
Tanzu Application
Platform v1.4

VMware Tanzu Application Platform 1.4

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its

subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade names, service

marks, and logos referenced herein belong to their respective companies. Copyright and trademark

information.

Tanzu Application Platform v1.4

VMware by Broadcom 2

https://docs.vmware.com/copyright-trademark.html

Contents

Tanzu Application Platform v1.4 108
Tanzu Application Platform overview 108

Simplified workflows 108

Notice of telemetry collection for Tanzu Application Platform 110

Tanzu Application Platform release notes 111
v1.4.13 111

v1.4.13 Security fixes 111

v1.4.13 Known issues 111

v1.4.12 111

v1.4.12 Security fixes 111

v1.4.12 Known issues 115

v1.4.11 115

v1.4.11 Security fixes 116

v1.4.11 Known issues 116

v1.4.10 116

v1.4.10 Security fixes 116

v1.4.10 Known issues 117

v1.4.9 117

v1.4.9 Security fixes 117

v1.4.9 Resolved issues 119

v1.4.9 Resolved issues: Tanzu CLI and plug-ins 119

v1.4.9 Known issues 119

v1.4.9 Known issues: Tanzu Build Service 119

v1.4.8 119

v1.4.8 Security fixes 119

v1.4.8 Resolved issues 120

v1.4.8 Resolved issues: Tanzu Build Service 121

v1.4.8 Known issues 121

v1.4.8 Known issues: Tanzu Build Service 121

v1.4.7 121

v1.4.7 Security fixes 121

v1.4.7 Known issues 121

v1.4.6 122

v1.4.6 Security fixes 122

v1.4.6 Resolved issues 122

v1.4.6 Resolved issues: Tanzu Developer Tools for IntelliJ 122

Tanzu Application Platform v1.4

VMware by Broadcom 3

v1.4.6 Resolved issues: Tanzu Developer Tools for Visual Studio 122

v1.4.6 Resolved issues: Tanzu Developer Tools for VS Code 122

v1.4.6 Known issues 122

v1.4.5 122

v1.4.5 Security fixes 123

v1.4.4 123

v1.4.4 Security fixes 123

v1.4.4 Resolved issues 124

v1.4.4 Resolved issues: Grype Scanner 124

v1.4.4 Resolved issues: Source Controller 124

v1.4.4 Known issues 125

v1.4.4 Known issues: API Auto Registration 125

v1.4.4 Known issues: Grype Scanner 125

v1.4.2 125

v1.4.2 Security fixes 125

v1.4.2 Resolved issues 126

v1.4.2 Resolved issues: Tanzu Build Service 126

v1.4.2 Known issues 126

v1.4.2 Known issues: Grype scanner 126

v1.4.1 127

v1.4.1 Security fixes 127

v1.4.1 Security fixes: Tanzu Application Platform GUI 127

v1.4.1 Resolved issues 127

v1.4.1 Resolved issues: Source Controller 127

v1.4.1 Resolved issues: Tanzu Application Platform GUI 127

v1.4.1 Resolved issues: Tanzu Application Platform plug-ins 127

API Validation and Scoring Toolkit plug-in 127

Application Accelerator plug-in 127

Application Live View plug-in 127

Out of the Box Supply Chain Templates plug-in 128

Security Analysis plug-in 128

Supply Chain Choreographer plug-in 128

Supply Chain Security Tools plug-in 128

v1.4.1 Known issues 128

v1.4.1 Known issues: Grype scanner 128

v1.4.1 Known issues: Security Analysis GUI 129

v1.4.0 129

v1.4.0 Tanzu Application Platform new features 129

v1.4.0 New features by component and area 129

v1.4.0 Features: API Validation and Scoring Toolkit 129

v1.4.0 Features: Application Single Sign-On (AppSSO) 129

v1.4.0 Features: Application Accelerator 130

Tanzu Application Platform v1.4

VMware by Broadcom 4

v1.4.0 Features: Application Live View 130

v1.4.0 Features: Apps plug-in for Tanzu CLI 131

v1.4.0 Features: cert-manager 131

v1.4.0 Features: Eventing 131

v1.4.0 Features: External Secrets Operator (alpha) 131

v1.4.0 Features: Services Toolkit 131

v1.4.0 Features: Tanzu Application Platform GUI plug-ins 132

Security Analysis Plug-in 132

Supply Chain Choreographer plug-in 132

v1.4.0 Features: Supply Chain Security Tools - Policy 132

v1.4.0 Features: Supply Chain Security Tools - Scan 132

v1.4.0 Features: Tanzu Developer Tools for IntelliJ 133

v1.4.0 Features: Tanzu Developer Tools for Visual Studio 133

v1.4.0 Features: Tanzu Developer Tools for Visual Studio Code 133

v1.4.0 Breaking changes 133

v1.4.0 Breaking changes: Application Single Sign-On (AppSSO) 133

v1.4.0 Breaking changes: Out of the Box Supply Chain Templates 133

v1.4.0 Breaking changes: Supply Chain Security Tools - Image Policy Webhook 134

v1.4.0 Breaking changes: Supply Chain Security Tools - Policy Controller 134

v1.4.0 Breaking changes: Tanzu Application Platform GUI 134

v1.4.0 Breaking changes: Tanzu Developer Tools for IntelliJ 134

v1.4.0 Breaking changes: Tanzu Developer Tools for Visual Studio Code 134

v1.4.0 Security fixes 134

v1.4.0 Security fixes: API Auto Registration 134

v1.4.0 Security fixes: Contour 134

v1.4.0 Security fixes: Supply Chain Security Tools - Grype 134

v1.4.0 Security fixes: Remediated vulnerabilities 135

Note about CVE-2022-4378 135

v1.4.0 Resolved issues 135

v1.4.0 Resolved issues: API Auto Registration 135

v1.4.0 Resolved issues: Application Single Sign-On (AppSSO) 135

v1.4.0 Resolved issues: Out of the Box Supply Chain Templates 136

v1.4.0 Resolved issues: Tanzu CLI Apps Plug-in 136

v1.4.0 Resolved issues: Tanzu Application Platform GUI plug-ins 136

v1.4.0 Resolved issues: Supply Chain Choreographer plug-in 136

v1.4.0 Known issues 136

v1.4.0 Known issues: API Auto Registration 136

v1.4.0 Known issues: Application Accelerator for Visual Studio Code 136

v1.4.0 Known issues: Cloud Native Runtimes for VMware Tanzu 136

v1.4.0 Known issues: Grype scanner 137

v1.4.0 Known issues: Namespace Provisioner 137

v1.4.0 Known issues: Out of the Box Supply Chain Templates 137

Tanzu Application Platform v1.4

VMware by Broadcom 5

v1.4.0 Known issues: Tanzu Application Platform GUI plug-ins 137

Security Analysis plug-in 137

Supply Chain Choreographer plug-in 137

v1.4.0 Known issues: Tanzu Developer Tools for IntelliJ 138

v1.4.0 Known issues: Tanzu Developer Tools for Visual Studio 138

v1.4.0 Known issues: Tanzu Developer Tools for Visual Studio Code 138

Deprecations 138

Application Live View deprecations 138

Application Single Sign-On (AppSSO) deprecations 138

Services Toolkit deprecations 139

Supply Chain Security Tools - Image Policy Webhook deprecations 139

Supply Chain Security Tools - Scan deprecations 139

Supply Chain Security Tools - Sign deprecations 139

Tanzu Build Service deprecations 139

Tanzu CLI Apps plug-in deprecations 139

Linux Kernel CVEs 139

Components and installation profiles for Tanzu Application Platform 141
Tanzu Application Platform components 141

Installation profiles in Tanzu Application Platform v1.4 145

Packages: A to C 145

Packages: D to R 146

Packages: S to Z 146

Language and framework support in Tanzu Application Platform 147

Installing Tanzu Application Platform 147

Install Tanzu Application Platform 148

Install Tanzu Application Platform 148

Prerequisites for installing Tanzu Application Platform 148
VMware Tanzu Network and container image registry requirements 148

DNS Records 149

Tanzu Application Platform GUI 149

Kubernetes cluster requirements 150

Resource requirements 151

Tools and CLI requirements 152

Next steps 152

Kubernetes version support for Tanzu Application Platform 152

Install Tanzu CLI 152
Accept the End User License Agreements 153

Example of accepting the Tanzu Application Platform EULA 153

Tanzu Application Platform v1.4

VMware by Broadcom 6

Set the Kubernetes cluster context 155

Install or update the Tanzu CLI and plug-ins 156

Install the Tanzu CLI 156

Install Tanzu CLI Plug-ins 158

List the versions of each plug-in group available across Tanzu 159

List the versions of the Tanzu Application Platform specific plug-in group 159

Install the version of the Tanzu Application Platform plug-in group matching your

target environment
159

Verify the plug-in group list against the plug-ins that were installed 159

Install Tanzu Application Platform (online) 159

Install Tanzu Application Platform (online) 160

Install Tanzu Application Platform package and profiles 160
Relocate images to a registry 161

Add the Tanzu Application Platform package repository 162

Install your Tanzu Application Platform profile 165

Full profile 165

CEIP policy disclosure 168

(Optional) Additional Build Service configurations 168

(Optional) Configure your profile with full dependencies 168

(Optional) Configure your profile with the Jammy stack only 169

Install your Tanzu Application Platform package 169

Install the full dependencies package 170

Access Tanzu Application Platform GUI 170

Exclude packages from a Tanzu Application Platform profile 171

Next steps 171

View possible configuration settings for your package 171

Install individual packages 173

Install pages for individual Tanzu Application Platform packages 173

Verify the installed packages 174

Next steps 174

Set up developer namespaces to use your installed packages 175
Additional configuration for testing and scanning 175

Legacy namespace setup 175

Next steps 175

Legacy manual developer namespace setup instructions 175
Enable single user access 175

