
SCG for Kubernetes v1.1
Documentation

VMware Spring Cloud Gateway for Kubernetes 1.1

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2023 VMware, Inc. All rights reserved. Copyright and trademark information.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

Spring Cloud Gateway for Kubernetes 9

Key Features 9

For Operators 9

For Developers 9

Product Snapshot 10

Release Notes for Spring Cloud Gateway for Kubernetes 11

v1.1.15 11

Included in This Release 11

v1.1.14 11

Included in This Release 11

v1.1.13 11

Included in This Release 11

v1.1.12 11

Included in This Release 11

v1.1.10 11

Included in This Release 12

v1.1.9 12

Included in This Release 12

v1.1.8 12

Included in This Release 12

v1.1.7 12

Included in This Release 12

v1.1.6 12

Included in This Release 12

v1.1.5 12

Included in This Release 12

v1.1.4 12

Included in This Release 12

v1.1.3 13

Included in This Release 13

v1.1.2 13

Included in This Release 13

v1.1.1 13

SCG for Kubernetes v1.1 Documentation

VMware, Inc 3

Included in This Release 13

v1.1.0 13

Included in This Release 13

Operator Guide 15

Installation 15

Installing Spring Cloud Gateway for Kubernetes using the Tanzu CLI 15

Prerequisites 15

Creating the target namespace 15

Adding the image pull secret 15

Install the Spring Cloud Gateway for Kubernetes package repository 16

Install the Spring Cloud Gateway for Kubernetes package 16

Security Considerations 17

Installing the operator with multiple replicas 17

Update Spring Cloud Gateway for Kubernetes 17

Uninstall Steps 18

Installing Spring Cloud Gateway for Kubernetes using Helm 18

Prerequisites 18

Install or Upgrade Steps 18

Download and Extract Installation Artifacts 18

Relocate Images 19

Container Registry Secret 19

Complete the Installation 20

Installing the operator with multiple replicas 21

Security Considerations 21

Uninstall Steps 21

Installation in development environment 21

Installing Spring Cloud Gateway for Kubernetes in Tanzu Application
Platform

22

Considerations 22

Troubleshooting Spring Cloud Gateway for Kubernetes 23

Known Issues 23

Check the status of Gateway 23

Get scg-operator and Gateway events 23

Configure Gateway's logging levels 24

Check scg-operator or Gateway logs 25

SCG for Kubernetes v1.1 Documentation

VMware, Inc 4

Resolve unresponsive scg-operator 25

Restart Gateway 25

Manually delete Custom Resource Definitions 25

Failing to pull images 26

Gateway failing to start with Vault integration enabled 26

Developer Guide 27

Getting Started with Spring Cloud Gateway for Kubernetes 27

Create Gateway Instance 27

Deploy Client App 28

Add API Routes to Gateway 29

Delete Gateway Instance 30

Service Instances 31

Configure Spring Cloud Gateway Instances 31

Configure Gateway Instances 31

Configure External Access 34

Using an Ingress Resource 34

TLS Passthrough 36

Gateway Actuator Management Port 36

Configure for High Availability 36

Configure TLS termination 37

Configure Environment Variables 38

Disable SecureHeaders Global Filter 38

Configure Cross-Origin Resource Sharing (CORS) 39

Configure Java Environment Options 41

Configure session expiration 42

Configuring Hardware Resources 42

Configuring Probes 42

Configure Observability 43

Exposing Metrics to Wavefront 43

Using the Spring Cloud Gateway for Kubernetes Dashboard for Wavefront 44

Exposing Metrics to Prometheus 45

Using the Spring Cloud Gateway for Kubernetes Dashboard for Grafana 46

Exposing Tracing to Wavefront 46

Applying custom labels to the Gateway Pods 47

Customizing the service type 47

Using Single Sign-On 48

SCG for Kubernetes v1.1 Documentation

VMware, Inc 5

Configure Single Sign-On (SSO) 48

Update Single Sign-On credentials 49

OpenAPI security schemes (SSO) 50

Logout 50

Configuring Single Sign-On for Sample Application 50

Configuring Okta OIDC provider 51

Create authorization server for Animal Rescue 51

Create users and groups 54

Create new application 55

Configuration summary 55

Configure Animal Rescue app 55

Configure SSO params 55

Configure routes security 56

Deploy the app 56

Test 56

OpenAPI Generated Documentation 57

Accessing Generated OpenAPI v3 Documentation 57

Configure OpenAPI Metadata 57

PUT/POST/PATCH Request Body Schema 58

Custom HTTP Responses 60

Configure Spring Cloud Gateway Instances in Tanzu Application Platform 60

Adding Spring Cloud Gateway to a Component 61

Adding Spring Cloud Gateway as a new Component 61

Client Apps 62

Configuring Gateway Routes 62

What are API routes 63

Define Route Config 63

Default Configuration 64

Define Service Level Config 64

Service Filters 64

Service Predicates 65

Service SSO Config 65

Map Routes to Gateway 65

Available Predicates 66

SCG for Kubernetes v1.1 Documentation

VMware, Inc 6

Available Filters 67

OpenApi Schema References 68

Commercial Route Filters 69

Filters Included In Spring Cloud Gateway OSS 69

Filters Added In Spring Cloud Gateway for Kubernetes 70

AddRequestHeadersIfNotPresent: Request headers modification filter 70

AllowedRequestCookieCount: Allowed request cookie count filter 70

AllowedRequestHeadersCount: Allowed request headers count filter 71

AllowedRequestQueryParamsCount: Allowed request query params count
filter

71

BasicAuth: Basic authorization filter 71

BlockAccess: Global Filter to block access 73

CircuitBreaker: Reroute traffic on error response filter 74

Circuit breaker status 75

ClaimHeader: Passing JWT claims header filter 75

ClientCertificateHeader: Validate client certificate filter 76

FallbackHeaders: Allows adding CircuitBreaker exception details in the
headers before forwarding

77

Cors: Configuring per-route Cross-Origin Resource Sharing (CORS) behavior 78

JwtKey: Multiple client JWT validation filter 78

ApiKey: API key validation filter 81

RateLimit: Limiting user requests filter 82

Limiting by IP Address 83

RemoveJsonAttributesResponseBody: Response body modification filter 84

RewriteAllResponseHeaders Response headers modification filter 85

RewriteResponseBody: Response body modification filter 85

RewriteJsonAttributesResponseBody: Response body JSON modification filter 86

Roles: Role-based access control filter 87

Scopes: Scope-based access control filter 87

StoreIpAddress: Store IP address filter 88

StoreHeader Store headers filter 88

SsoAutoAuthorize: SSO auto-authorized credentials filter 89

TokenRelay: Passing user identity filter 90

Commercial Route Predicates 90

Predicates Included In Spring Cloud Gateway OSS 91

Predicates Added In Spring Cloud Gateway for Kubernetes 91

Match on JWT claim value: JWTClaim Predicate 91

Custom Extensions 91

SCG for Kubernetes v1.1 Documentation

VMware, Inc 7

Developing Extensions 91

Prerequisites 91

Project setup 92

Gradle 92

Maven 93

Custom Extension Example 95

Custom Filter example code 95

Testing 96

Configuring Extensions 98

Prerequisites 98

Extension Deployment 98

Extensions from ConfigMaps 98

Extensions from OCI Image 100

Extensions from Persistent Volumes 100

Gateway Configuration 102

Validation and Troubleshooting 103

High-Availability deployments 103

OpenAPI Route Conversion 104

Conversion endpoint 104

Conversion request 105

Referencing an OpenAPI endpoint in your cluster 106

Providing Service level filters 106

Providing Route level filters 107

JSON schema to validate requests 107

SCG for Kubernetes v1.1 Documentation

VMware, Inc 8

Spring Cloud Gateway for Kubernetes

This topic provides an overview of VMware Spring Cloud® Gateway for Kubernetes v1.1.

Key Features

Spring Cloud Gateway for Kubernetes includes the following key features:

Polyglot supported routability for application services written in any language that wish

expose HTTP endpoints on Gateway instances

Includes Kubernetes operator for handling API gateway custom resources applied to cluster

and Kubernetes "native" experience

Commercial container images to manage, create and dynamically update API routes on

instances

Dynamic application route configuration, enabling API route updates for continuous

integration (CI) and continuous delivery (CD) pipelines

Gateway-defined Single Sign-On (SSO) configuration combined with commercial SSO route

filters

Simplified OpenID Connect (OIDC) Single Sign-On (SSO) configuration for each API gateway

instance

Commercial API route filters for SSO authentication, role-based access control, scopes

authorization, authorized token relay, client certificate authorization, rate limiting and circuit

breaker

High availability configuration for setting count, memory, and vCPU of API gateway instances

Access to configure JVM performance optimizations for API gateway instance specific use

cases

Local development and testing enabled to validate API route configurations before

promoting to environments on way to production

For Operators

For information about installing and managing Spring Cloud Gateway for Kubernetes, see the

Operator Guide.

For Developers

For information about creating and managing Gateway instances and connecting them to client apps,

see the Developer Guide.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 9

Product Snapshot

The following table provides version and version-support information about Spring Cloud Gateway

for Kubernetes.

Element Details

1.1.15 Release Date November 14, 2022

Spring Cloud OSS Version 2021.0.3

Spring Boot OSS Version 2.7.5

Supported IaaS Kubernetes 1.19 - 1.23

SCG for Kubernetes v1.1 Documentation

VMware, Inc 10

Release Notes for Spring Cloud Gateway for
Kubernetes

These are release notes for Spring Cloud Gateway for Kubernetes.

v1.1.15

Release Date: November 14, 2022

Included in This Release

Resolved security vulnerability

v1.1.14

Release Date: November 2, 2022

Included in This Release

Resolved security vulnerability

Fix user flow when calling logout endpoint

v1.1.13

Release Date: October 25, 2022

Included in This Release

Resolved following security vulnerabilities: CVE-2022-42003, CVE-2022-42004 and CVE-

2022-31684

v1.1.12

Release Date: September 26, 2022

Included in This Release

Resolved following security vulnerabilities: CVE-2022-2526, CVE-2022-25857 and CVE-

2022-27664

v1.1.10

SCG for Kubernetes v1.1 Documentation

VMware, Inc 11

Release Date: September 12, 2022

Included in This Release

Resolved following security vulnerabilities: CVE-2022-2526 and CVE-2022-25857

v1.1.9

Release Date: August 25, 2022

Included in This Release

Resolved following security vulnerabilities: CVE-2022-37434

v1.1.8

Release Date: August 10, 2022

Included in This Release

Resolved following security vulnerabilities: CVE-2021-4209 and CVE-2022-2509

v1.1.7

Release Date: July 13, 2022

Included in This Release

Resolved following security vulnerabilities: CVE-2022-34903

v1.1.6

Release Date: July 1, 2022

Included in This Release

Resolved following security vulnerabilities: CVE-2022-2068

v1.1.5

Release Date: June 8, 2022

Included in This Release

Resolved following security vulnerabilities: https://nvd.nist.gov/vuln/detail/CVE-2022-1304

v1.1.4

Release Date: June 6, 2022

Included in This Release

SCG for Kubernetes v1.1 Documentation

VMware, Inc 12

#CVE-2022-1304

Resolved following security vulnerabilities: USN-5446-1

Improved OpenAPI conversion service error information to help with troubleshooting

Resolved issue with OpenAPI conversion of date time format in some circumstances

v1.1.3

Release Date: May 25, 2022

Included in This Release

Resolved the following CVE: CVE-2022-22970

Fixed issues with OpenAPI auto-generation when particular attributes are present in

specification provided

v1.1.2

Release Date: May 23, 2022

Included in This Release

Improved notification events and logging when API route is not registered due to invalid filter

configuration

Fixed issue with image pull secret not getting updated during installation when changed

Resolved the following CVE with base image patch: CVE-2019-20838, CVE-2020-14155

v1.1.1

Release Date: May 16, 2022

Included in This Release

Resolved the following CVE with base image patch: CVE-2022-1292, CVE-2022-1343, CVE-

2022-1434, CVE-2022-1473

v1.1.0

Release Date: April 27, 2022

Included in This Release

Added OpenAPI conversion service which can generate SpringCloudGatewayRouteConfig

custom resources from OpenAPI specifications

Added Carvel support with packaging and installation repository

Added ability to configure custom API gateway instance values for installation

Added ability to install via tanzu CLI including into a specified namespace

SCG for Kubernetes v1.1 Documentation

VMware, Inc 13

Added custom annotation support for API gateway instance pods

Added support for using LoadBalancer and NodePort as additional ingress options

Added option to load custom extensions from init container in addition to ConfigMap and

Persistent Volume

Added ApiKey global filter to validate API usage by client request using X-API-Key header

against HashiCorp Vault stored API keys

Added BlockAccess global filter that can be configured to block API traffic based on IP

address or JWT claim

Added request filter for adding header if not present

Added request filters for constraining cookie, header and request header counts

Upgraded to Java 17 in container images

Using Spring Cloud OSS version 2021.0.1

SCG for Kubernetes v1.1 Documentation

VMware, Inc 14

Operator Guide

These topics describe how to install and troubleshoot Spring Cloud Gateway for Kubernetes, as well

as how to configure single sign-on.

Installation

These topics describe how to install Spring Cloud Gateway for Kubernetes.

Installing Spring Cloud Gateway for Kubernetes using the
Tanzu CLI

This page will give an overview of the installation process for Spring Cloud Gateway for Kubernetes

using the Tanzu cli.

Prerequisites

Before beginning the installation or upgrade process, ensure that you have installed the following

tools on your local machine:

The tanzu command-line interface (CLI) tool. For information about installing this tool, see

the Tanzu Kubernetes Grid documentation.

You will also need sufficiently recent versions of the Carvel controllers running on your Kubernetes

cluster:

kapp-controller version >= 0.24.0

secretgen-controller version >= 0.5.0

Creating the target namespace

First, create the destination namespace for the Spring Cloud Gateway for Kubernetes installation. For

package repository the namespace is tap-install, image pull secret and actual SCG can be

customized via CLI.

kubectl create namespace tap-install

Adding the image pull secret

For the tanzu cli to install the Spring Cloud Gateway images, it requires the credentials for the Tanzu

image registry, which is hosted on the VMware Tanzu Network. To create this secret, run:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 15

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.4/vmware-tanzu-kubernetes-grid-14/GUID-install-cli.html

tanzu secret registry add tap-registry \

 --namespace tap-install \

 --server "registry.tanzu.vmware.com" \

 --username "{registry username}" \

 --password "{registry password}" \

 --export-to-all-namespaces

Replace {registry username} and {registry password} with your Tanzu Network credentials.

The --export-to-all-namespaces option instructs the secretgen-controller to make this image pull

secret available to managed packages in any namespace. This is to support pulling the image when

Spring Cloud Gateway instances are created in arbitrary namespaces.

You can check that this step has been successful with the following command:

tanzu secret registry list --namespace tap-install

You should see output similar to the following:

NAME REGISTRY EXPORTED AGE

tap-registry dev.registry.tanzu.vmware.com to all namespaces 6s

The EXPORTED column should show to all namespaces.

Install the Spring Cloud Gateway for Kubernetes package
repository

Next, install the Spring Cloud Gateway for Kubernetes package repository:

tanzu package repository add scg-package-repository \

 --namespace tap-install \

 --url registry.tanzu.vmware.com/spring-cloud-gateway-for-kubernetes/scg-package-re

pository:{version}

where {version} is the version you wish to install, e.g. 1.1.0.

Once the repository is successfully installed, the tanzu CLI should respond with:

Added package repository 'scg-package-repository' in namespace 'tap-install'

You can then check the packages available for installation with:

tanzu package available list --namespace tap-install

The list of available packages should now contain Spring Cloud Gateway:

NAME DISPLAY-NAME SHORT-DESCRIPTION LA

TEST-VERSION

...

spring-cloud-gateway.tanzu.vmware.com Spring Cloud Gateway Spring Cloud Gateway {v

ersion}

Install the Spring Cloud Gateway for Kubernetes package

SCG for Kubernetes v1.1 Documentation

VMware, Inc 16

You are now ready to install Spring Cloud Gateway for Kubernetes.

tanzu package install spring-cloud-gateway \

 --namespace tap-install \

 --package-name spring-cloud-gateway.tanzu.vmware.com \

 --version {version}

Once successful, the tanzu CLI will report Added installed package 'spring-cloud-gateway'.

Security Considerations

As described above in the image pull secret installation step, the --export-to-all-namespaces

option to the tanzu CLI instructs the secretgen-controller to make the image pull secret available

to packages in any namespace.

Additionally, a ClusterRole named scg-operator-resources-role is created with permissions to

manage specific Spring Cloud Gateway resources deployed in any namespace in the cluster. To see

the specific resources and permissions managed by the cluster role, run:

kubectl describe ClusterRole scg-operator-resources-role

Installing the operator with multiple replicas

The Spring Cloud Gateway Operator defaults to a single replica. This should be suitable for most

environments as the operator is resilient to downtime as it's data is stored in the Kubernetes clusters

Etcd data store. Customers can opt to configure multiple replicas of the operator using the flag --

replica_count with the installation script. Increasing the number of replicas will enable leadership

election between the operator Pods. The leadership election mechanism is built into Kubernetes and

is described in this blog post from the Kubernetes team

To enable multiple operator replicas with leadership election, install the product as follows;

Create a file containing the configuration for multiple replicas

scgOperator:

 replicaCount: 2

Then install the product using the tanzu CLI

tanzu package install spring-cloud-gateway \

 --namespace tap-install \

 --package-name spring-cloud-gateway.tanzu.vmware.com \

 --values-file config-with-multiple-replicas.yaml \

 --version {version}

Update Spring Cloud Gateway for Kubernetes

To update Spring Cloud Gateway, you just need to first update the package repository with the new

version:

tanzu package repository update scg-package-repository \

SCG for Kubernetes v1.1 Documentation

VMware, Inc 17

https://kubernetes.io/blog/2016/01/simple-leader-election-with-kubernetes/

 --url registry.tanzu.vmware.com/spring-cloud-gateway-for-kubernetes/scg-package-re

pository:{version} \

 --namespace tap-install

And once this is done you can update the Spring Cloud Gateway for Kubernetes installed package

using:

tanzu package installed update spring-cloud-gateway --namespace tap-install --version

{version}

Uninstall Steps

To uninstall Spring Cloud Gateway, run:

tanzu package installed delete spring-cloud-gateway --namespace tap-install

Once this is done you can remove the Spring Cloud Gateway package repository using:

tanzu package repository delete scg-package-repository --namespace tap-install

Installing Spring Cloud Gateway for Kubernetes using Helm

This page will give an overview of the installation process for Spring Cloud Gateway for Kubernetes

management components using a Helm chart.

Prerequisites

Before beginning the installation or upgrade process, ensure that you have installed the following

tools on your local machine:

The Docker command-line interface (CLI) tool, docker. For information about installing the

docker CLI tool, see the Docker documentation.

The Helm command-line interface (CLI) tool, helm. For information about installing the helm

CLI tool, see the Helm documentation.

Install or Upgrade Steps

There are two options to install or upgrade Spring Cloud Gateway for Kubernetes.

The simplest, using the provided scripts to relocate the SCG images and then install the

components.

The advanced installation, manually setting the image paths and other options. This is useful

when images are already deployed in a trusted container registry and allow skipping the

relocate step.

Download and Extract Installation Artifacts

Spring Cloud Gateway for Kubernetes is provided as a compressed archive file containing a series of

utility scripts, manifests, and required images.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 18

https://docs.docker.com/get-docker/
https://helm.sh/docs/

To download the components:

1. Visit VMware Tanzu Network and log in.

2. Navigate to the Spring Cloud Gateway for Kubernetes product listing.

3. In the Releases list, select the version that you wish to install or upgrade to.

4. Download "Spring Cloud Gateway for Kubernetes Installer".

5. Extract the contents of the archive file:

$ tar zxf spring-cloud-gateway-k8s-[VERSION].tgz

The extracted directory contains the following directory layout:

$ ls spring-cloud-gateway-k8s-[VERSION]

dashboards/ helm/ images/ scripts/

Relocate Images

Next, relocate the Spring Cloud Gateway for Kubernetes images to your private image registry. The

images must be loaded into the local Docker daemon and pushed into the registry.

To relocate the images:

1. Use the docker CLI tool or your cloud provider CLI to authenticate to your image registry.

2. Run the image relocation script, located in the scripts directory.

$./scripts/relocate-images.sh <REGISTRY_URL>

In this example command, replace the <REGISTRY_URL> placeholder with the URL for your

image registry. For example:

$./scripts/relocate-images.sh myregistry.example.com/spring-cloud-gateway

The script will load the two Spring Cloud Gateway for Kubernetes images and push them into

the image registry. This script will also generate a file named helm/scg-image-values.yaml.

