.

if ($session->getPropIsReadonly("Router", "Vendor")) {
print "Vendor is readonly\n”;

} else {
print "Vendor can be changed\n”;

}

getPropIsRelationship

$boolean = $session->getPropIsRelationship($class, $property)

The getPropIsRelationship() function indicates whether the specified class property is a
relationship.

if ($session->getPropIsRelationship("Router",
 "ComposedOf"))

{
print "ComposedOf is a relationship\n”;

}

getPropIsRequired

$boolean = $session->getPropIsRequired($class, $property)

The getPropIsRequired() function indicates whether the specified class property is
required to have a value.

$needed =
$session->getPropIsRequired("Router", "Vendor");

getPropNames

@list = $session->getPropNames($class)

The getPropNames() function retrieves the names of all the properties of a given class.

getPropRange

@range = $session->getPropRange($class, $property)

The getPropRange() function returns the range of valid values for the class property,
provided the property has been defined.

This applies to a very limited number of properties of integer type, typically in polling
configuration classes.

84 EMC Smarts Foundation Perl Reference Guide

Primitives

($min, $max) = $session->getPropRange(
"DialOnDemand_Interface_Setting",
"MaximumUptime");

getPropType

$type = $seesion->getPropType($class, $property)

The getPropType() function is an alias for getPropertyType(). The section
“getPropertyType” on page 84

Returns the data type for a specified class property.

The section “$type, @types” on page 63 describes the possible data types. This call always
returns the integer number representation of the type.

$type = $session->getPropType("Router", "Vendor");

getPropertySubscriptionState

$state = $session->getPropertySubscriptionState(
$object, $property)

The getPropertySubscriptionState() function gets the current state of subscription to the
specified event.

The possible reply values are listed in Table 28 on page 85.

getRelatedClass

$class = $session->getRelatedClass($class, $property)

The getRelatedClass() function returns the name of the class of object that can be related
to the specified class through the property, which must be a relationship.

$class =
$session->getRelatedClass("Router", "ComposedOf");

getRelationNames

@properties = $session->getRelationNames($class)

The getRelationNames() function is an alias for getRelations(). The section “getRelations”
on page 86 provides additional information.

Table 28 getPropertySubscriptionState return codes

Return code Subscription state

0 Unsubscribed

1 Pending

2 Subscribed

3 Suspended

Primitives 85

Primitives

The getRelationNames() function gets the names of all the relationship properties for the
specified class.

@relationships = $session->getRelationNames("Router");

getRelations

The getRelations() function is an alias for getRelationNames(). The section
“getRelationNames” on page 85 provides additional information.

getRelationTypes

@types = $session->getRelationTypes($class)

The getRelationTypes() function returns a list of type numbers for the relationships which
are returned by the getRelationNames() call.

@types = $session->getRelationTypes("Router");

The section “$type, @types” on page 63 describes the possible data types.

getReverseRelation

$property = $session->getReverseRelation($class, $property)

The getReverseRelation() function returns the name of the other end of a relationship pair
denoted by the specified property name.

The inverse of ComposedOf is PartOf.

$relationship = $session->getReverseRelation(
"Router", "ComposedOf");

getSubscriptionState

$state = $session->getSubscriptionState($object, $event)

The getSubscriptionState() function gets the current state of subscription to the specified
event.

The possible values are listed in Table 29 on page 86.

getThreads

@list = $session->getThreads()

Table 29 getSubscriptionState return codes

Return code Subscription state

0 Unsubscribed

1 Pending

2 Subscribed

3 Suspended

86 EMC Smarts Foundation Perl Reference Guide

Primitives

The getThreads() function returns a list of threads that run in the current Domain Manager
system.

Each element of the returned array is a reference to a four-element array. The four values
that describe each thread are as they are described in Table 30 on page 87.

This example prints the thread IDs and names of all threads in thread ID order.

foreach $t (sort { $a->[0] <=> $b->[0] }
$session->getThreads()) {

print $t->[0] . " - " . $t->[1] . "\n”;
}

getf

RETURN = $session->getf($object, $property, $freshness)

The getf() function gets the contents of the specified property of the object with reference
to its freshness. The section “$freshness” on page 64 provides additional information.

The return type is scalar, array, or array reference, as appropriate, as described in “Data

types” on page 61.

$vendor = $session->getf("Router::gw1", "Vendor", 240);
@parts =

$session->getf("Router::gw1", "ComposedOf", 360);

getf_t and getf_T

($type, $value) = $session->getf_t($object, $property, $freshness)

Like getf(), the getf_t() function returns the contents of the specified property but getf_t()
also returns a code for the type of the data. The section “$freshness” on page 64 provides
additional information.

The returned value will be a scalar or array reference, as appropriate.

($type, $value) =
$session->getf_t("Router::gw1", "Vendor", 240);

($type, $value) =
$session->getf_t("Router::gw1", "ComposedOf", 360);

getfAllProperties and getfAllProperties_t

%properties = $session->getfAllProperties($object, $flag, $freshness);

Table 30 getThreads return codes

Return array element Thread information

$t[0] Process ID

$t[1] name

$t[2] State

$t[3] Status

Primitives 87

Primitives

The getfAllProperties() function is the same as getAllProperties(), but takes the freshness
of the values into account, and refreshes any stale properties before returning the results,
that is, those that are older than $freshness seconds. The section “$freshness” on
page 64 provides additional information.

The section“getAllProperties and getAllProperties_t” on page 70 provides a description of
the $flag.

getfMultipleProperties and getfMultipleProperties_t

@values = $session->getfMultipleProperties($object,
 \@propNames,
 $freshness);

The getfMultipleProperties() function is like getMultipleProperties(), but refreshes values
that are staler than $freshness seconds and need re-polling. The section “$freshness” on
page 64 provides additional information.

The propNames argument must be a reference to an array of property names. For example,

@props = qw(Vendor Model Type);
($v,$m,$t) =

$session->getfMultipleProperties($obj, \@props, 30);

hasRequiredProps

$boolean = $session->hasRequiredProps($class)

Indicates whether or not the specified class has any properties that are flagged as
required.

$reqd = $session->hasRequiredProps("Router");

insertElement_P

$session->insertElement_P($object,
$relation,
[$type, $value])

Use the InCharge::object::insertElement() function instead, as described in discussed in
Chapter 2, “InCharge::Object.” The “_P” on the end of the primitive name is used to avoid
confusion between it and the InCharge::session and InCharge::object versions of the
same call.

The InsertElement_P() function inserts something into a relationshipset.

In order to access the low-level primitive version of this call, you must invoke it by using
the primitive method because the InCharge::session module also has its own variant.

$session->insertElement_P(,"Router", "ComposedOf",
["OBJREF", "Fan::fan1"]);

88 EMC Smarts Foundation Perl Reference Guide

Primitives

instanceExists

$boolean = $session->instanceExists($object)

The InstanceExists() function is an alias for exists(). The section “exists” on page 68
provides additional information.

Use the ASL-like function InCharge::object::isNull() instead of this primitive. Note that the
sense of the return value is reversed.

Indicates whether or not the named object is present in the repository.

However, the class name and instance name should be specified in the $object
parameter.

$exists = $session->instanceExists("Router::gw1");

invoke

The invoke() function is an alias for invokeOperation(). The section “invokeOperation” on
page 89 provides additional information.

invoke_t and invoke_T

The invoke_t() and invoke_T() functions are an alias for invokeOperation_t(). The section
“invokeOperation_t and invokeOperation_T” on page 90.

invokeOperation

RESULT = $session->invokeOperation($object, $operation, \@args)

The invokeOperation() function is an alias for invoke(). The section “invoke” on page 89
provides additional information.

Use the features of the InCharge::object module instead, as described in Chapter 2,
“InCharge::Object.”

The invokeOperation() function invokes a class operation on a specified object, passing
the parameters to the operation.

The syntax of the arguments list requires it to be a reference to an array, each element of
which is a reference to a two-element array containing the data type and value. Because of
the awkward syntax, using the InCharge::object module provides a more natural style of
interface. For example:

$result = $session->invokeOperation(
"Router::gw1", "makeInterface",
[
["INT", 1],
["STRING", "interface-1"],
["STRING", "Interface"]
]);

Primitives 89

Primitives

The argument types, such as INT and STRING in this example, can be specified by using
either their type names, as shown in this example, or numeric codes. “$type, @types” on
page 63 describes the mapping.

invokeOperation_t and invokeOperation_T

($type, $value) =
$session->invokeOperation_t($object, $operation, \@args)

The invokeOperation_t() function is an alias for invoke_t(). The section “invoke_t and
invoke_T” on page 89 provide additional information.

The invokeOperation_t() function is identical to invokeOperation(), except that the return
indicates the type of the returned data as well.

($type, $value) = $session->invokeOperation_t(
"Router::gw1", "makeInterface",
[
["INT", 1],
["STRING", "interface-1"],
["STRING", "Interface"]
]);

The “_T” variation also embeds type codes into the fields of returned complex structures.

isAbstract

$boolean = $session->isAbstract($class)

The isAbstract() function indicates whether the specified class is abstract.

An abstract class is one from which other classes are derived but which cannot have any
objects.

$class = "ICIM_UnitaryComputerSystem";
$flag = $session->isAbstract($class);

isBaseOf

$boolean = $session->isBaseOf($class1, $class2)

The isBaseOf() function returns TRUE if $class2 is a base class of $class1, that is, $class1
is derived from $class2.

For the purposes of this query, all classes are taken to be derived from themselves.

$class1 = "Router";
$class2 = "ICIM_UnitaryComputerSystem";
$is_it = $session->isBaseOf($class1, $class2);

isBaseOfOrProxy

$boolean = $session->isBaseOfOrProxy($class1, $class2)

90 EMC Smarts Foundation Perl Reference Guide

Primitives

The isBaseOfOrProxy() function returns TRUE (1) if $class2 is a base class or proxy class of
$class1.

$class1 = "Router";
$class2 = "ICIM_UnitaryComputerSystem";
$is_it = $session->isBaseOfOrProxy($class1, $class2);

isInstrumented

$boolean = $session->isInstrumented($class)

The isInstrumented() function indicates whether the specified class has associated
instrumentation.

$flag = $session->isInstrumented("TCPConnect");

isMember

$boolean = $session->isMember($object1, $relation, $object2)

The isMember() function returns TRUE if $object2 is a member of the specified $object1
relationship.

$flag = $session->isMember("Router::strrtbos",
"ComposedOf",
"Interface::IF-strrtbos/1");

isMemberByKey

$boolean = $session->isMemberByKey($object, $table,
$keytype, $keyvalue])

The isMemberByKey() function indicates whether an entry in the named object table
exists.

$exists = $session->isMemeberByKey(
"GA_CompoundDriver::Bridge-Generic-Driver",
"drivers", ["INT", 10])

isMemberByKeyf

$boolean = $session->isMemberByKeyf($object, $table,
[$keytype, $keyvalue], $freshness)

The isMemberByKeyf() function is similar to isMemberByKey(), but with reference to the
freshness of the value. The section “$freshness” on page 64 provides additional
information.

$exists = $session->isMemeberByKeyf(
"GA_CompoundDriver::Bridge-Generic-Driver",
"drivers", ["INT", 10], 120)

isMemberf

$boolean = $session->isMemberf($object1, $relation,

Primitives 91

Primitives

$object2, $freshness)

The isMemberf() function returns TRUE if $object2 is a member of the specified $object1
relationship. If the $relation is a computed or polled value and is more than $freshness
seconds old, it is refreshed first. The section “$freshness” on page 64 provides additional
information.

$flag = $session->isMemberf("Router::strrtbos",
"ComposedOf",
"Interface::IF-strrtbos/1",
240);

isSubscribed

$boolean = $session->isSubscribed($object, $event)

The isSubscribed() function returns TRUE if the specified event has been subscribed to by
the calling process.

$subscribed = $session->isSubscribed("Router::gw1", "Down");

loadLibrary

$session->loadLibrary($library)

The loadLibrary() function is an alias for loadModel(). The section “loadModel” on
page 92 provides additional information.

The loadLibrary() function loads a library, model, into sm_server memory.

$session->loadLibrary($libname);

loadModel

The loadModel() function is an alias for loadLibrary(). The section “loadLibrary” on
page 92 provides additional information.

loadProgram

$session->loadProgram($program)

The loadProgram() function loads the named program into sm_server memory.

$session->loadProgram("dmdebug");

noop

$session->noop()

The noop() function is an alias for ping(). The section “ping” on page 93 provides
additional information.

This is a type of ping. It sends a null command string to the Domain Manager, and thus
determines whether the client/server link is active.

92 EMC Smarts Foundation Perl Reference Guide

Primitives

notify

The section “notify” on page 32 provides a description of notify().

ping

The ping() function is an alias for noop(). The section “noop” on page 92 provides
additional information.

propertySubscribe

$session->propertySubscribe($object, $property, $interval)

The propertySubscribe() function subscribes to notifications of changes to the specified
object property. “Event subscription” on page 17 provide an overview of subscribing to
events in a Domain Manager.

The actions of this call are reversed by propertyUnsubscribe().

$session->propertySubscribe("Router::gw1",
"Vendor", 30);

propertySubscribeAll

$session->propertySubscribeAll($flags,$class_pattern,
$instance_pattern,
$property_pattern, $interval);

The propertySubscribeAll() function subscribes to changes in all the matching properties
in the matching objects.

The meaning of the $flags is described for the subscribe() session function.

The actions of this call are reversed by propertyUnsubscribeAll(). The section
“propertyUnsubscribeAll” on page 93 provides additional information.

$session->propertySubscribeAll(0, "Router", "gw1",
".*", 30);

propertyUnsubscribe

$session->propertyUnsubscribe($object, $property)

The propertyUnsubscribe() function reverses the effect of the propertySubscribe() call. The
section “propertySubscribe” on page 93 provides additional information.

$session->propertyUnsubscribe("Router::gw1", "Vendor");

propertyUnsubscribeAll

$session->propertyUnsubscribeAll($flags, $class_pattern,
 $instance_pattern,
 $property_pattern);

The propertyUnsubscribeAll() function unsubscribes from changes in all the matching
properties in the matching objects.

Primitives 93

Primitives

The meaning of the $flags is described for the subscribe() session function.

purgeObserver

The purgeObserver() function is an alias for deleteObserver(). The section
“deleteObserver” on page 67 provides additional information.

put_P

$session->put_P($object, $property, [$type, $value])

The put_P() function writes the specified value to the specified object property.

The put_P() function is the low-level primitive that the put() function of InCharge::session
uses, and is called when using the hash dereferencing syntax of InCharge::object.

The reader is encouraged to use the InCharge::object logic.

The following examples are essentially equivalent:

◆ The first example

$obj = $session->object("Router::gw2");
$obj->{Vendor} = "Cisco";

◆ The second example

$obj->put("Vendor", "Cisco");

◆ The third example

$ojb->put(Vendor => "Cisco", PrimaryOwnerContact => "Joe Blog");

◆ The fourth example

$session->put("Router::gw", "Vendor", "Cisco");

◆ The fifth example

$session->put_P("Router::gw", "Vendor", ["STRING", "Cisco"]);

quit

$session->quit()

The quit() function is an alias for shutdown(). The section “shutdown” on page 95
provides additional information.

The quit() function closes down the Domain Manager cleanly, saving the configured parts
of the repository to disk.

removeElement_P

$session->removeElement_P($object, $relation, [$type, $value])

94 EMC Smarts Foundation Perl Reference Guide

Primitives

Use InCharge::object::removeElement() instead of this primitive. The “_P” in the name is
there to save ambiguity between this primitive and the InCharge::session and
InCharge::object equivalents.

The removeElement_P() function removes an element from an object relationship, such as
ComposedOf.

In order to access the low-level primitive version of this call, invoke it by using the
primitive method because the InCharge::session module has a method of the same name
that provides an enhanced interface.

$session->removeElement_P("Router::gw", "ComposedOf",
 ["OBJREG", "Host::pingu6"]);

removeElementByKey

$session->removeElementByKey($object, $table, [$keytype, $keyvalue])

The removeElementByKey() function removes a set-valued property by key.

restoreRepository

$session->restoreRepository($filename, $purgeflag)

The restoreRepository() function restores the repository from file, optionally purging
existing repository contents in the process.

$session->restoreRepository("save.rps", 0);

setCorrelationParameters

$session->setCorrelationParameters(@info)

The setCorrelationParameters() function sets the Domain Manager correlation parameters.

The section “getCorrelationParameters” on page 74 describes the fields of the @info
array. The following example sets the correlation interval to 20 seconds.

@info = $session->getCorrelationParameters();
$info[1] = 20;
$session->setCorrelationParameters(@info);

shutdown

The shutdown() function is an alias for quit(). The section “quit” on page 94 provides
additional information.

storeAllRepository

$session->storeAllRepository($filename)

Primitives 95

Primitives

Use the InCharge::session->save() method instead.

The storeAllRepository() function saves the repository in the named file, which is located
in the directory $SM_HOME/repos. The directory name must not contain any path
separator characters.

$session->saveAllRepository("save.rps");

storeClassRepository

$session->storeClassRepository($filename, $class)

Use the InCharge::session->save() method instead.

The storeClassRepository() function saves the repository for the named class in the
specified file.

$session->saveClassRepository("save.rps", "Host");

subscribeEvent

$session->subscribeEvent($object, $event)

The subscribeEvent() function subscribes to a specific event without using wildcard
pattern matching, unlike subscribeAll().

The function unsubscribeEvent() cancels subscriptions that were established by using
subscribeEvent(). The section “unsubscribeEvent” on page 98 provides additional
information.

$session->subscribeEvent("Router::gateway39", "Down");

subscribeAll

Use InCharge::session->subscribe() instead.

topologySubscribe

$session->topologySubscribe()

The topologySubscribe() function subscribes to notifications of topology updates.

The subscription/observer mechanism is described in detail in “Event subscription” on
page 17. API subscriptions topology subscriptions may be reversed by using
topologyUnsubscribe().

96 EMC Smarts Foundation Perl Reference Guide

Primitives

topologyUnsubscribe

$session->topologyUnsubscribe()

The topologyUnsubscribe() function cancels topology subscriptions previously requested
with the topologySubscribe() function. The section “topologySubscribe” on page 96
provides additional information.

$session->topologyUnsubscribe();

transactionAbort

$session->transactionAbort()

Use InCharge::session->abortTxn instead.

The transactionAbort() function aborts a transactional block previously started by using
transactionStart(). The section “transactionStart” on page 97 provides additional
information.

transactionCommit

$session->transactionCommit()

Use InCharge::session->commitTxn() instead.

The transactionCommit() function commits a transactional block previously started using
transactionStart(). The section “transactionStart” on page 97 provides additional
information

transactionStart

$session->transactionStart($lock_code)

Use InCharge::session->transaction() instead.

The transactionStart() function starts a transaction block, which may subsequently be
aborted or committed by using transactionAbort()/transactionCommit().

sub SM_READ_LOCK { 1 };
$session->transactionStart(SM_READ_LOCK);

Primitives 97

Primitives

The $lock_code values have the possible values shown in Table 31 on page 98.

unsubscribeAll

Use InCharge::session->unsubscribe() instead.

unsubscribeEvent

$session->unsubscribeEvent($object, $event)

Use InCharge:session::unsubscribe() instead.

The unsubscribeEvent() function unsubscribes from the event previously subscribed by
using subscribeEvent(). The section “subscribeEvent” on page 96 provides additional
information.

Table 31 Lock code literals

Lock code Literal

0 SM_NO_LOCK

1 SM_READ_LOCK_ONLY

2 SM_READ_LOCK

3 SM_WRITE_LOCK

98 EMC Smarts Foundation Perl Reference Guide

APPENDIX A
IPv6 Considerations

This appendix provides important information about the use of the Perl API in an IPv6
environment. It consists of the following sections:

◆ Conventions for specifying IPv6 addresses.. 100
◆ Controlling name resolution .. 101

IPv6 Considerations 99

IPv6 Considerations

Conventions for specifying IPv6 addresses
Internet Protocol version 6 (IPv6) uses colons (:) in its addresses instead of periods (.),
which are used in Internet Protocol version 4 (IPv4).

Sometimes when you use EMC Smarts APIs or command-line utilities, you need to specify
an IP address with a port number. The port number is delimited by a colon (:). (The
combination of an IP address and port number is also called a socket.)

For the IPv6 address and port number to be interpreted correctly, specify the IPv6 address
by using one of the following conventions:

◆ Enclose the IPv6 address within a pair of double quotation marks and square
brackets. The syntax is:

"[ipv6_address]:port"

For example:

"[2001:0db8::0010]:65000"

◆ Enclose the IPv6 address with a pair of back slashes and square brackets. The syntax
is:

\[ipv6_address\]:port

For example:

\[2001:0db8::0010\]:65000

◆ If the port is a default port, omit the port number and specify only the IPv6 address.
No additional convention notations are needed.

For example, for an IPv6 address and the default port of 162, specify:

2001:0db8::0010

No default port is specified.

These conventions are required for EMC Smarts APIs and command-line utilities, such as
sm_snmpwalk, dmctl, and sm_tpmgr.

100 EMC Smarts Foundation Perl Reference Guide

IPv6 Considerations

Controlling name resolution
The order in which name resolution is performed depends on how you specify a hostname
and whether the SM_IP_VERSIONS environment variable is set.

When a user specifies a hostname for an EMC Smarts utility or the Perl API, the behavior
occurs in the following order:

1. If the hostname includes an explicit Internet Protocol (IP) protocol (the suffix to the
right of the colon), the hostname is resolved to an address of that protocol. For
example:

• frame.someDomain.emc.com:v4 —Resolves to an IPv4 address.

• frame:v6 —Resolves to an IPv6 address.

• frame:v4v6 —Resolves to an IPv4 address, or, if that fails, to an IPv6 address.

• frame:v6v4 —Resolves to an IPv6 address, or, if that fails, to an IPv4 address.

2. If the hostname does not include an explicit IP protocol, the utility searches for the
SM_IP_VERSIONS environment variable and uses the setting specified for variable.
The SM_IP_VERSIONS environment variable is described in “The SM_IP_VERSIONS
environment variable” on page 101.

3. If the environment variable is not set and the IP protocol is not explicitly provided, the
default behavior is to resolve the hostname as an IPv6 address, or, if that fails, to an
IPv4 address (the behavior for the v6v4 suffix).

Additional information about discovery and name resolution is provided inEMC Smarts IP
Manager documentation including the EMC Smarts IP Manager Deployment Guide.

The SM_IP_VERSIONS environment variable

The SM_IP_VERSIONS environment variable enables you to control the Internet Protocol
(IP) version used for name resolution.

This affects EMC Smarts utilities that use a command line (for example, dmctl), some ASL
scripts, the Perl API, and DNS lookup of undiscovered hostnames.

The variable can be set depending on the order in which you want to do name resolution.
If the variable is not set, and the IP protocol is not explicitly provided (for example,
frame.someDomain.emc.com:v4), the default behavior is to resolve the hostname as an
IPv6 address, or, if that fails, to an IPv4 address. The variable should be set to the Internet
Protocol version that is predominate for the network.

To set this variable, add it to the runcmd_env.sh file, which is located in the
BASEDIR/smarts/local/conf directory of the product.

The syntax of the environment variable is:

SM_IP_VERSIONS="ip_value"

Controlling name resolution 101

IPv6 Considerations

Table 32 on page 102 lists acceptable values for the SM_IP_VERSIONS environment
variable.

Detailed instructions about setting environment variables and information about the
runcmd_env.sh file is provided in the EMC Smarts System Administration Guide.

Table 32 Acceptable values for the SM_IP_VERSIONS environment variable

ip_value Description

"V4" Hostname is resolved to an IPv4 address.

"V6" Hostname is resolved to an IPv6 address.

"V4V6" Hostname is resolved to an IPv4 address. If that fails, the Domain Name
System server tries to resolve the hostname to an IPv6 address.

"V6V4" Hostname is resolved to an IPv6 address. If that fails, the Domain Name
System server tries to resolve the hostname to an IPv4 address (default).

Note: The acceptable value can also be lowercase ("v4", "v6", "v4v6" or "v6v4").

102 EMC Smarts Foundation Perl Reference Guide

INDEX

A
abortTxn 53, 97
API, C++ 83
API, script overview 15
ASL adapters 58

B
broken 39

C
C++ API 83
callPrimitive 42, 47, 48
Certainty 20, 63
Class 13
classExists 65
clear 32
commitTxn 53, 97
consistencyUpdate 65
correlate 65
countChildren 65
countClasses 65
countClassInstances 65
countElements 32, 62, 66
countf 66
countInstances 66
countLeafInstances 66
create 34, 42, 66
createInstance 66

D
Default locale

Perl client 35, 39
delete 31, 53, 54
deleteInstance 66
deleteObserver 67, 94
detach 16, 18, 40, 59
dmctl utility 100
Domain Manager 12, 14, 17, 20

Client 12, 17, 34

E
errLevel computed attribute 45

Retrieving current level at runtime 46
Setting level at runtime 46

eval 36, 59
eventIsExported 67, 76
Exception level for printing stack trace 45
execute 67
executeProgram 67
exists 68, 89

F
findInstances 48
findInstances_P 68
forceNotify 68
freshness, $freshness 64

G
get 14, 26, 27, 28, 59, 60, 69, 70, 78, 83
get_T 69
get_t 28, 69, 70, 78
getAggregationEvents 69
getAllEventNames 69, 75, 76
getAllInstances 70
getAllProperties 70, 87, 88
getAllProperties_t 70
getArgDirection 71
getArgType 71, 79
getAttributeNames 71, 71, 72
getAttributes 71
getAttributeTypes 71, 72
getByKey 72, 72
getByKey_t 72, 72
getByKeyf 72
getByKeyf_T 72
getCauses 49
getChildren 14, 73, 81
getClassDescription 73
getClasses 16, 35, 59, 74
getClassInstances 19, 61, 65, 73, 74, 78
getClosure 50, 81
getCorrelationParameters 74, 95
getEnumVals 74
getEventCauses 75, 81
getEventClassName 75
getEventDescription 75
getEventExplainedBy 75
getEventExported 67, 76, 76
getEventNames 70, 76
getEvents 70, 75
getEventSymptoms 76
getEventType 54, 77
getEventType_P 76
getExplainedBy 14, 51, 75
getExplains 50, 51, 81
getf 87
getf_T 87
getf_t 87
getfAllProperties_t 87
getFileno 43
getfMultipleProperties 88
getfMultipleProperties_t 88
getInstances 14, 17, 35, 42, 58, 59, 77
getInstrumentationType 77
getLeafInstances 58, 66, 73, 77

EMC Smarts Foundation Perl Reference Guide 103

Index

getLibraries 78, 78
getMultipleProperties 44, 78, 83, 88
getMultipleProperties_t 78
getObserverId 67, 78
getOpArgs 58, 79
getOpArgType 71, 79
getOpDescription 79
getOperationArguments 58, 79
getOperationArgumentType 71, 79
getOperationDescription 80
getOperationFlag 80, 80
getOperationReturnType 80, 81
getOperations 80
getOpFlag 80, 80
getOpNames 80, 80
getOpReturnType 80, 81
getParentClass 81
getProblemClosure 75, 81
getProblemExplanation 81
getProblemNames 82
getProblemSymptomState 82
getPrograms 82
getPropAccess 82
getPropDescription 83
getProperties 83
getPropertyDescription 83, 83
getPropertySubscriptionState 85
getPropertyType 84, 85
getPropIsReadonly 84
getPropIsRelationship 84
getPropIsRequired 84
getPropNames 83, 84
getPropRange 84
getPropType 84, 85
getProtocolVersion 43
getRelatedClass 85
getRelationNames 85, 86
getRelations 86
getRelationTypes 86
getReverseRelation 86
getServerName 55
getSubscriptionState 19, 86
getThreads 86

H
hasRequiredProps 88

I
init 15, 16, 17, 18, 19, 34, 38, 53, 59, 60, 61
insertElement 31, 55, 88
insertElement_P 88
instanceExists 68, 89
Internet Protocol (IP) 100
invoke 14, 26, 27, 30, 47, 48, 54, 63, 67, 89
invoke_T 89
invoke_t 31, 48, 89, 90
invokeOperation 48, 59, 89, 90
invokeOperation_T 90
invokeOperation_t 89, 90

IP
Controlling versions for name resolution 101

IPv4 address 100
Name resolution 101

IPv6 address
Conventions for specifying 100
Name resolution 101

isAbstract 90
isBaseOf 90
isBaseOfOrProxy 90
isInstrumented 91
isMember 91
isMemberByKey 91
isMemberByKeyf 91
isMemberf 91
isNull 30, 89
IsSubscribed 19
isSubscribed 92

L
loadLibrary 92
loadModel 92
loadProgram 92
Locale

Default
Perl client 35, 39

Log file
Message exception level 45

logLevel computed attribute 45
Retrieving current level at runtime 46
Setting level at runtime 46

M
Message exception level for log file 45
Message exception level for system error logger 45
Model 17

N
Name resolution

Controlling 101
Order of 101

new 15, 16, 18, 27, 34, 36, 38, 40, 60, 61
noop 92
Notification 19
notify 32, 93

O
object 26
object, $object 61
objects, @objects 62
observer 18, 19, 40, 40, 79
Operation 61

P
Perl 14, 15, 17, 29, 30, 36, 53, 58, 59
ping 93
Port

Specifying with IPv6 address 100

104 EMC Smarts Foundation Perl Reference Guide

IndexIndex

Primitive 14, 35, 47, 58, 61, 63, 74, 79, 81, 88, 94, 95
primitiveIsAvailable 44
Property 13, 16, 19, 22, 23, 28, 29, 30, 47, 69, 70, 71, 75,

82, 84, 86, 87, 93
propertySubscribe 18, 19, 27, 28, 93, 93
propertySubscribeAll 93
propertyUnsubscribe 19, 93, 93
propertyUnsubscribeAll 93, 93
purgeObserver 67, 94
put 26, 27, 30, 42, 47, 59, 94
put_P 47, 94

Q
quit 94, 95

R
reattach 39, 40
receiveEvent 18, 19, 20, 24, 40, 40
Relationship 66, 85, 86
removeElement 30, 31, 55, 95
removeElement_P 94
removeElementByKey 95
restoreRepository 95
runcmd_env.sh file 101

S
save 46, 96
session, $session 61
setCorrelationParameters 95
shutdown 94, 95
SM_AUTHORITY 37, 38
SM_HOME 38, 96
SM_IP_VERSIONS environment variable 101
Socket 100
Stack trace exception level 45
storeAllRepository 35, 95
storeClassRepository 96
subscribe 19, 27, 51, 52, 93, 94, 96
subscribeAll 19, 96
subscribeEvent 96, 98
Subscription 17, 23, 39, 40, 85, 96
symptom, $symptom 62
symptoms, @symptoms 62
System error logger

Message exception level 45

T
Timestamp 21, 22, 23
topologySubscribe 19, 96
topologyUnsubscribe 19, 97
traceLevel computed attribute 45

Retrieving current level at runtime 46
Setting level at runtime 46

transaction 53, 97
transactionAbort 97, 97
transactionCommit 97, 97
transactionStart 97, 97
type, $type 63

types, @types 63

U
unsubscribe 19, 51, 98
unsubscribeAll 19, 98
unsubscribeEvent 96, 98

V
Variable

Environment
SM_IP_VERSIONS 101

EMC Smarts Foundation Perl Reference Guide 105

Index

106 EMC Smarts Foundation Perl Reference Guide

		Introduction

		Fundamental concepts

		Classes

		Instances

		Properties - Attributes and relationships

		Operations

		Events

		Primitives - Basic Domain Manager interface

		Encryption

		“Keep Alive” messaging

		Transcoding character data

		Setting environment variables

		Overview of a simple API Perl script

		Using primitives and object references

		Event subscription

		Registering an observer

		Subscribing to notifications

		Receiving notifications

		InCharge::Object

		Overview

		Functions and methods

		object

		get

		get_t

		put

		isNull

		invoke

		invoke_t

		insertElement

		removeElement

		delete

		notify

		clear

		countElements

		InCharge::Session

		Overview

		Function groups

		Session management functions

		Domain Manager primitive functions

		Utility functions

		Wrapper functions

		Specifying the client locale

		Error handling

		Session management functions

		new

		init

		broken

		reattach

		detach

		observer

		receiveEvent

		object

		create

		callPrimitive

		Utility functions

		TYPE

		getFileno

		getProtocolVersion

		primitiveIsAvailable

		select

		Specifying the locale while connected

		Retrieving and setting log, error and trace levels at runtime

		Retrieving the current level

		Setting the level

		Wrapper functions

		save

		put

		invoke

		invoke_t

		findInstances

		getCauses

		getClosure

		getExplains

		getExplainedBy

		subscribe and unsubscribe

		transaction, abortTxn and commitTxn

		delete

		getEventType

		getServerName

		insertElement

		removeElement

		Primitives

		Primitive naming conventions

		Name

		Conventions

		Primitive calling conventions

		Error handling

		Error codes

		Data types

		$session

		$object

		@objects

		$symptom, @symptoms

		$symptomData, @symptomData

		$type, @types

		$freshness

		Primitives

		classExists

		consistencyUpdate

		correlate

		countChildren

		countClassInstances

		countClasses

		countElements

		countInstances

		countLeafInstances

		countf

		createInstance

		deleteInstance

		deleteObserver

		eventIsExported

		execute

		executeProgram

		exists

		findInstances_P

		forceNotify

		get

		get_t and get_T

		getAggregationEvents

		getAllEventNames

		getAllInstances

		getAllProperties and getAllProperties_t

		getArgDirection

		getArgType

		getAttributes

		getAttributeNames

		getAttributeTypes

		getByKey

		getByKey_t and getByKey_T

		getByKeyf

		getByKeyf_t and getByKeyf_T

		getChildren

		getClassDescription

		getClassHierarchy

		getClassInstances

		getClasses

		getCorrelationParameters

		getEnumVals

		getEvents

		getEventCauses

		getEventClassName

		getEventDescription

		getEventExplainedBy

		getEventExported

		getEventNames

		getEventSymptoms

		getEventType_P

		getInstances

		getInstrumentationType

		getLeafInstances

		getLibraries

		getModels

		getMultipleProperties and getMultipleProperties_t

		getObserverId

		getOpArgType

		getOpArgs

		getOpDescription

		getOperationArguments

		getOperationArgumentType

		getOperationDescription

		getOperationFlag

		getOperationReturnType

		getOperations

		getOpFlag

		getOpNames

		getOpReturnType

		getParentClass

		getProblemClosure

		getProblemExplanation

		getProblemNames

		getProblemSymptomState

		getPrograms

		getPropAccess

		getPropDescription

		getProperties

		getPropertyDescription

		getProperties

		getPropertyType

		getPropIsReadonly

		getPropIsRelationship

		getPropIsRequired

		getPropNames

		getPropRange

		getPropType

		getPropertySubscriptionState

		getRelatedClass

		getRelationNames

		getRelations

		getRelationTypes

		getReverseRelation

		getSubscriptionState

		getThreads

		getf

		getf_t and getf_T

		getfAllProperties and getfAllProperties_t

		getfMultipleProperties and getfMultipleProperties_t

		hasRequiredProps

		insertElement_P

		instanceExists

		invoke

		invoke_t and invoke_T

		invokeOperation

		invokeOperation_t and invokeOperation_T

		isAbstract

		isBaseOf

		isBaseOfOrProxy

		isInstrumented

		isMember

		isMemberByKey

		isMemberByKeyf

		isMemberf

		isSubscribed

		loadLibrary

		loadModel

		loadProgram

		noop

		notify

		ping

		propertySubscribe

		propertySubscribeAll

		propertyUnsubscribe

		propertyUnsubscribeAll

		purgeObserver

		put_P

		quit

		removeElement_P

		removeElementByKey

		restoreRepository

		setCorrelationParameters

		shutdown

		storeAllRepository

		storeClassRepository

		subscribeEvent

		subscribeAll

		topologySubscribe

		topologyUnsubscribe

		transactionAbort

		transactionCommit

		transactionStart

		unsubscribeAll

		unsubscribeEvent

		IPv6 Considerations

		Conventions for specifying IPv6 addresses

		Controlling name resolution

		The SM_IP_VERSIONS environment variable

		Index

EMC® Smarts®
Foundation 9.4

System Administration Guide
P/N 302-002-291

REV 01

EMC Smarts Foundation System Administration Guide2

Copyright © 2007 - 2015 EMC Corporation. All rights reserved. Published in the USA.

Published October, 2015

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

EMC², EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

EMC Corporation
Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.EMC.com

CONTENTS

Chapter 1 Introduction

 Overview... 10
 Setting the locale .. 10
 Locating and modifying files ... 10
 Licensing the software .. 11
 Controlling the startup of EMC Smarts programs.. 11
 Securing access to software .. 11
 Operation of the Broker... 11
 Managing log files... 12

Chapter 2 Locale

 What is a locale... 14
Client and Domain Manager use different locales.................................. 14

 Locale types.. 15
Process locale... 15
Client locale .. 15
Domain Manager process locale.. 16
Support locale... 16

 Standards ... 16
Unicode .. 16
ISO 639 language codes ... 16
ISO 3166 country codes .. 16

Chapter 3 Locating and Modifying Files

 Directories .. 18
 User-modifiable files... 19

Modifying EMC Smarts files ... 20
Associating files with sm_edit on Windows ... 22

 Locating user-modifiable files ... 23
Controlling the location for rule set files .. 23
Controlling location of the user modified files 23

 Writing output files ... 25
Controlling where the software writes output files 25
Controlling where the software writes log files....................................... 26
sm_logerror... 26

 Using the smgetinfo utility to create a support package............................... 27
sm_getinfo files .. 27
sm_getinfo command-line syntax.. 28
sm_getinfo invocation examples ... 30
sm_getinfo data collection .. 30

Chapter 4 License Administration

 Overview of the steps to set up license management 34
 License components and process flow .. 35
 Examples of license files ... 37

Temporary license file example ... 37
Permanent license file example... 37

EMC Smarts Foundation System Administration Guide 3

Contents

 Obtain and set up a temporary license file .. 39
How to renew a temporary license file ... 40

 Obtain and set up a permanent license file ... 40
Rehost license .. 42
Regenerate license.. 42

 Install and configure the FlexNet Publisher license server............................ 43
 Use an existing FlexNet Publisher license server.. 44
 Add another permanent license to a running license server 45
 Change the license server port in a running license server........................... 46
 Enable communication through a firewall in a running license server 47
 Use of multiple FlexNet Publisher license servers .. 47
 Upgrade licensing during EMC Smarts software upgrades............................ 48
 Run older versions of license files in parallel ... 48
 Overview of the install_license script .. 50
 Uninstall the FlexNet Publisher license server.. 51
 License server administration tools ... 52

Verify the FlexNet Publisher license server version 52
Starting and stopping the license server.. 52

 License checking by an EMC Smarts application.. 53
 Volume licensing for EMC Smarts IP Availability Manager 54

Determining the total number of licenses .. 54
Determining the number of checked-out licenses 54
Discovery and licenses.. 56

 Troubleshooting.. 57
Evaluation software no longer runs.. 57
Messages in the flexlm.log file .. 57
Need to determine the FlexNet Publisher license server and all licenses
served... 58
Cannot find license error ... 58
Changing an IP address and its effect on licensing 58
Error occurs when starting additional Domain Managers 59
License file corrupted when attempting to edit license file..................... 59
Cannot restart FlexNet Publisher license server after applying a Service
Pack.. 60

 Introduction to Service Assurance Suite (SA Suite) and its licensing 61
Switch/router classification and conversion examples 62
SA Suite license count report .. 63

Chapter 5 Controlling Startup

 Root access requirement on UNIX and Linux.. 66
 Overview of services ... 66
 About the sm_service utility .. 67
 sm_serviced and ic-serviced ... 67
 The sm_service command line .. 69

Standard options .. 69
sm_service actions ... 70

 Installing programs as services with sm_service.. 71
Install options... 71
Examples of the sm_service install action ... 72

 Displaying installed services and their status .. 73
Examples of the sm_service show action... 73

 Starting and stopping services with sm_service .. 74
Start options ... 74
Stop options ... 74

4 EMC Smarts Foundation System Administration Guide

Contents

Examples of the sm_service start and stop actions................................ 74
Checking whether services are stopped... 75
Examples of the sm_service isstopped action 75
Starting and stopping services from the Windows desktop.................... 75

 Modifying service parameters with sm_service.. 76
 Removing services with sm_service... 76

Example of the sm_service remove action ... 76
 Default parameters for services ... 77

Common sm_server options.. 77
Common sm_adapter options ... 79
Common sm_sdi options... 80

 Running as non root on UNIX and Linux systems ... 81

Chapter 6 Securing Access to the Software

 Security features ... 84
 How security works ... 85

Server and client programs for the software... 85
Server authentication.. 87
Client authentication... 87
Encryption... 88

 Configuring authentication.. 88
Syntax of the security files... 88
Server authentication records ... 89
Client authentication records .. 91
Special authentication values ... 93
Default authentication records .. 95
Specifying alternate security configuration files 98

 Controlling authentication... 100
Setting the SM_AUTHORITY variable .. 100

 Changing Cryptographic Settings .. 101
Changing Pseudo-random Number Generators (PRNG) algorithm......... 101
Changing the use of the default PRNG algorithm: 101

 Encryption .. 101
Changing the secret .. 102
Using the secret for multiple products and sites 103
Locking the secret ... 103

 Encrypted passwords.. 104
Encrypting passwords ... 104

 Encrypted seed files.. 106
 Encrypted connections.. 106

Levels of encryption .. 106
Encrypting connections in non-FIPS 140 mode 108
Encrypting connections in FIPS 140 mode ... 109
Suggested encrypted connections in non-FIPS 140 mode.................... 109

 Replacing or importing TLS certificates .. 110
 Configuring a secure Broker .. 110
 Additional safeguards ... 112

Using file permissions... 112
Limiting access to the configuration files... 112
Limiting access to servers ... 112

 Example security configurations.. 113
Default security ... 113
Customized security.. 114

EMC Smarts Foundation System Administration Guide 5

Contents

Chapter 7 Operation of the Broker

 Overview of the Broker .. 118
 Viewing the registry of the Broker .. 119
 How the clients find the Broker ... 119
 How to change the Broker environment variable .. 120

Correcting the Broker settings ... 120
 Securing the Broker... 121

Chapter 8 Continuous Audit of Client Connections

 Overview of continuous auditing of client connections 124
 System Element objects .. 125

SM_SystemElement .. 125
SM_ElementManager .. 126

 Client data persists after connection terminates.. 128
 File descriptor usage warning event... 128
 Acquiring client information .. 129
 Viewing SM_ElementManager attribute values .. 130
 Changing SM_ElementManager attribute values.. 131

Chapter 9 Managing Log Files

 Overview of message logging .. 134
Command-line options that control messages..................................... 137

 Retrieving and setting log, error and trace levels at runtime....................... 138
 Log files .. 139

Diagnostic header ... 140
Date and timestamp, and thread id in each log message..................... 142
Message at the end of a rolled log... 142

 Starting a new log file ... 142
 Controlling the number of saved log files... 144

Appendix A Environment Variables

 How variable values are interpreted .. 146
How integer variables are interpreted.. 146
How Boolean variables are interpreted.. 147

 Methods for setting environment variables.. 147
Setting an environment variable product-wide 147
Setting an environment variable for a program 148

 Environment variables for users .. 149
Variables that control the locale and encoding.................................... 161
Variables that control Java settings ... 163
Variables that control the Broker ... 164
Variables that control FlexNet Publisher licensing 165
Variables that control security ... 165
Variables that control date and time formatting................................... 167
Variables that control reading and writing files.................................... 169
Variables that control thread locks.. 171
Variables that control log subscription changes and Dynamic Modeling
errors .. 171

Appendix B Wildcards

 Types of wildcard patterns... 174

6 EMC Smarts Foundation System Administration Guide

EMC Smarts Foundation System Administration Guide 7

Title Page

FIGURES

1 sm_getinfo file tree ... 27
2 Process flow.. 36
3 SM_SystemElement modeling ... 125
4 Message logging ... 134

EMC Smarts Foundation System Administration Guide 8

Title Page

TABLES

1 Directories .. 18
2 Subdirectories for user-modifiable files... 19
3 Default subdirectories for writable files ... 25
4 sm_getinfo-created files.. 27
5 Command-line options for the sm_getinfo utility ... 29
6 Products - Standard / Advanced.. 61
7 Pricing model based on Managed Devices and Managed Objects................................ 62
8 Standard options for sm_service ... 69
9 sm_service actions.. 70
10 Install options for sm_service.. 71
11 Start options for sm_service.. 74
12 Stop options for sm_service .. 74
13 isstopped options for sm_service.. 75
14 Common sm_server options.. 77
15 Common sm_adapter options ... 79
16 Common sm_sdi options... 80
17 Additional options for running as non root on UNIX and Linux systems........................ 81
18 EMC Smarts server and client programs... 86
19 Field descriptions for serverConnect.conf .. 90
20 Fields for clientConnect.conf and brokerConnect.conf ... 92
21 Encryption levels for connections for non-FIPS 140 mode .. 107
22 Encryption for connections for FIPS 140 mode... 107
23 SM_SystemElement subclasses .. 125
24 Key attributes for SM_ElementManager ... 126
25 Log filenames, locales and encodings ... 136
26 SM_LOCALE and SM_OUTPUT_ENCODING examples.. 136
27 Computed attributes to retrieve and set log, error, and trace levels at runtime........... 138
28 Examples of numeric values .. 146
29 Standard options supported by SM_MAIN_OPTIONS ... 153
30 Acceptable values for the SM_IP_VERSIONS environment variable 156
31 Recommended values for SM_MAX_MONITORING_THREADS 157
32 Valid levels for SM_MAX_SESSION_VERSION .. 158
33 Directories controlled by SM_WRITEABLE .. 170
34 Basic wildcard patterns... 174
35 Compound wildcard patterns .. 175

CHAPTER 1
Introduction

This chapter consists of the following sections:

◆ Overview... 10
◆ Setting the locale .. 10
◆ Locating and modifying files ... 10
◆ Licensing the software .. 11
◆ Controlling the startup of EMC Smarts programs.. 11
◆ Securing access to software .. 11
◆ Operation of the Broker... 11
◆ Managing log files... 12

Introduction 9

Introduction

Overview
As a network administrator, you should configure the EMC® Smarts® Foundation software
to meet the needs of your operations. To accomplish this, you may need to perform one or
more tasks as described in this chapter.

EMC Smarts installation directory
In this document, the term BASEDIR represents the location where EMC Smarts software is
installed.

◆ For Windows, this location is C:\InCharge\<product>.

◆ For UNIX, this location is /opt/InCharge/<product>.

Optionally, you can specify the root of BASEDIR to be something other than:

◆ Windows: C:\InCharge

◆ UNIX: /opt/InCharge

However, you cannot change the <product> location under the root directory.

This guide provides more information about the directory structure.

Where to get help
EMC support, product, and licensing information can be obtained as follows:

Product information — For documentation, release notes, software updates, or
information about EMC products, go to EMC Online Support at:

https://support.emc.com

Technical support — Go to EMC Online Support and click Service Center. You will see
several options for contacting EMC Technical Support. Note that to open a service request,
you must have a valid support agreement. Contact your EMC sales representative for
details about obtaining a valid support agreement or with questions about your account.

Setting the locale
A locale is a combination of language and country identifiers, and the specification of the
locale is important for the purpose of externalized textual data. Clients and Domain
Managers can be running in different locales but it is important that textual data
transferred to a client as part of error handling by the Domain Manager appear in the
language and country of the client. Chapter 2, “Locale,” describes how to specify the
locales.

Locating and modifying files
Some files can be modified to meet the needs of your network environment. Chapter 3,
“Locating and Modifying Files,” describes the directory structure of the EMC Smarts
software. The chapter also discusses the files that can be modified and how to locate the
files and provides procedures for modifying those files. Additionally, the chapter
describes the files created by EMC Smarts Foundation software (for example, logs,
repositories, and saved consoles), and details how to control their location.

10 EMC Smarts Foundation System Administration Guide

http://support.emc.com

Introduction

Licensing the software
EMC Smarts software requires a license file to function. To evaluate the software, you can
obtain a time-limited evaluation license that provides access to specified features. After
you purchase the software, you will need to set up a permanent license file. Chapter 4,
“License Administration,” provides procedures for obtaining both evaluation and
permanent license files for your software. Topics include:

◆ Setting up the license file
◆ Starting the FlexNet Publisher license server
◆ Pointing the software to the license server
◆ Licensing additional programs and adding licenses

Controlling the startup of EMC Smarts programs
EMC Smarts programs can either be installed as services or as manual processes.
Chapter 5, “Controlling Startup,” provides procedures that use the sm_service utility to:

◆ Install programs as services

◆ Start and stop services

◆ Start and stop processes

◆ Modify the runtime parameters of services

Securing access to software
Security is a critical concern in the world of large-scale distributed networks. Therefore,
EMC Smarts security provides a means by which network administrators can set up
security to control access to the software. Chapter 6, “Securing Access to the Software,”
describes how security works, as well as the authentication processes used by the
software. It then provides procedures for setting up security and controlling access to
EMC Smarts programs. The chapter also discusses how to set up encrypted connections
between EMC Smarts clients and servers.

Operation of the Broker
Client programs, such as a console or an adapter, use the Broker to determine where
Managers are running. When a Manager starts, it registers the hostname of the machine it
is running on, as well as the TCP port it is listening to, with the Broker. Thereafter, clients
retrieve this information from the Broker so that they can communicate with the Manager.
Chapter 7, “Operation of the Broker,” describes the functions of the Broker, provides
procedures for viewing the Broker’s registry, and explains how to change the Broker’s
environment variables.

Licensing the software 11

Introduction

Managing log files
Log files grow indefinitely, though slowly, under normal conditions, and need to be
managed. In addition, EMC Smarts software can maintain up to 999 backup log files of
each log. For example, if you are generating two log files, MYDM_en_US_UTF-8.log and
MYDM_fr_UTF-8.log file, you can maintain up to 999 backup log files for the
MYDM_en_US_UTF-8.log and 999 backup log files for the MYDM_fr_UTF-8.log.

You can configure the number of log files retained by the software. Chapter 9, “Managing
Log Files,” discusses the management of log files, and describes how to “roll over” the
files.

12 EMC Smarts Foundation System Administration Guide

CHAPTER 2
Locale

This chapter consists of the following sections:

◆ What is a locale... 14
◆ Locale types.. 15
◆ Standards ... 16

Locale 13

Locale

What is a locale
A locale is a set of parameters that defines:

1. Language

2. Country (or region)

3. Other specific cultural elements that vary

For the purpose of externalized textual data, the language and country data of the locale
specification are important.

Languages are specified in two lowercase ASCII letters. Some examples are en for English
and fr for French.

Country identifiers are specified as two or three uppercase ASCII letters. Some examples
are: US, CA, FR, and JP, for United States, Canada, France, and Japan, respectively.

“Standards” on page 16 provides more information on language codes and country
identifiers.

A locale is a combination of the language and country identifiers into one string,
connected by the underscore (_) character. For example, the locale for English (en) as
spoken in the United States (US) is defined as en_US.

Client and Domain Manager use different locales

Client programs may be running in a locale that is not the same as the locale of the
Domain Manager. For example, a Domain Manager may be running in a process where the
locale is specified as “French as used in France.” Different end-users of an application
may be concurrently connected, and use different locales, for example “German as
spoken in Germany,” and “Spanish as spoken in Spain,” or “German as spoken in
Austria.”

It is important that textual data transferred to the client as part of error handling by the
Domain Manager appear in the language and country of the client. A German client will
see German exception messages, even if the client application is connected to a Domain
Manager whose preferred language (for logging) is French.

The server will respect the locale of the client when rendering several types of textual
output. Applications may also use classes and methods in the clsapi subsystem to enable
locale-aware operations, where appropriate.

14 EMC Smarts Foundation System Administration Guide

Locale

Locale types
Each process’ locale is determined by the SM_LOCALE environment variable, as seen by
that process. When a client process attaches to a server process, they negotiate on the
locale for that session. The SM_LOCALE environment variable is discussed in
“SM_LOCALE” on page 161.

Process locale

You can specify the locale of any program, such as a client, Broker, server, utility by using
the SM_LOCALE environment variable. For all such programs, the initialization logic
validates the specified value, and ensures that all internationalization features can use it
predictably.

The locale can also be specified for Java applications. Use the Java property
com.emc.cmp.dmt.locale on the startup of the Java Virtual Machine or on the command
line of any program that supports the -java command operand.

Client locale

The locale of a client program may be different from the locale of the Domain Manager.
There are two different types of client locales:

◆ Client process locale

◆ Client session locale

The client process locale and the client session locale do not need to be the same.

Client process locale
The client process locale is the locale that is set by the SM_LOCALE variable in the
environment of the client program, such as dmctl, brcontrol, and others. The client
process locale is used by default when rendering messages generated in the client
process.

Client session locale
The client session locale is the locale that is sent to a Broker or Domain Manager in two
possibly ways:

◆ The client process locale is by default sent to the Domain Manager, and identifies the
initial session locale.

◆ The client session locale can be changed by calling the setLocale() or
setRemoteLocale() method. Calling one of these methods causes a protocol verb
to be executed at the server, which causes the server to remember the client session
locale.

The client program may use the setLocale() client API calls to indicate to the Domain
Manager a select locale. Setting the locale that the Domain Manager remembers for the
client does not change the configured setting of the client process locale.

Locale types 15

Locale

Domain Manager process locale

The Domain Manager process locale is the one set by the SM_LOCALE variable in the
environment of the Domain Manager. The Domain Manager locale primarily influences
logging output, and does not impact the processing of locale for client processes or the
client sessions. Conversely, the client locale, configured or set by API call, does not
influence the locale handling for the Domain Manager output.

Support locale

The process locale specified by SM_LOCALE and the Java property specifies the language
for output that the user sees. However, EMC engineering and support teams must be able
to interpret log data and other output in English. Programs, primarily server processes, will
always generate diagnostic information in the support locale, which is en_US. The main
impact of the difference between the process locale and the support locale applies to the
software logging system. See “Overview of message logging” on page 134 for more
details.

Standards
Several internationalization standards apply directly to the software.

Unicode

Unicode is the universal standard of encoding for written characters and text, covering all
known world languages. UTF-8 (8-bit form) is used by the software applications.

ISO 639 language codes

Languages are specified in two lowercase ASCII letters. Some examples of standard codes
for language are: en, fr, and ja for English, French, and Japanese respectively.

ISO 3166 country codes

This standard defines the universally recognized codes for county (or region). There are
two alphabetic standards for country codes:

◆ ISO-3166-1 Alpha-2 describes the two-letter codes.

◆ ISO-3166-1 Alpha-3 describes the three-letter codes.

Country identifiers are specified as two or three uppercase ASCII letters. For example, US
for United States and JP for Japan.

Language and country identifiers are combined into one string, connected by the
underscore character. For example, en_US for English as used in the US, and ja_JP for
Japanese as used in Japan.

16 EMC Smarts Foundation System Administration Guide

CHAPTER 3
Locating and Modifying Files

This chapter consists of the following sections:

◆ Directories .. 18
◆ User-modifiable files... 19
◆ Locating user-modifiable files ... 23
◆ Writing output files ... 25
◆ Using the smgetinfo utility to create a support package... 27

Locating and Modifying Files 17

Locating and Modifying Files

Directories
Table 1 on page 18 lists software directories and a brief description of their contents.

In addition to the common subdirectories, the EMC Smarts Service Assurance Manager
(/SAM) includes two additional subdirectories: /actions (client and server) and /consoles.

Table 1 Directories

Directory Contents

/bin Executables for starting and interacting with Domain Managers as well as
utilities.

/classes Software jar files and third-party jar files upon which EMC Smarts programs
depend.

/conf Domain Manager configuration files.

/doc User and reference guides.

/examples Sample files for C, C++, and Java APIs as well as examples of MODEL
applications and JIIM.

/include The .h and .mdl files for components of the software programs.

/integration Sample probe for the integration accessor.

/l10n The l10n directory name is a lowercase L, followed by the number 10 and
then a lowercase n.
Contains Resource Packages (which hold externalized and localized data,
such as error strings).

/lib Shared libraries.

/local Top-level directory where local copies of configuration, rules, and script files
are created and stored.
The default location where files such as repository and log files are written.
The /local/l10n directory contains new Resource Packages introduced by
update kits, patches, language packs, and so on.

/perl Files used for the Perl API.

/rules ASL rule sets.

/script Utility scripts such as the license server installation scripts.

/symbols Symbols for debugging and gathering extended information about stack
traces (Windows only).

18 EMC Smarts Foundation System Administration Guide

Locating and Modifying Files

User-modifiable files
The EMC Smarts software installation includes system files, configuration files, ASL rule
set files, scripts, templates, as well as third-party software files that the EMC Smarts
software uses.

Never alter system files, such as executables, shared libraries, MODEL files, and setup
files. Do not alter third-party software system files provided with the Java Runtime
Environment.

As part of the configuration process, you will need to make changes to some of the
user-modifiable files. The following are examples of user-modifiable files:

◆ Configuration files, such as discovery.conf, clientConnect.conf, and
serverConnect.conf (you are required to edit these)

◆ ASL rule sets, such as syslog_mgr.asl

◆ Sample actions, such as ics-ping and ics-telnet

◆ Template files used to import data, such as service.data.template and
topology-group.data.template

Original versions of configuration files, ASL rule sets, scripts, and template files are
installed to the BASEDIR/smarts/conf, BASEDIR/smarts/rules, and
BASEDIR/smarts/script directories. When you need to alter a file in one of these
directories, make those changes to a local copy of the file. By default, local copies of
user-modifiable files should reside in BASEDIR/smarts/local or one of its subdirectories.
The software is designed to first search for user-modifiable files in BASEDIR/smarts/local
or one of its subdirectories. If a modified version of a file is not found in the local area, the
software then searches appropriate non-local directories.

To edit a file, invoke the sm_edit utility from the BASEDIR/smarts/bin directory. When
used, sm_edit automatically opens a local copy of the specified file and saves the
modified file to its appropriate location. “Modifying EMC Smarts files” on page 20
provides further information about how to use the sm_edit utility.

You should:

◆ Only modify local copies of user-modifiable files.

◆ Always retain the original, unedited, version of these files.

Table 2 on page 19 identifies the default subdirectories that include user-modifiable files
found under BASEDIR/smarts/local. The subdirectories vary by product.

Table 2 Subdirectories for user-modifiable files

Installation path Directory Description

BASEDIR/smarts/local /actions Tool scripts

/conf Configuration files

/data Import files

/rules ASL rules files

User-modifiable files 19

Locating and Modifying Files

The BASEDIR/smarts/local directory has been reserved for directories with local copies of
user-modifiable files as well as writable files such as logs and repository files. It typically
contains directories listed in Table 2 on page 19. During installation, the software may
create empty subdirectories under the BASEDIR/smarts/local directory. These directories
are reserved for use for future service packs and Rolling Patches. The exception is the
BASEDIR/smarts/local/bin directory that contains files necessary for the successful
installation of the software on Windows 2003 (Enterprise Edition) operating systems.

In addition, the BASEDIR/smarts/local/conf directory contains the runcmd_env.sh file,
which is created during installation. The runcmd_env.sh is a file for setting environment
variables, including the default location for the Broker. You can edit this file to change the
default location of the Broker or to define any EMC Smarts Foundation-wide environment
variable. “Methods for setting environment variables” on page 147 provides information
about setting environment variables.

The product-specific naming convention used for subdirectories under
BASEDIR/smarts/local/conf and BASEDIR/smarts/local/rules (as well as their non-local
counterparts) typically reflects the product or module within a product that uses the files.

You can alter the location for rules files, as described in “Controlling the location for rule
set files” on page 23.

If EMC installs a site-specific patch at your location, then additional directories may be
included under BASEDIR/smarts/local. Never alter files in any of these additional
subdirectories.

Modifying EMC Smarts files

After you install the application, you may need to modify files as part of the configuration
process. For example, if you want to secure access to the software, you need to change the
password for the Admin account in the serverConnect.conf and clientConnect.conf files.

To modify files, use sm_edit utility that is installed with the software.

You must use the sm_edit utility that is included with the installation of a product to
modify files applicable to that product. Do not, for example, edit IP Manager files with the
sm_edit that is installed with the Service Assurance Manager.