Enable additional users with Kubernetes RBAC 177

Tanzu Application Platform v1.4

VMware by Broadcom 7

Additional configuration for testing and scanning 179

Install Tanzu Developer Tools for your VS Code 179
Prerequisites 179

Install 179

Configure 180

Uninstall 180

Next steps 181

Install Tanzu Application Platform (offline) 181

Install Tanzu Application Platform (offline) 181

Install Tanzu Application Platform in your air-gapped environment 182

Relocate images to a registry 182

Prepare Sigstore Stack for air-gapped policy controller 186

Install your Tanzu Application Platform profile 186

Full Profile 187

Install your Tanzu Application Platform package 191

Next steps 191

Install the Tanzu Build Service dependencies 191
Next steps 192

Configure custom certificate authorities for Tanzu Application Platform
GUI

192

Next steps 193

Configure Application Accelerator 193
Using a Git-Ops style configuration for deploying a set of managed accelerators 194

Functional and Organizational Considerations 194

Examples for creating accelerators 194

A minimal example for creating an accelerator 194

An example for creating an accelerator with customized properties 195

Creating a manifest with multiple accelerators and fragments 196

Configure tap-values.yaml with Git credentials secret 197

Using non-public repositories 198

Examples for a private Git repository 198

Example using http credentials 198

Example using http credentials with self-signed certificate 199

Example using SSH credentials 200

Examples for a private source-image repository 201

Example using image-pull credentials 201

Configure ingress timeouts when some accelerators take longer to generate 202

Tanzu Application Platform v1.4

VMware by Broadcom 8

Configure an ingress timeout overlay secret for each HTTPProxy 202

Apply the timeout overlay secrets in tap-values.yaml 203

Configuring skipping TLS verification for access to Source Controller 203

Enabling TLS for Accelerator Server 203

Configuring skipping TLS verification of Engine calls for Accelerator Server 204

Enabling TLS for Accelerator Engine 204

Next steps 205

Use Grype in offline and air-gapped environments 205
To enable Grype in offline air-gapped environments 205

Troubleshooting 205

ERROR failed to fetch latest cli version 205

Solution 206

Database is too old 206

Solution 207

Grype package overlays are not applied to scantemplates created by Namespace

Provisioner
208

Solution 208

Debug Grype database in a cluster 209

Set up developer namespaces to use your installed packages 210
Additional configuration for testing and scanning 210

Legacy namespace setup 210

Next steps 210

Install Tanzu Application Platform (AWS) 210

Install Tanzu Application Platform (AWS) 211

Create AWS Resources for Tanzu Application Platform 211
Prerequisites 212

Export environment variables 212

Create an EKS cluster 212

Install EBS CSI driver 213

Create the container repositories 213

Create the workload container repositories 213

Create IAM roles 214

Install Tanzu Application Platform package and profiles on AWS 218

Relocate images to a registry 218

Install your Tanzu Application Platform profile 221

Full profile (AWS) 222

(Optional) Configure your profile with full dependencies 224

Install your Tanzu Application Platform package 224

Tanzu Application Platform v1.4

VMware by Broadcom 9

Install the full dependencies package 225

Access Tanzu Application Platform GUI 225

Exclude packages from a Tanzu Application Platform profile 226

Next steps 226

View possible configuration settings for your package 226

Install individual packages 228

Install pages for individual Tanzu Application Platform packages 228

Verify the installed packages 229

Next steps 229

Set up developer namespaces to use your installed packages 230

Enable single user access 230

Enable additional users access with Kubernetes RBAC 231

Next steps 233

Install Tanzu Developer Tools for your VS Code 233
Prerequisites 233

Install 233

Configure 234

Uninstall 234

Next steps 234

Install Tanzu Application Platform (OpenShift) 234

Install Tanzu Application Platform (OpenShift) 235

Install Tanzu Application Platform on your OpenShift clusters 235

Relocate images to a registry 236

Install your Tanzu Application Platform profile 239

Full profile 240

(Optional) Additional Build Service configurations 242

(Optional) Configure your profile with full dependencies 242

(Optional) Configure your profile with the Jammy stack only 243

Security Context Constraints 243

(Optional) Exclude components that require RedHat OpenShift privileged SCC 243

Install your Tanzu Application Platform package 243

Install the full dependencies package 244

Access Tanzu Application Platform GUI 245

Exclude packages from a Tanzu Application Platform profile 245

View possible configuration settings for your package 245

Install individual packages 247

Tanzu Application Platform v1.4

VMware by Broadcom 10

Install pages for individual Tanzu Application Platform packages 247

Verify the installed packages 248

Next steps 249

Set up developer namespaces to use your installed packages 249
Additional configuration for testing and scanning 249

Legacy namespace setup 249

Next steps 249

Install Tanzu Developer Tools for your VS Code 249
Prerequisites 249

Install 250

Configure 250

Uninstall 251

Next steps 251

Custom Security Context Constraint details for Tanzu Application
Platform

251

Application Accelerator on OpenShift 251

Application Live View on OpenShift 252

Application Single Sign-On for OpenShift cluster 253

Contour for OpenShift cluster 254

Developer Conventions for OpenShift cluster 255

Tanzu Build Service for OpenShift cluster 256

Customize your package installation 258
Customize a package that was manually installed 258

Customize a package that was installed by using a profile 258

Upgrade your Tanzu Application Platform 259
Prerequisites 259

Update the new package repository 259

Perform the upgrade of Tanzu Application Platform 260

Upgrade instructions for Profile-based installation 260

Upgrade the full dependencies package 261

Multicluster upgrade order 261

Upgrade instructions for component-specific installation 262

Verify the upgrade 262

Opt out of telemetry collection 263

Overview of security and compliance in Tanzu Application Platform 265

Overview of security and compliance in Tanzu Application Platform 265

Tanzu Application Platform v1.4

VMware by Broadcom 11

Overview of security and compliance in Tanzu Application Platform 265

Secure Ingress certificates in Tanzu Application Platform 265
Replacing the default ingress issuer 266

Deactivating TLS for ingress 266

Overriding TLS for components 266

Use custom CA certificates in Tanzu Application Platform 266

Use External Secrets Operator in Tanzu Application Platform (alpha) 267
Installing the External Secrets Operator 267

Using the External Secrets Operator 267

Connecting to a secret manager 267

Example : Google Secret Manager 267

Create a sychronized secret 269

Using a sychronized secret 269

Assess Tanzu Application Platform against the NIST 800-53 Moderate
Assessment

269

Overview of multicluster Tanzu Application Platform 277
Next steps 277

Overview of multicluster Tanzu Application Platform 278
Next steps 278

Install multicluster Tanzu Application Platform profiles 278

Prerequisites 278

Multicluster Installation Order of Operations 279

Install View cluster 279

Install Build clusters 279

Install Run clusters 279

Install Iterate clusters 280

Add Build, Run and Iterate clusters to Tanzu Application Platform GUI 280

Next steps 280

Get started with multicluster Tanzu Application Platform 280
Prerequisites 280

Start the workload on the Build profile cluster 281

Install Tanzu Application Platform Build profile 283
Prerequisites 283

Example values.yaml 283

Install Tanzu Application Platform Run profile 285

Tanzu Application Platform v1.4

VMware by Broadcom 12

Install Tanzu Application Platform View profile 286

Install Tanzu Application Platform Iterate profile 288

Get started with Tanzu Application Platform 291

Prerequisites 291

Next steps 291

Get started with Tanzu Application Platform 291

Prerequisites 292

Next steps 292

Create an accelerator 292
What you will do 293

Set up Visual Studio Code 293

Create a simple project 293

Set up the project directory 293

Prepare the README.md and accelerator.yaml 293

Test the accelerator 295

Upload the project to a Git repository 296

Register the accelerator to the Tanzu Application Platform and verify project generation

output
296

Verify project generation output by using Tanzu Application Platform GUI 296

Learn more about Application Accelerator 298

Create an accelerator 299
What you will do 299

Set up Visual Studio Code 299

Create a simple project 299

Set up the project directory 300

Prepare the README.md and accelerator.yaml 300

Test the accelerator 301

Upload the project to a Git repository 302

Register the accelerator to the Tanzu Application Platform and verify project generation

output
302

Verify project generation output by using Tanzu Application Platform GUI 303

Learn more about Application Accelerator 304

Add testing and scanning to your application 305
What you will do 305

Overview 305

Install OOTB Supply Chain with Testing 305

Tekton pipeline config example 306

Workload update 307

Tanzu Application Platform v1.4

VMware by Broadcom 13

Install OOTB Supply Chain with Testing and Scanning 308

Prerequisites 308

Workload update 310

Query for vulnerabilities 311

Next steps 311

Configure image signing and verification in your supply chain 312

What you will do 312

Configure your supply chain to sign and verify your image builds 312

Next steps 313

Set up services for consumption by developers 313

What you will do 314

Overview 314

Prerequisites 315

Set up a service 315

Create a service instance 317

Claim a service instance 318

Further use cases and reading 319

Next steps 319

Deploy an app on Tanzu Application Platform 320

What you will do 320

Generate a new project using an application accelerator 320

Deploy your application through Tanzu Application Platform GUI 322

Add your application to Tanzu Application Platform GUI software catalog 323

Next steps 324

Deploy an app on Tanzu Application Platform 324
What you will do 325

Generate a new project using an application accelerator 325

Deploy your application through Tanzu Application Platform GUI 327

Add your application to Tanzu Application Platform GUI software catalog 328

Next steps 329

Iterate on your new app 329
What you will do 329

Prepare your IDE to iterate on your application 330

Live update your application 330

Debug your application 331

Monitor your running application 331

Next steps 332

Consume services on Tanzu Application Platform 332

Tanzu Application Platform v1.4

VMware by Broadcom 14

What you will do 332

Overview 332

Prerequisites 333

Bind an application workload to the service instance 334

Further use cases and reading 335

Next steps 336

Deploy an air-gapped workload on Tanzu Application Platform 336
What you will do 336

Create a workload from Git 336

Create a basic supply chain workload 337

Create a testing supply chain workload 338

Create a testing scanning supply chain workload 338

Learn about Tanzu Application Platform 339

Application accelerators on Tanzu Application Platform 339
What are application accelerators 339