The contents of this file will resemble the following:

scg-operator:

 image: "myregistry.example.com/spring-cloud-gateway/scg-operator:v[VERSION]"

gateway:

 image: "myregistry.example.com/spring-cloud-gateway/gateway:v[VERSION]"

Container Registry Secret

If your cluster needs authentication to access the relocated images, then an image pull secret name

(with default name spring-cloud-gateway-image-pull-secret) must be provided in the operator

namespace before running the installation:

$ kubectl create secret docker-registry spring-cloud-gateway-image-pull-secret -n ${in

stallation_namespace} \

SCG for Kubernetes v1.1 Documentation

VMware, Inc 19

https://network.pivotal.io
https://network.pivotal.io/products/spring-cloud-gateway-for-kubernetes/

--docker-server=${registry} \

--docker-username=${username} \

--docker-password=${password}

secret/spring-cloud-gateway-image-pull-secret created

If it fails to create the secret because the namespace was not found, create the namespace first. For

example:

error: failed to create secret namespaces "spring-cloud-gateway" not found

$ kubectl create ns spring-cloud-gateway

namespace/spring-cloud-gateway created

If your secret name is different than spring-cloud-gateway-image-pull-secret, ensure to edit

helm/scg-image-values.yaml with your secret name as follows:

scg-operator:

 image: "myregistry.example.com/spring-cloud-gateway/scg-operator:v[VERSION]"

 registryCredentialsSecret: my-image-pull-secret

gateway:

 image: "myregistry.example.com/spring-cloud-gateway/gateway:v[VERSION]"

Complete the Installation

You are now ready to install Spring Cloud Gateway for Kubernetes.

If you used the relocate-images.sh script from the previous section, you can simply use the script

./scripts/install-spring-cloud-gateway.sh. By default, the Spring Cloud Gateway for Kubernetes

operator and backing applications will be deployed in the spring-cloud-gateway namespace.

If you already have images in a known registry, or need to customize other aspects, you can change

the installation defaults using the additional options. For example, you can install in another

namespace

$./scripts/install-spring-cloud-gateway.sh --namespace my_namespace_name

Set an image pull secret

$./scripts/install-spring-cloud-gateway.sh --registry_credentials_secret my_image_sec

ret

Or, skip the relocation script and define the images paths directly

$./scripts/install-spring-cloud-gateway.sh --operator_image myregistry.org/scg-operat

or:1.0.1 --gateway_image myregistry.org/gateway:1.0.0

Use --help to display the details for all available options.

Regardless of the installation method, after running the script, you should see a new deployment

named scg-operator in your chosen namespace.

$ kubectl get all -n ${installation_namespace}

SCG for Kubernetes v1.1 Documentation

VMware, Inc 20

NAME READY STATUS RESTARTS AGE

pod/scg-operator-7c6b749b9-6llt8 1/1 Running 0 72s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/scg-operator ClusterIP 10.96.38.53 <none> 80/TCP 72s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/scg-operator 1/1 1 1 72s

NAME DESIRED CURRENT READY AGE

replicaset.apps/scg-operator-7c6b749b9 1 1 1 72s

Installing the operator with multiple replicas

The Spring Cloud Gateway Operator defaults to a single replica. This should be suitable for most

environments as the operator is resilient to downtime as its data is stored in the Kubernetes clusters

etcd data store. Customers can opt to configure multiple replicas of the operator using the flag --

replica_count with the installation script. Increasing the number of replicas will enable leadership

election between the operator Pods. The leadership election mechanism is built into Kubernetes and

is described in this blog post from the Kubernetes team.

To enable multiple operator replicas with leadership election, install the product as follows;

$./scripts/install-spring-cloud-gateway.sh --replica_count 2

Security Considerations

In order to allow users to create Spring Cloud Gateways in different namespaces, scg-operator does

the following. If your cluster uses a secret used to authenticate to your registry and pull the Gateway

image from it, spring-cloud-gateway-image-pull-secret is copied to every new namespace where

a Gateway is created. Additionally, a ClusterRole named scg-operator-resources-role is created

with permissions to manage specific Spring Cloud Gateway resources deployed in any namespace in

the cluster. To see the specific resources and permissions managed by the cluster role, run

$ kubectl describe ClusterRole scg-operator-resources-role

Uninstall Steps

To uninstall Spring Cloud Gateway and all its managed components, run

$ helm uninstall spring-cloud-gateway -n ${installation_namespace}

$ kubectl delete namespace ${installation_namespace}

Installation in development environment

Spring Cloud Gateway for Kubernetes can be installed in a development cluster such as KinD. For

that, create a file called kind-config.yaml, with the following YAML definition:

kind: Cluster

SCG for Kubernetes v1.1 Documentation

VMware, Inc 21

https://kubernetes.io/blog/2016/01/simple-leader-election-with-kubernetes/
https://kind.sigs.k8s.io/

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

 image: kindest/node:v1.21.10@sha256:84709f09756ba4f863769bdcabe5edafc2ada72d3c8c44d6

515fc581b66b029c

 kubeadmConfigPatches:

 - |

 kind: InitConfiguration

 nodeRegistration:

 kubeletExtraArgs:

 node-labels: "ingress-ready=true"

 extraPortMappings:

 - containerPort: 80

 hostPort: 80

 protocol: TCP

 - containerPort: 443

 hostPort: 443

 protocol: TCP

Then create the KinD cluster with the following command:

$ kind create cluster --config kind-config.yaml

And you should see an output similar to:

Creating cluster "kind" ...

 ✓ Ensuring node image (kindest/node:v1.21.10)

 ✓ Preparing nodes

 ✓ Writing configuration

 ✓ Starting control-plane

 ✓ Installing CNI

 ✓ Installing StorageClass

Set kubectl context to "kind-kind"

You can now use your cluster with:

kubectl cluster-info --context kind-kind

Thanks for using kind!

Note that you still need to use an external registry to relocate the images. If you prefer to load the

images to KinD directly, replace the line from relocate-images.sh

docker push "$destination_image"

by

kind load docker-image "$destination_image"

Installing Spring Cloud Gateway for Kubernetes in Tanzu
Application Platform

Spring Cloud Gateway for Kubernetes can be installed in Tanzu Application Platform using the Tanzu

CLI. For more details, refer to Installing using the Tanzu CLI.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 22

Considerations

When beginning the installation the destination namespace for the Spring Cloud Gateway for

Kubernetes installation should be tap-install.

Troubleshooting Spring Cloud Gateway for Kubernetes

This topic describes how to troubleshoot Spring Cloud Gateway for Kubernetes operator and

instances.

Known Issues

In SpringCloudGatewayMapping object, the gatewayRef field cannot be modified once

created. In order to move routes from an old Gateway to a new Gateway, delete the old

mapping object, change the gatewayRef in yaml to the new Gateway, and apply the new

yaml.

In Google Kubernetes Engine (GKE), due to missing Kubernetes Event API, the scg-

operator will throw ApiException and won't log any events

Check the status of Gateway

You can check the current status of your gateway by running

$ kubectl get scg my-gateway

NAME READY REASON

my-gateway True Created

Get scg-operator and Gateway events

In case of errors events are published for the Operator and the Gateway components (mappings and

routes as well), you can display them using the describe option.

$ kubectl describe scg my-gateway

$ kubectl describe scgm my-gateway-mapping

$ kubectl describe scgrc my-gateway-route-config

For example, in case some routes are not present, using kubectl describe scgm may show the

referenced gateway is not present. Creating such Gateway instance would fix the issue.

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning NotFound <unknown> SpringCloudGatewayController Specified SpringCloudGat

eway resource "demo-gateway" is not found / not ready

Another useful event to look for when troubleshooting is RouteUpdateException. This event is

triggered when a Route is not valid. For example, when the filter name is wrong:

apiVersion: "tanzu.vmware.com/v1"

SCG for Kubernetes v1.1 Documentation

VMware, Inc 23

kind: SpringCloudGatewayRouteConfig

metadata:

 name: test-gateway-routes

spec:

 routes:

 - uri: https://example.com

 predicates:

 - Path=/test/**

 filters:

 - InvalidFilter=1

 title: "my-test-route"

If we get the events in the namespace, we can see how everything succeeded but we have now an

extra Warning with the RouteUpdateException explaining that the route my-test-route is wrong.

$ kubectl get events --watch

LAST SEEN TYPE REASON OBJECT MESSAG

E

11s Normal SuccessfulCreate statefulset/my-gateway create

 Pod my-gateway-0 in StatefulSet my-gateway successful

0s Normal RoutesUpToDate pod/my-gateway-0 Pod "m

y-gateway-0-1/my-gateway-0" is RoutesUpToDate with all routes

0s Normal Created springcloudgateway/my-gateway Spring

CloudGateway resource my-gateway is Created

0s Warning RouteUpdateException /my-gateway-0 Failed

 to update route with title 'my-test-route' and uri 'https://example.com' due to: 'Pod

 update failed, request to http://10.244.1.4:8090/actuator/gateway/routes/my-gateway-0

-1-mapping-0 failed. Response code 400, message Bad Request'

0s Normal Created springcloudgatewaymapping/mapping Routes

 specified in SpringCloudGatewayRouteConfig "initial-route-config" is Created on pod "

my-gateway-0-1/my-gateway-0"

Configure Gateway's logging levels

The following loggers may contain valuable troubleshooting information at the DEBUG and TRACE

levels:

io.pivotal.spring.cloud.gateway # filters and predicates including custom

 extensions

org.springframework.cloud.gateway # API gateway

org.springframework.http.server.reactive. # HTTP server interactions

org.springframework.web.reactive # API gateway reactive flows

org.springframework.boot.autoconfigure.web. # API gateway autoconfiguration

org.springframework.security.web # Authentication & Authorization informat

ion

reactor.netty # Reactor Netty

You can set a specific logger's logging level for a gateway statefulset by running the following

command, which will automatically update the underlying pod.

$ kubectl set env statefulset.apps/my-gateway logging_level_org_springframework_cloud_

gateway=TRACE

You can also configure a gateway instance with specific logging levels using the spec.env property:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 24

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: gateway-demo

spec:

 ...

 env:

 - name: logging.level.org.springframework.web

 value: debug

Check scg-operator or Gateway logs

You can access the scg-operator or your Gateway logs by running

$ kubectl logs deployment.apps/scg-operator -n spring-cloud-gateway

$ kubectl logs statefulset.apps/my-gateway

Resolve unresponsive scg-operator

If you find that scg-operator won't fully start or respond, and none of the above techniques help

point out the problem, you could try increasing the requested CPU resource by 100m by running

$ kubectl edit deployment.apps/scg-operator

Alternatively, you can restart the deployment by running

$ kubectl rollout restart deployment.apps/scg-operator

Restart Gateway

In case of some errors, a restart might help solve the issue. You can restart your Gateway by running

$ kubectl rollout restart statefulset.apps/my-gateway

Manually delete Custom Resource Definitions

If there are problems while uninstalling, sometimes the Custom Resource Definitions don't get

deleted. After uninstalling, you can check if there are any of the Spring Cloud Gateway Custom

Resource Definitions by running

$ kubectl get crds

NAME CREATED AT

springcloudgatewaymappings.tanzu.vmware.com 2021-02-17T11:52:09Z

springcloudgatewayrouteconfigs.tanzu.vmware.com 2021-02-17T11:28:12Z

springcloudgateways.tanzu.vmware.com 2021-02-17T11:28:12Z

If any of these three appear, you can manually delete them by running

$ kubectl delete crd springcloudgatewaymappings.tanzu.vmware.com

$ kubectl delete crd springcloudgatewayrouteconfigs.tanzu.vmware.com

SCG for Kubernetes v1.1 Documentation

VMware, Inc 25

$ kubectl delete crd springcloudgateways.tanzu.vmware.com

Failing to pull images

When running the installation script ./scripts/install-spring-cloud-gateway.sh and you see

errors pulling an image:

Events from from installation namespace:

LAST SEEN TYPE REASON OBJECT MESSAGE

2m Normal Scheduled pod/scg-operator-7c6b749b9-hbrkx Successf

ully assigned spring-cloud-gateway/scg-operator-7c6b749b9-hbrkx to kind-control-plane

36s Normal Pulling pod/scg-operator-7c6b749b9-hbrkx Pulling

image "my.registry/scg-operator:1.0.1"

2m Normal SuccessfulCreate replicaset/scg-operator-7c6b749b9 Created

pod: scg-operator-7c6b749b9-hbrkx

2m Normal ScalingReplicaSet deployment/scg-operator Scaled u

p replica set scg-operator-7c6b749b9 to 1

36s Warning Failed pod/scg-operator-7c6b749b9-hbrkx Failed t

o pull image "my.registry/scg-operator:1.0.1": rpc error: code = Unknown desc = failed

 to pull and unpack image "my.registry/scg-operator:1.0.1": failed to resolve referenc

e "my.registry/scg-operator:1.0.1": unexpected status code [manifests 1.0.1]: 401 Unau

thorized

36s Warning Failed pod/scg-operator-7c6b749b9-hbrkx Error: E

rrImagePull

12s Normal BackOff pod/scg-operator-7c6b749b9-hbrkx Back-off

 pulling image "my.registry/scg-operator:1.0.1"

12s Warning Failed pod/scg-operator-7c6b749b9-hbrkx Error: I

magePullBackOff

Error installing Spring Cloud Gateway operator

Check to make sure you created an image pull secret (with default name spring-cloud-gateway-

image-pull-secret) to your registry. See the Installation page for a step-by-step guide.

Gateway failing to start with Vault integration enabled

In case of a gateway pod that is blocked in Init state after enabling the API Key filter or the JWT

Key filter in the Spring Cloud Gateway configuration, please check that the Service Account name

you used when setting up Vault role matches the one you specified in the SCG configuration, and

that it's running in the same namespace as the Gateway.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 26

Developer Guide

These topics describe how to use Spring Cloud Gateway for Kubernetes.

Getting Started with Spring Cloud Gateway for Kubernetes

This topic describes how to quickly get started using Spring Cloud Gateway for Kubernetes to

provide an API gateway for a microservice architecture.

Tip: This topic uses sample apps from the spring-cloud-services-samples / animal-rescue repository

on GitHub. To follow along, clone the repository and check instructions in README.md.

This will give an overview of managing route configurations for applications providing Application

Programming Interfaces (API) via a Gateway instance. This overview assumes that Spring Cloud

Gateway for Kubernetes management components have already been installed.

The components are

Gateway Instances - Represent each one of the Spring Cloud Gateways deployed

Route Configurations - Is a set of routes that can be applied to one or many gateways

Mappings - A mapping defines which route configurations go with which gateways

Create Gateway Instance

To create a Spring Cloud Gateway for Kubernetes instance, create a file called gateway-config.yaml,

with the following YAML definition:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

Next, apply this definition to your Kubernetes cluster:

$ kubectl apply -f gateway-config.yaml

This configuration will create a new Gateway instance. By default, the instance will be created

alongside a ClusterIP service in the current namespace. To check the status of it, you can use the

Kubernetes get command.

$ kubectl get scg my-gateway

NAME READY REASON

my-gateway True Created

SCG for Kubernetes v1.1 Documentation

VMware, Inc 27

https://github.com/spring-cloud-services-samples/animal-rescue/

To add routes and to map the routes to the gateway, we need to create a

SpringCloudGatewayRouteConfig object describing the routes and a SpringCloudGatewayMapping

object that maps the route config to the gateway.

Create a file called route-config.yaml with the following YAML definition:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 routes:

 - uri: https://github.com

 predicates:

 - Path=/github/**

 filters:

 - StripPrefix=1

Create a file called mapping.yaml with the following YAML definition:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayMapping

metadata:

 name: test-gateway-mapping

spec:

 gatewayRef:

 name: my-gateway

 routeConfigRef:

 name: my-gateway-routes

Apply both the definitions to your Kubernetes cluster.

The instance will include one route (test-route) that uses a Path predicate to define the path within

the gateway, and the StripPrefix filter to remove the path before redirecting.

To validate that the gateway is functioning locally you can port-forward the ClusterIP service.

$ kubectl -n=spring-cloud-gateway port-forward service/my-gateway 8080:80

You should now be able to access the Gateway from localhost:8080/github.

For information about enabling external access to your Gateway instance, see Configure External

Access.

Deploy Client App

In this section we will describe a sample scenario using the Animal Rescue backend API sample

application. The following YAML describes the backend application deployment as a service on

Kubernetes. For the sake of example we will assume that the target namespace is animal-rescue on

the Kubernetes cluster.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: animal-rescue-backend

SCG for Kubernetes v1.1 Documentation

VMware, Inc 28

https://github.com/spring-cloud-services-samples/animal-rescue/tree/main/backend/k8s

spec:

 selector:

 matchLabels:

 app: animal-rescue-backend

 template:

 metadata:

 labels:

 app: animal-rescue-backend

 spec:

 containers:

 - name: animal-rescue-backend

 image: springcloudservices/animal-rescue-backend

 env:

 - name: spring.profiles.active

 value: k8s

 resources:

 requests:

 memory: "256Mi"

 cpu: "100m"

 limits:

 memory: "512Mi"

 cpu: "500m"

apiVersion: v1

kind: Service

metadata:

 name: animal-rescue-backend

spec:

 ports:

 - port: 80

 targetPort: 8080

 selector:

 app: animal-rescue-backend

This assumes there is an image available in your container image repository named

springcloudservices/animal-rescue-backend. To deploy the application, save the YAML into a file

named animal-rescue-backend.yaml and run the following command.

$ kubectl apply -f animal-rescue-backend.yaml --namespace animal-rescue

Add API Routes to Gateway

Now that the Animal Rescue backend application is running as a service named animal-rescue-

backend you can describe the route configuration to be applied to my-gateway.

Create a file called animal-rescue-backend-route-config.yaml with the following definition:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: animal-rescue-backend-route-config

spec:

 service:

 name: animal-rescue-backend

 routes:

 - predicates:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 29

 - Path=/api/**

 filters:

 - StripPrefix=1

Create another file called animal-rescue-backend-mapping.yaml with the following definition:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayMapping

metadata:

 name: animal-rescue-backend-mapping

spec:

 gatewayRef:

 name: my-gateway

 routeConfigRef:

 name: animal-rescue-backend-route-config

The SpringCloudGatewayMapping and SpringCloudGatewayRouteConfig object kinds are processed

by the Spring Cloud Gateway for Kubernetes management components to update the desired

Gateway instance provided in the spec.gatewayRef property value. The application to route traffic for

the configured routes is supplied in the spec.service property value.

Apply both definitions to your Kubernetes cluster.

$ kubectl apply -f animal-rescue-backend-route-config.yaml

$ kubectl apply -f animal-rescue-backend-mapping.yaml

Assuming that my-gateway had an ingress applied already for FQDN of my-gateway.my-example-

domain.com, the Animal Rescue backend API will be available under the path my-gateway.my-

example-domain.com/api/.... One of the endpoints available in the sample application is GET

/api/animals which lists all of the animals available for adoption requests. This endpoint should now

be accessible using the following command.

Using https://httpie.io/

$ http my-gateway.my-example-domain.com/api/animals

Using curl

$ curl my-gateway.my-example-domain.com/api/animals

If you are not using an ingress, you can port forward the gateway:

$ kubectl port-forward service/my-gateway 8080:80

And with another terminal window, call the /api/animals endpoint:

Using https://httpie.io/

$ http localhost:8080/api/animals

Using curl

$ curl localhost:8080/api/animals

For more information about adding API routes for an app to a Gateway instance, see Add Routes to

Gateway.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 30

Delete Gateway Instance

Gateway instances can be easily deleted using the Kubernetes cli delete command.

$ kubectl delete scg my-gateway

After that, if you list the existing Gateways with kubectl get scg you'll notice it's no longer running.

Service Instances

These topics describe how to create and manage Spring Cloud Gateway for Kubernetes service

instances.

Configure Spring Cloud Gateway Instances

This topic describes how to configure and update a Spring Cloud Gateway for Kubernetes instance.

Configure Gateway Instances

To create a Gateway instance, you must create a resource of type SpringCloudGateway. The

definition for SpringCloudGateway specifies:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: # Name given to this Gateway instance (required)

 labels:

 my-custom-label: hello # Labels defined in the Gateway resource will also be appli

ed to the Gateway Pods for simplified management

 annotations:

 my-custom-annotation: my-value # Annotations defined on the Gateway resource will

also be applied to the Gateway Pods for simplified management

spec:

 count: # Number of container instances (pods) to scale Gateway for high av

ailability (HA) configuration

 tls: # Set a list of TLS-enabled hosts

 - hosts: # Array of hostnames for which to perform TLS termination using the

 specified certificate

 secretName: # Name of TLS secret to load certificate and key from

 sso:

 secret: # Secret name to be used for SSO configuration

 roles-attribute-name:

 # Roles attribute name used to extract user roles for Roles filter

(default: 'roles')

 inactive-session-expiration-in-minutes:

 # Time to life of inactive sessions in minutes, 0 means sessions won

't expire.

 observability:

Note: Deleting a Gateway does not delete related Route Configuration or Mappings.