When invoked, sm_edit opens the specified file in a text editor. This utility ensures that
modified files are always saved to the appropriate local area and that non-local copies of
all files remain unchanged. If an appropriate subdirectory does not exist for the file you
are modifying, sm_edit creates the appropriate subdirectory before saving the modified
file to that location. For files with header information set for encryption, sm_edit encrypts
certain fields in the file. In addition, sm_edit preserves the file permissions of modified
files, which helps ensure that important configuration files are not altered by
unauthorized users.

20 EMC Smarts Foundation System Administration Guide

Locating and Modifying Files

You can configure Windows to automatically invoke the sm_edit utility when you open a
file through Windows Explorer, as described in “Associating files with sm_edit on
Windows” on page 22.

To use sm_edit from the command line, specify the filename and include the subdirectory
under /local where the file resides. For example, to edit the discovery.conf file, enter the
following command by using administrative privileges:

BASEDIR/smarts/bin> sm_edit conf/discovery/discovery.conf

In this example, sm_edit searches in the BASEDIR/smarts/local/conf/discovery directory
for the discovery.conf file. If it finds discovery.conf, it opens the file in a text editor. If
sm_edit does not find discovery.conf in the BASEDIR/smarts/local/conf/discovery
directory, it creates a local copy of discovery.conf and writes it to the
BASEDIR/smarts/local/conf/discovery directory.

If the appropriate subdirectory does not exist in the local area for the file you are
modifying, sm_edit creates that subdirectory and saves the modified file there. This
ensures that the original version of the file remains unchanged.

Specifying the text editor used by the sm_edit utility
The sm_edit utility is not a text editor. Instead, it uses the text editor that is specified by
one of the following means:

◆ SM_EDITOR environment variable, as described in “Environment variables for users”
on page 149.

◆ VISUAL environment variable

◆ EDITOR environment variable

◆ If the SM_EDITOR, VISUAL or EDITOR environment variables are not defined, sm_edit
uses the following:

• Edit program on UNIX

• WordPad program on Windows

You can also specify the editor that sm_edit should use by providing the --editor argument
when invoking the utility.

User-modifiable files 21

Locating and Modifying Files

Associating files with sm_edit on Windows

On Windows systems, you can configure the system so that sm_edit is automatically
invoked when an EMC Smarts file is opened through the Windows Explorer file browser.
You do this by associating the appropriate file extensions with the sm_edit utility.

If you have more than one product installed on the same host, this association works
correctly only with one product (the product from which the associated sm_edit is run). For
the other products, you must run the sm_edit by using a command prompt in the product
that contains the file to modify.You can associate the following file types with sm_edit:

◆ For configuration files, use .conf.

◆ For ASL rulesets, use .asl.

◆ For data import files, use .template.

It is possible that another software program uses one or more of these file extensions. If
an association between these file types and another program already exists, and you
change the association, you may affect the operation of that software. In addition, the
sm_edit utility will not open a file outside of the BASEDIR/smarts hierarchy. Attempting to
open such a file will cause an error.

Associating file types on Windows systems
To associate a file extension with the sm_edit utility, use the following procedure:

1. From Windows Explorer, locate a user-modifiable file within a product module or
product. For example, the discovery.conf file located in the
BASEDIR/smarts/conf/discovery directory of a given product.

2. Right-click the file and select Open With > Choose Program.

3. From the Open With dialog box, select Other.

4. Select the sm_edit utility in the BASEDIR/smarts/bin directory to add sm_edit to the
program selection list.

5. Choose sm_edit from the Open With program list.

6. Select the checkbox beside “Always use this program to open these files.”

7. Click OK.

8. Repeat this procedure, except for steps 3 and 4, for each file type that you associate
with the sm_edit utility.

To remove a file type association from the sm_edit utility, clear the checkbox beside
“Always use this program to open these files.”

22 EMC Smarts Foundation System Administration Guide

Locating and Modifying Files

Locating user-modifiable files
It is important to understand how the software locates user-modifiable files at runtime. In
general, when looking for a user-modifiable file, the software first searches in
BASEDIR/smarts/local or one of its subdirectories. If the file is not found, the software
then proceeds to look for the file in directories that are not intended to contain modified
files. For example, when the software searches for a configuration file, it first looks in
BASEDIR/smarts/local/conf. If the file is not found, then the software proceeds to look in
BASEDIR/smarts/conf.

BASEDIR/smarts can refer to different product directories. Therefore, the configuration file
in this example could be a configuration file for any product such as the IP Manager or
Service Assurance Manager.

Controlling the location for rule set files

To locate your ASL rule sets in an area other than the default location
(BASEDIR/smarts/local/rules), set the SM_RULESET_PATH environment variable. When
you set SM_RULESET_PATH, the software first searches for rule set files in that path
location or in one of its subdirectories. If the file is not found, the software then proceeds
to look in the default location for modifiable rule set files.

To set SM_RULESET_PATH, add it to the runcmd_env.sh file.

You normally only define the SM_RULESET_PATH environment variable if you are writing
custom ASL rule sets to work with your software.

Appendix A, “Environment Variables,” provides further information about
SM_RULESET_PATH.

Controlling location of the user modified files

In case you would like to run more than one domain manager out of a single installation
direcotry you can use the SM_SITEMOD variable to specify a separate local directory
structure for each domain.

This allows you to specify configuration files unique to each domain, yet still use the same
core files that are not different between sites.

The SM_SITEMOD variable provides a search list that InCharge uses to locate files. This list
is used to find files users can, and in some cases must, modify to use InCharge at their
site. Such files include configuration files, ASL rulesets, and scripts. The components of
the list are separated by colons (:) on UNIX and semicolons (;) on Microsoft Windows. The
default value of SM_SITEMOD is: BASEDIR/smarts/local:BASEDIR/smarts. You will need to
change this value for each domain to first search BASEDIR/smarts/<domain_local >then
BASEDIR/smarts/local and the BASEDIR/smarts. Follow these steps:

1. Create a diectory for each domain.

$mkdir /opt/InCharge/smarts/local_d1.

Locating user-modifiable files 23

Locating and Modifying Files

2. Place a file that is unique for this domain under /opt/InCharge/smarts/local_d1.

$mkdir /opt/InCharge/smarts/local_d1/conf/trapd
$cp /opt/InCharge/smarts/conf/trapd
/opt/InCharge/smarts/local_d1/conf/trapd

3. Define SM_SITEMOD for the current shell or Unix of the Command prompt on
Windows.

For Unix,

export
SM_SITEMOD=/opt/InCharge/IP/smarts/local_d1:/opt/InCharge/IP/smarts
/local:/opt/Incharge/IP/smarts

For Windows,

C:\set
SMS_ITEMOD=C:\InCharge\IP\smarts\local_d1;C:\InCharge\IP\smarts\loc
al;C:\InCharge6\IP\smarts

4. Use sm_edit to modify the rest of the files that are specific to this domain.

5. Configure sm_service command such that every time the domain starts up, it loads
files from the proper directory.

For Unix,

sm_service install --force --name=ic-am-pm-server-2
--description="INCHARGE-AM-PM for Site 2" --startmode=runonce
--env=SM_SITEMOD=/opt/InCharge/IP/smarts/local_d1:/opt/InCharge/IP/
smarts/local:/opt/Incharge/IP/smarts
/opt/InCharge/IP/smarts/bin/sm_server --name=INCHARGE-AM-PM-2
--config=icf --bootstrap=bootstrap-am-pm.conf --port=0
--subscribe=default --ignore-restore-errors --output

24 EMC Smarts Foundation System Administration Guide

Locating and Modifying Files

Writing output files
The BASEDIR/smarts/local directory is also the default location for files written by the
EMC Smarts software. Writable files include logs, saved consoles, and repository files. If
desired, you can alter the location for log files, as described in “Controlling where the
software writes log files” on page 26. Table 3 on page 25 defines the default
subdirectories found under BASEDIR/smarts/local that contain writable files.

For Service Assurance Manager, the BASEDIR/smarts/local/logs directory includes a
<manager_name>.audit file. This file contains audit entries that are added to all
notifications in Service Assurance Manager. The entries, which are in time order, include
the following information: date/time, notification name, source, user, and action.

The directory also includes a <manager_name>-statistics.log. This file contains entries for
every invocation of the following operations:

dmctl -s <manager_name> invoke ICS_ActionManager::ICS-ActionManager
dumpStatistics <filename>

dmctl -s <manager_name> invoke
ICS_AutoActionManager::ICS-AutoActionManager dumpStatistics
<filename>

The <filename> is optional; otherwise, it is <manager_name>-statistics.log.

The information in this file enables network personnel to monitor the execution of custom
actions and the performance of administrator-defined escalations.

Controlling where the software writes output files

The software defines the location of writable files by using the SM_WRITEABLE
environment variable. By default, SM_WRITEABLE is defined as BASEDIR/smarts/local.

This means the following:

◆ Saved consoles are written to BASEDIR/smarts/local/consoles.

◆ Log files are written to BASEDIR/smarts/local/logs.

◆ Repository files are written to BASEDIR/smarts/local/repos.

If you want all writable files to be written elsewhere, set the path by using the
SM_WRITEABLE environment variable.

To set SM_WRITEABLE, add the variable to the runcmd_env.sh file.

Table 3 Default subdirectories for writable files

Installation path Directory Description

BASEDIR/smarts/local /consoles EMC Smarts consoles that have been saved.

/logs Manager and adapter log files that the software has
written. Also where archived notifications are saved.
Note that installation and uninstallation logs are
written to the BASEDIR/smarts/setup/logs directory.

/repos Repository files that the software has written.

Writing output files 25

Locating and Modifying Files

Controlling where the software writes log files

If you want the software to write log files to an area other than the default location, set the
path by using the SM_LOGFILES environment variable.

To set SM_LOGFILES, add the variable to the runcmd_env.sh.

SM_LOGFILES takes precedence over SM_WRITEABLE, as described in “SM_LOGFILES” on
page 170.

sm_logerror

On Solaris and Linux systems, every ITOps process creates a child process, sm_logerror, at
startup. This process has one purpose: to print a stack trace of its parent (by invoking the
pstack program) should the parent request it (which usually happens only when the
parent encounters a fatal error).

Every ITOps process also starts a child running an external authenticator, sm_authority (in
the default configuration). This program either gets client credentials to send to a
Manager, or checks credentials received by a Manager. Since the authenticator itself is a
an ITOps program, it starts its own sm_logerror. Thus, if you follow the tree of processes
under an sm_server, you might find:

sm_server
sm_logerror
sm_authority

sm_logerror

Both sm_logerror and sm_authority spend their time reading a pipe that connects them to
the process that created them. However, this process is not necessarily their parent. When
the Manager starts as a service:

◆ The Domain Manager runs as a daemon after starting sm_logerror and sm_authority.

◆ The original sm_server process is replaced by a different one.

◆ The child processes, sm_logerror and sm_authority, become orphans and are then
inherited by the init process, which is always process 1.

The new sm_server process retains its connection to the pipes that connected the original
to the sm_logerror and sm_authority processes, and the processes work as intended.

These processes must not be "killed". Killing sm_logerror will make it impossible to print a
stack trace, and make debugging more difficult. Killing sm_authority will cause connection
attempts to fail when credentials cannot be obtained or checked.

26 EMC Smarts Foundation System Administration Guide

Locating and Modifying Files

Using the smgetinfo utility to create a support package
The sm_getinfo utility is used by customers to collect data for troubleshooting EMC Smarts
Manager (server) problems. The utility backs up the current configuration for a server by
creating a tar archive of all files and user customizations that are essential to
troubleshooting the server. Customers then email the tar archive to EMC Customer
Support for problem resolution.

sm_getinfo files

The sm_getinfo utility, which is supported on Solaris, Linux, and Windows, creates three
types of files in the installation directory area from which it is invoked. The files are shown
in Figure 1 on page 27 and described in Table 4 on page 27.

Figure 1 sm_getinfo file tree

BASEDIR

logs

local

smarts

logs

MANIFEST smgetinfo_filessmgetinfo<date>.tar.gz

smgetinfo-versions.log.<date>

Table 4 sm_getinfo-created files (page 1 of 2)

Filename Description

Files in logs directory

sm_getinfo<date>.tar.gz
Example:
sm_getinfo26Mar2012-015952.tar.gz

A compressed tar archive in which the
sm_getinfo utility stores a server ‘s log files,
repository files, core files (Solaris, Linux) or
dump files (Windows), user-modified files (using
sm_edit), user-introduced files, and system
environment information. The actual content of
the tar archive depends on the user-specified
options on the sm_getinfo invocation command
line.
The name of the tar archive includes the date
when the tar archive was created.

MANIFEST A text file that lists all of the files that the
sm_getinfo utility includes in the tar archive.

Using the smgetinfo utility to create a support package 27

Locating and Modifying Files

sm_getinfo command-line syntax

You run the sm_getinfo utility from the BASEDIR/smarts/bin directory. The options that
you specify on the invocation command line determine which files are included in the
sm_getinfo-created tar archive.

Here is the command line syntax for sm_getinfo:

sm_perl sm_getinfo.pl
| --server <server name> --pid <server process ID>
| --broker <location>
| --log [<number of latest logs>]
| --nolog
| --repos [--latest]
| --norps
| --core
| --all
| --version
| --help
| --smmonitor “<sm_monitor options>”
| --flush

where:

◆ <> Angle brackets are user-supplied parameter values (variables).

◆ [] Square brackets are optional entries.

◆ | Vertical bar symbols are alternate selections.

Files in logs/smgetinfo_files directory

smgetinfo-versions.log.<date>
Example:
smgetinfo-versions.log.26Mar2012-020004

Example of other files in smgetinfo_files:
TTP-Installed-versions.log.26Mar2012-020005

A log file in which the sm_getinfo utility writes
information about a server’s log file or
repository file that is larger than 700 megabytes
(MB). The sm_getinfo utility does not include
any log or repository file in a server’s tar archive
that exceeds 700 MB.
In addition, sm_getinfo writes system
information to the log file.
The name of the log file includes the date when
the log file was created.

Table 4 sm_getinfo-created files (page 2 of 2)

Filename Description

28 EMC Smarts Foundation System Administration Guide

Locating and Modifying Files

The command-line options are described in Table 5 on page 29.

Table 5 Command-line options for the sm_getinfo utility

Option Description

--server |<server name> --pid <server
process ID> | -s <server name> -p <server
process ID>

Specifies the EMC Smarts server name and PID against
which the sm_getinfo utility will collect information. To
dump a core file for a running server on Solaris or Linux,
the pid option must be provided. Also, the server name
is used to invoke the sm_monitor tool.

--broker <location> | -b <location> Specifies an alternate Broker location as host:port.

--log [<number of latest logs>] |
-l [<number of latest logs>]

For each EMC Smarts server, collects and stores a
user-specified number of latest logs or all generated log
files that are in the BASEDIR/smarts/local/logs
directory.
Note that whenever collecting a log, the related .audit
and .archive files should be collected as well.
If a server name is specified, only the files that
correspond to the server will be collected. To avoid
generating a too-large tar archive (too large to email),
any log file that is larger than 700 MB will be excluded
and its information will be logged in
smgetinfo-versions.log<date>.

--nolog | -g Excludes log files when collecting local files. This option
and --log are mutually exclusive.

--repos [--latest] | -r [-t] For each EMC Smarts server, collects and stores the
latest repository file or all repository files. If a server
name is specified, only the file corresponding to the
server will be collected. Any repository file that is larger
than 700 MB will be excluded and its information will be
logged in smgetinfo-versions.log<date>.

--norps | -n Excludes repository files when collecting local files. This
option and --repos are mutually exclusive.

--core | -c Collects and stores the core files (Solaris, Linux) or
dump files (Windows) that are generated by the
EMC Smarts software, and the corresponding logs.

--all | -a All data and files in BASEDIR/smarts/local and
BASEDIR/smarts/setup directories will be collected and
stored. If --all option is specified, the other options will
be ignored except --server and --pid.

--version | -v Print version information and exit.

--help | -h Print usage information and exit.

--smmonitor “<sm_monitor options>” |
-m “<sm_monitor options>”

Specifies the options for running sm_monitor, which
will override the default options “-m run-all -z.”
Approximately two cycles are run to collect the required
information. The collected information is output to the
BASEDIR/smarts/local/logs/SM-Monitor-<server name>
directory.

--flush | -f Force a flush. Needed when the sm_getinfo utility is
invoked from a remote host.

Using the smgetinfo utility to create a support package 29

Locating and Modifying Files

sm_getinfo invocation examples

To gather the five latest logs, enter:

sm_perl sm_getinfo.pl --logs 5

To gather the latest repository data and core files, enter:

sm_perl sm_getinfo.pl --repos --latest --core

To gather the entire BASEDIR/smarts/local directory, enter:

sm_perl sm_getinfo.pl --all

To invoke sm_monitor, enter:

On UNIX/Linux:

sm_perl sm_getinfo.pl -s <server name> -m “-m correlation -z”

On Windows:

sm_perl sm_getinfo.pl -s <server name> -m “-m mem”

sm_getinfo data collection

If no command-line option is specified, the sm_getinfo utility will store the following
information in the tar archive:

◆ For each server, the latest server log file in BASEDIR/smarts/local/logs and the related
.audit and .archive files in BASEDIR/smarts/local/logs. If a server name is specified,
only the files that correspond to the server will be collected. To avoid generating a
too-large tar archive (too large to email), any log file that is larger than 700 MB will be
excluded and its information will be logged in smgetinfo-versions.log<date>.

◆ For each server, the latest repository file in BASEDIR/smarts/local/repos. If a server
name is specified, only the repository file for the server will be archived. Any
repository file that is larger than 700 MB will be excluded and its information will be
logged in smgetinfo-versions.log<date>.

◆ The local files that are not in the BASEDIR/smarts/local/logs and repos directories
and changed since last temporary test patch (TTP) and patch.

◆ The new local files that are not in the BASEDIR/smarts/local/logs and repos
directories and were added since the last TTP and patch.

◆ All local files except the files in logs and repos directories if no TTP or patch is
installed.

◆ All files in the BASEDIR/smarts/setup/info and BASEDIR/smarts/setup/logs
directories.

◆ Core files (Solaris, Linux) or dump files (Windows) that are generated by the
EMC Smarts software, and the corresponding server log files. On UNIX or Linux, some
library (lib) files that are related to the cores are also collected.

30 EMC Smarts Foundation System Administration Guide

Locating and Modifying Files

◆ EMC Smarts TTP or patch version information. Additionally, it verifies MD5 checksum
for the installed TTP files and the files that are listed in manifest.md5 in the
BASEDIR/smarts/setup/info directory.

◆ The data collected by sm_monitor. If a server name is specified, only the files that
correspond to the server will be collected.

◆ The data generated by the EMC Ionix ITOps Health Monitor.

◆ System environment information.

Using the smgetinfo utility to create a support package 31

Locating and Modifying Files

32 EMC Smarts Foundation System Administration Guide

CHAPTER 4
License Administration

This chapter consists of the following sections:

◆ Overview of the steps to set up license management... 34
◆ License components and process flow .. 35
◆ Examples of license files ... 37
◆ Obtain and set up a temporary license file .. 39
◆ Obtain and set up a permanent license file ... 40
◆ Install and configure the FlexNet Publisher license server.. 43
◆ Use an existing FlexNet Publisher license server.. 44
◆ Add another permanent license to a running license server 45
◆ Change the license server port in a running license server....................................... 46
◆ Enable communication through a firewall in a running license server 47
◆ Use of multiple FlexNet Publisher license servers .. 47
◆ Upgrade licensing during EMC Smarts software upgrades.. 48
◆ Run older versions of license files in parallel ... 48
◆ Overview of the install_license script .. 50
◆ Uninstall the FlexNet Publisher license server.. 51
◆ License server administration tools ... 52
◆ License checking by an EMC Smarts application.. 53
◆ Volume licensing for EMC Smarts IP Availability Manager .. 54
◆ Troubleshooting.. 57
◆ Introduction to Service Assurance Suite (SA Suite) and its licensing 61

License Administration 33

License Administration

Overview of the steps to set up license management
You should use the license administration procedures in this chapter in conjunction with
the procedures in each EMC Smarts product’s installation guide and in the FlexNet
Publisher License Administration Guide. To complete the procedures, you will need
administrative privileges for both the EMC Smarts software and the host systems on which
the software is running.

For licensing and license management, EMC Smarts Foundation products rely on a
third-party licensing software product, FlexNet Publisher®, from Flexera Software™
Corporation. The FlexNet Publisher licensing software is installed automatically during the
software installation process.

You will need to perform the following to complete the licensing process for your
EMC Smarts products:

1. Obtain and setup one of the following license files from EMC:

• Temporary — time-limited.

“Obtain and set up a temporary license file” on page 39 provides further
information.

Setting up a temporary license file is a postinstallation task.

• Permanent — not time-limited.

“Obtain and set up a permanent license file” on page 40 provides further
information.

For installation upgrades (such as upgrading entire products or adding products to
an existing directory), obtaining and setting up a permanent license file is
performed before the upgrade installation.

For new installations or migrations (that use a new or different directory), setting
up a license file is a postinstallation task.

The installation guide that accompanied your product describes the order of
installation tasks. The migration guide that accompanied your product describes
the license migration procedure.

2. For permanent license files only, do one of the following:

• Use an existing FlexNet Publisher license server that you already installed for other
software applications. “Use an existing FlexNet Publisher license server” on
page 44 provides additional information.

• Install and configure the FlexNet Publisher license server provided with the
EMC Smarts software. “Install and configure the FlexNet Publisher license server”
on page 43 provides additional details.

34 EMC Smarts Foundation System Administration Guide

License Administration

License components and process flow
Licensing involves the following components:

◆ FlexNet Publisher license server—The FlexNet Publisher license server authenticates
EMC Smarts products. The FlexNet Publisher license server consists of two types of
processes: a license manager daemon and one or more vendor daemons. On
Windows, both processes run as services.

• The license manager daemon receives the initial contact from products and passes
the connections to a vendor daemon. It also manages all of the vendor daemons.

• A vendor daemon is a process that controls how many licenses are in use, as
defined in a permanent license file. There is a vendor daemon for each vendor who
has a FlexNet Publisher-licensed product on the network.

◆ Vendor daemon for EMC Smarts—The vendor daemon for EMC Smarts is the process
that grants and records the licenses for EMC Smarts software.

◆ Permanent license file—The permanent license file is generated by EMC. It controls
access to applications and features as well as limits the number of systems
discovered by EMC Smarts products.

◆ EMC Smarts products—These products communicate with the FlexNet Publisher
license server to request a license.

EMC recommends that the FlexNet Publisher license server run on the same host as
the Broker.

Process flow
Figure 2 on page 36 shows a FlexNet Publisher license server, a vendor daemon for
EMC Smarts, and a permanent license that resides on the same host as the license server.

License components and process flow 35

License Administration

Figure 2 Process flow

For all EMC Smarts products, the SM_LICENSE variable specifies the port and host where
the FlexNet Publisher license server resides.

The process flow is as follows:

1. An EMC Smarts product sends a request to the FlexNet Publisher license server for a
license to access an application or a feature. In the case of a Global Console, a console
relies on its Manager to send a request for licenses to access console features.

2. The FlexNet Publisher License Manager daemon receives the request and passes it to
the vendor daemon for EMC Smarts.

3. The vendor daemon for EMC Smarts reads the permanent license file and checks if a
license is available.

• If a license is available, the EMC Smarts product is allowed to use the application
or feature.

• If a license is not available, the vendor daemon for EMC Smarts writes an error
message to BASEDIR/smarts/local/logs/flexlm.log and the application or feature
does not work. Also, an error message is written to the log file of the Manager that
requested the license (for example,
BASEDIR/smarts/local/logs/MYDM-SA_en_US_UTF-8.log).

Host3

Service Assurance Manager
(Global Manager)

SM_LICENSE=1744@Host3

License file
(host_ID>.smarts.lic)

FlexNet Publisher License
Manager daemon

(lmgrd)

Vendor daemon/service
for EMC Smarts
(sm_lmgrd92)

Licenses
check in/out

Global Console

SM_LICENSE=1744@Host3

IP Availability Manager

SM_LICENSE=1744@Host3

Licenses
check in/out

BrokerFlexNet Publisher
license server

36 EMC Smarts Foundation System Administration Guide

License Administration

Examples of license files
EMC generates license files according to the FlexNet Publisher license file format. This
section provides an example of a temporary license file and a permanent license file. The
FlexNet Publisher License Administration Guide provides a more complete descriptions of
file format syntax.

Temporary license file example

A temporary license file is not user-modifiable.

For illustrative purposes, the following example is an excerpt of a smarts.lic file for
EMC Smarts Foundation software version 9.0.

FEATURE DMC_CORR sm_lmgrd92 9.0 04-dec-2008 uncounted 1C8F62B2E672 \
HOSTID=DEMO SN=DO315530889 START=4-nov-2008

FEATURE AD_PEM sm_lmgrd92 9.0 04-dec-2008 uncounted 53BCCF735983 \
HOSTID=DEMO SN=DO315530889 START=4-nov-2008

FEATURE AP_ICSRV sm_lmgrd92 9.0 04-dec-2008 uncounted FFE23AFEFAF8 \
HOSTID=DEMO SN=DO315530889 START=4-nov-2008

FEATURE DMC_DECS sm_lmgrd92 9.0 04-dec-2008 uncounted 5A1809C9A688 \
HOSTID=DEMO SN=DO315530889 START=4-nov-2008

The temporary license file consists of a list of applications or features. Each line begins
with the FEATURE keyword.

Each FEATURE line includes the following:

◆ Feature name

◆ Vendor daemon name (sm_lmgrd92)

◆ Feature version

◆ Expiration date

◆ Number of concurrent licenses, which is “uncounted” in this case

◆ Authentication signature for the feature

◆ HOSTID=DEMO value that indicates that the feature is not bound to any particular host

◆ Serial number (SN) to identify the FEATURE line

◆ Start date

Permanent license file example

A permanent license file is user-modifiable. In most cases, you do not have to modify the
permanent license file. The only values that you can safely change without damaging the
licensing process are as follows:

◆ Port number for the FlexNet Publisher license server.

◆ Directory path to the vendor daemon for EMC Smarts.

◆ Keyword PORT=<port_value>. Add this keyword and value pair to the VENDOR line for
the vendor daemon for EMC Smarts if a firewall is present.

Examples of license files 37

License Administration

For illustrative purposes, the following example is an excerpt of a <host_ID>.smarts.lic file:

SERVER this_host 80cdc5dc 1744
VENDOR sm_lmgrd92 BASEDIR/smarts/bin/sm_lmgrd92
USE_SERVER
INCREMENT DMC_CORR sm_lmgrd92 9.0 permanent 1 1454E7768847 \
 DUP_GROUP=SITE SN=OR54127 TS_OK
INCREMENT AP_ICSRV sm_lmgrd92 9.0 permanent 1 9639EDFD001C \
 DUP_GROUP=SITE SN=OR54127 TS_OK

The permanent license file consists of information for the FlexNet Publisher license server
(SERVER line), the vendor daemon (VENDOR line), and a list of applications or features
(FEATURE or INCREMENT line). The USE_SERVER line does not affect the server and is used
by the application.

◆ The SERVER line includes the following:

• Value “this_host” (which is a required literal, that is, not enclosed in quotation
marks).

• Host ID of the system where the FlexNet Publisher license server resides.

• Port number of the FlexNet Publisher license server. The default port number is
1744.

◆ The VENDOR line includes the name of the vendor daemon for EMC Smarts
(sm_lmgrd92) and the directory path to the vendor daemon.

◆ The USE_SERVER line does not specify any arguments or keywords.

◆ Each INCREMENT line includes the following:

• Feature name

• Vendor daemon name (sm_lmgrd92)

• Feature version

• Expiration date, which is “permanent” in this case

• Number of concurrent licenses (1 for example)

• Authentication signature for the feature

• Duplicate grouping that indicates site license sharing

• Serial number (SN) to identify the INCREMENT line

• Indication of whether access to the application by using a Terminal Server window
is allowed

38 EMC Smarts Foundation System Administration Guide

License Administration

Obtain and set up a temporary license file
“Temporary license file example” on page 37 presents an excerpt of a temporary license
file. Note that an evaluation copy of the Global Console does not require a temporary
license file.

A temporary license file is time-limited. It enables you to use specified features for a
limited period of time, according to an evaluation agreement.

Because a temporary license file contains only uncounted licensed features, it does not
require that a FlexNet Publisher license server be running in order to use it. An uncounted
licensed feature has an associated license count of 0 (unlimited).

To obtain and set up a temporary license file:

1. Complete an evaluation request and an evaluation agreement.

2. Contact your sales representative or go to Service Center on EMC Online Support
(https://support.emc.com) and create a service request indicating that you need a
temporary (evaluation) license file.

3. A License will be sent to the email address included in the order.

The name of the license file has a .lic file extension:

a. Do not modify the license file contents.

b. Do not copy and paste its contents to another file.

4. If required, you can rename the name of the license file:

a. The file must have the .lic file extension

b. Do not include a space before the .lic.

5. In the installation directory of each product that you are evaluating, do the following:

a. Place a copy of the temporary license file (<license_name>.lic) in the
BASEDIR/smarts/local/conf directory. For example, for an IP Manager installation
on a Windows host:

C:\InCharge\IP\smarts\local\conf\<license_name>.lic

b. Go to the BASEDIR/smarts/bin directory and enter the following command to open
the runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

c. Find the SM_LICENSE variable and edit it to point to the license file. For example,
on a Windows host:

SM_LICENSE=C:\InCharge\IP\smarts\local\conf\<license_name>.lic

Ensure that the name and extension of the license file in the SM_LICENSE variable
definition match the name and extension of the license file.

d. Save and close the file.

Obtain and set up a temporary license file 39

http://support.emc.com

License Administration

The modified version of the runcmd_env.sh file is saved to the
BASEDIR/smarts/local/conf directory.

e. Any Manager that was launched from this installation directory before you edited
the runcmd_env.sh file needs to be restarted. Chapter 5, “Controlling Startup,”
describes how to start services.

For a host on which multiple EMC Smarts products are installed, you can install the
temporary license in just one installation directory and then set the SM_LICENSE variable
for each product to point to that one location.

How to renew a temporary license file

To renew a temporary license file, you must request another temporary license file. Follow
the instructions in“Obtain and set up a temporary license file” on page 39.

Obtain and set up a permanent license file
“Permanent license file example” on page 37 presents an excerpt of a permanent license
file. A permanent license file defines the number of available licenses for each application
or feature, and the number of devices that an EMC Smarts manager such as EMC Smarts IP
Availability Manager can discover. A permanent license file does not expire.

1. Contact your sales representative or go to Service Center on EMC Online Support
(https://support.emc.com) and create a service request indicating that you need a
permanent license file.

You will receive a License Authorization Code (LAC) letter.

2. Delete any previous temporary license file in the BASEDIR/smarts/local/conf
directory.

3. Determine the host id of the computer where the FlexNet Publisher license server is
running:

• UNIX: BASEDIR/smarts/bin/lmutil lmhostid

• Windows: BASEDIR\smarts\bin\lmutil lmhostid

The output should resemble the following:

BASEDIR/smarts/bin/lmutil lmhostid

lmutil - Copyright (c) 1989-2012 Flexera Software, Inc. All Rights
Reserved.
The FLEXnet host ID of this machine is “000c293226ec”

4. Following the instructions in the LAC letter, go to EMC Online Support
(https://support.emc.com) and access the License Management home page to
retrieve your license file. Provide the host id of the computer where the FlexNet
Publisher license server is running.

You will be emailed the license file.

Use the license as is. Do not rename the file. Do not modify the file contents. Do not
copy and paste its contents to another file.

40 EMC Smarts Foundation System Administration Guide

http://support.emc.com

http://support.emc.com

License Administration

5. Save the permanent license file, smarts.lic, in the BASEDIR/smarts directory on the
host where the license server is or will be running. EMC recommends that this location
be the same host and BASEDIR/smarts as for the Broker.

Do not save the permanent license file (smarts.lic) to the BASEDIR/smarts/local/conf
directory. The install_license script will fail if it finds a permanent license file in this
directory. Also, do not save a permanent license file to the BASEDIR/smarts/script or
BASEDIR/smarts/conf directory.

6. By default, the FlexNet Publisher license server uses port 1744 to listen for requests. If
port 1744 is used by another required process on the server:

a. Use any text editor to open the BASEDIR/smarts/smarts.lic file.

b. Locate the line that starts with SERVER. This line contains the hostname, host id,
and port of the license server, similar to:

SERVER this_host 8323fcbf 1744

c. Change the SERVER port number from the default (1744) to the required port
number.

d. Save and close the permanent license file.

7. If the FlexNet Publisher license server must communicate through a firewall to the
EMC Smarts Foundation products:

a. Configure security policies (rules) to enable a one-way connection from the FlexNet
Publisher license server and the Broker to the various products.

b. Determine the appropriate port to be used by the FlexNet Publisher license server
to respond to requests. This port is used by the vendor daemon for EMC Smarts
which grants and records the licenses for the software. The port number for the
vendor daemon must be different from the SERVER port number.

c. Use any text editor to open the BASEDIR/smarts/smarts.lic file.

d. Locate the line that starts with VENDOR, similar to:

VENDOR sm_lmgrd92 BASEDIR/smarts/bin/sm_lmgrd92

e. Append the PORT keyword and assigned port number to the end of the VENDOR
line in the permanent license file:

VENDOR sm_lmgrd92 BASEDIR/bin/sm_lmgrd92 PORT=<port_number>

f. Save and close the permanent license file.

g. If you request licenses for additional products or additional device licenses follow
instructions “Add another permanent license to a running license server” on
page 45.

Obtain and set up a permanent license file 41

License Administration

Rehost license

Rehost is the process of moving activated entitlements from one device or machine to a
different device or machine. An entitlement is a record of the software you are entitled to
use. For example, Global Console 25 Pack is represented as SMA-GC-25P.

If you are a customer who has already interacted with the EMC licensing team and
obtained your license by following instructions in the LAC letter, setup for the first time,
you can rehost a license without opening an Service Request with EMC.

Go to EMC Online Support and access the License Management home page. You need one
of four options to search for existing installed license keys and follow the prompts to move
the key to a new host. For example, choose

◆ A rehost may be partial (moving a portion of the entitlements) or

◆ A rehost may be full (moving everything on the device or machine).

For example, a full rehost would be completed when a new server is installed and replaces
an existing server. The entitlements would be rehosted and locked to the new server in the
licensing system by using the "Locking ID" of the new server. If you do no have LAC letter
contact licensing team by opening a Service Request on https://support.emc.com.

Regenerate license

Regeneration is a process of recreating activated entitlements. If you have already
interacted with the EMC licensing team and obtained your license by following instructions
in the LAC letter, you can regenerate a license without emailing EMC.

Go to EMC Online Support and access the License Management home page. Click the
Activation tab and choose Regenerate License. Use the online help to obtain additional
information.

42 EMC Smarts Foundation System Administration Guide

License Administration

Install and configure the FlexNet Publisher license server
The FlexNet Publisher license server is installed using the install_license script:

◆ By default, the install_license script is located in the BASEDIR/smarts/script directory.

◆ The install_license script must be run on the same system where the license server
runs.

◆ Administrative privileges are required.

1. If operating in a firewall environment, make sure that the ports specified in the
SERVER and VENDOR lines of the permanent license file are open.

2. Change to the BASEDIR/smarts/script directory.

3. Install the FlexNet Publisher license server by using the install_license script. Specify
the full path to the permanent license file.

On UNIX systems, for example, the command is:

install_license.sh install <path to license file>/smarts.lic

On Windows systems, for example, the command is:

install_license.cmd install <path to license file>\smarts.lic

4. Start the FlexNet Publisher license server. You must have administrative privileges.

UNIX systems:

/etc/init.d/SMARTS-License start

Windows:

To start the license server manually, do the following as administrator:

a. Select Start > Settings > Control Panel > Administrative Tools.

b. Select Services.

c. Select the FLEXlm License Manager service.

d. Right-click and choose Start.

When the FlexNet Publisher license server is started, it runs in the background and
automatically starts the vendor daemon for EMC Smarts programs, running as:

• UNIX: daemon

• Windows: service

Install and configure the FlexNet Publisher license server 43

License Administration

5. Verify that the FlexNet Publisher license server started by checking your Manager log
file.

a. Start your Manager, as described in Chapter 5, “Controlling Startup.”

b. Use any editor to open the Domain Manager log file. The log filename is based
upon the Manager’s name (for example, MYDM-SA_en_US_UTF-8.log) and the log
file is located in the BASEDIR/smarts/local/logs directory.

c. In the Manager log file, locate two messages that indicate success:

– ICF-N-LICENSEDFEATURE-Enabling

– ICF-N-RESTOREFINISH-PersistenceManager: restore finished

The log filename is based upon the Manager’s name (for example,
MYDM-SA_en_US_UTF-8.log) and the log file is located in the
BASEDIR/smarts/local/logs directory.

Use an existing FlexNet Publisher license server
You can use an existing FlexNet Publisher license server that is being used for other
software applications. The FlexNet Publisher version of the license server must be version
11.9 in order to manage the vendor daemon for EMC Smarts. Consult your FlexNet
Publisher License Administration Guide for more complete information.

1. Copy the permanent license file, smarts.lic, to the host where the FlexNet Publisher
license server resides.

2. On other hosts wherever EMC Smarts software is installed, modify the SM_LICENSE
variable in the runcmd_env.sh file to specify the port and host of the FlexNet Publisher
license server.

a. Go to the BASEDIR/smarts/bin directory and enter the following command to open
the runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

b. Locate the line starting with SM_LICENSE:

SM_LICENSE=<port>@<hostname>

c. Specify the correct port number and hostname of the FlexNet Publisher license
server, as in the following example:

SM_LICENSE=1744@System1

d. Save and close the file.

The modified version of the runcmd_env.sh file is saved to the
BASEDIR/smarts/local/conf directory.

44 EMC Smarts Foundation System Administration Guide

License Administration

Add another permanent license to a running license server
If you need to add new features or increase the number of licenses:

1. Contact your sales representative or go to Service Center on EMC Online Support
(https://support.emc.com) and create a service request and provide the completed
Permanent License Information Request form.

You will receive a License Authorization Code (LAC) letter.

2. Following the instructions in the LAC letter, access EMC Online Support, Licensing
option, to retrieve your license file, smarts.lic. Provide the host id of the computer
where the FlexNet Publisher license server is running.

The .lic file will be sent to the customer.

3. Use any text editor to modify the new file so that the port number and path match
those in the original license file.

4. Copy the new file to BASEDIR/smarts/local/conf.

5. Force the license server to reread the license files. In the BASEDIR/smarts/bin
directory, with administrative privileges, enter:

lmutil lmreread -c <port>@<lic_host>

• UNIX example

BASEDIR/smarts/bin/lmutil lmreread -c 1744@localhost

• Windows example

BASEDIR\smarts\bin\lmutil lmreread -c 1744@localhost

You do not need to restart Managers. There can be multiple permanent license files in the
BASEDIR/smarts directory. The FlexNet Publisher license server will read all files with the
.lic suffix.

The FlexNet Publisher License Administration Guide provides additional information about
the lmreread utility.

Add another permanent license to a running license server 45

http://support.emc.com

License Administration

Change the license server port in a running license server
Once the permanent license has been installed, you can change the port on which the
FlexNet Publisher license server runs.

1. Use any text editor to open the BASEDIR/smarts/smarts.lic file.

2. Locate the line that starts with SERVER. This line contains the hostname, host id, and
port of the license server. In this example, the port number is 1744.

SERVER this_host 8323fcbf 1744

3. Change the SERVER port number to the required port number.

4. Save the permanent license file.

5. Enter the following command from the BASEDIR/smarts/bin directory to force the
license server to restart:

lmutil lmreread -c <port>@<lic_host>

6. Enter the following command from the BASEDIR/smarts/bin directory to open the
runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

The runcmd_env.sh file should resemble the following:

SM_BROKER_DEFAULT=localhost:426
SM_LICENSE=1744@SYSTEM1
SM_SNMP_BUG_COMPATIBLE=TRUE
SM_INCOMING_PROTOCOL=1,0
SM_OUTGOING_PROTOCOL=1,0

7. Set the SM_LICENSE variable to the <port>@<lic_host> of the FlexNet Publisher license
server.

8. Save and close the file.

The modified version of the runcmd_env.sh file is saved to the
BASEDIR/smarts/local/conf directory.

At this point, any EMC Smarts program that is started from this installation directory
will use the applicable environment variables that are specified in the runcmd_env.sh
file.

9. EMC Smarts programs that were previously launched from this installation directory
need to be restarted for any new environment variable to take effect. Chapter 5,
“Controlling Startup,” describes how to start services.

46 EMC Smarts Foundation System Administration Guide

License Administration

Enable communication through a firewall in a running license
server

1. Add the PORT keyword and port number to the second line of the permanent license
file, labeled VENDOR, as shown:

SERVER this_host 80cdc5dc 1744
VENDOR sm_lmgrd92 BASEDIR/smarts/bin/sm_lmgrd92 PORT=<port_number>
USE_SERVE
INCREMENT DMC_CORR sm_lmgrd92 9.0 permanent 1 1454E7768847
DUP_GROUP=SITE SN=OR54127 TS_OK

Do not remove the 1744 default port value from the SERVER line.

2. Force the license server to restart. Invoke this command from the BASEDIR/smarts/bin
directory with administrative privileges:

lmutil lmreread -c <port>@<lic_host>

Use of multiple FlexNet Publisher license servers
More than one FlexNet Publisher license server may be required depending on your
deployment. If there is more than one Broker for the installation, there may be good
reason to use more than one license server. In general, you should run a FlexNet Publisher
license server on each host that runs a Broker.

Each FlexNet Publisher license server will need its own permanent license file. Each
permanent license file controls the applications, features, and the number of blocks of
licenses for discovered devices. Excess licenses on one system cannot be allocated to
another. For each license server, perform the steps described in “Obtain and set up a
permanent license file” on page 40.

In certain cases, you may use multiple FlexNet Publisher license servers in your network
for the same reasons that you split a topology or choose different locations for Managers:
geographical requirements, corporate organizational requirements, or the network’s
security design. Multiple license servers require a corresponding number of permanent
license files.

Also, when multiple FlexNet Publisher license servers are used, each EMC Smarts IP
Availability Manager will use blocks of volume licenses from a specific license server.
Therefore, the license blocks must be divided among multiple licenses and the
appropriate license must be deployed to each license server. Then, IP Availability
Managers that rely on a specific license server will have the appropriate volume licenses
to support the systems that they must manage. If multiple license servers are used,
ensure that EMC is aware of the configuration details.

Enable communication through a firewall in a running license server 47

License Administration

Upgrade licensing during EMC Smarts software upgrades
1. Before you upgrade the software, check the release notes if a new license file is

required. If not, then you can continue using your existing license. If a new license is
required then request one by opening an Service Request on EMC Online Support
https://support.emc.com.

You will receive a License Authorization Code (LAC) letter.

2. Upgrade the installation to the new version.

THe FlexNet server will be upgraded with the rest of the software.

3. Modify the new license file to match the port number in the existing license file.

4. Replace the existing <BASEDIR>/smarts/local/conf/smarts.lic with the new license file.

5. Start the license server.

6. Start your application.

Note: No action is required on hosts that were pointing to this license server before
the upgrade.

Run older versions of license files in parallel
For some upgrades, installations, and migration scenarios, it is necessary that the FlexNet
Publisher license server accept a newer permanent license file, as well as license files for
older software. In this instance, a single license server manages both the old and the new
permanent license files.

1. Install the newer software on the same system in a different directory than the older
software.

2. If you have not already obtained and setup the new smarts.lic file in your
BASEDIR/smarts directory on the system where the FlexNet Publisher license server
will run, do so. “Obtain and set up a permanent license file” on page 40 provides
additional information.

3. If you have not already installed the FlexNet Publisher license server by using the
install_license script, do so. “Install and configure the FlexNet Publisher license
server” on page 43 provides additional information.

4. Copy and rename the old license file license.dat from the BASEDIR/smarts/local/conf
directory of the old installation to legacy_license.lic and place the file in the new
installation directory, BASEDIR/smarts/local/conf.

5. Use the sm_edit utility to open the old license file, legacy_license.lic. In this case, use
sm_edit instead of any text editor because sm_edit will save the file to the correct
local directory with the proper permissions.

For example on Windows, issue:

BASEDIR\smarts\bin> sm_edit conf\legacy_license.lic

48 EMC Smarts Foundation System Administration Guide

License Administration

6. In the legacy_license.lic file, change the following in the first two lines:

• On the SERVER line, change hostname to this_host.

The “this_host” is a literal term that MUST BE in the license file. Do not put
quotation marks around the literal, this_host.

• On the SERVER line, change the port from 744 to 1744 (or the port for the FlexNet
Publisher license server if it is different).

• On the DAEMON line, change the vendor daemon path from sm_lmgrd to the full
directory path for the old daemon; for example, on UNIX,
/opt/InCharge/<product>/bin/sm_lmgrd. For Windows, use sm_lmgrd.exe.

In order for the new FlexNet Publisher license server to find the old daemon
process, specify the BASEDIR/smarts directory for the location of the old
installation. In the following examples, host_ID is the system where the newer
FlexNet Publisher license server is running. Do not modify the host ID.

Here is an example of a license file:

SERVER this_host host_ID 1744
DAEMON sm_lmgrd BASEDIR/smarts/bin/sm_lmgrd

7. Stop the old license server. Use the procedure in “Starting and stopping the license
server” on page 52 except substitute stop for start.

8. Uninstall the old license server by using the install_license script. Replace the
parameter install with uninstall, as described in “Uninstall the FlexNet Publisher
license server” on page 51.

9. For the older product , modify the following to reflect the port and the system where
the newer FlexNet Publisher license server is running. The value for <license_host> is
the system where the newer FlexNet Publisher license server resides.

Modify the SM_LICENSE variable in the runcmd_env.sh file to specify port
1744@<license_host>.

10. Start the new FlexNet Publisher license server, as described in “Starting and stopping
the license server” on page 52.

11. To check that the FlexNet Publisher license server loaded the old and new license files,
look at the license server’s log file, BASEDIR/smarts/local/logs/flexlm.log. The log
should not contain errors.

12. Restart the older Managers, by using the documentation that accompanied the older
EMC Smarts software.

Run older versions of license files in parallel 49

License Administration

Overview of the install_license script
This section describes the install_license script and explains how the script installs a
FlexNet Publisher license server that is provided with EMC Smarts software. The same
script is also used to uninstall the FlexNet Publisher license server. The FlexNet Publisher
License Administration Guide provides further information if you already use an existing
FlexNet Publisher license server for other software applications.

The install_license script, provided by EMC, performs several functions:

◆ Installs a FlexNet Publisher license server, as described in “Install and configure the
FlexNet Publisher license server” on page 43.

◆ Installs the permanent license file into the BASEDIR/smarts/local/conf directory.
(Initially, the permanent license file is saved to the BASEDIR/smarts directory on the
system where the license server will run.)

Also, when the script installs the permanent license file into the
BASEDIR/smarts/local/conf directory, the script changes the permanent license
filename from <host_id>.smarts.lic to smarts.lic.

◆ Adds the SM_LICENSE variable in the runcmd_env.sh file so that the variable specifies
the <port>@<lic_host> of the FlexNet Publisher license server.

◆ For UNIX, it configures the system so that the FlexNet Publisher license server starts
automatically when the system boots.

◆ For Windows, the install_license script creates a service for the FlexNet Publisher
license server and the service starts automatically when the system boots.

Do not use the install_license script if you are adding more licenses or features. Instead,
you should follow the instructions in “Upgrade licensing during EMC Smarts software
upgrades” on page 48.

50 EMC Smarts Foundation System Administration Guide

License Administration

Uninstall the FlexNet Publisher license server
When you uninstall the license server, the order in which you uninstall EMC Smarts
products is significant. The installation guide that accompanied your product provides
instructions.

Also keep the following points in mind:

◆ When uninstalling all of your EMC Smarts products, you must also uninstall the
FlexNet Publisher license server.

◆ If any EMC Smarts product needs to remain in your network and uses the FlexNet
Publisher license server, do not uninstall the FlexNet Publisher license server or the
product where the permanent license file resides.

◆ If you uninstall EMC Smarts products without uninstalling the FlexNet Publisher
license server, a message displays that the FlexNet Publisher (lmgrd) service is still
running.

◆ An EMC Smarts product will not start if it is unable to contact the FlexNet Publisher
license server.

To stop and uninstall the FlexNet Publisher license server:

1. Stop the FlexNet Publisher license server. Use the procedure in “Starting and stopping
the license server” on page 52 and substitute stop for start.

2. Execute the install_license script with the uninstall command from the
BASEDIR/smarts/script directory. You must do so with administrative privileges.

On UNIX systems, for example, the command is:

BASEDIR/smarts/script> install_license.sh uninstall

On Windows systems, for example, the command is:

BASEDIR\smarts\script> install_license.cmd uninstall

Uninstall the FlexNet Publisher license server 51

License Administration

License server administration tools
FlexNet Publisher provides several utilities for managing licenses. These include utilities
for the following:

◆ Diagnosing licensing problems

◆ Forcing the license server to reread the license files

◆ Monitoring the status of all licensing activities including feature usage

Instructions on using these utilities can be found in the FlexNet Publisher License
Administration Guide.

The utilities are automatically installed on:

◆ UNIX in the BASEDIR/smarts/bin directory.

◆ Windows in the BASEDIR\smarts\bin directory.

If you are not familiar with FlexNet Publisher, you may want to read the FlexNet Publisher
documentation. A PDF version of the FlexNet Publisher License Administration Guide is
automatically installed with the EMC Smarts documentation in the
BASEDIR/smarts/doc/pdf directory. The name of the file is fnp_licAdmin.pdf.

Verify the FlexNet Publisher license server version

To verify the version of the FlexNet Publisher license server, use the -v option for the
FlexNet Publisher license server command. Enter this command with administrative
privileges:

BASEDIR/smarts/bin/lmgrd -v

The output will be similar to the following:

lmgrd v11.9.0.0 build 87342 x64_lsb - Copyright (c) 1988-2012 Flexera
Software, Inc. All Rights Reserved.

Starting and stopping the license server

The FlexNet Publisher license server (lmgrd) is automatically installed in the
BASEDIR/smarts/bin directory. The FlexNet Publisher license server runs in the
background and automatically starts the vendor daemon for EMC. It runs as:

◆ Daemon on UNIX

◆ Service on Windows

Run the FlexNet Publisher license server at all times to ensure continuous operation of
EMC Smarts software. A Manager (Global Manager or Manager) will not start if it is unable
to contact the license server. Adapters and the Global Console will run if they are unable to
contact the license server, but they will display an error message.

52 EMC Smarts Foundation System Administration Guide

License Administration

The command for starting and stopping the FlexNet Publisher license server varies
according to the operating system on which it runs. When you invoke the install_license
script, this command is added to the proper system-specific directory so that the
command is invoked when the system starts and, for Windows, the service starts.

The procedure to manually start and stop the FlexNet Publisher license server is described
as follows.

One of two possible options must be supplied with the command. You must have
administrative privileges to run these commands.

The start option starts the process; the stop option ends the process.

Solaris:

/etc/init.d/SMARTS-License start

Linux:

/etc/init.d/SMARTS-License start

Windows:

To start the license server on Windows manually, do the following as administrator:

1. Select Start > Settings > Control Panel > Administrative Tools.

2. Select Services.

3. Select the FLEXlm License Manager service.

4. Right-click and choose Start (or Stop).

License checking by an EMC Smarts application
When an EMC Smarts application starts up, it prints a list of features that are licensed,
followed by a list of the features that are not licensed. The second list starts with The
following feature(s) are not licensed, followed by a list of features, one per line. That list is
intended to help in the resolution of licensing problems.

License checking by an EMC Smarts application 53

License Administration

Volume licensing for EMC Smarts IP Availability Manager
The EMC Smarts permanent license controls the number of discovered systems. The
FlexNet Publisher license server maintains a pool of licenses that get checked out in
blocks to IP Availability Manager products on an as-needed basis. A block consists of 50
devices. Products check out additional licenses one block at a time, as described in
“Discovery and licenses” on page 56.

Determining the total number of licenses

Each permanent license file contains a line that defines the number of licensed systems.
The line begins with the phrase INCREMENT AP_SYSTEM_VOLUME. The total volume of
system licenses is determined by the sum of licenses that are granted through
AP_SYSTEM_VOLUME in all of the license files.

An example of line in the license file is:

INCREMENT AP_SYSTEM_VOLUME sm_lmgrd92 7.0 permanent 10 DE07382C7891
VENDOR_STRING=BlockSize=50

This example shows the volume information of system licenses. The number 10 indicates
that there are ten blocks of licenses. Each block contains 50 licenses. Multiplying the two
produces the total number of systems licensed by the permanent license file; the result is
500.

Determining the number of checked-out licenses

Two utilities help to keep track of the number of checked-out licenses:

◆ The lmstat option of the lmutil utility shows the total number of license blocks that are
checked out from the FlexNet Publisher license server.

◆ The sm_tpmgr utility shows the number of system licenses that are checked out and
the number of system licenses that are used for a single Manager.

Total number of checked-out licenses
The lmstat option of the lmutil utility shows the total number of licenses checked out from
the FlexNet Publisher license server. The output of the utility can be confined to the
number of license blocks checked out for devices.

Invoke this command from the BASEDIR/smarts/bin directory with administrative
privileges:

lmutil lmstat -c <port>@<lic_host> -f AP_SYSTEM_VOLUME

The following example shows the number of device license blocks checked out from the
license server running on port 1744 on the host, host2:

BASEDIR/smarts/bin/lmutil lmstat -c 1744@host2 -f AP_SYSTEM_VOLUME

54 EMC Smarts Foundation System Administration Guide

License Administration

This command returns the following information:

lmutil - Copyright (c) 1989-2010 Flexera Software, Inc. All Rights
Reserved.

Flexible License Manager status on Fri 11/12/2010 18:06

[Detecting lmgrd processes...]
License server status: 1744@host2
 License file(s) on host2: smarts.lic-1744:

host2: license server UP (MASTER) v10.1

Vendor daemon status (on fawn.smarts.com):

sm_lmgrd92: UP v10.1
Feature usage info:

Users of AP_SYSTEM_VOLUME: (Uncounted, node-locked)

 "AP_SYSTEM_VOLUME" v6.2, vendor: sm_lmgrd92
 uncounted nodelocked license locked to NOTHING (hostid=ANY)

 root smarts1 /dev/tty (v3.00) (host2/1744 607031), start Tue 10/19
18:12

 root smarts1 /dev/tty (v3.00) (host2/1744 454338), start Tue 10/19
18:12

This output shows that the FlexNet Publisher license server is managing a total of five
license blocks (or 250 devices). Two IP Availability Managers running on host1 have
checked out three license blocks (One license block is not shown). One IP Availability
Manager running on host2 has checked out two license blocks.

Checked-out licenses and license blocks for a single IP Availability Manager
To determine the total number of checked-out licenses for a single IP Availability Manager,
specify the --sizes option for the sm_tpmgr command. This shows the total number of
system licenses.

Invoke this command from the BASEDIR/smarts/bin directory with administrative
privileges:

sm_tpmgr -s <availability_manager> --sizes

The output should include information about the number of checked-out system licenses
and the current number of counted systems. The difference between the two numbers
shows the number of unused licenses for a single license block.

The following example shows that 50 system licenses (One block) have been checked out,
38 of the licenses have been used, 450 system licenses remain (9 blocks), and the current
limit of discovered systems is 500 (10 blocks):

Total System Volume Licenses CheckedOut: 50
Total Systems in Topology: 38
Remaining Blocks of System Licenses in License Server: 9
Current System Limit: 500

Volume licensing for EMC Smarts IP Availability Manager 55

License Administration

Discovery and licenses

Volume licensing applies to EMC Smarts IP Availability Managers and permits the product
to discover a predetermined number of systems.

As more devices are added to the topology, the block fills to its limit of 50. When this limit
is reached, the product checks out another block of licenses. Blocks are checked out one
at a time and a new block will not get checked out until all of the licenses in the previous
block are used. Any unused blocks are checked back in at the end of the discovery
process.

For example, an IP Availability Manager with no topology starts an autodiscovery process.
It checks out a block of system licenses. When it adds the 50th device to its topology, the
IP Availability Manager checks out a new block of system licenses. Supposing, however,
that it does not find any other device, it will check the empty block back into the FlexNet
Publisher license server when discovery ends.

Limiting discovery
There are a couple of options to consider for sizing constraints. Discovery filters can limit
the number of devices found during the discovery process. IP Availability Managers can
also be restricted with an upper limit of discovered systems.

You can limit the number of systems automatically discovered by an IP Availability
Manager by setting autodiscovery filters. The EMC Smarts IP Manager Reference Guide
provides additional information about configuring discovery filters.

You can limit the number of systems that are added to the topology by setting a system
limit on the discovery. By default, the system limit is set to 50 systems. If you change the
system limit, you should consider making the limit a multiple of 50, the block size for
device licenses.

Exceeding license limit
If the number of discovered devices exceeds the licensed number of systems, you will
receive an OutOfLicense event notification and all excess systems are placed in the
Pending List.

Returning unused license blocks
When a product shuts down with the sm_service or dmquit command, the license blocks
checked out to the product are returned to the license pool. If the product does not shut
down gracefully, the license blocks return to the license pool, but not as quickly as for a
gracefully shut-down product.

56 EMC Smarts Foundation System Administration Guide

License Administration

Troubleshooting
This section describes resolutions to common issues experienced by administrators.

If your issue is not listed in this section, make sure you have the following information
available before contacting EMC Global Services:

◆ The host ID of the system where the FlexNet Publisher license server is installed.

◆ The exact error message or a copy of log file. The FlexNet Publisher license server
provided by EMC uses the log file BASEDIR/smarts/local/logs/flexlm.log.

◆ The log file used by the Manager. The log filename is based upon the Manager’s name
(for example, MYDM.log) and the log file is located in the BASEDIR/smarts/local/logs
directory.

◆ For an IP Availability Manager, output of the sm_tpmgr command with the --sizes
option. An example is described in “Checked-out licenses and license blocks for a
single IP Availability Manager” on page 55.

◆ Output of the lmstat utility with the -c and -a options. For example, invoke this
command from the BASEDIR/smarts/bin directory with administrative privileges:

lmutil lmstat -c <port>@<lic_host> -a

◆ A copy of your purchase order (PO).

◆ The permanent license file.

Evaluation software no longer runs

EMC Smarts software installed for an evaluation is no longer operational. Check the
expiration date listed in the temporary license file. An example is described in “Temporary
license file example” on page 37.

Messages in the flexlm.log file

The FlexNet Publisher license server provided by EMC uses the log file
BASEDIR/smarts/local/logs/flexlm.log.

Messages such as IN and OUT indicate that a product such as a Global Manager or
Manager checked licenses in or out.

Another common message begins with UNSUPPORTED FEATURE, which indicates that the
product (Manager) requested to use a feature that the vendor daemon does not support.

The FlexNet Publisher License Administration Guide description of the Debug Log File
provides an additional explanation of messages.

Troubleshooting 57

License Administration

Need to determine the FlexNet Publisher license server and all licenses served

To find out information about your existing licensing deployment, use the lmstat utility
with the -a option. This displays the name of your FlexNet Publisher license server and its
port number, the location of your permanent license file, the status of the vendor daemon
for EMC Smarts, and feature usage such as the number of licenses in use.

Invoke the following command from the BASEDIR/smarts/bin directory with administrative
privileges:

For example, for UNIX, invoke:

BASEDIR/smarts/bin/lmutil lmstat -a

For example, on Windows, invoke:

BASEDIR\smarts\bin\lmutil lmstat -a

The lmstat utility does not provide information about temporary (“uncounted”) licenses
unless you perform additional configuration. The FlexNet Publisher License Administration
Guide provides further information and additional lmstat options.

Cannot find license error

An error message, Can’t Find License, occurs in the Manager’s log file (for example,
BASEDIR/smarts/local/logs/MYDM.log). Check that the values specified for the
SM_LICENSE variable in the runcmd_env.sh file of your EMC Smarts product are correct.

On other systems wherever EMC Smarts software is installed, verify that the SM_LICENSE
variable in the runcmd_env.sh file specifies the port and host of the FlexNet Publisher
license server.

1. Invoke the following command from the BASEDIR/smarts/bin directory to open the
runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

2. Locate the line starting with SM_LICENSE:

SM_LICENSE=<port>@<hostname>

3. Verify that the line specifies the correct port number and hostname of the FlexNet
Publisher license server, as in the following example. Modify the port and hostname if
required:

SM_LICENSE=1744@System1

4. Save and close the file.

The modified version of the runcmd_env.sh file is saved to the
BASEDIR/smarts/local/conf directory.