Working with accelerators 339

Next steps 340

Supply chains on Tanzu Application Platform 340
What are supply chains 340

A path to production 340

Available supply chains 340

1: OOTB Basic (default) 340

2: OOTB Testing 341

3: OOTB Testing+Scanning 341

Next steps 342

Vulnerability scanning, storing, and viewing for your supply chain 342

Features 342

Components 343

Next steps 343

Troubleshooting 343

About consuming services on Tanzu Application Platform 343
Key concepts 343

Service instances 343

Service bindings 344

Resource claims 344

Services you can use with Tanzu Application Platform 344

User roles and responsibilities 345

Next steps 345

Tanzu Application Platform v1.4

VMware by Broadcom 15

Set up Tanzu Service Mesh 346
Prerequisites 346

Activate your Tanzu Service Mesh subscription 346

Onboard clusters 346

Set up Tanzu Application Platform 347

End-to-end workload build and deployment scenario 348

Apply a workload resource to a build cluster 348

Configure egress for Tanzu Build Service 349

Create a global namespace 349

Run cluster deployment 349

Deployment use case: Hungryman 350

Create an initial set of configuration files from the accelerator 350

Apply the workload resources to your build cluster 351

Install service claim resources on the cluster 351

Run cluster deployment 352

Create a global namespace 353

Deployment use case: ACME Fitness Store 354

Deploy AppSSO 354

Apply the workload resources to your build cluster 355

Create the Istio ingress resources 355

Deploy Redis 356

Run cluster deployment 356

Deploy Spring Cloud Gateway 357

Install the Spring Cloud Gateway package 357

Create a global namespace 357

Set up Tanzu Service Mesh 358

Prerequisites 358

Activate your Tanzu Service Mesh subscription 359

Onboard clusters 359

Set up Tanzu Application Platform 360

End-to-end workload build and deployment scenario 360

Apply a workload resource to a build cluster 360

Configure egress for Tanzu Build Service 362

Create a global namespace 362

Run cluster deployment 362

Deployment use case: Hungryman 362

Create an initial set of configuration files from the accelerator 363

Apply the workload resources to your build cluster 363

Install service claim resources on the cluster 363

Run cluster deployment 364

Create a global namespace 365

Tanzu Application Platform v1.4

VMware by Broadcom 16

Deployment use case: ACME Fitness Store 366

Deploy AppSSO 366

Apply the workload resources to your build cluster 367

Create the Istio ingress resources 368

Deploy Redis 368

Run cluster deployment 368

Deploy Spring Cloud Gateway 369

Install the Spring Cloud Gateway package 369

Create a global namespace 370

Overview of workloads 371

Workload features 371

Available workload types 371

Overview of workloads 372

Workload features 372

Available workload types 372

Use web workloads 373

Overview 373

Use the web workload type 374

Calling web workloads within a cluster 374

Example of service to service communication for web and server workloads 374

Use server workloads 375
Overview 375

Use the server workload type 375

server-specific workload parameters 376

Expose server workloads outside the cluster 376

Manual configuration for HTTP workloads 377

Define a workload type that exposes server workloads outside the cluster 377

Use worker workloads 381
Overview 381

Use the worker workload type 382

Parameter reference 382
Workload Parameter Reference 382

List of Supply Chain Resources for Workload Object 382

source-provider 383

GitRepository 383

ImageRepository 384

MavenArtifact 384

source-tester 385

Tanzu Application Platform v1.4

VMware by Broadcom 17

source-scanner 386

image-provider 386

Kpack Image 386

Runnable (TaskRuns for Dockerfile-based builds) 387

Pre-built image (ImageRepository) 388

image-scanner 388

config-provider 389

app-config 390

service-bindings 390

api-descriptors 391

config-writer (git or registry) 391

deliverable 392

Deliverable Parameters Reference 392

List of Cluster Delivery Resources for Deliverable Object 392

source-provider 393

GitRepository 393

ImageRepository 393

app deployer 394

App 394

Use functions (Beta) 394
Overview 395

Supported languages and frameworks 395

Prerequisites 395

Create a function project from an accelerator 396

Create a function project using the Tanzu CLI 397

Deploy your function 397

Use functions (Beta) 398
Overview 399

Supported languages and frameworks 399

Prerequisites 399

Create a function project from an accelerator 400

Create a function project using the Tanzu CLI 401

Deploy your function 401

Troubleshoot Tanzu Application Platform 403

Troubleshoot Tanzu Application Platform 403

Troubleshoot installing Tanzu Application Platform 403
Developer cannot be verified when installing Tanzu CLI on macOS 403

Access .status.usefulErrorMessage details 404

Tanzu Application Platform v1.4

VMware by Broadcom 18

“Unauthorized to access” error 404

“Serviceaccounts already exists” error 405

After package installation, one or more packages fails to reconcile 405

Failure to accept an End User License Agreement error 409

Ingress is broken on Kind cluster 409

Troubleshoot using Tanzu Application Platform 409

Use events to find possible causes 409

Missing build logs after creating a workload 409

Explanation 410

Solution 410

Workload creation stops responding with “Builder default is not ready” message 410

Explanation 410

Solution 410

“Workload already exists” error after updating the workload 410

Explanation 411

Solution 411

Workload creation fails due to authentication failure in Docker Registry 411

Explanation 411

Solution 411

Telemetry component logs show errors fetching the “reg-creds” secret 412

Explanation 412

Solution 412

Debug convention might not apply 412

Explanation 412

Solution 412

Execute bit not set for App Accelerator build scripts 412

Explanation 412

Solution 412

“No live information for pod with ID” error 413

Explanation 413

Solution 413

“image-policy-webhook-service not found” error 413

Explanation 413

Solution 413

“Increase your cluster resources” error 413

Explanation 413

Solution 413

MutatingWebhookConfiguration prevents pod admission 414

Explanation 414

Solution 414

Priority class of webhook’s pods preempts less privileged pods 415

Tanzu Application Platform v1.4

VMware by Broadcom 19

Explanation 415

Solution 415

CrashLoopBackOff from password authentication fails 415

Explanation 416

Solution 416

Password authentication fails 416

Explanation 416

Solution 416

metadata-store-db pod fails to start 417

Explanation 417

Solution 417

Missing persistent volume 417

Explanation 417

Solution 417

Failure to connect Tanzu CLI to AWS EKS clusters 418

Explanation 418

Solution 418

Invalid repository paths are propagated 418

Explanation 418

Solution 418

x509: certificate signed by unknown authority 418

Explanation 418

Solution 419

Option 1: Configure the Shared Ingress Issuer’s Certificate Authority as a trusted

Certificate Authority
419

Option 2: Deactivate the shared ingress issuer 419

Troubleshoot Tanzu Application Platform components 420

Uninstall Tanzu Application Platform 421
Delete the packages 421

Delete the Tanzu Application Platform package repository 422

Remove Tanzu CLI, plug-ins, and associated files 422

Remove Cluster Essentials 422

Component documentation for Tanzu Application Platform 423

Component documentation for Tanzu Application Platform 423

Overview of Tanzu CLI 423
Tanzu CLI 423

Tanzu CLI Architecture 423

Tanzu CLI Installation 423

Tanzu CLI Command Groups 424

Tanzu Application Platform v1.4

VMware by Broadcom 20

Install New Plug-ins 424

Install Local Plug-ins 424

Overview of Tanzu CLI 425

Tanzu CLI 425

Tanzu CLI Architecture 425

Tanzu CLI Installation 425

Tanzu CLI Command Groups 426

Install New Plug-ins 426

Install Local Plug-ins 426

Overview of Tanzu CLI plug-ins 427

Tanzu Apps CLI overview 427
About workloads 427

Tutorials 428

How-to-guides 428

Tanzu Apps CLI overview 428
About workloads 428

Tutorials 428

How-to-guides 428

Install Tanzu Apps CLI plug-in 428

Prerequisites 428

Install Tanzu Apps CLI plug-in 428

Uninstall Apps CLI plug-in 429

Change clusters 429

Override the default kubeconfig 429

Autocompletion 429

Bash 430

Zsh 430

Create workloads 430

Debug and troubleshoot workloads 430

Create a workload 430
Prerequisites 430

Get started with an example workload 431

Create a workload from GitHub repository 431

Create a workload from local source code 431

Exclude Files 431

Create workload from an existing image 432

Create a workload from Maven repository artifact 432

Working with YAML files 432

Tanzu Application Platform v1.4

VMware by Broadcom 21

Bind a service to a workload 433

Next steps 434

Workload Examples 434

Custom registry credentials 434

–live-update and –debug 435

Spring Boot application example 435

–export 436

–output 437

–sub-path 440

.tanzuignore file 441

Example of a .tanzuignore file 441

–dry-run 441

–update-strategy 442

Debug workloads 444
Verify build logs 444

Check build logs 444

Get the workload status and details 444

Common workload errors 445

Local Path Development Error Cases 445

WorkloadLabelsMissing/SupplyChainNotFound 445

MissingValueAtPath 445

TemplateRejectedByAPIServer 446

Review supply chain steps 446

Additional Troubleshooting References 447

Tanzu Apps CLI commands 447

Tanzu Apps CLI commands 447

tanzu apps cluster-supply-chain 447
Tanzu apps cluster supply chain list 448

Default view 448

Tanzu apps cluster supply chain get 448

Default view 448

tanzu apps workload apply 449

Default view 449

Workload Apply flags 450

--annotation 450

--app / -a 450

--build-env 451

--debug 452

Tanzu Application Platform v1.4

VMware by Broadcom 22

--dry-run 452

--env / -e 453

--file, -f 454

--git-repo 454

--git-branch 454

--git-tag 455

--git-commit 455

--image / -i 455

--label / -l 456

--limit-cpu 457

--limit-memory 457

--live-update 458

--local-path 459

--maven-artifact 459

--maven-group 460

--maven-type 460

--maven-version 460

--source-image, -s 460

--namespace, -n 460

--param / -p 461

--param-yaml 462

--registry-ca-cert 462

--registry-password 463

--registry-token 463

--registry-username 463

--request-cpu 463

--request-memory 464

--service-account 464

--service-ref 465

--sub-path 466

--tail 467

--tail-timestamp 467

--type / -t 468

--update-strategy 469

--wait 470

--wait-timeout 470

--yes, -y 471

tanzu apps workload delete 471

Default view 471

Workload Delete flags 471

--all 472

Tanzu Application Platform v1.4

VMware by Broadcom 23

--file, -f 472

--namespace, -n 472

wait 472

--wait-timeout 472

--yes, -f 473

tanzu apps workload get 473

Default view 473

--export 474

--output/-o 475

--namespace/-n 477

tanzu apps workload list 478
Default view 478

>Workload List flags 478

--all-namespaces, -A 478

--app 479

--namespace, -n 479

--output, -o 479

tanzu apps workload tail 481
Default view 481

>Workload Tail flags 481

--component 482

--namespace, -n 482

--since 483

--timestamp, -t 484

Tanzu Accelerator CLI overview 484
Server API connections for operators and developers 485