For that, you can use kubectl delete scgrc <routeconfig-name> or kubectl delete

scgm <mapping-name>.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 31

 metrics:

 wavefront:

 enabled: # If wavefront metrics should be pushed

 prometheus:

 enabled: # If a prometheus endpoint should be exposed

 annotations:

 enabled: # If scrapping annotations should be included in the Pod

 tracing:

 wavefront:

 enabled: # If wavefront traces should be pushed

 wavefront:

 secret: # Secret name to be used for wavefront configuration

 source: # The wavefront source (default: Gateway Pod name, `gateway-0`).

 application: # The wavefront application (default: Gateway Namespace `namespac

e`).

 service: # The wavefront service (default: Gateway name `my-gateway`).

 api:

 groupId: # Unique identifier for the group of APIs available on the Gateway

instance (default: normalized title of the Gateway instance)

 title: # Title describing the context of the APIs available on the Gateway

 instance (default: name of the Gateway instance)

 description: # Detailed description of the APIs available on the Gateway instanc

e (default: `Generated OpenAPI 3 document that describes the API routes configured for

 '[Gateway instance name]' Spring Cloud Gateway instance deployed under '[namespace]'

namespace.`)

 documentation: # Location of additional documentation for the APIs available on th

e Gateway instance

 version: # Version of APIs available on this Gateway instance (default: `uns

pecified`)

 serverUrl: # Base URL that API consumers will use to access APIs on the Gatewa

y instance

 cors:

 allowedOrigins: # Allowed origins to make cross-site requests, applied

globally

 allowedOriginPatterns: # Allowed origin patterns to make cross-site requests,

applied globally

 allowedMethods: # Allowed HTTP methods on cross-site requests, applied

globally

 allowedHeaders: # Allowed headers in cross-site request, applied global

ly

 maxAge: # How long, in seconds, the response from a pre-flight

request can be cached by clients, applied globally

 allowCredentials: # Whether user credentials are supported on cross-site

requests, applied globally

 exposedHeaders: # HTTP response headers to expose for cross-site reques

ts, applied globally

 perRoute: # A map of URL Patterns to Spring Framework CorsConfigu

ration, to configure CORS per route.

 java-opts: # JRE parameters for Gateway instance to enhance performance

 env: # Set a list of [configuration](https://cloud.spring.io/spring-clou

d-gateway/reference/html/appendix.html#common-application-properties) environment vari

ables to configure this Gateway instance

 - name: # Name of the environment variable

 value: # Value of environment variable

 extensions: # Additional configurations for global features (e.g. cu

stom filters, Api Key,...)

SCG for Kubernetes v1.1 Documentation

VMware, Inc 32

 custom: # Array of custom extensions to load (name must match th

e ConfigMap name).

 secretsProviders: # Array of secret providers. These are identified by a n

ame and follow conventions similar to `volumes`. Currently only supports Vault.

 filters:

 apiKey: # API Key specific configurations

 enabled:

 secretsProviderName:

 jwtKey: # JWT Key specific configurations

 enabled:

 secretsProviderName:

 resources:

 requests: # Requested amount of compute resources for the Gateway instance

 cpu:

 memory:

 limits: # Maximum amount of compute resources allowed for the Gateway insta

nce

 cpu:

 memory:

 livenessProbe:

 initialDelaySeconds: # Number of seconds after the container has started before pr

obes are initiated

 failureThreshold: # When a probe fails, Kubernetes will try failureThreshold ti

mes before giving up

 periodSeconds: # How often (in seconds) to perform the probe

 timeoutSeconds: # Number of seconds after which the probe times out

 successThreshold: # Minimum consecutive successes for the probe to be considere

d successful after having failed

 readinessProbe:

 initialDelaySeconds:

 failureThreshold:

 periodSeconds:

 timeoutSeconds:

 successThreshold:

 startupProbe:

 initialDelaySeconds:

 failureThreshold:

 periodSeconds:

 timeoutSeconds:

 successThreshold:

 securityContext: # SecurityContext applied to the Gateway pod(s).

 fsGroup: # Set to 1000 by default

 runAsGroup:

 runAsUser:

 serviceAccount: # Name of the ServiceAccount associated to the Gateway instance

 name:

 service: # Configuration of the Kubernetes service for the gateway

 type: # Determines how the Service is exposed. Either ClusterIP, NodePort

, or LoadBalancer. Defaults to ClusterIP.

 nodePort: # The port on which this service is exposed when type=NodePort or L

oadBalancer.

Following is an example Gateway instance configuration file:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 33

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 count: 3

 api:

 title: My Exciting APIs

 description: Lots of new exciting APIs that you can use for examples!

 version: 0.1.0

 serverUrl: https://gateway.example.com

 env:

 - name: spring.cloud.gateway.httpclient.connect-timeout

 value: "90s"

Configure External Access

Each Gateway instance has an associated service of type ClusterIP. You can expose this service via

common Kubernetes approaches such as ingress routing or port forwarding. Consult your cloud

provider's documentation for Ingress options available to you.

Using an Ingress Resource

Before adding an Ingress, ensure that you have an ingress controller running in your Kubernetes

cluster according to your cloud provider documentation.

To use an Ingress resource for exposing a Gateway instance:

1. In the namespace where the Gateway instance was created, locate the ClusterIP service

associated with the Gateway instance. You can either use this service as an Ingress backend

or change it to a different Service type.

2. Create a file called ingress-config.yaml, with the following YAML definition:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: my-gateway-ingress

 namespace: my-namespace

 annotations:

 kubernetes.io/ingress.class: contour

spec:

 rules:

 - host: my-gateway.my-example-domain.com

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: my-gateway

 port:

 number: 80

For the host and serviceName values, substitute your desired hostname and service name.

This example Ingress resource configuration uses the Project Contour Ingress Controller.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 34

https://projectcontour.io/getting-started/

You can adapt the example configuration if you wish to use another Ingress implementation.

3. Apply the Ingress definition file. The Ingress resource will be created in the same namespace

as the Gateway instance.

4. Examine the newly created Ingress resource:

$ kubectl -n my-namespace get ingress my-gateway-ingress

NAME CLASS HOSTS ADDRES

S PORTS AGE

my-gateway-ingress <none> my-gateway.my-example-domain.com 34.69.

53.79 80 2m51s

$ kubectl -n my-namespace describe ingress my-gateway-ingress

Name: my-gateway-ingress

Namespace: my-namespace

Address: 34.69.53.79

Default backend: default-http-backend:80 (<error: endpoints "default-http-back

end" not found>)

Rules:

 Host Path Backends

 ---- ---- --------

 my-gateway.my-example-domain.com

 / my-gateway:80 ()

As the example output shows, the my-gateway.my-example-domain.com virtual host in the

Ingress definition is mapped to the my-gateway service on the backend.

5. Ensure that you can resolve the Ingress definition hostname (in this example, my-

gateway.my-example-domain.com) to the IP address of the Ingress resource.

The IP address is shown in the Address field of the output from the kubectl describe

command.

For local testing, use the command below to open your /etc/hosts file.

sudo vim /etc/hosts

Resolve the hostname by adding a line to the hosts file.

34.69.53.79 my-gateway.my-example-domain.com

For extended evaluation, you might create a wildcard DNS A record that maps any virtual

host on the domain name (for example, *.my-example-domain.com) to the Ingress resource.

6. You should now be able to connect to your Gateway instance via the Ingress resource, using

a web browser or an HTTP client such as HTTPie or cURL.

$ http my-gateway.my-example-domain.com/github

$ http my-gateway.my-example-domain.com/github/<YOUR_GITHUB_USERNAME>

These requests should receive responses from the GitHub homepage (https://github.com)

or from the requested path on the GitHub website.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 35

7. Test the SSO configuration, for example using an HTTP client such as HTTPie:

$ http my-gateway.my-example-domain.com/github

This request should result in a 302 HTTP status code response, redirecting to the SSO login

page. If you use a web browser to access the route my-gateway.my-example-

domain.com/github, you will be redirected to the SSO login page. After authenticating, you

will be redirected to the GitHub home page.

TLS Passthrough

If you would like to enable TLS termination on your Gateway instance, you will need to route

requests to port 443, rather than port 80, of the gateway service.

You will also need to configure your Ingress to allow TLS passthrough - this configuration is Ingress

implementation dependent.

As an example, to do this using Contour, instead of using the Ingress API you will need to create an

HTTPProxy instance, using the TLS passthrough option:

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

 name: my-gateway-httpproxy

spec:

 virtualhost:

 fqdn: my-gateway.my-example-domain.com

 tls:

 passthrough: true

 tcpproxy:

 services:

 - name: my-gateway

 port: 443

Gateway Actuator Management Port

Spring Cloud Gateway for Kubernetes instances are created with a Spring Boot actuator

management port. The management port is 8090 on each Gateway instance pod based on the HA

configuration. This management port can be used for monitoring using the following endpoints:

/actuator/info - display version and other Gateway instance information

/actuator/health - displays Gateway instance health indicator as status value UP or DOWN

/actuator/gateway/routes - retrieve list of all API routes currently available on Gateway

instance

/actuator/gateway/globalfilters - retrieve list of global filters enabled on Gateway

instance

/actuator/gateway/routefilters - retrieve list of route filters available on Gateway instance

Configure for High Availability

SCG for Kubernetes v1.1 Documentation

VMware, Inc 36

https://projectcontour.io/docs/main/config/tls-termination/#tls-session-passthrough
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready

You can configure Spring Cloud Gateway for Kubernetes to run multiple instances in High Availability

as you would do with a normal Kubernetes resource.

While a Gateway is running you can use kubectl scale to modify the number of replicas. For

example, given a Gateway that has 1 replica, the following will increase the number of replicas to 4.

$ kubectl scale scg my-gateway --replicas=4

And to decrease the number back to the original value.

$ kubectl scale scg my-gateway --replicas=1

In initial configuration, you can specify the number of replicas using the spec.count parameter. The

following example configures a replica count of 3.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 count: 3

So long as no other changes are introduced in the descriptor, you can safely modify spec.count and

re-apply to increase or decrease the number of replicas.

To verify your changes use kubectl get pods to check that the pods match the count number.

Configure TLS termination

You can configure gateway instances to perform TLS termination, using different certificates for

different routes.

Certificates and their associated private keys are loaded from Kubernetes TLS secrets. Create a TLS

type secret for each certificate you would like the Gateway to serve. The easiest way to do this is with

kubectl and PEM encoded certificate and key files:

kubectl create secret tls my-tls-secret-name --cert=path/to/tls.crt --key=path/to/tls.

key

The tls.crt file can contain multiple CA certificates concatenated together with the server certificate

to represent a complete chain of trust.

The tls.key file should contain the private key for the server certificate in PKCS#8 or PKCS#1

format.

Next, create a Gateway resource which references your TLS certificates. Each entry in the spec.tls

array contains a secretName which references the TLS secret containing the certificate(s)/key pair

you want to serve, and a list of hosts. When a request arrives at the gateway referencing one of

these hosts, the gateway will serve the certificate from the matching secret.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: test-gateway-tls

SCG for Kubernetes v1.1 Documentation

VMware, Inc 37

https://kubernetes.io/docs/concepts/configuration/secret/#tls-secrets

spec:

 count: 1

 tls:

 - hosts:

 - host-a.my-tls-gateway.my-example-domain.com

 - host-b.my-tls-gateway.my-example-domain.com

 secretName: tls-secret-1

 - hosts:

 - host-c.my-tls-gateway.my-example-domain.com

 - host-d.my-tls-gateway.my-example-domain.com

 secretName: tls-secret-2

The client with which you make requests to your gateway must support Server Name Indication, in

order to pass the requested host to the gateway as part of the TLS handshake.

To verify that everything is working as expected, you can use openssl to check the certificates that

are returned for each of the configured hosts. For example:

openssl s_client -showcerts -servername host-a.my-tls-gateway.my-example-domain.com -c

onnect <your ingress ip>:443 | openssl x509 -text

where <your ingress ip> should be replaced with the external IP of your TLS passthrough enabled

ingress.

Configure Environment Variables

You can define a map of environment variables to configure the API gateway using the spec.env

property. The following example configure the connection timeout from API gateway to application

services and the Spring Framework web package logging level.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: gateway-demo

spec:

 ...

 env:

 - name: spring.cloud.gateway.httpclient.connect-timeout

 value: "90s"

 - name: logging.level.org.springframework.web

 value: debug

Disable SecureHeaders Global Filter

The backing app for a Spring Cloud Gateway service instance has a custom SecureHeaders filter

globally enabled by default. This filter adds the following headers to the response:

Enabled Secure Header Default Value

Cache-Control no-cache, no-store, max-age=0, must-revalidate

Pragma no-cache

Expires 0

SCG for Kubernetes v1.1 Documentation

VMware, Inc 38

https://en.wikipedia.org/wiki/Server_Name_Indication

Enabled Secure Header Default Value

X-Content-Type-Options nosniff

Strict-Transport-Security max-age=631138519

X-Frame-Options DENY

X-XSS-Protection 1; mode=block

If you do not want any secure headers being added to the response, you can disable the global filter

for the entire gateway instance by setting disable-secure-headers to true:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 env:

 - name: spring.cloud.gateway.secure-headers.disabled

 value: "true"

To disable a specific header for a given route, you could use RemoveResponseHeader filter for the

route. For example, to remove X-Frame-Options header for a route, you might run:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 routes:

 - uri: https://httpbin.org

 predicates:

 - Path=/remove-cache-control/**

 filters:

 - StripPrefix=1

 - RemoveResponseHeader=X-Frame-Options

To disable a specific header globally for all routes, you could set an environment variable on the

gateway according to the SecureHeaders filter doc:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 env:

 - name: spring.cloud.gateway.filter.secure-headers.disable

 value: "x-frame-options"

Configure Cross-Origin Resource Sharing (CORS)

You can define a global CORS behavior that will be applied to all route configurations mapped to it.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

SCG for Kubernetes v1.1 Documentation

VMware, Inc 39

https://cloud.spring.io/spring-cloud-gateway/reference/html/#removeresponseheader-gatewayfilter-factory
https://cloud.spring.io/spring-cloud-gateway/reference/html/#the-secureheaders-gatewayfilter-factory

metadata:

 name: my-gateway

spec:

 api:

 cors:

 allowedOrigins:

 - "https://foo.example.com"

 allowedMethods:

 - "GET"

 - "PUT"

 - "POST"

 allowedHeaders:

 - '*'

The following parameters can be configured in the spec.api.cors block:

Parameter Function Example

allowedOrigins Allowed origins to make cross-site requests. The special

value "*" allows all domains. These values will be

combined with the values from allowedOriginPatterns.

allowedOrigins:

https://example.com

allowedOriginPatterns Alternative to allowedOrigins that supports more flexible

origins patterns with "*" anywhere in the host name in

addition to port lists. These values will be combined with

the values from allowedOrigins.

allowedOriginPatterns:

 -

https://*.test.com:8080

allowedMethods Allowed HTTP methods on cross-site requests. The

special value "*" allows all methods. If not set, "GET" and

"HEAD" are allowed by default.

allowedMethods:

 - GET

 - PUT

 - POST

allowedHeaders Allowed headers in cross-site requests. The special value

"*" allows actual requests to send any header.

allowedHeaders:

 - X-Custom-Header

maxAge How long, in seconds, the response from a pre-flight

request can be cached by clients.

maxAge: 300

allowCredentials Whether user credentials are supported on cross-site

requests. Valid values: `true`, `false`.

allowCredentials: true

exposedHeaders HTTP response headers to expose for cross-site requests. exposedHeaders:

 - X-Custom-Header

You can also configure CORS behavior per route. However, the global CORS configuration must not

be set. Each route defined on the gateway should have a matching path predicate on the route

config.

Note that you can also define per-route cors behavior through the Cors filter.

The example below configures CORS behavior for the /get/** and /example/** routes:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 api:

 cors:

 perRoute:

 '[/get/**]':

SCG for Kubernetes v1.1 Documentation

VMware, Inc 40

 allowedOrigins:

 - "https://foo.example.com"

 allowedMethods:

 - "GET"

 - "PUT"

 - "POST"

 allowedHeaders:

 - '*'

 '[/example/**]':

 allowedOrigins:

 - "https://bar.example.com"

 allowedMethods:

 - "GET"

 - "POST"

 allowedHeaders:

 - '*'

Each route can be configured with the same parameters as in the table above.

Here is a matching route config:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 routes:

 - uri: https://httpbin.org

 predicates:

 - Path=/get/**

 filters:

 - StripPrefix=1

 - uri: https://httpbin.org

 predicates:

 - Path=/example/**

 filters:

 - StripPrefix=1

Configure Java Environment Options

For JVM tuning it is possible to define Java Environment Options (JAVA_OPTS) in the Spring Cloud

Gateway for K8s configuration.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 count: 2

Note: To avoid browser calls failing due to duplicated headers (for example,

receiving multiple 'Access-Control-Allow-Origin' or multiple 'Access-Control-Allow-

Credentials') because a downstream service is also doing CORS processing,

duplicates in these two headers are automatically removed and the one configured in

the gateway will always predominate.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 41

 java-opts: -XX:+PrintFlagsFinal -Xmx512m

This will restart the pods and apply the options to the underlying gateway instances.

Configure session expiration

If you need to be able to discard inactive sessions after a certain time (e.g 10 minutes), just add the

inactive-session-expiration-in-minutes configuration.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 sso:

 secret: my-sso-credentials

 inactive-session-expiration-in-minutes: 10

This does not modify any authorization server token expiration (or ttl) configuration. It only affects the

session information managed inside the gateway.

Configuring Hardware Resources

Similarly to other Kubernetes resources, you can optionally define the required memory (RAM) and

CPU for a Gateway under spec.resources.

By default each instance is initialized with:

Resource Requested Limit

Memory 256Mi 512Mi

CPU 500m 2

But you can change it as seen in the example below. Note that less than the required may cause

issues and is not recommended.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 resources:

 requests:

 memory: "512Mi"

 cpu: "1"

 limits:

 memory: "1Gi"

 cpu: "2"

Configuring Probes

Similarly to other Kubernetes resources, you can optionally configure the livenessProbe,

readinessProbe, and startupProbe, for a Gateway.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 42

By default each instance is initialized with:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 livenessProbe:

 initialDelaySeconds: 5

 failureThreshold: 10

 periodSeconds: 3

 timeoutSeconds: 1

 successThreshold: 1

 readinessProbe:

 initialDelaySeconds: 5

 failureThreshold: 10

 periodSeconds: 3

 timeoutSeconds: 1

 successThreshold: 1

 startupProbe:

 initialDelaySeconds: 10

 failureThreshold: 30

 periodSeconds: 3

 timeoutSeconds: 1

 successThreshold: 1

But you can change them in order to better match your requirements.

Configure Observability

Spring Cloud Gateway for Kubernetes can be configured expose tracing and to generate a set of

metrics and tracings based on different monitoring signals to help with understanding behaviour in

aggregate.

Exposing Metrics to Wavefront

To expose metrics to Wavefront we need to create a Secret with the following data: wavefront.api-

token and wavefront.uri, representing Wavefront's API token and Wavefront's URI endpoint

respectively. For example:

apiVersion: v1

kind: Secret

metadata:

 name: metrics-wavefront-secret

data:

 wavefront.api-token: "NWU3ZCFmNjYtODlkNi00N2Y5LWE0YTMtM2U3OTVmM2Y3MTZk"

 wavefront.uri: "aHR0cHM6Ly92bAdhcmUud2F2ZWZyb250LmNvbQ=="

Then, in the SpringCloudGateway kind, reference the secret created in the step before under the

metrics section. For example:

Note: Metrics and Tracing are independent from each other.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 43

https://tanzu.vmware.com/observability

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: test-gateway-metrics

spec:

 observability:

 metrics:

 wavefront:

 enabled: true

 wavefront:

 secret: metrics-wavefront-secret

 source: my-source

 application: my-shopping-application

 service: gateway-service

After applying the configuration, Wavefront will start receiving the metrics provided by default by

Spring Cloud Gateway.

Using the Spring Cloud Gateway for Kubernetes Dashboard for Wavefront

Note: If you are also using wavefront for tracing, ensure you specify the same secret

and source in both specs.

Spring Cloud Gateway for Kubernetes has a pre-built dashboard you can use in Wavefront.

If you are using VMware's Wavefront, then you can clone and customize the already created Spring

Cloud Gateway for Kubernetes Dashboard.

Alternatively, you can find a dashboards folder inside Spring Cloud Gateway for Kubernetes release

artifacts which contains a Wavefront template.

To import it, we need to create an API Token and execute the following command:

curl -XPOST 'https://vmware.wavefront.com/api/v2/dashboard' --header "Authorization: B

earer ${WAVEFRONT_API_TOKEN}" --header "Content-Type: application/json" -d "@wavefront

-spring-cloud-gateway-for-kubernetes.json"

SCG for Kubernetes v1.1 Documentation

VMware, Inc 44

https://cloud.spring.io/spring-cloud-gateway/reference/html/
https://vmware.wavefront.com
https://docs.wavefront.com/ui_dashboards_v1.html
https://vmware.wavefront.com/dashboards/Spring-Cloud-Gateway-for-Kubernetes
https://vmware.wavefront.com/userprofile/apiaccess

Exposing Metrics to Prometheus

To expose metrics to Prometheus we need to add a prometheus section in the SpringCloudGateway

kind and if we want scrapping annotations to be added into the gateway pods, for example:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: test-gateway-metrics

spec:

 observability:

 metrics:

 prometheus:

 enabled: true

After applying the configuration, the Prometheus actuator endpoint will be available.