Changing an IP address and its effect on licensing

Changing a system’s IP address does not affect permanent or trial licensing. Permanent
licensing is only affected if the host ID changes; it is not affected by changing the
hostname.

To change the IP address:

58 EMC Smarts Foundation System Administration Guide

License Administration

1. Stop all of the EMC Smarts services.

2. Change the IP address of the system.

3. Reboot and then restart all EMC Smarts services.

The hostname of the system can change but the host ID must remain the same. If the host
ID changes, a new permanent license will be required.

Error occurs when starting additional Domain Managers

The Unable to Obtain License error occurs when you attempt to start a Manager. It occurs
when you exceed the number of licenses listed in your permanent license file.

For example, the following error appears in the Manager’s log file (for example,
BASEDIR/smarts/local/logs/MYDM.log).

RSRV-E-ELICENSE-Unable to obtain license
 LIC-ECHECKOUT-While attempting to check out license for AP_ICSRV
 LIC-EGENERIC-Licensed number of users already reached
 . Feature: AP_ICSRV
 . License path:
 1744@localhost
 . FLEXlm error: -4,132
 . For further information, refer to the FlexNet Publisher License

Administration Guide,
 . available at "www.flexerasoftware.com".

In the permanent license file, look for the line AP_ICSRV. It should look similar to this:

INCREMENT AP_ICSRV sm_lmgrd92 7.0 permanent 3

The 3 means you are only allowed to start three IP Managers such as IP Availability
Managers and IP Performance Managers. “Permanent license file example” on page 37
provides additional information about the INCREMENT line. In order to run more IP
Managers, contact your account manager or go to Service Center on EMC Online Support
(https://support.emc.com) and create a service request to obtain a new license.

License file corrupted when attempting to edit license file

The Unable to Obtain License error occurs as the result of a corrupted license file. For
example, the following error appears in the Manager’s log file (for example,
BASEDIR/smarts/local/logs/MYDM.log):

Error Message : RSRV-E-Unable to obtain license LIC-While attempting
to check out license for AP_ICSRV (version=3.0)

The license file was copied and pasted from an email attachment and then saved to a text
file. This process wrapped the individual lines in an unexpected manner and added
additional line breaks which corrupted the license file.

Use the trial license file or permanent license file from the email attachment sent by EMC.
Never attempt to edit a license file without the assistance of EMC Global Services.

Troubleshooting 59

http://support.emc.com

License Administration

Cannot restart FlexNet Publisher license server after applying a Service Pack

You shut down all running EMC Smarts processes including the FlexNet Publisher License
Manager service before installing a Service Pack and then cannot restart the FlexNet
Publisher License Manager service after the upgrade completes.

This problem likely occurred because the <host_ID>.smarts.lic file incorrectly exists in
BASEDIR/conf and in BASEDIR/local/conf. The Service Pack reconciliation process
assumes that the license file in BASEDIR/conf is to be used so it renames the file in
BASEDIR/local/conf. As a result, the FlexNet Publisher License Manager service cannot be
restarted.

To resolve this issue, rename the file in BASEDIR/local/conf back to <host_ID>.smarts.lic
and start the FlexNet Publisher License Manager Service.

If you have not yet installed a Service Pack, use the sm_getinfo utility as described in
“Using the smgetinfo utility to save modifications” on page 30 to create a backup file and
move the backup file to a temporary directory or archive. Or, you can copy the permanent
license file to a temporary directory. After you apply the Service Pack, you can retrieve the
permanent license file from the backup file and restart the FlexNet Publisher License
Manager service.

•

60 EMC Smarts Foundation System Administration Guide

License Administration

Introduction to Service Assurance Suite (SA Suite) and its
licensing

This section on licensing applies only if you have upgraded from a standalone (non-SA
Suite deployment) to the SA Suite. The new SA Suite licensing does not apply to a
standalone install of any of the Smarts products - the existing product-centric licensing
still applies. The SA Suite is a bundle of products / functionality (Smarts products, EMC
M&R, and NCM) orderable as a single part number / SKU and licensing is consistent
across all products in the SA Suite. Table 6 on page 61 provides information on Standard
and Advanced editions of the SA Suite.

Contact your account representative for more information on the SA suite. There are no
differences in the licensing methodology between Standard and Advanced editions of the
SA Suite. Advanced uses the same device method as Standard. All examples or references
apply to both Standard and Advanced.

In the SA Suite, licensing has moved to the device scalability (number of network adapters
a device has) and the number of network adapters is translated into a Managed Object
(MO) count. A device can consume one (1) or more MO licenses based on the device
scalability. This can be compared to a point-based licensing system.

The SA Suite looks at the number of network adapters that are on a device and the SA
Suite defines a device as having 24 or less network adapters - this equates to one (1) MO.
The state of the network adapters (managed versus unmanaged) is not a consideration in
the SA Suite licensing because in the SA Suite, all functionality is applied to the suite-level
and not at the product level. For example, with NCM as part of the suite, managing the

Table 6 Products - Standard / Advanced

Products Standard/Advanced

Smarts Service Assurance Manager (SAM) Standard / Advanced

Smarts IP Manager (IP) Standard / Advanced

Smarts VoIP Availability Manager (VoIP-AM) Standard / Advanced

Smarts Server Manager (ESM) Standard / Advanced

Smarts Network Protocol Manager (NPM) Standard / Advanced

Smarts Network Configuration Manager (NCM) Standard / Advanced

EMC M&R Standard / Advanced

Smarts Application Connectivity Monitor (ACM) Standard / Advanced

Smarts SAM Adapters Standard / Advanced

Alcatel 5620 SAM Adapters (ASAM) Advanced Only

Smarts Multicast (MCAST) Advanced Only

Smarts MPLS Manager (MPLS) Advanced Only

Introduction to Service Assurance Suite (SA Suite) and its licensing 61

License Administration

configuration of a device is at the device level and not at the network adapters level,
hence the state of the network adapter(s) is not a governing factor in the MO license
determination of a device.

SA Suite defines a device as having 24-ports/interfaces. If a device has more than twenty
four (24) ports/interfaces, it counts each group of 24-ports/interfaces as a device (or MO).
Hence for devices that are greater than 24-ports/interfaces, there is a conversion factor of
the number of ports/interfaces on the device to a MO license count. For example, if a
device has 528-ports/interfaces, the MO count for the device would be 528 / 24 = 22 MO.

For some devices such as Access Points (AP) and VoIP Phones, the calculation of the MO
license count for these devices is a 10:1 conversion, meaning ten (10) APs / VoIP phones
= one (1) MO license count.

All license count conversions (Device:MO) are rounded up in all calculations.

Table 7 on page 62 provides the Device:MO license count conversions used within the SA
Suite:

Table 7 Pricing model based on Managed Devices and Managed Objects

There is no change to the actual license files and the existing licensing technology is used.
This new methodology is used only as a price calculation and auditing tool. It is not
enforced by Smarts and the existing enforcement based on AP-SystemVolume licenses is
still applicable. Further, the new licensing does not apply to Smarts IP. It applies to the SA
Suite.

Switch/router classification and conversion examples

528-port switch / router

◆ If only physical ports are counted

Category License consumption MD:MO ratio Calculation

Network Adapters

• Less than or equal to
24-ports/interfaces

Each device consumes one (1)
license

1:1

• Greater than
24-ports/interfaces

Each group of 24
ports/interfaces consume one
(1) license

1:x Round-up

Servers

Physical or Virtual Each server consumes one (1)
license

1:1

IP Phones Ten (10) IP phones consume one
(1) license

10:1 Round-up

Access Points Ten (10) access points consume
one (1) license

10:1 Round-up

62 EMC Smarts Foundation System Administration Guide

License Administration

• All Virtual Switches as part of virtual compute infrastructure are counted and
charged by hypervisors

• The cost to manage the device is based on the Managed Ports and Interfaces on
the devices in increments of 24.

◆ If the switch is managed:

• Each 24-ports/interfaces equate or convert to one (1) MO

• 1:X conversion in multiple of 24 physical ports/interfaces

• For a 528 port switch, calculation for MO would be:

– Number of Managed Objects = Switch physical ports / 24 (rounded up to the
next whole number)

– Number of Managed Objects = 528/24 = 22 MO

– Managed Devices:Managed Objects = 1:22

SA Suite license count report

This section of licensing applies only if you have upgraded from a standalone (non-SA
Suite deployment) to the SA Suite. The new SA Suite licensing does not apply to a
standalone install of any of the Smarts products - the existing product-centric licensing
still applies.

The SA Suite has been enhanced to include the ability to report the managed devices and
ports, and the corresponding managed objects (MO) count based on the point-based
device counting scheme as discussed above, in a CSV format. This report utility is
available as a script, so that it can be scheduled in your native operating system.

To generate the report:

1. Open the command-line interface (CLI) on the host your Smarts IP domain is installed
and go to the /opt/InCharge/IP/smarts/bin folder.

2. Type the following command:

sm_perl sm_licenseUtilization.pl -b <broker>

For example:

sm_perl sm_licenseUtilization.pl -b localhost:2233

This will create a report in CSV format under the <BASEDIR>/smarts/local/logs/ folder.

Introduction to Service Assurance Suite (SA Suite) and its licensing 63

License Administration

64 EMC Smarts Foundation System Administration Guide

CHAPTER 5
Controlling Startup

This chapter consists of the following sections:

◆ Root access requirement on UNIX and Linux.. 66
◆ Overview of services ... 66
◆ About the sm_service utility .. 67
◆ sm_serviced and ic-serviced ... 67
◆ The sm_service command line .. 69
◆ Installing programs as services with sm_service.. 71
◆ Displaying installed services and their status .. 73
◆ Starting and stopping services with sm_service .. 74
◆ Modifying service parameters with sm_service.. 76
◆ Removing services with sm_service... 76
◆ Default parameters for services ... 77
◆ Running as non root on UNIX and Linux systems ... 81

Controlling Startup 65

Controlling Startup

Root access requirement on UNIX and Linux
Super-user access is required on UNIX and Linux systems for running the following:

◆ sm_server - Domain Manager, handling ICMP packets, SNMP trap receiving on default
port 162

◆ brstart - Broker on default port 426

◆ sm_trapd - SNMP trap receiving on default port 162

A Domain Manager must bind to multiple low numbered (less than 1024) ports for ICMP
traffic. In addition, the default port for starting a Broker (426) and SNMP trap processing
port (162) are also low-numbered ports. Access to low-numbered ports requires root
access on UNIX and Linux systems.

You can also start a Domain Manager with root access and then open additional ports as a
non-root user, if this is required. “Running as non root on UNIX and Linux systems” on
page 81 provides additional information.

Overview of services
EMC Smarts Foundation programs can be installed as services. A service is a program that,
once started, is intended to run continuously. A service is administered by the sm_service
utility. Programs installed as services start automatically upon system reboot; those not
installed as services (manual processes or disabled processes) require that you issue
commands to start and stop them as necessary.

EMC recommends that you install EMC Smarts Foundation programs as services. You are
prompted to make this choice during the software installation. When you choose to install
a program as a service, the installation process automatically sets up the program
accordingly.

The following are examples of programs that should be installed as services:

◆ Broker

◆ Service Assurance Global Manager

◆ Service Assurance Adapter Platform (including the SNMP Trap Adapter and Syslog
Adapter)

◆ IP Availability Manager and IP Performance Manager

Although services start automatically upon system reboot, there will be occasion for you to
manually start (and stop) a program that was installed as a service. “Starting and stopping
services with sm_service” on page 74 describes starting and stopping services.

If you choose not to install a program as a service, the program is installed as a manual
process. If you install a program as a manual process, you can later change it to run as a
service, described in “Installing programs as services with sm_service” on page 71.

66 EMC Smarts Foundation System Administration Guide

Controlling Startup

In addition, you can modify a service’s settings, as described in “Modifying service
parameters with sm_service” on page 76.

The sm_service utility cannot be used with the Failover System. The EMC Smarts Failover
System User Guide provides specific information about starting, stopping, and configuring
the Failover System scripts.

About the sm_service utility
The sm_service is a cross-platform utility that sets up the environment for standard
EMC Smarts Foundation applications (for example, the Broker, Domain Managers, and
adapters), and that installs those applications as services.

Additionally, the sm_service utility can start non-EMC Smarts applications.

The implementation of the sm_service utility on:

◆ UNIX includes two separate programs: sm_serviced, a long-running, system-level
program, and sm_service, a command-line tool that communicates user requests to
sm_serviced.

◆ Windows involves the Windows Service Manager and sm_service, a command-line
tool that communicates user requests to Windows Service Manager. The sm_serviced
program is not applicable for Windows platforms.

The sm_service utility is installed with the software (one per system), and is used from the
BASEDIR/smarts/bin directory. Select the BASEDIR/smarts with the latest version of
software. The utility can only be used to control services on the local machine.

sm_serviced and ic-serviced
UNIX includes two separate programs: sm_serviced, a long-running, system-level
program, and sm_service, a command-line tool that communicates user requests to
sm_serviced.

The sm_serviced, the component of the sm_service utility that manages programs
installed as services (either at installation, or by way of the sm_service command line), is
installed with the software on UNIX systems during the installation process, and
automatically starts its operations.

Thereafter, a script, ic-serviced, can be used to start and stop sm_serviced. The script is
stored in a system-specific location: /etc/init.d on Solaris and Linux. The control of
services can be affected through sm_service. “The sm_service command line” on page 69
provides additional information.

The ic-serviced script includes several variables. Default settings are assigned to the
variables during the installation process. If necessary, the value for the
SM_SERVICE_STARTDIR variable can be edited. The default setting for this variable is / and
specifies the directory into which core files are written. If it is changed, the setting must
point to a directory on a file system with enough free space to hold a core file of the
system’s largest server.

About the sm_service utility 67

Controlling Startup

Contact EMC Global Services for information about editing the remaining variables at the
beginning of the ic-serviced script.

The ic-serviced script enables you to start and stop sm_serviced on UNIX systems and to
check the status of sm_serviced.

If sm_serviced is not already running, issue the following command with administrative
privileges to start it:

/etc/init.d/ic-serviced start

To stop sm_serviced and all of the services managed by it, issue the following command
with administrative privileges:

/etc/init.d/ic-serviced stop

To check that sm_serviced is running and responding, issue the following command with
administrative privileges:

/etc/init.d/ic-serviced status

If you uninstall the first software you installed, the ic-serviced script will be removed from
the system.

68 EMC Smarts Foundation System Administration Guide

Controlling Startup

The sm_service command line
The sm_service command line is the tool through which you communicate user requests
to sm_serviced. The basic syntax for the command line is:

sm_service <action> <options> <arguments>

Standard options

Table 8 on page 69 lists the standard options that can be used with the sm_service utility.

Table 8 Standard options for sm_service (page 1 of 2)

Options Description

--help Print the help text and exit.

--version Print the program version and exit.

--logname=<name> Use <name> to identify sender in the system log.
Default: The program's name.

--loglevel=<level> Minimum system logging level. The level can be: None, Emergency,
Alert, Fatal, Critical, Error, Warning, Notice, Informational, Debug.
Note that Fatal is equivalent to Emergency, Alert, or Critical.
Default: Error.

--errlevel=<level> Minimum error printing level. The level can be: None, Emergency,
Alert, Fatal, Critical, Error, Warning, Notice, Informational, Debug.
Note that Fatal is equivalent to Emergency, Alert, or Critical.
Default: Warning.

--tracelevel=<level> Minimum stack trace level. The level can be: None, Emergency, Alert,
Fatal, Critical, Error, Warning, Notice, Informational, Debug. Note that
Fatal is equivalent to Emergency, Alert, or Critical.
Default: Fatal.

--output[=<file>] Redirect output (stdout and stderr). The filename is <file>, or the
--logname value if <file> is omitted. Log files are always placed in
$SM_LOGFILES or $SM_WRITEABLE/logs.

The sm_service command line 69

Controlling Startup

The following example highlights the use of a standard option:

BASEDIR/smarts/bin/sm_service --help

sm_service actions
Table 9 on page 70 lists the actions that can be performed with the sm_service utility.

The following example highlights an action with several install options:

BASEDIR/smarts/bin/sm_service install --name=ic-broker
--startmode=runonce BASEDIR/smarts/bin/brstart --port=1234

--facility=<facility> Instructs the program to log any syslog messages with the specified
syslog facility (UNIX/Linux only). The default is Daemon.
The <facility> setting can be one of the following:
• Kern
• User
• Mail
• Daemon
• Auth
• Lpr
• News
• Uucp
• Cron
• Local0
• Local1
• Local2
• Local3
• Local4
• Local5
• Local6
• Local7

-- Stop scanning for options.

Table 8 Standard options for sm_service (page 2 of 2)

Options Description

Table 9 sm_service actions

Actions Description

install Installs a program as a service. It can also be used to modify the
parameters of a service.

show Displays the status of the installed services. It can also display the
command lines of specified services so that they can be replicated on
other systems.

start Starts one or more installed services.

stop Stops one or more installed services.

isstopped Exits with a non-zero status if the requested set of services is in a state of
not running.

remove Removes one or more installed services.

70 EMC Smarts Foundation System Administration Guide

Controlling Startup

Installing programs as services with sm_service
If, at installation, you installed a program to run as a service, the service will automatically
start up when your system reboots. If you did not install a program as a service, you can
use sm_service to install it as a service at any time.

The install action enables you to install a program as a service. After you define the name,
description, startmode, and path of the program, sm_service stores the information in an
sm_service database located in the /var/smarts directory (on UNIX). The sm_service then
uses the information to start and run the program as a service. You must have
administrative privileges to enter this command.

The syntax for the sm_service install action is:

sm_service install [<install options>] <name> path/to/exe [<args>...]

In addition to the common install options, such as name, description, and startmode, the
command line must include an absolute path to the program you want to the program that
you want to install as a service. Arguments that apply to the program, that you are
installing as a service, can follow the path.

For example:

UNIX

BASEDIR/smarts/bin/sm_service install --name=ic-broker
--startmode=runonce BASEDIR/smarts/bin/brstart --port=1234

Windows

BASEDIR\smarts\bin\sm_service install --name=ic-broker
--startmode=runonce BASEDIR\smarts\bin\brstart --port=1234

Install options

Table 10 on page 71 lists the install options that can be used with the sm_service utility.

Table 10 Install options for sm_service (page 1 of 2)

Options Description

--force Overwrite an existing service with the same name. The option is
used to update or modify the parameters of an existing service.

"--description=<DESC>" A short description of the service. Enclose the option with double
quotation marks.
On Windows platforms, the description will appear in the first
column of the Service Control Manager window (the "Descriptive
Name").

Installing programs as services with sm_service 71

Controlling Startup

Examples of the sm_service install action

The following provides examples of sm_service install action command lines.

UNIX

BASEDIR/smarts/bin/sm_service install --name=ic-broker
--startmode=runonce BASEDIR/smarts/bin/brstart --port=1234

BASEDIR/smarts/bin/sm_service install --name=trapadapter
--startmode=runonce --env=SM_BROKER=localhost:1234

BASEDIR/smarts/bin/sm_trapd

Windows

BASEDIR\smarts\bin\sm_service install --name=ic-broker
--startmode=runonce BASEDIR\smarts\bin\brstart --port=1234

BASEDIR\smarts\bin\sm_service install --name=trapadapter
--startmode=runonce --env=SM_BROKER=localhost:1234

BASEDIR\smarts\bin\sm_trapd

--startmode=<mode> The service start policy. Where <mode> is one of the following:
• runonce (start automatically when sm_serviced starts)
• automatic (starts automatically when sm_serviced does not

detect that it is running)
• manual (requires an explicit start request)
• disable (cannot be started).
Default: runonce

--env=<NAME>=<VALUE> A <NAME>=<VALUE> pair which will be placed in the process
environment of the launched service. As many --env pairs as
necessary can be specified. <VALUE> may contain one or more
values, separated by commas.
The syntax <NAME>= (with no specified value) has the effect of
unsetting <NAME> in the environment of the launched program.
The --env arguments are applied left to right as they appear on the
command line, and this ordering is preserved in the database.

Table 10 Install options for sm_service (page 2 of 2)

Options Description

72 EMC Smarts Foundation System Administration Guide

Controlling Startup

Displaying installed services and their status
On UNIX systems, the sm_service show action displays previously installed services and
their status.

On Windows, the sm_service show action displays the parameters of a service. To display
the status of a service on Windows systems, you need to access the Control Panel:
Settings > Control Panel > Administrative Tools > Services.

The syntax for the action is as follows. You must enter this command with administrative
privileges:

sm_service show <name> [<name> ...]

The show action has one option:

--cmdline

When the action is used with its --cmdline option, it displays the sm_service command
line that installed the program as a service. The command line can be reproduced and
used for installing the requested service(s) on another system.

In the absence of the --cmdline option, the show action displays the status of the named
service (or all services, when <name> is not given), including:

◆ Whether the service is running

◆ The name of the service

◆ A brief description of the service

Examples of the sm_service show action

The following provides an example of the sm_service show action.

For the status of a service, enter the following with administrative privileges:

BASEDIR/smarts/bin/sm_service show ic-broker

Output:

RUNNING ic-broker

For the command line of a service, enter the following with administrative privileges:

BASEDIR/smarts/bin/sm_service show --cmdline ic-broker

Output:

BASEDIR/smarts/bin/sm_service install
--force
--name=ic-broker
--description=”EMC Broker”
--env=SM_CLIENTCONNECT=brokerConnect.conf
--startmode=runonce
BASEDIR/smarts/bin/brstart
--port=426
--restore=BASEDIR/smarts/local/repos/broker/broker.rps
--output

Displaying installed services and their status 73

Controlling Startup

Starting and stopping services with sm_service
The sm_service utility can be used to start and stop programs when necessary. However,
the programs, which can be either manual processes or services, must be installed with
sm_service before you can use this action.

To start a program, enter the following command with administrative privileges from the
<BASEDIR>/smarts/bin directory:

sm_service start [options]

To stop a program, enter the following command with administrative privileges from the
<BASEDIR>/smarts/bin directory:

sm_service stop [options]

Start options

Table 11 on page 74 lists the options for the start action.

Stop options

Table 12 on page 74 lists the options for the stop action.

Examples of the sm_service start and stop actions

The following provides examples of the sm_service start and stop actions.

For the start action, enter the following command with administrative privileges:

BASEDIR/smarts/bin/sm_service start ic-broker

For the stop action, enter the following command with administrative privileges:

BASEDIR/smarts/bin/sm_service stop ic-broker

Table 11 Start options for sm_service

Options Description

<name> [<name>...] Start specified processes.

--all Start all automatic or runonce services that are not running. (UNIX
only).

--pattern= Start all processes with absolute paths that match the wildcard
pattern.

Table 12 Stop options for sm_service

Options Description

<name> [<name>...] Stop specified processes.

--all Attempt to stop all running services (UNIX only).

--pattern= Stop all processes with absolute paths that match the wildcard
pattern.

--force Do not consider it an error if the service is not running.

74 EMC Smarts Foundation System Administration Guide

Controlling Startup

Checking whether services are stopped

The isstopped action for sm_service exits with a non-zero status if any of the requested
set of services are not running.

Table 13 on page 75 lists the options for the isstopped action.

Examples of the sm_service isstopped action

The following provides examples of the sm_service isstopped actions on UNIX. These
examples also show the use of wildcards.

The isstopped action verifies whether all of the services started from the BASEDIR/smarts
directory are stopped:

sm_service isstopped --pattern ‘BASEDIR/smarts/*’

This example checks if all Managers are stopped:

sm_service isstopped --pattern ‘*sm_server*’

Starting and stopping services from the Windows desktop

Programs that are installed as services can also be started and/or stopped from the
Windows desktop.

To start a service from the Windows desktop:

1. Select Start > Settings > Control Panel > Administrative Tools.

2. Select Services.

3. Select the EMC Smarts service.

4. Select Start.

To stop a service, select Stop instead of Start.

Table 13 isstopped options for sm_service

Options Description

<name> [<name>...] Return status for specified processes.

--all Return the status of all processes.

--pattern= Return the status of all processes with absolute paths that match the
wildcard pattern.

Starting and stopping services with sm_service 75

Controlling Startup

Modifying service parameters with sm_service
The parameters for a service can be modified with the sm_service install action. “Installing
programs as services with sm_service” on page 71 provides additional information. The
--force option, which overwrites the existing parameters, must be used with the install
action when you modify a service.

The syntax for the sm_service install action (to modify service parameters) is:

sm_service install --force

You must enter this command with administrative privileges.

To modify service parameters:

1. Stop the existing service with the sm_service stop action.

2. Use the sm_service show action with the --cmdline option to display the command
line that was used to install the existing service.

3. Use the sm_service install action with the --force option, copy the displayed command
line from step 2 after the --force option, and modify the parameters that need to be
changed.

4. Start the modified service.

Removing services with sm_service
One or more existing services can be removed from the system, when necessary, with the
sm_service remove action.

The syntax for the sm_service remove action is:

sm_service remove <name> [<name>...]

You must have administrative privileges to enter this command.

Example of the sm_service remove action

The following provides an example of the sm_service remove action.

BASEDIR/smarts/bin/sm_service remove trapadapter

You must have administrative privileges to enter this command.

76 EMC Smarts Foundation System Administration Guide

Controlling Startup

Default parameters for services
During installation, EMC Smarts Foundation products can be installed as services. When
installed as services, default values are specified for the parameters that are associated
with the services.

This section lists the default parameters associated with EMC Smarts Foundation
products, and briefly describes them. The installation guide that accompanied your
product provides examples of using the sm_service install command.

If you need to modify the default parameters of a currently installed service, use the steps
found in “Modifying service parameters with sm_service” on page 76.

Common sm_server options

Several sm_server options are common to all Managers that are installed as services (the
IP Availability Manager, for example, and the Service Assurance Manager). Table 14 on
page 77 lists these sm_server options.

Exceptions to these parameters are noted and described with the default parameters for
the individual products.

Table 14 Common sm_server options (page 1 of 2)

Options Description

--name=<name> Specifies the name of the Manager (Manager or Global Manager).
The name can contain alphanumeric characters (a-z, A-Z, 0-9)
and the underscore (_) character. Do not include spaces.

--config=<cfg> Specifies the sm_server configuration file to use. Configuration
files are loaded from the directories
BASEDIR/smarts/local/conf/<cfg> and
BASEDIR/smarts/conf/<cfg>.

--port=<port> Specifies the alternate Manager port.

--bootstrap=<file> Specifies the alternate bootstrap configuration file. The file name
is relative to the configuration directory (as set by the --config
option). The default is bootstrap.conf.

--ignore-restore-errors Indicates ignore errors encountered while restoring the saved
topology.

--norestore Indicates do not attempt to restore any saved objects.

--subscribe=<sub> Start a subscription adapter that automatically subscribes to the
specified notifications.

--broker=<location> Specifies the alternate Broker location as host:port. Also -b
<location>.

--output[=<file>] Redirects the output (stdout and stderr). The file name is <file>, or
the --logname value if <file> is omitted. Log files are always placed
in BASEDIR/smarts/local/logs.

--daemon Run the program as a daemon (UNIX only). Messages generated
from internal logging calls are directed to the log file. Log files are
written to the BASEDIR/smarts/local/logs directory.

Default parameters for services 77

Controlling Startup

To display a complete list of the sm_server options on your system, enter the following
command with administrative privileges:

BASEDIR/smarts/bin/sm_server --help

--facility=<facility> Instructs the program to log any syslog messages with the
specified syslog facility (UNIX/Linux only). The default is
Daemon.
The <facility> setting can be one of the following:
• Kern
• User
• Mail
• Daemon
• Auth
• Lpr
• News
• Uucp
• Cron
• Local0
• Local1
• Local2
• Local3
• Local4
• Local5
• Local6
• Local7

--clean-topology Migrates the customized Polling and Threshold settings from a
previous version of an EMC Smarts product to a new version of
the product.
Here is an example command:
sm_server -n <name of old domain> -c icf --clean-topology

--ignore-restore-errors --output --daemon
After the old domain’s repository file is “cleaned,” that is, after
all but the customized Polling and Thresholds settings have been
removed from the old domain’s repository file, a user places the
repository file in the new domain’s
BASEDIR/smarts/local/repos/<config> directory, to become the
new domain’s initial repository file.
<config> refers to the configuration directory that is specified on
the command line when the old domain is started.

Table 14 Common sm_server options (page 2 of 2)

Options Description

78 EMC Smarts Foundation System Administration Guide

Controlling Startup

Common sm_adapter options

Several sm_adapter parameters are common to all adapters that are installed as services
(the Syslog Adapter, for example, and the SNMP Trap Adapter). Table 15 on page 79 lists
these sm_adapter parameters or options.

Exceptions to these parameters are noted and described with the default parameters for
the individual products.

To display a complete list of the sm_adapter options on your system, enter the following
command with administrative privileges:

BASEDIR/smarts/bin/sm_adapter --help

Table 15 Common sm_adapter options

Options Description

--name=<name> Specifies the name of the adapter.

--model=<name> Specifies the name of model library to load.

--tail=<path> Specifies read input by tailing a file.

--rserver=<name> Specifies auto-reconnect parser to Manager.

--server=<name> Specifies connect parser to Manager.

--broker=<location> Specifies the alternate Broker location as host:port. Also -b
<location>.

--output=<file> Directs the output (stdout and stderr). The file name is <file>, or the
--logname value if <file> is omitted. Log files are always placed in
BASEDIR/smarts/local/logs.

--daemon Run the program as a daemon (UNIX only). Messages generated from
internal logging calls are directed to the log file. Log files are written
to the BASEDIR/smarts/local/logs directory.

--facility=<facility> Instructs the program to log any syslog messages with the specified
syslog facility (UNIX/Linux only). The default is Daemon.
The <facility> setting can be one of the following:
• Kern
• User
• Mail
• Daemon
• Auth
• Lpr
• News
• Uucp
• Cron
• Local0
• Local1
• Local2
• Local3
• Local4
• Local5
• Local6
• Local7

Default parameters for services 79

Controlling Startup

Common sm_sdi options

Several sm_sdi options are common to the components of the SQL Data Interface Adapter
that are installed as services. Table 16 on page 80 lists these sm_sdi options.

Exceptions to these parameters are noted and described with the default parameters for
the individual products.

To display a complete list of the sm_sdi options on your system, enter the following
command with administrative privileges:

BASEDIR/smarts/bin/sm_sdi --help

Table 16 Common sm_sdi options

Options Description

--broker=<location> The alternate Broker location as host:port. Also -b <location>.

--name=<name> The name of the SQL Data Interface Adapter component. Also -n
<name>.

--config=<cfg> Specifies the directory of the sm_sdi configuration files:
sdi_ics.conf, sdi_sql.conf and sdi_odbc.conf. Configuration files are
loaded from the directories BASEDIR/smarts/local/conf/<cfg> and
BASEDIR/smarts/conf/<cfg>.

--bootstrap=<file> Specifies the alternate bootstrap configuration file. The filename is
relative to the configuration directory (as set by the --config option).
The default is bootstrap.conf.

--nonpriv Allow sm_sdi to run under a nonprivileged user ID. This option must
be specified in order for a nonprivileged user to start sm_sdi.

80 EMC Smarts Foundation System Administration Guide

Controlling Startup

Running as non root on UNIX and Linux systems
Table 17 on page 81 describes two options that are used in conjunction with each other to
run as non root. These two options are only available on UNIX and Linux systems. These
options are available for the sm_server, brstart, and sm_adapter commands.

The --privopen and --run-as-user options are used in conjunction to run a Domain
Manager with non root privileges. The Domain Manager can startup as root, open
privileged ports, and change to a non root user.

You can open multiple ports by repeating the <arg> parameter. Each instance is separated
by a comma (,). For example:

--privopen=UDP:v4:161,#2
--privopen=IP:1,#6
--privopen=IP:v6:58,#6
--run-as-user=testuser1

Table 17 Additional options for running as non root on UNIX and Linux systems

Options Description

--privopen=<arg>[,<arg>]
Note: This option is only used in conjunction with the --run-as-user
option to run as non root.

Opens privileged sockets. The <arg> parameter has the following
syntax:
<type>[:<family>]:<port>[,#<count>]
where:
• <type> is one of the following:

• TCP (for a TCP connection)
• UDP (for a datagram)
• IP (for a raw socket)

• <family> is one of the following:
• :v4 (IPv4 address family)
• :v6 (IPv6 address family)
If <family> is not specified, the address family defaults to IPv4.

• <port> is one of the following:
• The required privileged port for a TCP socket
• The required privileged port for a UDP socket
• The protocol for IP

• <count> is the number of sockets of the type, family and port. The
default count is 1.

--run-as-user=<username>
Note: This option is only used in conjunction with the --privopen
option to run as non root.

Specifies a valid user name.

Running as non root on UNIX and Linux systems 81

Controlling Startup

In this example:

◆ The first privopen line opens two UDP IPv4 sockets on port 161.
◆ The second privopen line opens six raw IPv4 sockets for ICMP.
◆ The third privopen line opens six raw IPv6 sockets for ICMPv6.

After the sockets are opened, the process will change to run as user, “testuser1.”

82 EMC Smarts Foundation System Administration Guide

CHAPTER 6
Securing Access to the Software

This chapter consists of the following sections:

◆ Security features ... 84
◆ How security works ... 85
◆ Configuring authentication.. 88
◆ Controlling authentication... 100
◆ Changing Cryptographic Settings .. 101
◆ Encryption .. 101
◆ Encrypted passwords .. 104
◆ Encrypted seed files.. 106
◆ Encrypted connections.. 106
◆ Replacing or importing TLS certificates .. 110
◆ Configuring a secure Broker .. 110
◆ Additional safeguards ... 112
◆ Example security configurations.. 113
◆ Changing Cryptographic Settings .. 101
◆ Encryption .. 101
◆ Encrypted passwords .. 104
◆ Encrypted seed files.. 106
◆ Encrypted connections.. 106
◆ Replacing or importing TLS certificates .. 110
◆ Configuring a secure Broker .. 110
◆ Additional safeguards ... 112
◆ Example security configurations.. 113

Configuring security requires time and effort. Before configuring security, carefully
consider your requirements along with the trade-offs between system security, time
allocated for system administration, and usability.

Securing Access to the Software 83

Securing Access to the Software

Security features
EMC Smarts software provides multiple levels of security which administrators can use to
secure their system and control access to it. The various levels of security can be
implemented through:

◆ Authentication and user privileges

Client-server connections can be controlled on both the client and server sides of the
system. The system is secured by using authentication records and by assigning
connection privileges on the server side. When a client initiates a connection to a
server, the client must supply appropriate authentication to the server before the
connection (as defined by the connection privileges) is permitted. “Configuring
authentication” on page 88 provides detailed information.

◆ Encrypted passwords

Passwords can be encrypted in the serverConnect.conf, clientConnect.conf, and
brokerConnect.conf files, which are located in the BASEDIR/smarts/conf directory of
each EMC Smarts software installation. Encryption is based on a secret phrase,
common to all of the EMC Smarts applications that must interact, and is used to
encrypt password fields in the authentication records. “Encrypted passwords” on
page 104 provides detailed information.

Passwords can also be encrypted in seed files. “Encrypted seed files” on page 106
provides detailed information.

◆ Encrypted connections

The software provides several levels of security above cleartext communication:

• Encryption based on the site secret

• Diffie Helman-Advanced Encryption Standard (DH-AES)

• DH-AES used in conjunction with the site secret

• Transport Layer Security (TLS) v1.2 with or without Federal Information Processing
Standard (FIPS) Publication 140-2 validated cryptography.

The levels of security are configured by way of values for environment variables.
“Encrypted connections” on page 106 provides detailed information.

The security features are enabled with default settings when you install the software. The
default security settings are thoroughly documented and permit access to the system. As
a result, you should change the default usernames, passwords, and the secret phrase to
enforce access control to the software. In addition, you should restrict access to the
security configuration files, as described in “Specifying alternate security configuration
files” on page 98.

An administrator can also place access restrictions on certain console operations by
applying user profiles. This ability to restrict users to certain operations is described in the
EMC Smarts Service Assurance Manager Configuration Guide.

84 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

How security works
EMC Smarts security features apply to authentication and communication connections.

Authentication occurs whenever a client program initiates a connection to a server
program. The client passes a username and a password to the server. The server
determines whether the client is allowed to connect and, if the connection is allowed,
what privileges the client is granted.

Secure communication connections are implemented:

◆ Encryption based on the site secret

◆ Diffie Helman-Advanced Encryption Standard (DH-AES)

◆ DH-AES used in conjunction with the site secret

◆ Transport Layer Security (TLS) v1.2 with or without Federal Information Processing
Standard (FIPS) Publication 140-2 validated cryptography.

In Foundation 9.2, a FIPS 140 enabled Broker is able to communicate with FIPS 140
enabled Domain Managers as well as non FIPS 140 enabled Domain Managers. In
addition, a FIPS 140 enabled Domain Manager is able to communicate with FIPS 140
enabled Domain Managers as well as non FIPS 140 enabled Domain Managers.

To properly configure the security system, you must understand how the security system
works. The answers to the following questions will help:

◆ Which programs are servers and which are clients?

◆ How does a server authenticate a client?

◆ How does a client obtain a username and password to pass on to a server?

◆ How does encryption apply to authentication as well as communication connections?

For the UNIX account that is used to run EMC Smarts processes, if the system
administrator sets explicit permissions for the file mode creation mask (the umask) for a
parent process, EMC Smarts software respects those permissions. For processes started
by the sm_serviced program that is described in “sm_serviced and ic-serviced” on
page 67, the umask permission is inherited.

Server and client programs for the software

Knowing which EMC Smarts programs function as servers and which function as clients
can help you understand how to configure security. Simply stated, a client is any
EMC Smarts program that initiates a connection to another EMC Smarts program.
Programs can act both as a client and as a server.

How security works 85

Securing Access to the Software

Table 18 on page 86 lists some server and client programs and shows how they can
interact.

Table 18 EMC Smarts server and client programs

Server programs Client programs

Broker Service Assurance Failover System

Command-line utilities such as dmctl and
brcontrol

Global Console users

Global Manager

Notification Adapters

Service Assurance Adapter Platform

Tools

Report Manager

Beacon

Application Connectivity Monitor

Global Manager Service Assurance Failover System

Broker

Command-line utilities (dmctl)

Global Console users

Notification Adapters

Tools

Global Manager

Report Manager

Service Assurance Adapter Platform Broker

Command-line utilities (dmctl)

Global Manager

sm_ems

SNMP Trap Adapter

Syslog Adapter

IP Availability Manager Global Console

IP Performance Manager Global Console

Beacon Global Console

Application Connectivity Monitor Global Console

86 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

The Broker functions as both a server and a client. In addition, when Service Assurance
Managers are deployed in a multi-tiered environment, a Service Assurance Manager may
also function as both a server and a client.

The server and client programs that are listed in Table 18 on page 86 can be installed on
the same host. For example, it is common for the Broker and a Service Assurance Manager
to run on the same host.

Server authentication

When a client program initiates a connection to a server, it must provide an EMC Smarts
username and password. A server authenticates a connection request by comparing the
EMC Smarts username and password it receives from a client to the authentication
records in its configuration file, serverConnect.conf. The server uses the first
authentication record that matches the information sent by the client.

The authentication records are reread for each attempted connection so any changes to
the file will take effect immediately.

The Global Console always displays a log-on dialog box where a user must enter a
username and password. Other username and password or be configured to automatically
send the username and password.

For example, when a Global Console connects to a Service Assurance Manager, it sends a
username and password to the Service Assurance Manager. The Service Assurance
Manager compares the credentials to the authentication record listed in its
serverConnect.conf file. If the first matching record allows the connection, the Service
Assurance Manager accepts the connection and grants the user the privileges that are
specified by the authentication record. If the username and password do not match an
authentication record, the connection is refused.

Client authentication

Other than the Global Console, most Most clients, by default, automatically send
authentication information to the server. This information is stored in a clientConnect.conf
file. A client that uses automatic authentication reads the records in the order that they
appear, selecting the first record whose login username matches the user that runs the
client and whose target matches the name of the server that is being connected to. Once it
finds a match, the client sends the username and password to the target server as
authentication credentials. If the authentication succeeds, the server tells the client its
access privilege. If the authentication fails, the server refuses the connection and the
failure is recorded in the server’s log file.

Client authentication files are reread for each attempted connection. As such, you can edit
the configuration files at any time and the changes take effect immediately.

The Broker uses its own client connection file, brokerConnect.conf.

How security works 87

Securing Access to the Software

For example, when a Domain Manager (such as an EMC Smarts IP Availability Manager)
registers with a Broker, the Domain Manager sends a username and password from its
clientConnect.conf to the Broker. The Broker checks the username and password against
the records in its serverConnect.conf. Based on the results, it will grant or deny a
connection.

However, when the Broker checks whether a registered Domain Manager is alive (by
pinging the manager), the Broker must authenticate with that Domain Manager. To do this,
it finds a username and password in its brokerConnect.conf file to send to the Domain
Manager. The Domain Manager checks for the username and password in its
serverConnect.conf and either grants or denies the right for the Broker to ping it.

Encryption

By default, non-FIPS 140 mode encryption is enabled during the installation process. All
EMC Smarts products and applications that interact with each other must share a common
secret phrase, and the same FIPS 140 mode. The security configuration files and files with
passwords to SNMPv3 devices all contain encrypted information.

The basis for encryption is a secret phrase that gets transformed into the imk.dat file. This
file is the basis of encryption for EMC Smarts programs. The programs use the site secret
to encrypt passwords in the configuration files and keywords in seed files, as well as to
encrypt connections between programs.

Configuring authentication
This section describes the components of authentication. It covers the content and syntax
of the security files, the default authentication records provided in each file, and how to
specify alternate security configuration files.

Syntax of the security files

This section describes the syntax of the serverConnect.conf, clientConnect.conf, and
brokerConnect.conf files.

Each file consists of one or more authentication records, each of which contains four
fields. Note the following:

◆ A line that starts with two forward slashes (//) or a pound sign (#) is considered a
comment and ignored.

◆ The fields of each authentication record are separated by colons (:).

◆ Any white space before, after, or between fields, is ignored. If the field value contains
a space, you need to add an escape character, the backslash (\), before the space.
When a backslash is encountered, the following character loses any special
significance and is used as is.

The first line of each of the configuration files contains encryption information. Do not
change this line unless you want to disable encryption. To comment out the line, add a
second pound sign.

88 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

The clientConnect.conf, brokerConnect.conf, and serverConnect.conf are read from top to
bottom. For example, when a client selects a record for automatic authentication, it uses
the first record with a matching target and username. If that username is denied a
connection by the server, the client does not try again. The ordering of authentication
records is important because you can use wildcards for certain fields. In general, more
specific authentication records should be listed first. Appendix B, “Wildcards,” provides
additional information about wildcards.

Server authentication records

Server authentication involves setting up authentication records in the
serverConnect.conf file. Each record contains information to control access to a particular
server, a username and password, and a connection privilege. To modify this file, use the
sm_edit utility as described in “Modifying EMC Smarts files” on page 20.

Always use sm_edit utility to edit the serverConnect.conf. This is particularly important if
the passwords are encrypted. When you use the sm_edit utility to edit the file, it saves
changes to the file in BASEDIR/smarts/local/conf and encrypts the passwords; it does not
modify the default, non-encrypted version of the file.

Description of serverConnect.conf
The serverConnect.conf file defines who can connect to which server and what privileges
they are granted. By default, separate versions of the file reside in the
BASEDIR/smarts/conf and the BASEDIR/smarts/local/conf directories on the system
where the server is running. The first version does not contain encrypted passwords, so
the default values are accessible by anyone who can read the file. The version in
BASEDIR/smarts/local/conf contains encrypted passwords.

The format of a record in serverConnect.conf is:

<target>:<ITOps username>:<password>:<privilege>

Configuring authentication 89

Securing Access to the Software

Table 19 on page 90 describes the four fields of an authentication record in the
serverConnect.conf file.

Remember that during the authentication process the server receives a connection target,
EMC Smarts username, and password from a client. The server checks each of its records
looking for a match. When it finds the first match, it sends the appropriate privilege back
to the client. Otherwise, the server logs the failed authentication.

Table 19 Field descriptions for serverConnect.conf

Field Definition Value

<target> Name of the server for which
this connection is intended.
A server will only read this
line if its name matches the
value of the target field.

Can be a matching pattern with wildcards or
one of the following special values:
• <BROKER> indicates that this record applies

only to the Broker.
• ~<BROKER> indicates this record applies to

all servers except the Broker.

<EMC Smarts
username>

Username for the client
requesting a connection.

Can be a matching pattern with wildcards or
the following special value:
• <DEFAULT> is provided for legacy clients that

cannot send a username.
• <AUTO> is provided for site-specific

credentials.

<password> Password for the user
requesting a connection.

Can be a password or one of the following
special values:
• <SYS> indicates that the username must be

a valid login name on the local system. The
server passes the credentials to the host
operating system for validation.

• <DEFAULT> is provided for legacy clients that
cannot send a password.

• <AUTO> is provided for site-specific
credentials.

<privilege> Access privileges of the
client.

Valid values include:
• All
• Monitor
• None
• Ping

90 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

Connection privileges
Connection privileges are specified in the serverConnect.conf file, and authentication
features provide for four levels of privileges:

◆ All provides full access to all server functions. It is required for all adapter-to-server
and server-to-server connections and by all command line utilities, with a few
exceptions. This level of authorization is also required by administrative consoles.
However, this level of access can be further restricted through user profiles. The EMC
Smarts Service Assurance Manager Configuration Guide provides additional
information about using user profiles to restrict access to console operations.

◆ Monitor access supports a monitoring console. A monitoring console cannot change
server database or configuration parameters except in special circumstances such as
acknowledgement of notifications. Only consoles support Monitor access. If you run a
secure Broker, the Broker must also support ping
(<BROKER>:BrokerNonsecure:Nonsecure:ping).

◆ None prevents access to the server. This privilege can be used to explicitly prevent a
user from accessing the server.

◆ Ping is a special access privilege that allows connections to a server, but only to ping
the server and check whether it is functioning. A Broker requires Ping access to check
the status of servers and is sufficient to allow the dmctl command line utility to
connect to a server and execute the ping command.

Client authentication records

Most clients connect to servers without requiring a user to enter a username or password.
When this happens, a client parses a configuration file for a username and password to
send to the server for authentication instead of prompting a user. Most clients use the
clientConnect.conf. The Broker uses its own file, brokerConnect.conf.

The Broker only uses brokerConnect.conf to send authentication to other processes so
that it can ping them.

Description of clientConnect.conf and brokerConnect.conf
By default, these files are located in the BASEDIR/smarts/conf directory. The sm_edit
utility saves changes to the file in BASEDIR/smarts/local/conf and does not modify the
original version of the file.

The format of a record in the clientConnect.conf or brokerConnect.conf is:

<login user>:<target>:<ITOps username>:<password>

Table 20 on page 92 describes the four fields of an authentication record in the
clientConnect.conf and brokerConnect.conf files.

Configuring authentication 91

Securing Access to the Software

It is important to remember that an EMC Smarts program runs under the login name of the
user who started it. This has several implications:

◆ A user account must provide sufficient privileges for the program to function properly.
For example, a Manager may need to run with root privileges because it sends ICMP
pings or receives SNMP traps.

◆ A Domain Manager is as a Broker, and the Broker is listening on port 426. Port 426 is a
privileged port, meaning the process must be running as root to open the port. Ports
numbered below 1024 require root privileges.

A process, without being root, can connect to a process listening on a port below
1024.

◆ A user’s system login name must correspond to an EMC Smarts username in the
clientConnect.conf file or an EMC Smarts username and password will not be sent to a
server for authentication. In the clientConnect.conf record, a user’s login name and
EMC Smarts username do not have to be identical.

Table 20 Fields for clientConnect.conf and brokerConnect.conf

Field Definition Value

<login user> System login name of the
person or process
attempting a connection.

Can be a matching pattern with wildcards.

<target > Name of the server to
which the client is trying to
connect.

Can be a matching pattern with wildcards or
one of the following special values:
• <BROKER> indicates that this record

applies only to the Broker.
• ~<BROKER> indicates this record applies

to all servers except the Broker.

<EMC Smarts
username>

Username that is sent to
server for authentication.

Can be a username or one of the following
special values:
• <USERNAME> indicates that the username

under which the current process is logged
in as is sent as the EMC Smarts username.

• <PROMPT> indicates that the client
program asks the user to provide an
EMC Smarts username.

• <AUTO> is provided for site-specific
credentials.

• <DEFAULT> mimics legacy client
authentication.

<password> Password that is sent to
the server for
authentication.

Can be a password or one of the following
special values:
• <PROMPT> indicates that the client

program asks the user to provide a
password.

• <AUTO> is provided for site-specific
credentials.

• <DEFAULT> mimics legacy client
authentication.

92 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

Running without root privileges
All Domain Managers do not need to send ICMP pings or receive SNMP traps and,
therefore, do not need to run with root privileges.

◆ Start a Broker on a port that is not privileged. The software registers the following non
privileged ports:

• Broker is port 426

• Domain Manager is port 4426

The Broker could be started on port 4426 if a well-known port is required.

◆ Domain Managers can startup as root, open privileged ports, and then change to a
non root user, as described in “Running as non root on UNIX and Linux systems” on
page 81.

Special authentication values

Special authentication describes the configuration of the serverConnect.conf,
clientConnect.conf and brokerConnect.conf by using the special values <SYS>, <PROMPT>,
<AUTO>, and <DEFAULT>. These values control system, site-specific and legacy
authentication.

System authentication
System authentication uses the operating system username and password to
authenticate clients. This method is configured in serverConnect.conf. By using this
method, you give every console operator an account on the host on which the server runs.
The operators log in by using the username and password defined for that account. (The
account can be disabled to prevent actual interactive access to the system.) By using this
method:

◆ Each console operator has a unique username and password.

◆ Accesses to the system can be traced to a particular user.

◆ Access can be individually revoked.

The use of <SYS> for the password allows the use of common password administration
across applications and avoids having the password appear in cleartext in the file in
unencrypted installations.

This mechanism can readily be extended to provide similar controlled access for
administrators. For example, you could add the following records to serverConnect.conf:

* : fred|george : <SYS> : All
* : * : <SYS> : Monitor

This example would grant the users “fred” and “george” All access, once they provide the
passwords for their accounts on the host. Other users providing the correct password are
granted Monitor access.

Configuring authentication 93

Securing Access to the Software

You could even define a class of administrative users, for example, with usernames that
start with ADM and provide all other users with Monitor access.

* : ADM* : <SYS> : All
* : * : <SYS> : Monitor

Console applications automatically prompt for a username and password and do not use
clientConnect.conf. In console applications, passwords display as masked characters (*)
to avoid displaying the passwords in cleartext. In order for nonconsole applications to
prompt, the value <PROMPT> must be used for the EMC Smarts username and password in
clientConnect.conf.

Network account authentication
In UNIX systems, the system authenticates a username based on its password. In
Windows, a response to the prompt will be checked against the local domain. If the
system must check with any other Windows Domain Manager, the format of the username
must include the correct Windows domain as well as the username:

user_name@domain_name

Prompting for authentication
In order for nonconsole applications to prompt for a username and password, the
corresponding fields in clientConnect.conf must contain <PROMPT>. The client must be
attached to a terminal, in order for the system to prompt the user. Lines containing a
<PROMPT> are skipped by programs that are not attached to a terminal, even if they would
otherwise be selected.

Responses to <PROMPT> are checked against username and password fields in
serverConnect.conf.

Site-specific authentication
Site-specific authentication uses a site’s secret to authenticate connections. When
corresponding records in serverConnect.conf and clientConnect.conf contain the <AUTO>
value for both the EMC Smarts username and password, the client generates a password
by using its secret. The server validates the password to accept or reject the connection.

Do not use this method unless you have changed the default site secret. The default site
secret is known to all EMC Smarts installations.

So for connections to a particular Domain Manager (such as Service Assurance Manager),
you could define a record in serverConnect.conf:

GM-Company-1:<AUTO>:<AUTO>:All

Then define a corresponding record in the clientConnect.conf files on the different hosts
connecting to the server:

*:GM-Company-1:<AUTO>:<AUTO>

94 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

As long as both the client and server use the same secret phrase, the server will
authenticate each connection to the Domain Manager.

Do not use <AUTO> for the brokerConnect.conf if it is used for other connections, because
the Broker does not need All access, only Ping.

Legacy system authentication
To provide the ability to interoperate with older software, which may not support
authentication, EMC Smarts software provides a “default account” mechanism. When an
incoming connection does not provide any authentication information, a server
substitutes the standard username and password with <DEFAULT>. After that substitution,
the <DEFAULT>/<DEFAULT> authentication information is validated in exactly the same way
any other username/password combination is validated.

An incoming connection that explicitly specifies <DEFAULT>/<DEFAULT> is permitted. It is
treated in exactly the same way as a connection that supplied no authentication
information.

Default authentication records

This section describes the authentication records enabled by default. These default
settings provide examples of user records in serverConnect.conf as well as examples of
how automatic authentication can be set up in clientConnect.conf and
brokerConnect.conf.

Authenticating legacy software
The Broker uses the following record in serverConnect.conf to authenticate legacy client
connections and provide full access. The target field, with a value of <BROKER>, identifies
that the Broker is the sole target for authentication. There are no corresponding entries in
the clientConnect.conf or brokerConnect.conf. “Legacy system authentication” on page 95
provides additional information on the <DEFAULT> value.

<BROKER> : <DEFAULT> : <DEFAULT> : All

In this configuration, the Global Console will not prompt for a username and password
when connecting to the Broker. The default configuration defines a nonsecure Broker,
equivalent in security to EMC Smarts software prior to version 5.0.

Automating client authentication to the Broker
EMC Smarts programs connect to the Broker under the following conditions:

◆ When a server starts, it connects to the Broker as a client to register itself.

◆ When a client, including a console, needs to connect to a server, it connects to the
Broker to query it for the server's location.

Configuring authentication 95

Securing Access to the Software

The record in serverConnect.conf specifies that the Broker should grant any client that
sends the EMC Smarts username BrokerNonsecure and the password Nonsecure full
access to the Broker.

<BROKER> : BrokerNonsecure : Nonsecure : All

The automatic authentication record in clientConnect.conf applies to any client that
supports authentication and needs to connect to the Broker. This record specifically
selects the Broker as its target.

* : <BROKER> :BrokerNonsecure : Nonsecure

These two records define a nonsecure configuration for the Broker. In this configuration,
consoles do not prompt for a username and password when connecting to the Broker.
“Configuring a secure Broker” on page 110 provides additional information regarding a
secure Broker configuration.

Automating Broker authentication to servers
The Broker periodically pings all registered servers to determine their status. When the
Broker does this, it acts as a client. This record in serverConnect.conf permits the Broker to
ping a server to check if it is running.

* : BrokerPing : Ping : Ping

The brokerConnect.conf file contains an automatic authentication record, the only record
in the file.

* : * : BrokerPing : Ping

“Connection privileges” on page 91 provides additional information about the Ping access
permission.

Authenticating administrative users
The default administrative record provides full access to any server by using the
serverConnect.conf file.

* : admin : changeme : All

This record authenticates clients that provide the EMC Smarts username “admin” and the
password “changeme”. This account grants administrative privileges or full access, which
is denoted by the value of All in the privilege field.

Change the password for this account after installation. You must make any changes to the
corresponding records in both the serverConnect.conf and clientConnect.conf files.
Replace the admin user only after you have set up a corresponding administrative account
in the Global Manager. You should never remove or disable an administrative account in
the Global Manager.

96 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

The corresponding automatic authentication record in clientConnect.conf grants any
client, which uses the file, full access to any server by using the corresponding record in
the serverConnect.conf file.

* : * : admin : changeme

Since this record appears later in the clientConnect.conf file than the interactive users
record (* : * : <PROMPT> : <PROMPT>), only noninteractive clients will be granted full access,
unless interactive users enter the correct username ("admin") and password
("changeme").

“Connection privileges” on page 91 provides additional information about the All access
permission.

Authenticating Global Console users
Two records in serverConnect.conf provide the console with monitoring access to servers.
The first authenticates console users who provide the EMC Smarts username

“maint” and the password “maint”.

* : maint : maint : Monitor

The second console record authenticates console users who provide the EMC Smarts
username “oper” and the password “oper”.

* : oper : oper : Monitor
Consoles do not use clientConnect.conf for authentication (there is no automatic
authentication). The console prompts the user for a username and password and passes
the information to the server for authentication.

User profile restrictions can be used to further limit certain Global Console operations, as
described in theEMC Smarts Service Assurance Manager Configuration Guide.

EMC recommends that you create separate accounts for each operator. Comment out
these records and use the authentication record that uses the system login facility.

Authenticating users with a valid system account
The last default authentication record in serverConnect.conf permits users with a valid
login account on the system where the server is running to connect. A client that uses this
authentication record must enter a valid system username and password. For
authentication, the system username becomes the EMC Smarts username. This record
provides monitoring privileges.

* : * : <SYS> : Monitor

Configuring authentication 97

Securing Access to the Software

Authenticating users interactively
This authentication record in the clientConnect.conf prompts users to enter an
EMC Smarts username and password. This does not guarantee that the connection will be
successful. The server must be able to validate the username and password by using its
serverConnect.conf file.

* : * : <PROMPT> : <PROMPT>

The position of this authentication record in the default clientConnect.conf file is
important. Because it uses wildcard patterns to match for both login user and target, this
record is always selected for interactive connections, even if a following record also
matches. Noninteractive programs skip this record because they cannot prompt for
information.

This record could match the following serverConnect.conf authentication records, as
described in the following:

* : * : <SYS> : Monitor
In “Authenticating Global Console users” on page 97:

* : maint : maint : Monitor

* : oper : oper : Monitor

In “Authenticating users with a valid system account” on page 97

* : * : <SYS> : Monitor

Specifying alternate security configuration files

You can define separate serverConnect.conf and clientConnect.conf files on hosts where
multiple servers or clients are running. This enables you to configure a system where
certain users and/or servers use one file, and other users and/or servers reference a
different file. Some installations can share the same BASEDIR/smarts, but have
requirements that stipulate that the servers and/or clients operate differently.

Two environment variables allow you to specify distinct configuration files:

◆ SM_SERVERCONNECT

◆ SM_CLIENTCONNECT

For each variable, the absolute path to the alternate security file must be specified.
Because you specify the filename, you can have multiple files in the same directory.

For server programs, you can specify an alternate serverConnect.conf file, by setting the
SM_SERVERCONNECT variable in the command line that starts the server.

98 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

For example, the following steps set the value of the SM_SERVERCONNECT environment
variable to point to the server_Connect_IP.conf file.

1. Use the sm_service show action with the --cmdline option to display the existing
command line for the program. You must have administrative privileges when typing
the following command.

BASEDIR/smarts/bin/sm_service show --cmdline ic-am-server

Output:

BASEDIR/smarts/bin/sm_service install
--name=ic-am-server
--description=“EMC Smarts IP Availability Manager”
--startmode=runonce
BASEDIR/smarts/bin/sm_server
--name=INCHARGE-AM
--config=icf
--bootstrap=bootstrap-am.conf
--port=0
--subscribe=default
--ignore-restore-errors
--output

2. Use the sm_service install action with the --force option to add the environment
variable to the command line. The --env option specifies the environment variable.

BASEDIR/smarts/bin/sm_service install
--force
--name=ic-am-server
--description=“EMC Smarts IP Availability Manager”
--startmode=runonce
--env=SM_SERVERCONNECT=BASEDIR/smarts/conf/serverConnect_IP.conf
BASEDIR/smarts/bin/sm_server
--name=INCHARGE-AM
--config=icf
--bootstrap=bootstrap-am.conf
--port=0
--subscribe=default
--ignore-restore-errors
--output

3. Do one of the following:

• Start the program.

• Stop and restart the program.

For client programs, you can specify an alternate clientConnect.conf file by setting the
SM_CLIENTCONNECT variable in the runcmd_env.sh file.

Configuring authentication 99

Securing Access to the Software

Controlling authentication
The environment variable SM_AUTHORITY controls the authentication security features
provided by the software. The authentication features are enabled by default. If necessary,
you can set the value of this variable to disable them. This environment variable must be
set on each system where EMC Smarts software is running.

The environment variable SM_AUTHORITY can have one of two values:

◆ <STD> enables security

◆ <NONE> disables security

When no value is specified, which is the default, the software treats this the same as
<STD>.

The angle brackets (< >) are required.

When SM_AUTHORITY is set to <NONE>, the software behaves as if no security features are
in effect:

◆ Clients do not read clientConnect.conf and never prompt for a username or password.
They always send <DEFAULT>/<DEFAULT> as their credentials.