Installation 485

Command reference 485

Tanzu Accelerator CLI overview 485

Server API connections for operators and developers 485

Installation 486

Command reference 486

Install Tanzu Accelerator CLI 486
Prerequisites 486

Install 487

Command reference 487

Command reference 488

Tanzu Application Platform v1.4

VMware by Broadcom 24

tanzu accelerator 488
Options 488

SEE ALSO 488

tanzu accelerator 489
Options 489

SEE ALSO 489

tanzu accelerator apply 489
tanzu accelerator apply 489

Synopsis 489

Examples 489

Options 489

Options inherited from parent commands 490

SEE ALSO 490

tanzu accelerator create 490
Synopsis 490

Examples 490

Options 490

Options inherited from parent commands 490

SEE ALSO 491

tanzu accelerator delete 491
Synopsis 491

Examples 491

Options 491

Options inherited from parent commands 491

SEE ALSO 491

tanzu accelerator fragment 491

Synopsis 491

Examples 491

Options 492

Options inherited from parent commands 492

SEE ALSO 492

tanzu accelerator fragment create 492

Synopsis 492

Example 492

Options 492

Options inherited from parent commands 493

SEE ALSO 493

Tanzu Application Platform v1.4

VMware by Broadcom 25

tanzu accelerator fragment delete 493
tanzu accelerator fragment delete 493

Synopsis 493

Examples 493

Options 493

Options inherited from parent commands 493

SEE ALSO 493

tanzu accelerator fragment get 493
Synopsis 493

Examples 494

Options 494

Options inherited from parent commands 494

SEE ALSO 494

tanzu accelerator fragment list 494
Synopsis 494

Examples 494

Options 494

Options inherited from parent commands 494

SEE ALSO 495

tanzu accelerator fragment update 495
Synopsis 495

Examples 495

Options 495

Options inherited from parent commands 495

SEE ALSO 495

tanzu accelerator generate 495

tanzu accelerator generate 495

Synopsis 496

Examples 496

Options 496

Options inherited from parent commands 496

SEE ALSO 496

Tanzu accelerator generate-from-local 496
Synopsis 496

Examples 497

Options 497

Options inherited from parent commands 497

tanzu accelerator get 497

Tanzu Application Platform v1.4

VMware by Broadcom 26

Synopsis 498

Examples 498

Options 498

Options inherited from parent commands 498

SEE ALSO 498

tanzu accelerator list 498

Synopsis 498

Examples 498

Options 499

Options inherited from parent commands 499

SEE ALSO 499

tanzu accelerator push 499
tanzu accelerator push 499

Synopsis 499

Examples 499

Options 499

Options inherited from parent commands 499

SEE ALSO 499

tanzu accelerator update 500

Synopsis 500

Examples 500

Options 500

Options inherited from parent commands 500

SEE ALSO 500

Overview of Tanzu Insight plug-in 500

Overview of Tanzu Insight plug-in 501

Install your Tanzu Insight CLI plug-in 501

Configure your Tanzu Insight CLI plug-in 501
Set the target and certificate authority (CA) certificate 502

Single Cluster setup 502

Set Target 502
Set the access token 502

Verify the connection 503

Query vulnerabilities, images, and packages 503
Supported use cases 503

Tanzu Application Platform v1.4

VMware by Broadcom 27

Query using the Tanzu Insight CLI plug-in 503

Example #1: What packages and CVEs does a specific image contain? 503

Example #2: What packages and CVEs does my source code contain? 504

Determining source code org, repo, and commit SHA 504

Source code query with repo and org 505

Source code query with commit SHA 505

Example #3: What dependencies are affected by a specific CVE? 505

Add data 506

Add data to your Supply Chain Security Tools - Store 506
Supported formats and file types 506

Generate a CycloneDX file 506

Add data with the Tanzu Insight plug-in 507

Example #1: Add an image report 507

Example #2: Add a source report 507

Tanzu insight CLI plug-in command reference 508
Synopsis 508

Options 508

See also 508

tanzu insight config set-target 508

tanzu insight config set-target 508

Synopsis 508

Examples 509

Options 509

See also 509

tanzu insight config 509
Options 509

See also 509

tanzu insight health 509
tanzu insight health 509

Synopsis 509

Examples 509

Options 509

See also 510

tanzu insight image 510
Options 510

See also 510

tanzu insight image add 510

Tanzu Application Platform v1.4

VMware by Broadcom 28

Examples 510

Options 510

See also 510

tanzu insight image get 510
Synopsis 511

Examples 511

Options 511

See Also 511

tanzu insight image packages 511
Synopsis 511

Examples 511

Options 511

See also 511

tanzu insight image vulnerabilities 511
Examples 512

Options 512

See also 512

tanzu insight package 512
Options 512

See also 512

tanzu insight package get 512
Synopsis 512

Examples 513

Options 513

See also 513

tanzu insight package images 513

Synopsis 513

Examples 513

Options 513

See also 513

tanzu insight package sources 513
Synopsis 513

Examples 514

Options 514

See also 514

tanzu insight package vulnerabilities 514
Synopsis 514

Tanzu Application Platform v1.4

VMware by Broadcom 29

Examples 514

Options 514

See also 514

tanzu insight source 514
Options 514

See also 515

tanzu insight source add 515
Examples 515

Options 515

See also 515

tanzu insight source get 515
Synopsis 515

Examples 515

Options 516

See also 516

tanzu insight source packages 516

Synopsis 516

Examples 516

Options 516

See also 516

tanzu insight source vulnerabilities 516
Synopsis 516

Examples 517

Options 517

See also 517

tanzu insight version 517

Options 517

See also 517

tanzu insight vulnerabilities 517

Options 517

See also 517

tanzu insight vulnerabilities get 518

Synopsis 518

Examples 518

Options 518

See also 518

Tanzu Application Platform v1.4

VMware by Broadcom 30

tanzu insight vulnerabilities images 518
Synopsis 518

Examples 518

Options 518

See also 519

tanzu insight vulnerabilities packages 519

Synopsis 519

Examples 519

Options 519

See also 519

tanzu insight vulnerabilities sources 519
Synopsis 519

Examples 519

Options 519

See also 520

Overview of Default roles for Tanzu Application Platform 520

Default roles 520

Working with roles using the RBAC CLI plug-in 520

Disclaimer 520

Overview of Default roles for Tanzu Application Platform 520
Default roles 521

Working with roles using the RBAC CLI plug-in 521

Disclaimer 521

Set up authentication for your Tanzu Application Platform deployment 521
Tanzu Kubernetes Grid 522

Set up authentication for your Tanzu Application Platform deployment 522

Tanzu Kubernetes Grid 522

Install Pinniped on Tanzu Application Platform 522
Prerequisites 522

Environment planning 523

Install Pinniped Supervisor by using Let’s Encrypt 524

Create Certificates (letsencrypt or cert-manager) 524

Create Ingress resources 525

Create the pinniped-supervisor configuration 525

Apply the resources 526

Switch to production issuer (letsencrypt or cert-manager) 527

Install Pinniped Supervisor Private CA 528

Tanzu Application Platform v1.4

VMware by Broadcom 31

Create Certificate Secret 528

Create Ingress resources 528

Create the pinniped-supervisor configuration 529

Apply the resources 530

Install Pinniped Concierge 531

Log in to the cluster 532

Integrate your Azure Active Directory 532
Integrate Azure AD with a new or existing AKS without Pinniped 532

Prerequisites 532

Set up a platform operator 532

Set up a Tanzu Application Platform default role group 533

Set up kubeconfig 533

Integrate Azure AD with Pinniped 533

Prerequisites 534

Set up the Azure AD app 534

Set up the Tanzu Application Platform default role group 535

Set up kubeconfig 535

Role descriptions for Tanzu Application Platform 536
app-editor 536

app-viewer 536

app-operator 536

service-operator 537

workload 537

deliverable 537

Role descriptions for Tanzu Application Platform 537
app-editor 537

app-viewer 537

app-operator 537

service-operator 538

workload 538

deliverable 538

Detailed role permissions for Tanzu Application Platform 538

Native Kubernetes Resources 538

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 538

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 539

App Accelerator 539

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 539

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 539

Cartographer 539

Tanzu Application Platform v1.4

VMware by Broadcom 32

apps.tanzu.vmware.com/aggregate-to-app-editor: "true" 539

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 539

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 539

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 539

Cloud Native Runtimes 540

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 540

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 540

Convention Service 540

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 540

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 540

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 540

Developer Conventions 541

apps.tanzu.vmware.com/aggregate-to-app-editor: "true" 541

OOTB Templates 541

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 541

apps.tanzu.vmware.com/aggregate-to-workload: "true" 542

apps.tanzu.vmware.com/aggregate-to-deliverable: "true" 542

Service Bindings 542

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 542

Services Toolkit 542

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 543

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 543

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 543

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 543

Source Controller 543

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 543

Supply Chain Security Tools — Scan 543

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 543

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 543

Tanzu Build Service 543

apps.tanzu.vmware.com/aggregate-to-app-editor: "true" 543

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 544

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 544

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 544

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 544

Tekton 544

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 544

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 544

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 544

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 544

Bind a user or group to a default role 545

Tanzu Application Platform v1.4

VMware by Broadcom 33

Prerequisites 545

Install the Tanzu Application Platform RBAC CLI plug-in 545

(Optional) Use a different kubeconfig location 545

Add the specified user or group to a role 546

Get a list of users and groups from a role 546

Remove the specified user or group from a role 546

Error logs 546

Troubleshooting 548

Log in to Tanzu Application Platform by using Pinniped 548
Download the Pinniped CLI 548