If, in addition to this, we want the scrapping annotations to be added to all the Spring Cloud Gateway

Pods, we should create our Prometheus connfigurations with annotations set to true, for example:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: test-gateway-metrics-with-annotations

spec:

 observability:

 metrics:

 prometheus:

 enabled: true

 annotations:

 enabled: true

This will add the following annotations to every Spring Cloud Gateway Pod:

 annotations:

 prometheus.io/scrape: "true"

SCG for Kubernetes v1.1 Documentation

VMware, Inc 45

https://prometheus.io/
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints

 prometheus.io/path: "/actuator/prometheus"

 prometheus.io/port: "8090"

Using the Spring Cloud Gateway for Kubernetes Dashboard for Grafana

You can find a dashboards folder inside Spring Cloud Gateway for Kubernetes release artifacts

which contains a Grafana template.

To import it you can follow the how to import guide.

Exposing Tracing to Wavefront

To expose tracing to Wavefront we need to create a Secret with the following data: wavefront.api-

token and wavefront.uri, representing Wavefront's API token and Wavefront's URI endpoint

respectively. For example:

apiVersion: v1

kind: Secret

metadata:

 name: tracing-wavefront-secret

data:

 wavefront.api-token: "NWU3ZCFmNjYtODlkNi00N2Y5LWE0YTMtM2U3OTVmM2Y3MTZk"

 wavefront.uri: "aHR0cHM6Ly92bAdhcmUud2F2ZWZyb250LmNvbQ=="

Then, in the SpringCloudGateway kind, reference the secret created in the step before under the

tracing section. For example:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: test-gateway-tracing

spec:

 observability:

 tracing:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 46

https://grafana.com/docs/grafana/latest/dashboards/export-import/#import-dashboard
https://tanzu.vmware.com/observability

 wavefront:

 enabled: true

 wavefront:

 secret: tracing-wavefront-secret

 source: my-source

 application: my-shopping-application

 service: gateway-service

After applying the configuration, Wavefront will start receiving the traces

Applying custom labels to the Gateway Pods

Custom labels can be added to the Gateway configuration. These labels will be propagated to the

Pods created by the gateway operator For example:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: test-gateway-tracing

 labels:

 test-label: test

spec:

 count: 2

Then the Pods can be listed by specifying the label:

 kubectl get pods -l test-label=test

Customizing the service type

By default, the gateway is exposed with a ClusterIP service. You can change the type to a NodePort

or a LoadBalancer by specifying the spec.service.type. You can also configure the exposed port by

Note: If you are also using wavefront for metrics, ensure you specify the same secret

and source in both specs.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 47

https://docs.wavefront.com/tracing_basics.html

specifying spec.service.port. If not specified, the port will automatically be assigned.

For example:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 service:

 type: NodePort

 nodePort: 32222

Note, for local development, your cluster needs to be configured to expose your chosen nodePort

before you can send traffic to the nodes from the host.

Using Single Sign-On

Spring Cloud Gateway for Kubernetes supports authentication and authorization using Single Sign-

On (SSO) with an OpenID identity provider which supports OpenID Connect Discovery protocol.

On top of using a SSO authentication workflow, you can also set up filters to support:

Scope-based Access Control

Role-based Access Control

Configure Single Sign-On (SSO)

You can configure Spring Cloud Gateway for Kubernetes to authenticate requests via Single Sign-On

(SSO), using an OpenID identity provider.

To configure a Gateway instance to use SSO:

1. Create a file called sso-credentials.txt, including the following properties:

scope=openid,profile,email

client-id={your_client_id}

client-secret={your_client_secret}

issuer-uri={your-issuer-uri}

For the client-id, client-secret, and issuer-uri values, use values from your OpenID

identity provider. For the scope value, use a list of scopes to include in JWT identity tokens.

This list should be based on the scopes allowed by your identity provider.

issuer-uri configuration should follow Spring Boot convention, as described in the official

Spring Boot documentation:

The provider needs to be configured with an issuer-uri which is the URI that the it asserts as

its Issuer Identifier. For example, if the issuer-uri provided is "https://example.com", then an

OpenID Provider Configuration Request will be made to "https://example.com/.well-

known/openid-configuration". The result is expected to be an OpenID Provider

Configuration Response.

Note that only authorization servers supporting OpenID Connect Discovery protocol can be

SCG for Kubernetes v1.1 Documentation

VMware, Inc 48

https://openid.net/specs/openid-connect-discovery-1_0.html
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-security-oauth2-client

used.

2. Configure external authorization server to allow redirects back to the gateway. Please refer to

your authorization server's documentation and add https://<gateway-external-url-or-ip-

address>/login/oauth2/code/sso to the list of allowed redirect URIs.

3. In the Spring Cloud Gateway for Kubernetes namespace, create a Kubernetes secret using

the sso-credentials.txt file created in the previous step:

$ kubectl create secret generic my-sso-credentials --from-env-file=./sso-creden

tials.txt

4. Examine the secret using the kubectl describe command. Verify that the Data column of

the secret contains all of the required properties listed above.

5. Add the SSO secret in the SpringCloudGateway definition in the spec.sso.secret field. In the

routes list of the SpringCloudGatewayRouteConfig object, add the setting ssoEnabled: true

to each route that must have authenticated access. See the following updated gateway-

config.yaml and route-config.yaml files:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 api:

 serverUrl: https://my-gateway.my-example-domain.com

 title: Animal Rescue APIs

 description: Make and track adoption requests for animals that need to be r

escued.

 version: "1.0"

 sso:

 secret: my-sso-credentials

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 routes:

 - uri: https://github.com

 ssoEnabled: true

 predicates:

 - Path=/github/**

 filters:

 - StripPrefix=1

With ssoEnabled set to true, the Gateway instance will use SSO for all API routes that are

configured to allow authenticated access only.

6. Apply the updated Gateway and RouteConfig definition file:

$ kubectl apply -f gateway-config.yaml

$ kubectl apply -f route-config.yaml

SCG for Kubernetes v1.1 Documentation

VMware, Inc 49

Update Single Sign-On credentials

To update the SSO credentials for the gateway:

1. Update the value in secret (e.g. my-sso-credentials) by deleting the old secret then

recreate it again:

$ kubectl delete secret my-sso-credentials

$ kubectl create secret generic my-sso-credentials --from-env-file=./sso-creden

tials-updated.txt

Alternatively, edit existing secret with new base64 encoded values:

$ echo $NEW_CLIENT_SECRET | base64 | pbcopy

$ kubectl edit secret my-sso-credentials

2. Rollout restart the gateway statefulset to enforce secret update:

kubectl rollout restart statefulset my-gateway

Refer to SSO Setup Guide for Animal Rescue demo app with Okta Identity Provider for more details.

OpenAPI security schemes (SSO)

When SSOEnabled is set to true on any route, two securityScheme (See

https://swagger.io/docs/specification/authentication) are registered as a component in the OpenAPI

spec generated:

AuthBearer to enable a dialog for providing a Bearer Authorization header

OpenId to enable a dialog for getting a token from an OIDC configuration and adding it as a

header

And, the schemes are bound to any of those routes. Other routes will not be affected and the

scheme will not be applied on them.

Logout

Spring Cloud Gateway for Kubernetes instances provide a default API endpoint to logout of the

current SSO session: GET /scg-logout.

If the OIDC provider supports RP-Initiated Logout, the /scg-logout call will also log the user out of

the OIDC provider session.

You can redirect the user to another endpoint or url by adding a redirect query parameter to the

logout call. For example, a GET call to /scg-logout?redirect=/home will redirect the user to the /home

page.

Configuring Single Sign-On for Sample Application

In this guide, you'll learn how to configure Okta identity provider to use with the sample application

Animal Rescue.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 50

https://swagger.io/docs/specification/authentication
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://swagger.io/docs/specification/authentication/openid-connect-discovery/
https://www.okta.com/
https://github.com/spring-cloud-services-samples/animal-rescue/

Configuring Okta OIDC provider

Login to Okta admin dashboard. You can use a free developer account or configure your existing

account.

Create authorization server for Animal Rescue

A new authorization server is required because Animal Rescue will need it's own set of scopes and

claims.

1. Go to Security → API

2. Under the Authorization Servers tab, click "Add Authorization Server".

3. Use "Animal Rescue" as the name and set the audience to api://animal-rescue.

4. Now go to new created settings page, copy the value in "Issuer" field. This should be used as

issuer-uri during Gateway setup.

5. Switch to "Scopes" tab and add a new scope: animals.adopt (with any display name and

description). Check the box for "User Consent" and "Metadata"

6. Switch to "Claims" tab and add a new claim: groups, set "Include in token type" to always

include to ID Token, value type to "Groups" with filter matching regex ".*" (so all groups are

included). Optionally, configure "Include in" to groups scope (you need to create the scope

SCG for Kubernetes v1.1 Documentation

VMware, Inc 51

https://developer.okta.com/signup/

first) if you'd like to include groups information only when a certain scope is requested and

approved.

7. Add a new claim user_name and set it to be always included into ID token, configure value to

be user.email. The claim value can be configured using Okta Expression Language.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 52

https://developer.okta.com/reference/okta_expression_language/

8. Switch to "Access Policies" tab and create a "Default" access policy, assigned to all clients.

9. Add a new rule to allow authorization_code grant, for any user, any scope.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 53

Create users and groups

Navigate to "Directory → People" from the main menu

1. Click "Add Person" and configure all required fields.

Navigate to "Directory → Groups" from the main menu

1. Click "Add Group" and create "Adopter" group.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 54

2. Click "Manage People" in "Adopter" group and add the accounts you created above.

Create new application

Navigate to "Applications → Applications" in the main menu.

1. Click "Create App Integration".

2. Select "OIDC - OpenID Connect" as the Sign-on method and select "Web Application" as

the application type.

3. In "Sign-in redirect URIs" add <gateway url>/login/oauth2/code/sso. If your gateway has

not been deployed yet, you can skip this step for now and add the redirect URI later.

4. Enable "Authorization Code" grant type for the app.

5. In "Assignments" section, select Limit access to selected groups and add the "Adopter"

group.

6. Copy "Client ID" and "Client Secret".

Configuration summary

After you completed the steps above, you should have the following values:

Issuer URI. That should be the value from the authorization server you created, not your

account Okta domain.

Client ID.

Client secret.

One or two test users ideally with different groups for testing.

Make sure you have them before proceeding to the next step.

Configure Animal Rescue app

Clone the repo first.

Configure SSO params

In the animal-rescue repo,

1. Create backend/secrets/sso-credentials.txt with the following:

jwk-set-uri=<issuer uri>/v1/keys

2. Create gateway/sso-secret-for-gateway/secrets/test-sso-credentials.txt with the

following:

scope=openid,profile,email,groups,animals.adopt

client-id=<client id>

client-secret=<client id>

issuer-uri=<issuer uri>

SCG for Kubernetes v1.1 Documentation

VMware, Inc 55

https://github.com/spring-cloud-services-samples/animal-rescue

If you decided to use groups scope to get groups information, make sure it is listed in scope

parameter.

The issuer URI must exactly match the value from the server configuration, including trailing

slashes! You can always check expected value by navigating to <issuer-uri>/.well-

known/openid-configuration URL.

3. Edit gateway/gateway-demo.yaml and add roles-attribute-name into sso section:

sso:

 secret: animal-rescue-sso

 roles-attribute-name: "groups"

The default value is "roles". Alternatively you can configure Okta to return the "roles" claim

instead of "groups".

Configure routes security

Edit backend/k8s/animal-rescue-backend-route-config.yaml file. Add Scopes=animals.adopt filter

to /api/animals/*/adoption-requests/** route if you'd like to use scopes to authorize access to

Adoption Request API, or Roles=Adopter if you'd like to use roles. You can keep both filters as well.

 - ssoEnabled: true

 tokenRelay: true

 predicates:

 - Path=/api/animals/*/adoption-requests/**

 - Method=POST,PUT,DELETE

 tags:

 - "pet adoption"

 filters:

 - Scopes=animals.adopt

Deploy the app

Run kustomize build . | kubectl apply -f - or refer to Animal Rescue README for most up to

date deployment instructions.

Test

Port-forward the gateway demo-demo service:

kubectl port-forward service/gateway-demo 8080:80

Navigate to your gateway URL, http://localhost:8080/rescue.

Try logging in with different test users, within or without "Adopter" groups and add, edit or delete

adoption request. You should see a successful response or "Request failed with status code 403"

error message depending on your groups list and approved scopes.

Note: If you are using dynamic IP address you may need to go back to Okta and

configure this IP address in the list of allowed Redirect URIs.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 56

OpenAPI Generated Documentation

See below for how to provide API Gateway metadata and how API route configurations are used to

auto-generate OpenAPI v3 documentation.

Accessing Generated OpenAPI v3 Documentation

The Spring Cloud Gateway for Kubernetes operator manages all API Gateway instances on

Kubernetes cluster. When you apply any SpringCloudGateway, SpringCloudGatewayRouteConfig or

SpringCloudGatewayMapping custom resources onto the Kubernetes cluster, the operator will act to

reconcile the environment with those request resource changes. In addition to handling custom

resource reconciliation, the operator also has an OpenAPI v3 compliant auto-generated

documentation endpoint. You can access this endpoint by exposing the scg-operator service with

an ingress and then access its /openapi endpoint. An example ingress applied to the scg-operator

service in the spring-cloud-gateway namespace is shown below:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: scg-openapi

 namespace: spring-cloud-gateway

 annotations:

 kubernetes.io/ingress.class: contour

spec:

 rules:

 - host: scg-openapi.mydomain.com

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: scg-operator

 port:

 number: 80

Now you can access the auto-generated OpenAPI v3 endpoint by going to https://scg-

openapi.mydomain.com/openapi. Application developers can provide their API route configuration to

be exposed on an API Gateway instance and those API routes will then be input for generated

documentation. This leads to consistent APIs based on API route configuration predicates, filters and

metadata across all service instances and the APIs they expose.

It is important to note that a separate OpenAPI v3 document will be generated for each API Gateway

instance and the /openapi endpoint provides an array of these documents for all of the instances on

this Kubernetes cluster.

Configure OpenAPI Metadata

The following descriptive metadata can be defined when configuring an API Gateway instance:

serverUrl: Publicly accessible user-facing URL of this Gateway instance. It is important to

SCG for Kubernetes v1.1 Documentation

VMware, Inc 57

note that this configuration does not create a new route mapping for this URL, this is only for

metadata purposes to display in the OpenAPI generated documentation.

title: Title describing the context of the APIs available on the Gateway instance (default:

Spring Cloud Gateway for K8S)

description: Detailed description of the APIs available on the Gateway instance (default:

Generated OpenAPI 3 document that describes the API routes configured for

'[Gateway instance name]' Spring Cloud Gateway instance deployed under

'[namespace]' namespace.)

version: Version of APIs available on this Gateway instance (default: unspecified)

documentation: Location of additional documentation for the APIs available on the Gateway

instance

Here is an example of an API Gateway configuration using this descriptive metadata:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 api:

 serverUrl: https://gateway.example.org

 title: My Exciting APIs

 description: Lots of new exciting APIs that you can use for examples!

 version: 0.1.0

 documentation: https://docs.example.org

This will be displayed in the /openapi endpoint of the operator as:

"info": {

 "title": "My Exciting APIs",

 "description": "Lots of new exciting APIs that you can use for examples!",

 "version": "0.1.0"

},

"externalDocs": {

 "url": "https://docs.example.org"

},

"servers": [

 {

 "url": "https://gateway.example.org"

 }

],

PUT/POST/PATCH Request Body Schema

For PUT, POST and PATCH operations, you may add the OpenAPI Schema of Request Body

objects.

As in the example below, add model.requestBody property to a route with the proper information.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 58

https://swagger.io/docs/specification/describing-request-body/

 name: myapp-route-config

spec:

 service:

 name: myapp-service

 routes:

 - id: example-route-id

 predicates:

 - Path=/users/**

 model:

 requestBody:

 description: User to add

 content:

 'application/json':

 schema:

 type: object

 description: User schema

 properties:

 name:

 type: string

 age:

 type: integer

 format: int32

 required:

 - name

The model, alongside with the available HTTP methods and headers will be published under paths.

"paths": {

 "/users/**": {

 "summary": "example-route-id",

 "get": {

 "responses": {

 "200": {

 "description": "Ok"

 }

 }

 },

 "post": {

 "requestBody": {

 "description": "User to add",

 "content": {

 "application/json": {

 "schema": {

 "required": [

 "name"

],

 "type": "object",

 "properties": {

 "name": {

 "type": "string"

 },

 "age": {

 "type": "integer",

 "format": "int32"

 }

 },

 "description": "User schema"

 }

 }

SCG for Kubernetes v1.1 Documentation

VMware, Inc 59

 }

 },

 "responses": {

 "200": {

 "description": "Ok"

 }

 }

 }

Custom HTTP Responses

In order to add custom HTTP responses for your paths, you may add the OpenAPI Schema of

Responses objects.

As in the example below, add model.responses property to a route with the proper information.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp-service

 routes:

 - id: example-route-id

 predicates:

 - Path=/users/**

 model:

 responses:

 200:

 description: "Obtain a list of users"

 content:

 application/json:

 schema:

 type: object

 description: User schema

 properties:

 name:

 type: string

 age:

 type: integer

 format: int32

 3XX:

 description: "Redirection applied"

 headers:

 X-Redirected-From:

 schema:

 type: string

 description: URL from which the request was redirected.

 default:

 description: "Unexpected error"

If you don't provide any HTTP responses, the operator will generate by default a 200 Ok response

for every path's operation. Some filters may add custom responses as well to document their inner

functionality. You can overwrite these responses too by including them in this section.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 60

https://swagger.io/docs/specification/describing-responses/

Configure Spring Cloud Gateway Instances in Tanzu
Application Platform

This topic describes how to add a Spring Cloud Gateway for Kubernetes as a Component of your

Organization Catalog.

There are two basic scenarios.

Adding Spring Cloud Gateway to a Component

In this scenario we want to add the Gateway instance to a running Component. For that we need to

add the labels as in the example below.

Take care to match the PART_OF to the name of the label app.kubernetes.io/part-of in your

Component.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: animal-rescue

 namespace: animal-rescue

 labels:

 tanzu.app.live.view: "true"

 tanzu.app.live.view.application.actuator.port: "8090"

 tanzu.app.live.view.application.flavours: spring-boot_spring-cloud-gateway

 app.kubernetes.io/part-of={PART_OF}

Once applied, the gateway pods will be visible in the list of resources.

Adding Spring Cloud Gateway as a new Component

If you want to present the Gateway as an independent Component, you still need to add the labels

seen before. But matching part-of value with the one used in your Component, as seen below.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: my-gateway

 description: My application gateway

 annotations:

 'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of={PART_OF}'

SCG for Kubernetes v1.1 Documentation

VMware, Inc 61

spec:

 type: service

 lifecycle: experimental

 owner: default-team

Then, use the "Registry Entity" button at the top of the Catalog view.

And provide an url pointing to the Component descriptor file.

This will make the new component visible in the Catalog view.

Client Apps

These topics describe how to use Spring Cloud Gateway for Kubernetes with client applications.

Configuring Gateway Routes

SCG for Kubernetes v1.1 Documentation

VMware, Inc 62

This topic describes how to add, update, and manage API routes for apps that use a Spring Cloud

Gateway for Kubernetes instance.

What are API routes

Spring Cloud Gateway instances match requests to target endpoints using configured API routes. A

route is assigned to each request by evaluating a number of conditions, called predicates. Each

predicate may be evaluated against request headers and parameter values. All of the predicates

associated with a route must evaluate to true for the route to be matched to the request. The route

may also include a chain of filters, to modify the request before sending it to the target endpoint, or

the received response.

Define Route Config

To define the API routes that your service intends to expose for consumers, you must create a

SpringCloudGatewayRouteConfig resource. The definition for SpringCloudGatewayRouteConfig

specifies:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: # Name given to this route configuration (required)

spec:

 service: # Kubernetes Service to route traffic to specified `spec.routes`.

 name: # Name of the service, required unless route defines `uri`.

 namespace: # (Optional) If not set will use the RouteConfig's namespace.

 port: # (Optional) If not set will use one of the available service ports

.

 predicates: # (Optional) Predicates to be prepended to all routes. See Availabl

e Predicates.

 filters: # (Optional) Filters to be prepended to all routes. See Available F

ilters.

 ssoEnabled: # (Optional) Define SSO validation for all routes. See "Using Singl

e Sign-On".

 routes: # Array of API routes.