◆ Servers ignore any incoming username or password and grant any connection All
access.

Setting the SM_AUTHORITY variable

To add and set the SM_AUTHORITY environment variable in the runcmd_env.sh file:

1. Go to the BASEDIR/smarts/bin directory and enter the following command to open the
runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

2. Use the following syntax to add the SM_AUTHORITY variable and its value:

SM_AUTHORITY=”<STD>”

3. Save and close the file.

The modified version of the runcmd_env.sh file is saved to the
BASEDIR/smarts/local/conf directory.

At this point, any EMC Smarts program that is started from this installation directory
will use the applicable environment variables that are specified in the runcmd_env.sh
file.

4. EMC Smarts programs that were previously launched from this installation directory
need to be restarted for any new environment variable to take effect. Chapter 5,
“Controlling Startup,” describes how to start services.

100 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

Changing Cryptographic Settings

Changing Pseudo-random Number Generators (PRNG) algorithm

The Smarts Global Console SSL implementation uses ECDRBG128 (Dual EC DRBG) as the
default PRNG algorithm. Following NIST's decision to recommend against the use of
Dual_EC_DRBG, it is recommended that you discontinue the use of Dual EC DRBG, and
move to a different PRNG (HMACDRBG128) at this time.

Changing the use of the default PRNG algorithm:

Add the following line in the java.security file located at BASEDIR/_jvm/lib/security/
directory.

◆ com.rsa.crypto.default.random = HMACDRBG128

This change needs to be applied to the following components:

◆ "Smarts Global Console

◆ "Any other custom programs written by you using DMT Java remote API

Encryption
By default, encryption (non-FIPS 140 mode) is enabled during the installation process.
The basis for encryption is a secret phrase that gets transformed into the file imk.dat.

The transformation of the site secret into the imk.dat files differs, depending on whether
encryption is set to FIPS 140 mode. EMC Smarts programs using FIPS 140 mode
encryption cannot use the same imk.dat file as EMC Smarts programs using non-FIPS 140
mode. Therefore, all clients and servers using an imk.dat file must all be set to the same
FIPS 140 mode.

The programs use the site secret to encrypt passwords in the configuration files and
passwords to SNMP v3 devices in seed files, as well as to encrypt connections between
programs.

At installation, encryption is enabled with a default secret phrase. This phrase is:

Not a secret (literally)

and the imk.dat file can be copied. The imk.dat is found in the BASEDIR/smarts/local/conf
directory.

The imk.dat file can only be copied to other systems with the same operating system (OS),
OS version, and FIPS 140 mode setting.

To raise the level of security, you need to change the secret phrase by using the
sm_rebond utility. Thereafter, the secret phrase should be changed periodically to
maintain a secure system.

Changing Cryptographic Settings 101

Securing Access to the Software

The secret phrase should be treated with the same care as a root password or highest
level system administration password.

Changing the secret

The sm_rebond utility changes the secret phrase and re-encrypts the files affected by the
secret. This utility prompts for the old secret phrase and the new phrase, then generates
an imk.dat file and updates all the files containing encrypted information. This utility
affects all of the applications that run on the same host and use the same imk.dat file.

The sm_rebond utility shuts down all of the processes run from the product that were
started by using sm_service or sm_serviced, and that use the same imk.dat file. The
sm_rebond utility re-encrypts the security files and the seed files, then restarts the
processes once the phrase and encryption changes are made. All other processes should
be shut down manually before running the utility and restarted once the utility is finished.

To change the secret, perform the following steps:

1. Use the sm_rebond utility. You must enter this command with administrative
privileges.

sm_rebond --basedir=<base directory>

For the <base directory>, enter the path for the directory in which the software that is to
be rebonded is installed.

2. When the utility prompts for the old secret phrase, enter it.

3. When the utility prompts for the new secret phase, enter it. The secret phrase can
consist of a combination of printable characters, integers and special characters. The
secret phrase cannot be more than 1,024 characters long.

4. Re-enter the new secret to confirm it.

5. Close the utility.

The sm_rebond utility encrypts only files that reside in BASEDIR/smarts/local/conf and
three levels of subdirectories below that. To encrypt files outside of that directory area,
contact EMC Global Services.

When using the sm_rebond utility to change the default password for SNMPvV3 password
encryption, ensure that all the passwords for the Domain Managers in your deployment
are the same.

102 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

Using the secret for multiple products and sites

The secret phrase can be used across multiple products and sites. To use the secret
phrase across products and sites, EMC Corporation recommends that you perform the
following steps:

1. Install one or more EMC Smarts products on one or more hosts.

2. If short periods of interrupted communications are not detrimental, stop the
Managers. However, if the products also use cleartext connections, you can use the
sm_rebond utility without stopping the Managers. Only that product will lose
connections for a short period of time.

3. Use the sm_rebond utility to change the secret phrase for each product on each host.

The secret phrase must be exactly the same for each product on each host in order for
the applications to make connections.

4. Use the sm_edit utility to update the security configuration files and seed files of the
products as needed.

5. Restart the Managers if applicable.

Using the secret across large numbers of sites
For large numbers of sites, you can perform the following steps:

1. Install an EMC Smarts product at the primary site.

2. Use the sm_rebond utility to change the secret phrase.

3. Use the sm_edit utility to update the security configuration files and seed files of the
product as needed.

4. Copy the imk.dat file, as well as the configuration files and seed files to the other
installations of the software.

The imk.dat file can only be copied to other systems with the same operating system (OS),
OS version, and FIPS 140 mode setting.

You will not have to use the sm_rebond utility on the other Managers if the files are moved
to the Managers before the Managers are started.

Locking the secret

If access to encrypted data is a critical issue for your organization, EMC provides the
option to lock the imk.dat file. This disables copies of the imk.dat file, even by restoration
from a backup process. For more information about this level of security, contact EMC
Global Services.

Encryption 103

Securing Access to the Software

Encrypted passwords
The encryption process uses the secret to encrypt passwords contained in the security
configuration files. The first line of the serverConnect.conf, clientConnect.conf, and
brokerConnect.conf files indicates the appropriate field to which encryption is applied.

The first line in the file must read as follows. It must begin with a pound sign (#).

#<encrypted field>:1.0:<n>

The value n refers to the position of the Password field in the configuration file’s record
and should not be changed:

◆ For serverConnect.conf, this value is 3.

◆ For clientConnect.conf and brokerConnect.conf, this value is 4.

To disable encryption, add a second pound sign (#) at the beginning of the line.

Installation encrypts the password fields in the files by using the default secret. The
encrypted files reside in BASEDIR/smarts/local/conf.

Encrypting passwords

Password is the only field in the security configuration files that is encrypted. The
configuration files are located in the BASEDIR/smarts/local/conf directory of a product.

To type or change a password in a security configuration file:

1. Go to the BASEDIR/smarts/bin directory and enter the following command to open the
security configuration file:

sm_edit conf/<security configuration file>

For example, to open the serverConnect.conf file:

sm_edit conf/serverConnect.conf

2. Review the contents of the file. For example, the serverConnect.conf file may include
lines similar to the following:

#
<BROKER> :<DEFAULT> :<DEFAULT> :All
Smarts :admin :<SYS> :All
Smarts-WP :user5 :Password :Ping
Smarts :operator :Password :Monitor
Smarts :* :<SYS> :None
#

Encrypted passwords are preceded by <E-1.0>

3. Delete the current password and replace it with the new password in cleartext. If the
current value is encrypted, delete the <E-1.0> tag that marks the password as
encrypted as well as the current password. The special values <DEFAULT>, <PROMPT>,
<SYS>, and <AUTO> in the files are not encrypted.

4. Save and close the file.

104 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

The modified version of the security configuration file is saved to the
BASEDIR/smarts/local/conf directory.

The appropriate values are encrypted as part of the process.

5. Repeat the steps for all of the security configuration files.

6. Restart the Managers if applicable.

If a security configuration file already includes the first line for encryption, specify the
sm_edit utility with the --noedit option to encrypt the file without opening it. You must
have administrative privileges when entering this command.

BASEDIR/smarts/bin/sm_edit --noedit conf/<security configuration file>

Encrypted passwords 105

Securing Access to the Software

Encrypted seed files
The encryption for a seed file only applies to certain information that applies to SNMP v3
devices. For these devices, a keyword that contains the authentication password can be
encrypted.

The first line of the seed file must read as follows; it must begin with a pound sign (#).

#<encrypted seed>:1.0:AUTHPASS,PRIVPASS

The AUTHPASS and PRIVPASS keywords specify the authentication and privacy passwords
for an SNMP v3 device.

To disable encryption, add a second pound sign (#) at the beginning of the line.

If a seed file already includes the first line for encryption, specify the sm_edit utility with
the --noedit option to encrypt the file without opening it. You must have administrative
privileges when entering this command.

BASEDIR/smarts/bin/sm_edit --noedit conf/<security configuration file>

Encrypted connections
Software components communicate over TCP connections by using the EMC Smarts
Remote API. Clients which are using Remote API connections, authenticate themselves to
servers by sending credentials, nominally a username and password. When the
credentials are passed as cleartext, they can be snooped from the network or accessed by
using man-in-the-middle configurations.

You can encrypt certain connections by using different keys for the Advanced Encryption
Standard based on a combination of the Diffie Helman standard and the site secret
associated with the installation. “Encryption” on page 101 provides additional
information about the site secret.

Encrypted connections do not work with EMC Smarts Adapter for NetIQ AppManager.

Levels of encryption

The software provides several levels of security above cleartext communication as shown
in Table 21 on page 107 and Table 22 on page 107.

106 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

Any encryption based on the site secret should only be used once the secret phrase has
been changed by using sm_rebond described in “Changing the secret” on page 102. The
Global Console supports cleartext (Level 0), Diffie Helman-Advanced Encryption Standard
(Level 1), and TLSv1.2 encrypted connections.

Table 21 Encryption levels for connections for non-FIPS 140 mode

Security level Description Advantages Disadvantages

0, CLEAR, or
CLEARTEXT

no encrypted
communication

• Backwards compatibility
• No configuration (default

behavior)

• No security
• Passwords passed to

servers as cleartext

1 DH-AES • No site secret needed
• No configuration (default

behavior for new
installations)

• Protects against
eavesdroppers

• Slower connection than
cleartext or level 2 security

• Not secure against active
attacks

2 Encryption
based on site
secret

• Protects against
eavesdropping and active
attack

• Almost as fast as
cleartext

Must set site secret and keep
it common across all
communicating entities

3 DH-AES and site
secret

Protects against
eavesdropping and active
attack, even by those who
know the site secret

• Slower connection than
cleartext or level 2 security

• Must set site secret and
keep it common across all
communicating entities

Not applicable TLSv1.2 • Standards-based • Incompatible with previous
releases of the software

• Slower than cleartext

Table 22 Encryption for connections for FIPS 140 mode

Description Advantages Disadvantages

TLSv1.2 with FIPS 140
cryptography

• Standards-based
• Compatible with FIPS 140-2

compliant cryptography

• Incompatible with previous
releases of the software

• Slower than cleartext

Encrypted connections 107

Securing Access to the Software

Encrypting connections in non-FIPS 140 mode

In Foundation 9.2 onwards, Domain Managers and Brokers running in non-FIPS 140 mode
can interact with Domain Managers and Brokers running in non-FIPS 140 mode or FIPS
140 mode. Although a Domain Manager running in non-FIPS 140 mode can interact with a
Domain Manager running in FIPS 140 mode, the two applications cannot interoperate with
one another because they cannot share encrypted data such as SNMPv3 credentials.

EMC Smarts applications that are based on 9.1 foundation or later software, and running
in non-FIPS 140 mode use TLSv1.2 encrypted connections by default. This behavior is
different than the behavior for EMC Smarts applications that are based on pre-9.1
foundation software, where the encryption for encrypted connections was configured by
using two environment variables, SM_INCOMING_PROTOCOL and
SM_OUTGOING_PROTOCOL. These environment variables are ignored if the
communicating applications are TLS-capable, but are honored when a TLS-capable
application is interacting with a non-TLS-capable application.

For pre-9.1 applications that are operating in non-FIPS 140 mode, encrypted connections
are configured by using two environment variables:

◆ SM_OUTGOING_PROTOCOL— Controls the connections that an EMC Smarts
application that is acting as a client is allowed to initiate.

◆ SM_INCOMING_PROTOCOL— Controls the connections that an EMC Smarts application
that is acting as a server is allowed to accept.

Each of these environment variables can contain a list of security levels, except for TLS
security, which cannot be controlled by using these variables. If you specify more than
one, separate them with commas. If you do not set the variable, it is the same as
specifying “0” or CLEARTEXT.

When two or more security levels are supported in common, the largest level number is
used. For example, if a client has SM_OUTGOING_PROTOCOL set to "0,1" and the server
has SM_INCOMING_PROTOCOL set to "0,1,2", the connection uses the highest common
level, level 1.

The order in which the different levels are specified for the environment variables has no
significance—for example, "0,1" and "1,0" behave exactly the same.

Applications that do not support encryption are treated as only having a cleartext level of
encryption.

When the two ends of the connection do not match, such as when
SM_OUTGOING_PROTOCOL is 3 at server A and SM_INCOMING_PROTOCOL is 2 at server B,
a connection cannot be formed. Both client and server will report errors.

108 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

To set the environment variables so that they can be used by the programs of an
EMC Smarts product, edit the runcmd_env.sh file, which is located in the
BASEDIR/smarts/local/conf directory of that product.

1. Go to the BASEDIR/smarts/bin directory and enter the following command to open the
runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

2. Review the contents of the file. The default values for the SM_INCOMING_PROTOCOL
and SM_OUTGOING PROTOCOL are 1 and 0.

SM_INCOMING_PROTOCOL=1,0
SM_OUTGOING_PROTOCOL=1,0

3. Update the values for the variables to meet the needs of your system.

For example, to raise security to the next highest level, change 1 to 2:

SM_INCOMING_PROTOCOL=2,0
SM_OUTGOING_PROTOCOL=2,0

4. Save and close the file.

The modified version of the runcmd_env.sh file is saved to the
BASEDIR/smarts/local/conf directory.

5. Restart the Managers if applicable.

Encrypting connections in FIPS 140 mode

In FIPS 140 mode, the software uses Transport Layer Security v1.2 and ignores the
SM_INCOMING_PROTOCOL and SM_OUTGOING_PROTOCOL settings. Because of this, in
Foundation pre-9.1 (but not in 9.1 or later versions), a FIPS 140-enabled Domain Manager
cannot interact with a non FIPS 140-enabled Domain Manager.

Setting the environmental variable SM_FIPS140 to true enables FIPS 140 mode.
“SM_FIPS140” on page 154 provides additional information.

You must enable FIPS 140 mode before the Broker and Domain Managers are started.

Suggested encrypted connections in non-FIPS 140 mode

EMC recommends that you configure your system to use encrypted connections wherever
possible.

◆ Brokers should be able to communicate with cleartext as well as encryption in both
SM_INCOMING_PROTOCOL and SM_OUTGOING_PROTOCOL, or in TLSv1.2, if a client
only supports cleartext. This is required in this configuration since the Broker acts as
both a client and a server, and must be able to communicate with every component in
the system. Brokers do not need to support cleartext if all clients can make encrypted
connections.

◆ If a Domain Manager must connect to a client that only supports cleartext, set
SM_OUTGOING_PROTOCOL to cleartext as well as encryption.

Encrypted connections 109

Securing Access to the Software

◆ Adapters based on Foundation 9.2 onwards use TLSv1.2 to communicate by default.
Only adapters that register with the Broker (--name option) can accept incoming
connections. If you have adapters that accept incoming connections from clients that
are not TLS-capable, setting SM_INCOMING_PROTOCOL to require encryption is
appropriate.

Also, if the adapter must connect, or be connected, to clients that support only
cleartext, then add the cleartext option to the appropriate variable.

◆ Configure any components that must run on networks outside the management
domain with both SM_INCOMING_PROTOCOL and SM_OUTGOING_PROTOCOL set to
encryption. Depending on the level of encryption, this will prevent snooping or
man-in-the-middle attackers. You will not be able to connect directly to such a
component by using a console.

Replacing or importing TLS certificates
By default, a Smarts Domain Manager generates a self-signed TLS certificate that it will
present to the incoming TLS connections. However, you can configure a certificate to use
by performing the following step:

◆ "Place the certificate and key files in $SM_SITEMOD/conf/tls/$DOMAIN.crt and
$SM_SITEMOD/conf/tls/$DOMAIN.key

Where $DOMAIN is the name of the domain used to register with the broker. The files must
be in PKCS#8, PEM encoded form with no password.

Self-signed certificates generated by Smarts are stored in the process memory. To
regenerate default self-signed TLS certificates, stop and restart Smart processes.

Configuring a secure Broker
You can configure the Broker to run in a secure manner. Use of a secure Broker results in
the following changes to how the software runs:

◆ Consoles prompt for a username and password to connect to the Broker. Without a
secure Broker, consoles connect to the Broker without authenticating.

◆ Other servers and clients use their respective clientConnect.conf files to determine
what credentials to send to the Broker, just as they use clientConnect.conf to
determine what credentials to send to a server. In particular, you can configure the
clientConnect.conf files so that clients and servers prompt for connections to the
Broker, as the console does, or specify the password in clientConnect.conf.

To configure and run a secure Broker, complete the following steps:

1. Choose a unique EMC Smarts username and password for the secure Broker
credentials. The new username and password will be used by both servers and
clients:

• Servers will use these credentials to register with the Broker.

• Clients will use these credentials to connect to the Broker and determine the
location of a server.

110 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

For example, you could use the username “SecureBroker” and the password “Secure”.
Choose a unique EMC Smarts username and password.

2. Use the sm_edit utility to open a local copy of the clientConnect.conf file, located in
BASEDIR/smarts/local/conf. Edit this file, used by all clients and servers, so that
EMC Smarts programs send the SecureBroker/Secure credentials when connecting to
the Broker.

a. Comment out the following line:

*:<BROKER>:BrokerNonsecure:Nonsecure

b. Type a new line configuring a secure Broker. This new line is added below the
BrokerNonsecure line that you commented out. For example:

#*:<BROKER>:BrokerNonsecure:Nonsecure
*: <BROKER> : SecureBroker : Secure

Conversely, you can configure clientConnect.conf so that clients and servers
prompt for connections to the Broker, as well as other servers. This involves
replacing the password, Secure in this example, with <PROMPT>.

*: <BROKER> : SecureBroker : <PROMPT>

3. Use sm_edit to make the following changes to the local serverConnect.conf file used
by the Broker:

• Delete the line granting <DEFAULT>/<DEFAULT> access to the Broker.
• Change the BrokerNonsecure/Nonsecure line to grant Ping access rather than All

access. Do not, however, delete this authentication record.
• Add a new authentication record that grants All access to the SecureBroker/Secure

credentials. This new record must be below the BrokerNonsecure/Nonsecure
record. For example:

<BROKER>:BrokerNonsecure:Nonsecure:Ping
<BROKER> : SecureBroker : Secure : All

Configuring a secure Broker 111

Securing Access to the Software

Additional safeguards
In addition to encrypted passwords and encrypted connections, you can secure your
system by using the file permissions of the operating system, by limiting access to the
security configuration files, and by limiting access to the servers.

Using file permissions

You can limit access to the security configuration files by using the permissions feature of
the operating system. Only select users should be allowed access to the files. The users
must include those who launch the EMC Smarts applications requiring access to the
authentication records.

Limiting access to the configuration files

You should configure security in such a way that each security file is only readable by
those programs or users that require it. The security configuration files installed with
EMC Smarts software, which should be edited after installation, are readable by anyone.

Because Managers and the Broker typically run with administrative privileges, the
serverConnect.conf and brokerConnect.conf files should only be readable by users with
administrative privileges and no one else.

The simplest method for creating a secure setup for users and client programs is to
provide two separate clientConnect.conf files. One clientConnect.conf file, which can
remain readable by anyone, should only contain entries that make client programs prompt
for passwords. This clientConnect.conf file will not contain passwords.

For client programs, create a separate clientConnect.conf file that contains the
authentication information necessary for non-prompting programs to access Managers.
This clientConnect.conf should only be readable by the user(s) under which these
programs run. Client programs use the SM_CLIENTCONNECT environment variable to find
this clientConnect.conf file. You can specify SM_CLIENTCONNECT in the service startup file
for each service. For clients that are installed as services, you can use the --env option to
the sm_service utility to edit the parameters of a service.

Limiting access to servers

The --accept option to the sm_server command, described in
“SM_SNMP_BUG_COMPATIBLE” on page 151, provides another method of access control.
This option limits the hosts that can connect with the server. Before other security
measures occur, incoming connections must pass the --accept option before
authenticating.

112 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

Example security configurations
You can configure EMC Smarts installations to use a variety of levels of security. Higher
levels of security require more administrative effort, as well as extra effort on the part of
users of the system, but give you better control of the use of EMC Smarts software. The
appropriate level of security for your site is determined by the policies and procedures of
your organization.

This section describes two levels of security, and their advantages and disadvantages.
You can choose one of these levels, or combine characteristics of several.

Default security

When initially installed, default security uses the security configuration files with
encrypted passwords based on the default secret phrase. The connection protocols are
set to use Transport Layer Security v1.2, Diffie Helman encryption, and cleartext. With the
default security, you need to change the passwords for the usernames in the security
configuration files. Default security prevents casual inspection, but does not pose much of
a deterrence from more strenuous efforts.

It is essential that you change the default passwords for the usernames before using the
system in a production environment.

While the default security provides basic authentication, it does not provide much
manageability or security. The oper/oper credentials must be known to all console
operators; the admin/changeme credentials must be known to all administrators. This
makes it difficult to know who is actually connected to a server, based on their username.
In addition, you cannot revoke the rights of one user without changing the username and
password for all users at the same access level.

The serverConnect.conf and clientConnect.conf files include authentication records that
improves user administration. First, besides the oper/oper credentials, there are
maint/maint credentials that also provide Monitor access. This illustrates how one might
define shared usernames that are still differentiated on the basis of role. Second,
serverConnect.conf contains the following line:

* : * : <SYS> : Monitor

Anyone who can provide a username and password that the operating system considers
valid is also granted Monitor access. In this scenario, you can give every console operator
an account on the host on which the server they access runs. These operators log in by
using the username and password defined for that account. The account can be disabled
to prevent actual interactive access to the system. In this way, each console operator gets
a unique username and password. Accesses to the system can be traced to a particular
user, and access can be individually revoked. Specifying <SYS> for the password avoids
having to potentially create a number of records in serverConnect.conf.

Example security configurations 113

Securing Access to the Software

This mechanism can readily be extended to provide similar controlled access for
administrators. For example, you could add the following records to serverConnect.conf:

* : fred|george : <SYS> : All
* : * : <SYS> : Monitor

This would give the users “fred” and “george”, if they provide the passwords for their
accounts on the host, All access. You could even define a class of administrative users, for
example, with usernames that start with ADM.

* : ADM* : <SYS> : All
* : * : <SYS> : Monitor

Customized security

Customized security uses security files (with encrypted passwords), a new secret phrase,
and passwords for the EMC Smarts usernames in the security files that are different than
their default values. Under customized security, connection protocols are set to use the
site secret and cleartext. This setup protects against eavesdropping and active attacks as
well as casual inspection.

To configure customized security:

1. Create a new secret phrase by using sm_rebond, as described in “Changing the
secret” on page 102.

2. Change the username and passwords in serverConnect.conf, clientConnect.conf, and
brokerConnect.conf.

These should provide access control by individual users. Consider using system
authentication to authenticate Global Console users, as described in “System
authentication” on page 93. The new usernames and passwords should also address
connections between servers and servers or servers and clients.

If your software resides on a single host, a single username and password for
automatic client authentication is usually sufficient. However, if you have clients, such
as adapters, on multiple hosts, or generally in different security domains, you may use
different usernames and passwords for manageability. For example, if there is reason
to believe that the username and password from one machine have been
compromised, you can change them without having to change the configuration on
any other machine.

To achieve such a configuration, you need to assign unique usernames and passwords
to clients that you consider to reside in separate security domains. Add a line to grant
access to each such username/password credential to the serverConnect.conf file of
each server the client will access. Add a corresponding line to the clientConnect.conf
file that the client will use.

If you have multiple security domains on a single host, use the SM_CLIENTCONNECT
environment variable so that different clients read different clientConnect.conf files. You
can use the --env option of the sm_service utility to set the environment value when the
service starts.

114 EMC Smarts Foundation System Administration Guide

Securing Access to the Software

3. Configure the different components to communicate with encrypted connections. The
types of allowed connections depend on the versions of EMC Smarts software in use.

• Most connections should be encrypted. The Broker does not need to support
cleartext if all clients can make encrypted connections. “Encrypted connections”
on page 106 provides additional information.

4. At the highest security level, you should run with a secure Broker as well. Setting up a
secure Broker is described in “Configuring a secure Broker” on page 110.

Example security configurations 115

Securing Access to the Software

116 EMC Smarts Foundation System Administration Guide

CHAPTER 7
Operation of the Broker

This chapter consists of the following sections:

◆ Overview of the Broker .. 118
◆ Viewing the registry of the Broker .. 119
◆ How the clients find the Broker ... 119
◆ How to change the Broker environment variable .. 120
◆ Securing the Broker... 121

Operation of the Broker 117

Operation of the Broker

Overview of the Broker
A client application, such as a console or an adapter, utilizes the Broker to determine
where Managers are running. When a Manager starts, it registers with the broker:

◆ Hostname of the machine that it is running on.

◆ TCP port that it is listening on.

Clients retrieve this information from the Broker so that they can communicate with the
Manager.

The Broker registry maintains the following information:

◆ Name of the Manager, including the host and TCP port it is running on.

◆ Status of each Manager.

The Broker checks the status of each Manager every five minutes by connecting to the
host on which EMC Smarts is running and determining if the process is running
properly. If the Broker is unable to connect or the process is not running, the Broker
changes the status of the Manager to Dead.

• Running indicates that the Broker is able to communicate with the Manager.

• Dead indicates that the Manager exited unexpectedly or is unreachable. When a
Manager properly shuts down, it notifies the Broker and the Broker removes it from
its registry.

• Unknown indicates that the Broker was restarted and that it is querying its list of
Managers to determine their state.

◆ Process ID of each Manager. This is the process ID assigned by the host’s operating
system. In some cases when the Broker is restarted, the process ID of each Manager is
set to zero to indicate the Broker does not know the process ID of the Manager.

◆ Last time the state of the Manager changed. This value is set when the Manager
registers with the Broker and is updated if the Broker determines that the Manager is
dead. When the Broker restarts, it changes the status of Managers marked Unknown
to Running or Dead.

The Broker changes the status of the Manager to Dead when it cannot connect to the
Manager. However, the Broker continues to try to connect to the Manager every five
minutes. If the Broker succeeds in connecting to the Manager, it changes its status back to
Running.

118 EMC Smarts Foundation System Administration Guide

Operation of the Broker

Viewing the registry of the Broker
The Broker is a component of an EMC Smarts application. The Broker is designed to
automatically start each time the host on which it is installed is started.

You can use the brcontrol utility to view the list of registered programs.

To view the contents of the Broker from a command prompt, use the following command:

BASEDIR/smarts/bin/brcontrol [-b <host>:<port>]

If the Broker resides on another system, specify the -b option with the host and port
number.

How the clients find the Broker
The Broker facilitates communication between clients and Managers. During installation,
you are prompted for the host location of the Broker and its port number. This information
is stored in the SM_BROKER_DEFAULT environment variable. This variable is used by all
EMC Smarts programs to find the Broker. The default host setting for the variable is
localhost, and the default port setting is 426.

A client performs the following steps to determine the Broker’s location.

1. Verifies whether the Broker’s location was specified as an option at startup. When this
option is specified, no other options are checked.

2. Checks the value of the SM_BROKER_DEFAULT environment variable. If this variable is
set, no other options are checked.

3. Checks if the Broker is running on the host smarts-broker and listening on TCP port
426.

4. If smarts-broker is not defined, the program checks port 426 on localhost.

The hostname smarts-broker is usually an alias, such as a DNS CNAME.

Viewing the registry of the Broker 119

Operation of the Broker

How to change the Broker environment variable
The default location of the Broker is specified at installation and stored in the
SM_BROKER_DEFAULT environment variable.

There are two scenarios in which you may need to change the value of the environment
variable after the software is installed.

◆ If during installation, the default Broker host and/or port settings were changed, but
the typed values are incorrect.

◆ If the Broker is automatically installed when you install an EMC Smarts Foundation
application or the adapters. Because only one Broker should be active on a network,
the Broker on one of the hosts must be disabled, and the Broker environment variable
on that host must point to the host where the Broker is running. This typically occurs
when an EMC Smarts application is installed on one host and the adapters are
installed on a second host.

Correcting the Broker settings

In the first scenario, you must edit the Broker host and/or port value in two places.

1. First, change the SM_BROKER_DEFAULT environment variable in the runcmd_env.sh
file, which is located in the BASEDIR/smarts/local/conf directory:

SM_BROKER_DEFAULT=<host>:<value>

where:

• <host> is the location of the Broker.

• <value> represents the port of the Broker.

The defaults are localhost for the location and 426 for the port.) Edit the location and
port as needed.

This variable becomes the default for all EMC Smarts Foundation programs and any
subsequent installations for this host.

2. Additionally, you must change the --port value in the sm_service install Broker
command line to match the port value you set in the SM_BROKER_DEFAULT
environment variable.

Use the sm_service show action with the --cmdline option to display the existing
install Broker command line.

BASEDIR/smarts/bin/sm_service show --cmdline ic-broker

Output:

BASEDIR/smarts/bin/sm_service install
--name=ic-broker
--description=”EMC Broker”
--env=SM_CLIENTCONNECT=brokerConnect.conf
--startmode=runonce
BASEDIR/smarts/bin/brstart
--port=<PORT>
--restore=BASEDIR/smarts/local/repos/broker/broker.rps
--output

120 EMC Smarts Foundation System Administration Guide

Operation of the Broker

Then use the sm_service install action with the --force option to change the port value
for the Broker.

BASEDIR/smarts/bin/sm_service install
--force
--name=ic-broker
--description=”EMC Broker”
--env=SM_CLIENTCONNECT=brokerConnect.conf
--startmode=runonce
BASEDIR/smarts/bin/brstart
--port=<NEW VALUE>
--restore=BASEDIR/smarts/local/repos/broker/broker.rps
--output

Securing the Broker
Securing access prevents unauthorized usage of the Broker, and protects it from being
modified (for example, Managers being deleted from the Broker). Authenticating users
and determining their privileges are accomplished by using two files: serverConnect.conf
and brokerConnect.conf. These files ensure that only authorized users access the Broker.
You must modify the local copies of these files, which are located in
BASEDIR/smarts/local/conf. “Configuring a secure Broker” on page 110 provides
additional information.

Securing the Broker 121

Operation of the Broker

122 EMC Smarts Foundation System Administration Guide

CHAPTER 8
Continuous Audit of Client Connections

This chapter describes a framework for exposing information about client connections,
threads, and other aspects of EMC Smarts applications. It consists of the following
sections:

◆ Overview of continuous auditing of client connections .. 124
◆ System Element objects .. 125
◆ Client data persists after connection terminates.. 128
◆ File descriptor usage warning event... 128
◆ Acquiring client information .. 129
◆ Viewing SM_ElementManager attribute values .. 130
◆ Changing SM_ElementManager attribute values.. 131

Continuous Audit of Client Connections 123

Continuous Audit of Client Connections

Overview of continuous auditing of client connections
The foundation software on which EMC Smarts applications are built is essentially a
sophisticated and specialized object database. It consists of MODEL class libraries, tools,
commands, and utilities.

By exposing information about client connections, threads, and other aspects of an
EMC Smarts application as MODEL objects in the repository, the foundation’s tools, such
as multi-language client libraries, subscription facilities, and analysis can be used to
query and report on the application itself. A client connection is any connection that is
initiated by a remote client, such as a Global Console, remote repository accessor, data
exchange adapter, dmctl, Perl client, Java client, or C++ client.

The following enhancements are intended to improve the serviceability of EMC Smarts
applications by making more information about client connections easily accessible
through normal foundation mechanisms.

To disable logging, do the following:

1. Open the runcmd_env.sh file where the broker was started using the command
line.

2. Run sm_edit:<Basedir>/smarts/bin/sudo ./sm_edit
<Basedir>/local/conf/runcmd_env.sh.

3. Add or edit the following line in the runcmd_env.sh file:

SM_NO_LOG_CLIENTS=TRUE

4. Save and close the runcmd_env.sh file.

5. Restart the Smarts broker service.

124 EMC Smarts Foundation System Administration Guide

Continuous Audit of Client Connections

System Element objects
Two MODEL classes, SM_SystemElement and SM_ElementManager, are used to expose
information about an application’s client connections, threads, and queues.
SM_ElementManager is responsible for managing the subclasses of SM_SystemElement.

SM_SystemElement

The SM_SystemElement class is an abstract base class for the SM_Client, SM_CThread,
and SM_Queue classes, which are defined in Table 23 on page 125 and shown in Figure 3
on page 125.

Figure 3 SM_SystemElement modeling

An SM_Client object and an SM_CThread object are created whenever a client successfully
establishes an API connection to the application. A client’s SM_Queue object and a
second SM_CThread object are created when and if a subscription request is made by the
client.

Table 23 SM_SystemElement subclasses

Subclass name Description

SM_Client An external representation of an incoming client connection. It has
attributes that represent information about the connection.

An SM_Client is served by SM_CThreads and SM_Queues.

SM_CThread An external representation of the internal thread that is associated with a
client connection. It has attributes that represent information about the
internal thread.

SM_Queue An external representation of the internal queue that is associated with a
client connection. It has attributes that represent information about the
internal queue.

SM_Client

SM_CThread SM_Queue

ServedBy/
Serves

Note: Directed lines () represent Relationships.

ServedBy/
Serves

ServedBy/
Serves

System Element objects 125

Continuous Audit of Client Connections

SM_ElementManager

The SM_ElementManager class manages the life cycle of SM_SystemElement objects. It is
a singleton class (the instance is SM_ElementManager::SM-ElementManager) and has
attributes for configuring various aspects of the life cycle management. The key attributes
for SM_ElementManager are listed in Table 24 on page 126.

Table 24 Key attributes for SM_ElementManager (page 1 of 2)

Attribute Value Description

Enabled Boolean
Default: TRUE

Enables or disables the tracking of client
connections to this application:
• A value of TRUE enables the tracking of

client connections.
• A value of FALSE disables the tracking of

client connections.

RecentHighestFD Unsigned long integer
This attribute is
read-only.

Highest file descriptor (highest socket
number) in recent use, for a client
connection to this application.

FDLimit Unsigned long integer
This attribute is
read-only.

Maximum number of file descriptors (socket
numbers) that this application is allowed to
use for client connections at any one time.
For an application on a Solaris- or
Linux-based host, the file-descriptor limit is
imposed on the application by the OS as
long as that limit is 1024 or less. If that limit
is more than 1024, the foundation startup
code sets the limit to 1024.
FDLimit is not supported for Windows.

FDWarningHeadroom Unsigned integer
Default: 100

An integer in the following equation that
determines when the number of file
descriptors for this application increases to
an unacceptable level:
Number of file descriptors > FDLimit –
FDWarningHeadroom
For example, if FDLimit = 1024 and
FDWarningHeadroom = 100, the number of
file descriptors increases to an
unacceptable level when that number is
greater than 924.
FDWarningHeadroom is not supported for
Windows.

126 EMC Smarts Foundation System Administration Guide

Continuous Audit of Client Connections

ReapInterval Unsigned long integer
Default: 60 seconds

Interval, in seconds, between successive
expiry scans of terminated client
connections for this application.
This attribute works in conjunction with two
other attributes, ClientRetainTime and
AbnormalClientRetainTime, to determine
when an expiry scan deletes (reaps) the
client objects and data for a terminated
connection:
• For any normally terminated connection,

the expiry scan deletes the associated
client objects and data when the time
between the connection’s termination
timestamp and the current time exceeds
the ClientRetainTime.

• For any abnormally terminated
connection, the expiry scan deletes the
associated client objects and data when
the time between the connection’s
termination timestamp and the current
time exceeds the
AbnormalClientRetainTime.

The effective retain time for a normally
terminated connection is 1/2 the
ReapInterval plus the ClientRetainTime.
The effective retain time for an abnormally
terminated connection is 1/2 the
ReapInterval plus the
AbnormalClientRetainTime.

ClientRetainTime Unsigned long integer
Default: 60 seconds

The least amount of time, in seconds,
between when a normally terminated
connection ends and when the client
objects and data that are associated with
that connection are deleted from the
repository.

AbnormalClientRetainTime Unsigned long integer
Default: 900 seconds
(15 minutes)

The least amount of time, in seconds,
between when an abnormally terminated
connection ends and when the client
objects and data that are associated with
that connection are deleted from the
repository.

RequestLogSize Unsigned long integer
Default: 25

Size of the request log for client
connections for this application. By default,
the 25 most recent requests and their
responses are recorded.
Setting RequestLogSize to 0 disables the
collection of request information for client
connections.
Like the rest of the client data, the request
information persists for a client connection
until the associated SM_Client and its
threads and queues are deleted.

LogClients Boolean
Default: TRUE

TRUE indicates that this application will log
the client connects and disconnects in its
log file.

Table 24 Key attributes for SM_ElementManager (page 2 of 2)

Attribute Value Description

System Element objects 127

Continuous Audit of Client Connections

Client data persists after connection terminates
When a connection terminates, the SM_ElementManager does not immediately delete the
associated client objects and client data. Instead, the SM_ElementManager does a
periodic scan and removes the client objects and the client data only after a certain
amount of time has passed. In this way, you, as an administrator, can examine details
about a connection even after it has terminated.

File descriptor usage warning event
The SM_ElementManager receives the file descriptor (socket number) for a new client
connection. On Solaris and Linux hosts, there is a hard limit to the number of file
descriptors that an application can use at any one time. Exceeding that limit is an
irrecoverable condition that forces the application to exit with a fatal error.

SM_ElementManager keeps track of the file descriptors and uses its FDLimit and
FDWarningHeadroom attribute values to determine when the number of file descriptors
increases to an unacceptable level. When that limit is exceeded, the SM_ElementManager
asserts the HighFDUsageWarning event.

The HighFDUsageWarning event is not supported for Windows.

128 EMC Smarts Foundation System Administration Guide

Continuous Audit of Client Connections

Acquiring client information
You can get information about the clients for an application by going to the
BASEDIR/smarts/bin directory of the application and entering dmctl command that
include any of the following command options:

◆ who command option

• who

Lists the clients that are currently logged in to the application.

• who <n>

Provides information about the client with connection ID n.

• who is <n>

Provides information about the client with connection ID n.

• who am I

Provides information about the dmctl client that you am using.

• who is [ACTIVE | ENDED | FAILED| KILLING | KILLED | ABNORMAL| ALL]

Lists the clients whose state matches the one specified. The state names are not
case-sensitive; for example, who is ACTIVE and who is active are both acceptable.

◆ w command option

Uses same argument options as who command option. who and w are variants of the
same command and show slightly different data: who is more focused on from whom
or where a connection originates, and w is more focused on what a connection is
doing. The w command option also shows summary data about the target application,
such as the number of connections, uptime, and so on.

◆ kill <connection ID>

Disconnects the client connection that is identified by the connection ID. Mainly used
to terminate clients that have failed to disconnect gracefully.

◆ getActivity <connection ID>

Displays the most recent requests and responses from the client with the specified
connection ID.

Examples:

dmctl -s <application name> who is 14

dmctl -s <application name> w is active

dmctl -s <application name> kill 14

dmctl -s <application name> getActivity 14

The last example command returns as many requests as the target application holds for a
client that has a connection ID of 14. By default, that number is 25, which is determined
by the RequestLogSize attribute of the SM_ElementManager. For each returned request,
the command also returns the application’s resulting response/error to the request.

Acquiring client information 129

Continuous Audit of Client Connections

Here is an excerpt of the return for a dmctl getActivity command:

dmctl> getActivity 2887
Activity record starts at October 18, 2012 12:10:34 AM EDT +654ms

ELAPSED RSPTIME DIR MESSAGE
:00.000 ---> invokeOperation ICS_ConfigurationManager

ICS-ConfigurationManager exportConfigFor { ConsoleOperation }
:00.008 :00.008 <--- OK
.
.
.
:00.076 ---> get InCharge_Feature OI CreationClassName
:00.076 :00.000 <-!- MR-E-OBJECT_NOT_FOUND-Object class::name

'InCharge_Feature::OI' not found; in file
"/work/tancurrent/DMT-9.2.0.0/42/smarts/repos/mr/dyn_acc.c" at line 1590

.

.

.
:01.105 ---> getf ICS_NotificationList ICS_NL-Default listName -1
:01.105 :00.000 <--- OK

Activity record ends at October 18, 2012 12:10:35 AM EDT +760ms

The first and last lines show the period of time that the activity log for the connection
spans. In between are the log entries.

Each log entry has an elapsed time (which is shown relative to the “Activity record starts”
time), an optional response time, a direction, and a message. The direction is a right arrow
for a request to the application, a left arrow for a response, and a left arrow with an
exclamation point (<-!-) for an error response.

The message is the request summary for a request, “OK” for a response, or error text for an
error response. The response time for a request is empty, and the response time for a
response shows the time difference between the time of the request and the response.

Viewing SM_ElementManager attribute values
You can view SM_ElementManager attribute values by entering the following dmctl
command from the BASEDIR/smarts/bin directory of the target application:

dmctl -s <application_ name> get
SM_ElementManager::SM-ElementManager::<attribute_name>

For example:

dmctl -s INCHARGE-MPLS-TOPOLOGY get
SM_ElementManager::SM-ElementManager::FDLimit

To view all values in one invocation, enter the following dmctl command:

dmctl -s <application_ name> get SM_ElementManager::SM-ElementManager
| more

130 EMC Smarts Foundation System Administration Guide

Continuous Audit of Client Connections

Changing SM_ElementManager attribute values
EMC recommends that you do not change SM_ElementManager attribute values. However,
if you want to change an attribute value, you can do so by entering the following dmctl
command from the BASEDIR/smarts/bin directory of the target application:

dmctl -s <application_ _name> put
SM_ElementManager::SM-ElementManager::<attribute name> <attribute
value>

For example:

dmctl -s INCHARGE-MPLS-TOPOLOGY put
SM_ElementManager::SM-ElementManager::RequestLogSize 30

The command-modified parameters are persistent, which means that your modifications
are saved to disk when the application is shut down and are not reset when the
application is restarted. Two exceptions are RecentHighestFD and FDLimit, which are
initialized at application startup.

Changing SM_ElementManager attribute values 131

Continuous Audit of Client Connections

132 EMC Smarts Foundation System Administration Guide

CHAPTER 9
Managing Log Files

This chapter consists of the following sections:

◆ Overview of message logging .. 134
◆ Retrieving and setting log, error and trace levels at runtime................................... 138
◆ Log files .. 139
◆ Starting a new log file ... 142
◆ Controlling the number of saved log files... 144

Managing Log Files 133

Managing Log Files

Overview of message logging
Figure 4 on page 134 presents an overview of message logging.

Figure 4 Message logging

All EMC Smarts Foundation processes (applications) such as Domain Managers, Global
Managers, Adapter Platforms, and Adapters create log files that contain status
information and error reports. Some processes use the exception logging mechanism that
is shown in Figure 4, while others write directly to stdout or stderr.

EMC Smarts
log file

ErrorDebug Informational Notice Warning Fatal
(highest

None
(disables
logging)

(lowest

Foundation software

Application

Exception logging mechanism

Message

System error
logger

Exception message severity level

severity)severity)

Write to
stdout

ApplicationApplicationApplication Application

--errlevel=
(Default: Warning)

Yes No
Discard

>
Warning

?

Severity

Application

Message

--loglevel=
(Default: Error)

YesNo
Discard

>
Error

?

Severity

Redirect
to file

? Yes No

--output=[<file>]

Write to
stderr

stderr
stdout,

System software

System
log file

System
log file

Message

134 EMC Smarts Foundation System Administration Guide

Managing Log Files

When a process is started with the --output option, the status information and error
reports are written to at least one log file. One log file is always created, but two different
versions of the log file may be created, depending on the settings of the SM_LOCALE and
SM_ENCODING_OUPUT environment variables.

The name of a log file has the following syntax:

<name>_<locale>_<encoding>.log

where:

◆ <name> in the log filename column is determined by the rules that apply to the --output
command option, as described in “Command-line options that control messages” on
page 137.

◆ <locale> is based on the value of the SM_LOCALE environment variable.

◆ <encoding> is based on the value of the SM_ENCODING_INPUT environment variable.
“SM_LOCALE” on page 161 and “SM_ENCODING_*” on page 161 provide additional
information.

A log file whose locale is en_US (default value of SM_LOCALE) and encoding is UTF-8
(default value of SM_ENCODING_INPUT) is always created when the --output option is
provided.

◆ If the SM_LOCALE environment variable specifies the English locale (en_US), and the
SM_ENCODING_OUTPUT environment variable specifies UTF-8, then the English log is
the only log file produced.

◆ If the SM_LOCALE variable specifies a locale other than en_US, or the
SM_ENCODING_OUTPUT environment variable specifies something other than UTF-8,
a second log file is created. Log messages written to this second log are localized
according to the setting of the SM_LOCALE variable, if such a localization exists.

◆ If SM_LOCALE specifies an invalid locale (one for which EMC Smarts software has not
been localized), English log data will result in the process log file.

Overview of message logging 135

Managing Log Files

Table 25 on page 136 summarizes the filename, locale and encoding of the log files that
are produced, including the system log containers.

Table 26 on page 136 provides several examples of SM_LOCALE and
SM_ENCODING_OUTPUT variable settings and the resultant logs.

The volume of output to the system log containers is controlled by the --loglevel option.
The volume of output to the log files is controlled by the -–errlevel option, and by the
environment variables that control filtering on specific error tables and error codes.

Log file management behavior applies to both log files. Log rolling is managed in a
synchronized fashion so that data in multiple logs can be correlated. Thus, when the
English log rolls, the non-English log, if it is being produced, will also roll.

Table 25 Log filenames, locales and encodings

Log use Log filename (if –output is used) Locale Encoding

English log <name>_en_US_UTF-8.log

For example,
MYDM_en_US_UTF-8.log

en_US UTF-8

Non-english log <name>_<locale>_<encoding>.log

For example,
MYDM_ja_JP_<encoding>.log

Defined by
SM_LOCALE

Specified by the
SM_OUTPUT_ENCODING
variable.

UNIX syslog Defined by
SM_LOCALE

UTF-8 (permitted and
expected by the new IETF
syslog-protocol RFC, still
in a draft form)

Win Event Log Defined by
SM_LOCALE

UTF-16

Table 26 SM_LOCALE and SM_OUTPUT_ENCODING examples

SM_LOCALE setting SM_OUTPUT_ENCODING value Logs that are produced

en_US UTF-8 <name>_en_US_UTF-8.log

en_US ShiftJIS <name>_en_US_UTF-8.log
<name>_en_US_ShiftJIS.log

fr UTF-8 <name>_en_US_UTF-8.log
<name>_fr_UTF-8.log

zh GB <name>_en_US_UTF-8.log
<name>_zh_GB.log

136 EMC Smarts Foundation System Administration Guide

Managing Log Files

Command-line options that control messages

EMC Smarts messages are controlled by the following standard options for the sm_service
command and environment variables.

For the sm_service options that use a minimum security level, the level can be: none,
emergency, alert, fatal, critical, error, warning, notice, informational, and debug. Note that
fatal is equivalent to emergency, alert, or critical. Figure 4 on page 134 displays the range
of security levels.

◆ Option --output[=<file>]

Write all logging output for an EMC Smarts application to a log file in the
BASEDIR/smarts/local/logs directory. The name of the log file is
<file>_<locale>_<encoding>.log, or the --logname value if <file> is omitted. If --output is
not specified in the invocation line, then no logs are produced.

◆ Option --errlevel=<min_severity_level>

Used by the exception logging mechanism to determine the minimum exception level
for writing messages to the log files. By default, --errlevel is set to warning. Exceptions
below this level are not written to the log files.

◆ Option --loglevel=<min_severity_level>

Used by the exception logging mechanism to determine the minimum exception level
for sending messages to the system error logger. By default, --loglevel is set to error.
Exceptions below this level are not forwarded to the system error logger.

◆ Environment variable SM_MAIN_OPTIONS

Used to set the defaults for the standard options for all applications. For example,

SM_MAIN_OPTIONS=--loglevel=None

sets the default exception level to none for the system error logger, meaning that, by
default, the exception logging mechanism will not send any messages to the system
error logger.

You can specify a space-separated list of standard options for SM_MAIN_OPTIONS,
exactly as the options would appear on the invocation line. Of course, when starting
an application, you can override a globally specified default by including the
appropriate option and new value in the command line.

◆ Environment variable SM_LOGFILES

Used to change the default log location for log files from BASEDIR/smarts/local/logs
to a user-specified location.

Example

SM_LOGFILES=/u/ps/johndoe/ic/logs

This command results in the writing of the log files to the /u/ps/johndoe/ic/logs
directory.

“The sm_service command line” on page 69 provides additional information about
sm_service command options. Appendix A, “Environment Variables,” provides additional
information about environment variables.

Overview of message logging 137

Managing Log Files

Retrieving and setting log, error and trace levels at runtime
There are three computed attributes available to get and set the log, error, and trace levels
of a Domain Manager at runtime. These computed attributes, described in Table 27 on
page 138, are available on the SM_JIIM_Support object, and are therefore available from
within JIIM code. The SM_System object is a subclass of SM_JIIM_Support and also
inherits these computed attributes. The values of these computed attributes can be
retrieved and set by using dmctl.

Retrieving the current level
To retrieve the current levels, invoke the get method on SM_System::SM-System::logLevel,
SM_System::SM-System::errLevel, or SM_System::SM-System::traceLevel. Invoking the
get method will return a string representing the current level such as Warning, Error, or
Fatal.

In this example the error level setting in the MYDM Domain Manager is retrieved, by using
dmctl:

dmctl -s MYDM get SM_System::SM-System::errLevel

Warning

Setting the level
To change the current levels, invoke the put method on SM_System::SM-System::logLevel,
SM_System::SM-System::errLevel, or SM_System::SM-System::traceLevel, and the level is
changed appropriately.

In this example, the trace level setting is changed to None in the MYDM Domain Manager.

dmctl -s MYDM put SM_System::SM-System::traceLevel None

When you change the log, error or trace levels by using the put method on one of these
computed attributes, dmctl does not return anything. However, a message is printed in the
log file. The log message will appear similar to the following:

[April 8, 2009 5:03:41 PM EDT +122ms] t@1149000000 SM_ProtocolEngine-6
JM_MSG-*-JM_TRACE_LEVEL_CHANGED-User 'user1', using remote dmctl
client (id 6), on host host1 with credentials tpadmin1 has changed
the Trace level to None; in file
"/mypath/repos/jiim/SM_JIIM_Support_Impl.c" at line 458

Table 27 Computed attributes to retrieve and set log, error, and trace levels at runtime

Computed Attributes Description

logLevel The minimum exception level for sending messages to the system error
logger.The logLevel attribute is a string, and can be any one of the values
set for the --loglevel command line option.

errLevel The minimum exception level for writing messages to the log files. The
errLevel attribute is a string, and can be any one of the values set for the
--errlevel command line option.

traceLevel Used to print a stack trace to the log file when an exception at this level
or above occurs. Exceptions below this level do not write a stack trace.
The traceLevel attribute is a string, and can be any one of the values set
for the --tracelevel command line option.

138 EMC Smarts Foundation System Administration Guide

Managing Log Files

Log files
When the --output option is specified for the sm_server sm_service command, each
Manager stores its working history in a log file. Every time a Manager starts, it writes
information to the log file when one of the following occurs:

◆ Error

◆ Connection is lost

Log files are, by default, written to the BASEDIR/smarts/local/logs directory. The
SM_WRITEABLE environment variable specifies the default locations for log files and other
output files such as repositories and saved consoles, as described in “SM_WRITEABLE” on
page 170.

Also, the location where log files are saved can be separately controlled with the
SM_LOGFILES environment variable, as described in “SM_LOGFILES” on page 170.

All log files have a .log file type. The default name of a log file is based on the Manager's
name. For example, if the name of the Manager is MYDM, then the name of the English log
file is MYDM_en_US_UTF-8.log. To change the default name, specify a filename with the
--output option for the sm_server sm_service command.

The names of log files written by adapters are described in their respective user’s guides.

EMC Smarts programs can maintain up to 999 different copies of backup log files for each
log that is being generated. For example, if you are generating two log files,
MYDM_en_US_UTF-8.log and MYDM_fr_UTF-8.log file, you can maintain up to 999 backup
log files for the MYDM_en_US_UTF-8.log and 999 backup log files for the
MYDM_fr_UTF-8.log.

The number of saved log files is determined by the value of the SM_BACKUP_FILE_LIMIT
environment variable. When a Manager starts up, it renames a file that matches its log
filenames and adds a .bak suffix to the name (for example, MYDM_en_US_UTF-8.log to
MYDM_en_US_UTF-8.log.bak). If a file with this name already exists, it is renamed
MYDM_en_US_UTF-8.log.NNN, and a new MYDM_en_US_UTF-8.log.bak is created. By
default, programs save three log files, which does not include the active log file.

Log file management behavior applies to both log files. Log rolling is managed in a
synchronized fashion so that data in multiple logs can be correlated. Thus, when the
non-English log rolls, the English log, if it is being produced, will also roll.

Log files 139

Managing Log Files

Diagnostic header

Every log file (initial and after any log rolling) starts with a diagnostic header which
indicates the startup and current information for a process.

The diagnostic header is as follows:

MAIN_MSG-*-STARTUP-The following lines are routine diagnostic output; this is not a crash.
==
Start of process debug and runtime information:
==

<the standard header included with a stacktrace>

==
End of process debug and runtime information
==

The standard header for a stacktrace includes:

◆ Command line arguments of the process

◆ Which libraries are loaded

◆ The environment

Example
The diagnostic header will appear similar to the following example:

[July 15, 2009 10:58:41 AM MST +106ms] t@6084 platform
MAIN_MSG-*-STARTUP-The following lines are routine diagnostic output; this is not a crash.
==
Start of process debug and runtime information:
==
WinNT 200120:

C:/CMP/DMT90/bin/system/sm_server.exe -n TEST_OUT_M -c icf --broker=localhost:426 --output
DMT: V9.0.0.0(90743), 09-Jul-2009 12:01:53 Copyright 1995-2009, EMC Corporation - Build 1169
sm_clsapi.dll (90743) 09-Jul-2009 16:19:12 UTC

sm_rclt.dll (90744) 09-Jul-2009 16:52:37 UTC

sm_servif.dll (90744) 09-Jul-2009 16:52:45 UTC

sm_server.exe (90751) 09-Jul-2009 23:41:33 UTC

 time=Wed Jul 15 10:58:41 2009 (1247680721)
 pid=5986

 SM_HOME=C:/CMP/DMT90
 CWD=C:\CMP\DMT90\bin
Environment:
 ALLUSERSPROFILE=C:\Documents and Settings\All Users
 APPDATA=C:\Documents and Settings\user1\Application Data
 CLIENTNAME=Console
 CommonProgramFiles=C:\Program Files\Common Files
 COMPUTERNAME=COMP1
 ComSpec=C:\WINNT\system32\cmd.exe
 DEFLOGDIR=C:\Documents and Settings\All Users\Application Data\McAfee\DesktopProtection
 FP_NO_HOST_CHECK=NO
 HOMEDRIVE=H:
 HOMEPATH=\
 HOMESHARE=\\someDrive\user1$
 HummPATH=C:\Program Files\Hummingbird\Connectivity\10.00\Accessories\;
 JAVA_HOME=C:\jdk1.6.0_02
 LM_LICENSE_FILE=17955@smarts-lmgr92.smarts.com
 LOGONSERVER=\\CORP3

140 EMC Smarts Foundation System Administration Guide

Managing Log Files

 MAVEN_HOME=C:\maven-2.0.7
 NUMBER_OF_PROCESSORS=2
 OS=Windows_NT

Path=C:/CMP/DMT90/local/bin/system;C:/CMP/DMT90/local/bin/system;C:/CMP/DMT90/bin/system;C:/C
MP/DMT90/local/lib;C:/CMP/DMT90/local/lib;C:/CMP/DMT90/lib;/opt/dev/foo/bin/system;/opt/dev/f
oo/lib;C:/jdk1.6.0_02/jre/bin;C:/jdk1.6.0_02/jre/bin/server;C:/maven-2.0.7/bin;C:/WINNT/syste
m32;C:/WINNT;C:/WINNT/System32/Wbem;C:/perl;C:/jdk1.6.0_02/bin;"C:/Program Files/Common
Files/EMC";C:/Program Files/Windows Imaging/
 PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH
 PROCESSOR_ARCHITECTURE=x86
 PROCESSOR_IDENTIFIER=x86 Family 6 Model 23 Stepping 6, GenuineIntel
 PROCESSOR_LEVEL=6
 PROCESSOR_REVISION=1706
 ProgramFiles=C:\Program Files
 PROMPT=PG
 RoxioCentral=C:\Program Files\Common Files\Roxio Shared\9.0\Roxio Central33\
 SESSIONNAME=Console
 SM_AUTHORITY=<NONE>
 SM_BROKER=localhost:426
 SM_BROKER_DEFAULT=localhost:426
 SM_DEF=/opt/dev/foo
 SM_DEFHOME=/opt/dev/foo
 SM_FIXED=C:/CMP/DMT90;/opt/dev/foo
 SM_HOME=C:/CMP/DMT90
 SM_JAVA=C:\jdk1.6.0_02\jre\bin;C:\jdk1.6.0_02\jre\bin\server;
 SM_JAVAHOME=C:\jdk1.6.0_02\jre
 SM_JDK_HOME=C:\jdk1.6.0_02
 SM_LICENSE=17955@smarts-lmgr92.smarts.com
 SM_MAX_MONITORING_THREADS=1
 SM_PIPEDIR=\\\\.\\pipe\\smarts\\

SM_POP_1=PATH=C:\maven-2.0.7\bin;C:\WINNT\system32;C:\WINNT;C:\WINNT\System32\Wbem;C:\Program
Files\Common Files\Roxio Shared\DLLShared\;C:\Program
Files\Hummingbird\Connectivity\10.00\Accessories\;;c:\Program Files\Microsoft SQL
Server\90\Tools\binn\;C:\Program Files\Perforce;C:\perl;C:\jdk1.6.0_02\bin;"C:\Program
Files\Common Files\EMC";C:\Program Files\Windows Imaging\
 SM_POP_2=LM_LICENSE_FILE=
 SM_POP_3=SM_LIBPATH=
 SM_POP_4=SM_BROKER=
 SM_POP_5=SM_BROKER_DEFAULT=
 SM_POP_6=SM_PROCESS_PATH=
 SM_PROCESS_PATH=C:/CMP/DMT90/bin/system/sm_server.exe
 SM_SITEMOD=C:/CMP/DMT90/local;C:/CMP/DMT90;/opt/dev/foo/local;/opt/dev/foo

SM_SYMBOL_PATH=C:/CMP/DMT90/local/symbols;C:/CMP/DMT90/symbols;/opt/dev/foo/local/symbols;/op
t/dev/foo/symbols;C:/WINNT/symbols/dll;C:/WINNT/system32
 SM_WRITEABLE=C:/CMP/DMT90/local
 SystemDrive=C:
 SystemRoot=C:\WINNT
 TCL_LIBRARY=/opt/dev/foo/lib/tcl
 TEMP=C:\DOCUME~1\user1\LOCALS~1\Temp
 TMP=C:\DOCUME~1\user1\LOCALS~1\Temp
 UATDATA=C:\WINNT\system32\CCM\UATData\D9F8C395-CAB8-491d-B8AC-179A1FE1BE77
 USERDNSDOMAIN=someDomain.EMC.COM
 USERDOMAIN=someDomain
 USERNAME=user1
 USERPROFILE=C:\Documents and Settings\user1
 VS80COMNTOOLS=C:\Program Files\Microsoft Visual Studio 8\Common7\Tools\
 VSEDEFLOGDIR=C:\Documents and Settings\All Users\Application Data\McAfee\DesktopProtection
 windir=C:\WINNT
==
End of process debug and runtime information
==

Log files 141

Managing Log Files

Date and timestamp, and thread id in each log message

The date and timestamp is written at the beginning of each log record. The thread id is
also included in each log record, following the date and timestamp. For example:

[March 2, 2012 3:31:18 PM EDT +357ms] t@3012557744 SM_ProtocolEngine-1
SVIF_MSG-*-DSM-SM_DebugServer: purgeObserver()

Message at the end of a rolled log

When rolling a log, a message is printed at the bottom of the log file before it is rolled. The
message is similar to the following example:

MAIN-N-Closing this log file at March 19, 2009 9:48:19 PM EDT;
continuing in

<BASEDIR>/local/logs/MYDM_en_US_UTF-8.log

Starting a new log file
You can request that a Manager or adapter create a new log file, often referred to as rolling
over a log file. Typically, this is done when a log file becomes quite large. Log files grow
indefinitely, though slowly, under normal conditions.