Generate and distribute kubeconfig to users 549

Login with the provided kubeconfig 549

Additional resources about Tanzu Application Platform authentication
and authorization

549

Install 549

Additional resources about Tanzu Application Platform authentication
and authorization

550

Install 550

Install default roles independently for your Tanzu Application Platform 550
Prerequisites 550

Install 550

Overview of API Auto Registration 551
Overview 551

Getting started 551

Overview of API Auto Registration 551
Overview 552

Getting started 552

Key Concepts for API Auto Registration 552

API Auto Registration Architecture 552

APIDescriptor Custom Resource Explained 552

With an Absolute URL 553

With an Object Ref 554

With an HTTPPRoxy Object Ref 554

With a Knative Service Object Ref 554

With an Ingress Object Ref 554

APIDescriptor Status Fields 555

Install API Auto Registration 555

Tanzu Application Platform v1.4

VMware by Broadcom 34

Tanzu Application Platform prerequisites 555

Using with TLS 555

Install 555

Use API Auto Registration 558
Generate OpenAPI Spec 558

Using a Spring Boot app with a REST service 558

Using App Accelerator Template 559

Using an existing Spring Boot project using springdoc 559

Create APIDescriptor Custom Resource 559

Use Out-Of-The-Box (OOTB) supply chains 559

Using Custom Supply Chains 560

Using other GitOps processes or Manually 561

Additional configuration 561

Setting up CORS for OpenAPI specifications 561

Troubleshoot API Auto Registration 561
Debug API Auto Registration 561

APIDescriptor CRD shows message of connection refused but service is up and running 562

Configure CA Cert Data 562

APIDescriptor CRD shows message of x509: certificate signed by unknown authority but

service is running
563

Overview of API Validation and Scoring 563

Overview of API Validation and Scoring 563

Install API Validation and Scoring 563

Prerequisites 564

Resource requirements 564

Relocate images to a registry 564

Add the API Validation and Scoring package repository 565

Install 566

Uninstall 567

Use API Validation and Scoring to score your auto-registered API 567

Use API Validation and Scoring to score your auto-registered API 567

Overview of API portal for VMware Tanzu 568
Getting started 568

Overview of API portal for VMware Tanzu 568
Getting started 569

Install API portal for VMware Tanzu 569

Tanzu Application Platform v1.4

VMware by Broadcom 35

Prerequisites 569

Install 569

Update the installation values for the api-portal package 570

Overview of Application Accelerator 571
Overview 571

Architecture 571

How does Application Accelerator work? 572

Next steps 572

Overview of Application Accelerator 572
Overview 572

Architecture 573

How does Application Accelerator work? 573

Next steps 574

Install Application Accelerator 574
Prerequisites 574

Configure properties and resource use 574

Install 575

Troubleshooting 577

Verify installed packages 577

Look at resource events 577

Configure Application Accelerator 578
Overview 578

Using a Git-Ops style configuration for deploying a set of managed accelerators 578

Functional and Organizational Considerations 579

Examples for creating accelerators 579

A minimal example for creating an accelerator 579

An example for creating an accelerator with customized properties 580

Creating a manifest with multiple accelerators and fragments 580

Configure tap-values.yaml with Git credentials secret 581

Using non-public repositories 582

Examples for a private Git repository 582

Example using http credentials 582

Example using http credentials with self-signed certificate 583

Example using SSH credentials 584

Examples for a private source-image repository 585

Example using image-pull credentials 586

Configure ingress timeouts when some accelerators take longer to generate 586

Configure an ingress timeout overlay secret for each HTTPProxy 587

Apply the timeout overlay secrets in tap-values.yaml 587

Tanzu Application Platform v1.4

VMware by Broadcom 36

Configuring skipping TLS verification for access to Source Controller 588

Enabling TLS for Accelerator Server 588

Configuring skipping TLS verification of Engine calls for Accelerator Server 588

Enabling TLS for Accelerator Engine 589

Next steps 589

Create accelerators 589

Prerequisites 589

Getting started 590

Publishing the new accelerator 590

Using local-path for publishing accelerators 591

Using accelerator fragments 592

Deploying accelerator fragments 593

Next steps 594

Create accelerators 594
Prerequisites 594

Getting started 595

Publishing the new accelerator 595

Using local-path for publishing accelerators 596

Using accelerator fragments 597

Deploying accelerator fragments 598

Next steps 599

Create an accelerator.yaml file in Application Accelerator 599

Accelerator 599

Accelerator metadata 600

Accelerator options 600

DependsOn and multi-value dataType 601

Examples 602

Engine 604

Engine example 604

Engine notation descriptions 605

Advanced accelerator use 605

Use transforms in Application Accelerator 605

Why transforms? 606

Combining transforms 606

Chain 606

Merge 607

Shortened notation 608

A Combo of one? 609

A common pattern with merge transforms 609

Tanzu Application Platform v1.4

VMware by Broadcom 37

Conditional transforms 610

Conditional ‘Merge’ transform 611

Conditional ‘Chain’ transform 611

A small gotcha with using conditionals in merge transforms 611

Merge conflict 612

Resolving “merge” conflicts 613

File ordering 613

Next steps 614

Use custom types in Application Accelerator 614
Limitations 616

Interaction with SpEL 617

Interaction with Composition 617

Use fragments in Application Accelerator 617

Introduction 617

Introducing fragments 617

| The imports section explained 618

Using the InvokeFragment Transform 619

Back to the imports section 619

Using dependsOn in the imports section 620

Discovering fragments using Tanzu CLI accelerator plug-in 621

Transforms reference 624
Available transforms 624

See also 625

Transforms reference 625
Available transforms 625

See also 625

Combo transform 625
Syntax reference 625

Behavior 626

Examples 627

Include transform 628
Syntax reference 628

Examples 628

See also 628

Exclude transform 628

Syntax reference 628

Examples 629

Tanzu Application Platform v1.4

VMware by Broadcom 38

See also 629

Merge transform 629
Syntax reference 629

See also 629

Chain transform 629
Syntax reference 629

Behavior 630

Let transform 630
Syntax reference 630

Execution 630

See also 631

Loop transform 631
Syntax reference 631

Behavior 631

Examples 631

InvokeFragment transform 632

Syntax reference 633

Behavior 633

Variables 633

</a/>Files 633

Examples 634

See also 635

ReplaceText transform 635
Syntax reference 635

Examples 636

See also 637

RewritePath transform 637
Syntax reference 637

Examples 637

Interaction with Chain and Include 638

See also 638

OpenRewriteRecipe transform 638

Syntax reference 639

Example 639

YTT transform 639

Syntax reference 639

Tanzu Application Platform v1.4

VMware by Broadcom 39

Execution 639

Examples 640

Basic invocation 640

Using extraArgs 640

UseEncoding transform 641
Syntax reference 641

Example use 641

See also 641

UniquePath transform 641
Syntax reference 641

Examples 642

See also 642

Conflict resolution 642

Syntax reference 642

Available strategies 642

See also 643

Use SpEL with Application Accelerator 643
Variables 643

Implicit variables 643

Conditionals 644

Rewrite path concatenation 644

Regular expressions 644

Dealing with string arrays 645

Accelerator custom resource definition 645

The Accelerator custom resource definition (CRD) defines any
accelerator resources to be made

645

API definitions 645

Accelerator CRD Spec 646

Fragment CRD Spec 647

Excluding files 648

Test accelerators in Application Accelerator 648
Generating a project from local sources 648

CI/CD Pipeline 649

(Optional) Getting the Tanzu CLI in a CI/CD pipeline 649

Use the Application Accelerator Visual Studio Code extension 650
Dependencies 650

Installation 650

Tanzu Application Platform v1.4

VMware by Broadcom 40

Configure the extension 651

Using the extension 651

Retrieving the URL for the Tanzu Application Platform GUI 652

Known Issues 653

Application Accelerator best practices 653

Best practices for using accelerators 653

Benefits of using an accelerator 653

Design considerations 653

Housekeeping rules 654

Tests 654

Application skeleton 654

Best practices for using fragments 654
Benefits of using Fragment 655

Design considerations 655

Housekeeping rules 655

Troubleshoot Application Accelerator 656

Development issues 656

Failure to generate a new project 656

URI is not absolute error 656

Accelerator authorship issues 657

General tips 657

Speed up the reconciliation of the accelerator 657

Use a source image with local accelerator source directory 657

Expression evaluation errors 657

Operations issues 658

Check status of accelerator resources 658

When Accelerator ready column is blank 658

When Accelerator ready column is false 659

REASON: GitRepositoryResolutionFailed 659

REASON: GitRepositoryResolutionPending 660

REASON: ImageRepositoryResolutionPending 661

Overview of Application Live View 662

Value proposition 662

Intended audience 662

Supported application platforms 662

Multicloud compatibility 662

Deployment 662

Overview of Application Live View 662

Tanzu Application Platform v1.4

VMware by Broadcom 41

Value proposition 663

Intended audience 663

Supported application platforms 663

Multicloud compatibility 663

Deployment 663

Install Application Live View 663

Overview 663

Prerequisites 664

Install Application Live View 664

Install Application Live View back end 664

Install Application Live View connector 667

Install Application Live View conventions 669

Deprecate the sslDisabled key 671

Enabling Spring Boot apps for Application Live View 671
Enable Spring Boot apps 671

Enable Spring Cloud Gateway apps 671

Workload image NOT built with Tanzu Build Service 672

Enabling Spring Boot apps for Application Live View 672
Enable Spring Boot apps 672

Enable Spring Cloud Gateway apps 673

Workload image NOT built with Tanzu Build Service 673

Enable Steeltoe apps for Application Live View 674

Extend .NET Core Apps to Steeltoe Apps 674

Enable Application Live View on Steeltoe Tanzu Application Platform workload 675

Application Live View convention server 675
Role of Application Live View convention 675