 - title: # (Optional) A title, will be applied to methods in the generated O

penAPI documentation

 description: # (Optional) A description, will be applied to methods in the gener

ated OpenAPI documentation

SCG for Kubernetes v1.1 Documentation

VMware, Inc 63

 uri: # (Optional) Full uri, will override `service.name`

 ssoEnabled: # Enable SSO validation. See "Using Single Sign-On"

 tokenRelay: # Pass currently-authenticated user's identity token to application

 service

 predicates: # See Available Predicates below

 filters: # See Available Filters below

 order: # Route processing order, same as Spring Cloud Gateway

 tags: # Classification tags, will be applied to methods in the generated

OpenAPI documentation

 basicAuth:

 secret: # The secret name containing basic auth credentials.

 openapi:

 components:

 schemas: # Reusable schema objects.

 requestBodies: # Reusable request body objects.

As example, create a file called myapp-route-config.yaml, with the following YAML definition:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/public/**

 filters:

 - StripPrefix=2

Default Configuration

To simplify configuration, StripPrefix=1 is applied by default when no value for StripPrefix is set.

Define Service Level Config

In order to avoid repetition across all or most API routes in their route configuration, the following

properties can be defined at service level: predicates, filters, and ssoEnabled.

Service Filters

To have certain filters prepended to all routes, you can use the service.filters property. For

example, that's how you can add rate limiting to all routes:

spec:

 service:

 name: myapp

 filters:

 - RateLimit=2,10s

Note: service.name is the recommended method for traffic configuration. Use

routes.uri only when accessing external resources.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 64

https://docs.spring.io/spring-cloud-gateway/docs/current/reference/html/
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.1.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.1.md#requestBodyObject

Service Predicates

To have certain predicates prepended to all routes, you can use the service.predicates property.

Example of all routes configured with a mandatory header:

spec:

 service:

 name: myapp

 predicates:

 - Header=X-Request-Id

Service SSO Config

To define SSO validation for all routes, you can use the service.ssoEnabled property. Example of all

routes configured with SSO:

spec:

 service:

 name: myapp

 ssoEnabled: true

Each route can then override it, as below:

spec:

 service:

 name: myapp

 ssoEnabled: true

 routes:

 - predicates:

 - Path=/api/users

 ssoEnabled: false

Map Routes to Gateway

To add API routes to a Spring Cloud Gateway for Kubernetes instance, you must create a resource

of type SpringCloudGatewayMapping that references both a SpringCloudGateway and a

SpringCloudGatewayRouteConfig resource. The definition for SpringCloudGatewayMapping specifies:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayMapping

metadata:

 name: # Name given to this route mapping (required)

spec:

 gatewayRef: # Gateway instance which will serve traffic to the provided route c

onfig

 name: # Name of the Gateway instance

 namespace: # (Optional) If not set will use the Mapping's namespace

 routeConfigRef: # Route configuration with the routes to apply to the gateway insta

nce

 name: # Name of the route configuration resource

 namespace: # (Optional) If not set will use the Mapping's namespace

SCG for Kubernetes v1.1 Documentation

VMware, Inc 65

Continuing the previous example, create a file called myapp-mapping.yaml, with the following YAML

definition:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayMapping

metadata:

 name: myapp-mapping

spec:

 gatewayRef:

 name: my-gateway

 namespace: my-gateway-ns

 routeConfigRef:

 name: myapp-route-config

Apply the two definitions to your Kubernetes cluster:

$ kubectl apply -f myapp-route-config.yaml

$ kubectl apply -f myapp-mapping.yaml

Spring Cloud Gateway for Kubernetes processes the two objects and updates the Gateway instance

named in the spec.gateway property value (in this example, the my-gateway instance). For the routes

configured in the spec.routes section, the Gateway instance will route traffic to the app named in

the spec.service property value (in this example, the myapp app).

After creating the mapping and route config resources, you should be able to access the myapp app

at the fully qualified domain name (FQDN) used by the Gateway instance and the path /api/*. For

example, if your Gateway instance is exposed by an Ingress resource at the domain

gateway.example.com, you can access the myapp app at the following URL:

https://gateway.example.com/api/my-path

Available Predicates

For more detailed documentation on how to use the OSS Spring Cloud Gateway predicates, see the

Spring Cloud Gateway OSS predicates documentation.

Predicate Description

After matches requests made after a certain datetime

Before matches requests made before a certain datetime

Between matches requests made between two certain datetimes

Cookie matches requests with a certain cookie

Note: Application services must respect `X-Forwarded-*` as the API Gateway is

acting as a reverse proxy on behalf of the client. For Spring Boot applications, this

can be configured by setting `server.forward-headers-strategy=NATIVE`. Please

utilize the appropriate approach for your application's programming language and

framework.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 66

https://cloud.spring.io/spring-cloud-gateway/reference/html/#gateway-request-predicates-factories

Predicate Description

Header matches requests with a certain header

Host matches requests with a certain host pattern

Method matches requests to HTTP method (GET/POST)

Path matches requests with path of certain pattern(s)

Query matches requests with certain query parameter (optional with value pattern)

RemoteAddr matches requests of a certain remote IP address

Weight Split requests between a set of targets in a group

JWTClaim Match on JWT claim value

Available Filters

For more detailed documentation on how to use the OSS Spring Cloud Gateway filters, see the

Spring Cloud Gateway OSS filters documentation. The detailed documentation on additional filters

provided by Spring Cloud Gateway for Kubernetes commercial product are listed on the Commercial

Route Filters page.

Filter Description

AddRequestHeader Adds a header to a request

AddRequestHeadersIfNotPresent Adds headers if not present in the original request

AddRequestParameter Adds a request parameter to a request query string

AddResponseHeader Adds a header to a matching response

AllowedRequestCookieCount Determines if a matching request is allowed to proceed base on number of

cookies

AllowedRequestHeadersCount Determines if a matching request is allowed to proceed based on headers

AllowedRequestQueryParamsCoun

t

Determines if a matching request is allowed to proceed base on query params

ApiKey validate API keys from X-API-Key header against those stored in Hashicorp

Vault

BasicAuth Adds BasicAuth credentials as header

CircuitBreaker Wraps routes in a circuit breaker

ClaimHeader Copies data from a JWT claim into an HTTP Header

ClientCertificateHeader Validate X-Fowarded-Client-Cert header certificate (optional fingerprint)

Cors Configuring per-route Cross-Origin Resource Sharing (CORS)

DeDupeResponseHeader Removes duplicates of certain headers

FallbackHeaders Adds circuit breaker exception to a header

JwtKey Adds multiple client JWT token validation

SCG for Kubernetes v1.1 Documentation

VMware, Inc 67

https://cloud.spring.io/spring-cloud-gateway/reference/html/#gatewayfilter-factories

Filter Description

MapRequestHeader Maps a header from another one

PrefixPath Adds a prefix to a matching request path

PreserveHostHeader Preserves original host header when sending a request

RateLimit Determines if a matching request is allowed to proceed base on volume

RedirectTo Redirects a matching request with certain HTTP code to a certain URL

RemoveJsonAttributesResponseBo

dy

Removes JSON attributes and its value from a JSON content

RemoveRequestHeader Removes a header from a matching request

RemoveResponseHeader Removes a header from a response

RemoveRequestParameter Removes a query parameter from a matching request

RewriteAllResponseHeaders Removes a query parameter from a matching request

RewritePath Similar to RewriteResponseHeader, but applies transformation to all headers

RewriteLocationResponseHeader Modifies the value of the location response header

RewriteResponseHeader Rewrite the response header value

RewriteResponseBody Rewrite the response body from a matching request

RewriteJsonAttributesResponseBo

dy

Rewrite JSON attributes using JSON Path notations

Roles List authorized roles needed to access route

Scopes List scopes needed to access route

SecureHeaders Adds some headers to a response per a security recommendation

SetPath Manipulates a matching request path

SetResponseHeader Replaces a certain response header

SetStatus Sets HTTP status of a response

SSO Login Redirects to authenticate if no valid Authorization token

StoreIpAddress Store IP address value in the context of the application

StoreHeader Store a header value in the context of the application

StripPrefix Strips parts from a path of a matching request (default: 1)

Retry Retries a matching request

RequestSize Constrains a matching request with a certain request size

SetRequestHostHeader Overrides host header value of a matching request

SsoAutoAuthorize Adds a fake SSO authorization for development purposes

TokenRelay Forwards OAuth2 access token to downstream resources

SCG for Kubernetes v1.1 Documentation

VMware, Inc 68

OpenApi Schema References

OpenApi references can be used by multiple API routes so that they don't have to duplicate

definitions in route configuration. It works via the '$ref' property, which targets an object in the

openapi section. Currently, this feature is only supported for requests and responses.

In the following example, we're referencing UserRequest and UserResponse objects, which in turn

point to schemas.User:

routes:

- predicates:

 - Path=/api/users

 - Method=POST

 model:

 requestBody:

 content:

 'application/json':

 schema:

 '$ref': "/components/requestBodies/UserRequest"

 responses:

 '200':

 content:

 'application/json':

 schema:

 '$ref': "/components/schemas/UserResponse"

openapi:

 components:

 schemas:

 User:

 type: object

 properties:

 id:

 type: string

 name:

 type: string

 email:

 type: string

 format: email

 UserResponse:

 '$ref': "/components/schemas/User"

 requestBodies:

 UserRequest:

 required: ["name", "email"]

 '$ref': "/components/schemas/User"

Commercial Route Filters

The open-source Spring Cloud Gateway project includes a number of built-in filters for use in

Gateway routes. Spring Cloud Gateway provides a number of custom filters in addition to those

included in the OSS project.

Filters Included In Spring Cloud Gateway OSS

Filters in Spring Cloud Gateway OSS can be used in Spring Cloud Gateway for Kubernetes. Spring

Cloud Gateway OSS includes a number of GatewayFilter factories used to create filters for routes.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 69

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.1.md#referenceObject
https://spring.io/projects/spring-cloud-gateway

For a complete list of these factories, see the Spring Cloud Gateway OSS documentation.

Filters Added In Spring Cloud Gateway for Kubernetes

Following sections offers information about the custom filters added in VMware Spring Cloud

Gateway and how you can use them.

AddRequestHeadersIfNotPresent: Request headers modification filter

This filter adds certain request headers if those are not present in the original request. It accepts a list

of key value pairs.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/foo

 filters:

 - AddRequestHeadersIfNotPresent=Content-Type:application/json,Connection:keep-al

ive

In the example, a raw request to /foo will have the headers Content-Type: application/json and

Connection: keep-alive included into the original request.

In case the request comes with:

Content-Type: only Connection: keep-alive will be added.

Connection: only Content-Type: application/json will be added.

both Content-Type and Connection: the original request will be left untouched.

AllowedRequestCookieCount: Allowed request cookie count filter

This filter provides a convenient method to set maximum number of allowed cookies on a request. It

accepts up to the maximum number of cookies integer value and will respond with a 431 Request

Header Fields Too Large error if exceeded.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

 - Path=/api/**

 filters:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 70

https://cloud.spring.io/spring-cloud-gateway/reference/html/#gatewayfilter-factories

 - AllowedRequestCookieCount=2

In the example, request will proceed if it has 2 cookies or less.

AllowedRequestHeadersCount: Allowed request headers count filter

This filter provides a convenient method to set the maximum allowed headers in the request coming

from our target service through the gateway. It accepts a integer value for the maximum number of

headers and if it is exceeded it will respond with a 431 Request header fields too large.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

 - Path=/api/**

 filters:

 - AllowedRequestHeadersCount=4

In the example, request will proceed if it has 4 or fewer headers, including cookies.

AllowedRequestQueryParamsCount: Allowed request query params
count filter

This filter provides a convenient method to set a maximum allowed query parameters of the request

coming from target service through the gateway. It accepts a number of maximum query parameters

and it's exceeded, it will respond with a 414 URL Too Large HTTP error.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

 - Path=/api/**

 filters:

 - AllowedRequestQueryParamsCount=3

In the example, request will proceed if it has 3 query parameters or less.

BasicAuth: Basic authorization filter

The BasicAuth filter relays Basic Authorization credentials to a route. It will not authenticate requests.

It will not return a HTTP 401 Unauthorized status line with a WWW-Authenticate header for

SCG for Kubernetes v1.1 Documentation

VMware, Inc 71

unauthenticated requests.

To use it, you must first store the basic auth username and password in a Kubernetes secret, with

their respective keys, username and password.

This can be done via:

kubectl create secret generic basic-auth-secret --from-literal=username=***** --from-l

iteral=password=*****

The secret must be in the same namespace as the SpringCloudGatewayRouteConfig.

Next, in your SpringCloudGatewayRouteConfig, put the name of the secret you created at

spec.basicAuth.secret.

Finally, add the BasicAuth filter to the route.

An example is shown below:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: test-gateway-routes

spec:

 service:

 name: myapp

 basicAuth:

 secret: basic-auth-secret

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - StripPrefix=0

 - BasicAuth

If you have multiple routes, the Basic Auth credentials will only be relayed to the routes that include

the BasicAuth filter.

If the secret cannot be found, the RouteConfig will not be created. A Kubernetes event will be

emitted in that namespace, like so:

$ kubectl get event

LAST SEEN TYPE REASON OBJECT

 MESSAGE

117s Warning RoutesDefinitionException springcloudgatewaymapping/test-gatew

ay-mapping Failed to retrieve routes from route config in mapping test-gateway-m

apping: Failed to find secret 'basic-auth-secret' in the 'user-namespace' namespace.

This will also be logged in the scg-operator pod, which is in the spring-cloud-gateway namespace

by default:

$ kubectl logs deployment.apps/scg-operator

2021-06-16 19:38:01.459 ERROR 1 --- [ingController-2] c.v.t.s.route.RoutesDefinitionRe

solver : Failed to find secret 'basic-auth-secret' in the 'user-namespace' namespace

.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 72

BlockAccess: Global Filter to block access

This is a Global Filter that provides the ability to block access by ip/domain or JWT claims that apply

to all existing routes and requests. As it works globally, it must be activated and composed using

configuration properties.

spring.cloud.gateway.k8s.block.access.enabled must be set to true to enable this filter

There are three configuration properties to setup the possible blocks:

By IP/domain:

spring.cloud.gateway.k8s.block.access.domains: it accepts a list of IPs or domains

separated by commas and will block any request coming from the configured values.

By JWT claims:

spring.cloud.gateway.k8s.block.access.claimValues: it accepts a list of claim

values separated by commas, it will search for the specified values in the JWT Claims

and will block any authenticated request with any of the configured claim values.

spring.cloud.gateway.k8s.block.access.claimNames: is a complementary property

to the previous one, it accepts a list of claim names separated by commas and it will

search for the specified values in the claimValues property in the specified claim

names in this property. It will block any authenticated request with any of the

configured claim values.

Example using only claimValues property:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 env:

 - name: spring.cloud.gateway.k8s.block.access.enabled

 value: "true"

 - name: spring.cloud.gateway.k8s.block.access.domains

 value: "192.168.0.1,test.com"

 - name: spring.cloud.gateway.k8s.block.access.claimValues

 value: "client.write,cc_testuser"

Will block access if the request comes from test.com or the IP 192.168.0.1, it also will block access

if any of the JWT claims contains client.write or cc_testuser values.

Example using claimValues and claimNames properties:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

Note: The BasicAuth filter will not work together with the TokenRelay filter as both

filters use the Authorization header.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 73

 env:

 - name: spring.cloud.gateway.k8s.block.access.enabled

 value: "true"

 - name: spring.cloud.gateway.k8s.block.access.domains

 value: "test.com"

 - name: spring.cloud.gateway.k8s.block.access.claimNames

 value: "sub"

 - name: spring.cloud.gateway.k8s.block.access.claimValues

 value: "write,cc_testuser"

Will block access if the request comes from test.com and it also will block access if the JWT claims

sub contains write or cc_testuser values.

CircuitBreaker: Reroute traffic on error response filter

The CircuitBreaker filter provides the ability to reroute a request when an API route is responding

with an error response code.

When defining a RouteConfiguration, you can add the CircuitBreaker filter by including it in the list

of filters for the route. For example, you can add a route with a fallback route to forward on error

response:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - CircuitBreaker=myCircuitBreaker,forward:/inCaseOfFailureUseThis

You can also add several options for fine tuning:

A list of status codes that will trigger the fallback behaviour, this can be expressed in number

and text format separated by a colon.

The failure rate threshold above which the circuit breaker will be opened (default 50%,

expressed as float value).

Duration of wait time before closing again (default 60s).

 - CircuitBreaker=myCircuitBreaker,forward:/inCaseOfFailureUseThis,401:NOT_FOUND:

500

 - CircuitBreaker=myCircuitBreaker,forward:/inCaseOfFailureUseThis,401:NOT_FOUND:

500,10,30s

Note: The JWT Claim Block Access global filter only supports the block on API calls

with the authentication header, it doesn't support blocking by cookie session.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 74

Circuit breaker status

By querying for the circuit breaker metrics, you can monitor the status of the circuit breaker:

actuator/metrics/resilience4j.circuitbreaker.state?tag=state:{circuit-breaker-state}&t

ag=name:{circuit-breaker-name}

where {circuit-breaker-state} is one of closed, disabled, half_open, forced_open,

open, metrics_only

where {circuit-breaker-name} is the name of your circuit breaker, e.g. myCircuitBreaker

The metrics endpoint will return a value of 1 in the $.measurements[].value JSON path if the circuit

breaker is in this state.

For more more information and other metrics, see Resilience4j CircuitBreaker Metrics.

ClaimHeader: Passing JWT claims header filter

The ClaimHeader filter allows passing a JWT claim value as an HTTP Header. It works both with and

without SSO enabled, with the consideration that when SSO is not enabled the JWT token is

expected in Authorization Header and won't be validated.

This filter is useful in scenarios where the target service does not handle JWT authorization, but still

needs some piece of information from the JWT token.

The ClaimHeader filter configuration requires 2 parameters:

Claim name: case sensitive name of the claim to pass.

Header name: name of the HTTP

The following configurations shows how to extract the claim Subject and pass in an HTTP Header

called X-Claim-Sub.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - ClaimHeader=sub,X-Claim-Sub

If you need to pass more than one claim, simply apply the filter repeatedly.

 filters:

 - ClaimHeader=sub,X-Claim-Sub

 - ClaimHeader=iss,X-Claim-Iss

 - ClaimHeader=iat,X-Claim-Iat

SCG for Kubernetes v1.1 Documentation

VMware, Inc 75

https://resilience4j.readme.io/docs/micrometer#circuitbreaker-metrics

ClientCertificateHeader: Validate client certificate filter

The ClientCertificateHeader filter validates the client SSL certificate used to make a request to an

app through the Gateway. You can also use this filter to validate the client certifcate's fingerprint.

When adding a route to a Gateway service instance, you can add the ClientCertificateHeader filter

by including it in the list of filters for the applicable route.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - ClientCertificateHeader=*.example.com

To validate the client SSL certificate's fingerprint, add the name of the hash used for the fingerprint,

and the fingerprint value, after the CN, using the following format:

[CN],[HASH]:[FINGERPRINT]

where:

[CN] is the Common Name

[HASH] is the hash used for the fingerprint, either sha-1 or sha-256

[FINGERPRINT] is the fingerprint value

The following example uses the ClientCertificateHeader filter to ensure that a client certificate

uses a CN of *.example.com and a SHA-1 fingerprint of aa:bb:00:99:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

Note: In case the header is already present, the value(s) from the claim will be added

to it. That is, previous values sent in the SCG request will be preserved.

Note: This filter relies on Kubernetes container's ability to recognize a client

certificate's Certificate Authority (CA).

SCG for Kubernetes v1.1 Documentation

VMware, Inc 76

 filters:

 - ClientCertificateHeader=*.example.com,sha-1:aa:bb:00:99

The fingerprint value is not case-sensitive, and the colon character : is not required to separate

hexadecimal digits in a fingerprint. The following example works too:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - ClientCertificateHeader=*.example.com,sha-1:AABB0099

FallbackHeaders: Allows adding CircuitBreaker exception details in
the headers before forwarding

The FallbackHeaders filter provides the ability to add CircuitBreaker execution exception details in

the headers of a request forwarded to a fallback route in an external application

When defining a RouteConfiguration, you can add the FallbackHeaders filter by including it in the list

of filters for the fallback route. For example, you can add the fallback route to add X-Exception:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - CircuitBreaker="myCircuitBreaker,forward:/inCaseOfFailureUseThis"

 - uri: http://localhost:9994

 predicates:

 - Path=/fallback

 filters:

 - FallbackHeaders

You can optionally configure just the executionExceptionTypeHeaderName by editing the filter

above like:

 filters:

 - FallbackHeaders= My-Execution-Exception-Type

Or change all executionExceptionTypeHeaderName, executionExceptionMessageHeaderName,

rootCauseExceptionTypeHeaderName using the following modification

SCG for Kubernetes v1.1 Documentation

VMware, Inc 77

 filters:

 - FallbackHeaders= My-Execution-Exception-Type, My-Execution-Exception-Message, M

y-Root-Cause-Exception-Type

Cors: Configuring per-route Cross-Origin Resource Sharing (CORS)
behavior

You can define CORS behavior on a route with the Cors filter, instead of configuring it on the

gateway.