Most log files are small and rolling over a log file is not necessary. However, if you need to
start a new log file, use the following methods:

◆ For UNIX systems only, use the kill or roll_log commands.

◆ For Windows systems, use the roll_log command.

You can repeat the log file roll-over process as many times as you like. If you need to retain
log files beyond the limit specified by the SM_BACKUP_FILE_LIMIT environment variable,
copy or at least rename the .log.bak files as soon as they are created.

Log rolling is managed in a synchronized fashion so that data in multiple logs can be
correlated. Thus, when the English log rolls, the non-English log, if it is being produced,
will also roll.

The kill command method for UNIX systems
On UNIX systems only, it is possible to request that a Manager or an adapter process “roll
over” its log files. You do this by sending a SIGUSR1 signal to the process ID writing the log
file. Use the kill command of your shell:

kill -USR1 <pid>

Upon receipt of the USR1 signal, a Manager or adapter process first writes an
informational message to the end of the current log file, repeats the steps it executed at
startup, and creates a new log file and a backup log file. All subsequent logging
information is recorded to the new file.

To determine the process number <pid>, you can use the brcontrol utility or for an adapter,
use the system’s ps command.

142 EMC Smarts Foundation System Administration Guide

Managing Log Files

The roll_log command method
The roll_log command is invoked through the dmctl utility, which requires that you attach
to a Manager or adapter with administrative privileges. The syntax of the command is:

exec roll_log [<file-name>]

The <file-name> option enables you to specify a new name for current and subsequent log
files. If you omit this option, the current naming convention is retained. If you specify a
name, the new log file uses that name. Any new log files created with roll_log will also use
this name if a different name is not specified. The new name specified by <file-name> is
handled in exactly the same manner as the --output option of the sm_server command.

On UNIX, for example, to start a new log file for a Manager named MYDM, enter:

BASEDIR/smarts/bin/dmctl -s MYDM exec roll_log

On Windows, the equivalent command is:

BASEDIR\smarts\bin\dmctl -s MYDM exec roll_log

When roll_log is invoked, the Manager or adapter does the following:

1. Writes an informational message to the end of the current log files.

2. Repeats the steps it executed at startup.

3. Creates a new log file and a backup log file for each log file that was currently running.

All subsequent logging information is recorded to the new files.

Starting a new log file 143

Managing Log Files

Controlling the number of saved log files
EMC Smarts software can retain up to 999 rolled over log files for each log that is being
generated. For example, if you are generating two log files, MYDM_en_US_UTF-8.log and
MYDM_fr_UTF-8.log file, you can maintain up to 999 backup log files for the
MYDM_en_US_UTF-8.log and 999 backup log files for the MYDM_fr_UTF-8.log.

The number of log files retained is determined by the value of SM_BACKUP_FILE_LIMIT.
When a Manager starts up, it renames a file that matches its log filename, adding a .bak to
the name. If there is an existing .bak file, the .bak will be replaced with .NNN.

For example, if the SM_BACKUP_FILE_LIMIT environment variable is set to 5, the process is
as follows:

1. A log file is created and it is named MYDM_en_US_UTF-8.log.

2. The MYDM_en_US_UTF-8.log file created in step 1 is rolled over:

• The MYDM_en_US_UTF-8.log file created in step 1 is renamed to
MYDM_en_US_UTF-8.log.bak.

• A new MYDM_en_US_UTF-8.log file is created.

3. The MYDM_en_US_UTF-8.log file created in step 2 is rolled over:

• The MYDM_en_US_UTF-8.log.bak file renamed in step 2 is now renamed to
MYDM_en_US_UTF-8.log.001.

• The MYDM_en_US_UTF-8.log file created in step 2 is renamed to
MYDM_en_US_UTF-8.log.bak.

• A new MYDM_en_US_UTF-8.log file is created.

4. The MYDM_en_US_UTF-8.log file created in step 3 is rolled over:

• The MYDM_en_US_UTF-8.log.bak file renamed in step 3 is renamed to
MYDM_en_US_UTF-8.log.002.

• The MYDM_en_US_UTF-8.log file created in step 3 is renamed to
MYDM_en_US_UTF-8.log.bak.

• A new MYDM_en_US_UTF-8.log file is created.

5. The MYDM_en_US_UTF-8.log file created in step 4 is rolled over:

• The MYDM_en_US_UTF-8.log.bak file renamed in step 3 is renamed to
MYDM_en_US_UTF-8.log.003.

• The MYDM_en_US_UTF-8.log file created in step 4 is renamed to
MYDM_en_US_UTF-8.log.bak.

• A new MYDM_en_US_UTF-8.log file is created.

6. Because the limit of MYDM_en_US_UTF-8.log.NNN files that are retained is set to 3,
when the MYDM_en_US_UTF-8.log file created in step 5 is rolled over:

• The oldest log file, MYDM_en_US_UTF-8.log.001 from step 3 , is deleted.
• The MYDM_en_US_UTF-8.log.bak file renamed in step 5 is renamed

MYDM_en_US_UTF-8.log.004.
• The MYDM_en_US_UTF-8.log file created in step 5 is renamed

MYDM_en_US_UTF-8.log.bak.
• A new MYDM_en_US_UTF-8.log is created.

144 EMC Smarts Foundation System Administration Guide

APPENDIX A
Environment Variables

This appendix describes the environment variables that are used by EMC Smarts
Foundation software. It consists of the following sections:

◆ How variable values are interpreted .. 146
◆ Methods for setting environment variables.. 147
◆ Environment variables for users .. 149

Environment Variables 145

Environment Variables

How variable values are interpreted
This section describes how the software interprets the value of an environment variable. If
a variable, such as SM_BROKER_DEFAULT, requires that its value be formatted in a
particular manner, it is noted in the description of the variable.

How integer variables are interpreted

When the value of an environment variable is to be expressed as an integer, the software
interprets the value of the variable as follows:

◆ Any leading white space is skipped. If the next character is a plus sign (+) or a minus
sign (-), it is also skipped. If the next character was a minus sign, the final numeric
value is negated.

◆ If the value starts with a number other than zero, it may contain only the digits zero
through nine, and it is considered a decimal number.

◆ If the value starts with “0x” or “0X”, it may contain the digits zero through nine, as
well as the letters “a” through “f” and “A” through “F”. At least one digit or letter must
follow the “x” or “X”. The value is treated as a hexadecimal number.

◆ If the value starts with a zero and is not followed by a “x” or “X”, it may contain only
the digits zero through seven, and it is treated as an octal number.

Otherwise, the variable does not represent a numeric value. In most cases, an error
message is printed. In a few cases, the numeric value is simply taken to be zero.

Table 28 on page 146 provides examples of numeric values and how they are interpreted
by the software.

Table 28 Examples of numeric values

Numeric value Meaning

"0" The value zero.

" 10" The value ten. The leading white space is ignored.

"+010" The value eight, octal.

"0x10" The value sixteen, hexadecimal.

"-123" The value negative one hundred twenty-three.

"abc" An illegal value, may be treated as zero.

"019" An illegal value, leading zero makes it octal, but octal numbers cannot
contain a nine. This value may be treated as zero.

"1 " An illegal value, leading white space is ignored but trailing white space is
not. This value may be treated as zero.

"0X" An illegal value, at least one digit or letter must follow the “OX”. This
value may be treated as zero.

"- 23" An illegal value, embedded white space is not permitted. This value may
be treated as zero.

146 EMC Smarts Foundation System Administration Guide

Environment Variables

How Boolean variables are interpreted

When an environment variable is expressed as a Boolean, the software interprets the
value of the variable, when set, as follows:

◆ If the value starts with a letter, an uppercase “T” or a lowercase “t” or an uppercase
“Y” or a lowercase “y”, the variable is interpreted as true. If the value starts with any
other letter, the variable is interpreted as false.

◆ If the value can be interpreted as an integer variable, and it has a value of zero, the
variable is interpreted as false. If the value is anything other than zero, the variable is
interpreted as true.

◆ For any other value, the variable is interpreted as false.

Methods for setting environment variables
You can use one of the following methods to set an environment variable. The difference
between these methods is that one sets the environment variable across an EMC Smarts
product and the other sets the environment variable for a particular program.

Setting an environment variable product-wide

When necessary, you can set an environment variable so that a product installed in that
location can use it. For example, the SM_BROKER_DEFAULT variable, the value of which is
set during installation, is used in this manner.

To set an environment variable so that it can be used by the programs of a product, add it
to the runcmd_env.sh file, which is located in the BASEDIR/smarts/local/conf directory of
that product.

Here is an example procedure for adding the SM_AUTHORITY environment variable to the
runcmd_env.sh file:

1. Go to the BASEDIR/smarts/bin directory and enter the following command to open the
runcmd_env.sh file:

sm_edit conf/runcmd_env.sh

2. Use the following syntax to add the SM_AUTHORITY variable and its value:

SM_AUTHORITY=”<STD>”

3. Save and close the file.

The modified version of the runcmd_env.sh file is saved to the
BASEDIR/smarts/local/conf directory.

At this point, any EMC Smarts program that is started from this installation directory
will use the applicable environment variables that are specified in the runcmd_env.sh
file.

4. EMC Smarts programs that were previously launched from this installation directory
need to be restarted for any new environment variable to take effect. Chapter 5,
“Controlling Startup,” describes how to start services.

Methods for setting environment variables 147

Environment Variables

Setting an environment variable for a program

You can also set an environment variable so that it only affects a particular program.
Typically, this is done by adding the environment variable to the program’s sm_service
command line. For example, if you want a Manager to use a particular serverConnect.conf
file, you would specify the SM_SERVERCONNECT variable in the sm_service command line
for that program.

The following example sets the value of the SM_SERVERCONNECT environment variable to
point to the server_Connect_IP.conf file.

1. Use the sm_service show action with the --cmdline option to display the existing
command line for the program. You must have administrative privileges when typing
this command.

BASEDIR/smarts/bin/sm_service show --cmdline ic-am-server

Output:

BASEDIR/smarts/bin/sm_service install
--name=ic-am-server
--description=“EMC Smarts IP Availability Manager”
--startmode=runonce
BASEDIR/smarts/bin/sm_server
--name=INCHARGE-AM
--config=icf
--bootstrap=bootstrap-am.conf
--port=0
--subscribe=default
--ignore-restore-errors
--output

2. Use the sm_service install action with the --force option to add the environment
variable to the command line. The --env option specifies the environment variable.

BASEDIR/smarts/bin/sm_service install
--force
--name=ic-am-server
--description=“EMC Smarts IP Availability Manager”
--startmode=runonce
--env=SM_SERVERCONNECT=BASEDIR/smarts/conf/serverConnect_IP.conf
BASEDIR/smarts/bin/sm_server
--name=INCHARGE-AM
--config=icf
--bootstrap=bootstrap-am.conf
--port=0
--subscribe=default
--ignore-restore-errors
--output

3. Do one of the following:

◆ Start the program.

◆ Stop and restart the program.

148 EMC Smarts Foundation System Administration Guide

Environment Variables

Environment variables for users
The following list of environment variables can be applied to the software.

◆ “SM_DISPLAY”

◆ “SM_EDITOR”

◆ “SM_SNMP_BUG_COMPATIBLE”

◆ “SM_ENABLE_ESM_EVENT_MAPPING”

◆ “SM_ENABLE_SNMP_SET”

◆ “SM_MAIN_OPTIONS”

◆ “SM_OUTGOING_PROTOCOL”

◆ “SM_INCOMING_PROTOCOL”

◆ “SM_FIPS140”

◆ “SM_DISABLE_KEEPALIVES”

◆ “SM_IP_VERSIONS”

◆ “SM_MAX_MONITORING_THREADS”

◆ “SM_AUDIT_CLIENT_ACTIONS”

◆ “SM_AUDIT_ALL_CONNECTIONS”

◆ “SM_NO_LINE_FOLD”

◆ “SM_FOLD_WIDTH”

◆ “SM_HOSTSFILE”

◆ “SM_MAX_SESSION_VERSION”

◆ “SM_MIN_PKTSIZE_COMPRESS”

◆ “SM_SNMP_ALLOW_DUP_ENGINEID”

◆ “SM_SNMP_MAX_MESSAGE_SIZE”

◆ “SM_ASL_MAX_STACK_DEPTH”

◆ “SM_REGISTER_ADDR”

◆ “MALLOC_ARENA_MAX_”

◆ “SM_LOCALE”

◆ “SM_ENCODING_*”

◆ “SM_JAVA_PACKAGE_ROOT”

◆ “SM_JDK_HOME”

◆ “SM_JAVA”

◆ “SM_JAVAHOME”

Environment variables for users 149

Environment Variables

◆ “SM_BROKER_DEFAULT”

◆ “SM_BROKER”

◆ “SM_BROKER_NTHREADS”

◆ “LM_LICENSE_FILE”

◆ “SM_LICENSE”

◆ “SM_LMGRD_LICENSE_FILE”

◆ “SM_LMGRD92_LICENSE_FILE”

◆ “SM_AUTHORITY”

◆ “SM_KEYFILE”

◆ “SM_CLIENTCONNECT”

◆ “SM_OKLOGIN_LOGLEVEL”

◆ “SM_SERVERCONNECT”

◆ “SM_DATETIME_FORMAT”

◆ “TZ”

◆ “LC_TIME”

◆ “SM_LOG_ROLL_SIZE”

◆ “SM_BACKUP_FILE_LIMIT”

◆ “SM_LOG_NAME_CUSTOM”

◆ “SM_LOGFILES”

◆ “SM_WRITEABLE”

◆ “SM_RULESET_PATH”

◆ “SM_COUNT_REPOS_LOCKS”

◆ “SM_REPOS_LOCKS_LIMIT”

◆ “SM_SUBSCRIPTION_TRACE”

◆ “SM_IGNORE_DYNMODEL_ERRORS”

SM_SITEMOD

The SM_SITEMOD variable provides a directory search list that Smarts software uses to
locate files. This list is used to find files that users can, and in some cases must, modify to
use Smarts at their site. Such files include configuration files, ASL files, and scripts. For
locating a file, the directories listed in SM_SITEMOD are searched in the same order as
they are specified. The components of the list are separated by colons (:) on UNIX and
semicolons (;) on Windows.

The default value of SM_SITEMOD is <smarts>/local:<smarts>. For specifying a new search
directory, one only has to set SM_SITEMOD to the new directory. The "runcmd" wrapper
program that is used to launch all Smarts executables, internally constructs the actual
search path, by appending the known search paths to the user specified path.

150 EMC Smarts Foundation System Administration Guide

Environment Variables

It is strongly recommended that SM_SITEMOD be only specified in the service installation
command line. Setting SM_SITEMOD in runcmd_env.sh is not recommended, as it
sometimes causes the internally constructed search path to get overridden, which may
cause certain components to not work correctly.

The Console does not currently support SM_SITEMOD.

SM_DISPLAY

This environment variable specifies the location of a client’s X Window System display
(typically for a console user). Output from a server tool that uses the X protocol is directed
to the display specified by SM_DISPLAY. Only EMC Smarts Service Assurance Manager
uses this variable.

SM_EDITOR

This environment variables enables you to set the text editor that is invoked by the
sm_edit utility. When SM_EDITOR is not defined, the sm_edit utility uses the value of one
of the following system environment variables: VISUAL then EDITOR. If these environment
variables are not defined, the sm_edit utility uses the following editors:

◆ Edit editor on UNIX systems

◆ WordPad editor on Windows systems

SM_SNMP_BUG_COMPATIBLE

Implementation of the SNMP protocol is strict in that the software only sends or receives
SNMP messages that conform to the SNMP standard. By default, the software only accepts
conforming SNMP messages. Unfortunately, not all SNMP implementations are as strict.
The result is that EMC Smarts programs may receive nonconforming SNMP messages.

In some cases, the software can successfully interpret and handle nonconforming
messages. If you set the SM_SNMP_BUG_COMPATIBLE environment variable, the software
will accept the nonconforming SNMP messages in two cases:

◆ When the type of an SNMP variable is not the required type but the value can be
unambiguously interpreted as the required type. An example is when a TimeTicks
variable type is sent as an Unsigned32 or non-negative Integer32 variable.

◆ When the type of an SNMP variable is inconsistent with the version of the SNMP
protocol that delivers the message. An example is when a Counter64 variable is sent
in a version 1 (v1) SNMP message.

When the SM_SNMP_BUG_COMPATIBLE environment variable is set, any invalid SNMP
message that is accepted by the software is logged at a warning level to pinpoint the
source of the invalid SNMP message and to determine the reason why it is invalid.

SM_SNMP_BUG_COMPATIBLE is a Boolean.

Environment variables for users 151

Environment Variables

SM_ENABLE_ESM_EVENT_MAPPING

This environment variable is set to TRUE by default in the runcmd_env.sh file. It is
applicable only to Service Assurance Manager and Adapter Platform (OI Server)
installations.

This variable ensures that the Audit History is preserved post upgrade for active
VMwareESX and vNIC notifications. In case some ESX or Virtual Interface instances remain
in the alert state before and post upgrade, Server Manager will notify them as alerts for
Hypervisor and VirtualInterface instances. Service Assurance Manager will map them to
VMwareESX and vNIC if they were active before the upgrade. After the problem clears, the
notifications will be archived. This allows you to keep a complete history of the problem
and the user actions performed on the notification. Post archival, new outages are
displayed under the new class name.

SM_ENABLE_SNMP_SET

This environment variable is disabled by default.

◆ When set to 1, it enables the use of the SM_SNMP_Actions::Set() method.

◆ When it is disabled (set to 0), the method cannot be used to set the value of an OID

SM_MAIN_OPTIONS

The environment variable SM_MAIN_OPTIONS enables you to set default values for the
standard options supported by the software, as described in Table 29 on page 153. You
can override the values specified by SM_MAIN_OPTIONS by providing alternative values
on the command line.

For example, if you set SM_MAIN_OPTIONS to --errlevel=fatal, programs will record all
errors with a level of fatal or higher.

152 EMC Smarts Foundation System Administration Guide

Environment Variables

Table 29 Standard options supported by SM_MAIN_OPTIONS (page 1 of 2)

Standard option Definition

--accept=<hosts> Specify a list of hosts, by name or IP address, from which programs
accept connections. Multiple entries should be separated by
commas.
By default, programs accept connections from any host. Programs
that accept connections are dmstart, sm_server, sm_adapter, and
sm_trapd. Note that sm_adapter and sm_trapd accept only
connections when started with the --name option.
To limit connections to the host on which the software is installed,
specify the name or IP address of the host instead of localhost.

--daemon Run the program as a daemon (UNIX only). Messages generated
from internal logging calls are directed to the log file. Log files are
written to the BASEDIR/smarts/local/logs directory.

--facility=<facility> Instructs the program to log any syslog messages with the specified
syslog facility (UNIX/Linux only). The default is Daemon.
The <facility> setting can be one of the following:
• Kern
• User
• Mail
• Daemon
• Auth
• Lpr
• News
• Uucp
• Cron
• Local0
• Local1
• Local2
• Local3
• Local4
• Local5
• Local6
• Local7

--errlevel=<level> Specify the minimum level at which error events are written to the
standard error output. Possible values include: none, emergency,
alert, fatal, critical, error, warning, notice, informational, debug. The
default is warning. (Note that fatal is equivalent to emergency, alert,
or critical.)

--loglevel=<level> Specify the minimum level at which event messages are written to
the system logging facility. Possible values include: none,
emergency, alert, fatal, critical, error, warning, notice, informational,
debug. The default is error. (Note that fatal is equivalent to
emergency, alert, or critical.)

Environment variables for users 153

Environment Variables

SM_OUTGOING_PROTOCOL

This environment variable controls the kinds of connections that a program that is acting
as a client is allowed to initiate, when not using FIPS 140 mode. It can contain one or more
numbers. These numbers specify the security level at which communications can occur. If
more than one is specified, they must be separated with commas. If the variable is not set,
it is the same as specifying 0.

SM_INCOMING_PROTOCOL

This environment variable controls the kinds of connections that a program that is acting
as a server is allowed to accept, when not using FIPS 140 mode. It can contain one or more
numbers. If more than one is specified, they must be separated with commas. If the
variable is not set, it is the same as specifying 0.

SM_FIPS140

This environment variable controls enables and disables FIPS mode:

◆ TRUE = Enable FIPS 140 mode

◆ FALSE = Disable FIPS 140 mode (default)

When FIPS 140 mode is enabled, the software uses Transport Layer Security v1.2, and the
settings of SM_OUTGOING_PROTOCOL and SM_INCOMING_PROTOCOL are ignored.

--logname=<name> Specify the name used to identify the program in the system log. On
UNIX systems, the default is the program name. On Windows
systems, the default is the registered service name.

--output[=<file>] Messages generated from internal logging calls are directed to a log
file. Log files are written to the BASEDIR/smarts/local/logs
directory. If <file> is not specified, the value of --logname is used.
If a log file with specified name already exists, it is moved to a
backup file, BASEDIR/smarts/local/logs/<file>.bak. If the backup file
already exists, it is deleted.

--tracelevel=<level> Specify the minimum level at which a process stack trace is written
to the standard error output. Possible values include: none,
emergency, alert, fatal, critical, error, warning, notice, informational,
debug. The default is fatal. (Note that fatal is equivalent to
emergency, alert, or critical.)

--useif=<IP address> Specifies the IP address that the program should use as the source
address for outgoing ICMP and SNMP packets and the destination
address for which it accepts incoming ICMP and SNMP packets. <IP
Address> must be a *v4* address.

--version Print the version of the program.

Table 29 Standard options supported by SM_MAIN_OPTIONS (page 2 of 2)

Standard option Definition

154 EMC Smarts Foundation System Administration Guide

Environment Variables

SM_DISABLE_KEEPALIVES

This environment variable controls whether KeepAlive messages for the EMC Smarts
proprietary inter-process communication (IPC) protocol are used. To disable KeepAlive
messages, specify a nonzero number. To enable KeepAlive messages, specify a zero (0).
KeepAlive messages are enabled by default.

The EMC Smarts proprietary IPC uses KeepAlive messages to test TCP connections
between EMC Smarts clients and Managers. In order for a Manager to detect whether a
client is temporarily unresponsive or has permanently dropped the TCP connection, the
client sends a KeepAlive message as an out-of-band byte of TCP urgent data every 90
seconds to indicate that the client is still connected. If the Manager does not receive
periodic KeepAlive messages, it concludes that the client has dropped the connection and
shuts down the server end of the connection.

Bear in mind that in some cases, not receiving KeepAlive messages from the client could
be due to other software applications and hardware not supporting TCP urgent data, not
the result of the connection being down.

Under certain circumstances, the client’s operating system might incorrectly insert the
urgent data into the regular data stream, which corrupts the regular data stream and
causes problems in the connection. If the urgent data byte leaks in at the point where the
next command is expected, the leak can result in an invalid handler code and generate
additional messages in the Manager’s log file.

In rare cases when communication issues exist, you may disable KeepAlives by specifying
a nonzero number for the SM_DISABLE_KEEPALIVES environment variable. Because this
workaround might cause Managers (whose clients have disconnected) to experience
memory growth and run out of memory, work with your EMC customer support team to
optimize your network operation environment if the problem persists.

To control KeepAlive messages for only the Global Console, specify the Java property
com.smarts.disable_keepalives as described in the EMC Smarts Service Assurance
Manager Operator Guide.

The SM_DISABLE_KEEPALIVES environment variable has no effect on version 9.2 and later
connections that use Transport Layer Security.

SM_IP_VERSIONS

The SM_IP_VERSIONS environment variable enables you to control the address family
used for hostname resolution. It affects the following:

◆ EMC Smarts utilities that use a command line (for example, sm_snmpwalk, dmctl,
sm_tpmgr)

◆ Name resolution during discovery

◆ ASL scripts

◆ Ping

◆ DNS lookup

Environment variables for users 155

Environment Variables

SM_IP_VERSIONS also controls which ports a Domain Manager listens on:

◆ If SM_IP_VERSIONS is set to "v4" or "v6", a Domain Manager will only open sockets
and listen on that address family.

◆ If SM_IP_VERSIONS is set to "v4v6" or "v6v4", a Domain Manager will listen on both
address families.

The SM_IP_VERSIONS setting is also dependent on the address family as follows:

◆ If you are running on a system which only supports a single address family, it is
recommended that SM_IP_VERSIONS be set to "v4" or "v6", as appropriate.

◆ If you are running on a system which supports both address families, set it to the
value which best describes your administrative preferences.

The variable can be set depending on the order in which you want to do hostname
resolution.If the variable is not set, and the address family is not explicitly provided on the
command line (for example, frame.someDomain.emc.com:v4), the default behavior is to
resolve the hostname as an IPv4 hostname. The variable should be set to the address
family that is predominate for the network.

To set this variable, add it to the runcmd_env.sh file, which is located in the
BASEDIR/smarts/local/conf directory of the product.

The syntax of the environment variable is:

SM_IP_VERSIONS="<ip_value>"

Table 30 on page 156 lists acceptable values for the SM_IP_VERSIONS environment
variable.

Detailed instructions about setting environment variables and information about the
runcmd_env.sh file is provided in the “Methods for setting environment variables” on
page 147.

Table 30 Acceptable values for the SM_IP_VERSIONS environment variable

ip_value Description

"V4" The hostname is resolved to an IPv4 hostname (default).

"V6" The hostname is resolved to an IPv6 hostname.

"V4V6" The hostname is resolved to an IPv4 hostname. If that fails, the Domain
Name System server tries to resolve the hostname to an IPv6 hostname.

"V6V4" The hostname is resolved to an IPv6 hostname. If that fails, the Domain
Name System server tries to resolve the hostname to an IPv4 hostname.

Note: The acceptable value can also be lowercase ("v4", "v6", "v4v6" or "v6v4").

156 EMC Smarts Foundation System Administration Guide

Environment Variables

SM_MAX_MONITORING_THREADS

The SM_MAX_MONITORING_THREADS environment variable represents the maximum
number of monitoring threads that the monitoring system will use for monitoring changes.
The default value is 3.

The recommended values are described in Table 31 on page 157.

SM_AUDIT_CLIENT_ACTIONS

Setting the SM_AUDIT_CLIENT_ACTIONS environment variable equal to 1 produces the log
if the client requests it. However, even if the client requests it, auditing does not occur if it
has not been enabled on the server with either the SM_AUDIT_CLIENT_ACTIONS variable,
or the SM_AUDIT_ALL_CONNECTIONS environment variable, which is described in
“SM_AUDIT_ALL_CONNECTIONS” on page 157.

SM_AUDIT_ALL_CONNECTIONS

Setting the SM_AUDIT_ALL_CONNECTIONS environment variable equal to 1 forces the
logging even if the client does not request it. If you set SM_AUDIT_ALL_CONNECTIONS
equal to 1, then you do not have to set SM_AUDIT_CLIENT_ACTIONS, described in
“SM_AUDIT_CLIENT_ACTIONS” on page 157.

If you set SM_AUDIT_ALL_CONNECTIONS, you do not need to modify the client. However, if
you suspect a specific client you might still want to use the by-request-only access
provided by SM_AUDIT_CLIENT_ACTIONS to reduce the amount of logging coming from
other sources.

SM_NO_LINE_FOLD

The environment variable SM_NO_LINE_FOLD can be set to prevent the line wrapping in
log files. Add the following lines to the BASEDIR/local/conf/runcmd_env.sh file:

export SM_NO_LINE_FOLD
SM_NO_LINE_FOLD="TRUE"

You can use any string value for SM_NO_LINE_FOLD, it is only if it has no string associated
with it that lines fold.

SM_FOLD_WIDTH

The SM_FOLD_WIDTH environment variable removes the default line wrapping of
exception messages in the log file. The lines will only wrap if SM_FOLD_WIDTH=X where X
specifies the column at which to fold the lines.

Table 31 Recommended values for SM_MAX_MONITORING_THREADS

Platform Recommended value

Windows 2003
Windows 2008

1

All other supported platforms Up to 3, but no more than the number of CPUs on the machine.

Environment variables for users 157

Environment Variables

SM_HOSTSFILE

On 32-bit Solaris builds of the software, a bug in the Solaris system libraries prevents
/etc/hosts from being read properly if more than 256 file descriptors are in use. If you set
SM_HOSTSFILE=1 in the environment, then /etc/hosts is read using application code,
bypassing the system libraries as a work-around to this problem.

This work-around only handles IPv4 addresses in /etc/hosts. The work-around does not
work for IPv6 addresses, and will not read /etc/ipnodes (or /etc/inet/ipnodes). IPv6
addresses obtained from DNS are handled properly in all cases. If it is necessary to obtain
IPv6 addresses from /etc/ipnodes, you should use the 64-bit version of the product.

SM_HOSTSFILE is only available on Solaris versions of the software. It operates in both 32
and 64-bit builds, but since the 64-bit system libraries work properly, it is recommended
that it not be set on 64 bit builds.

SM_MAX_SESSION_VERSION

SM_MAX_SESSION_VERSION is an environment variable that controls the maximum
version of the protocol session that is negotiated by the peer. The valid levels are
described inTable 32 on page 158,

Encryption negotiation also uses SM_INCOMING_PROTOCOL and
SM_OUTGOING_PROTOCOL to determine exactly the level that is negotiated.

If the previous behavior of out-of-band (OOB) KeepAlives is required, set this variable to 2.

SM_MIN_PKTSIZE_COMPRESS

The SM_MIN_PKTSIZE_COMPRESS environment variable enables compression for flow
frames >= <size>. By default, compression is disabled.

◆ If unset or equal to 0, SM_MIN_PKTSIZE_COMPRESS enables compression with a
reasonable default size.

◆ To disable compression, set SM_MIN_PKTSIZE_COMPRESS to a large value (>65536).

Table 32 Valid levels for SM_MAX_SESSION_VERSION

Level Description

0 Legacy. No KeepAlives. No encryption

1 Encryption. No KeepAlives.

2 Encryption and KeepAlives. This level is the default value.

3 Encryption and Inband KeepAlives. Also supports compression.

158 EMC Smarts Foundation System Administration Guide

Environment Variables

SM_SNMP_ALLOW_DUP_ENGINEID

The SNMP V3 component will not interact with two devices with the same engine Id in the
managed domain in accordance to RFC 2574 (User-based Security Model (USM) for
version 3 of the Simple Network Management Protocol (SNMPv3)), namely section 2.2:
2.2. Replay Protection. Each SNMP engine maintains three objects: snmpEngineID, which
(at least within an administrative domain) uniquely and unambiguously identifies an
SNMP engine.

When the environment variable SM_SNMP_ALLOW_DUP_ENGINEID is set, the SNMP Lcd
will index the specific engine data by ip:port instead of engineId thus allowing interaction
with networks not conforming with section 2.2 of RFC2574. The recommended way of
enabling this feature is to add SM_SNMP_ALLOW_DUP_ENGINEID=1 in the
local/conf/runcmd_env.sh.

SM_SNMP_MAX_MESSAGE_SIZE

SM_SNMP_MAX_MESSAGE_SIZE is an environment variable that controls the maximum
size of the SNMP datagram that is processed. The default value is 8k (8192 bytes).

The default size can be overridden by setting the environment variable
SM_SNMP_MAX_MESSAGE_SIZE to the required maximum size. For example, setting
SM_SNMP_MAX_MESSAGE_SIZE equal to 16384 sets the maximum to 16k, which is
double the default value.

If you try to set SM_SNMP_MAX_MESSAGE_SIZE to less than 1472 (the recommended
minimum for UDP/IPv4 per RFC-3417, section 3.2), it will be silently adjusted to be exactly
1472.

Although SM_SNMP_MAX_MESSAGE_SIZE can be used to set the maximum SNMP
datagram size to less than the default 8k, this is strongly discouraged.

If you try to set SM_SNMP_MAX_MESSAGE_SIZE greater than 64k (65536 bytes), it will be
set to exactly 65536. A value of 65536 bytes is the largest possible datagram size
supported by UDP.

Setting SM_SNMP_MAX_MESSAGE_SIZE to large values will increase server memory
usage. This is especially true for trap processing during periods of high trap reception rate.
Therefore, this option should only be used when it is needed to communicate with SNMP
devices sending unusually large datagrams. Only increase the setting of this environment
variable on the specific Domain Managers which manage those devices.

Environment variables for users 159

Environment Variables

SM_ASL_MAX_STACK_DEPTH

In order to avoid a recursive ASL script to crash the server, a limit of 700 calls has been
placed on the recursion of ASL scripts. When this happens a message is logged similar to:

ASL-W-ERROR_PARSE-While parsing rule 'START'
 ASL-PARSER_STACK_OVERFLOW-ASL engine has exceeded the stack limit of

700 during execution
 ASL-CALL_STACK_HEADING-Generating execution trace of RuleSet:

/emc/ferren/DEV/p-dmt90rel/smarts/ga/linux_rhAS40-x86-64/debug/tasl
stackoverflow.asl

 ASL-CALL_STACK_RULE- RuleName: R1, Line: 19
 ASL-CALL_STACK_RULE- RuleName: R1, Line: 19
 ASL-CALL_STACK_RULE- RuleName: R1, Line: 19

If you have a valid (non-recursive) case where the stack depth of ASL needs to be over
700, the limit can be changed by setting the environment variable
SM_ASL_MAX_STACK_DEPTH.

If the value is too high, process stack overflow can occur resulting in server crash.

SM_REGISTER_ADDR

When a server is running on a machine which has more than one IPv4 and/or more than
one IPv6 address, it selects one address from each protocol family to register with the
Broker. The selection of which address is arbitrary. The selection algorithm is not
documented and subject to change.

On a fully-connected network, the arbitrary selection is usually satisfactory, but there may
be situations where it is required to force a specific address to be registered. This can be
accomplished by setting the environment variable SM_REGISTER_ADDR. The value can be
an IPv4 address literal, an IPv6 address literal, or one of each, delimited by a comma.

If you specify an address for one protocol family, the other one will revert to using the
original arbitrary selection algorithm.

There is no checking to verify that the specified address is configured or reachable.
Specifying an incorrect value can result in a non-functional server. It is recommended that
this option only be used in specific situations where the default behavior is unacceptable.

An IPv4 example:

SM_REGISTER_ADDR=10.5.24.105

An IPv6 example:

SM_REGISTER_ADDR=fe80::218:8bff:fe48:50b1

Both v4 and v6. The order is not important:

SM_REGISTER_ADDR=fe80::218:8bff:fe48:50b1,10.5.24.105

160 EMC Smarts Foundation System Administration Guide

Environment Variables

MALLOC_ARENA_MAX_

The MALLOC_ARENA_MAX_ environment variable controls the maximum number of arenas
that can be created for a process using the ptmalloc library. An arena is a data structure
used by ptmalloc for maintaining reuse of free memory.

When the ptmalloc library is loaded and initialized it determines whether the
MALLOC_ARENA_MAX_ environment variable has been defined in the environment
variable set:

◆ When the MALLOC_ARENA_MAX_ is not defined in the environment variable set, there
is no maximum number of arenas. This is the default.

◆ If MALLOC_ARENA_MAX_ is set to any positive integer, then that number defines the
number of arenas.

Variables that control the locale and encoding

These variables specify the local and encoding used by the programs.

SM_LOCALE

The SM_LOCALE environment variable specifies the appropriate language and region in
which you want to see output. In general, SM_LOCALE must be specified consistently with
advice in IETF RFC 1766/3066. If you do not specify a value for SM_LOCALE, it defaults to
en_US.

ICU allows for some flexibility on the case (upper and lower) of the language and country
codes and for the separator character used to join the two.

EMC Smarts software will convert the value specified in SM_LOCALE to a normalized form
that can be recognized by all ICU library functions which take a locale argument. The
normalization (done by calling the ICU function, uloc_canonicalize) enables ICU library
functions to perform predictably.

export SM_LOCALE=ja_JP
sm_server –-name=Tokyo

SM_ENCODING_*

There are four SM_ENCODING_* environmental variables that can be set.

◆ SM_ENCODING_SHELL indicates the encoding used by the shell, primarily useful for
specifying what encoding is used for command line arguments.

◆ SM_ENCODING_SYSTEM indicates the encoding used for internal interaction with the
operating system.

• Primarily dictates the encoding used for file system access.

• Secondarily indicates the encoding used when internally accessing the
environment.

◆ SM_ENCODING_INPUT indicates the encoding used by stdin.

◆ SM_ENCODING_OUTPUT indicates the encoding used by stdout and stderr.

Environment variables for users 161

Environment Variables

Tuning the SM_ENCODING_INPUT and SM_ENCODING_OUTPUT values is primarily useful if
you are redirecting or piping text somewhere other than the shell.

The behaviors of these variables is different on Windows and UNIX.

On Windows the behavior is:

◆ If SM_ENCODING_SHELL is not set, then its value will default to the current Windows
"Active Code Page."

◆ SM_ENCODING_SYSTEM will always be ignored since there is only one valid possible
value, and it is set internally.

◆ If SM_ENCODING_INPUT is not set, then its value will default to the current Windows
"OEM Code Page."

◆ If SM_ENCODING_OUTPUT is not set, then its value will mirror SM_ENCODING_INPUT.

Separate values are necessary due to the way the Windows command shell (cmd.exe)
behaves.

On UNIX the behavior is:

◆ If SM_ENCODING_SHELL is not set, then its value will default to "UTF-8."

◆ If SM_ENCODING_SYSTEM is not set, then its value will mirror SM_ENCODING_SHELL.

◆ If SM_ENCODING_INPUT is not set, then its value will mirror SM_ENCODING_SHELL.

◆ If SM_ENCODING_OUTPUT is not set, then its value will mirror SM_ENCODING_INPUT.

In UNIX it generally makes sense to set all four values identically.

The following example sets the encoding to Shift_JIS.

export SM_ENCODING_INPUT=Shift_JIS
export SM_ENCODING_OUTPUT=Shift_JIS
export SM_ENCODING_SHELL=SHIFT_JIS
export SM_ENCODING_SYSTEM=Shift_JIS
sm_server –-name=Osaka

162 EMC Smarts Foundation System Administration Guide

Environment Variables

Variables that control Java settings

These variables specify the Java settings.

SM_JAVA_PACKAGE_ROOT

The SM_JAVA_PACKAGE_ROOT environment variable can be used to specify the java
package root.

SM_JDK_HOME

The SM_JDK_HOME environment variable is used to indicate the location of the JDK, if
present. If you provide the location of the JDK while running the appropriate setup script,
the SM_JDK_HOME variable will be defined in the runcmd_env.sh file.

If you are using a 64-bit version of the software, then you should set SM_JDK_HOME to the
location of a 64-bit version of the JDK. Likewise, if you are using a 32-bit version of the
software, then you should set SM_JDK_HOME to indicate the location of a 32-bit version of
the JDK.

SM_JAVA

The SM_JAVA environment variable specifies a Java Runtime Environment (JRE) other than
that in BASEDIR/smarts/jre. The contents are the paths to the libraries of the JRE. On UNIX,
the value of SM_JAVA is added to the LD_LIBRARY_PATH (Solaris and Linux). On Windows,
the value of SM_JAVA is added to the PATH.

This variable is optional. If left unset, runcmd_env.sh will assume standard paths relative
to the value of SM_JAVAHOME.

SM_JAVAHOME

The SM_JAVAHOME environment variable is used in conjunction with SM_JAVA to specify a
non-standard JRE. It specifies the location of the JRE, and defines the value of the JVM's
"java.home" system property.

◆ If SM_JAVAHOME is left unset and SM_JDK_HOME was specified, then SM_JAVAHOME
will effectively be set to SM_JDK_HOME/jre.

◆ If left unset and SM_JDK_HOME is also unset, and if the BASEDIR/jre directory exists,
then SM_JAVAHOME will effectively be set to BASEDIR/jre.

Environment variables for users 163

Environment Variables

Variables that control the Broker

These variables control the location of the Broker.

SM_BROKER_DEFAULT

This environment variable specifies the default location of the Broker. When you install
the software, you are prompted for the host location of the Broker and its port number.
The Broker’s location can be specified in any one of the following formats: “host:port”,
“host” or “:port”. When the host or port values are omitted, the default value is used. The
default host value is “smarts-broker” or “localhost”. The default port value is 426. If the
location of the Broker changes, you must edit the runcmd_env.sh file on all systems where
EMC Smarts Foundation software is installed. In addition, you may have to edit the Broker
startup script.

The software follows these steps to determine the Broker’s location:

1. Verifies whether the Broker’s location was specified as an option at startup. When this
option is specified, no other options are checked.

2. It checks the value of the SM_BROKER_DEFAULT environment variable. If this variable
is set, no other options are checked.

3. It checks if the Broker is running on the host smarts-broker and listening on TCP port
426.

4. If smarts-broker is not defined, the program checks port 426 on localhost.

The hostname smarts-broker is usually an alias, such as a DNS CNAME.

SM_BROKER

This environment variable should only be set in special cases when you want to override
the default Broker. For example, if you have to temporarily move your Broker in an
emergency or test situation, you could set this variable.

Under normal circumstances, you should use the SM_BROKER_DEFAULT environment
variable to set the default location of the Broker.

SM_BROKER_NTHREADS

This environment variable determines the maximum number of threads that the Broker
can use. Valid values are 20 through 128, with a default value of 20.

If a user sets SM_BROKER_NTHREADS to an invalid string or a value less than 20, the value
is set to 20 (default). If a user sets the variable to a value greater than 128, the value is set
to 128.

164 EMC Smarts Foundation System Administration Guide

Environment Variables

Variables that control FlexNet Publisher licensing

These variables control the FlexNet Publisher licensing.

LM_LICENSE_FILE

The LM_LICENSE_FILE environment variable is used by the FlexNet Publisher license
software. This variable specifies the location of the license files or the license servers
(port@host). In many cases, this variable has already been set for another software
product that also uses the FlexNet Publisher license software.

The user does not have to set this environment variable; instead, use SM_LICENSE. The
"runcmd" wrapper program that is used to launch all Smarts executables internally sets
LM_LICENSE_FILE based on SM_LICENSE_FILE.

SM_LICENSE

The value of the SM_LICENSE environment variable is either the full pathname to the
license file itself, or it is port@host which means that there is a license server running at
that port on that host.

SM_LMGRD_LICENSE_FILE

Similar to LM_LICENSE_FILE, this FlexNet Publisher variable is the vendor-specific
environment variable that specifies the location of the license files or the license servers.
When both LM_LICENSE_FILE and SM_LMGRD_LICENSE_FILE are set, the
SM_LMGRD_LICENSE_FILE environment variable takes precedence.

The FlexNet Publisher License Administration Guide provides additional information about
the LM_LICENSE_FILE and SM_LMGRD_LICENSE_FILE environment variables. The FlexNet
Publisher License Administration Guide is automatically installed with the EMC Smarts
documentation into the BASEDIR/smarts/doc/pdf directory. The name of the file is
fnp_licAdmin.pdf.

SM_LMGRD92_LICENSE_FILE

Similar to LM_LICENSE_FILE, this FlexNet Publisher variable is the vendor-specific
environment variable that specifies the location of the license files or the license servers.
When both LM_LICENSE_FILE and SM_LMGRD_LICENSE_FILE are set, the
SM_LMGRD_LICENSE_FILE environment variable takes precedence.

The FlexNet Publisher License Administration Guide provides additional information about
the LM_LICENSE_FILE and SM_LMGRD_LICENSE_FILE environment variables. The FlexNet
Publisher License Administration Guide is automatically installed with the EMC Smarts
documentation into the BASEDIR/smarts/doc/pdf directory. The name of the file is
fnp_licAdmin.pdf.

The user does not have to set this environment variable. The FlexNet licensing software
automatically derives a value for this based on the LM_LICENSE_FILE variable.

Variables that control security

These variables specify the security used by EMC Smarts programs.

Environment variables for users 165

Environment Variables

SM_AUTHORITY

This environment variable determines the selection of the authority programs used by the
software for different parts of the authentication process. For example:

SM_AUTHORITY=IDENTIFY=<program1>,AUTHENTICATE=<program2>

where:

◆ <program1> is the program granting credentials

◆ <program2> is the program validating credentials.

Program1 and program2 may refer to the same program.

◆ SM_AUTHORITY=<STD> means:

SM_AUTHORITY=IDENTIFY=sm_authority,AUTHENTICATE=sm_authority

◆ SM_AUTHORITY=<NONE> means:

SM_AUTHORITY=IDENTIFY=sm_authnone,AUTHENTICATE=sm_authnone

◆ SM_AUTHORITY=someAuthority means:

SM_AUTHORITY=IDENTIFY=someAuthority,AUTHENTICATE=someAuthority

Optional arguments can be specified after the authority name. A comma may not be
included within the program name. A comma may appear in the arguments if the
argument is quoted.

If SM_AUTHORITY is not specified, SM_AUTHORITY=<STD> is assumed.

SM_KEYFILE

This environment variable specifies the location of the imk.dat file. By default, this
variable refers to BASEDIR/smarts/local/conf/imk.dat.

SM_CLIENTCONNECT

This environment variable enables you to specify an alternate location for the
clientConnect.conf client-side authorization file. You must specify the full path, including
the filename. The default location is the BASEDIR/smarts/local/conf/clientConnect.conf
directory.

SM_OKLOGIN_LOGLEVEL

This environment variable enables the logging of successful logins at ERROR severity,
rather than NOTICE.

SM_OKLOGIN_LOGLEVEL is a Boolean.

166 EMC Smarts Foundation System Administration Guide

Environment Variables

SM_SERVERCONNECT

This environment variable enables you to specify an alternate location for the
serverConnect.conf server-side authorization file. You must specify the full path, including
the filename. The default location is the BASEDIR/smarts/local/conf/serverConnect.conf
directory.

Variables that control date and time formatting

Managers and adapters format dates and times for printing in log files, archive files, and
various messages. You can control many aspects of this formatting with the following
variables.

Most dates and times displayed in consoles are formatted by the consoles themselves
and are not controlled by these variables.

Additional information can be found on many systems, such as:

◆ man pages on UNIX systems

◆ Microsoft Developer Network (MSDN) on Windows systems

If these are not available on your system, various sites on the Web publish this
information.

SM_DATETIME_FORMAT

The SM_DATETIME_FORMAT environment variable determines the format of timestamps in
server log files. The SM_DATETIME_FORMAT environment variable can be set to several
different values. The default is SI_DAT_LONG.

The following examples show the output, based on the setting of SM_DATETIME_FORMAT:

SM_DATETIME_FORMAT=SI_DAT_LOCALE_NEUTRAL
 1969/12/31 20:00:42

SM_DATETIME_FORMAT=SI_DAT_SHORT
 31/12/69 20:00

SM_DATETIME_FORMAT=SI_DAT_MEDIUM
 31 déc. 1969 20:00:42

SM_DATETIME_FORMAT=SI_DAT_LONG
 31 décembre 1969 20:00:42 HMG-05:00

SM_DATETIME_FORMAT=SI_DAT_FULL
 mercredi 31 décembre 1969 20:00:42 États-Unis (New York)

SM_DATETIME_FORMAT=SI_DAT_DEFAULT
 31 décembre 1969 20:00:42 HMG-05:00

SM_DATETIME_FORMAT=
 31 décembre 1969 20:00:42 HMG-05:00

SM_DATETIME_FORMAT=SI_DAT_UTC (similar to SI_DAT_LOCALE_NEUTRAL but in
UTC regardless of the setting of TZ)

 1970/01/01 01:00:42

SM_DATETIME_FORMAT=SI_DAT_ISO8601
 1970-01-01T01:00:42.000Z

Environment variables for users 167

Environment Variables

EMC has created a new value, SI_DAT_CUSTOM, which enables the Foundation software to
recognize the old SM_FORMAT_* environment variables (SM_FORMAT_DATE,
SM_FORMAT_TIME, and SM_FORMAT_DATETIME). The SM_FORMAT_* environment
variables were deprecated in Foundation 9.0 because their date-time formats are not
internationalization (I18N) capable.

Dropping support for the SM_FORMAT_* variables affected custom parsing scripts that
were based on the date-time format of those variables. To enable users to continue using
their custom parsing scripts, EMC created SI_DAT_CUSTOM.

Because the date-time formats for the SM_FORMAT_* variables are only meaningful under
English locales, EMC recommends that you use the other date-time formats that are
available through the SM_DATETIME_FORMAT variable.

If SM_DATETIME_FORMAT is not set to SI_DAT_CUSTOM, the old SM_FORMAT_* variables
will not be considered by the Foundation software.

TZ

This system environment variable determines which time zone is used when formatting a
time. As such, it controls the conversion from an internal time base to the appropriate
local time. The syntax is TZ=NNNshh:mmDDD, where:

◆ NNN is the time zone name.

◆ s is an optional sign.

◆ hh and mm are the offset in hours and minutes from GMT. Positive offsets represent
time zones behind GMT, negative offsets represent those ahead of GMT.

◆ DDD is the corresponding name of Daylight Savings time when it is in effect.

For example, in the eastern United States, TZ is set to EST5EDT - eastern standard
time/eastern daylight time, where EST is five hours behind GMT.

All UNIX systems use a system initialization file to set this variable. Windows systems time
zone settings are usually set with the Date/Time functionality available from the Control
Panel. However, the TZ variable can be used to change the lengthy format of the time zone
on a Windows system. If you set TZ=EST5EDT on a Windows system, “Eastern Daylight
Time” is replaced by “EDT”.

LC_TIME

This system environment variable controls the formatting of dates and times. By default,
Managers use time and date formats that are sensitive to locale settings. For example, if
you chose a date format that includes the name of the day of the week, in the English
locale, the first weekday is formatted as Monday, while in the French locale it is formatted
as Lundi.

If LC_TIME is not set, the system variable LC_ALL is used. If LC_ALL is not set either, the
system variable LANG is used. Finally, if LANG is not set, a default “C locale” (essentially
US English) is used, except on Windows systems where the system default is used.

The locale names and available locales are system specific.

168 EMC Smarts Foundation System Administration Guide

Environment Variables

Variables that control reading and writing files

These variables control the location of output, such as log files and repository. They also
control the location from which EMC Smarts reads files, such as ASL scripts.

SM_LOG_ROLL_SIZE

This environment variable determines the size to which a server log file may grow before
the server creates a new log file. The size can be any value between 5 megabytes
(5,000,000 bytes) and 2 gigabytes (2,000,000,000 bytes), with a default value of 200
megabytes.

A user appends a suffix letter, k for kilobytes, M for megabytes, or G for gigabytes, to a
user-specified integer value, to indicate that the integer value is to be multiplied by 1024,
1048576, or 1073741824, respectively. As examples, 200M indicates a value of 200
megabytes, 1G indicates a value of 1 gigabyte, and 2G indicates a value of 2 gigabytes.

If a user sets SM_LOG_ROLL_SIZE to a value less than 5 megabytes, the value is set to
5 megabytes. If a user sets SM_LOG_ROLL_SIZE to a value greater than 2 gigabytes, the
value is set to 2 gigabytes.

The number of retained log files is determined by the value of SM_BACKUP_FILE_LIMIT. If
you set SM_LOG_ROLL_SIZE to a value such that the log rolls frequently, you should also
set SM_BACKUP_FILE_LIMIT to a higher value than the default value of 3. You should keep
at least seven days worth of log files.

Log rolling by cron jobs is still supported.

SM_BACKUP_FILE_LIMIT

This environment variable determines the number of log files that are saved by the server.
A server creates a new log file when the server is restarted or when the log file is rolled
over. “Managing Log Files” on page 133 provides additional information, including an
example.

Valid values are 0 through 999, with a default value of 3. If SM_BACKUP_FILE_LIMIT is set
to 0, only the current log file and a backup of the previous log file are saved. If a user sets
the variable to an invalid string or a negative value, the value is set to 3(default). If a user
sets the variable to a value greater than 999, the value is set to 999.

The value for SM_BACKUP_FILE_LIMIT applies to each version of a log file that a server is
configured to generate. For log files MYDM_en_US_UTF-8.log and MYDM_fr_UTF-8.log, for
example, the EMC Smarts software can retain up to 999 rolled over log files for each of
these log files.

Environment variables for users 169

Environment Variables

SM_LOG_NAME_CUSTOM

This environment variable SM_LOG_NAME_CUSTOM enables you to specify the earlier log
naming convention for your locale specific log, that is, use pre-Foundation V9.X log
naming. The <locale>_<encoding> string is not appended to the base log name.

When SM_LOG_NAME_CUSTOM is set to TRUE, <locale>_<encoding> will not be attached to
the non-English logs, or, if there is only one log (English log), <locale>_<encoding> will not
be attached to that log. The <locale>_<encoding> will be attached to the English log if there
are two logs (local and English).

Examples If the server is started with option --output=name with SM_LOCALE=en_US and
SM_ENCODING_OUTPUT=UTF-8, only name.log is created in the BASEDIR/local/logs
directory.

If the server is started with option --output=name with SM_LOCALE=fr_FR and
SM_ENCODING_OUTPUT=UTF-8, name.log and name_en_US_UTF-8.log files are created in
the BASEDIR/local/logs directory.

If the server is started with option --output=name with SM_LOCALE=en_US and
SM_ENCODING_OUTPUT=ISO-8859-15, name.log and name_en_US_UTF-8.log files are
created in the BASEDIR/local/logs directory.

If you use --output without a <name>, the output uses the server name to create the log file.

SM_LOGFILES

This environment variable is used to specify the location where log files should be written.
Setting this variable is optional. If there is no value assigned to this variable, the log files
will be written to the location SM_WRITEABLE/logs. If you set SM_LOGFILES, you must also
create the /logs directory at the location specified by the variable.

This variable takes precedence over the value of the SM_WRITEABLE environment variable.

SM_WRITEABLE

This environment variable specifies the location where the software writes output files
such as repositories, log files, and saved consoles. By default, the location is set to
BASEDIR/smarts/local. If you set the SM_WRITEABLE variable, you must also create the
underlying directories.

Table 33 on page 170 lists the directories whose location is controlled by SM_WRITEABLE:

The location where log files are saved can be separately controlled with the SM_LOGFILES
environment variable.

Table 33 Directories controlled by SM_WRITEABLE

Subdirectory Contents

/consoles Saved consoles

/logs Log files

/repos Repository files

170 EMC Smarts Foundation System Administration Guide

Environment Variables

SM_RULESET_PATH

By default, programs only invoke ASL scripts located in the BASEDIR/smarts/rules
directory, the BASEDIR/smarts/local/rules directory, or a subdirectory of one of these
directories. You can use this environment variable to specify additional locations from
which EMC Smarts programs can invoke ASL scripts.

When set, the directories specified by SM_RULESET_PATH are searched before the system
defaults.

Variables that control thread locks

These variables control thread locking in the programs.

SM_COUNT_REPOS_LOCKS

A Manager crashes whenever the stack used by a thread exceeds the space allocated.
Threads acquire locks to access instances in the Manager’s repository. If a thread exceeds
a certain number of locks, then the lock fails with an error code of ELOOP and a message is
written to the log file.

This environment variable is used to control lock counting. SM_COUNT_REPOS_LOCKS
must be set before starting the Manager. By default, the lock counting is turned off. To
enable lock counting, set SM_COUNT_REPOS_LOCKS to TRUE, yes, or 1.

SM_REPOS_LOCKS_LIMIT

This environment variable determines the number of locks which, if exceeded, causes the
ELOOP error. SM_REPOS_LOCKS_LIMIT must be an integer number. The default value is 50.

EMC recommends a value that is less than 100. Setting low values might cause legitimate
requests to fail and affect analysis. Setting high values might allow the thread to run out of
stack space before reaching the lock count limit.

Variables that control log subscription changes and Dynamic Modeling errors

These variables control the tracing of subscription changes and the ignoring of DynModel
errors.

SM_SUBSCRIPTION_TRACE

This environment variable controls the tracing of subscription changes. Subscription
tracing is enabled by default, which means that subscription changes will appear in the
server log by default. Similar messages will appear when new clients connect to the server
and issue subscriptions.

Valid values are 0 and 1, with a default value of 1. Disabling subscription tracing is not
recommended, but can be achieved by setting SM_SUBSCRIPTION_TRACE=0. To enable it
again, set SM_SUBSCRIPTION_TRACE=1.

Environment variables for users 171

Environment Variables

SM_IGNORE_DYNMODEL_ERRORS

This environment variable enables the server to ignore DynModel errors and continue to
run. In earlier releases, if you tried to refine an existing attribute, on finding the DynModel
error that is not recoverable, the server application (Manager) would stop and write an
error message to its log. This behavior is the default behavior in this release.

Valid values are TRUE and FALSE, with a default value of FALSE. Setting
SM_IGNORE_DYNMODEL_ERRORS=TRUE causes the server to ignore DynModel errors and
continue to run.

172 EMC Smarts Foundation System Administration Guide

APPENDIX B
Wildcards

This appendix shows you how to use a wildcard pattern in a text field to match a number of
objects instead of specifying each object by name. It consists of the following sections:

◆ Types of wildcard patterns... 174

Wildcards 173

Wildcards

Types of wildcard patterns
A wildcard pattern is a series of characters that are matched against incoming character
strings. You can use these patterns when you define pattern matching criteria.

Matching is done strictly from left to right, one character or basic wildcard pattern at a
time. Basic wildcard patterns are defined in Table 34 on page 174. Characters that are not
part of match constructs match themselves. The pattern and the incoming string must
match completely. For example, the pattern abcd does not match the input abcde or abc.

A compound wildcard pattern consists of one or more basic wildcard patterns separated
by ampersand (&) or tilde (~) characters. A compound wildcard pattern is matched by
attempting to match each of its component basic wildcard patterns against the entire
input string. Table 35 on page 175 describes compound wildcard patterns.

If the first character of a compound wildcard pattern is an ampersand (&) or tilde (~)
character, the compound is interpreted as if an asterisk (*) appeared at the beginning of
the pattern. For example, the pattern ~*[0-9]* matches any string not containing any
digits. A trailing instance of an ampersand character (&) can only match the empty string.
A trailing instance of a tilde character (~) can be read as “except for the empty string.”

Spaces are interpreted as characters and are subject to matching even if they are adjacent
to operators like “&”.

Table 34 Basic wildcard patterns (page 1 of 2)

Character Description

? Matches any single character.
For example, server?.example.com matches server3.example.com and
serverB.example.com, but not server10.example.com.

* Matches an arbitrary string of characters. The string can be empty.
For example, server*.example.com matches server-ny.example.com and
server.example.com (an empty match).

[set] Matches any single character that appears within [set]; or, if the first character of
[set] is (^), any single character that is not in the set. A hyphen (-) within [set]
indicates a range, so that [a-d] is equivalent to [abcd]. The character before the
hyphen (-) must precede the character after it or the range will be empty. The
character (^) in any position except the first, or a hyphen (-) at the first or last
position, has no special meaning.
For example, server[789-].example.com matches server7.example.com through
server9.example.com, but not server6.example.com. It also matches
server-.example.com.
For example, server[^12].example.com does not match server1.example.com or
server2.example.com, but will match server8.example.com.

174 EMC Smarts Foundation System Administration Guide

Wildcards

Special characters for compound wildcard patterns are summarized in Table 35 on
page 175.

<n1-n2> Matches numbers in a given range. Both n1 and n2 must be strings of digits,
which represent non-negative integer values. The matching characters are a
non-empty string of digits whose value, as a non-negative integer, is greater
than or equal to n1 and less than or equal to n2. If either end of the range is
omitted, no limitation is placed on the accepted number.
For example, 98.49.<1-100>.10 matches a range of IP addresses from
98.49.1.10 through 98.49.100.10.
Example of an omitted high end of the range: <50-> matches any string of digits
with a value greater than or equal to 50.
Example of an omitted low end of the range: <-150> matches any value between
zero and 150.
For a more subtle example: The pattern <1-10>* matches 1, 2, up through 10,
with * matching no characters. Similarly, it matches strings like 9x, with *
matching the trailing x. However, it does not match 11, because <1-10> always
extracts the longest possible string of digits (11) and then matches only if the
number it represents is in range.

| Matches alternatives. For example,”ab|bc|cd” without spaces matches exactly
the three following strings: “ab”, “bc”, and “cd”. A | as the first or last character
of a pattern accepts an empty string as a match.
Example with spaces “ab | bc” matches the strings “ab” and “ bc”.