Description of metadata labels 676

Verify the applied labels and annotations 676

Custom configuration for the connector 678

Configure the developer workload in Tanzu Application Platform 679

Deploy the workload 679

Verify the label has propagated through the Supply Chain 679

Custom configuration for application actuator endpoints 681

Scaling Knative apps in Tanzu Application Platform 684
Configure the developer workload in Tanzu Application Platform 684

Deploy the workload 685

Verify the annotation has propagated through the Supply Chain 685

Tanzu Application Platform v1.4

VMware by Broadcom 42

Application Live View on OpenShift 686

Support for polyglot apps with Application Live View 687

Application Live View internal architecture 687

Component overview 687

Design flow 688

Troubleshoot Application Live View 688

App is not visible in Application Live View UI 689

App is not visible in Application Live View UI with actuator endpoints enabled 689

The UI does not show any information for an app with actuator endpoints exposed at root 690

No information shown on the Health page 690

Stale information in Application Live View 690

Unable to find CertificateRequests in Application Live View convention 691

No live information for pod with ID 691

Cannot override the actuator path in the labels 691

Cannot configure SSL in appliveview-connector 691

Verify the labels in your workload YAML file 692

Override labels set by the Application Live View convention service 692

Configure labels when management.endpoints.web.base-path and

management.server.port are set
693

Uninstall Application Live View 693

Overview of Application Single Sign-On for VMware Tanzu® 3.0.0 693

Overview of Application Single Sign-On for VMware Tanzu® 3.0.0 694

Get started with Application Single Sign-On 694

Prerequisites 694

Key concepts 694

Next steps 695

Get started with Application Single Sign-On 695

Prerequisites 696

Key concepts 696

Next steps 697

Provision an AuthServer 697
Prerequisites 697

Provision an AuthServer 697

The AuthServer spec in detail 699

Metadata 699

TLS & issuer URI 699

Tanzu Application Platform v1.4

VMware by Broadcom 43

Token Signature 700

Identity providers 700

Configuring storage 701

Provision a client registration 701
Prerequisites 701

Creating the ClientRegistration 701

Validating that the credentials are working 702

Deploy an application with Application Single Sign-On 703
Prerequisites 703

Deploy a minimal application 703

Deployment manifest 706

OAuth2-Proxy 706

Application Single Sign-On for Platform Operators 706

Application Single Sign-On for Platform Operators 706

Install Application Single Sign-On 707
What’s inside 707

Prerequisites 707

Installation 707

Configure Application Single Sign-On 707

TAP values 707

domain_name 708

domain_template 708

default_authserver_clusterissuer 708

ca_cert_data 708

kubernetes_distribution 709

Configuration schema 709

RBAC for Application Single Sign-On 710

Application Single Sign-On for OpenShift clusters 712

Upgrade Application Single Sign-On 713

Migration guides 713

v2.0.0 to v3.0.0 713

v1.0.0 to v2.0.0 714

Uninstall Application Single Sign-On 715

Application Single Sign-On for Service Operators 715

Tanzu Application Platform v1.4

VMware by Broadcom 44

Application Single Sign-On for Service Operators 715

Annotations and labels for AppSSO 716
Labels 716

Allowing client namespaces 716

Unsafe configuration 717

Unsafe identity provider 717

Unsafe issuer URI 717

Issuer URI and TLS for AppSSO 718
Overview 718

Configure TLS by using a (Cluster)Issuer 719

Configure TLS by using a Certificate 719

Configure TLS by using a Secret 720

Deactivate TLS (unsafe) 721

Allow Workloads to trust a custom CA AuthServer 721

TLS scenario guides for AppSSO 722
Overview 722

Prerequisites 722

Using a default issuer 722

Using a ClusterIssuer 723

Using an Issuer 725

Using an existing Certificate 726

Using an existing TLS certificate 728

Using an existing wildcard TLS certificate 731

CA certificates for AppSSO 734

Configure workloads to trust a custom CA 735
Overview 735

Exporting custom CA certificate Secret 736

Importing custom CA certificate Secret 736

Appending custom CA certificate Secret reference to Workload 737

Identity providers for AppSSO 737
OpenID Connect providers 738

Note for registering a client with the identity provider 739

Supported token signing algorithms 739

LDAP 739

ActiveDirectory group search 740

“Classic” group search 741

Direct group search only 742

Groups in sub-trees 743

Tanzu Application Platform v1.4

VMware by Broadcom 45

Nested group search 744

SAML (experimental) 745

Note for registering a client with the identity provider 745

Internal users 745

Generating a bcrypt hash from a plain-text password 746

Restrictions 746

Token signatures for AppSSO 747
Overview 747

Token signature 101 747

Token signature of an AuthServer 747

Creating keys 748

Using secretgen-controller 749

Using OpenSSL 750

Rotating keys 751

Revoking keys 751

References and further reading 752

Token settings for Application Single Sign-On 752
Token expiry 752

Constraints 753

Verify token settings 753

Storage for AppSSO 757
Overview 757

Securing Data at rest 757

Configuring Redis 757

Configuring Redis Server CA certificate 758

Configuring a Redis Secret 758

Attaching storage to an AuthServer 759

Inspecting storage of an AuthServer 759

Storage provided by default 759

Data types 760

Known limitations of storage providers 760

Redis Cluster 760

AuthServer readiness for AppSSO 761
Client registration check 761

Prerequisites 761

Define and apply a test client 761

Get an access token 762

Scale AuthServer for AppSSO 762

Tanzu Application Platform v1.4

VMware by Broadcom 46

AuthServer audit logs for AppSSO 762
Overview 762

Authentication 763

Token flows 763

Application Single Sign-On for App Operators 764

Application Single Sign-On for App Operators 764

Register a workload 765
Topics 765

Client registration 765

Workloads 765

Prerequisites 765

Configuring a Workload with AppSSO 765

Create and apply a ClientRegistration resource 766

Add a service resource claim to your Workload 766

Configure grant types 768
Topics 768

Client Credentials Grant Type 768

Authorization Code Grant Type 769

Secure a workload 771

Prerequisites 771

Getting started 771

Understanding the sample application 771

The sample application’s ClientRegistration 772

Understanding Workloads 773

Deploying the sample application as a Workload 773

Create workload namespace 773

Apply required TAP workload configurations 773

Apply the ClientRegistration 773

Create a ClientRegistration service resource claim for the workload 774

(Optional) Ensure Workload trusts AuthServer 774

Deploy the workload 774

Cleaning up 775

ClientRegistration API for AppSSO 775
Spec 776

Status & conditions 776

Example 778

Configuring public clients 778

Tanzu Application Platform v1.4

VMware by Broadcom 47

ClientRegistration API for AppSSO 779
Spec 779

Status & conditions 780

Example 781

Configuring public clients 782

AuthServer API for AppSSO 782

Spec 783

Status & conditions 785

RBAC 787

Example 787

Troubleshoot Application Single Sign-on 789
Why is my AuthServer not working? 789

Find all AuthServer-related Kubernetes resources 789

Logs of all AuthServers 789

Change propagation 789

My Service is not selecting the authorization server’s Deployment 789

Redirect URIs are redirecting to http instead of https with a non-internal identity provider 789

Misconfigured clientSecret 789

Problem: 789

Solution: 790

Misconfigured redirect URI 790

Problem: 790

Solution: 790

Unsupported id_token_signed_response_alg with openid identityProviders 790

Problem: 790

Solution: 790

Misconfigured identity provider clientSecret 790

Problem: 790

Solution: 790

Missing scopes 791

Problem: 791

Solution: 791

Misconfigured sub claim 791

Problem: 791

Solution: 791

Known Issues 791
Unregistration by deletion 791

Limited number of ClientRegistrations per AuthServer 791

LetsEncrypt: domain name for Issuer URI limited to 64 characters maximum 791

Redirect URIs change to http instead of https 792

Tanzu Application Platform v1.4

VMware by Broadcom 48

AuthServer only supports response_type=code 792

Overview of Convention Service for VMware Tanzu 792
Sample conventions 793

Overview of Cartographer Conventions 794
Overview 794

About applying conventions 794

Applying conventions by using image metadata 794

Applying conventions without using image metadata 795

Overview of Cartographer Conventions 795
Overview 795

About applying conventions 796

Applying conventions by using image metadata 796

Applying conventions without using image metadata 796

Install Cartographer Conventions 796

Create conventions with Cartographer Conventions 796
Introduction 796

Convention server 797

How the convention server works 797

Convention controller 798

How the convention controller works 798

Getting started 799

Prerequisites 799

Define convention criteria 799

Define the convention behavior 802

Matching criteria by labels or annotations 802

Matching criteria by environment variables 803

Matching criteria by image metadata 803

Configure and install the convention server 804

Deploy a convention server 806

Next Steps 809

Troubleshoot Cartographer Conventions 809
No server in the cluster 809

Symptoms 809

Cause 809

Solution 809

Server with wrong certificates configured 809

Symptoms 809

Cause 810

Tanzu Application Platform v1.4

VMware by Broadcom 49

Solution 810

Server fails when processing a request 810

Symptoms 810

Cause 811

Solution 811

Connection refused due to unsecured connection 811

Symptoms 811

Cause 812

Solution 812

Self-signed certificate authority (CA) not propagated to the Convention Service 813