In this example, the allowedOrigins is set to https://example.com, and the allowedMethods are

GET, POST, DELETE.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 routes:

 - uri: https://httpbin.org

 predicates:

 - Path=/get/**

 filters:

 - Cors=[allowedOrigins:https://example.com,allowedMethods:GET;POST;DELETE]

The following table describes the parameters you can configure on the filter:

Parameter Function Example

allowedOrigins Allowed origins to make cross-site requests. The special

value "*" allows all domains. These values will be

combined with the values from allowedOriginPatterns.

Cors=

[allowedOrigins:https://examp

le.com]

allowedOriginPatter

ns

Alternative to allowedOrigins that supports more flexible

origins patterns with "*" anywhere in the host name in

addition to port lists. These values will be combined with

the values from allowedOrigins.

Cors=

[allowedOriginPatterns:https:

//*.test.com:8080]

allowedMethods Allowed HTTP methods on cross-site requests. The

special value "*" allows all methods. If not set, "GET" and

"HEAD" are allowed by default.

Cors=

[allowedMethods:GET;PUT;POST]

allowedHeaders Allowed headers in cross-site requests. The special value

"*" allows actual requests to send any header.

Cors=[allowedHeaders:X-

Custom-Header]

maxAge How long, in seconds, the response from a pre-flight

request can be cached by clients.

Cors=[maxAge:300]

allowCredentials Whether user credentials are supported on cross-site

requests. Valid values: `true`, `false`.

Cors=[allowCredentials:true]

exposedHeaders HTTP response headers to expose for cross-site requests. Cors=[exposedHeaders:X-

Custom-Header]

JwtKey: Multiple client JWT validation filter

The JwtKey filter allows validating JSON Web Tokens (JWT) generated by different providers with

SCG for Kubernetes v1.1 Documentation

VMware, Inc 78

different signature keys. It is expected that every request has a key id that allows identifying which

key validates the token signature.

SpringCloudGateway integrates with Vault on Kubernetes and assumes a Vault Agent Injector has

been deployed to the cluster. This filter requires additional Vault integration parameters defined in

the custom resource to be enabled in SpringCloudGateway. The required parameters are

serviceAccount.name, extensions.secretsProviders, and jwtKey.enabled alongside

jwtKey.secretsProviderName where:

serviceAccount.name is the name of the ServiceAccount used by the gateway instances

extensions.secretsProviders is the element from which keys will be obtained

name is an arbitrary name to be referenced later on jwtKey configuration

vault.roleName is the Vault role with read access to the secrets (according to Vault

policies configured)

vault.path (optional) is the secret's full path in Vault. For example, for keys my-vault.path (optional) is the secret's full path in Vault. For example, for keys my-

secrets/scg/keys/123... and my-secrets/scg/keys/456..., path must be my-

secrets/scg/keys.

vault.authPath (optional) is the authentication path for Vault's Kubernetes auth

method. For example, /auth/cluster-1-auth, /auth/cluster-2-auth. If not set,

secrets are expected to be under jwt-keys-for-vmware-tanzu/{namespace}-

{gateway_name}

jwtKey.enabled is the flag indicating that the Vault integration is enabled

jwtKey.secretsProviderName is the vault secrets provider name defined previously

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: mygateway

spec:

 serviceAccount:

 name: scg-service-account

 extensions:

 secretsProviders:

 - name: vault-jwt-keys

 vault:

 roleName: scg-role

 filters:

 jwtKey:

 enabled: true

 secretsProviderName: vault-jwt-keys

Secrets within Vault must follow this structure:

secret full name is the path where the secrets are held. Unless path property is set in the

secretProvider it must be composed of jwt-keys-for-vmware-tanzu/{namespace}-

{gateway_name}/{kid}

kid is the key id to uniquely identify the public key (RSA) or the private key (HMAC). This kid

should match the value obtained in the key id location

SCG for Kubernetes v1.1 Documentation

VMware, Inc 79

https://www.vaultproject.io/docs/platform/k8s/injector
https://www.vaultproject.io/docs/concepts/policies

alg is the algorithm used to encrypt the public key (currently supporting RSA only) or the

private key (HS256, HS384, or HS512)

key is the actual public key, as a PEM format (supporting both CERTIFICATE and PUBLIC KEY

formats), or private key with at least 32 bytes in length

RSA:

vault kv put jwt-keys-for-vmware-tanzu/customnamespace-mygateway/client_0 \

 kid="client_0" \

 alg="RSA" \

 key="-----BEGIN CERTIFICATE-----\

 MIIBIyEpEBgkqhkiG9w ..."

HMAC:

vault kv put jwt-keys-for-vmware-tanzu/customnamespace-mygateway/client_0 \

 kid="client_0" \

 alg="HS256" \

 key="Key-Must-Be-at-least-32-bytes-in-length!"

When defining a RouteConfiguration, you can add the JwtKey filter by including it in the list of

filters for the route.

The configuration provided to the JwtKey filter indicates the key id location. This key id location

describes whether the key id is found in an HTTP header or in a JWT claim or header value, with the

following syntax:

- JwtKey={header:X-JWT-KEYID} the key id location is expected to be in an HTTP header

named X-JWT-KEYID

- JwtKey={claim:kid} the key id location is expected to be in a JWT claim or header

named kid

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - JwtKey={header:X-JWT-KEYID}

Once the gateway is up and running you can see the loaded keys in the info endpoint. Each key is

shown with its id and the time when it was last modified.

Note: If you need to add, remove or just update a key in Vault, you can use any of

Vault supported methods (HTTP API, CLI...) Every interaction will update the keys in

the gateway after no more than 5 minutes.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 80

https://www.vaultproject.io/docs/agent/template#non-renewable-secrets

"jwtkeys": [

 {

 "id": "client_0"

 "lastRefreshTime": "2021-09-07T07:57:01+0000",

 }

]

ApiKey: API key validation filter

The ApiKey filter allows validating API keys generated by API portal for VMware Tanzu 1.1.0. It is

expected that every request has a X-API-Key header specified that allows the filter to validate against

the hashed value stored in Hashicorp Vault.

SpringCloudGateway integrates with Vault on Kubernetes and assumes a Vault Agent Injector has

been deployed to the cluster. This filter requires additional Vault integration parameters defined in

the custom resource to be enabled in SpringCloudGateway. The required parameters are

serviceAccount.name, extensions.secretsProviders, and apiKey.enabled alongside

apiKey.secretsProviderName where:

serviceAccount.name is the name of the ServiceAccount used by the gateway instances

extensions.secretsProviders is the element from which keys will be obtained

name is an arbitrary name to be referenced later on apiKey configuration

vault.roleName is the Vault role with read access to the secrets (according to Vault

policies configured)

vault.path (optional) is the same vault path you configured when setting up API key

management in API portal. If not set, the value will be api-portal-for-vmware-tanzu

by default

apiKey.enabled is the flag indicating that the API key validation on all requests is enabled

apiKey.secretsProviderName is the vault secrets provider name defined previously

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: mygateway

spec:

 api:

 groupId: my-group-id

 serviceAccount:

 name: scg-service-account

 extensions:

 secretsProviders:

 - name: vault-api-keys

 vault:

 roleName: api-key-role

 path: my-api-portal

 filters:

 apiKey:

 enabled: true

 secretsProviderName: vault-api-keys

SCG for Kubernetes v1.1 Documentation

VMware, Inc 81

https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/1.1/api-portal/GUID-index.html
https://www.vaultproject.io/docs/platform/k8s/injector
https://www.vaultproject.io/docs/concepts/policies
https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/1.1/api-portal/GUID-configuring-k8s.html#configure-api-key-management

For the example configuration above, to ensure access to the vault path, you need to configure your

Hashicorp Vault instance:

1. Create a Vault access policy to API portal path for the Gateway, including your gateway

groupId (see the configuring instances section for more details)

$ vault policy write scg-policy - <<EOF

 path "my-api-portal/data/my-group-id" {

 capabilities = ["read"]

 }

 path "my-api-portal/metadata/my-group-id" {

 capabilities = ["list"]

 }

 EOF

The sample command above uses scg-policy as the name. You may use a different name

for the policy, just make sure you use the same policy name in next step.

2. Create a role that binds a namespaced service account to that policy, following Kubernetes

Auth Method:

$ vault write auth/kubernetes/role/api-key-role \

 bound_service_account_names=scg-service-account \

 bound_service_account_namespaces=scg-namespace \

 policies=scg-policy \

 ttl=24h

The bound_service_account_namespaces above needs to be the namespace where you

install your Spring Cloud Gateway instance, and the bound_service_account_names needs to

refer to a service account in the same namespace.

After applying the configuration, all routes defined in the SpringCloudGatewayRouteConfig will

require the X-API-Key header to be accessed.

For example using an HTTP client such as HTTP or cURL:

 $ http GET my-gateway.my-example-domain.com/github X-API-Key:{my-api-key}

 $ curl -X GET my-gateway.my-example-domain.com/github --header "X-API-key:{my-api-ke

y}"

If you want to double-check that API key management is enabled and that keys have been loaded,

you can visit actuator/info endpoint which should display:

apikey:

 e n a b l e d : t r u e

 l o a d e d : t r u e

RateLimit: Limiting user requests filter

The RateLimit filter limits the number of requests allowed per route during a time window.

When defining a RouteConfiguration, you can add the RateLimit filter by including it in the list of

filters for the route. The filter accepts 4 options:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 82

https://www.vaultproject.io/docs/concepts/policies
https://www.vaultproject.io/docs/auth/kubernetes

Number of requests accepted during the window.

Duration of the window: by default milliseconds, but you can use s, m or h suffix to specify it

in seconds, minutes or hours.

(Optional) User partition key: it's also possible to apply rate limiting per user, that is, different

users can have its own throughput allowed based on an identifier found in the request. Set

whether the key is in a JWT claim or HTTP header with '' or '' syntax.

(Optional) It is possible to rate limit by IP addresses. Note, this cannot be combined with the

rate limiting per user.

For example, you can add a route to limit all users to one request every 10 seconds:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - RateLimit=1,10s

Provided you are within the allowed limits, the response will succeed and report the number of

accepted request you can still do in the X-Remaining HTTP header. When the limit is exceeded,

response will fail with 429 Too Many Requests status, and inform the remaining time until a request

will be accepted in X-Retry-In HTTP header (in milliseconds)

If you want to expose a route for different sets of users, each one identified by its own client_id

HTTP header, use:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - RateLimit=1,10s,{header:client_id}

The rate limit 1,10s will be applied individually for each set of users. When the header (or claim) is

not present access will be rejects with a simple 429 Too Many Requests response (without additional

headers).

Limiting by IP Address

Rate limiting by IP address can accept a multiple IP addresses, seperated by a semi-colon.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 83

When rate limiting by IP address, the filter checks the X-Forwarded-For header, if present, for the IP.

As there can be multiple IPs added to this header, you can optionally set the max trusted index to

read from, by setting this as the first value.

The default value of 1 will read the last IP from the header, while a value of 2 will read the second

last IP, and so on. The index must be greater than zero.

Here is an example to rate limit by IP address:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: myapp-route-config

spec:

 service:

 name: myapp

 routes:

 - predicates:

 - Path=/api/**

 filters:

 - RateLimit=2,10s,{IPs:2;127.0.0.1;192.168.0.1}

In the example above, the max trusted index is set to 2. If the X-Forwarded-For header had a value

of 4.4.4.4, 8.8.8.8, 127.0.0.1, the gateway would return 403 forbidden because the second-last

IP, 8.8.8.8, is not in the allowed IPs. However, if the header was set to 4.4.4.4, 127.0.0.1,

8.8.8.8, the gateway will return successfully.

RemoveJsonAttributesResponseBody: Response body modification
filter

This filter provides a convenient method to apply a transformation to JSON body content from target

service through the gateway. It accepts a list of attribute names to search for and an optional last

parameter from the list can be a boolean to remove the attributes just at root level (default value if

not present at the end of the parameter configuration, false) or recursively (true).

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

Note: If you are using an ingress, ensure it is configured to pass the incoming X-

Forwarded-For header upstream to the gateway.

Note: Applying the recursive deletion mode on a large JSON data will affect on

service latency.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 84

 - Path=/api/**

 filters:

 - RemoveJsonAttributesResponseBody=origin,foo,true

In the example, the attributes origin and foo will be deleted from the JSON content body at any

level.

RewriteAllResponseHeaders Response headers modification filter

This filter provides a convenient method to apply a transformation to all headers coming from target

service through the gateway. It accepts a regular expression to search for in header values and text

to replace the matching expression with.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

 - Path=/api/**

 filters:

 - RewriteAllResponseHeaders=\d,0

In the example, any header value containing a number (\d matches any number from 0 to 9) will be

replaced by 0.

RewriteResponseBody: Response body modification filter

This filter provides a convenient method to apply a transformation to any body content from target

service through the gateway, it won't apply any transformation to response headers. It accepts a list

of regular expressions (separated by commas) to search for in value and text to replace the matching

expression with (separated by colon).

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

 - Path=/api/**

 filters:

 - RewriteResponseBody=foo:bar,/path-one/:/path-two/

In the example, in a body content of any type:

foo will be replaced by bar

SCG for Kubernetes v1.1 Documentation

VMware, Inc 85

/path-one/ will be replaced by /path-two/

RewriteJsonAttributesResponseBody: Response body JSON
modification filter

This filter provides a convenient method to apply a transformation to JSON content from target

service through the gateway using JSON Path notations. It accepts a list of elements (separated by

commas) where the first parameter is the selector of the JSON node and the second one is the value

to set into that JSON node, those two parameters must be separated by colon.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

 - Path=/api/**

 filters:

 - RewriteJsonAttributesResponseBody=slides[1].title:Welcome,date:11-11-2022

Given the following JSON in a body content:

{

 "date":"01-01-2022 11:00",

 "slides":[

 {

 "title":"Presentation",

 "type":"all"

 },

 {

 "title":"Overview",

 "type":"image"

 }

],

 "title":"Sample Title"

}

Applying the example:

date at root level will be replaced by 11-11-2022

title at second element of the slides array will be replaced by Welcome

{

 "date":"11-11-2022",

 "slides":[

 {

 "title":"Presentation",

 "type":"all"

 },

 {

 "title":"Welcome",

SCG for Kubernetes v1.1 Documentation

VMware, Inc 86

 "type":"image"

 }

],

 "title":"Sample Title"

}

Roles: Role-based access control filter

Similarly to scope-based access control, it's possible to use custom Claim properties to apply role-

base access control with the Roles filter. Furthermore, if you are not using SSO feature, you can still

use role-based control provided you apply JwtKey filter.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

 - Path=/api/**

 filters:

 - Roles=role_01,role_02

By default, SpringCloudGateway will check the role values under the roles claim, but you can

change it using spec.sso.roles-attribute-name property in the Gateway. SCG expects the roles

claim to be an array (roles = ["user-role-1", "user-role-2"]), but a single string is also accepted

when role only contains one value (roles = "user-role").

Additionally, spec.sso.roles-attribute-name also supports nested JSON values like custom-

data.user.roles.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: mygateway

spec:

 sso:

 roles-attribute-name: my-roles

Scopes: Scope-based access control filter

When SSO is enabled, you can add fine-tune access control based on OIDC scopes by adding the

Scopes filter.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 87

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

 - Path=/api/**

 filters:

 - Scopes=api.read,api.write,user

StoreIpAddress: Store IP address filter

This filter provides a convenient method to store the IP address of the request coming from target

service through the gateway, it can be useful for tracing purposes. It accepts a parameter name

under which to store the IP.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 filters:

 - StoreIpAddress=ipAddress

In the example, will store the IP address in the context of the application under ipAddress attribute.

Attributes can be pulled implementing a custom extension:

((exchange, chain) -> {

 String attribute = exchange.getAttributeOrDefault("ipAddress", "Attribute not foun

d");

 ...

 return chain.filter(exchange);

});

StoreHeader Store headers filter

This filter provides a convenient method to populate a header value into the context of the

application coming from target service through the gateway, it can be useful for tracing purposes. It

accepts a list of header names to search for and a last parameter with the attribute name under

which want to store the header value. It's important to highlight that the list of header names must be

in order of priority, once it finds one header, it stops looking for the rest and includes it in the context

of the application under the last parameter received.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 filters:

 - StoreHeader=x-tracing-header,custom-id,x-custom-id,tracingParam

SCG for Kubernetes v1.1 Documentation

VMware, Inc 88

In the example, will search for x-tracing-header, custom-id and x-custom-id and once it finds one,

it will store its value on the application context under tracingParam attribute. Attributes can be pulled

implementing a custom extension:

((exchange, chain) -> {

 List<String> attributes = exchange.getAttributeOrDefault("tracingParam", Collectio

ns.emptyList());

 ...

 return chain.filter(exchange);

});

SsoAutoAuthorize: SSO auto-authorized credentials filter

This filter must be applied only for development purposes, it accepts a list of roles or scopes

(separated by commas) to inject a fake SSO authorization with those authorities associated.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 filters:

 - SsoAutoAuthorize=SCOPE_test,ROLE_test

Additional configuration is required to reduce the change that this local development utility is not

deployed to production environments:

System property (JAVA_OPTS property)

com.vmware.tanzu.springcloudgateway.dev.mode.enabled must be set to true.

Configuration property

com.vmware.tanzu.springcloudgateway.sso.auto.authorize.enabled must be set to true.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 env:

 - name: com.vmware.tanzu.springcloudgateway.sso.auto.authorize.enabled

 value: "true"

 java-opts: "-Dcom.vmware.tanzu.springcloudgateway.dev.mode.enabled=true"

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

Note: If no SSO configuration is present, you will need to create a dummy

configuration activating an SSO profile and setting a valid issuer uri, for example the

Google Issuer URL (https://accounts.google.com).

SCG for Kubernetes v1.1 Documentation

VMware, Inc 89

 name: my-gateway

spec:

 env:

 - name: spring.profiles.include

 value: "sso"

 - name: spring.security.oauth2.client.provider.sso.issuer-uri

 value: "https://accounts.google.com"

 - name: com.vmware.tanzu.springcloudgateway.sso.auto.authorize.enabled

 value: "true"

 java-opts: "-Dcom.vmware.tanzu.springcloudgateway.dev.mode.enabled=true"

TokenRelay: Passing user identity filter

A Token Relay is where an OAuth2 or OIDC consumer acts as a Client and forwards the incoming

token to outgoing resource requests. In this case, the consumer can be any service accessible from

any of the configured routes with ssoEnabled: true.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 tokenRelay: true

 predicates:

 - Path=/api/**

When enabling TokenRelay, Spring Cloud Gateway for Kubernetes will pass the currently-

authenticated user's identity token to the app when the user accesses the app's route.

Commercial Route Predicates

Note: The TokenRelay filter will not work together with the BasicAuth filter as both

filters use the Authorization header.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 90

The open-source Spring Cloud Gateway project includes a number of built-in predicates for use in

Gateway routes. Spring Cloud Gateway provides a number of custom predicates in addition to those

included in the OSS project.

Predicates Included In Spring Cloud Gateway OSS

Predicates in Spring Cloud Gateway OSS can be used in Spring Cloud Gateway for Kubernetes.

Spring Cloud Gateway OSS includes a number of RoutePredicate factories used to create predicates

for routes. For a complete list of these factories, see the Spring Cloud Gateway OSS documentation.

Predicates Added In Spring Cloud Gateway for Kubernetes

Following sections offers information about the custom predicates added in VMware Spring Cloud

Gateway and how you can use them.

Match on JWT claim value: JWTClaim Predicate

When JWT token is in an HTTP header it is possible to match a route against a claim's value.

The predicate reads the token directly without any manipulation or validation at the beginning of the

request processing. This means you don't require to enable SSO on the gateway but the token

signature is not validated unless SSO is enabled or specific filter is applied (for example, JwtKey).

While it's not mandatory to send the header in Authorization header it must comply with Bearer

{token} format.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 service:

 name: myapp

 routes:

 - ssoEnabled: true

 predicates:

 - Path=/api/**

 - JWTClaim=Authorization,sub,.+@my.org$

In the example, a request must match '/api/**' as well as contain a token whose subject ends with

'@my.org' in order to be routed.

Custom Extensions

These topics describe how to develop and configure custom extensions for Spring Cloud Gateway

for Kubernetes.

Developing Extensions

This page will explain how to develop a custom Extension for Spring Cloud Gateway for Kubernetes.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 91

https://spring.io/projects/spring-cloud-gateway
https://cloud.spring.io/spring-cloud-gateway/reference/html/#gateway-request-predicates-factories

Prerequisites

A Gateway Extension is a JAVA JAR package with classes that enhance SCG for Kubernetes

features by adding custom Spring Cloud Gateway Filter and Predicate factories, as well as Global

Filters.

The requirements to build one are:

Java 11 to 17 compatible.

Spring Configuration classes must be under package com.vmware.scg.extensions.

Project setup

You can use any IDE and build system provided you have the appropriate dependencies and

packaging setup.