\ Removes the special status, if any, of the following character. Backslash (\) has
no special meaning within a set ([set]) or range (<n1-n2>) construct.

\\ Removes the special status of the characters (,), [,], <, and >. For example, the
pattern \\(A\\) matches the string (A).

Table 34 Basic wildcard patterns (page 2 of 2)

Character Description

Table 35 Compound wildcard patterns

Character Description

& “And Also” for a compound wildcard pattern. If a component basic wildcard pattern
is preceded by & (or is the first basic wildcard pattern in the compound wildcard
pattern), it must successfully match.
Example: *NY*&*Router* matches all strings which contain NY and also contain
Router.
Example: <1-100>&*[02468] matches even numbers between 1 and 100 inclusive.
The <1-100> component only passes numbers in the correct range and the *[02468]
component only passes numbers that end in an even digit.
Example: *A*|*B*&*C* matches strings that contain either an A or a B, and also
contain a C.

~ “Except” for a compound wildcard pattern (opposite function of &).If a component
basic wildcard pattern is preceded by ~, it must not match.
Example: 10.20.30.*~10.20.30.50 matches all devices on network 10.20.30
except 10.20.30.50.
Example: *Router*~*Cisco*&*10.20.30.*~10.20.30.<10-20>* matches a Router,
except a Cisco router, with an address on network 10.20.30, except not
10.20.30.10 through 10.20.30.20.

Types of wildcard patterns 175

Wildcards

176 EMC Smarts Foundation System Administration Guide

INDEX

A
Access privileges

All 91
Monitor 91
None 91
Ping 91

Additional safeguards 112
File permissions 112
Limiting access to servers 112

Alternate security configuration files
Specifying 98

ASL script
SM_RULESET_PATH 171

Audit file 25
Authentication

record format 89, 91
Authority programs

Specify selection 166
Availability Manager

see IP Availability Manager

B
brcontrol utility 119
Broker

brcontrol 119
Clients locating 164
Manager

Process ID 118
State last changed 118
Status 118

Ping access privilege 91
Registry 118
Secure 110, 115
Security 87
TCP port 119

BROKER token 90, 92, 95
brokerConnect.conf 87

Description 91
Encrypted passwords 104
Syntax 88

C
Client process locale 15
Client session locale 15
clientConnect.conf

BROKER token 92
DEFAULT token 92
Description 91
Encrypted passwords 104
login user field 92
password field 92
PROMPT token 92
record format 91

Syntax 88
target field 92
username field 92
USERNAME token 92

Configuration files
runcmd_env.sh 20

Country codes 16

D
Default parameters for services 77
DEFAULT token 90, 92
Diffie Helman-Advanced Encryption Standard 84, 85
Disabling security 100
Displaying installed services 73
dmctl utility 25

roll_log 143
Domain Manager

Running as non root 81

E
EDITOR 21
ELOOP error 171
Enabling security 100
Encoding

Setting for internal interaction with operating system
161

Setting for shell 161
Setting for stdin 161
Used by stdout and stderr 161

Encrypted connections 106
Configuring 109

Encrypted passwords 104
Encryption 101
encryption standard

Federal Information Processing Standard (FIPS)
Publication 140-2 84, 85

Environment variables
Boolean values 147
Date and time formatting 167
EDITOR 21
Hexadecimal values 146
How values are interpreted 146
Integer values 146
LC_TIME 168
LM_LICENSE_FILE 165
Octal values 146
runcmd_env.sh 20, 120
Setting 147
SM_AUDIT_ALL_CONNECTIONS 157
SM_AUDIT_CLIENT_ACTIONS 157
SM_AUTHORITY 100, 166
SM_BACKUP_FILE_LIMIT 139, 144, 169
SM_BROKER 164

EMC Smarts Foundation System Administration Guide 177

Index

SM_BROKER_DEFAULT 119, 120, 164
SM_BROKER_NTHREADS 164
SM_CLIENTCONNECT 98, 166
SM_COUNT_REPOS_LOCKS 171
SM_DISABLE_KEEPALIVES 155
SM_DISPLAY 151
SM_EDITOR 21, 151
SM_ENABLE_SNMP_SET 152
SM_ENCODING_INPUT 161
SM_ENCODING_OUTPUT 161
SM_ENCODING_SHELL 161
SM_ENCODING_SYSTEM 161
SM_FOLD_WIDTH 157
SM_HOSTSFILE 158
SM_IGNORE_DYNMODEL_ERRORS 172
SM_INCOMING_PROTOCOL 108, 154
SM_IP_VERSIONS 155
SM_JAVA 163
SM_JAVA_PACKAGE_ROOT 163
SM_JAVAHOME 163
SM_JDK_HOME 163
SM_KEYFILE 166
SM_LICENSE 36, 165
SM_LMGRD_LICENSE_FILE 165
SM_LOCALE 161
SM_LOG_NAME_CUSTOM 170
SM_LOG_ROLL_SIZE 169
SM_LOGFILES 26, 137, 170
SM_MAIN_OPTIONS 137, 152
SM_MAX_MONITORING_THREADS 157
SM_NO_LINE_FOLD 157
SM_OKLOGIN_LOGLEVEL 166
SM_OUTGOING_PROTOCOL 108, 154
SM_REPOS_LOCKS_LIMIT 171
SM_RULESET_PATH 23, 171
SM_SERVERCONNECT 98, 167
SM_SNMP_BUG_COMPATIBLE 151
SM_SUBSCRIPTION_TRACE 171
SM_WRITEABLE 25, 139, 170
TZ 168
VISUAL 21

Error level
Retrieve at runtime 138
Set at runtime 138

Evaluation license file 39
Exception messages

Line wrapping in log file 157

F
Federal Information Processing Standard (FIPS) Publication

140-2 encryption standard 84, 85
Firewall

One-way connection 41
flexlm.log 36, 57
FlexNet Publisher 34

Document (PDF) 34, 52
License server 35, 44
LM_LICENSE_FILE 165
log file 36, 57
Tools 52

FlexNet Publisher SM_LMGRD_LICENSE_FILE 165
Force logging 157

G
Global Console

Client 86
Security prompting 87

H
Host ID

And IP address 58

I
ic-serviced 67
Indicating the location of the JDK 163
install_license script 43, 50
Installing programs as services 71
Integer values 146
IP Availability Manager

Discovery and volume licensing 56
ISO 639 Language Codes 16

J
Java package root specification 163

K
KeepAlive messages 155
kill command 142

L
Language codes 16
LC_TIME 168
Licensing

Block of licenses 54
Components 35
Determining number of licenses in use 58
Discovery and volume licensing 56
Examples of license files 37
flexlm.log file 36, 57
FlexNet Publisher license server 35, 44
FlexNet Publisher software 34
host ID, host_ID 38
Hostname 59
How to obtain

A license file 40
install_license script 43, 50
Installation upgrade 34
Installing license server 43, 50
Multiple sites 47
New installation 34
Number of licenses 38
Permanent license file 34
Renew a temporary license file 40
Requirements 34

For temporary license file 39
Rules for

Permanent license file 37

178 EMC Smarts Foundation System Administration Guide

IndexIndex

Running old license files 48
Set up

Permanent 34
SM_LICENSE 36
smarts.lic 37
Starting license server 43, 53
Stopping license server 53
System IP address 58
Temporary license file 39
Tools 52
Travelling license file 39
Troubleshooting 57
Types of daemons 35
Uninstalling license server 51
Upgrade 48
Utilities for volume licensing 54
Verifying version of license server 52
Volume licensing 54

LM_LICENSE_FILE 165
Locale

Client process 15
Client session 15
Definition 14
Process 15
Support 16

Locating the Broker 164
Lock counting 171
Log files 134

Adapter 139
Audit file 25
Controlling the number 139, 144
Date and timestamp 142
Diagnostic header 140
FlexNet Publisher log file 36
Line wrapping of exception messages 157
Manager log file 139
Message at end of rolled log 142
Naming convention 139
Prevent line wrapping 157
Retrieve error level at runtime 138
Retrieve log level at runtime 138
Retrieve trace level at runtime 138
Rolling over 136, 139, 142
Setting error level at runtime 138
Setting log level at runtime 138
Setting trace level at runtime 138
Starting a new one 142
Statistics log file 25
Thread id 142
UNIX syslog 136
Win Event 136

Log level
Retrieve at runtime 138
Set at runtime 138

Log successful logins 166
login user 92

M
Manager

Status

Dead 118
Running 118
Unknown 118

Matching
Pattern 174

Maximum number of monitoring threads in monitoring system
 157

Modifying service parameters 76
monitoring performance 157

O
Operator

Wildcard 174

P
Passwords

Encrypting 104
Pattern 174
Pattern matching 174
performance of monitoring system 157
Permanent license file 34
privopen option 81
process ID 142
Process locale 15
PROMPT token 92

R
Removing services 76
roll_log command 143
runcmd_env.sh 20, 120, 147
Running as non root 81

S
Script

install_license 50
Secret phrase 101

Changing 102
Locking 103
Using for multiple suites and sites 103

Security
Access privileges

All 91
Monitor 91
None 91
Ping 91

Automatic authentication 87
Broker 87
brokerConnect.conf

Description 91
Syntax 88

clientConnect.conf
Description 91
Syntax 88

Diffie Helman-Advanced Encryption Standard 84, 85
Enabling or disabling 100
Encryption 88, 101
Global Console 87
Network account authentication 94

EMC Smarts Foundation System Administration Guide 179

Index

serverConnect.conf
Description 89
Syntax 88

Security configuration
Examples 113

Security feature 84
Authentication 84
Encrypted passwords 84

Seed file
Encrypted 106

serverConnect.conf
BROKER token 90, 95
DEFAULT token 90
Description 89
Encrypted passwords 104
password field 90
privilege field 90
record format 89
Syntax 88
SYS token 90
target field 90
username field 90

Setting environment variables 147
sm_adapter 79

common options 79
SM_AUDIT_ALL_CONNECTIONS 157
SM_AUDIT_CLIENT_ACTIONS 157
SM_AUTHORITY 100, 166

Setting the variable 100
sm_authority program 26
SM_BACKUP_FILE_LIMIT 139, 144, 169
SM_BROKER 164
SM_BROKER_DEFAULT 119, 120, 164
SM_BROKER_NTHREADS 164
SM_CLIENTCONNECT 98, 166
SM_COUNT_REPOS_LOCKS 171
SM_DISABLE_KEEPALIVES 155
SM_DISPLAY 151
sm_edit utility 19, 20, 21, 151

Encrypting passwords 105, 106
SM_EDITOR 21, 151
SM_ENABLE_SNMP_SET 152
SM_ENCODING_INPUT 161
SM_ENCODING_OUTPUT 161
SM_ENCODING_SHELL 161
SM_ENCODING_SYSTEM 161
SM_FOLD_WIDTH 157
SM_HOSTSFILE 158
SM_IGNORE_DYNMODEL_ERRORS 172
SM_INCOMING_PROTOCOL 108, 154
SM_IP_VERSIONS 155
SM_JAVA 163
SM_JAVA_PACKAGE_ROOT 163
SM_JAVAHOME 163
SM_JDK_HOME 163
SM_KEYFILE 166
SM_LICENSE 36, 165
SM_LMGRD_LICENSE_FILE 165
SM_LOCALE 15, 161
SM_LOG_NAME_CUSTOM 170

SM_LOG_ROLL_SIZE 169
sm_logerror 26
SM_LOGFILES 26, 137, 170
SM_MAIN_OPTIONS 137, 152
SM_MAX_MONITORING_THREADS 157
SM_NO_LINE_FOLD 157
SM_OKLOGIN_LOGLEVEL 166
SM_OUTGOING_PROTOCOL 108, 154
SM_REPOS_LOCKS_LIMIT 171
SM_RULESET_PATH 23, 171
sm_server

common options 77, 80
SM_SERVERCONNECT 98, 167
sm_service

actions 70
install action 71
install options 71
remove action 76
show action 73
standard options 69
start action 74
start options 74
stop action 74
stop options 74, 75

sm_serviced 67
SM_SNMP_BUG_COMPATIBLE 151
SM_SUBSCRIPTION_TRACE 171
sm_tpmgr command 55
SM_WRITEABLE 25, 139, 170
smarts.lic 37
SNMP 151
Specify non-standard JRE 163
Starting and stopping services 74
Starting license server 43, 53
statistics log file 25
Stopping license server 53
Support locale 16
SYS token 90

T
TCP

Broker port 119
Threads

Maximum number of monitoring threads 157
Time zone 168
Trace level

Retrieve at runtime 138
Set at runtime 138

Trial license file 39
TZ 168

U
Unicode 16
UNIX syslog 136
USERNAME token 92
Utilities

brcontrol 119
dmctl

roll_log 143

180 EMC Smarts Foundation System Administration Guide

IndexIndex

sm_edit 19, 20, 151

V
VISUAL 21
Volume licensing 54

W
Wildcard 174

Chart of operators 174
Win Event Log 136
Windows Domain Manager 94
Work-around for 32-bit Solaris library bug 158

EMC Smarts Foundation System Administration Guide 181

Index

182 EMC Smarts Foundation System Administration Guide

		Introduction

		Overview

		Setting the locale

		Locating and modifying files

		Licensing the software

		Controlling the startup of EMC Smarts programs

		Securing access to software

		Operation of the Broker

		Managing log files

		Locale

		What is a locale

		Client and Domain Manager use different locales

		Locale types

		Process locale

		Client locale

		Domain Manager process locale

		Support locale

		Standards

		Unicode

		ISO 639 language codes

		ISO 3166 country codes

		Locating and Modifying Files

		Directories

		User-modifiable files

		Modifying EMC Smarts files

		Associating files with sm_edit on Windows

		Locating user-modifiable files

		Controlling the location for rule set files

		Controlling location of the user modified files

		Writing output files

		Controlling where the software writes output files

		Controlling where the software writes log files

		sm_logerror

		Using the smgetinfo utility to create a support package

		sm_getinfo files

		sm_getinfo command-line syntax

		sm_getinfo invocation examples

		sm_getinfo data collection

		License Administration

		Overview of the steps to set up license management

		License components and process flow

		Examples of license files

		Temporary license file example

		Permanent license file example

		Obtain and set up a temporary license file

		How to renew a temporary license file

		Obtain and set up a permanent license file

		Rehost license

		Regenerate license

		Install and configure the FlexNet Publisher license server

		Use an existing FlexNet Publisher license server

		Add another permanent license to a running license server

		Change the license server port in a running license server

		Enable communication through a firewall in a running license server

		Use of multiple FlexNet Publisher license servers

		Upgrade licensing during EMC Smarts software upgrades

		Run older versions of license files in parallel

		Overview of the install_license script

		Uninstall the FlexNet Publisher license server

		License server administration tools

		Verify the FlexNet Publisher license server version

		Starting and stopping the license server

		License checking by an EMC Smarts application

		Volume licensing for EMC Smarts IP Availability Manager

		Determining the total number of licenses

		Determining the number of checked-out licenses

		Discovery and licenses

		Troubleshooting

		Evaluation software no longer runs

		Messages in the flexlm.log file

		Need to determine the FlexNet Publisher license server and all licenses served

		Cannot find license error

		Changing an IP address and its effect on licensing

		Error occurs when starting additional Domain Managers

		License file corrupted when attempting to edit license file

		Cannot restart FlexNet Publisher license server after applying a Service Pack

		Introduction to Service Assurance Suite (SA Suite) and its licensing

		Switch/router classification and conversion examples

		SA Suite license count report

		Controlling Startup

		Root access requirement on UNIX and Linux

		Overview of services

		About the sm_service utility

		sm_serviced and ic-serviced

		The sm_service command line

		Standard options

		sm_service actions

		Installing programs as services with sm_service

		Install options

		Examples of the sm_service install action

		Displaying installed services and their status

		Examples of the sm_service show action

		Starting and stopping services with sm_service

		Start options

		Stop options

		Examples of the sm_service start and stop actions

		Checking whether services are stopped

		Examples of the sm_service isstopped action

		Starting and stopping services from the Windows desktop

		Modifying service parameters with sm_service

		Removing services with sm_service

		Example of the sm_service remove action

		Default parameters for services

		Common sm_server options

		Common sm_adapter options

		Common sm_sdi options

		Running as non root on UNIX and Linux systems

		Securing Access to the Software

		Security features

		How security works

		Server and client programs for the software

		Server authentication

		Client authentication

		Encryption

		Configuring authentication

		Syntax of the security files

		Server authentication records

		Client authentication records

		Special authentication values

		Default authentication records

		Specifying alternate security configuration files

		Controlling authentication

		Setting the SM_AUTHORITY variable

		Changing Cryptographic Settings

		Changing Pseudo-random Number Generators (PRNG) algorithm

		Changing the use of the default PRNG algorithm:

		Encryption

		Changing the secret

		Using the secret for multiple products and sites

		Locking the secret

		Encrypted passwords

		Encrypting passwords

		Encrypted seed files

		Encrypted connections

		Levels of encryption

		Encrypting connections in non-FIPS 140 mode

		Encrypting connections in FIPS 140 mode

		Suggested encrypted connections in non-FIPS 140 mode

		Replacing or importing TLS certificates

		Configuring a secure Broker

		Additional safeguards

		Using file permissions

		Limiting access to the configuration files

		Limiting access to servers

		Example security configurations

		Default security

		Customized security

		Operation of the Broker

		Overview of the Broker

		Viewing the registry of the Broker

		How the clients find the Broker

		How to change the Broker environment variable

		Correcting the Broker settings

		Securing the Broker

		Continuous Audit of Client Connections

		Overview of continuous auditing of client connections

		System Element objects

		SM_SystemElement

		SM_ElementManager

		Client data persists after connection terminates

		File descriptor usage warning event

		Acquiring client information

		Viewing SM_ElementManager attribute values

		Changing SM_ElementManager attribute values

		Managing Log Files

		Overview of message logging

		Command-line options that control messages

		Retrieving and setting log, error and trace levels at runtime

		Log files

		Diagnostic header

		Date and timestamp, and thread id in each log message

		Message at the end of a rolled log

		Starting a new log file

		Controlling the number of saved log files

		Environment Variables

		How variable values are interpreted

		How integer variables are interpreted

		How Boolean variables are interpreted

		Methods for setting environment variables

		Setting an environment variable product-wide

		Setting an environment variable for a program

		Environment variables for users

		Variables that control the locale and encoding

		Variables that control Java settings

		Variables that control the Broker

		Variables that control FlexNet Publisher licensing

		Variables that control security

		Variables that control date and time formatting

		Variables that control reading and writing files

		Variables that control thread locks

		Variables that control log subscription changes and Dynamic Modeling errors

		Wildcards

		Types of wildcard patterns

		Index

EMC® Smarts®

Optical Transport Manager
Version 9.4

API Object Factory Reference Guide
P/N 302-001-512
REV 01

EMC Smarts Optical Transport Manager API Object Factory Reference Guide2

Copyright ©2004 - 2015 EMC Corporation. All rights reserved. Published in the USA.

Published January 2015

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

EMC2, EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

http://support.emc.com

CONTENTS

Chapter 1 Introduction

 Introduction.. 6
 Overview of the API ... 6
 Relationships between OTM components.. 8

Chapter 2 SONET/SDH Object Factory API

 SONET/SDH components and API summary ... 12
 SONET/SDH physical components .. 13
 SONET/SDH Logical Components .. 24

Chapter 3 WDM Object Factory API

 WDM components and API summary... 44
 WDM physical components ... 47
 WDM logical components.. 73

Chapter 4 Low Order SONET/SDH Object Factory API

 Low Order SONET/SDH components and API summary 86
 Low Order SONET/SDH physical components .. 87
 Low Order SONET/SDH Logical Components.. 98

EMC Smarts Optical Transport Manager API Object Factory Reference Guide 3

Contents

4 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

CHAPTER 1
Introduction

This chapter presents an overview of the object factory API as well as some background on
the OTM domains, relationships between objects, and syntax for the API calls.

This chapter contains the following sections:

◆ Introduction.. 6
◆ Overview of the API ... 6
◆ Relationships between OTM components.. 8

Introduction 5

Introduction

Introduction
This document describes the object factory Application Programmer Interface (API) for the
three EMC® Smarts® Optical Transport Manager (OTM) domains: SONET/SDH, Low Order
SONET/SDH, and WDM. The object factory API is used to directly interact with the OTM
Domain Managers for these three OTM domains.

This document only covers the existing API capabilities. As part of an effort to improve and
enhance the performance and capabilities of its product lines, the API and this document
will be updated to reflect any changes or enhancements made to the API. Therefore, some
functions described in this document may not be supported by all versions of OTM or
hardware currently in use.

Overview of the API
The OTM object factory API is the direct interface to the OTM Domain Managers for the
three OTM domains:

◆ SONET/SDH

◆ Low Order SONET/SDH

◆ WDM

The goal of the API is to facilitate topology creation and modification within the OTM
Domain Managers repositories, and setting and clearing attributes as part of alarm and
event processing within different OTM Domain Managers.

The API can be used by:

◆ Topology adapters (for example, file topology adapters, TMF814 adapters, and TL1
adapters)

◆ Event adapters (for example, TMF814 adapters, TMF854 adapters, and TL1 adapters)

◆ Post-processing scripts

An API can be called from any language that implements supports for API functionality
such as C, C++, Java, Perl, or the EMC® Smarts® Adapter Scripting Language.

6 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Introduction

OTM Domain Managers

It is important to understand the architectural layout of the OTM Domain Managers and
their interactions with other entities in the EMC Smarts OTM solution. These are shown in
Figure 1 on page 7.

Figure 1 Data flows in EMC Smarts Optical Transport Manager

The functions of each OTM domain— SONET/SDH, Low Order SONET/SDH and WDM—are
split into Topology/Monitoring server (or simply Topology server) and Analysis server.
Currently, each Domain Manager supports a single Topology server and a single Analysis
server. All external software entities, such as the adapters shown as gray boxes at the
bottom of Figure 1 on page 7, interact only with the Topology servers.

Topology server
The Topology server consists of the underlying managed objects, physical and logical
network connectivity, and all attributes related to monitored status and events for all
components of the underlying network. All realtime event and alarm updates from various
events and alarms monitoring systems will be fed to this server by one or more adapters.

Analysis server
The Analysis server consists of all the information needed for performing root cause
analysis. Topology is imported automatically from the Topology server using EMC Smarts
SDXA. Events are imported automatically from the Topology server using Remote
Accessory Instrumentation. It contains information like objects, their attributes and
relationships, events, symptoms, and problems needed for analysis.

Overview of the API 7

Introduction

Relationships between OTM components
This is a brief overview of OTM relationships. A more detailed discussion of the
relationships and the OTM model definitions is described in the Optical Transport
Manager User Guide.

◆ There are different types of relationships between the various physical and logical
components that are needed for event correlation and root cause analysis.

◆ Once a bidirectional relationship is created in one direction, the reverse relationship
is automatically created.

◆ Some relationships are known beforehand and are created by the API at the time of
creating the components. These are indicated in relationship tables given for each
physical and logical component.

◆ Some relationships are not known at the time the component is created and need to
be created later.

◆ Physical and logical component relationships are detailed in the relationship tables
indicating the Objects/Classes involved in the relationship, class to which it is
related, reverse relation, cardinality of relation, cardinality of the reverse relation, and
whether the relation is optional or mandatory.

◆ The component name is the same as the class name and is also the type of object
instantiated by the API make functions and returned by the find function for the
component.

◆ A relationship is optional when the objects involved in the relationship are not always
present for each other. However, the relationship must be created when the related
objects are available and present.

Creating relationship and accessing related objects

A relationship is created or accessed using the arrow operator, “->”.

The following examples illustrate how relationships can be created using EMC Smarts ASL
language when the relationships are not automatically created or available from the APIs.

Hocct -> LayeredOver = Hotrail1;

Creates a “LayeredOver” relationship between object “Hocct” (of type
HighOrder_Circuit) and “Hotrail1” (of type HighOrder_Trail).

Hocct -> LayeredOver += Hotrail2;

Creates a “LayeredOver” relationship between object “Hocct” (of type
HighOrder_Circuit) and “Hotrail2” (of type HighOrder_Trail) in addition to existing
“LayeredOver” relationships.

Hotrail1 -> LayeredOver = tlg1;

Creates a “LayeredOver” relationship between object “Hotrail1” (of type
HighOrder_Trail) and “tlg1” (of type TopologicalLinkGroup).

Hotrail1 -> LayeredOver += tl1;

8 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Introduction

Creates a “LayeredOver” relationship between object “Hotrail1” (of type
HighOrder_Trail) and “tl1” (of type TopologicalLink) in addition to existing
“LayeredOver” relationships.

The following example illustrates how the objects involved in a relationship can be
obtained after the relationship is created using EMC Smarts ASL language.

hoTrailList = list(); hoTrailList = Hocct -> LayeredOver;

This populates the list “hoTrailList” with a list of objects “Underlying” the object “Hocct.”
“Hocct” is of type HighOrder_Circuit and its “Underlying” objects are of type
HighOrder_Trail. “Underlying” is the reverse relationship of “LayeredOver.”

Relationships between OTM components 9

Introduction

10 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

CHAPTER 2
SONET/SDH Object Factory API

These APIs are intended for use within the SONET/SDH Topology server. They facilitate
topology creation and modification for physical and logical network components in the
OTM SONET/SDH Domain Manager. The API set is categorized into two parts: Physical
components and Logical components.

This chapter contains the following information:

◆ SONET/SDH components and API summary .. 12
◆ SONET/SDH physical components... 13
◆ SONET/SDH Logical Components .. 24

SONET/SDH Object Factory API 11

SONET/SDH Object Factory API

SONET/SDH components and API summary
Table 1 on page 12 lists the SONET/SDH OTM components along with the APIs used to
make and find that component. Also indicated is whether the component is physical
hardware or a logical construction.

Note: API names for creating components start with “make” and API names for finding
components already created and existing within OTM repository start with “find.” Some
API names use the convention “makeNxxx” or “findNxxx.” The “N” emphasizes the fact
that the native name (also known as the native AID) is used in forming the final
component name without undergoing any change or normalization.

Table 1 SONET/SDH components and API summary (page 1 of 2)

Component Name/Class Instantiated API Name
Entity
Type Details

EMS makeEMS
findEms

Physical page 13

OpticalNetworkElement makeNOpticalNetworkElement
findOpticalNetworkElement

Physical page 15

Equipment/Card makeNEquipment,
findNEquipment
makeEquipment, findEquipment
makeNCard, findNCard

Physical page 16

PTP makeNPTP, findNPTP

Note: makePTP and findPTP are
deprecated. Use makeNPTP and
findNPTP instead.

Physical page 19

Rack makeRack
findRack

Physical page 20

Shelf makeShelf, findShelf
makeNShelf, findNShelf

Physical page 21

TopologicalLink makeTopologicalLink
findTopologicalLink

Physical page 23

DropSideTopologicalLink makeDropSideTopologicalLink
findDropSideTopologicalLink

Physical page 24

CTP makeNCTP, findNCTP
makeCTP, findCTP

Logical page 25

High Order CTP makeHOCTP, findHOCTP Logical page 27

HighOrder_Circuit makeHOCircuit
findHOCircuit

Logical page 30

HighOrder_Trail makeHOTrail
findHOTrail

Logical page 31

SubnetworkConnection makeSubnetworkConnection
findSubnetworkConnection

Logical page 32

12 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

Data layout

Under each component name, the following information is provided:

The object name to be created or found is a heading in the left column.

API Usage

Under the heading is the commands showing the usage syntax including the order of
parameter.

Mandatory Parameters

These parameters are required. Parameters are described in three columns:

Parameter name, Data type, Description

Optional Parameters

These parameters are not required. Parameters are described in three columns:

Parameter name, Data type, Description

Return Values

Lists the object types returned by the APIs. Return values are listed in two columns:

Type of object reference returned, Description

Dependency

List of dependencies of the API on other objects.

Relationships

Lists of the relationships of the object with all other objects.

SONET/SDH physical components
This section describes the APIs that enable creation and or alteration of managed objects
that form the physical components of the underlying network.

EMS

makeEMS (emsName, displayName = “value“, className = “value“)

TopologicalLinkGroup makeTLGroup
make2FBLSR

Logical page 34

BlackBoxTopologicalLink makeBlackBoxTL
findBlackBoxTL

Logical page 36

BlackBoxDropSideTopologicalLink makeBlackBoxDSTL
findBlackBoxDSTL

Logical page 37

RingProtectionGroup makeRPGroup Logical page 38

EquipmentProtectionGroup makeEqPGroup Logical page 40

LogicalConnectionTPGroup makeLCTPGroup Logical page 41

Table 1 SONET/SDH components and API summary (page 2 of 2)

SONET/SDH physical components 13

SONET/SDH Object Factory API

findEMS (emsName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

None

Relationships

emsName String Name of the EMS to which the SONET/SDH Domain
Manager will be connecting. Must be a unique name.

displayName String User-friendly name of the EMS object.

className String Class name of the object to be created or found. Currently
“EMS” is the only Class name for this API.

EMS Reference to the EMS object if the EMS object with the
given emsName is successfully created or found.

null If makeEMS is invoked with the NULL emsName, or if the
EMS is not found.

Relationship Related Class

Reverse
Relationshi
p

Card-
inalit
y

Mandatory
(M)
Optional (O)

API
Relatio
n

Manages OpticalNetworkElement ManagedBy 1:N M Y

ManagesSNC SubnetworkConnection ManagedBy 1:N O Y

ManagesTL TopologicalLink ManagedBy 1:N M Y

14 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

OpticalNetworkElement

makeNOpticalNetworkElement (tid, emsName, displayName = “value“, className =
“value“)

findOpticalNetworkElement (tid)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

An EMS object must exist for OpticalNetworkElement object to be created.

Relationships

tid String Target Identifier - Uniquely identifies the Network Element
in a given network.

emsName String Name of the EMS to which OpticalNetworkElement belongs.

displayName String user-friendly name of the object displayed in the console.

className String Class name of the object to be created or found. Currently
OpticalNetworkElement is the only Class name for this API.

OpticalNetworkElement Reference to the OpticalNetworkElement object if the object
is successfully created or found.

null If API fails to create or find the OpticalNetworkElement
object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandator
y/Optiona
l (M/O)

API
Relatio
n

ManagedBy EMS Manages 1:1 M Y

ComposedOfOpticalCom
ponent

Equipment,
Card, PTP

PartOf 1:N M Y

ComposedOfPTPs PTP None 1:N M Y

ComposedOfEquipment Equipment,
Card

PartOf 1:N M Y

ComposedOfCTPs CTP None 1:N M Y

SystemPackagedIn Rack PackagesSyste
ms

1:1 O Y

SONET/SDH physical components 15

SONET/SDH Object Factory API

Equipment/Card

makeEquipment (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber =
“value“, cardType, displayName = “value“, className = “value“)

makeNCard (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber =
“value“, cardType, displayName = “value“, className = “value“)

Note: makeCard is deprecated. Use makeNCard instead.

makeNEquipment (neName, shelfAid = “value“, cardAid, cardType, displayName =
“value“, className = “value“)

findEquipment (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber =
“value“)

findNCard (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber = “value“)

Note: findCard is deprecated. Use findNCard instead.

findNEquipment (neName, cardAid)

16 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement with the name "neName".

◆ Object of type Shelf to be created if "PartOfShelf" relationship is to be created later.

◆ An Equipment/Card containing another Equipment/Card (mother card - daughter card)
PartOfEquipment relationship needs to be explicitly created after creating both the
Equipments/Cards.

neName String Name of the Network Element in which the Equipment or
Card resides.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within OTM repository.

slotNumber String Access Identifier of the slot within the network element.

cardAid String Access Identifier for the Equipment or Card within the
network element.

cardType String Type of card. Used to uniquely identify between multiple
cards from the same vendor. This plays a role while
constructing EquipmentProtectionGroup and CrossConnect
Equipments or the Card equivalents.

shelfAid String Access Identifier for the Shelf within the network element.
Uniquely identifies the Shelf within the OTM repository.

subSlotNumber String Access Identifier of the subslot within the network element.

Note: For findEquipment, must be “0”.

displayName String user-friendly name to label the Equipment in the console.

className String Class name of the object to be created or found. Currently
Equipment is the only Class name for this API.

Equipment Reference to the Equipment object if Equipment is
successfully created or found.

null If API is not able to create or find Equipment.

SONET/SDH physical components 17

SONET/SDH Object Factory API

Relationships

Relationship Related Class Reverse Relationship
Cardinalit
y (M/O)

API
Relation

Part Of OpticalNetworkElement ComposedOfOpticalComp
onent

1:1 M Y

PartOfShelf Shelf ComposedOfEquipment 1:1 O N

PartOfEquipment Equipment ComposedOf 1:1 O N

Realizes PTP RealizedBy 1:N M Y

PartOfEquipmentProtection
Group

EquipmentProtectionGrou
p

ComposedOf 1:1 O Y

CrossConnects PTP CrossConnectedByEqpt 1:N O N

18 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

PTP (Physical Termination Point)

makeNPTP (neName, cardAid, ptpAid, displayName = “value“, className = “value“,
relateEquipment = “value“)

Note: makePTP is deprecated. Use makeNPTP instead.

findNPTP (neName, ptpAid)

Note: findPTP is deprecated. Use findNPTP instead.

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement with the name "neName"

◆ Object of type Equipment/Card with the name "cardAid"

neName String Name of the Network Element in which the PTP resides.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within the OTM repository.

slotNumber String Access Identifier of the slot within the network element.

portAid
portNumber

String
Integer

 Access Identifier of the port on the Equipment/Card in the
specified slot or subslot.

cardAid String Access Identifier for the Equipment/Card within the network
element to which the PTP belongs. Uniquely identifies the
Equipment/Card object within the OTM repository.

ptpAid String Access Identifier for the PTP within the network element.
Uniquely identifies the PTP within the OTM repository

displayName String user-friendly name to represent the PTP in the console.

shelfAid String Access Identifier for the Shelf within the network element.
Uniquely identifies the Shelf within the OTM repository.

subSlotNumber String Access Identifier of the subslot within the network element.

className String Class name of the object to be created or found. Currently PTP
is the only Class name for this API.

relateEquipment Boolean By default this is set to “TRUE.” It is recommended not to
change the default. This facilitates creating the relationship
between the PTP and the Equipment/Card containing the PTP.

PTP Reference to the PTP object if created or found.

null If API is not able to create or find PTP.

SONET/SDH physical components 19

SONET/SDH Object Factory API

Relationships

Rack

makeRack (neName, rackAid, displayName = “value“, className = “value“)

findRack (neName, rackAid)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Object of type OpticalNetworkElement (with name/tid "neName") containing the Rack.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

RealizedBy Equipment Realizes N:1 M Y

Underlying CTP LayeredOver 1:N M Y

ConnectedVia TopologicalLink ConnectedTo 1:1 M Y

ConnectedVia DropSideTopologicalLink ConnectedTo 1:1 M Y

WestSendsTo TopologicalLink None 1:1 M Y

WestSendsTo DropSideTopologicalLink None 1:1 O Y

EastSendsTo TopologicalLink None 1:1 M Y

EastSendsTo DropSideTopologicalLink None 1:1 O Y

CrossConnectedBy EquipmentProtectionGroup CrossConnects 1:1 O Y

CrossConnectedByEqpt Equipment CrossConnects N:N O N

neName String Name of the Network Element in which the Rack resides.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within the OTM repository.

displayName String User-friendly name to represent the Rack in the console.

className String Class name of the object to be created or found. Currently
Rack is the only Class name for this API.

Rack Reference to the Rack object if successfully created or found.

null If API is not able to create or find the Rack.

20 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

Relationships

Shelf

makeShelf (neName, rackAid, shelfAid, displayName = “value“, className = “value“)

makeNShelf (neName, shelfAid, displayName = “value“, className = “value“)

findShelf (neName, rackAid, shelfAid)

findNShelf (neName, shelfAid)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement (with name/tid "neName") containing the
Shelf.

◆ Object of type Rack in which the Shelf resides when using makeShelf.

◆ makeShelf uses neName, rackAid and shelfAid to form the unique shelf name in the
repository. findShelf uses neName, rackAid and shelfAid to form the unique shelf
name to do a lookup.

◆ makeNShelf uses neName and shelfAid to form the unique shelf name in the
repository. findNShelf uses neName and shelfAid to form the unique shelf name to do
a lookup.

◆ If Shelf is created using makeShelf, findShelf should be used to find it and not
findNShelf.

◆ If Shelf is created using makeNShelf, findNShelf should be used to find it and not
findShelf.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

ComposedOf Shelf PartOf 1:N O Y

PackagesSystems OpticalNetworkElement SystemPackagedIn 1:1 O Y

neName String Name of the Network Element in which the Shelf resides.

shelfAid String Access Identifier for the Shelf within the network element.
Uniquely identifies the Shelf within the OTM repository.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within the OTM repository

displayName String User-friendly name to represent the Shelf in the console.

className String Class name of the object to be created or found. Currently
Shelf is the only Class name for this API.

Shelf Reference to the Shelf object if successfully created or
found.

null If API is not able to create or find the Shelf.

SONET/SDH physical components 21

SONET/SDH Object Factory API

◆ If makeNShelf is used, the relationship between Rack and Shelf has to be explicitly
created.

◆ If Shelf is created using makeShelf, shelfAid should not be used in makeNEquipment,
a blank shelfAid should be used, since makeNEquipment uses findNShelf (with no
rackAid) and creates the relationship between the Equipment and the Shelf.

◆ If Shelf is created using makeShelf and an Equipment object in that Shelf is created
using makeNEquipment, the relationship (PartOfShelf) between the Equipment and
Shelf has to be explicitly created.

Relationships

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

PartOf Rack ComposedOf 1:1 O Y

ComposedOfEquipment Equipment PartOfShelf 1:N O N

22 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

TopologicalLink

makeTopologicalLink (emsName = “value“, topologicalLinkName, AendPTP, ZendPTP,
displayName = “value“, className = “value“)

findTopologicalLink (emsName, topologicalLinkName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type EMS with the name "emsName" if emsName provided.

◆ Object of type PTP - AendPTP created with its unique name/aid

◆ Object of type PTP - ZendPTP created with its unique name/aid

Relationships

topologicalLinkName String Name of the TopologicalLink used to uniquely identify it
within the OTM repository.

AendPTP Reference
to PTP

PTP object at one end of the TopologicalLink

ZendPTP Reference
to PTP

PTP object at the other end of the TopologicalLink

emsName String Name of the EMS to which SONET/SDH Domain Manager will
be connecting. It must be a unique name.

displayName String User-friendly name to represent the TopologicalLink in the
console.

className String Class name of the object to be created or found. Currently
TopologicalLink is the only Class name for this API.

TopologicalLink Reference to the TopologicalLink if successfully created or
found.

null If API is not able to create or find a TopologicalLink object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relation

ConnectedTo PTP ConnectedVia 1:N M Y

EastSendsTo PTP None 1:1 M Y

WestSendsTo PTP None 1:1 M Y

ManagedBy EMS ManagesTL 1:1 M Y

PartOf TopologicalLinkGrou
p

ComposedOf 1:1 O Y

RouteProtectedFor RingProtectionGroup RouteProtectedB
y

N:N O Y

SONET/SDH physical components 23

SONET/SDH Object Factory API

DropSideTopologicalLink

makeDropSideTopologicalLink (dropSidePTP, isWestPTP, displayName = “value“,
className = “value“, emsName = “value“)

findDropSideTopologicalLink (dropSidePTP)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type EMS with the name "emsName" if emsName provided.

◆ Object of type PTP - dropSidePTP created with its unique name/aid

Relationships

SONET/SDH Logical Components
This section describes the APIs that enable creation and or alteration of managed objects
that form the logical components of the underlying network.

dropSidePTP Reference to
PTP

PTP object at the drop side of the Circuit that forms the
DropSideTopologicalLink.

isWestPTP Boolean Relative indication of whether the drop sidePTP is on
the East or West end of the Circuit.

displayName String User-friendly name to represent the DropSideTopologicalLink
in the console.

className String Class name of the object to be created or found. Currently
DropSideTopologicalLink is the only Class name for this API.

emsName String Name of the EMS to which SONET/SDH Domain Manager will
be connecting. It must be a unique name.

DropSideTopologicalLink Reference to the DropSideTopologicalLink, if successfully
created or found.

null If API is not able to create or find DropSideTopologicalLink
object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relatio
n

ConnectedTo PTP ConnectedVia 1:1 M Y

EastSendsTo PTP None 1:1 O Y

WestSendsTo PTP None 1:1 O Y

Underlying HighOrder_Trail,
HighOrder_Circuit

LayeredOver 1:N M N

PartOf TopologicalLinkGrou
p

ComposedOf 1:1 O Y

24 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

CTP (Connection Termination Point)

makeCTP (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber = “value“,
portNumber, timeSlot, ctpType, displayName = “value“, className = “value“,
createContainment = “value“)

makeNCTP (neName, cardAid, ptpAid, ctpAid, ctpType, displayName = “value“,
className = “value“, createContainment = “value“)

findCTP (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber = “value“,
portNumber, timeSlot)

findNCTP (neName, ctpAid)

Mandatory Parameters
neName String Name of the Network Element (neName/tid) containing the

PTP to which the CTP belongs.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within OTM repository.

slotNumber String Access Identifier of the slot within the network element.

portNumber Integer Access Identifier of the port on the Equipment/Card in the
specified slot or subslot.

timeSlot Integer

cardAid String Access Identifier for the Card within the network element to
which the PTP belongs. Uniquely identifies the Card within
the OTM repository.

ptpAid String Access Identifier for the PTP to which the CTP is
“LayeredOver”. Uniquely identifies the PTP within the OTM
repository.

SONET/SDH Logical Components 25

SONET/SDH Object Factory API

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement (with name “neName”) where the PTP
containing this CTP resides.

◆ Object of type Equipment (with name/aid cardAid) containing the PTP (with name/aid
ptpAid).

ctpAid String Access Identifier for the CTP within the network element.
Uniquely identifies the CTP within the OTM repository.

ctpType Enum Enum of type Optical_GlobalDefs::ctp_type_e.

Category of the CTP from the following types:

CTP_UNKNOWN CTP_VC4_8c

CTP_DS3 CTP_VC4_16

CTP_STS1 CTP_VC4_64c

CTP_STS3 CTP_ETS1

CTP_STS3C CTP_ETS3

CTP_STS12 CTP_ETS6

CTP_STS12C CTP_ETS9

CTP_STS24C CTP_ETS12

CTP_STS48 CTP_ETS24

CTP_STS48C CTP_E3

CTP_STS192C CTP_34MB

CTP_AU3 CTP_45MB

CTP_AU4 CTP_50MB

CTP_VC4_4 CTP_100MB

CTP_VC4_4c

displayName String User-friendly name to represent the CTP.

shelfAid String Access Identifier for the Shelf within the network element.
Uniquely identifies the Shelf within the OTM repository.

subSlotNumber String Access Identifier of the subslot within the network
element.

className String Class name of the object to be created or found. Currently
CTP is the only Class name for this API.

createContainment Boolean This is by default set to TRUE. It is recommended not to
change the default. This facilitates the creation of the
relationship between the CTP and underlying PTP.

CTP Reference to the CTP if successfully created or found.

null If API is not able to create or find CTP object.

26 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

◆ Object of type PTP (with name/aid “ptpAid”) containing this CTP.

Relationships

High Order CTP (Connection Termination Point)

makeHOCTP (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber =
“value“, portNumber, timeSlot, channel, ctpType, displayName = “value“, className =
“value“, createContainment = “value“)

findHOCTP (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber = “value“,
portNumber, timeSlot, channel)

Mandatory Parameters

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relatio
n

ConnectedVia SubnetworkConnectio
n

ConnectedTo 1:1 O Y

LayeredOver PTP Underlying 1:1 M Y

RoutedBy HighOrder_Circuit,
HighOrder_Trail

CTPsInRoute 1:1 M Y

neName String Name of the Network Element (neName/tid) containing the
PTP to which the High Order CTP belongs.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within the OTM repository.

slotNumber String Access Identifier of the slot within the network element.

portNumber Integer Access Identifier of the port on the Equipment/Card in the
specified slot or subslot.

timeSlot Integer

channel Integer

SONET/SDH Logical Components 27

SONET/SDH Object Factory API

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement (with name “neName”) where the PTP
containing this CTP resides.

◆ Object of type Equipment (with name/aid cardAid) containing the PTP (with name/aid
ptpAid).

◆ Object of type PTP (with name/aid “ptpAid”) containing this CTP

ctpType Enum Enum of type Optical_GlobalDefs::ctp_type_e.

Category of the High Order CTP from the following types:

CTP_UNKNOWN CTP_VC4_8c

CTP_DS3 CTP_VC4_16

CTP_STS1 CTP_VC4_64c

CTP_STS3 CTP_ETS1

CTP_STS3C CTP_ETS3

CTP_STS12 CTP_ETS6

CTP_STS12C CTP_ETS9

CTP_STS24C CTP_ETS12

CTP_STS48 CTP_ETS24

CTP_STS48C CTP_E3

CTP_STS192C CTP_34MB

CTP_AU3 CTP_45MB

CTP_AU4 CTP_50MB

CTP_VC4_4 CTP_100MB

CTP_VC4_4c

displayName String User-friendly name to represent the High Order CTP.

shelfAid String Access Identifier for the Shelf within the network element.
Uniquely identifies the Shelf within the OTM repository.

subSlotNumber String Access Identifier of the subslot within the network
element.

className String Class name of the object to be created or found. Currently
HOCTP is the only Class name for this API.

createContainment Boolean This is by default set to TRUE. It is recommended not to
change the default. This facilitates the creation of the
relationship between the CTP and underlying PTP.

HOCTP Reference to the High Order CTP if successfully created or
found.

null If API is not able to create or find High Order CTP object.

28 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

Relationships

Relationship Related Class
Reverse
Relationship

Cardin
ality (M/O)

API
Relatio
n

ConnectedVia SubnetworkConnectio
n

ConnectedTo 1:1 O Y

LayeredOver PTP Underlying 1:1 M Y

RoutedBy HighOrder_Circuit,
HighOrder_Trail

CTPsInRoute 1:1 M Y

SONET/SDH Logical Components 29

SONET/SDH Object Factory API

HighOrder_Circuit

makeHOCircuit (circuitName, circuitType, AendCTP, ZendCTP, ctpsInRoute, className =
“value“)

findHOCircuit (circuitName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type CTP - AendCTP created with its unique name/aid.

◆ Object of type CTP - ZendCTP created with its unique name/aid.

◆ Objects of type CTP - for all the CTPs in the route of the Circuit.

Relationships

circuitName String Name of the Circuit used to uniquely identify it
within OTM repository.

circuitType String Indicates the layer rate of the circuit (like STS3C,
STS1, OC3, etc).

AendCTP Object type of CTP CTP object at one end of the HighOrder_Circuit.

ZendCTP Object type of CTP CTP object at the other end of the HighOrder_Circuit.

ctpsInRoute List of objects of
type CTP

CTPs through which HighOrder_Circuit is routed
(excluding the CTPs at either end).

className String Class name of the object. Currently “HighOrder_Circuit” is
the only Class name for this API.

HighOrder_Circuit Reference to the HighOrder_Circuit object if object is
successfully created or found.

null If API fails to create or find the HighOrder_Circuit object.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

aEnd CTP None 1:1 M Y

zEnd CTP None 1:1 M Y

CTPsInRoute CTP RoutedBy 1:N M Y

LayeredOver HighOrder_Trail Underlying N:N O N

LayeredOver DropSideTopologicalLink Underlying N:N M N

LayeredOver TopologicalLinkGroup Underlying N:N O N

LayeredOver RingProtectionGroup Underlying N:N O N

LayeredOver SubnetworkConnection Underlying N:N O N

LayeredOverPhysical EquipmentProtectionGroup UnderlyingLogical N:N O N

30 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

HighOrder_Trail

makeHOTrail (trailName, trailType, ctpsInRoute, className = “value“)

findHOTrail (trailName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Objects of type CTP - for all the CTPs in the route of the Trail

◆ Objects of type CTP for the two ends of the Circuit must be in the list of CTPs in route of
the Trail.

Relationships

trailName String Name of the HighOrder_Trail used to uniquely identify it
within the OTM repository.

trailType String Indicates the layer rate of the trail (like STS3C, OC3, etc.).

ctpsInRoute List of objects
of type CTP

CTPs through which HighOrder_Trail is routed.

className String Class name of the object to be created or found. Currently,
HighOrder_Trail is the only Class name for this API.

HighOrder_Trail Reference to the HighOrder_Trail object, if the object is
successfully created or found.

null If API fails to create or find the HighOrder_Trail object.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

CTPsInRoute CTP RoutedBy 1:N M Y

Underlying HighOrder_Circuit LayeredOver 1:N M N

LayeredOver TopologicalLink Underlying N:N O N

LayeredOver TopologicalLinkGroup Underlying N:N O N

LayeredOver RingProtectionGroup Underlying N:N O N

LayeredOver SubnetworkConnection Underlying N:N O N

LayeredOverPhysical EquipmentProtectionGroup UnderlyingLogical N:N O N

SONET/SDH Logical Components 31

SONET/SDH Object Factory API

SubnetworkConnection

makeSubnetworkConnection (emsName, sncName, AendCTP, ZendCTP, listOfTls,
displayName = “value“)

findSubnetworkConnection (emsName, sncName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type EMS (with the name "emsName") managing the
SubnetworkConnection.

◆ Object of type CTP - AendCTP (with its unique name/aid).

◆ Object of type CTP - ZendCTP (with its unique name/aid) forming the two ends of the
SubnetworkConnection.

◆ Objects of type TopologicalLink for all the TopologicalLinks in the
SubnetworkConnection.

emsName String Name of the ems used to manage the SNC (Sub
Network Connection).

sncName String Name of the SNC used to uniquely identify it
within the OTM repository.

AendCTP Object type of CTP CTP object at one end of the
SubnetworkConnection.

ZendCTP Object type of CTP CTP object at the other end of the
SubnetworkConnection.

listOfTls List of objects
of type
TopologicalLink

Lists all the TopologicalLink objects in the
SubnetworkConnection.

displayName String User-friendly name to represent the
SubnetworkConnection in the console.

SubnetworkConnection Reference to the SubnetworkConnection object if the object
is successfully created or found.

null If API fails to create or find the SubnetworkConnection
object.

32 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

Relationships

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

ManagedBy EMS ManagesSNC N:1 O Y

aEnd CTP None 1:1 M Y

zEnd CTP None 1:1 M Y

ConnectedTo CTP ConnectedVia 1:N M Y

LayeredOver TopologicalLink Underlying N:N O Y

LayeredOver TopologicalLink Group Underlying N:N O N

LayeredOver RingProtectionGroup Underlying N:N O N

Underlying HighOrder_Circuit LayeredOver N:N O N

LayeredOverPhysical EquipmentProtectionGroup UnderlyingLogical N:N O N

SONET/SDH Logical Components 33

SONET/SDH Object Factory API

TopologicalLinkGroup

makeTLGroup (workingTl, protectedTl, pgType, bidirectional = “value“, displayName =
“value“, className = “value“)

make2FBLSR (aEndNode, zEndNode, workingTls, protectedTls, displayName, className)

makeUpsrTlg (aEndPTP, zEndPTP, workingTls, protectedTls, displayName, className)

findUpsrTlg (aEndPTP, zEndPTP)

Mandatory Parameters
Name Type Description

workingTl Object of type
TopologicalLink

Working TopologicalLink in the group of
TopologicalLinks.

protectedTl Object of type
TopologicalLink

Protected TopologicalLink in the group of
TopologicalLinks.

pgType Enum Enum of Type Optical_GlobalDefs::pg_type_e

Category of protection group from the following
types:

PGT_EQP_1_FOR_N PGT_UPSR

PGT_MSP_1_PLUS_1 PGT_NA

PGT_MSP_1_FOR_N PGT_SNCP

PGT_2_FIBER_BLSR PGT_UNKNOWN

PGT_4_FIBER_BLSR

Note: The pgType is automatically set to
PGT_2_FIBER_BLSR when make2FBLSR is used.

aEndNode String Name/tid of OpticalNetworkElement at one end
where the circuit enters/leaves the physical ring.

zEndNode String Name/tid of OpticalNetworkElement at other end
where the circuit enters/leaves the physical ring.

workingTls List of objects of
type
TopologicalLink

TopologicalLinks forming the working route in
2F-BLSR ring.

protectedTls List of objects of
type
TopologicalLink

TopologicalLinks forming the alternate route in
2F-BLSR ring.

AendPTP Object Type of PTP PTP object at Aend of the UPSR ring.

ZendPTP Object of Type PTP PTP object at Aend of the UPSR ring.

34 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

Optional Parameters

Return Values

Dependency

◆ Object of type TopologicalLink - workingTl (with its unique name/aid).

◆ Object of type TopologicalLink - protectedTl (with its unique name/aid) forming the
TopologicalLinkGroup.

◆ Object of type PTP - aEndPTP (with its unique name/aid).

◆ Object of type PTP - zEndPTP (with its unique name/aid).

Relationships

bidirectional Boolean Indicates directionality and by default set to TRUE.

displayName String User-friendly name to represent the TopologicalLinkGroup in
the console.

className String Class name of the object to be created or found. Currently,
TopologicalLinkGroup is the only Class name for this API.

TopologicalLinkGroup Reference to the TopologicalLinkGroup object if the object is
successfully created or found.

null If API fails to create or find the TopologicalLinkGroup object.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

ComposedOf TopologicalLink PartOf* 1:N M Y

Underlying HighOrder_Circuit,
HighOrder_Trail,
SubnetworkConnection

LayeredOver N:N O N

PartOfRPG RingProtectionGroup ComposedOfTLG N:N O Y

Route TopologicalLink None 1:N M Y

AlternateRoute TopologicalLink None 1:N M Y

SONET/SDH Logical Components 35

SONET/SDH Object Factory API

BlackBoxTopologicalLink

This API is used to make a black box topological link object within the OTM repository.

makeBlackBoxTL (topologicalLinkName, AendPTP, ZendPTP, displayName, className,
emsName, subnetworkName, BBName, clfi)

findBlackBoxTL (topologicalLinkName, emsName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Following objects should be created before creating the makeBlackBoxTL object.

◆ Object of type EMS with the name "emsName" if emsName provided.

◆ Object of type PTP - AendPTP created with its unique name/aid

◆ Object of type PTP - ZendPTP created with its unique name/aid

Relationships

Refer to “TopologicalLink” on page 23.

topologicalLinkNa
me

String Name of the Black Box TopologicalLink used to uniquely
identify it within OTM repository.

AendPTP Reference
to PTP
Object

PTP Object at one end of the Black Box TopologicalLink.

ZendPTP Reference
to PTP
Object

PTP Object at other end of the Black Box TopologicalLink

displayName String User-friendly name of the Object

className String Class name of the object. Currently "BBTopologicalLink" is
the only Class name for this API.

emsName String Name of the EMS to which SONET/SDH Domain Manager will
be connecting to. It has to be a unique name.

subnetworkName
Name

String Name of the subnetwork to which the black box belongs.

BBName String Name of the black box.

clfi String Name of the Facility to which the black box belongs.

BBTopologicalLink Reference to "BBTopologicalLink" object if created or Found

 NULL If API is not able to create or find "BBTopologicalLink" object

36 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

BlackBoxDropSideTopologicalLink

makeBlackBoxDSTL (dropSidePTP, isWestPTP, displayName, className, emsName,
BBName, clfi)

 findBlackBoxDSTL (dropSidePTP)

Mandatory Parameter

Optional Parameters

Return Values

Dependency

Following objects should be created before creating the BBDropSideTopologicalLink
object.

◆ "Object of type EMS with the name "emsName" if emsName provided.

◆ "Object of type PTP - dropSidePTP created with its unique name/aid

Relationships

Refer to “DropSideTopologicalLink” on page 24.

dropSidePTP Object
Type of
PTP

PTP Object at the drop side of the Circuit (forming the Black
Box DropSideTopologicalLink).

 isWestPTP Boolean Relative indication whether the (drop side) PTP is on the
East or West of the Circuit.

displayName String User-friendly name of the object

className String Class name of the object. Currently,
"BBDropSideTopologicalLink" is the only Class name for this
API.

 emsName String Name of the EMS to which SONET/SDH Domain Manager will
be connecting to. It has to be a unique name.

BBName String Name of the black box.

clfi String Name of the Facility to which the black box belongs.

BBDropSideTopologicalLink Reference to "BBDropSideTopologicalLink" object if created
or found.

NULL If API is not able to create or find
"BBDropSideTopologicalLink" object

SONET/SDH Logical Components 37

SONET/SDH Object Factory API

RingProtectionGroup (RPG)

makeRPGroup (AendPTP, ZendPTP, tlgs, tls, pgType = “value“, displayName = “value“,
className = “value“)

Mandatory Parameters

Optional Parameters

Return Values

AendPTP Object type of PTP PTP object at one end of the
RingProtectionGroup.

ZendPTP Object type of PTP PTP object at the other end of the
RingProtectionGroup.

Tlgs List of objects of type
TopologicalLinkGroup

TopologicalLinkGroups that make up the
RingProtectionGroup.

tls List of objects of type
TopologicalLink

List of protecting TopologicalLinks that back
up the working TopologicalLinks in the tlgs
described above.

pgType Enum Enum of type Optical_GlobalDefs::pg_type_e

Category of protection group from the following types:

PGT_2_FIBER_BLSR
PGT_4_FIBER_BLSR
PGT_NA
PGT_2_FIBER_MS_SPRING
PGT_4_FIBER_MS_SPRING
PGT_SNCP
PGT_UNKNOWN

Note: The pgType default is PGT_4_FIBER_BLSR.

displayName String User-friendly name to represent the
RingProtectionGroup in the console.

className String Class name of the object. Currently
RingProtectionGroup is the only Class name for this
API.

RingProtectionGroup Reference to the RingProtectionGroup object if the object is
successfully created or found.

null If API fails to create or find the RingProtectionGroup object.

38 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

Dependency

◆ Object of type PTP - AendPTP (with its unique name/aid).

◆ Object of type PTP - ZendPTP (with its unique name/aid) forming the two ends of
RingProtectionGroup.

◆ Objects of type TopologicalLinkGroup forming the protected Ring route.

◆ Objects of type TopologicalLink that are protecting the TopologicalLinks forming the
TopologicalLinkGroups (tlgs).

Relationships

Relationship Related Class
Reverse
Relationship

Cardi
nality (M/O)

API
Relatio
n

ComposedOfTLG TopologicalLinkGrou
p

PartOfRPG N:N M Y

RouteProtectedBy TopologicalLink RouteProtectedFor N:N M Y

SONET/SDH Logical Components 39

SONET/SDH Object Factory API

EquipmentProtectionGroup

makeEqPGroup (neName, eqpts, ptps, displayName = “value“, className = “value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement where the EquipmentProtectionGroup is
configured.

◆ Objects of type Equipment forming the EquipmentProtectionGroup.

◆ Objects of type PTP that are involved in the EquipmentProtectionGroup.

Relationships

neName String Name/tid of OpticalNetworkElement in which the
Equipment Protection is configured.

Eqpts List of objects
of type
Equipment

Equipment or Card objects forming the Equipment
Protection Group.

Ptps List of objects
of type PTP

List of PTP objects that are protected by the
Equipment/Card objects.

displayName String User-friendly name to represent the
EquipmentProtectionGroup in the console.

className String Class name of the object to be created or found. Currently,
EquipmentProtectionGroup is the only Class name for this
API.

EquipmentProtectionGroup Reference to the EquipmentProtectionGroup object if
the object is successfully created or found.

null If API fails to create or find the
EquipmentProtectionGroup object.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

ComposedOf Equipment PartOfEquipmentProtectionG
roup

1:N M Y

CrossConnects PTP CrossConnectedBy 1:N M Y

UnderlyingLogical HighOrder_Circuit,
HighOrder_Trail,
SubnetworkConnection

LayeredOverPhysical N:N O N

40 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

SONET/SDH Object Factory API

LogicalConnectionTPGroup

makeLCTPGroup (AendPTP, ZendPTP, workingCtps, protectedCtps, displayName = “value“,
className = “value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type PTP - AendPTP (with its unique name/aid).

◆ Object of type PTP - ZendPTP (with its unique name/aid) forming the two ends of
LogicalConnectionTPGroup.