Symptoms 813

Cause 813

Solution 813

No imagePullSecrets configured 813

Symptoms 813

Cause 813

Solution 813

Convention Service Resources for Cartographer Conventions 813
Overview 813

API Structure 814

Template Status 814

Chaining Multiple Conventions 814

Collecting Logs from the Controller 814

References 814

Convention Service Resources for Cartographer Conventions 815
Overview 815

API Structure 815

Template Status 815

Chaining Multiple Conventions 815

Collecting Logs from the Controller 815

References 816

ImageConfig for Cartographer Conventions 816

Overview 816

PodConventionContextSpec for Cartographer Conventions 817
Overview 817

PodConventionContextStatus for Cartographer Conventions 818
Overview 818

PodConventionContext for Cartographer Conventions 819

Tanzu Application Platform v1.4

VMware by Broadcom 50

Overview 819

PodConventionContext Objects 819

PodConventionContext Structure 820

ClusterPodConvention for Cartographer Conventions 820
Overview 820

Define conventions 820

PodIntent for Cartographer Conventions 820
Overview 821

BOM for Cartographer Conventions 821
Overview 821

Structure 821

Overview of cert-manager 822

Overview of cert-manager 822

Install cert-manager 822

Overview of Cloud Native Runtimes 825

Overview of Cloud Native Runtimes 825

Install Cloud Native Runtimes 825
Prerequisites 826

Install 826

Overview of Contour 829

Overview of Contour 829

Install Contour 829

Configure Cipher Suites and TLS version in Contour 833

Configure Contour 834
Smaller Clusters 834

Larger Clusters 835

Configuring Envoy as a Deployment 835

Overview of Eventing 835

Overview of Eventing 835

Install Eventing 835
Prerequisites 835

Tanzu Application Platform v1.4

VMware by Broadcom 51

Install 835

Namespace Provisioner 837
Description 837

Component Overview 837

Provisioner Carvel Application 838

Desired Namespaces ConfigMap 838

Example 839

Namespace Provisioner Controller 839

Default Resources Secret 839

Expansion Template ConfigMap 840

Install Namespace Provisioner 840
Install using a Profile 840

Customized Installation 840

Provision namespace resources 841
Using Namespace Provisioner Controller 841

Prerequisites 841

Provision a new developer namespace 842

Using GitOps 843

Prerequisites 843

Customize Namespace Provisioner 843
Data values templating guide 843

GitOps Customizations 844

Extending the default provisioned resources 844

Add the resources required by the Out of the Box Testing and Scanning Supply Chain 845

Customizing the default resources that get provisioned 846

Control the Namespace Provisioner reconcile behavior for specific resources 847

Control the desired-namespaces ConfigMap with GitOps 847

Prerequisites 847

Troubleshoot Namespace Provisioner 848

Controller logs 848

Provisioner application error 848

Common errors 849

Namespace selector malformed 849

Carvel-YTT error in additional_sources 849

Unable to delete namespace 850

Namespace Provisioner Reference Guide 850
Known Limitations 851

Default resources mapping 851

Tanzu Application Platform v1.4

VMware by Broadcom 52

Overview of Spring Boot conventions 852

Overview of Spring Boot conventions 852

Install Spring Boot conventions 853

Prerequisites 853

Install Spring Boot conventions 853

Configure and access Spring Boot actuators in Tanzu Application
Platform

854

Workload-level configuration 855

Platform-level configuration 856

Enable Application Live View for Spring Boot applications 856
Verify the applied labels and annotations 857

List of Spring Boot conventions 861
Set a JAVA_TOOL_OPTIONS property for a workload 861

Spring Boot convention 862

Spring boot graceful shut down convention 863

Spring Boot web convention 864

Spring Boot Actuator convention 865

Spring Boot Actuator Probes convention 866

Service intent conventions 867

Example 868

Troubleshoot Spring Boot conventions 869
Collect logs 869

Overview of Service Bindings 870

Supported service binding specifications 870

Overview of Service Bindings 870
Supported service binding specifications 870

Install Service Bindings 871

Prerequisites 871

Install Service Bindings 871

Troubleshoot Service Bindings 872

Collect logs 872

Service Bindings resource specification 874

Overview of Services Toolkit 874

Overview of Services Toolkit 875

Tanzu Application Platform v1.4

VMware by Broadcom 53

Install Services Toolkit 875
Prerequisites 875

Install Services Toolkit 875

Overview of Flux CD Source Controller 876

Overview of Flux CD Source Controller 876

Install Flux CD Source Controller 876

Prerequisites 876

Configuration 877

Installation 877

Try fluxcd-source-controller 878

Documentation 879

Overview of Source Controller 879

Overview of Source Controller 880

Install Source Controller 880
Prerequisites 880

Install 880

Troubleshoot Source Controller 882
Collecting Logs from Source Controller Manager 882

Source Controller reference 883

ImageRepository 883

MavenArtifact 884

Overview of Developer Conventions 885

Prerequisites 885

Features 885

Enabling Live Updates 885

Enabling debugging 885

Next steps 886

Overview of Developer Conventions 886
Prerequisites 886

Features 886

Enabling Live Updates 886

Enabling debugging 887

Next steps 887

Install Developer Conventions 887
Prerequisites 888

Tanzu Application Platform v1.4

VMware by Broadcom 54

Install 888

Resource limits 888

Uninstall 889

Run Developer Conventions on an OpenShift cluster 889

Overview of Learning Center for Tanzu Application Platform 889
Use cases 890

Use case requirements 890

Platform architectural overview 891

Next steps 892

Overview of Learning Center for Tanzu Application Platform 893

Use cases 893

Use case requirements 893

Platform architectural overview 894

Next steps 895

Install Learning Center 896
Prerequisites 896

Install Learning Center 896

Install the Self-Guided Tour Training Portal and Workshop 898

Supported Learning Center Values Configuration 898

About Learning Center workshops 900

Get started with Learning Center 902
Installing Learning Center 902

Get started 903

Get started with Learning Center 903
Installing Learning Center 903

Get started 903

Install and configure the Learning Center operator 903
Installing and setting up Learning Center operator 903

Cluster pod security policies 904

Specifying the ingress domain 904

Set the environment variable manually 905

Enforcing secure connections 905

Configuration YAML 906

Create the TLS secret manually 906

Specifying the ingress class 906

Configuration YAML 907

Set the environment variable manually 907

Tanzu Application Platform v1.4

VMware by Broadcom 55

Trusting unsecured registries 907

Get started with Learning Center workshops 908
Creating the workshop environment 908

Requesting a workshop instance 908

Deleting the workshop instance 909

Deleting the workshop environment 910

Get started with Learning Center training portals 910
Working with multiple workshops 910

Loading the workshop definition 910

Creating the workshop training portal 911

Accessing workshops via the web portal 913

Deleting the workshop training portal 914

Delete Learning Center 914

Local install guides 915

Local install guides 915

Install Learning Center on Kind 915

Prerequisites 915

Kind cluster creation 916

Ingress controller with DNS 916

Install carvel tools 917

Install Tanzu package repository 917

Create a configuration YAML file for Learning Center package 918

Using a nip.io DNS address 918

Install Learning Center package onto a Kubernetes cluster 919

Install workshop tutorial package onto a Kubernetes cluster 919

Run the workshop 919

Trusting insecure registries 919

Install Learning Center on Minikube 920
Trusting insecure registries 921

Prerequisites 921

Ingress controller with DNS 921

Install carvel tools 922

Install Tanzu package repository 922

Create a configuration YAML file for the Learning Center package 923

Using a nip.io DNS address 923

Install Learning Center package onto a minikube cluster 924

Install workshop tutorial package onto a minikube cluster 924

Tanzu Application Platform v1.4

VMware by Broadcom 56

Run the workshop 924

Working with large images 924

Limited resource availability 924

Storage provisioner issue 925

Create workshops for Learning Center 925

Create workshops for Learning Center 925

Configure your Learning Center workshop 926
Specifying structure of the content 926

Specifying the runtime configuration 927

Next steps 928

Create the image for your Learning Center workshop 928
Templates for creating a workshop 928

Workshop content directory layout 929

Directory for workshop exercises 930

Working on your Learning Center workshop content 930
Deactivating reserved sessions 930

Live updates to the content 931

Custom workshop image changes 932

Custom workshop image overlay 932

Changes to workshop definition 933

Local build of workshop image 933

Build an image for your Learning Center workshop 934

Structure of the Dockerfile 934

Custom workshop base images 934

Installing extra system packages 935

Installing third-party packages 935

Writing instructions for your Learning Center workshop 936
Annotation of executable commands 936

Annotation of text to be copied 937

Extensible clickable actions 938

Supported workshop editor 940

Clickable actions for the dashboard 940

Clickable actions for the editor 941

Clickable actions for file download 943

Clickable actions for the examiner 944

Clickable actions for sections 946

Overriding title and description 947

Tanzu Application Platform v1.4

VMware by Broadcom 57

Escaping of code block content 947

Interpolation of data variables 947

Adding custom data variables 948

Passing environment variables 949

Handling embedded URL links 949

Conditional rendering of content 950

Embedding custom HTML content 950

Automate your Learning Center workshop runtime 951
Predefined environment variables 951

Running steps on container start 952

Running background applications 952

Terminal user shell environment 953

Overriding terminal shell command 953

Add presenter slides to your Learning Center workshop 954
Use reveal.js presentation tool 954

Use a PDF file for presenter slides 954

Requirements for Learning Center in an air-gapped environment 954
Workshop yaml changes 954

Self-signed certificates 955

Internet dependencies 955

Define custom resources for Learning Center 955
Workshop definition resource 955

Workshop environment resource 956

Workshop request resource 956

Workshop session resource 957

Training portal resource 957

System profile resource 957

Loading the workshop CRDs 958

Define custom resources for Learning Center 958

Workshop definition resource 958

Workshop environment resource 959

Workshop request resource 960

Workshop session resource 960

Training portal resource 960

System profile resource 961

Loading the workshop CRDs 961

Configure the Workshop resource 961
Workshop title and description 962

Tanzu Application Platform v1.4

VMware by Broadcom 58

Downloading workshop content 963

Container image for the workshop 965

Setting environment variables 966

Overriding the memory available 967

Mounting a persistent volume 967

Resource budget for namespaces 968

Patching workshop deployment 970

Creation of session resources 971

Overriding default role-based access control (RBAC) rules 972

Running user containers as root 974

Creating additional namespaces 974

Shared workshop resources 977

Workshop pod security policy 978

Custom security policies for user containers 980

Defining additional ingress points 981

External workshop instructions 983

Deactivating workshop instructions 984

Enabling the Kubernetes console 984

Enabling the integrated editor 985

Enabling workshop downloads 986

Enabling the test examiner 986

Enabling session image registry 987

Enabling ability to use Docker 989

Enabling WebDAV access to files 990

Customizing the terminal layout 991

Adding custom dashboard tabs 991

Configure the WorkshopEnvironment resource 992
Specifying the workshop definition 993