Gradle

1. Initialize the Gradle project for a Java library with a Groovy build script. Make sure you set the

source package to com.vmware.scg.extensions.

 $ gradle init

2. Update the build.gradle file for your extension library

 plugins {

 i d ' j a v a - l i b r a r y '

 }

 group = 'com.vmware.scg.extensions'

 version = '0.0.1-SNAPSHOT'

 sourceCompatibility = '11'

 repositories {

 m a v e n C e n t r a l ()

 }

 ext {

 set('springCloudVersion', "2021.0.3")

 set('springBootVersion', "2.7.5")

 }

 dependencies {

 implementation platform("org.springframework.boot:spring-boot-dependenc

ies:${springBootVersion}")

 implementation platform("org.springframework.cloud:spring-cloud-depende

ncies:${springCloudVersion}")

 implementation 'org.springframework.cloud:spring-cloud-starter-gateway'

 /* Not required for the sample app but will be useful for more complex

extensions

 implementation 'org.springframework.boot:spring-boot-starter-oauth2-cli

ent'

 implementation 'org.springframework.boot:spring-boot-starter-security'

 * /

SCG for Kubernetes v1.1 Documentation

VMware, Inc 92

https://cloud.spring.io/spring-cloud-gateway

 testImplementation 'org.springframework.boot:spring-boot-starter-test'

 // Not required for the sample app but will be useful for more complex

extensions

 // testImplementation 'org.springframework.security:spring-security-tes

t'

 testImplementation 'com.github.tomakehurst:wiremock:2.27.2'

 }

 test {

 u s e J U n i t P l a t f o r m ()

 t e s t L o g g i n g {

 e x c e p t i o n F o r m a t = ' f u l l '

 }

 }

3. Delete any .java files created by the generator.

Maven

1. Generate a Maven library archetype. Make sure you set the groupId to

com.vmware.scg.extensions.

 $ mvn archetype:generate -DgroupId=com.vmware.scg.extensions -DarchetypeArtifa

ctId=maven-archetype-quickstart

2. Update the pom.xml file for your extension library

 <?xml version="1.0" encoding="UTF-8"?>

 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.or

g/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://m

aven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 < p a r e n t >

 < g r o u p I d > o r g . s p r i n g f r a m e w o r k . b o o t < / g r o u p I d >

 < a r t i f a c t I d > s p r i n g - b o o t - s t a r t e r - p a r e n t < / a r t i f a c t I d >

 < v e r s i o n > 2 . 7 . 5 < / v e r s i o n >

 < r e l a t i v e P a t h / > < ! - - l o o k u p p a r e n t f r o m r e p o s i t o r y - - >

 < / p a r e n t >

 <groupId>com.vmware.scg.extensions</groupId>

 <artifactId>mycustomfilter</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>mycustomfilter</name>

 <description>SCG for K8s extension</description>

 < p r o p e r t i e s >

 < j a v a . v e r s i o n > 1 1 < / j a v a . v e r s i o n >

 < s p r i n g - c l o u d . v e r s i o n > 2 0 2 1 . 0 . 3 < / s p r i n g - c l o u d . v e r s i o n >

 < / p r o p e r t i e s >

Note: While other versions may work for development, only Spring Boot version

2.5.x and Spring Cloud 2020.0.4 are fully supported for runtime.

It's safe to add other dependencies, provided they don't cause classpath issues with

the current ones. However, it's not recommended to overload the extensions given

the possible impact in resources and performance.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 93

 < d e p e n d e n c i e s >

 < d e p e n d e n c y >

 < g r o u p I d > o r g . s p r i n g f r a m e w o r k . c l o u d < / g r o u p I d >

 < a r t i f a c t I d > s p r i n g - c l o u d - s t a r t e r - g a t e w a y < / a r t i f a c t I d >

 < / d e p e n d e n c y >

 <!-- Not required for the sample app but will be useful for mor

e complex extensions

 < d e p e n d e n c y >

 < g r o u p I d > o r g . s p r i n g f r a m e w o r k . b o o t < / g r o u p I d >

 < a r t i f a c t I d > s p r i n g - b o o t - s t a r t e r - o a u t h 2 - c l i e n t < / a r t i f a c t

Id>

 < / d e p e n d e n c y >

 < d e p e n d e n c y >

 < g r o u p I d > o r g . s p r i n g f r a m e w o r k . b o o t < / g r o u p I d >

 < a r t i f a c t I d > s p r i n g - b o o t - s t a r t e r - s e c u r i t y < / a r t i f a c t I d >

 < / d e p e n d e n c y >

 - - >

 < d e p e n d e n c y >

 < g r o u p I d > o r g . s p r i n g f r a m e w o r k . b o o t < / g r o u p I d >

 < a r t i f a c t I d > s p r i n g - b o o t - s t a r t e r - t e s t < / a r t i f a c t I d >

 < s c o p e > t e s t < / s c o p e >

 < / d e p e n d e n c y >

 <!-- Not required for the sample app but will be useful for mor

e complex extensions

 < d e p e n d e n c y >

 < g r o u p I d > o r g . s p r i n g f r a m e w o r k . s e c u r i t y < / g r o u p I d >

 < a r t i f a c t I d > s p r i n g - s e c u r i t y - t e s t < / a r t i f a c t I d >

 < s c o p e > t e s t < / s c o p e >

 < / d e p e n d e n c y >

 - - >

 < d e p e n d e n c y >

 < g r o u p I d > c o m . g i t h u b . t o m a k e h u r s t < / g r o u p I d >

 < a r t i f a c t I d > w i r e m o c k < / a r t i f a c t I d >

 < v e r s i o n > 2 . 2 7 . 2 < / v e r s i o n >

 < s c o p e > t e s t < / s c o p e >

 < / d e p e n d e n c y >

 < / d e p e n d e n c i e s >

 < d e p e n d e n c y M a n a g e m e n t >

 < d e p e n d e n c i e s >

 < d e p e n d e n c y >

 < g r o u p I d > o r g . s p r i n g f r a m e w o r k . c l o u d < / g r o u p I d >

 < a r t i f a c t I d > s p r i n g - c l o u d - d e p e n d e n c i e s < / a r t i f a c t

Id>

 < v e r s i o n > $ { s p r i n g - c l o u d . v e r s i o n } < / v e r s i o n >

 < t y p e > p o m < / t y p e >

 < s c o p e > i m p o r t < / s c o p e >

 < / d e p e n d e n c y >

 < / d e p e n d e n c i e s >

 < / d e p e n d e n c y M a n a g e m e n t >

 </project>

3. Delete any .java files created by the generator.

Note: While other versions may work for development, only Spring Boot version

2.7.5 and Spring Cloud 2021.0.3 are fully supported for runtime.

It's safe to add other dependencies, provided they don't cause classpath issues with

the current ones. However, it's not recommended to overload the extensions given

SCG for Kubernetes v1.1 Documentation

VMware, Inc 94

Custom Extension Example

The following is a simple example of a custom extensions that adds an HTTP header to the request

sent to the target service. This will cover the basic development concepts as well as testing to get

you started.

For more in-depth information (for example, implementing custom predicates or custom

configurations), refer to Spring Cloud Gateway Developer Guide.

Custom Filter example code

You can start creating a custom filter like this.

package com.vmware.scg.extensions.filter;

import java.util.List;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.cloud.gateway.filter.GatewayFilter;

import org.springframework.cloud.gateway.filter.factory.AbstractGatewayFilterFactory;

import org.springframework.stereotype.Component;

import org.springframework.web.server.ServerWebExchange;

@Component

public class AddMyCustomHeaderGatewayFilterFactory

 e x t e n d s A b s t r a c t G a t e w a y F i l t e r F a c t o r y < O b j e c t > {

 private static final Logger LOGGER = LoggerFactory.getLogger(AddMyCustomHeaderGate

wayFilterFactory.class);

 private static final String MY_HEADER_KEY = "X-My-Header";

 @ O v e r r i d e

 public GatewayFilter apply(Object config) {

 r e t u r n (e x c h a n g e , c h a i n) - >

 {

 S e r v e r W e b E x c h a n g e u p d a t e d E x c h a n g e

 = e x c h a n g e . m u t a t e ()

 . r e q u e s t (r e q u e s t - > {

 r e q u e s t . h e a d e r s (h e a d

ers -> {

 h e a d e r s . p u t (

MY_HEADER_KEY, List.of("my-header-value"));

 L O G G E R . i n f o (

"Processed request, added" + MY_HEADER_KEY + " header");

 }) ;

 })

 . b u i l d () ;

 r e t u r n c h a i n . f i l t e r (u p d a t e d E x c h a n g e) ;

 } ;

 }

}

the possible impact in resources and performance.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 95

https://docs.spring.io/spring-cloud-gateway/docs/current/reference/html/#developer-guide

In the code, you can see that:

We named the filter AddMyCustomHeaderGatewayFilterFactory this will make it available as

AddMyCustomHeader under the route configurations. Ensure your extension name does not

collide with any of the existing predicates or filters.

The filter will be automatically detected using @Component annotation, but for complex

configurations you can use normal Spring @Configuration classes.

Since we do not require any special configuration, extending AbstractGatewayFilterFactory

with Object is enough.

Inside the apply method we only need to add our header. In this simple example we are

adding it always, but you could be more creative. For example, changing the response status

with exchange.getResponse().getStatusCode() and adapting the exchange response.

We add a normal org.slf4j.Logger to provide traces, these have no special requirements

and will appear in the pod logs.

Testing

To test the extension we can use Spring Boot conventional tools without needing much heavy lifting

or Kubernetes.

First, add the test dependency com.github.tomakehurst:wiremock:2.27.2 or higher to you project.

We will use WireMockServer to simulate a service that responds to routed traffic, and also to assert

what the service receives.

Next, create a test class like this one:

package com.vmware.scg.extensions;

import com.github.tomakehurst.wiremock.WireMockServer;

import com.github.tomakehurst.wiremock.matching.EqualToPattern;

import org.junit.jupiter.api.AfterAll;

import org.junit.jupiter.api.BeforeAll;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.TestInstance;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.boot.test.autoconfigure.web.reactive.AutoConfigureWebTestCl

ient;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.test.web.reactive.server.WebTestClient;

import static com.github.tomakehurst.wiremock.client.WireMock.get;

import static com.github.tomakehurst.wiremock.client.WireMock.getRequestedFor;

import static com.github.tomakehurst.wiremock.client.WireMock.ok;

import static com.github.tomakehurst.wiremock.client.WireMock.urlPathEqualTo;

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)

@AutoConfigureWebTestClient

@TestInstance(TestInstance.Lifecycle.PER_CLASS)

class AddMyCustomHeaderTest {

SCG for Kubernetes v1.1 Documentation

VMware, Inc 96

 final WireMockServer wireMock = new WireMockServer(9090);

 @Autowired

 W e b T e s t C l i e n t w e b T e s t C l i e n t ;

 @ B e f o r e A l l

 v o i d s e t U p () {

 w i r e M o c k . s t u b F o r (g e t (" / a d d - h e a d e r ") . w i l l R e t u r n (o k ())) ;

 w i r e M o c k . s t a r t () ;

 }

 @ A f t e r A l l

 v o i d t e a r D o w n () {

 w i r e M o c k . s t o p () ;

 }

 @ T e s t

 void should_apply_extension_filter() {

 webTestClient

 . g e t ()

 . u r i (" / a d d - h e a d e r ")

 . e x c h a n g e ()

 . e x p e c t S t a t u s ()

 . i s O k () ;

 wireMock.verify(getRequestedFor(urlPathEqualTo("/add-header"))

 . w i t h H e a d e r (" X - M y - H e a d e r " , n e w E q u a l T o P a t t e r n (" m y - h e a d

er-value")));

 }

 @ S p r i n g B o o t A p p l i c a t i o n

 public static class GatewayApplication {

 p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g s) {

 S p r i n g A p p l i c a t i o n . r u n (G a t e w a y A p p l i c a t i o n . c l a s s , a r g s) ;

 }

 }

}

Finally, add this configuration to your application.yaml under test resources.

spring:

 cloud:

 gateway:

 routes:

 - uri: http://localhost:9090

 predicates:

 - Path=/add-header/**

 filters:

 - StripPrefix=0

 - AddMyCustomHeader

In the code above, you can see that:

Note: External configuration files under 'src/main/resources' are not supported yet

and may cause issues.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 97

Since we are building a library, we need to create a fake Spring Boot app

GatewayApplication to initialize a basic context.

The test configuration application.yaml creates a basic routing configuration to apply our

extension AddMyCustomHeader.

We are initializing WebTestClient with @AutoConfigureWebTestClient for both REST calls and

assertions.

After building the plugin jar file with either ./gradle clean build or mvn clean package, head to

Configuring Extensions to fully deploy the extension in a SCG for K8s instance.

Configuring Extensions

This page will explain how to configure and deploy an extension in Spring Cloud Gateway for

Kubernetes. If you have doubts about the development process, refer to Extensions Development.

Extensions can be added with two simple steps to any Gateway Instance, including those already

running. In short, you just need to create a Kubernetes ConfigMap and enable it in the desired

Gateway Instance.

Prerequisites

The requirements for these steps are:

SCG for K8s packaged extension (in JAR)

Docker command line tool if packaging extension as a OCI image

Kubernetes cluster

Extension Deployment

Extensions can be stored in OCI Images, Kubernetes ConfigMaps or Volumes.

OCI Images and ConfigMaps provide a simple and easy to use approach for deploying custom

extensions. Using a ConfigMap has an advantage that SCG for K8s can detect when they change and

update automatically. Using an OCI image can be easier to automate, as it only requires building an

image from a Dockerfile and pushing it to a registry. ConfigMaps have a 1MB size limit restriction, for

bigger extensions you can use OCI images or Persistent Volumes. Volumes avoid size limitations but

have several restrictions and depend heavily on K8s and storage implementations provided in your

environment.

Extensions from ConfigMaps

Provided you have the JAR package of less than 1MB, simply create a ConfigMap as follows:

 $ kubectl create configmap extension-name --from-file=extension.jar -n gateway_names

pace

The config map name will identify the extension later.

You can confirm that the ConfigMap was successfully created with the contents of the jar:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 98

 $ kubectl get configmap extension-name -o yaml

You will see something that looks like this:

apiVersion: v1

binaryData:

 mycustomfilter-0.0.1-SNAPSHOT.jar: UEsDBAoAAAgIABV491IAAAAAAgAAAAAAAAAJAAAATUVUQS1JT

kYvAwBQSwMECgAACAgAFXj3UrJ/Au4bAAAAGQAAABQAAABNRVRBLUlORi9NQU5JRkVTVC5NRvNNzMtMSy0u0Q1

LLSrOzM+zUjDUM+Dl4uUCAFBLAwQKAAAICAAVePdSAAAAAAIAAAAAAAAABAAAAGNvbS8DAFBLAwQKAAAICAAVe

PdSAAAAAAIAAAAAAAAACwAAAGNvbS92bXdhcmUvAwBQSwMECgAACAgAFXj3UgAAAAACAAAAAAAAAA8AAABjb20

vdm13YXJlL3NjZy8DAFBLAwQKAAAICAAVePdSAAAAAAIAAAAAAAAAGgAAAGNvbS92bXdhcmUvc2NnL2V4dGVuc

2lvbnMvAwBQSwMECgAACAgAFXj3UgAAAAACAAAAAAAAACkAAABjb20vdm13YXJlL3NjZy9leHRlbnNpb25zL21

5Y3VzdG9tZmlsdGVyLwMAUEsDBAoAAAgIABV491IVhwu7iwUAAPgOAABUAAAAY29tL3Ztd2FyZS9zY2cvZXh0Z

W5zaW9ucy9teWN1c3RvbWZpbHRlci9BZGRNeUN1c3RvbUhlYWRlckdhdGV3YXlGaWx0ZXJGYWN0b3J5LmNsYXN

zrVdrWxNHFH4nCAvJAjGtUK0i2mgBxfXWagm1hRjBmngBC9Kb3exOkoXNbtwLmN7v9/pbavs8rfChP6BPf1Ofn

tldIVzkweCH3ZmdOed9zzlzZs7sP/+t/A3gAh7E8RxeT1F/PIEsLqfAMJnAVbwlXtcSyKOQQkyMncRNCbfaMdW

O6QRu4+04ZjDbgTjutGMugXfwbhzv4X0JHzC05W9MTOSmGFJ52ykrrlk6P6/k7XKZOxmGzsLc3cnc2OXc1N1ru

TkhNK8uqoqpWmVl2nMMqyyEsrbleqrlzaimzwly1LAM7xJDy8DgDMOerK3TaHfesPh1v1rkzm21aPKAUVPNGdU

xxHc0uMerGC7DzbxmV5XF6pLqcMXVygq/73HLNYhJqdY13/XsaskwPe4oY7peqGeDkUmu6tyZUD2+pNavBNNXV

M2znTqZ2arWamadIT/Q4MSN4jzXvMxg6HxNeFRy1Cpfsp0FRTNtX1fKIZwS0a1DJ9g2zbZKRnl9bCJYhi5TrRZ

1NR1wp88yPBjYkmqJFxWXO4tEMB00s7yYu69VCIxnmjQuW1ENi1xzeBADRbMpljW/aBpuhWQLtmWThe08omE4+

/SmUVg1QcPw+q6spPzwazqN67lVc9bH7oyEDxmkcd8waY0Z5KuWRdqm6rqcEmZi67hWPK/22PogDsYij9yYpKk

pfs/nrpeOUDMiXyUnHGS4/CwgN/pxmmFwG1sFRJjGbmhNJfxgOL4zJVrRUc2MdmDHtFG2VM93KJzazheoFG4aZ

azoeg71t9pRo5vT/RKRx6dt39E4iRLl0I725ikBxLB/yrc8o8pnDNego2DMsmxP9cSOJ6AtbXcJg9tevcaVrF2

t2Ra3vIyM/TjAkBy3bU9YXytwr2Lrbncb1CSOUVOUoUGXwGWUUE6iQmNGEoqMeSxIMGWcRlWGBVtCTcjeIwEni

XMyzoOMuf5sjyaGxJ3hQn04lKCNUK0Ph4s+vCgOVAmeDB+LEpZk3EddxvPYRyG56dgap+TX+6OEPdmv6jrXG8D

6QxwJH8n4GJ9I+FTGZ/icofBMU0HCFwzju98rcXyJr+JUp76mYzXkZxgZ2MXhfPppDzQirvqUdtQZfQLxduoNu

37fVmVmRnj3DZGomsZrdMQcJpJAzPcMUyn5liYyXhEV1a8GOBebtYFhbmBb7F2511oUXYbzTUSJ1DO7KBYMt5o

ootvXQbEu39IZ2UzEnr4grHHkDVFoYnaJIb3lvWS9KCmnd1IF6O5V8z2xOpsvbBsht+BIbrwK0r3MsEr2hqyOA

EWZ6t2osXq4dZS59xjkWKN2ULofh3T9tXOk+TBL+E7G9/hJRhrHZJwQx/pZnGM4usZsWIv2AlfyQVmm8qCWVk/

i6tqXhF/E9di2F/waw7+NpkcAYWWZVC3d5G46lMw8KeCbFW9T4WpuMqTcXndw82xWNc1pw+MZCb/SYuzIH4a+7

eVwBOLXBPTvcUBUJuodQA966f/khWA0gTbqU1Gm94s0olDLqG0d+gvsYSBykN5twWAXDtFbDgXQh8PUMvQTSag

8Qm1MSK+I5rcN2r2Bdk8oEWmL3lG8BJaMi5SIcEySaaG2b2gZLQwr2AMsozVGrzYqjydOLkOKNeD3kDUgJxi5k

SCEJFnUQ7iCrz9EwnG8HPD1YQCDJNmDdgzRWIyYTwRuC+YMIQpbO4dWaJ74OmKYXQtDPDD+IIWgvyEUnXQlOQM

QEOVyBHSVaAOnh1KJlPwInX+ia/Z3dKeSy9gbwxpkV2DfIYLqI5sON8D20oXmFWrb8erq8hwJZoCOVPwRUn+g+

2GwBGtB3kuhuBCAX8RrQTtCToWzo9SeCjKghX5D72K4rYPszAbtD/gZP1IIL0Uhe4OeNzFGj+jlcAUTUe86bvw

PUEsDBAoAAAgIABV491KTBtcyAwAAAAEAAAAWAAAAYXBwbGljYXRpb24ucHJvcGVydGllc+MCAFBLAQIUAwoAA

AgIABV491IAAAAAAgAAAAAAAAAJAAAAAAAAAAAAEADtQQAAAABNRVRBLUlORi9QSwECFAMKAAAICAAVePdSsn8

C7hsAAAAZAAAAFAAAAAAAAAAAAAAApIEpAAAATUVUQS1JTkYvTUFOSUZFU1QuTUZQSwECFAMKAAAICAAVePdSA

AAAAAIAAAAAAAAABAAAAAAAAAAAABAA7UF2AAAAY29tL1BLAQIUAwoAAAgIABV491IAAAAAAgAAAAAAAAALAAA

AAAAAAAAAEADtQZoAAABjb20vdm13YXJlL1BLAQIUAwoAAAgIABV491IAAAAAAgAAAAAAAAAPAAAAAAAAAAAAE

ADtQcUAAABjb20vdm13YXJlL3NjZy9QSwECFAMKAAAICAAVePdSAAAAAAIAAAAAAAAAGgAAAAAAAAAAABAA7UH

0AAAAY29tL3Ztd2FyZS9zY2cvZXh0ZW5zaW9ucy9QSwECFAMKAAAICAAVePdSAAAAAAIAAAAAAAAAKQAAAAAAA

AAAABAA7UEuAQAAY29tL3Ztd2FyZS9zY2cvZXh0ZW5zaW9ucy9teWN1c3RvbWZpbHRlci9QSwECFAMKAAAICAA

VePdSFYcLu4sFAAD4DgAAVAAAAAAAAAAAAAAApIF3AQAAY29tL3Ztd2FyZS9zY2cvZXh0ZW5zaW9ucy9teWN1c

3RvbWZpbHRlci9BZGRNeUN1c3RvbUhlYWRlckdhdGV3YXlGaWx0ZXJGYWN0b3J5LmNsYXNzUEsBAhQDCgAACAg

AFXj3UpMG1zIDAAAAAQAAABYAAAAAAAAAAAAAAKSBdAcAAGFwcGxpY2F0aW9uLnByb3BlcnRpZXNQSwUGAAAAA

AkACQCGAgAAqwcAAAAA

kind: ConfigMap

metadata:

 creationTimestamp: "2021-07-23T21:02:47Z"

 name: my-custom-header

 namespace: testing

 resourceVersion: "10535421"

 selfLink: /api/v1/namespaces/testing/configmaps/my-custom-header

 uid: 405e72ce-b025-4552-bee3-5d795c9013ce

Note: It's possible to create a config map with multiple jars, for example if you need a

SCG for Kubernetes v1.1 Documentation

VMware, Inc 99

Extensions from OCI Image

Create a Dockerfile in the root of your project that contains the custom extension

FROM gradle:7-jdk11-alpine AS build

COPY --chown=gradle:gradle . /home/gradle/src

WORKDIR /home/gradle/src

RUN gradle build --no-daemon -PspringCloudVersion=2022.0.1

FROM alpine

RUN mkdir -p /app/extensions

COPY --from=build /home/gradle/src/build/libs/*.jar /app/extensions/gateway-extension.

jar

Now build the image using the docker command. You should specify the image registry you will

push the extension to, this should be the same registry as the gateway and operator is using (you

check this by running the command k get deployment -o jsonpath="{..image}" -n spring-

cloud-gateway).

docker build . -t myregistry.example.com/scg-test-extensions:dev

Then push the image to the registry

docker push myregistry.example.com/scg-test-extensions:dev

Now you can use the custom extension by creating a gateway like this:

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

name: test-gateway

spec:

extensions:

 custom:

 - myregistry.example.com/scg-test-extensions:dev

This will create a gateway that uses a Kubernetes Init Container to load the custom extensions.