◆ Objects of type CTP forming the LogicalConnectionTPGroup (in the route).

◆ Objects of type CTP that protect the LogicalConnectionTPGroup (in the alternate
route).

Relationships

AendPTP Object of type
PTP

PTP object at one end of the
LogicalConnectionTPGroup.

ZendPTP Object of type
PTP

PTP object at the other end of the
LogicalConnectionTPGroup.

workingCtps List of objects
of type CTP

List of working CTP objects in the route of the
LogicalConnectionTPGroup.

protectedCtps List of objects
of type CTP

List of protecting CTP objects in the alternate route
that protects the working CTP objects in the
LogicalConnectionTPGroup.

displayName String User-friendly name to represent the
LogicalConnectionTPGroup in the console.

className String Class name of the object to be created or found. Currently
LogicalConnectionTPGroup is the only Class name for this
API.

LogicalConnectionTPGroup Reference to the LogicalConnectionTPGroup object if
object is successfully created or found.

null If API fails to create or find the
LogicalConnectionTPGroup object.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

Route CTP None 1:N M Y

AlternateRoute CTP None 1:N M Y

Underlying HighOrder_Circuit,
HighOrder_Trail,
SubnetworkConnection

LayeredOver N:N O N

SONET/SDH Logical Components 41

SONET/SDH Object Factory API

42 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

CHAPTER 3
WDM Object Factory API

These APIs are intended for use within the WDM Topology server. They facilitate topology
creation and modification for physical and logical network components in the OTM WDM
Domain Manager. The API set is categorized into two parts: Physical components and
Logical components.

This chapter contains the following information:

◆ WDM components and API summary... 44
◆ WDM physical components ... 47
◆ WDM logical components.. 73

WDM Object Factory API 43

WDM Object Factory API

WDM components and API summary
This chapter describes all the APIs needed to create the object instances in the WDM
Domain Manager's repository. Figure 2 on page 44 is a basic WDM network segment
configuration. It has two end terminals with an in line amplifier (ILA). This figure is for
reference and shows various physical and logical classes that can be instantiated in the
repository of WDM Domain Manager for building the topology into the WDM Domain
Manager using the APIs.

Figure 2 WDM network segment configuration

Table 2 on page 45 lists the WDM OTM components along with the APIs used to make and
find that component. Also indicated is whether the component is physical hardware or a
logical construction.

Note: API names for creating components start with “make” and API names for finding
components already created and existing within OTM repository start with “find.” Some
API names use the convention “makeNxxx” or “findNxxx.” The “N” emphasizes the fact
that the native name (also known as the native AID) is used in forming the final
component.name without undergoing any change or normalization.

M
U
X

D
E
M
U
X

M
U
X

D
E
M
U
X

OA OA

OA OA

OA

OA

End Terminal End Terminal

M
U
X

D
M
U
X

OC48, OC192

M
ux

In
O

ch
Po

rt

Tr
an

sp
on

de
rIn

O
cn

P
or

t
Tr

an
sp

on
de

rO
ut

O
ch

P
or

t

Am
pI

nO
m

sP
or

t

M
ux

O
ut

O
m

sP
or

t

Am
pO

ut
O

ts
Po

rt

Dm
ux

In
O

m
sP

or
t

Am
p

InO
ts

Po
rt

A
m

pO
ut

Ot
sP

or
t

Am
pO

ut
Om

sP
or

t

Dm
ux

Ou
tO

ch
Po

r t

Tr
an

sp
on

de
rIn

O
ch

P
or

t
T

ra
ns

po
nd

er
O

ut
O

cn
Po

rt

M
ux

O
ut

O
m

sP
or

t
M

ux
In

Om
sP

or
t

A
m

pO
ut

Os
cP

or
t

Am
pIn

Ot
sP

or
t

Am
pI

nO
sc

Po
rt

O
sc

O
utO

sc
Po

r t

O
sc

Int
O

sc
Po

rt Dm
ux

Ou
tO

m
sP

or
t

Dm
ux

In
Om

sP
or

t

Tr
an

sp
on

de
rIn

Fe
cP

or
t

OSC
OSC

AD M

ADM

ADM

AD MTranspo
nder

Trans po
nder

Trans po
nder

Transpo
nder

In-line Amp

OchLink

OcnLink

PT
P

TopologicalLink

PT
P

OMSOC N O CH OTS OMS O CH O CNO TS

O SC OSC

X

Fibe rLink Fibe rLink

C
lie

nt
Ou

tO
cn

Po
rt

Cl
ie

nt
In

O
cn

P
or

t

Fibe rLink Fib erLink

F ibe rLi nk Fibe rLinkFibe rLink F ibe rLi nk

44 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

Table 2 WDM components and API summary (page 1 of 2)

Component Name API Name Details Entity Type Class Used/Returned

EMS makeEMSs page 4
7

Physical EMS

findEms page 4
9

OpticalNetworkElemen
t

makeOpticalNetworkElem
ent

page 5
0

Physical OpticalNetworkElement

findOpticalNetworkEleme
nt

page 5
1

Card makeNCard page 5
2

Physical Card
Amplifier
Transponder
OscCard

makeNSubcard page 5
3

findNCard page 5
4

Input Port makeNInputPort

Note: makeInputPort is
deprecated. Use
makeNInputPort instead.

page 5
5

Physical TransponderInOcnPort
TransponderInOchPort
MuxInOchPort
MuxInOmsPort
DemuxInOmsPort
AmpInOmsPort
AmpInOtsPort
AmpInOscPort
OscInOscPort

findNInputPort

Note: findInputPort is
deprecated. Use
findNInputPort instead.

page 5
8

Output Port makeNOutputPort

Note: makeOutputPort is
deprecated. Use
makeNOutputPort
instead.

page 5
9

Physical TransponderOutOcnPort
TransponderOutOchPort
DemuxOutOchPort
MuxOutOmsPort
DemuxOutOmsPort
AmpOutOmsPort
AmpOutOtsPort
AmpOutOscPort
OscOutOscPort

findNOutputPort

Note: findOutputPort is
deprecated. Use
findNOutputPort instead.

page 6
2

FiberLink makeFiberLink page 6
3

Physical FiberLink

findFiberLink page 6
5

PassiveFiberLink makePassiveFiberLink page 6
6

Physical FiberLink

WDM components and API summary 45

WDM Object Factory API

Data layout

Under each component name, the following information is provided:

The object name to be created or found is a heading in the left column.

Under the heading is a description and the command showing the usage syntax including
the order of parameter.

Mandatory Parameters

These parameters are required. Parameters are described in three columns:

Parameter name, Data type, Description

BlackBoxFiberLink makeBlackFL page 6
8

Physical FiberLink

findBlackFL page 6
9

PTP makeNPTP, findNPTP

Note: makePTP and
findPTP are deprecated.
Use makeNPTP and
findNPTP instead.

page 7
0

Physical PTP

TopologicalLink makeTopologicalLink page 7
2

Physical TopologicalLink

LinkGroup makeLinkGroup page 7
3

Logical LinkGroup

findLinkGroup findLinkGroup page 7
6

Logical LinkGroup

OchLink makeLogicalLink page 7
7

Logical OchLink

findLogicalLink page 7
8

OcnLink makeLogicalLink page 7
7

Logical OcnLink

findLogicalLink page 7
8

ClientTrail makeClientTrail page 7
9

Logical ClientTrail

findClientTrail page 8
1

ClientCircuit makeClientCircuit page 8
2

Logical ClientCircuit

findClientCircuit page 8
3

Table 2 WDM components and API summary (page 2 of 2)

46 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

Optional Parameters

These parameters are not required. Parameters are described in three columns:

Parameter name, Data type, Description

Return Values

Lists the object types returned by the APIs. Return values are listed in two columns:
Type of object reference returned, Description

Dependency

List of dependencies of the API on other objects.

Relationships

Lists of the relationships of this component to other components.

In the API Relation column the values are listed as follows:

Y* represents that the relationship is created as part of the API functionality of the
related class, not the API of the class being discussed. For example, in makeEMS, the
Manages OpticalNetworkElement relationship is created by the
makeOpticalNetworkElement API, not by the makeEMS API.

Y represents that the relationship is created as part of the API functionality of the class
in discussion itself. For example, in makeNCard, the PartOf OpticalNetworkElement is
created within the makeNCard API.

N represents that the relationship must be created outside the API functionality by
directly accessing the instance of that class. For example, after making an Amplifer
Card using makeNCard, to create the ReverseAmp relationship to another Amplifier
Card use the following ASL code:

AmpCard1Ref -> ReverseAmp = AmpCard2Ref

In the above example AmpCard1Ref and AmpCard2Ref are the references to the
respective Amplifier Cards returned from the findNCard API.

WDM physical components
This section describes the APIs that enable creation and or alteration of managed objects
that form the logical components of the underlying network.

makeEMS

This API is used to create an object representing the Element Management System (EMS)
to which WDM Domain Manager will be connecting to receive all the events pertaining to
various network entities.

makeEMS (emsName, displayName = “value“, className = “value“)

WDM physical components 47

WDM Object Factory API

Mandatory Parameters

Optional Parameters

Return Values

Dependency

None

Relationships

emsName String Name of the EMS to which the WDM Domain Manager will
be connecting. Must be a unique name.

displayName String User-friendly name to represent the EMS in the console.

className String Class name of the object to be created. Currently EMS is the
only Class name for this API.

EMS Reference to the EMS object if the object is successfully
created.

null If API fails to create the EMS object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

Manages OpticalNetworkEle
ment

ManagedBy 1:N M Y*

ManagesLink FiberLink
OchLink
OcnLink

ManagedBy 1:N M Y*

48 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

findEMS

This API is used to find the EMS object in the repository of WDM Domain Manager.

findEMS (emsName)

Mandatory Parameters

Return Values

Dependency

None

Relationships

emsName String Name of the EMS that needs to be found.

EMS Reference to the EMS object if the object is found.

null If API fails to find the EMS object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

Manages OpticalNetworkEle
ment

ManagedBy 1:N M Y*

ManagesLink FiberLink
OchLink
OcnLink

ManagedBy 1:N M Y*

WDM physical components 49

WDM Object Factory API

makeOpticalNetworkElement

This API is used to create an object representing the WDM Network Element.

makeOpticalNetworkElement (tid, emsName, displayName = “value“, className =
“value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

EMS object should be there for the OpticalNetworkElement object to be created.

Relationships

tid String Target Identifier - Uniquely identifies the Network Element
in a given network.

emsName String Name of the EMS to which OpticalNetworkElement belongs.

displayName String User-friendly name to represent the OpticalNetworkElement
in the console.

className String Class name of the object to be created. Currently
OpticalNetworkElement is the only Class name for this API.

OpticalNetworkElement Reference to the OpticalNetworkElement object if object is
successfully created.

null If API fails to create the OpticalNetworkElement object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

ComposedOf Card Part of 1:N M Y*

ManagedBy EMS Manages N:1 M Y

50 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

findOpticalNetworkElement

This API is used to find the Optical Network Element object with the given Target Identifier
(tid).

findOpticalNetworkElement (tid)

Mandatory Parameters

Return Values

Dependency

None

Relationships

tid String Target Identifier - Uniquely identifies the Network Element in
a given network.

OpticalNetworkElement Reference to the OpticalNetworkElement object if the object
is found.

null If the API fails to find the OpticalNetworkElement object with
the given target identifier (tid).

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

ComposedOf Card Part of 1:N M Y*

ManagedBy EMS Manages N:1 M Y

WDM physical components 51

WDM Object Factory API

makeNCard

This API is used to create an object representing the Card/Circuit Pack/Equipment
installed in the WDM Network Element. This API can be used to create objects of various
classes representing a variety of cards:

◆ Card
◆ Amplifier
◆ OscCard
◆ ClientCard
◆ Transponder

makeNCard (tid, cardAid, displayName = “value“, className = “value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

OpticalNetworkElement object should exist for the Card object to be created.

Relationships

Card, Transponder, OscCard, and ClientCard

Amplifier

tid String Target Identifier - Uniquely identifies the Card object in a
given network.

cardAid String Name of the Card object within the given network element.

displayName String User-friendly name to represent the Card object in the
console.

className String Class name of the Card object to be created. See the above
list.

Card Reference to the Card object if the object is successfully
created. See the above list.

null If API fails to create the Card object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

PartOf OpticalNetworkEle
ment

ComposedOf N:1 M Y

Realizes All Port Classes RealizedBy 1:N M Y*

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

ReverseAmp Amplifier ReverseAmp 1:1 O N

OscReportedBy Amplifier ReportsOscFor 1:1 O N

ReportsOscFor Amplifier OscReportedBy 1:N O N

52 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

makeNSubcard

This API is used to create a daughter card for the mother card created using the
makeNCard API. After the daughter card is created, the API will automatically set the
daughter-mother card relationship. To be able to create this relationship correctly, the
cardAid representing the mother card in the makeNSubcard API call must be identical to
the cardAid in the makeNCard API call.

makeNSubcard (tid, cardAid, subcardAid, displayName = “value“, className = “value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Card object should exist for the Subcard object to be created.

Relationships

Card, Transponder, OscCard, and ClientCard

Amplifier

tid String Target Identifier - Uniquely identifies the Card object in a
given network.

cardAid String Name of the mother card object within the given network
element.

subcardAid String Name of the daughter card object within the given network
element.

displayName String User-friendly name to represent the Subcard object in the
console.

className String Class name of the Subcard object to be created. See the
above list.

Subcard Reference to the Subcard object if the object is successfully
created. See the above list.

null If API fails to create the Subcard object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

PartOfCard Card ComposedOf N:1 M Y

Realizes All Port Classes RealizedBy 1:N M Y

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

ReverseAmp Amplifier ReverseAmp 1:1 O N

OscReportedBy Amplifier ReportsOscFor 1:1 O N

ReportsOscFor Amplifier OscReportedBy 1:N O N

WDM physical components 53

WDM Object Factory API

findNCard

This API is used to find the Card object with the given tid and AID. Card objects can be any
of the various classes representing a variety of cards:

◆ Card
◆ Amplifier
◆ OscCard
◆ ClientCard
◆ Transponder

findNCard (tid, cardAid)

Mandatory Parameters

Return Values

Dependency

 None

Relationships

Card, Transponder, OscCard, and ClientCard

Amplifier

tid String Target Identifier - Uniquely identifies the Network Element
in a given network.

cardAid String Uniquely identifies the Card in a given network element.

Card Reference to the Card object if the object is found. See the
above list.

null If API fails to find the Card object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

PartOf OpticalNetworkEle
ment

ComposedOf N:1 M Y

Realizes All Port Classes RealizedBy 1:N M Y*

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relatio
n

ReverseAmp Amplifier ReverseAmp 1:1 O N

OscReportedBy Amplifier ReportsOscFor 1:1 O N

ReportsOscFor Amplifier OscReportedBy 1:N O N

54 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

makeNInputPort

Note: makeInputPort is deprecated. Use makeNInputPort instead.

This API is used to create an object representing the physical input port in the WDM
Network Element. There is no such class as InputPort. The term is used symbolically to
represent any of the following Classes that makeNInputPort can create:

◆ TransponderInOcnPort
◆ MuxInOchPort
◆ MuxInOmsPort
◆ AmpInOmsPort
◆ AmpInOtsPort
◆ DemuxImOmsPort
◆ AmpInOscPort
◆ TransponderInOchPort
◆ OscInOscPort

makeNInputPort (tid, cardAid, portAid, className, displayName = “value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Corresponding Card object should be created before creating the Input Port object.

tid String Target Identifier - Uniquely identifies the Network Element
in a given network.

cardAid String Uniquely identifies the Card in a given network element.

portAid String Uniquely identifies the Input Port in the Card network
element.

className String Class name of the object to be created. See the above list.

displayName String User-friendly name to represent the Input Port object in the
console.

Input Port Reference to the Input Port object if the object is successfully
created. See the above list.

null If API fails to create the Input Port object.

WDM physical components 55

WDM Object Factory API

Relationships

Port, MuxInOchPort, MuxInOmsPort, AmpInOmsPort, AmpInOscPort, OscInOscPort

TransponderInOcnPort

TransponderInOchPort

DeMuxInOmsPort

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

Feeds OchLink
OcnLink
TopologicalLink
FiberLink

FedBy 1:1 M Y*

FedBy OchLink
OcnLink
TopologicalLink
FiberLink

Feeds 1:1 M Y*

NextPort All Port Classes PrevPort 1:1 M makeFiberLink
makeLogicalLi
nk

PrevPort All Port Classes NextPort 1:1 M makeFiberLink
makeLogicalLi
nk

RealizedBy Card Realizes N:1 M Y

OwnedBy ClientTrail AendInport
ZednInport
AendOutport
ZendOutport

1:1 O Y*

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandator
y or
optional API Relation

OutOchPorts TransponderOut
OchPort

InOcnPort 1:N M N

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

OutOcnPort TransponderOut
OcnPort

InOchPorts N:1 M N

ReversePort TransponderOut
OchPort

ReversePort 1:1 M N

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

Passes OchLink PassesThrough 1:N M N

56 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

AmpInOmsPort

AmpInOtsPort

Relationship Related Class
Reverse
Relationship Cardinality

Mandatory
or optional API Relation

OutOtsPort AmpOutOtsPort InOmsPort 1:1 M N

Passes OchLink PassesThrough 1:N M N

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

OutOmsPort AmpOutOmsPor
t

InOtsPort 1:1 M N

WDM physical components 57

WDM Object Factory API

findNInputPort

This API is used to find an object representing the physical input port in the WDM Network
Element. There is no such class as InputPort. The term is used symbolically to represent
any of the following Classes to which findNInputPort can return a reference:

◆ TransponderInOcnPort
◆ MuxInOchPort
◆ MuxInOmsPort
◆ AmpInOmsPort
◆ AmpInOtsPort
◆ DemuxImOmsPort
◆ AmpInOscPort
◆ TransponderInOchPort
◆ OscInOscPort

findNInputPort (tid, portAid)

Mandatory Parameters

Return Values

Dependency

None

Relationships

See the Relationships section of “makeNInputPort” on page 55.

tid String Target Identifier - Uniquely identifies the Network Element
in a given network.

portAid String Uniquely identifies the Input Port in the Network Element.

Input Port Reference to the Input Port object if the object is successfully
created. See the above list.

null If API fails to find the Input Port object.

58 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

makeNOutputPort

This API is used to create an object representing the physical output port in the WDM
Network Element. There is no such class as OutputPort. The term is used symbolically to
represent any of the following Classes that makeNOutputPort can create:

◆ TransponderOutOchPort
◆ MuxOutOmsPort
◆ AmpOutOtsPort
◆ AmpOutOmsPort
◆ AmpOutOscPort
◆ OscOutOscPort
◆ DemuxOutOmsPort
◆ TransponderOutOcnPort
◆ DemuxOutOchPort

makeNOutputPort (tid, portAid, className, displayName = “value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

The corresponding "Card" Object should be created before creating the Output Port object.

tid String Target Identifier - Uniquely identifies the Network Element
in a given network.

portAid String Uniquely identifies the Output Port in the Network Element.

className String Class name of the Output Port object to be created.

displayName String User-friendly name to represent the Output Port in the
console.

Output Port Reference to the Output Port object if the object is
successfully created. See the above list.

null If API fails to create the Output Port object.

WDM physical components 59

WDM Object Factory API

Relationships

Port, DemuxOutOmsPort, DemuxOutOshPort, AmpOutOscPort, OscOutOscPort

TransponderOutOcnPort

TransponderOutOchPort

MuxOutOmsPort

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

Feeds OchLink
OcnLink
TopologicalLink
FiberLink

FedBy 1:1 M Y*

FedBy OchLink
OcnLink
TopologicalLink
FiberLink

Feeds 1:1 M Y*

NextPort All Port Classes PrevPort 1:1 M Y*
makeFiberLink
makeLogicalLi
nk

PrevPort All Port Classes NextPort 1:1 M Y*
makeFiberLink
makeLogicalLi
nk

RealizedBy Card Realizes N:1 M Y

OwnedBy ClientTrail AendInport
ZednInport
AendOutport
ZendOutport

1:1 O Y*

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

InOchPorts TransponderInO
chPort

OutOcnPort 1:N M N

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

InOcnPort TransponderInO
cnPort

OutOchPorts N:1 M N

ReversePort TransponderInO
chPort

ReversePort 1:1 M N

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

Passes OchLink PassesThrough 1:N M N

60 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

AmpOutOmsPort

AmpOutOtsPort

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

InOtsPort AmpInOtsPort InOmsPort 1:1 M N

Passes OchLink PassesThrough 1:N M N

Relationship Related Class
Reverse
Relationship Cardinality

Mandatory
or optional API Relation

InOmsPort AmpInOmsPort OutOtsPort 1:1 M N

WDM physical components 61

WDM Object Factory API

findNOutputPort

Note: findOutputPort is deprecated. Use findNOutputPort instead.

This API is used to find an object representing the physical output port in the WDM
Network Element. There is no such class as OutputPort. The term is used symbolically to
represent any of the following Classes to which findNOutputPort can return a reference:

◆ TransponderOutOchPort
◆ MuxOutOmsPort
◆ AmpOutOtsPort
◆ AmpOutOmsPort
◆ AmpOutOscPort
◆ OscOutOscPort
◆ DemuxOutOmsPort
◆ TransponderOutOcnPort
◆ DemuxOutOchPort

findNOutputPort (tid, portAid)

Mandatory Parameters

Return Values

Dependency

None

Relationships

See the Relationships Created by Other Components section of “makeNInputPort” on
page 55.

tid String Target Identifier - Uniquely identifies the Network Element
in a given network.

portAid String Uniquely identifies the Output Port in the Network Element.

Output Port Reference to the Output Port object if the object is found. See
the above list.

null If API fails to find the Output Port object.

62 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

makeFiberLink

This API is used to create the fiber-optic link between the given Output Port and Input Port.

makeFiberLink (emsName, aEndRef, zEndRef, displayName = “value“, className =
“value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Following objects should be created before creating the FiberLink object.

◆ EMS

◆ aEnd Port

◆ zEnd Port

Relationships

emsName String Uniquely identifies the EMS to which this Fiber Link
belongs.

aEndRef Object
reference

 A reference to the aEnd of the FiberLink. aEnd must be one
of the Output Port types.

zEndRef Object
reference

A reference to the zEnd of the FiberLink. zEnd must be one
of the Input Port types.

displayName String User-friendly name to represent the FiberLink object in the
console.

className String Class name of the FiberLink object to be created Currently
FiberLink is the only class name used for this API.

FiberLink Reference to the FiberLink object if object is successfully
created.

null If API fails to create the FiberLink object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandator
y or
optional

API
relation

Underlying 1 OchLink or
OcnLink or
TopologicalLink

LayeredOver 1:N O N

DownstreamLink FiberLink UpstreamLink 1:N O N

UpstreamLink FiberLink DownstreamLink 1:N O N

ManagedBy EMS ManagesLink N:1 M Y

Feeds All Input Port
Classes

FedBy 1:1 M Y

FedBy All Output Port
Classes

Feeds 1:1 M Y

WDM physical components 63

WDM Object Factory API

1. FiberLink must have a LayeredOver/Underlying relationship with only those Links (OchLink, OcnLink or
Topological Link) that are directly layered over the FiberLink. For example, a FiberLink that has a
LayeredOver/Underlying relationship with an OchLink must not have any Underlying or LayeredOver
relationship with the OcnLink that has a LayeredOver/Underlying relationship with the OchLink.

64 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

findFiberLink

This API is used to find the FiberLink between the given Output Port and Input Port.

findFiberLink (aEndRef, zEndRef)

Mandatory Parameters

Return Values

Dependency

None

Relationships

See the Relationships Created by Other Components section of “makeFiberLink” on
page 63.

aEndRef Object
reference

 A reference to the aEnd of the FiberLink. aEnd must be one
of the Output Port types.

zEndRef Object
reference

A reference to the zEnd of the FiberLink. zEnd must be one
of the Input Port types.

FiberLink Reference to the FiberLink object if the object is found.

null If the API fails to find the FiberLink object.

WDM physical components 65

WDM Object Factory API

makePassiveFiberLink

This API is used to create a PassiveFiberLink object.

MR_Object makePassiveFiberLink (in string emsName,

 in OutputPort aEndRef,

 in InputPort zEndRef,

 in string displayName = "",

 in string className = "")

 "Construct and return a PassiveFiberLink object given the aEnd and zEnd. "

 "If the object already exists, it is returned with a possibly "

 "modified DisplayName. If the displayName parameter is not "

 "specified then the value of the PassiveFiberLinkName "

 "parameter is used as the DisplayName. ";

Mandatory Parameter

Optional Parameters

Return Values

Dependency

Following objects should be created before creating the BBFiberLink object.

◆ EMS

◆ aEnd Port

◆ zEnd Port

 emsName String It is a string which uniquely identifies the EMS to which
this Fiber Link belongs.

aEndRef Object
Reference

A reference to the aEnd of the Fiber Link. aEnd must be
one of the Output Port types.

zEndRef Object
Reference

A reference to the zEnd of the Fiber Link. zEnd must be
one of the Input Port types.

displayName String User-friendly name to represent the PassiveFiberLink object
in the console.

className String Class name of the PassiveFiberLink object to be created.
PassiveFiberLink is the only class name used for this API.

FiberLink Reference to the PassiveFiberLink object if API is successfully
created.

NULL If API fails to create the PassiveFiberLink object.

66 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

Relationships

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandator
y or
optional

API
Relation

Underlying OchLink,
OcnLink,
FiberLink,
TopologicalLink,
PassiveFiberLink

LayeredOver 1:N O N

DownstreamLink FiberLink
PassiveFiberLink

UpstreamLink 1:N O N

UpstreamLink FiberLink
PassiveFiberLink

DownstreamLink 1:N M Y

ManagedBy EMS ManagesLink N:1 M Y

Feeds InputPort FedBy 1:1 M

FedBy OutputPort Feeds 1:1 M Y

WDM physical components 67

WDM Object Factory API

makeBlackFL

This API is used to create the Black Box fiber Link between the given Output port and Input
Port.

makeBlackFL (emsName, aEndRef, zEndRef, displayName, className, BBName, clfi)

Mandatory Parameter

Optional Parameters

Return Values

Dependency

The following objects should be created before creating the BBFiberLink object.

◆ EMS

◆ aEnd Port

◆ zEnd Port

 emsName String It is a string which uniquely identifies the EMS to which
this Black Box Fiber Link belongs.

aEndRef Object
Reference

It is a reference to the zEnd of the Black Box Fiber Link.
zEnd shall be one of the Input Ports.

zEndRef Object Object
Reference

 It is a reference to the zEnd of the Black Box Fiber Link.
zEnd shall be one of the Input Ports.

displayName String User-friendly name of the Object.

className String Class name of the object. "BBFiberLink" is the only Class
name used for this API.

BBName String Name of the black box.

 clfi String Name of the Facility to which the black box belongs

FiberLink Reference to the BBFiberLink object if the API is successful in
creating the BBFiberLink object.

NULL If the API fails to create the BBFiberLink Object.

68 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

findBlackFL

This API is used to find the black box fiber link between the given Output port and Input
Port.

findBlackFL (aEndRef, zEndRef)

Mandatory Parameter

Return Values

Dependency

None

Relationships

None

aEndRef Object
Reference

It is a reference to the aEnd of the BBFiberLink. aEnd
shall be one of the Output Ports.

zEndRef Object
Reference

It is a reference to the zEnd of the BBFiberLink. zEnd
shall be one of the Input Ports.

BBFiberLink Reference to the BBFiberLink object if the API is successful in
finding the BBFiberLink object.

NULL If the API fails to find the BBFiberLink Object.

WDM physical components 69

WDM Object Factory API

makeNPTP

The Topology Adapter needs to invoke the makeNPTP API (along with the
makeTopologicalLink API) to complete the topology. Essentially, makeNPTP will replicate
the PTP object existing in the SONET/SDH server.

The makeNPTP API needs to be invoked to instantiate the SONET/SDH PTP in WDM to
create an association between WDM and SONET/SDH servers and provide the correlation
between failures occurring in the WDM topology causing failures in the SONET/SDH
topology.

During the invocation of makeNPTP two other objects are automatically constructed in the
WDM topology:

◆ ClientInOcnPort

◆ ClientOutOcnPort

Note: Relationship between these objects and corresponding PTPs are automatically
created in the makeNPTP API, but a relationship needs to be created between these ports
and the corresponding FiberLinks connecting them to Transponder Ports.

makeNPTP (neName, ptpAid, cardAid, displayName = “value“, className = “value“,
relateEquipment = “value“)

findNPTP (neName, ptpAid)

Note: findPTP is deprecated. Use findNPTP instead.

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement with the name "neName"

neName String Name of the Network Element in which the PTP resides.

cardAid String Access Identifier for the Equipment/Card within the network
element to which the PTP belongs. Uniquely identifies the
Equipment/Card object within the OTM repository.

ptpAid String Access Identifier for the PTP within the network element.
Uniquely identifies the PTP within the OTM repository

displayName String User-friendly name to represent the PTP in the console.

className String Class name of the object to be created or found. Currently,
PTP is the only Class name for this API.

relateEquipment Boolean By default, this is set to “TRUE.” It is recommended not to
change the default. This facilitates creating the
relationship between the PTP and the Equipment/Card
containing the PTP.

PTP Reference to the PTP object if created or found.

null If the API is not able to create or find the PTP.

70 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

◆ Object of type Equipment/Card with the name "cardAid"

WDM physical components 71

WDM Object Factory API

Relationships

ClientInOcnPort

ClientOutOcnPort

TopologicalLink

The Topology Adapter needs to invoke the makeTopologicalLink API (along with the
makeNPTP API) to complete the topology. Essentially, makeTopologicalLink will replicate
the TopologicalLink object existing in the SONET/SDH server.

The makeTopologicalLink API needs to be invoked to instantiate the SONET/SDH
Topological Link in WDM to create an association between WDM and SONET/SDH servers
and provide the correlation between failures occurring in the WDM topology causing
failures in the SONET/SDH topology.

makeTopologicalLink (emsName = “value“, topologicalLinkName, AendPTP, ZendPTP,
displayName = “value“, className = “value“)

findTopologicalLink (emsName, topologicalLinkName)

Relationship Related Class
Reverse
Relationship Cardinality (M/O)

API
Relatio
n

aEnd TopologicalLink aEnd 1:1 M Y*

zEnd TopologicalLink zEnd 1:1 M Y*

InPort ClientInOcnPort PartOfBDPort 1:1 M Y

OutPort ClientInOcnPort PartOfBDPort 1:1 M Y

OcnInPort ClientInOcnPort PartOfBDPort 1:1 M Y

OcnOutPort ClientInOcnPort PartOfBDPort 1:1 M Y

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relation

FedBy FiberLink Feeds 1:1 M Y*

PrevPort TransponderOutOc
nPort

NextPort 1:1 M Y*
makeFibe
r Link

PartOfBDPort PTP InPort 1:1 M Y*

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relation

Feeds FiberLink FedBy 1:1 M Y*

NextPort TransponderInOcn
Port

PrevPort 1:1 M Y*
makeFibe
r Link

PartOfBDPort PTP OutPort 1:1 M Y*

72 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type EMS with the name "emsName" if emsName provided

◆ Object of type PTP - AendPTP created with its unique name/aid

◆ Object of type PTP - ZendPTP created with its unique name/aid

Relationships

WDM logical components

makeLinkGroup

This API is used to create the Link Group containing either OcnLinks or OchLinks. A Link
Group must not mix OcnLinks with OchLinks.

makeLinkGroup (emsName, workingLinks, protectingLinks, displayName = “value“,
className = “value“)

topologicalLinkName String Name of the TopologicalLink used to uniquely identify it
within OTM repository.

emsName String Name of the EMS to which SONET/SDH Domain
Manager will be connecting. It must be a unique name.

AendPTP Reference
to PTP

The PTP object at one end of the TopologicalLink

ZendPTP Reference
to PTP

The PTP object at the other end of the TopologicalLink

displayName String User-friendly name to represent the TopologicalLink in the
console.

className String Class name of the object to be created or found. Currently
TopologicalLink is the only Class name for this API.

EMS Reference to the TopologicalLink if successfully created or
found.

null If the API is not able to create or find the TopologicalLink
object.

Relationship Related Class
Reverse
Relationship Cardinality (M/O)

API
Relation

LayeredOver FiberLink
OcnLink
ClientTrail

Underlying 1:N O N

ManagedBy EMS ManagesLink N:1 M Y

aEnd PTP ToplogicalLink 1:1 M Y

zEnd PTP TopologicalLink 1:1 M Y

WDM logical components 73

WDM Object Factory API

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Following objects should be created before creating LinkGroup Object.

◆ EMS

◆ OcnLinks

◆ OchLinks

Relationships Created within API

ComposedOf/PartOf: This relationship is created within the API and is established
between the OcnLink or OchLink objects and the LinkGroup object created using this API.

Route: This relationship is created within makeLinkGroup and contains working OcnLinks
or OchLinks.

AlternateRoute: This relationship is created within makeLinkGroup and contains
protecting OcnLinks or OchLinks.

emsName String Uniquely identifies the EMS to which this Link Group
belongs.

workingLinks List A list of links that will form the working part of the Link
Group.

protectingLinks List A list of links that would form the protecting part of the Link
Group.

displayName String User-friendly name to represent the Link Group object in the
console.

className String Class name of the Link Group object to be created. Currently
LinkGroup is the only class name to be used for this API.

LinkGroup Reference to the LinkGroup object if the object is successfully
created.

null If the API fails to create the LinkGroup object.

74 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

Relationships

LinkGroup

OchLink

OcnLink

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relation

Route OcnLink
OchLink

1:N M Y

AlternateRoute OcnLink
OchLink

1:N M Y

ComposedOf OchLink
OcnLink

1:N M Y

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandator
y or
optional

API
Relation

Underlying OcnLink LayeredOver 1:N O N

LayeredOver FiberLink Underlying 1:N O N

ManagedBy EMS ManagesLink N:1 M Y

PassesThrough MuxOutOmsPort
DemuxInOmsPort
AmpInOmsPort
AmpOutOmsPort

Passes N:1 O N

Feeds DemuxOutOchPort FedBy 1:1 M Y

FedBy MuxInOchPort Feeds 1:1 M Y

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandator
y or
optional

API
Relation

Underlying TopologicalLink LayeredOver 1:N O N

LayeredOver FiberLink
OchLink

Underlying 1:N O N

ManagedBy EMS ManagesLink N:1 M Y

Feeds TransponderOutOc
nPort

FedBy 1:1 M Y

FedBy TransponderInOcn
Port

Feeds 1:1 M Y

WDM logical components 75

WDM Object Factory API

findLinkGroup (linkGrpName)

This API is used to find the LinkGroup object with the given linkGrpName.

findLinkGroup (linkGrpName)

Mandatory Parameters

Return Values

Dependency

None

Relationships

See the Relationships section of “makeLinkGroup” on page 73.

linkGrpName String Name of the LinkGroup used to uniquely identify it within
WDM repository.

linkGroup Reference to the LinkGroup object if successfully found.

null If API fails to find the LinkGroup object.

76 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

makeLogicalLink

This API is used to create the Logical Link between the given Output Port and Input Port.
Logical Links can be one of the following types:

◆ OchLink

◆ OcnLink

makeLogicalLink (emsName, aEndRef, zEndRef, displayName = “value“, className =
“value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Following objects should be created before creating the Logical Link object.

◆ EMS

◆ aEnd Port

◆ zEnd Port

Relationships

emsName String Uniquely identifies the EMS to which this Logical Link
belongs.

aEndRef Object
reference

 A reference to the aEnd of the Logical Link. aEnd must be
one of the Input Port types.

zEndRef Object
reference

A reference to the zEnd of the Logical Link. zEnd must be
one of the Ouput Port types.

displayName String User-friendly name to represent the Logical Link object in
the console.

className String Class name of the Logical Link object to be created. Currently
either OchLink or OcnLink are the class names used for this
API.

OcnLink or
OchLink

Reference to the Logical Link object if the object is
successfully created.

null If API fails to create the Logical Link object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional API Relation

Feeds InputPort FedBy 1:1 M Y

FedBy OutputPort Feeds 1:1 M Y*

ManagesLink EMS ManagedBy N:1 M Y

NextPort aEndPort PrevPort 1:1 M Y

PrevPort zEndPort NextPort 1:1 M Y*

WDM logical components 77

WDM Object Factory API

NextPort/PrevPort: This relationship is created within this API and is established between
the InputPort and OutputPort. aEndPort has the relationship NextPort to zEndPort, and
zEndPort has the relationship PrevPort to aEndPort.

findLogicalLink

This API is used to find the Logical Link between the given Output Port and Input Port.
Logical Links can be one of the following types:

◆ OchLink

◆ OcnLink

findLogicalLink (aEndRef, zEndRef)

Mandatory Parameters

Return Values

Dependency

None

Relationships

None

aEndRef Object
reference

A reference to the aEnd of the Logical Link. aEnd must be
one of the Input Port types.

zEndRef Object
reference

A reference to the zEnd of the Logical Link. zEnd must be
one of the Output Port types.

OcnLink or
OchLink

Reference to the Logical Link object if the object is found. See
the above list.

null If the API fails to find the Logical Link object.

78 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

makeClientTrail

This API is used to create the Client Trail for a given WDM network segment.

makeClientTrail (emsName, trailName, aEndInputPort, zEndOutputPort, zEndInputPort,
aEndOutputPort, className = “value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Following objects should be created before creating Client Trail object:

◆ EMS

◆ TransponderInOcnPort at A and Z ends

◆ TransponderOutOcnPort at A and Z ends

emsName String Uniquely identifies the EMS to which this Client Trail
belongs.

trailName String Uniquely identifies the Client Trail within the EMS.

aEndInputPort Object reference A reference to the TransponderInOcnPort at the aEnd
of the Client Trail.

zEndOutputPort Object reference A reference to the TransponderOutOcnPort at the zEnd
of the Client Trail.

zEndInputPort Object reference A reference to the TransponderInOcnPort at the zEnd
of the Client Trail.

aEndOutputPort Object reference A reference to the TransponderOutOcnPort at the aEnd
of the Client Trail.

className String Class name of the Client Trail object to be created. Currently
Client Trail is the only class name to be used for this API.

Client Trail Reference to the Client Trail object if the object is
successfully created.

null If the API fails to create the Client Trail object.

WDM logical components 79

WDM Object Factory API

Relationships

Owns/OwnedBy: This relationship is created within the API. Owns is created by the
ClientTrail and OwnedBy is created by the TransponderInOcnPort and
TransponderOutOcnPort objects. The values of the relationship contain references to the
Port and Trail objects.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relation

RiddenBy ClientCircuit RidesOver N:1 O Y*

AendInPort TransponderInOc
nPort

OwnedBy 1:1 M Y

ZendOutPort TransponderOutO
cnPort

OwnedBy 1:1 M Y

ZendInPort TransponderInOc
nPort

OwnedBy 1:1 M Y

AendOutPort TransponderOutO
cnPort

OwnedBy 1:1 M Y

Owns TransponderIn(Ou
t)OcnPort

OwnedBy 1:N M Y

80 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

findClientTrail

This API is used to find the Client Trail object with the given trailName.

findClientTrail (trailName)

Mandatory Parameters

Return Values

Dependency

 None

Relationships

See the Relationships section of “makeClientTrail” on page 79.

trailName String Uniquely identifies the Client Trail.

Client Trail Reference to the Client Trail object if the object is found.

null If the API fails to find the Client Trail object.

WDM logical components 81

WDM Object Factory API

makeClientCircuit

This API is used to create the Client Circuit representing non-SONET service transported
directly over the WDM network.

makeClientCircuit (emsName, circuitName, underlyingTrails, className = “value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Following objects should be created before creating the Client Circuit object.

◆ EMS

◆ Client Trails

Relationships

emsName String Uniquely identifies the EMS to which the Client Circuit
belongs.

circuitName String Uniquely identifies the Client Circuit.

underlyingTrails List A list of references to the underlying Trails that transport
the ClientCircuit.

className String Class name of the Client Circuit object to be created.
Currently ClientCircuit is the only class name that can be
used with this API.

ClientCircuit Reference to the Client Circuit object if the object is
successfully created.

null If the API fails to create the Client Circuit object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
or optional

API
Relation

RidesOver ClientTail RiddenBy 1:N M Y*

ManagedBy EMS ManagesLink N:1 M Y

82 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

WDM Object Factory API

findClientCircuit

findClientCircuit (circuitName)

This API is used to find the Client Circuit object with the given circuitName.

Mandatory Parameters

Return Values

Dependency

None

Relationships

See the Relationships section of “makeClientCircuit” on page 82.

circuitName String Uniquely identifies the Client Circuit.

Client Circuit Reference to the Client Circuit object if the object is found.

null If the API fails to find the Client Circuit object.

WDM logical components 83

WDM Object Factory API

84 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

CHAPTER 4
Low Order SONET/SDH Object Factory API

These APIs are intended for use within the Low Order SONET/SDH Topology server. They
facilitate topology creation and modification for physical and logical network components
in the OTM Low Order SONET/SDH Domain Manager. The API set is categorized into two
parts: Physical components and Logical components.

This chapter contains the following information:

◆ Low Order SONET/SDH components and API summary .. 86
◆ Low Order SONET/SDH physical components .. 87
◆ Low Order SONET/SDH Logical Components.. 98

Low Order SONET/SDH Object Factory API 85

Low Order SONET/SDH Object Factory API

Low Order SONET/SDH components and API summary
Table 3 on page 86 lists the Low Order SONET/SDH OTM components along with the APIs
used to make and find that component. Also indicated is whether the component is
physical hardware or a logical construction.

Note: API names for creating components start with “make” and API names for finding
components already created and existing within the OTM repository start with “find.”
Some API names use the convention “makeNxxx” or “findNxxx.” The “N” emphasizes the
fact that the native name (also known as the native AID) is used in forming the final
component name without undergoing any change or normalization.

Table 3 Low Order SONET/SDH components and API summary (page 1 of 2)

Component Name/Class Instantiated API Name
Entity
Type Details

EMS makeEMS
findEms

Physical page 88

OpticalNetworkElement makeNOpticalNetworkElement
findOpticalNetworkElement

Physical page 89

Equipment/Card makeNEquipment,
findNEquipment
makeEquipment, findEquipment
makeNCard, findNCard

Note: makeCard and findCard
deprecated. Use makeNCard and
findNCard instead.

Physical page 90

PTP makeNPTP, findNPTP

Note: makePTP and findPTP are
deprecated. Use makeNPTP and
findNPTP instead.

Physical page 93

Rack makeRack
findRack

Physical page 94

Shelf makeShelf, findShelf
makeNShelf, findNShelf

Physical page 95

TopologicalLink makeTopologicalLink
findTopologicalLink

Physical page 97

DropSideTopologicalLink makeDropSideTopologicalLink
findDropSideTopologicalLink

Physical page 98

CTP makeNCTP
findNCTP

Logical page 99

LowOrder CTP makeLOCTP, findLOCTP Logical

LowOrder_Circuit makeLOCircuit
findLOCircuit

Logical page 103

86 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

Data layout

For each component, there is a section describing the following: the component name, API
names used to make and find the component, object type returned by the APIs,
parameters to the API, dependency of the API on other objects and finally the
relationships of the component with all other components.

Under each component name, the following information is provided:

The object name to be created or found is a heading in the left column.

API Usage

Under the heading are the commands showing the usage syntax including the order of
parameter.

Mandatory Parameters

These parameters are required. Parameters are described in three columns:

Parameter name, Data type, Description

Optional Parameters

These parameters are not required. Parameters are described in three columns:

Parameter name, Data type, Description

Return Values

Lists the object types returned by the APIs. Return values are listed in two columns:

Type of object reference returned, Description

Dependency

List of dependencies of the API on other objects.

Relationships

Lists of the relationships of the object with all other objects.

Low Order SONET/SDH physical components
This section describes the APIs that enable creation and or alteration of managed objects
that form the physical components of the underlying network.

displayName: This is not used to uniquely identify an object in the OTM repository. It is
used only for display purposes. The actual component name is used to uniquely identify
the object and is also used to do a lookup to find whether the object exists or not.

HighOrder_Trail makeHOTrail
findHOTrail

Logical page 105

EquipmentProtectionGroup makeEqPGroup Logical page 106

LowOrder_Trail makeLOTrail
findLOTrail

Logical page 105

Table 3 Low Order SONET/SDH components and API summary (page 2 of 2)

Low Order SONET/SDH physical components 87

Low Order SONET/SDH Object Factory API

Optional parameter: When specifying one or more optional parameters, you must specify
preceding optional parameters with respective correct data types.

Enum type parameter: All enum type parameters must be passed as Strings (of valid enum
value) for Java and ASL implementation. For C and C++ implementation, the exact enum
type value should be passed.

EMS

makeEMS (emsName, displayName = “value“, className = “value“)

findEMS (emsName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

None

Relationships

emsName String Name of the EMS to which Low Order SONET/SDH Domain
Manager will be connecting. Must be a unique name.

displayName String User-friendly name of the EMS object.

className String Class name of the object to be created or found. Currently
“EMS” is the only Class name for this API.

EMS Reference to the EMS object if the EMS object with the given
emsName is successfully created or found.

null If makeEMS is invoked with NULL emsName, or if EMS is not found.

Relationship Related Class
Reverse
Relationship

Cardinalit
y

Mandatory
(M)
Optional (O)

API
Relatio
n

Manages OpticalNetworkEl
ement

ManagedBy 1:N M Y

ManagesTL TopologicalLink ManagedBy 1:N M Y

88 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

OpticalNetworkElement

makeNOpticalNetworkElement (tid, emsName, displayName = “value“, className =
“value“)

findOpticalNetworkElement (tid)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

EMS object must exist for the OpticalNetworkElement object to be created.

Relationships

tid String Target Identifier - Uniquely identifies the Network Element
in a given network.

emsName String Name of the EMS to which OpticalNetworkElement belongs.

displayName String User-friendly name of the object displayed in the console.

className String Class name of the object to be created or found. Currently
OpticalNetworkElement is the only Class name for this API.

OpticalNetworkElement Reference to the OpticalNetworkElement object if the object
is successfully created or found.

null If the API fails to create or find the OpticalNetworkElement
object.

Relationship Related Classes
Reverse
Relationship

Cardinalit
y

Mandator
y/
Optional
(M/O)

API
Relatio
n

ManagedBy EMS Manages 1:1 M Y

ComposedOfOptic
alComponent

Equipment, Card,
PTP

PartOf 1:N M Y

ComposedOfPTPs PTP None 1:N M Y

ComposedOfEquip
ment

Equipment, Card PartOf 1:N M Y

ComposedOfCTPs CTP None 1:N M Y

SystemPackagedIn Rack PackagesSystems 1:1 O Y

Low Order SONET/SDH physical components 89

Low Order SONET/SDH Object Factory API

Equipment

makeEquipment (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber =
“value“, cardType, displayName = “value“, className = “value“)

makeNCard (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber =
“value“, cardType, displayName = “value“, className = “value“)

Note: makeCard is deprecated. Use makeNCard instead.

makeNEquipment (neName, shelfAid = “value“, cardAid, cardType, displayName =
“value“, className = “value“)

findEquipment (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber =
“value“)

findNCard (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber = “value“)

Note: findCard is deprecated. Use findNCard instead.

findNEquipment (neName, cardAid)

90 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement with the name "neName".

◆ Object of type Shelf to be created if the "PartOfShelf" relationship is to be created
later.

◆ For an Equipment/Card containing another Equipment/Card, (mother card - daughter
card) PartOfEquipment relationship needs to be explicitly created after creating both
the Equipments/Cards.

neName String Name of the Network Element in which the Equipment or
Card resides.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within OTM repository.

slotNumber String Access Identifier of the slot within the network element.

cardAid String Access Identifier for the Equipment or Card within the
network element.

cardType String Type of card. Used to uniquely identify between multiple
cards from the same vendor. This plays a role while
constructing EquipmentProtectionGroup and CrossConnect
Equipments or the Card equivalents.

shelfAid String Access Identifier for the Shelf within the network element.
Uniquely identifies the Shelf within the OTM repository.

subSlotNumber String Access Identifier of the subslot within the network element.

Note: For findEquipment, must be “0”.

displayName String User-friendly name to label the Equipment in the console.

className String Class name of the object to be created or found. Currently
Equipment is the only Class name for this API.

Equipment Reference to the Equipment object if Equipment is
successfully created or found.

null If the API is not able to create or find Equipment.

Low Order SONET/SDH physical components 91

Low Order SONET/SDH Object Factory API

Relationships

Relationship Related Class Reverse Relationship Cardinality (M/O)

API
Relatio
n

Part Of OpticalNetworkElement ComposedOfOpticalCo
mponent

1:1 M Y

PartOfShelf Shelf ComposedOfEquipment 1:1 O N

PartOfEquipment Equipment ComposedOf 1:1 O N

Realizes PTP RealizedBy 1:N M Y

PartOfEquipmentProtecti
onGroup

EquipmentProtectionGr
oup

ComposedOf 1:1 O Y

CrossConnects PTP CrossConnectedByEqpt 1:N O N

92 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

PTP (Physical Termination Point)

makeNLOPTP (neName, cardAid, ptpAid, displayName = “value“, className = “value“,
relateEquipment = “value“)

findNLOPTP (neName, ptpAid)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement with the name "neName"

◆ Object of type Equipment/Card with the name "cardAid"

Relationships

neName String Name of the Network Element in which the PTP resides.

cardAid String Access Identifier for the Equipment/Card within the network
element to which the PTP belongs. Uniquely identifies the
Equipment/Card object within OTM repository.

ptpAid String Access Identifier for the PTP within the network element.
Uniquely identifies the PTP within the OTM repository

displayName String User-friendly name to represent the PTP in the console.

className String Class name of the object to be created or found. Currently PTP
is the only Class name for this API.

relateEquipment Boolean By default this is set to “TRUE.” It is recommended not to
change the default. This facilitates creating the relationship
between the PTP and the Equipment/Card containing the PTP.

PTP Reference to the PTP object if created or found.

null If the API is not able to create or find PTP.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

RealizedBy Equipment Realizes N:1 M Y

Underlying CTP LayeredOver 1:N M Y

ConnectedVia TopologicalLink ConnectedTo 1:1 M Y

ConnectedVia DropSideTopologicalLink ConnectedTo 1:1 M Y

WestSendsTo TopologicalLink None 1:1 M Y

WestSendsTo DropSideTopologicalLink None 1:1 O Y

EastSendsTo TopologicalLink None 1:1 M Y

EastSendsTo DropSideTopologicalLink None 1:1 O Y

CrossConnectedBy EquipmentProtectionGroup CrossConnects 1:1 O Y

CrossConnectedByEqpt Equipment CrossConnects N:N O N

Low Order SONET/SDH physical components 93

Low Order SONET/SDH Object Factory API

Rack

makeRack (neName, rackAid, displayName = “value“, className = “value“)

findRack (neName, rackAid)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

Object of type OpticalNetworkElement (with name/tid "neName") containing the Rack.

Relationships

neName String Name of the Network Element in which the Rack resides.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within the OTM repository.

displayName String User-friendly name to represent the Rack in the console.

className String Class name of the object to be created or found. Currently
Rack is the only Class name for this API.

Rack Reference to the Rack object if successfully created or found.

null If the API is not able to create or find the Rack.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

ComposedOf Shelf PartOf 1:N O Y

PackagesSystems OpticalNetworkElement SystemPackagedIn 1:1 O Y

94 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

Shelf

makeShelf (neName, rackAid, shelfAid, displayName = “value“, className = “value“)

makeNShelf (neName, shelfAid, displayName = “value“, className = “value“)

findShelf (neName, rackAid, shelfAid)

findNShelf (neName, shelfAid)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement (with name/tid "neName") containing the
Shelf.

◆ Object of type Rack in which the Shelf resides.

◆ makeShelf uses neName, rackAid and shelfAid to form the unique shelf name in the
repository. findShelf uses neName, rackAid and shelfAid to form the unique shelf
name to do a lookup.

◆ makeNShelf uses neName and shelfAid to form the unique shelf name in repository.
findNShelf uses neName and shelfAid to form the unique shelf name to do a lookup.

◆ If Shelf is created using makeShelf, findShelf should be used to find it and not
findNShelf.

◆ If Shelf is created using makeNShelf, findNShelf should be used to find it and not
findShelf.

◆ If makeNShelf is used, the relationship between Rack and Shelf has to be explicitly
created.

◆ If Shelf is created using makeShelf, shelfAid should not be used in makeNEquipment,
a blank shelfAid should be used, since makeNEquipment uses findNShelf (with no
rackAid) and creates the relationship between the Equipment and the Shelf.

◆ If Shelf is created using makeShelf and an Equipment in that Shelf is created using
makeNEquipment, the relationship (PartOfShelf) between the Equipment and Shelf
has to be explicitly created.

neName String Name of the Network Element in which the Shelf resides.

shelfAid String Access Identifier for the Shelf within the network element.
Uniquely identifies the Shelf within the OTM repository.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within the OTM repository

displayName String User-friendly name to represent the Shelf in the console.

className String Class name of the object to be created or found. Currently
Shelf is the only Class name for this API.

Shelf Reference to the Shelf object if successfully created or
found.

null If the API is not able to create or find the Shelf.

Low Order SONET/SDH physical components 95

Low Order SONET/SDH Object Factory API

Relationships

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

Part Of Rack ComposedOf 1:1 O Y

ComposedOfEquipment Equipment PartOfShelf 1:N O N

96 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

TopologicalLink

makeTopologicalLink (emsName = “value“, topologicalLinkName, AendPTP, ZendPTP,
displayName = “value“, className = “value“)

findTopologicalLink (emsName, topologicalLinkName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type EMS with the name "emsName" if emsName provided

◆ Object of type PTP - AendPTP created with its unique name/aid

◆ Object of type PTP - ZendPTP created with its unique name/aid

Relationships

topologicalLinkName String Name of the TopologicalLink used to uniquely identify it
within the OTM repository.

AendPTP Reference
to PTP

PTP object at one end of the TopologicalLink.

ZendPTP Reference
to PTP

PTP object at the other end of the TopologicalLink.

emsName String Name of the EMS to which Low Order SONET/SDH Domain
Manager will be connecting. It must be a unique name.

displayName String User-friendly name to represent the TopologicalLink in the
console.

className String Class name of the object to be created or found. Currently
TopologicalLink is the only Class name for this API.

TopologicalLink Reference to the TopologicalLink if successfully created or
found.

null If the API is not able to create or find TopologicalLink object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relation

ConnectedTo PTP ConnectedVia 1:N M Y

EastSendsTo PTP None 1:1 M Y

WestSendsTo PTP None 1:1 M Y

ManagedBy EMS ManagesTL 1:1 M Y

PartOf TopologicalLinkGro
up

ComposedOf 1:1 O Y

Low Order SONET/SDH physical components 97

Low Order SONET/SDH Object Factory API

DropSideTopologicalLink

makeDropSideTopologicalLink (dropSidePTP, isWestPTP, displayName = “value“,
className = “value“, emsName = “value“)

findDropSideTopologicalLink (dropSidePTP)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type EMS with the name "emsName" if emsName provided

◆ Object of type PTP - dropSidePTP created with its unique name/aid

Relationships

Low Order SONET/SDH Logical Components
This section describes the APIs that enable creation and or alteration of managed objects
that form the logical components of the underlying network.

dropSidePTP Reference to
PTP

PTP object at the drop side of the Circuit that forms the
DropSideTopologicalLink.

isWestPTP Boolean Relative indication of whether the drop sidePTP is on the
East or West end of the Circuit.

displayName String User-friendly name to represent the
DropSideTopologicalLink in the console.

className String Class name of the object to be created or found. Currently
DropSideTopologicalLink is the only Class name for this API.

emsName String Name of the EMS to which Low Order SONET/SDH Domain
Manager will be connecting. It must be a unique name.

DropSideTopologicalLink Reference to the DropSideTopologicalLink if successfully
created or found.

null If the API is not able to create or find DropSideTopologicalLink
object.

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

ConnectedTo PTP ConnectedVia 1:1 M Y

EastSendsTo PTP None 1:1 O Y

WestSendsTo PTP None 1:1 O Y

Underlying HighOrder_Trail,
LowOrder_Trail,
LowOrder_Circuit

LayeredOver 1:N M N

PartOf TopologicalLinkGroup ComposedOf 1:1 O Y

98 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

CTP (Connection Termination Point)

makeNLOCTP (neName, cardAid, ptpAid, ctpAid, ctpType, displayName = “value“,
className = “value“, createContainment = “value“)

findNLOCTP (neName, ctpAid)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement (with name “neName”) where the PTP
containing this CTP resides

◆ Object of type Equipment (with name/aid cardAid) containing the PTP (with name/aid
ptpAid)

neName String Name of the Network Element (neName/tid) containing the
PTP to which the CTP belongs.

cardAid String Access Identifier for the Card within the network element to
which the PTP belongs. Uniquely identifies the Card within
the OTM repository.

ptpAid String Access Identifier for the PTP to which the CTP is
“LayeredOver”. Uniquely identifies the PTP within the OTM
repository.

ctpAid String Access Identifier for the CTP within the network element.
Uniquely identifies the CTP within the OTM repository.

ctpType Enum Enum of type Optical_GlobalDefs::ctp_type_e.

Category of the CTP from the following types:

CTP_UNKNOWN CTP_DS1

CTP_2MB CTP_4MB

CTP_6MB CTP_8MB

CTP_10MB CTP_128K

CTP_256K CTP_512K

CTP_1024MB CTP_1984K

displayName String User-friendly name to represent the CTP.

className String Class name of the object to be created or found. Currently
CTP is the only Class name for this API.

createContainment Boolean This is by default set to TRUE. It is recommended not to
change the default. This facilitates the creation of the
relationship between the CTP and underlying PTP.

CTP Reference to the CTP if successfully created or found.

null If the API is not able to create or find CTP object.

Low Order SONET/SDH Logical Components 99

Low Order SONET/SDH Object Factory API

◆ Object of type PTP (with name/aid “ptpAid”) containing this CTP

Relationships

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relatio
n

LayeredOver PTP Underlying 1:1 M Y

RoutedBy LowOrder_Circuit,
LowOrder_Trail,
HighOrder_Trail

CTPsInRoute 1:1 M Y

100 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

Low Order CTP (Connection Termination Point)

makeLOCTP (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber =
“value“, portNumber, timeSlot, channel, ctpType, displayName = “value“, className =
“value“, createContainment = “value“)

findLOCTP (neName, rackAid, shelfAid = “value“, slotNumber, subSlotNumber = “value“,
portNumber, timeSlot, channel)

Mandatory Parameters
neName String Name of the Network Element (neName/tid) containing the

PTP to which the Low Order CTP belongs.

rackAid String Access Identifier for the Rack within the network element.
Uniquely identifies the Rack within OTM repository.

slotNumber String Access Identifier of the slot within the network element.

portNumber integer Access Identifier of the port on the Equipment/Card in the
specified slot or subslot.

timeSlot integer

channel integer

ctpType Enum Enum of type Optical_GlobalDefs::ctp_type_e.

Category of the Low Order CTP from the following types:

CTP_UNKNOWN CTP_VC4_8c

CTP_DS3 CTP_VC4_16

CTP_STS1 CTP_VC4_64c

CTP_STS3 CTP_ETS1

CTP_STS3C CTP_ETS3

CTP_STS12 CTP_ETS6

CTP_STS12C CTP_ETS9

CTP_STS24C CTP_ETS12

CTP_STS48 CTP_ETS24

CTP_STS48C CTP_E3

CTP_STS192C CTP_34MB

CTP_AU3 CTP_45MB

CTP_AU4 CTP_50MB

CTP_VC4_4 CTP_100MB

CTP_VC4_4c

Low Order SONET/SDH Logical Components 101

Low Order SONET/SDH Object Factory API

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement (with name “neName”) where the PTP
containing this CTP resides.

◆ Object of type Equipment (with name/aid cardAid) containing the PTP (with name/aid
ptpAid).

◆ Object of type PTP (with name/aid “ptpAid”) containing this CTP

Relationships

displayName String User-friendly name to represent the Low Order CTP.

shelfAid String Access Identifier for the Shelf within the network element.
Uniquely identifies the Shelf within the OTM repository.

subSlotNumber String Access Identifier of the subslot within the network
element.

className String Class name of the object to be created or found. Currently
LOCTP is the only Class name for this API.

createContainment Boolean This is by default set to TRUE. It is recommended not to
change the default. This facilitates the creation of the
relationship between the CTP and underlying PTP.