Extensions from Persistent Volumes

For bigger than 1MB deployments, you can load extensions from Kubernetes Volumes. This sections

shows how to setup a Persistent Volume using exclusively Kubernetes tools, this requires an extra

pod (upload-extensions-pod) to access the storage backend which is not ideal. Please refer to your

storage implementations in your Cloud/K8s provider, ideal solutions would provide direct access to

the storage backend in order to update the contents of the volumes without additional Kubernetes

components.

third-party library. Ensure that these do not cause classpath conflicts with project

template. In case of doubt check the "Runtime description for Extensions

developers" for full list of included libraries.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 100

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Persistent Volumes comes with some restrictions:

The gateway expects a persistent volume claim.

The gateway expects the extensions to be located in /{mount_name}/extensions.

The contents of the directory should all be readable from the pod. For example, some

storage providers may add a /{mount_name}/lost+found/ directory that is not readable. This

potential issue is mitigated by expecting the extensions in the /{mount_name}/extensions/

subdirectory.

If the PersistentVolume has an access mode of ReadWriteOnce, the gateway pods must be

scheduled on the same node to concurrently access the volume. For High-Availability

scenarios (gateways across multiple cluster nodes), a StorageClass with support for

ReadOnlyMany is required. Consult specific storage implementations for your Cloud/K8s

provider.

If the PersistentVolume has an access mode of ReadWriteMany or ReadOnlyMany, the gateway

pods can be scheduled under different nodes. However, a cloud provider may decide to

have the PersistentVolume only be accessible within one Availability Zone (AZ), so the

gateway pods need to be scheduled to the same AZ. Consult specific storage

implementations for your Cloud/K8s provider.

To test this feature, create a PersistentVolumeClaim, along with a pod for uploading files. For details

on how to create a matching compatible Volume, we suggest starting checking Kubernetes docs on

Persistent Volumes.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: extensions-pvc

spec:

 storageClassName: standard

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

apiVersion: v1

kind: Pod

metadata:

 name: upload-extensions-pod

spec:

 containers:

 - name: task-pv-container

 image: nginx

 volumeMounts:

 - mountPath: /mount

 name: extensions

 initContainers:

 - name: init-extensions-dir

 image: nginx

 command: ['sh', '-c', 'mkdir -p /mount/extensions']

 volumeMounts:

 - mountPath: /mount

SCG for Kubernetes v1.1 Documentation

VMware, Inc 101

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

 name: extensions

 volumes:

 - name: extensions

 persistentVolumeClaim:

 claimName: extensions-pvc

Next, copy your extension to /mount/extensions

 $ kubectl cp add-my-custom-header.jar upload-extensions-pod:/mount/extensions/add-my

-custom-header.jar -c task-pv-container

Finally, specify the PersistentVolumeClaim in the custom extensions array of the gateway and the

custom route filter in the route config, as shown in the next section.

Gateway Configuration

With the extension deployed in the cluster, update or create a new Gateway with the extensions

option.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 extensions:

 custom:

 - extension-name

Tip: extensions is an array element, allowing to enable multiple extensions at the same time.

This will automatically restart the Gateway with the new extension(s) available.

Once it is running, you can update the extension configmap and automatically restart the gateway

with:

$ kubectl create configmap extension-name --from-file=extension.jar -o yaml --dry-run=

client | kubectl apply -f -

If you are using extensions from persistence, add the name of the PersistentVolumeClaim in the

spec.extensions.custom array as well.

Now that the extension is available, it can be used in the respective Route Configuration.

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayRouteConfig

metadata:

 name: my-gateway-routes

spec:

 routes:

 - uri: https://httpbin.org

 predicates:

 - Path=/add-header/**

 filters:

 - AddMyCustomHeader

If there's no mapping already, add it to complete the configuration.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 102

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGatewayMapping

metadata:

 name: test-gateway-mapping

spec:

 gatewayRef:

 name: my-gateway

 routeConfigRef:

 name: my-gateway-routes

Validation and Troubleshooting

With the deployment completed, enable traffic to the gateway kubectl port-forward service/my-

gateway 8080:80 and open http://localhost:8080/add-header/get in your web browser.

You will be greeted with a response similar to the one below, for simplicity some data has been

removed. There you should see the custom X-My-Header header.

{

 "args": {},

 "headers": {

 "Forwarded": "proto=http;host=\"localhost:8080\";for=\"127.0.0.1:58598\"",

 "Host": "httpbin.org",

 "X-Forwarded-Host": "localhost:8080",

 "X-Forwarded-Prefix": "/add-header",

 "X-My-Header": "my-header-value"

 },

 "url": "https://localhost:8080/get"

}

If you cannot see the extension working:

Obtain the output of a gateway instance (kubectl logs statefulset.apps/my-gateway) to

validate if your log traces appear.

See the Gateway events with kubectl describe scg my-gateway for diagnostics messages. If

the extension could not be loaded you will see a message like ConfigMap

'{extension_name}' not found. Skipping configuration.

Check the ConfigMap or PersistentVolumeClaim is available in the same namespace as the

gateway.

Ensure the ConfigMap or PersistentVolumeClaim name matches the extension configuration

in the Gateway.

High-Availability deployments

Previous kubectl cp approach can cause issues with providers that don't support ReadWriteMany.

For example Google Kubernetes Engine only supports ReadWriteOnce and ReadOnlyMany, so upload

pod and multiple gateway instances cannot run simultaneously in different nodes.

In those scenarios, to provide 100% availability you can use the automatic update features of SCG for

K8s by switching to a different PersistentVolumeClaim. Provided you have:

SCG for Kubernetes v1.1 Documentation

VMware, Inc 103

1 Volume and VolumeClaim with old extension version

1 running Spring Cloud Gateway for Kubernetes with 2 or more instances using old extension

Jar file(s) of the new extensions version

You should:

1. Create new Volume and VolumeClaim

2. Upload new extension version as described in previous step

3. Update Gateway extensions.custom value with new VolumeClaim name

apiVersion: "tanzu.vmware.com/v1"

kind: SpringCloudGateway

metadata:

 name: my-gateway

spec:

 extensions:

 custom:

 - extension-name-new

This will initiate a controlled update of the Gateway instances one by one ensuring no downtime.

OpenAPI Route Conversion

Spring Cloud Gateway includes an OpenAPI Route Conversion tool to help generate a RouteConfig

for a given OpenAPI spec. This feature is bundled with the Spring Cloud Gateway operator and is

exposed as an API. It can accept both OpenAPI 2.0 and OpenAPI 3.0 specs.

Conversion endpoint

An OpenAPI Conversion service can be found in an SCG operator instance. If you have the service

exposed in your kubernetes cluster via port-forward or Ingress, you only need to send a POST

request with path /api/convert/openapi to the reachable SCG-operator instance.

The next attributes are supported by the OpenAPI Conversion service

Field Description

service Kubernetes Service to route traffic to spec.routes spec which doesn't contain any service

configuration.

.namespace: (Optional) If not set will use the RouteConfig's namespace.

.name: Name of a service to route to. Takes lower precedence than uri. Either name or uri are

required unless all routes define their own uri.

.port: (Optional) If not set will use one of the available service ports.

.filters: (Optional) Predicates to be prepended to all routes.

openapi .location: URL of the OpenApi Spec to use.

routes .filters: Route filters to allow the modification of the incoming HTTP request or outgoing

HTTP response in some manner.

.predicates: Predicates to match on different attributes of the HTTP request.

SCG for Kubernetes v1.1 Documentation

VMware, Inc 104

For more details about the JSON schema, please, check the section JSON schema to validate

requests.

Conversion request

You can generate a RouteConfig for your service calling the operator endpoint. For example, given

you have the operator exposed at http://operator.scg and your Kubernetes service my-service.

For your OpenAPI specification "https://petstore3.swagger.io/api/v3/openapi.json", you only need

to make a call to the endpoint at api/convert/openapi:

curl --request POST 'http://operator.scg/api/convert/openapi' \

--header 'Content-Type: application/json' \

--data-raw '{

 "service": {

 "name": "my-service"

 },

 "openapi": {

 "location": "https://petstore3.swagger.io/api/v3/openapi.json"

 }

}'

This endpoint will return a JSON response, e.g:

{

 "apiVersion": "tanzu.vmware.com/v1",

 "kind": "SpringCloudGatewayRouteConfig",

 "metadata": {

 "name": "my-service"

 },

 "spec": {

 "openapi": {

 "components": {

 "schemas": {...},

 "requestBodies": {...},

 "securitySchemes": {...}

 },

 "ref": "https://petstore3.swagger.io/api/v3/openapi.json"

 },

 "routes": [

 {

 "description": "Update an existing pet by Id",

 "model": {

 "requestBody": {...},

 "responses": {...}

 },

 "predicates": [

 "Path=/pet",

 "Method=PUT"

],

 "tags": [

 "pet"

],

 "title": "Update an existing pet"

 },

 ...

],

SCG for Kubernetes v1.1 Documentation

VMware, Inc 105

 "service": {

 "name": "my-service"

 }

 }

}

Referencing an OpenAPI endpoint in your cluster

For example, the request body below will pull the OpenAPI spec exposed via the openapi service in

the development namespace, effectively making a call the uri

openapi.development.svc.cluster.local:8080/openapi:

{

 "service": {

 "name": "openapi",

 "namespace": "development",

 "port": "8080"

 },

 "openapi": {

 "location": "/openapi"

 }

}

Providing Service level filters

To provide service level filters, you can specify a filters array inside service of the request body:

{

 "openapi": {

 "location": "https://petstore3.swagger.io/api/v3/openapi.json"

 },

 "service": {

 "name": "my-service",

 "filters": ["StripPrefix=1"]

 }

}

Example result JSON:

{

 "apiVersion": "tanzu.vmware.com/v1",

 "kind": "SpringCloudGatewayRouteConfig",

 "metadata": {

 "name": "my-service"

 },

 "spec": {

 "openapi": {...},

 "routes": [...],

 "service": {

 "filters": [

 "StripPrefix=1"

],

 "name": "my-service"

 }

 }

SCG for Kubernetes v1.1 Documentation

VMware, Inc 106

}

Providing Route level filters

Route level filters can be applied with a wildcard, and be overridden with an exact match. In addition,

you can specify multiple methods to match with.

For example, given a request body of:

{

 "service": {

 "name": "test-service"

 },

 "openapi": {

 "location": "https://petstore3.swagger.io/api/v3/openapi.json"

 },

 "routes": [

 {

 "predicates": ["Method=GET", "Path=/pet/findByStatus"],

 "filters": ["RateLimit=2,10s", "StripPrefix=1"]

 },

 {

 "predicates": ["Method=GET", "Path=/pet**"],

 "filters": ["RateLimit=3,5s", "StripPrefix=1"]

 },

 {

 "predicates": ["Method=PUT,DELETE", "Path=/user**"],

 "filters": ["RateLimit=4,15s", "StripPrefix=2"]

 }

]

}

The path GET /pet/findByStatus will have the filters RateLimit=2,10s and StripPrefix=1

applied

The paths GET /pet/findByTags and GET /pet/{petId} will have the filters RateLimit=2,10s

and StripPrefix=1 applied

The paths PUT /user/{username} and DELETE /user/{username} will have the filters

RateLimit=4,15s and StripPrefix=2 applied

See available filters here.

JSON schema to validate requests

You can fetch the JSON schema to validate requests by calling /json/schema on the Spring Cloud

Gateway operator.

For example, given you have the Spring Cloud Gateway operator exposed at http://operator.scg,

you can run:

curl --request GET 'http://operator.scg/json/schema' --header 'Accept: application/jso

n'

SCG for Kubernetes v1.1 Documentation

VMware, Inc 107

	Spring Cloud Gateway for Kubernetes
	Key Features
	For Operators
	For Developers
	Product Snapshot

	Release Notes for Spring Cloud Gateway for Kubernetes
	v1.1.15
	Included in This Release

	v1.1.14
	Included in This Release

	v1.1.13
	Included in This Release

	v1.1.12
	Included in This Release

	v1.1.10
	Included in This Release

	v1.1.9
	Included in This Release

	v1.1.8
	Included in This Release

	v1.1.7
	Included in This Release

	v1.1.6
	Included in This Release

	v1.1.5
	Included in This Release

	v1.1.4
	Included in This Release

	v1.1.3
	Included in This Release

	v1.1.2
	Included in This Release

	v1.1.1
	Included in This Release

	v1.1.0
	Included in This Release

	Operator Guide
	Installation
	Installing Spring Cloud Gateway for Kubernetes using the Tanzu CLI
	Prerequisites
	Creating the target namespace
	Adding the image pull secret
	Install the Spring Cloud Gateway for Kubernetes package repository
	Install the Spring Cloud Gateway for Kubernetes package
	Security Considerations
	Installing the operator with multiple replicas
	Update Spring Cloud Gateway for Kubernetes
	Uninstall Steps

	Installing Spring Cloud Gateway for Kubernetes using Helm
	Prerequisites
	Install or Upgrade Steps
	Download and Extract Installation Artifacts
	Relocate Images
	Container Registry Secret
	Complete the Installation

	Installing the operator with multiple replicas
	Security Considerations
	Uninstall Steps
	Installation in development environment

	Installing Spring Cloud Gateway for Kubernetes in Tanzu Application Platform
	Considerations

	Troubleshooting Spring Cloud Gateway for Kubernetes
	Known Issues
	Check the status of Gateway
	Get scg-operator and Gateway events
	Configure Gateway's logging levels
	Check scg-operator or Gateway logs
	Resolve unresponsive scg-operator
	Restart Gateway
	Manually delete Custom Resource Definitions
	Failing to pull images
	Gateway failing to start with Vault integration enabled

	Developer Guide
	Getting Started with Spring Cloud Gateway for Kubernetes
	Create Gateway Instance
	Deploy Client App
	Add API Routes to Gateway
	Delete Gateway Instance

	Service Instances
	Configure Spring Cloud Gateway Instances
	Configure Gateway Instances
	Configure External Access
	Using an Ingress Resource
	TLS Passthrough

	Gateway Actuator Management Port
	Configure for High Availability
	Configure TLS termination

	Configure Environment Variables
	Disable SecureHeaders Global Filter
	Configure Cross-Origin Resource Sharing (CORS)
	Configure Java Environment Options
	Configure session expiration
	Configuring Hardware Resources
	Configuring Probes
	Configure Observability
	Exposing Metrics to Wavefront
	Using the Spring Cloud Gateway for Kubernetes Dashboard for Wavefront

	Exposing Metrics to Prometheus
	Using the Spring Cloud Gateway for Kubernetes Dashboard for Grafana

	Exposing Tracing to Wavefront
	Applying custom labels to the Gateway Pods

	Customizing the service type

	Using Single Sign-On
	Configure Single Sign-On (SSO)
	Update Single Sign-On credentials
	OpenAPI security schemes (SSO)
	Logout

	Configuring Single Sign-On for Sample Application
	Configuring Okta OIDC provider
	Create authorization server for Animal Rescue
	Create users and groups
	Create new application
	Configuration summary

	Configure Animal Rescue app
	Configure SSO params
	Configure routes security
	Deploy the app
	Test

	OpenAPI Generated Documentation
	Accessing Generated OpenAPI v3 Documentation
	Configure OpenAPI Metadata
	PUT/POST/PATCH Request Body Schema
	Custom HTTP Responses

	Configure Spring Cloud Gateway Instances in Tanzu Application Platform
	Adding Spring Cloud Gateway to a Component
	Adding Spring Cloud Gateway as a new Component

	Client Apps
	Configuring Gateway Routes
	What are API routes
	Define Route Config
	Default Configuration
	Define Service Level Config
	Service Filters
	Service Predicates
	Service SSO Config

	Map Routes to Gateway
	Available Predicates
	Available Filters
	OpenApi Schema References

	Commercial Route Filters
	Filters Included In Spring Cloud Gateway OSS
	Filters Added In Spring Cloud Gateway for Kubernetes
	AddRequestHeadersIfNotPresent: Request headers modification filter
	AllowedRequestCookieCount: Allowed request cookie count filter
	AllowedRequestHeadersCount: Allowed request headers count filter
	AllowedRequestQueryParamsCount: Allowed request query params count filter
	BasicAuth: Basic authorization filter
	BlockAccess: Global Filter to block access
	CircuitBreaker: Reroute traffic on error response filter
	Circuit breaker status

	ClaimHeader: Passing JWT claims header filter
	ClientCertificateHeader: Validate client certificate filter
	FallbackHeaders: Allows adding CircuitBreaker exception details in the headers before forwarding
	Cors: Configuring per-route Cross-Origin Resource Sharing (CORS) behavior
	JwtKey: Multiple client JWT validation filter
	ApiKey: API key validation filter
	RateLimit: Limiting user requests filter
	Limiting by IP Address

	RemoveJsonAttributesResponseBody: Response body modification filter
	RewriteAllResponseHeaders Response headers modification filter
	RewriteResponseBody: Response body modification filter
	RewriteJsonAttributesResponseBody: Response body JSON modification filter
	Roles: Role-based access control filter
	Scopes: Scope-based access control filter
	StoreIpAddress: Store IP address filter
	StoreHeader Store headers filter
	SsoAutoAuthorize: SSO auto-authorized credentials filter
	TokenRelay: Passing user identity filter

	Commercial Route Predicates
	Predicates Included In Spring Cloud Gateway OSS
	Predicates Added In Spring Cloud Gateway for Kubernetes
	Match on JWT claim value: JWTClaim Predicate

	Custom Extensions
	Developing Extensions
	Prerequisites
	Project setup
	Gradle
	Maven

	Custom Extension Example
	Custom Filter example code
	Testing

	Configuring Extensions
	Prerequisites
	Extension Deployment
	Extensions from ConfigMaps
	Extensions from OCI Image
	Extensions from Persistent Volumes

	Gateway Configuration
	Validation and Troubleshooting
	High-Availability deployments

	OpenAPI Route Conversion
	Conversion endpoint
	Conversion request
	Referencing an OpenAPI endpoint in your cluster
	Providing Service level filters
	Providing Route level filters
	JSON schema to validate requests