LOCTP Reference to the Low Order CTP if successfully created or
found.

null If API is not able to create or find Low Order CTP object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relatio
n

ConnectedVia SubnetworkConn
ection

ConnectedTo 1:1 O Y

LayeredOver PTP Underlying 1:1 M Y

RoutedBy LowOrder_Circuit,
LowOrder_Trail

CTPsInRoute 1:1 M Y

102 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

LowOrder_Circuit

makeLOCircuit (circuitName, circuitType, AendCTP, ZendCTP, ctpsInRoute, className =
“value“)

makeLOCircuitWithoutEndCTP (circuitName, circuitType, ctpsInRoute, className =
“value“)

findLOCircuit (circuitName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type CTP - AendCTP created with its unique name/aid

◆ Object of type CTP - ZendCTP created with its unique name/aid

◆ Objects of type CTP - for all the CTPs in the route of the Circuit

circuitName String Name of the Circuit used to uniquely identify it within OTM
repository.

circuitType String Indicates the layer rate of the circuit (like 2MB, DS1, 10MB,
etc.).

AendCTP Reference
to CTP

CTP object at one end of the LowOrder_Circuit.

ZendCTP Reference
to CTP

CTP object at the other end of the LowOrder_Circuit.

ctpsInRoute List of
objects of
type CTP

CTPs through which LowOrder_Circuit is routed (excluding
the CTPs at either end).

className String Class name of the object. Currently “LowOrder_Circuit” is
the only Class name for this API.

LowOrder_Circuit Reference to the LowOrder_Circuit object if other object is
successfully created or found.

null If the API fails to create or find the LowOrder_Circuit object.

Low Order SONET/SDH Logical Components 103

Low Order SONET/SDH Object Factory API

Relationships

Relationship Related Class Reverse Relationship Cardinality (M/O)
API
Relation

aEnd CTP None 1:1 M Y

zEnd CTP None 1:1 M Y

CTPsInRoute CTP RoutedBy 1:N M Y

LayeredOver HighOrder_Trail,
LowOrder_Trail

Underlying N:N O N

LayeredOver DropSideTopologicalLink Underlying N:N M N

LayeredOver TopologicalLinkGroup Underlying N:N O N

LayeredOverPhysical EquipmentProtectionGroup UnderlyingLogical N:N O N

104 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

HighOrder_Trail

makeHOTrail (trailName, trailType, className = “value“)

findHOTrail (trailName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Objects of type CTP - for all the CTPs in the route of the Trail

◆ Objects of type CTP for the two ends of the Circuit must be in the list of CTPs in route of
the Trail.

Relationships

trailName String Name of the HighOrder_Trail used to uniquely identify
it within the OTM repository.

trailType String Indicates the layer rate of the trail (like STS3C, OC3
etc.).

ctpsInRoute List of objects of
type CTP

CTPs through which HighOrder_Trail is routed.

className String Class name of the object to be created or found. Currently
HighOrder_Trail is the only Class name for this API.

HighOrder_Trail Reference to the HighOrder_Trail object if the object is
successfully created or found.

null If the API fails to create or find the HighOrder_Trail object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relation

CTPsInRoute CTP RoutedBy 1:N M Y

LayeredOver TopologicalLink Underlying N:N O N

LayeredOver TopologicalLinkGrou
p

Underlying N:N O N

LayeredOverPhysica
l

EquipmentProtectio
nGroup

UnderlyingLogical N:N O N

Low Order SONET/SDH Logical Components 105

Low Order SONET/SDH Object Factory API

EquipmentProtectionGroup

makeEqPGroup (neName, eqpts, ptps, displayName = “value“, className = “value“)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ Object of type OpticalNetworkElement where the EquipmentProtectionGroup is
configured

◆ Objects of type Equipment forming the EquipmentProtectionGroup

◆ Objects of type PTP that are involved in the EquipmentProtectionGroup

Relationships

neName String Name/tid of OpticalNetworkElement in which the
Equipment Protection is configured.

Eqpts List of objects
of type
Equipment

Equipment or Card objects forming the Equipment
Protection Group.

Ptps List of objects
of type PTP

List of PTP objects that are protected by the
Equipment/Card objects.

displayName String User-friendly name to represent the
EquipmentProtectionGroup in the console.

className String Class name of the object to be created or found. Currently
EquipmentProtectionGroup is the only Class name for this
API.

EquipmentProtectionGroup Reference to the EquipmentProtectionGroup object if
the object is successfully created or found.

null If the API fails to create or find the
EquipmentProtectionGroup object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relatio
n

ComposedOf Equipment PartOfEquipmentPro
tectionGroup

1:N M Y

CrossConnects PTP CrossConnectedBy 1:N M Y

UnderlyingLogical LowOrder_Circuit,
LowOrder_Trail,
HighOrder_Trail

LayeredOverPhysica
l

N:N O N

106 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

Low Order SONET/SDH Object Factory API

LowOrder_Trail

makeLOTrail (trailName, trailType, ctpsInRoute, className = “value“)

findLOTrail (trailName)

Mandatory Parameters

Optional Parameters

Return Values

Dependency

◆ All objects of type CTP forming the route of the LowOrder_Trail

◆ Objects of type CTP for the two ends of the Circuit must be in list of CTPs forming the
route of the LowOrder_Trail

Relationships

trailName String

trailType String

ctpsInRoute List of objects
of type CTP

List of CTP objects through which the LowOrder_Trail
is routed.

className String Class name of the object to be created or found. Currently,
LowOrder_Trail is the only Class name for this API.

LowOrder_Trail Reference to the LowOrder_Trail object if the object is
successfully created or found.

null If the API fails to create or find the LowOrder_Trail
object.

Relationship Related Class
Reverse
Relationship

Cardinalit
y (M/O)

API
Relatio
n

CTPsInRoute CTP RoutedBy 1:N M Y

Underlying LowOrder_Circuit LayeredOver 1:N M N

LayeredOver TopologicalLink Underlying N:N O N

LayeredOver TopologicalLinkGrou
p

Underlying N:N O N

LayeredOverPhysica
l

EquipmentProtectio
nGroup

UnderlyingLogical N:N O N

Low Order SONET/SDH Logical Components 107

Low Order SONET/SDH Object Factory API

108 EMC Smarts Optical Transport Manager API Object Factory Reference Guide

		Contents

		Introduction

		Introduction

		Overview of the API

		Relationships between OTM components

		SONET/SDH Object Factory API

		SONET/SDH components and API summary

		SONET/SDH physical components

		SONET/SDH Logical Components

		WDM Object Factory API

		WDM components and API summary

		WDM physical components

		WDM logical components

		Low Order SONET/SDH Object Factory API

		Low Order SONET/SDH components and API summary

		Low Order SONET/SDH physical components

		Low Order SONET/SDH Logical Components

EMC® Smarts®

Optical Transport Manager
Version 9.4

Adapter for TMF 814 User Guide
P/N 302-001-513
REV 01

EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide2

Copyright ©2004 - 2015 EMC Corporation. All rights reserved. Published in the USA.

Published January 2015

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

EMC2, EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

http://support.emc.com

CONTENTS

Chapter 1 Introduction

 EMC Smarts Adapter for TMF 814 .. 6
 EMC Smarts Optical Transport Manager architecture...................................... 7
 How the Adapter for TMF 814 works .. 7

Chapter 2 Configuring the Adapter

 Prerequisites... 12
 Configuring adapterConnections.xml... 12

Chapter 3 Processing Managed Element Names

 Managed element names for SONET devices ... 18

Chapter 4 Analyzed Alarms

 Supported Cisco Alarm Mapping ... 24
 Supported Ciena Alarm Mapping... 25
 Impact of EMS link failures on notifications... 25

Chapter 5 Configuring Cross-Domain Circuits

 Creating cross-domain circuits .. 28
 Automatic circuit creation ... 29

Chapter 6 Adapter for TMF 814 Log Files

 Ciena EMS Adapter logs .. 36
 Cisco EMS Adapter logs... 38

Appendix A Understanding the sm_edit Utility

Index

EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide 3

Contents

4 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

CHAPTER 1
Introduction

This chapter contains the following sections:

◆ EMC Smarts Adapter for TMF 814 .. 6
◆ EMC Smarts Optical Transport Manager architecture.. 7
◆ How the Adapter for TMF 814 works .. 7

Introduction 5

Introduction

EMC Smarts Adapter for TMF 814
The EMC® Smarts® Adapter for TMF 814 can be configured to run in two modes:

◆ As both an Event Adapter and Topology Adapter

• The TMF 814 Adapter discovers topology and collects events from an element
management system (EMS) that manages High Order and Low Order SONET/SDH
networks and provides a TMF 814 interface.

◆ Only as an Event Adapter

• The TMF 814 Adapter collects events from an EMS that manages High Order
SONET/SDH, Low Order SONET/SDH (PDH), or DWDM networks and provides a TMF
814 interface.

Note: The adapter does not discover topology for DWDM networks.

The adapter works in conjunction with the Optical Transport Manager for retrieving and
managing EMS data.

Although the TMF 814 standard specifies a set of programmatic interfaces, actual
implementations might not support all of the standard interfaces but instead rely on
vendor-specific extensions for TMF 814 support. For these reasons, the Adapter for TMF
814 has generic core functionality, with additional functionality added to support
vendor-specific EMSs.

Note: Contact EMC for customization of the OTM Adapter for TMF814 in support of specific
TMF814 compliant optical network devices.

Supported devices

The EMC Smarts Optical Transport Manager Adapter for TMF 814 supports

◆ High Order SONET/SDH devices that are managed via Ciena LightWorks ON-Center
such as the Ciena CoreDirector network elements.

◆ High Order SONET/SDH devices that are managed via the Cisco Transport Manager
(CTM) such as the Cisco ONS 15454 MSPP network elements.

◆ Other SONET/SDH and DWDM devices that provide an EMS TMF 814 interface by
customizing rule sets for these devices.

Supported cards

The EMC Smarts Adapter for TMF 814 supports the following cards:

◆ Cisco ONS 15454 MSPP transport I/O cards (such as OCx/STMx, DSx, Ethernet) and
cross-connect switch cards.

◆ Ciena CoreDirector transport I/O cards (such as OCx/STMx, and Ethernet).

6 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Introduction

EMC Smarts Optical Transport Manager architecture
Figure 1 on page 7 shows the Adapter for TMF 814 communicating with element
management systems (EMSs), the Optical Transport Manager, and the Service Assurance
Manager (SAM). In addition, it shows an optional integration with a customer inventory
system.

Figure 1 Optical Transport Manager architecture

How the Adapter for TMF 814 works
The EMC Smarts Adapter for TMF 814 uses a subset of the programmatic interfaces
specified in the TMF 814 standard to communicate with EMSs.

For Operations Support System (OSS) environments that employ an inventory system, a
customized EMC Smarts adapter provides the ability to access data and include the data
in the Optical Transport Manager repository. This data can include information about links
between devices and circuits that span devices that different EMS instances manage.

Optical Transport Manager

WDM Analysis
EMC Smarts

Global Manager
EMC Smarts

SONET/SDH Analysis
EMC Smarts

Adapter AdapterAdapter

Optical Network

OSS OSSOSS

Adapter

Operations Support Systems

(EMS, inventory,

event management)

Analysis servers perform

root cause and

impact analysis

Global Manager provides

consolidation point and

access to notifications

Adapters retrieve topology

from OSS and send to

Optical Transport Manager

Notifications and topology

are displayed in the

Global Console

Low Order SDH Analysis
EMC Smarts

WDM Topology
EMC Smarts

SONET/SDH Topology
EMC Smarts

Low Order SDH Topology
EMC Smarts

Topology/Monitor servers

model network topology and

monitor events and alarms

Adapter Platform
EMC Smarts

OSS

AdapterAdapter

OSSOSS

EMC Smarts Optical Transport Manager architecture 7

Introduction

The EMC Smarts Adapter for TMF 814 architecture is shown in Figure 2 on page 8. As
shown in the figure, the Adapter for TMF 814 has generic core functionality, and there are
customized EMS adapters (the Cisco, Ciena, and EMS adapters) to support vendor-specific
EMSs.

Figure 2 EMC Smarts Adapter for TMF 814 architecture: a high-level view

Adapter topology functionality

The Cisco EMS and Ciena EMS Adapters

◆ Query their respective EMSs for SONET/SDH network elements and connectivity
information to populate the Optical Transport Manager Topology server repository

Ciena
CoreDirector

Cisco
15454 MSPP

Cisco CTM Adapter

Service Assurance Manager
InCharge

Alarms/Notifications

Topology Data

Global
Console

Optical Transport Manager

WDM Analysis
EMC Smarts

SONET/SDH Analysis
EMC Smarts

Low Order SDH Analysis
EMC Smarts

WDM Topology
EMC Smarts

SONET/SDH Topology
EMC Smarts

Low Order SDH Topology
EMC Smarts

Adapter Framework for TMF 814

Ciena OnCenter Adapter Custom Rule Set

Other EMS
(TBD)

Ciena
CN4200

TMF 814 InterfaceTMF 814 InterfaceTMF 814 Interface

8 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Introduction

Note: Currently, only the SONET/SDH and Low Order SONET/SDH adapters support
topology population. The WDM Topology server repository is populated via the OTM
API.

◆ Registers with the EMS for object create/delete/change events to keep the repository
synchronized

Each EMS requires a separately configured adapter. Once you configure the adapter for a
vendor’s EMS, the adapter can connect with more than one instance of that EMS.

Event notification flow

Events flow in the following order:

1. The Optical Transport Manager Analysis servers register with the EMS (via Notification
Server) to receive alarms.

2. Each EMS publishes events to an event channel

• When changes occur on managed objects

• When it receives alarms from network elements

3. The Adapter for TMF 814 subscribes to these events. When it receives an event, the
adapter

• Normalizes it into the EMC Smarts format

• Forwards it into the Optical Transport Manager Topology server

4. The event is forwarded from the Topology server to Analysis server.

5. The Optical Transport Manager Analysis server

• Correlates events with objects in the repository

• Uses events as input for root-cause analysis

6. Service Assurance Manager (SAM) subscribes to events from the Optical Transport
Manager Analysis servers, and

• Uses events as input for impact analysis

• Displays events on the Global Console

How the Adapter for TMF 814 works 9

Introduction

10 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

CHAPTER 2
Configuring the Adapter

This chapter includes the following sections:

◆ Prerequisites... 12
◆ Configuring adapterConnections.xml... 12

Configuring the Adapter 11

Configuring the Adapter

Prerequisites
Before you can configure the EMC Smarts Adapter for TMF 814, verify access to your EMS
CORBA name server. You must have the URL for the name server’s Interoperable Object
Reference (IOR), and the adapter must be able to access the name server via TCP.

Examples of valid URLs include

• file:path/to/ior/file/nameserver.ior

• corbaloc::160.45.110.41:38693/StandardNS/NameServer-POA/_root

• http://www.x.y.z/~user/NS_Ref

Configuring adapterConnections.xml
To allow the Adapter for TMF 814 to communicate with each vendor’s EMS and the domain
managers, the adapterConnections.xml file must be edited. This file can be found in the
adapter's conf directory. For Cisco, this is

BASEDIR/smarts/conf/tmf814Cisco

For Ciena, this is

BASEDIR/smarts/conf/tmf814Ciena

Open the adapterConnections.xml file using sm_edit. Appendix A, “Understanding the
sm_edit Utility,” provides instructions on using sm_edit.

Only the parameters in Table 1 on page 12 and should be customized. Other parameters
should be kept at default values. These parameters are found under the “connect to the
Cisco EMS” and “connect to the Ciena EMS” sections and use the connect action.

Table 1 Configuration parameters for connection to Cisco and Ciena EMSs

Parameter Description

otm.basedir Installation path of OTM. Must end with “/OTM”.

connectionType A string describing the type of connection, e.g., TMF814.

ems.instanceName EMS instance name. (This is the name of the EMS that will be created
on the domain manager.)

ems.emsType A string describing the EMS type, e.g., CiscoCtm.

ems.interfaceClass The Java class that contains the specific vendor EMS interface
implementation.
For Cisco:

com.emc.smarts.optical.tmf814.ciscoCtm.CiscoCtmEmsInterface
For Ciena:

com.emc.smarts.optical.tmf814.cienaOnctr.CienaSnmEmsInterfa
ce

ems.sessionFactory The EMS session factory (provided by customer).
For Cisco:

Cisco Systems/CTM_78.EmsSessionFactory
For Ciena:

CIENA/LightWorks_ON-Center.EmsSessionFactory

12 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Configuring the Adapter

The parameters listed in Table 1 on page 12 are used to connect to the SONET/SDH server.
Only the parameters in Table 2 on page 13 and should be customized. Other parameters
should be kept at default values. These parameters are found under the “connect to
SONET,” “connect to PDH” and “connect to WDM” sections and use the otmConnect
action.

Note: “Connect for SONET” indicates High-order SONET/SDH.
“Connect for PDH” indicates Low-order SONET and SDH.

ems.sessionFactoryBacku
p

The backup EMS session factory (provided by customer).

ems.userName The EMS user name (provided by customer).

ems.password The EMS password (provided by customer).

ems.nameServerIors URL that resolves to the IOR file for one or more name servers. A
valid URL must be provided. The URL is passed to the local CORBA
ORB.
corbaloc::160.45.110.41:38693/StandardNS/NameServer-POA/
_root

Note: Note that the URL is system-specific when a “file:” URL is
specified. A Win32 filename should be specified like
“file:///c:/a/b/c.ior” using forward slashes and three slashes
between “file:” and the drive letter.

Examples (from JacORB documentation):
corbaloc::160.45.110.41:38693/StandardNS/NameServer-POA/
_root
file:c/:/NS_Ref
http://www.x.y.z/~user/NS_Ref

ems.emsTracerFile If the default tracer file directory needs to be specified, it can be
added after the "/logs" in the desired path.

ems.logToFilePath Full path and filename of adapter log.

ems.discovery To use the TMF814 Adapter for discovery and event processing, set
“on”.
For event processing only, set to “off”.

Table 1 Configuration parameters for connection to Cisco and Ciena EMSs

Table 2 Configuration parameters for connection to OTM domain managers

Parameter Description

connectionName Connection name (can be any string, e.g., “SONET-1”)

connectionType OTM-SDH-TOPOLOGY,
OTM-PDH-TOPOLOGY, or
OTM-WDM-TOPOLOGY

Configuring adapterConnections.xml 13

Configuring the Adapter

Example adapterConnections.xml file

This ruleset defines an adapter called “OTM-TMF814-ADAPTER”. The STARTUP rule
executes the connect and otmConnect actions if the AdapterName variable is
“OTM-TMF814-ADAPTER.” In this example the connect action connects to the Cisco EMS
and the otmConnect action connects to the OTM-SDH-TOPOLOGY server.

<?xml version="1.0" encoding="UTF-8"?>
<ruleset>
 <!-- global settings -->
 <globals
 otm.basedir="/opt/InCharge7/OTM-5.0/OTM"
 />

 <!-- this creates our adapter -->
 <adapter
 AdapterName="OTM-TMF814-ADAPTER"
 AdapterClass="com.emc.smarts.optical.OtmAdapter"
 />

 <!-- this rule runs at STARTUP time -->
 <rule type="STARTUP">
 <!-- for the adapter called OTM-TMF814-ADAPTER -->
 <condition varName="AdapterName"

varValue="OTM-TMF814-ADAPTER"/>

 <!-- connect to the Cisco EMS -->
 <action type="java" javaClass="connect">
 <params
 connectionType="TMF814"

connectionFactory= "com.emc.smarts.optical.tmf814.\
emsInterface.OtmTmf814ConnectionFactory"

connectionSyncherFactory="com.emc.smarts.optical.\
tmf814.emsInterface.OtmTmf814SyncherFactory"

 ems.instanceName="Cisco-EMS"
 ems.emsType="CiscoCtm"
 ems.interfaceClass="com.emc.smarts.optical.\

tmf814.ciscoCtm.CiscoCtmEmsInterface"
 ems.sessionFactory="Cisco

Systems/CTM_78.EmsSessionFactory"
 ems.sessionFactoryBackup="Cisco

Systems/CTM_78.EmsSessionFactory"
 ems.userName="smarts"
 ems.password="smarts123"

ems.nameServerIors=\

connectionSyncher For a High Order SONET/SDH connection:
com.emc.smarts.ce.jablOtmInterface.connection.otmSonetSynch
er

For a Low Order SONET/SDH (PDH) connection:
com.emc.smarts.ce.jablOtmInterface.connection.otmPdhSyncher

For a WDM connection:
com.emc.smarts.ce.jablOtmInterface.connection.otmDwdmSync
her

icDomain The domain name (given by the -n argument of sm_server)

managedEms The name of the managed EMS

pingFrequency Frequency, in seconds, in which the adapter sends pings to the
domain manager.

Table 2 Configuration parameters for connection to OTM domain managers

14 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Configuring the Adapter

"corbaloc::lglob070:7685/StandardNS/NameServer-POA/root"
 ems.emsTracerFile="$otm.basedir$/smarts/local/logs"
 ems.trackEventsAndAudit="false"
 ems.saveForSimulator="false"
 ems.supplierProxyDir=""
 ems.emsSwitchingTimeInMinutes="5"
 ems.numberOfTries="2"
 ems.logToFilePath=\
"$otm.basedir$/smarts/local/logs/CiscoAdapter.log"
 ems.maxFileSize="1GB"
 ems.maxBackupIndexForFile="1"
 ems.logFileDuration="14"
 ems.memoryThreshold="10"
 ems.eventChannel="on"
 ems.discovery="on"
 ems.structuredProxyPushSupplierIsPersistent="false"
 ems.maxEventsInTimeslice="1000"
 ems.eventProcessorSleepMsec="10"
 ems.monitorConnection="true"
 ems.connectAttemptMsec="30000"
 ems.emsConnectionPollMsec="5000"
 ems.watchdogTimeoutMsec="3600000"
 ems.managedElementChunkSize="50"
 ems.equipmentChunkSize="50"
 ems.topologicalLinkChunkSize="50"
 ems.subnetworkChunkSize="50"
 ems.subnetworkContainmentChunkSize="50"
 ems.subnetworkConnectionChunkSize="50"
 ems.eventChunkSize="50"
 ems.adapterWorkThreads="6"
 />
 </action>

 <!-- connect to SONET -->
 <action type="java" javaClass="otmConnect">
 <params
 connectionName="OTM-SONET"
 connectionType="OTM-SDH-TOPOLOGY"

connectionSyncher="com.emc.smarts.ce.\
jablOtmInterface.connection.otmSonetSyncher"

 icDomain="OTM-SDH-TOPOLOGY"
 managedEms="Cisco-EMS"
 pingFrequency="30"
 />
 </action>
 </rule>
</ruleset>

Configuring adapterConnections.xml 15

Configuring the Adapter

16 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

CHAPTER 3
Processing Managed Element Names

The Adapter for TMF 814 processes the name information found in the EMS to create
strings that are used in the Optical Transport Manager. The name information in the EMS is
encoded as a set of name/value pairs that are concatenated to form the Optical Transport
Manager name.

This chapter contains the following sections:

◆ Managed element names for SONET devices ... 18

Processing Managed Element Names 17

Processing Managed Element Names

Managed element names for SONET devices
The examples in this section illustrate, for each class, how the Optical Transport Manager
processes the managed element name, along with any other information such as rack,
slot, and port, from the EMS record.

OpticalNetworkElement

Table 3 on page 18 shows sample entry items for the OpticalNetworkElement class.

In Optical Transport Manager, the information appears as

Node1

where the value for Managed Element Name is Node1.

Equipment

Table 4 on page 18 shows sample entry items for the Equipment class.

In Optical Transport Manager, the information appears as

Node1/1-1-6

where the values are

◆ Managed Element Name = Node1

◆ Rack = 1

◆ Shelf = 1

◆ Slot = 6

Table 3 Sample OpticalNetworkElement entry items

Item Name Value

EMS Cisco Systems/CTM_HA

ManagedElement Node1

Table 4 Sample Equipment entry items

Item Name Value

EMS Cisco Systems/CTM_HA

ManagedElement Node1

EquipmentHolder /rack=1/shelf=1/slot=6

Equipment OC192

18 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Processing Managed Element Names

Port Termination Point (PTP)

Table 5 on page 19 shows sample entry items for the PTP class.

In Optical Transport Manager, the information appears as

Node1/1-1-2/3

where the values are

◆ Managed Element Name = Node1

◆ Rack = 1

◆ Shelf = 1

◆ Slot = 2

◆ Port = 3

Connection Termination Point (CTP)

Table 6 on page 19 shows sample entry items for the CTP class.

In Optical Transport Manager, the information appears as

Node1/1-1-2/3/1

where the values are

◆ Managed Element Name = Node1

◆ Rack = 1

◆ Shelf = 1

◆ Slot = 2

◆ Port = 3

◆ CTP Identifier = 1

Table 5 Sample PTP entry items

Item Name Value

EMS Cisco Systems/CTM_HA

ManagedElement Node1

PTP /rack=1/shelf=1/slot=2/port=3

Table 6 Sample PTP entry items

Item Name Value

EMS Cisco Systems/CTM_HA

ManagedElement Node1

PTP /rack=1/shelf=1/slot=2/port=3

CTP /sts1_au3-j=1-k=1

Managed element names for SONET devices 19

Processing Managed Element Names

TopologicalLink

Table 7 on page 20 shows sample entry items for the TopologicalLink class.

In Optical Transport Manager, the name indicates a logical link between two managed
elements and appears as

Node1/1-1-2/3->Node2/1-1-2/4

where the values are

◆ A-End Managed Element Name = Node1

◆ A-End Rack = 1

◆ A-End Shelf = 1

◆ A-End Slot = 2

◆ A-End Port = 3

◆ Z-End Managed Element Name = Node2

◆ Z-End Rack = 1

◆ Z-End Shelf = 1

◆ Z-End Slot = 2

◆ Z-End Port = 4

ProtectionGroup

Table 8 on page 20 shows sample entry items for the ProtectionGroup class.

In Optical Transport Manager, the information appears as

Table 7 Sample TopologicalLink entry items

Item Name Value

EMS Cisco Systems/CTM_HA

TopologicalLink TL1

A-End
ManagedElement

Node1

A-End PTP /rack=1/shelf=1/slot=2/port=3

Z-End
ManagedElement

Node2

Z-End PTP /rack=1/shelf=1/slot=2/port=4

Table 8 Sample ProtectionGroup entry items

Item Name Value

EMS Cisco Systems/CTM_HA

ManagedElement Node1

ProtectionGroup Node1/PG1

20 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Processing Managed Element Names

Node1/PG1

where the values are

◆ Managed Element Name = Node1

◆ ProtectionGroup = PG1

High Order Trail (HO_Trail)

Table 9 on page 21 shows sample entry items for the HO_Trail class.

In Optical Transport Manager, the information appears as

Node1/1-1-2/3/1->Node2/1-1-2/4/1

where the values are

◆ A-End Managed Element Name = Node1

◆ A-End Rack = 1

◆ A-End Shelf = 1

◆ A-End Slot = 2

◆ A-End Port = 3

◆ A-End CTP = 1

◆ Z-End Managed Element Name = Node2

◆ Z-End Rack = 1

◆ Z-End Shelf = 1

◆ Z-End Slot = 2

◆ Z-End Port = 4

◆ Z-End CTP = 1

Table 9 Sample HO_Trail entry items

Item Name Value

EMS Cisco Systems/CTM_HA

SubnetworkConnection SNC1

A-End ManagedElement Node1

A-End PTP /rack=1/shelf=1/slot=2/port=3

A-End CTP /sts1_au3-j=1-k=1

Z-End ManagedElement Node2

Z-End PTP /rack=1/shelf=1/slot=2/port=4

Z-End CTP /sts1_au3-j=1-k=1

Managed element names for SONET devices 21

Processing Managed Element Names

Note: In the Ciena EMS TMF814 model, there is no direct relationship between
SubnetworkConnection (SNC) and TopologicalLink (TL). Instead, an SNC rides over one or
multiple working RoutingLink (RL) objects, and each RL consists of one or multiple TLs.
Since the RL is not modeled in the OTM Adapter for TMF814, each HO_Trail (i.e., SNC) will
be LayeredOver multiple TLs. During root cause analysis, for each PTP alarm processed,
the corresponding TL will be Down and it will impact all the Underlying HO_Trails.

Low Order Trail (LO_Trail)

Table 10 on page 22 shows sample entry items for the LO_Trail class.

In Optical Transport Manager, the information appears as

Node1/1-1-2/3/1-1->Node2/1-1-2/4/1-1

where the values are

◆ A-End Managed Element Name = Node1

◆ A-End Rack = 1

◆ A-End Shelf = 1

◆ A-End Slot = 2

◆ A-End Port = 3

◆ A-End CTP = 1-1

◆ Z-End Managed Element Name = Node2

◆ Z-End Rack = 1

◆ Z-End Shelf = 1

◆ Z-End Slot = 2

◆ Z-End Port = 4

◆ Z-End CTP = 1-1

Table 10 Sample LO_Trail entry items

Item Name Value

EMS Cisco Systems/CTM_HA

SubnetworkConnection SNC2

A-End ManagedElement Node1

A-End PTP /rack=1/shelf=1/slot=2/port=3

A-End CTP /sts1_au3-j=1-k=1/vt15_tu11-l=1-m=1

Z-End ManagedElement Node2

Z-End PTP /rack=1/shelf=1/slot=2/port=4

Z-End CTP /sts1_au3-j=1-k=1/vt15_tu11-l=1-m=1

22 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

CHAPTER 4
Analyzed Alarms

This chapter lists Cisco and Ciena device alarms that the TMF 814 Adapter receives. The
TMF 814 Adapter translates it into an OTM attribute of the OTM object. The Domain
Manager polls the OTM objects and sends notifications to the Service Assurance Manager
to display as an event.

This chapter contains the following sections:

◆ Supported Cisco Alarm Mapping ... 24
◆ Supported Ciena Alarm Mapping... 25
◆ Impact of EMS link failures on notifications... 25

Analyzed Alarms 23

Analyzed Alarms

Supported Cisco Alarm Mapping
Table 11 on page 24 shows the mapping between the Cisco alarms and the OTM
attributes.

Table 11 Cisco Alarm Mapping

TMF814 Alarm Attribute
OTM Attribute OTM Object

ClassObject Type Probable Cause Native Probable Cause

OT_CONNECTION_TERMINATION_POINT

AIS AISDetected

CTP

BER_SD SDDetected

BER_SF SFDetected

LOP LOPDetected

LOS LOSDetected

PLM PLMDetected

RAI RDIDetected

TIM TIMDetected

UNEQ UNEQDetected

UNIDENTIFIED Payload Defect Indication PDIDetected

OT_PHYSICAL_TERMINATION_POINT

AIS AISDetected

PTP

BER_SD SDDetected

BER_SF SFDetected

DCC_FAILURE IsDCCDown

LOF LOFDetected

LOP LOPDetected

LOS LOSDetected

RAI RDIDetected

TIM TIMDetected

UNIDENTIFIED Carrier Loss on the LAN LOSDetected

OT_EQUIPMENT

EQPT Equipment Failure IsDown

Equipment

EQPT Improper Removal IsUnavailable

EQPT Automatic Laser Shutdown IsLaserDown

EQPT Facility Termination Equipment
- Receiver Missing

IsRxUnavailable

EQPT Facility Termination Equipment
- Transmitter Missing

IsTxUnavailable

EQPT Inhibit Size to Protect Request
on Equipment

IsSwitchInhibited

EQPT Inhibit Size to Working Request
on Equipment

IsSwitchInhibited

EQPT Internal Fault IsUnavailable

Mismatch of Equipment and
Attributes

IsMismatch

EQPT Receiver Failure IsRxDown

EQPT Transmit Failure IsTxDown

EQPT Replaceable Equipment/Unit Is
Missing

IsUnavailable

OT_EMS EMS Loss of Communication CommunicationSt
ate OpticalNet-

workEleme
ntOT_MANAGED_ELEMENT

EQPT Fan Failure failedFanCount

ENV NE Power Failure at connector
[AB]

failedPsCount

24 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Analyzed Alarms

Supported Ciena Alarm Mapping
Table 12 on page 25 shows the mapping between the Ciena alarms and the OTM
attributes.

Impact of EMS link failures on notifications
When an EMS link failure occurs, the EMS and the TMF 814 Adapter cannot communicate
with each other. This disconnect can be the result of an EMS issue or a TMF 814 Adapter
issue. Depending on which component has caused the disconnect, you may or may not be
able to retrieve events/alarms that occur during the downtime.

This section describes the two possible scenarios.

Disconnect due to EMS failure

If the link failure is due to a problem with the EMS:

1. The TMF 814 Adapter notifies SAM that the EMS is not available.

2. SAM displays a notification in the Global Console.

Note: For information about notifications and impacts, see the EMC Smarts Optical
Transport Manager User Guide.

Table 12 Ciena Alarm Mapping

TMF814 Alarm Attribute
OTM Attribute OTM Object Class

Object Type Probable Cause

OT_CONNECTION_TERMINATION_POINT

AIS AISDetected

CTP

DEGRADED_SIGNAL SDDetected

EXCESSIVE_BER SFDetected

LOSS_OF_POINTER LOPDetected

PATH_TRACE_MISMATCH TIMDetected

PAYLOAD_DEFECT PDIDetected

REMOTE_DEFECT_INDICATION RDIDetected

REMOTE_FAILURE_INDICATION RDIDetected

UNEQUIPPED UNEQDetected

OT_PHYSICAL_TERMINATION_POINT

AIS AISDetected

PTP

DEGRADED_SIGNAL SDDetected

EXCESSIVE_BER SFDetected

LOSS_OF_FRAME LOFDetected

LOSS_OF_SIGNAL LOSDetected

SECTION_TRACE_MISMATCH TIMDetected

OT_MANAGED_ELEMENT LOSS_OF_COMMUNICATION CommunicationStat
e

OpticalNetworkElem
ent

OT_EQUIPMENT

COMMUNICATION_SUBSYSTEM_FAILED IsDown

Equipment
REPLACEABLE_UNIT_MISSING IsUnavailable

REPLACEABLE_UNIT_PROBLEM IsDown

REPLACEABLE_UNIT_TYPE_MISMATCH IsMismatch

SERVICE_UNSUPPORTED IsMismatch

FAN_LOW_RPM failedFanCount OpticalNetworkElem
entPOWER_PROBLEM failedPsCount

Supported Ciena Alarm Mapping 25

Analyzed Alarms

3. While the EMS is down, it cannot send any events/alarms to the TMF 814 Adapter.

4. When the EMS is restored and resumes monitoring, it queries the managed network
for status and synchronizes the alarms with the Adapter.

Disconnect due to TMF 814 Adapter failure

If the link failure is due to a problem with the TMF 814 Adapter:

1. SAM displays a notification in the Global Console.

2. While the Adapter is down, the EMS caches all new events/alarms.

3. When the Adapter is restored, it sends a request to the EMS for all active
events/alarms.

4. The Adapter maps all events/alarms to EMC Smarts ICS notification attributes and
forwards them to the remote client.

26 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

CHAPTER 5
Configuring Cross-Domain Circuits

This chapter includes the following sections:

◆ Creating cross-domain circuits .. 28
◆ Automatic circuit creation ... 29

Configuring Cross-Domain Circuits 27

Configuring Cross-Domain Circuits

Creating cross-domain circuits
The existing Topology adapters for OTM are not be able to discover the full, end-to-end
topology. Each adapter communicates with an EMS (like the TMF814 adapter) or the
optical network elements directly (like the SNMP adapter) to gather topology. These
adapters are only able to report topology for their own sub-network. The processing
described in this section allows for the creation of end-to-end circuits that traverse
multiple sub-networks.

Figure 3 Example of a circuit that spans multiple sub-networks

Note: The terms Circuit and Trail are used generically within this section. These may
actually be HighOrder_Circuit, LowOrder_Circuit, ClientCircuit, HighOrder_Trial,
LowOrder_Trial, or ClientTrail depending on the context.

Circuit creation files

The information for creating end-to-end circuits is specified in text files that will be parsed
and processed after the other OTM adapters create the sub-network topologies.

There is a single data file for each OTM domain that contains the circuit data for that
domain (SONET/SDH, LO-SONET/SDH, DWDM). By default, the files are:

◆ conf/sonet-sdh-circuit-create.txt

◆ conf/lo-sonet-sdh-circuit-create.txt

◆ conf/wdm-circuit-create.txt

Each circuit record contains enough information to create the Circuit object (for example,
A-end and Z-end CTPs) and to create the relationships (for example, LayeredOver and
Underlying) with the Trails (sub-network connections (SNCs)) that carry the Circuits.

Any physical topology (TopologicalLinks, DropSideTopologicalLinks) will be created by the
adapters and the adapters will create relationships to the Trails when necessary.

◆ The circuit creation data files must always be present in the /conf (or /local/conf)
area.

Vendor A

Sub-Network

Vendor B

Sub-Network

Trail

(SNC)

Circuit

28 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Configuring Cross-Domain Circuits

◆ The default files are empty except for comments. Therefore, the Automatic circuit
creation is disabled by default. ?gAutomatic circuit creation?h on page 34 provides
more information.

When the circuit data file for an OTM domain is populated with circuit records, all of the
circuits to be created within the topology of the domain must be in the data file. This
includes circuits that only span a single sub-network. In other words, either all circuits are
created from circuit records or all circuits are created automatically.

Automatic circuit creation
If all of the Circuits within the customer network only span a single sub-network, the
circuit data file can contain a single line with the string,
AUTOMATICALLY-GENERATE-CIRCUITS.

In this case, the circuit names will automatically be generated based on the Trail A-end
and Z-end points.

SONET/SDH and Low-Order SONET/SDH
Circuits will be generated based on Trails that are marked as SNC-created Trails and these
Circuits will be layered directly over the Trial (one Circuit over the single Trail). The SNC
indication is held in the UserLabel attribute field of the Trails. Any Trail that has the
sub-string “SNC” within the UserLabel attribute will be considered an SNC-related Trail.

The names for the automatically generated circuits will be generated based on the A-end
and Z-end CTPs from the Trail. The CTP names are parsed from the Trail name so the Trail
name needs to contain the A-end and Z-end CTP names separated by an arrow, “->”.

WDM
Circuits will be generated for all Trails within the topology. The names for the automatically
generated circuits will be generated based on the A-end and Z-end Port information from
the Trail. The names of the A-End Input Port and the Z-End Output Port are used (based on
relationships from the Trail directly to these end points).

Record format

This section describes the records that can be included within a data file used for OTM
circuit topology creation. This file is a plain text file with each line as an individual record.
The fields for each record are separated by pipe delimiters ?g|?h.

◆ Field separator is the pipe delimiter | and therefore, this symbol cannot be part of any
actual data.

◆ Any field that is specified as Optional must still have a field separator but no data is
required, for example, | |.

◆ Comment lines within the file start with #.

◆ Blank lines are allowed in the files.

◆ When object names are required within the data, the names should not include the
prefix added by the OTM object factory. For example, CRCT-, CTP-. The EMC Smarts
Optical Transport Manager User Guide provides more information.

Automatic circuit creation 29

Configuring Cross-Domain Circuits

The individual records, a single line in the file, are composed of a record header and a
record body. The record header will have the same format for all records. The record body
will have varying formats based on the record type.

Record header format

Table 13 on page 30 shows the record header format. It is common to all records.

Record body format
The basic format for each record body will include some Circuit information followed by
sequences of varying number, length and type.

The Circuit data provides the Circuit name, type, A-end, and Z-end CTPs or Ports. The
Circuit data format is largely similar for each of the domains, though there some
differences. Table 14 on page 31 provides information about the format of the Circuit
segment of the body.

The sequence data can be of two types, specifying either the underlying Trails or setting
attributes for the Circuit. Table 15 on page 32 provides the format of the Trails segment of
the record body and Table 16 on page 32 provides the format of the attribute setting
segment

Table 13 Record header format for all record types

Field number Field name Sample value Type Comments

1 Record ID 1000 Integer Currently there are no checks on
the integer values.
Ideally there would be a unique
value for each record.
This is useful when looking into
the log files to identify the
record within the data file.

2 Record Type CIRCUIT String In this release, the only valid value
will be CIRCUIT. In
future releases, additional record
types may be added
such as TL and TLG.

3 Domain SONET-SDH String Identifies the domain that the
record should be processed
in. The valid values are:
SONET-SDH, LO-SONET-SDH,
WDM.

30 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Configuring Cross-Domain Circuits

Table 14 Format of circuit segment of record body

Field Number Field name Circuit name Type Comment

3 Circuit
Name

Node1/1-1-8/1/25->
Node3/1-1-8/1/25

String This field is Optional.
If not specified, the circuit
name will be created
using the A & Z end CTP
names for SONET/SDH
and Low-order
SONET/SDH:
(aEndCtpName->zEndCtpN
ame)
or, for DWDM, created
using the A-end Input Port
name & the Z-end Output
Port name.
(aEndInputPortname->zEn
dOutputPortName)

4 Circuit Type STS1 String This field is Optional.
If not specified, the
LayerRate will be
populated
with LR_UNKNOWN.
This field is not used at
this time for DWDM and
should be left blank.
If populated, the valid
circuit types for
SONET/SDH include:
STS1, STS3, STS3c,
STS12, STS12c, STS24c,
STS48, STS48c, STS192c,
AU3, AU4, AU4_4,
AU4_8c, AU4_16,
AU4_16c,
AU4_64c
Valid circuit types for
Low-order SONET/SDH
include:
C2, C11, C12, VC2, VC11,
VC12, AU2, AU11,
AU12

5 A-End CTP Node1/1-1-8/1/25 String CTP name of A end of
Circuit
(for SONET/SDH or
Low-order SONET/SDH)
A End Input Port name (for
DWDM).

6 Z-End CTP Node3/1-1-8/1/25 String CTP name of Z end of
Circuit
(for SONET/SDH or
Low-order SONET/SDH)
Z End Input Port name (for
DWDM).

Automatic circuit creation 31

Configuring Cross-Domain Circuits

A sequence is used when there may be multiple instance of some group of data. The
sequence can be repeated multiple times with incrementing sequence numbers.
Sequence types can be mixed in the same record. The type of sequences supported for
each record is dependent on the Record Type. Table 15 on page 32 shows the record
format for the TRAIL sequence.

The attribute sequence specifies an attribute name and the associated attribute value to
be set.

Table 16 on page 32 shows the record format for the attribute sequence format for the
TRAIL sequence.

Examples
The following is an example of the record creating a Circuit in SONET/SDH. (Type this string
as one line; line feeds in this example have been added for readability.)

1000|CIRCUIT|SONET-SDH|||
Node1/1-1-8/1/25|

Table 15 Format for TRAIL circuit type

Field
number Field name Sample value Type Comment

Sequence Number Integer Starts at 1 and increments for
each sequence within the record

Sequence Type TRAIL String TRAIL

A-end CTP (for High- and
Low-order SONET/SDH)
A-end Input Port (for
DWDM only)

Node 1/1-1-8/1/25 String A-end of the Trail or Sub-network
(for High- and Low-order
SONET/SDH)
A-end Input Port of the Trail or
Sub-network (for DWDM only)

Z-end CTP (for High- and
Low-order SONET/SDH)
Z-end Output Port (for
DWDM only)

Node 3/1-1-8/1/25 String Z-end of the Trail or Sub-network
(for High- and Low-order
SONET/SDH)
Z-end Input Port of the Trail or
Sub-network (for DWDM only)

Table 16 Format for Attribute sequence type

Field
number Field name Sample value Type Comment

Sequence Number Integer Starts at 1 and increments for
each sequence within the record

Sequence Type ATTRIBUTE String ATTRIBUTE

Attribute Type STRING String STRING, INTEGER, BOOLEAN

Attribute Name Owner String Attribute Name

Attribute Value XYZ Corp. Based on
Attribute
Type

Attribute Value to be set
(true/false for BOOLEAN)

32 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Configuring Cross-Domain Circuits

ME3/1-3-1-5/1/25|
1|TRAIL|Node1/1-1-8/1/25|Node3/1-1-8/1/25|
2|TRAIL|ME1/1-3-16-2/1/25|ME3/1-3-1-5/1/25|
3|ATTRIBUTE|STRING|Owner|Acme Corp

The following text is an example of the record creating a Circuit in DWDM. (Type this string
as one line; line feeds in this example have been added for readability.)

11000|CIRCUIT|WDM|||
Node1/Node1/2/2/8/1/UNDEFINED/OCN/IN|
Node1/Node1/2/2/7/1/UNDEFINED/OCN/OUT|
1|TRAIL|
Node1/Node1/2/2/8/1/UNDEFINED/OCN/IN|
Node1/Node1/2/2/7/1/UNDEFINED/OCN/OUT|
2|ATTRIBUTE|STRING|ServiceName|NY-to-LA

Executing the circuit creation program

The circuit creation processing runs as part of post-processing for each of the OTM
Topology servers and may also be invoked manually. Post-processing runs after any
topology change initiated by a topology adapter, it runs when the Discover All or Discover
Pending commands are initiated by a user, and also may run periodically based on the
pending interval if configured by a user. (Pending interval defaults to 6 hours.)

To invoke the processing manually the following command can be run from the /bin area:

sm_circuit_create -f <Full Path to the Data File> -s <Server Name> -b
<Broker> [-o <Log File Name>] [-d (Debug Mode)] [-h (Help)]

Note: Type commands as one line. The parameters shown in square brackets are optional.

This same command can be run against each of the OTM Topology servers with parameters
specific to each domain. For example:

sm_circuit_create -f /opt/InCharge7/smarts/install/local/conf/circuit-
create.txt -s OTM-SDH-TOPOLOGY -b localhost:42624 -d

Circuit deletion

To allow changes to the circuit topology, we support the ability to delete circuits that were
previously created by the circuit creation processing. The processing gets circuit names
from the data file, searches the topology for an existing circuit with this name, and if
found, removes the circuit. This is then repeated for each record in the circuit deletion
data file.

IMPORTANT!
Before running the Circuit Deletion command, open the corresponding Circuit
Creation data file (sonet-sdh-circuit- create.txt, lo-sonet-sdh-circuit-create.txt, or
wdm-circuit-create.txt) and comment out or delete the lines containing the circuits
to be deleted. Otherwise, the circuits will be created again on server startup.

Deletion file format
The circuit deletion data file requires each line to list the name of a circuit to be deleted.

Automatic circuit creation 33

Configuring Cross-Domain Circuits

◆ Each line contains a circuit name only and no extra data is allowed on the line.

◆ Comment lines within the file start with “#”.

◆ Blank lines are allowed in the file.

When object names are required within the data, the names should not include the Prefix
added by the OTM object factory. For example, CRCT-, CTP-.

Example file for circuit deletion
This data file is used to delete circuits within the OTM Domain
Managers
ME1/1-3-16-2/1/25->ME3/1-3-1-5/1/25
ME3/1-3-1-4/1/13->ME1/1-3-8-6/1/16
Node1/1-1-8/1/22->Node8/1-1-8/1/22
Node1/1-1-8/1/25->Node3/1-1-8/1/25

Executing the circuit deletion program
This circuit deletion processing is invoked manually and is not run as part of the topology
server post-processing. This was done to avoid deletion and re-creation of circuits every
time post-processing runs.

To invoke the processing manually for the OTM Topology servers, the following command
can be run from the /bin area:

sm_circuit_delete -f /opt/InCharge7/smarts/install/local/conf/circuit-
delete.txt -s OTM-SDH-TOPOLOGY -b localhost:42624 -d

Note: Type commands as one line. The parameters shown in square brackets are optional.

Log files for creation and deletion

By default, separate log files are created for log messages related to circuit creation and
deletion. The name of the creation log file is the name of the related topology server with
the “circuit-create.log” suffix. For example, OTM-SDH-TOPOLOGY-circuit-create.log.
Similarly, the name of the deletion log file is the name of the related topology server with
the “circuit-delete.log” suffix.

An indication within the server log file indicates each time the circuit creation processing
starts and finishes so that the relative time of processing can be seen.

There is a single RECORD_ERROR message in the log file for each record that is not fully
processed to success. RECORD_ERROR can be searched for in the log file to identify all of
the “Fallouts”. Additional error messages may be included in the log file to give more
details of the error when possible. Also, each time either process runs there are some
basic statistics printed at the end of processing (number of circuits created, number of
erred records, etc.).

34 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

CHAPTER 6
Adapter for TMF 814 Log Files

This chapter includes the following sections:

◆ Ciena EMS Adapter logs .. 36
◆ Cisco EMS Adapter logs... 38

For additional information about logging, see the EMC Smarts Optical Transport Manager
User Guide and the EMC Smarts System Administration Guide.

Adapter for TMF 814 Log Files 35

Adapter for TMF 814 Log Files

Ciena EMS Adapter logs
Table 17 on page 36 describes the Ciena EMS Adapter log files.

Table 17 Ciena EMS Adapter logs

Log file Description

Used in
production
?

Java-
generated
?

Standard
sm_server
log?

Active log file
management
(size/cnt)? Configuration source

TTMF814-CIENA_en_
US_UTF-8.log

Primary EMS Adapter
log

Note: To see contents
of this file in TMF814
log, adjust --loglevel.

Yes No Yes Yes SM_BACKUP_FILE_LIMIT

The EMC Smarts
System Administration
Guide provides more
information on
managing log files.

CienaAdapter.log.<m
mddyyyy>

TMF814 EMS Adapter
generates this log.

No
(diagnostic
only)

Yes No Yes adapterConnections.xml:
• Path:

If ems.logToFilePath =
"$otm.basedir$/smart
s/local/logs/CienaAd
apter.log"

• Duration:
(default 14 days)
ems.logFileDuration=
14"

Ciena-EMS_<current
_date_time>_audit.t
xt

TMF814 EMS Adapter
generates this log.
Tracks event handling
of each event at very
low level.

No
(diagnostic
only)

Yes No Yes
(ApacheLogFor
J)

adapterConnections.xml:
• Enable:

ems.trackEventsAndA
udit ="true"

• Path:
ems.emsTracerFile

• Size: ems.maxFileSize
• Backup count: ems.

maxBackupIndexForFil
e

Ciena-EMS_<current
_date_time>_event.
bin

TMF814 EMS Adapter
generates this log.
Captures in binary
format for off-site
simulator use a very
detailed trace of
interaction with EMS.

No
(diagnostic
only)

Yes No No adapterConnections.xml:
• Enable:

ems.trackEventsAndA
udit ="true"
ems.saveForSimulator
="true"

36 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Adapter for TMF 814 Log Files

Ciena-EMS_<current
_date_time>_event.t
xt

TMF814 EMS Adapter
generates this log.
Human-readable
subset of bin file.

No
(diagnostic
only)

Yes No Yes
(ApacheLogFor
J)

adapterConnections.xml:
• Enable:

ems.trackEventsAndA
udit ="true"

• Path:
ems.emsTracerFile

• Size: ems.maxFileSize
• Backup count: ems.

maxBackupIndexForFil
e

Ciena-EMS_<current
_date_time>_topo.bi
n

TMF814 EMS Adapter
generates this log.
Captures in binary
format for off-site
simulator use a very
detailed trace of
interaction with EMS.

No
(diagnostic
only)

Yes No No adapterConnections.xml:
• Enable:

ems.trackEventsAndA
udit ="true"
ems.saveForSimulator
="true"

Ciena-EMS_<current
_date_time>_topo.tx
t

TMF814 EMS Adapter
generates this log.
Human-readable
subset of bin file.

No
(diagnostic
only)

Yes No No adapterConnections.xml:
• Enable:

ems.trackEventsAndA
udit ="true"
ems.saveForSimulator
="true"

• Path:
ems.emsTracerFile

• Size: ems.maxFileSize
• Backup count: ems.

maxBackupIndexForFil
e

Table 17 Ciena EMS Adapter logs (continued)

Log file Description

Used in
production
?

Java-
generated
?

Standard
sm_server
log?

Active log file
management
(size/cnt)? Configuration source

Ciena EMS Adapter logs 37

Adapter for TMF 814 Log Files

Cisco EMS Adapter logs
Table 18 on page 38 describes the Cisco EMS Adapter log files.

Table 18 Cisco EMS Adapter logs

Log file Description

Used in
production
?

Java-
generated
?

Standard
sm_server
log?

Active log file
management
(size/cnt)? Configuration source

TMF814-CISCO_en_
US_UTF-8.log

Primary EMS Adapter
log

Note: To see contents
of this file in TMF814
log, adjust --loglevel.

Yes No Yes Yes SM_BACKUP_FILE_LIMIT

The EMC Smarts
System Administration
Guide provides more
information on
managing log files.

CiscoAdapter.log.<m
mddyyyy>

IC-CISCO-CTM EMS
Adapter generates
this log.

No
(diagnostic
only)

Yes No Yes adapterConnections.xml:
• Enable:

if ems.logToFilePath =
"$otm.basedir$/smart
s/local/logs/CiscoAda
pter.log"

• Duration:
(default 14 days)
ems.logFileDuration=1
4"

Cisco-EMS_<current_
date_time>_audit.txt

IC-CISCO-CTM EMS
Adapter generates
this log.
Tracks event handling
of each event at very
low level.

No
(diagnostic
only)

Yes No Yes
(ApacheLogFor
J)

adapterConnections.xml:
• Enable:

ems.trackEventsAndAu
dit ="true"

• Path:
ems.emsTracerFile

• Size: ems.maxFileSize
• Backup count: ems.

maxBackupIndexForFil
e

Cisco-EMS_<current_
date_time>_event.bi
n

IC-CISCO-CTM EMS
Adapter generates
this log.
Captures in binary
format for off-site
simulator use a very
detailed trace of
interaction with EMS.

No
(diagnostic
only)

Yes No No adapterConnections.xml:
• Enable:

ems.trackEventsAndAu
dit ="true"
ems.saveForSimulator
="true"

38 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

Adapter for TMF 814 Log Files

Cisco-EMS_<current_
date_time>_event.tx
t

IC-CISCO-CTM EMS
Adapter generates
this log.
Human-readable
subset of bin file.

No
(diagnostic
only)

Yes No Yes
(ApacheLogFor
J)

adapterConnections.xml:
• Enable:

ems.trackEventsAndAu
dit ="true"

• Path:
ems.emsTracerFile

• Size: ems.maxFileSize
• Backup count: ems.

maxBackupIndexForFil
e

Cisco-EMS_<current_
date_time>_topo.bin

IC-CISCO-CTM EMS
Adapter generates
this log.
Captures in binary
format for off-site
simulator use a very
detailed trace of
interaction with EMS.

No
(diagnostic
only)

Yes No No adapterConnections.xml:
• Enable:

ems.trackEventsAndAu
dit ="true"
ems.saveForSimulator
="true"

Cisco-EMS_<current_
date_time>_topo.txt

IC-CISCO-CTM EMS
Adapter generates
this log.
Human-readable
subset of bin file.

No
(diagnostic
only)

Yes No No adapterConnections.xml:
• Enable:

ems.trackEventsAndAu
dit ="true"
ems.saveForSimulator
="true"

• Path:
ems.emsTracerFile

• Size: ems.maxFileSize
• Backup count: ems.

maxBackupIndexForFil
e

Table 18 Cisco EMS Adapter logs

Log file Description

Used in
production
?

Java-
generated
?

Standard
sm_server
log?

Active log file
management
(size/cnt)? Configuration source

Cisco EMS Adapter logs 39

Adapter for TMF 814 Log Files

40 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

APPENDIX A
Understanding the sm_edit Utility

As part of the EMC Smarts deployment and configuration process, you need to modify
certain files. User modifiable files include configuration files, rule set files, templates, and
seed files that contain encrypted passwords. Original versions of these files are installed
into appropriate subdirectories under the BASEDIR/smarts/ directory.

The original versions of files should not be altered. If a file must be modified, a new
version should be created and then stored as a local copy of the file in
BASEDIR/smarts/local or one of its subdirectories.

When EMC Smarts software requires one of these files, it is designed to first search for a
modified file in BASEDIR/smarts/local or one of its subdirectories. If a modified version of
a file is not found in the local area, EMC Smarts software then searches corresponding
BASEDIR/smarts directories for the original version of the file.

To ease file editing and storage, EMC Corporation provides the sm_edit utility with every
EMC Smarts product suite. When invoked, sm_edit opens the specified file in a text editor.
This utility ensures that modified files are always saved to the appropriate local area and
that non-local copies of all files remain unchanged. If an appropriate subdirectory does
not exist for the file you are modifying, sm_edit creates the appropriate subdirectory
before saving the modified file to that location. For files with header information set for
encryption, sm_edit encrypts certain fields in the file. In addition, sm_edit preserves the
file permissions of modified files, which helps ensure that important configuration files
are not altered by unauthorized users.

Example Modify ics.conf

To use sm_edit from the command line, specify the file name and include the subdirectory
under /local where the file resides. For example, to edit the ics.conf, enter:

BASEDIR/smarts/bin> sm_edit conf/ics/ics.conf

In this example, sm_edit searches in the BASEDIR/smarts/local/conf/ics directory for the
ics.conf file. If it finds the ics.conf file, it opens the file in a text editor. If sm_edit does not
find the ics.conf file in the BASEDIR/smarts/local/conf/ics directory, it creates a local copy
of the ics.conf file and writes it to the BASEDIR/smarts/local/conf/ics directory.

The EMC Smarts System Administration Guide provides additional information about the
sm_edit utility, including how to configure the utility to use a specific editor.

Understanding the sm_edit Utility 41

Understanding the sm_edit Utility

42 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

INDEX

A
Alarms

SONET/SDH 23

C
Card types

supported 6
Ciena

LightWorks ON-Center 6
CienaCoreDirector Ethernet cards 6
Cisco

ONS 15454 cards 6
ONS 15454 SDH MSP Transport System 6

Classes
Connection Termination Point (CTP) 19
Connection Termination Point (PTP) 19
Equipment 18
OpticalNetworkElement 18
ProtectionGroup 20
TopologicalLink 20

CORBA Name Server
Accessing 12
Valid URLs 12

CTP 19

D
Devices,supported 6
DWDM 6

E
EMC Smarts

Adapter for TMF 814
architecture 7
functionality 7
information flow 9
overview 6
prerequisites 12
supported cards 6
supported devices 6

Optical Transport Manager 7, 9
Service Assurance Manager (SAM) 7

EMS 9
adapters 8
communicating with 7, 12
link failures 25

emsConfig.import
configuring 12

EMSs
Name information 17

Equipment 18

H
High Order Trail 21

I
Interoperable Object Reference (IOR) 12

L
Low Order Trail 22

M
Managed element names

SONET devices 18
CTP 19
Equipment 18
OpticalNetworkElement 18
ProtectionGroup 20, 21, 22
PTP 19
TopologicalLink 20

O
Operations Support System (OSS) 7
Optical Transport Manager 7, 9

architecture 7
OpticalNetworkElement 18

P
Prerequisites 12
ProtectionGroup 20
PTP 19

S
SAM 7
SONET devices

managed element names 18
CTP 19
Equipment 18
High Order Trail 21
Low Order Trail 22
OpticalNetworkElement 18
ProtectionGroup 20
PTP 19
TopologicalLink 20

SONET/SDH 6
devices 6

T
The 17
TMF 814 Adapter

architecture 8
functionality 8

EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide 43

Index

information flow 9
TopologicalLink 20

44 EMC Smarts Optical Transport Manager Adapter for TMF 814 User Guide

		Contents

		Introduction

		EMC Smarts Adapter for TMF 814

		Supported devices

		Supported cards

		EMC Smarts Optical Transport Manager architecture

		How the Adapter for TMF 814 works

		Adapter topology functionality

		Event notification flow

		Configuring the Adapter

		Prerequisites

		Configuring adapterConnections.xml

		Example adapterConnections.xml file

		Processing Managed Element Names

		Managed element names for SONET devices

		OpticalNetworkElement

		Equipment

		Port Termination Point (PTP)

		Connection Termination Point (CTP)

		TopologicalLink

		ProtectionGroup

		High Order Trail (HO_Trail)

		Low Order Trail (LO_Trail)

		Analyzed Alarms

		Supported Cisco Alarm Mapping

		Supported Ciena Alarm Mapping

		Impact of EMS link failures on notifications

		Disconnect due to EMS failure

		Disconnect due to TMF 814 Adapter failure

		Configuring Cross-Domain Circuits

		Creating cross-domain circuits

		Circuit creation files

		Automatic circuit creation

		Record format

		Record header format

		Executing the circuit creation program

		Circuit deletion

		Log files for creation and deletion

		Adapter for TMF 814 Log Files

		Ciena EMS Adapter logs

		Cisco EMS Adapter logs

		Understanding the sm_edit Utility

		Index