Overriding environment variables 993

Overriding the ingress domain 994

Controlling access to the workshop 995

Overriding the login credentials 996

Additional workshop resources 996

Creation of workshop instances 997

Configure the WorkshopRequest resource 998

Specifying workshop environment 998

Specifying required access token 999

Configure the TrainingPortal resource 999

Specifying the workshop definitions 999

Limit the number of sessions 1000

Tanzu Application Platform v1.4

VMware by Broadcom 59

Capacity of individual workshops 1000

Set reserved workshop instances 1001

Override initial number of sessions 1001

Setting defaults for all workshops 1002

Set caps on individual users 1002

Expiration of workshop sessions 1003

Updates to workshop environments 1004

Override the ingress domain 1005

Override the portal host name 1006

Set extra environment variables 1007

Override portal credentials 1007

Control registration type 1008

Specify an event access code 1009

Make a list of workshops public 1009

Use an external list of workshops 1010

Override portal title and logo 1010

Allow the portal in an iframe 1011

Collect analytics on workshops 1011

Track using Google Analytics 1013

Configure the SystemProfile resource 1014
Operator default system profile 1014

Defining configuration for ingress 1014

Defining container image registry pull secrets 1015

Defining storage class for volumes 1015

Defining storage group for volumes 1016

Restricting network access 1017

Running Docker daemon rootless 1017

Overriding network packet size 1018

Image registry pull through cache 1019

Setting default access credentials 1020

Overriding the workshop images 1020

Tracking using Google Analytics 1021

Overriding styling of the workshop 1022

Additional custom system profiles 1023

Configure the WorkshopSession resource 1023

Specifying the session identity 1023

Specifying the login credentials 1024

Specifying the ingress domain 1024

Setting the environment variables 1025

Enable anonymous access to a Learning Center training portal 1026

Tanzu Application Platform v1.4

VMware by Broadcom 60

Enabling anonymous access 1026

Triggering workshop creation 1027

Enable anonymous access to a Learning Center training portal 1027

Enabling anonymous access 1028

Triggering workshop creation 1028

Use the Learning Center workshop catalog 1029

Listing available workshops 1029

Use session management for your Learning Center workshops 1030
Deactivating portal user registration 1031

Requesting a workshop session 1031

Associating sessions with a user 1032

Listing all workshop sessions 1033

Use client authentication for Learning Center 1034

Querying the credentials 1034

Requesting an access token 1035

Refreshing the access token 1035

Troubleshoot Learning Center 1036
Training portal stays in pending state 1036

image-policy-webhook-service not found 1036

Updates to Tanzu Application Platform values file not reflected in Learning Center Training

Portal
1036

Increase your cluster’s resources 1037

Kubernetes Api Timeout error 1037

No URL returned to your trainingportal 1038

Overview of Supply Chain Choreographer for Tanzu 1038
Overview 1038

Out of the Box Supply Chains 1038

Overview of Supply Chain Choreographer for Tanzu 1039
Overview 1039

Out of the Box Supply Chains 1039

Install Supply Chain Choreographer 1039
Prerequisites 1040

Install 1040

Out of the Box Supply Chain Basic 1041
Prerequisites 1041

Developer Namespace 1041

Tanzu Application Platform v1.4

VMware by Broadcom 61

Registries Secrets 1041

ServiceAccount 1042

RoleBinding 1043

Developer workload 1044

Out of the Box Supply Chain Basic 1044
Prerequisites 1044

Developer Namespace 1045

Registries Secrets 1045

ServiceAccount 1046

RoleBinding 1046

Developer workload 1047

Install Out of the Box Supply Chain Basic 1047
Prerequisites 1048

Install 1048

Out of the Box Supply Chain with Testing 1050
Prerequisites 1051

Developer Namespace 1051

Updates to the developer Namespace 1052

Tekton/Pipeline 1052

Allow multiple Tekton pipelines in a namespace 1053

Developer Workload 1054

Out of the Box Supply Chain with Testing 1055

Prerequisites 1055

Developer Namespace 1056

Updates to the developer Namespace 1056

Tekton/Pipeline 1056

Allow multiple Tekton pipelines in a namespace 1057

Developer Workload 1058

Install Out of the Box Supply Chain with Testing 1059

Prerequisites 1059

Install 1059

Out of the Box Supply Chain with Testing and Scanning 1062

Prerequisites 1063

Developer namespace 1063

Updates to the developer namespace 1064

ScanPolicy 1065

ScanTemplate 1066

Enable storing scan results 1066

Tanzu Application Platform v1.4

VMware by Broadcom 62

Allow multiple Tekton pipelines in a namespace 1066

Developer workload 1068

CVE triage workflow 1068

Scan Images using a different scanner 1068

Out of the Box Supply Chain with Testing and Scanning 1069
Prerequisites 1069

Developer namespace 1070

Updates to the developer namespace 1070

ScanPolicy 1071

ScanTemplate 1072

Enable storing scan results 1072

Allow multiple Tekton pipelines in a namespace 1073

Developer workload 1074

CVE triage workflow 1074

Scan Images using a different scanner 1075

Install Out of the Box Supply Chain with Testing and Scanning 1075

Prerequisites 1075

Install 1075

Out of the Box Templates for Supply Chain Choreographer 1078

Out of the Box Templates for Supply Chain Choreographer 1079

Install Out of the Box Templates 1079
Prerequisites 1080

Install 1080

Out of the Box Delivery Basic 1080
Prerequisites 1081

Using Out of the Box Delivery Basic 1081

More information 1081

Out of the Box Delivery Basic 1081
Prerequisites 1082

Using Out of the Box Delivery Basic 1082

More information 1082

Install Out of the Box Delivery Basic 1083

Prerequisites 1083

Install 1083

How-to guides for Supply Chain Choreographer for Tanzu 1084

How-to guides 1084

Tanzu Application Platform v1.4

VMware by Broadcom 63

Out of the Box Supply Chain with testing on Jenkins 1084
Prerequisites 1084

Making a Jenkins test job 1084

Example Jenkins Job 1085

Updates to the developer namespace 1086

Create a secret 1086

Create a Tekton pipeline 1087

Patch the Service Account 1088

Developer Workload 1088

Building container images with Supply Chain Choreographer 1090

Methods for building container images 1090

Building from source with Supply Chain Choreographer 1090
Git source 1091

Private GitRepository 1091

HTTP(S) Basic-authentication and Token-based authentication 1093

SSH authentication 1093

How it works 1094

Workload parameters 1095

Local source 1095

Authentication 1096

Developer 1096

Supply chain components 1096

How it works 1096

Maven Artifact 1097

Maven Repository Secret 1098

Use Dockerfile-based builds with Supply Chain Choreographer 1098

Use Dockerfile-based builds with Supply Chain Choreographer 1099
OpenShift 1100

Tanzu Build Service integration for Supply Chain Choreographer 1100

Use an existing image with Supply Chain Choreographer 1102
Requirements for prebuilt images 1102

Configure your workload to use a prebuilt image 1103

Examples 1103

Using a Dockerfile 1104

Using Spring Boot’s build-image Maven target 1105

About Out of the Box Supply Chains 1106

Understanding the supply chain for a prebuilt image 1107

Tanzu Application Platform v1.4

VMware by Broadcom 64

Git authentication 1108
HTTP 1108

SSH 1109

Read more on Git 1111

Author your supply chains 1111
Providing your own supply chain 1111

Providing your own templates 1112

Modifying an Out of the Box Supply Chain 1113

Example 1113

Modifying an Out of the Box Supply template 1115

Example 1115

Live modification of supply chains and templates 1116

Adding custom behavior to Supply Chains 1117

Reference guides for Supply Chain Choreographer for Tanzu 1118
Reference guides 1118

Events reference for Supply Chain Choreographer 1118

Events 1118

StampedObjectApplied 1118

StampedObjectRemoved 1118

ResourceOutputChanged 1118

ResourceHealthyStatusChanged 1119

Workload Reference for Supply Chain Choreographer 1119

Standard Fields 1119

Labels 1119

Parameters 1119

Service Account 1121

Supply chains 1121
Source-to-URL 1121

Purpose 1121

Resources 1121

source-provider 1121

image-provider 1121

Common resources 1122

Parameters provided to all resources 1122

Package 1122

More information 1122

Source-Test-to-URL 1122

Resources 1122

Tanzu Application Platform v1.4

VMware by Broadcom 65

source-provider 1122

source-tester 1122

image-provider 1123

Common resources 1123

Parameters provided to all resources 1123

Package 1123

More information 1123

Source-Test-Scan-to-URL 1123

Resources 1124

source-provider 1124

source-tester 1124

source-scanner 1124

image-provider 1124

image-scanner 1124

Common resources 1124

Parameters provided to all resources 1125

Package 1125

More information 1125

Basic-Image-to-URL 1125

Resources 1125

image-provider 1125

Common resources 1125

Parameters provided to all resources 1125

Package 1126

More information 1126

Testing-Image-to-URL 1126

Resources 1126

image-provider 1126

Common resources 1126

Parameters provided to all resources 1126

Package 1126

More information 1126

Scanning-image-scan-to-URL 1126

Resources 1127

image-provider 1127

image-scanner 1127

Common resources 1127

Parameters provided to all resources 1127

Package 1127

More information 1127

Source-to-URL-Package (experimental) 1127

Purpose 1127

Tanzu Application Platform v1.4

VMware by Broadcom 66

Resources 1127

source-provider 1128

image-provider 1128

carvel-package 1128

package-config-writer 1128

Common resources 1128

Parameters provided to all resources 1128

Package 1129

More information 1129

Basic-Image-to-URL-Package (experimental) 1129

Resources 1129

image-provider 1129

carvel-package 1129

package-config-writer 1129

Common resources 1129

Parameters provided to all resources 1130

Package 1130

More information 1130

Resources common to all OOTB supply chains 1130

config-provider 1130

app-config 1130

service-bindings 1130

api-descriptors 1131

config-writer 1131

deliverable 1131

Parameters provided by all supply chains to all resources 1131

Template reference for Supply Chain Choreographer 1131
source-template 1132

Purpose 1132

Used by 1132

Creates 1132

GitRepository 1132

Parameters 1132

Template reference for Supply Chain Choreographer 1132
More information 1133

ImageRepository 1133

Parameters 1133

More information 1133

MavenArtifact 1134

Parameters 1134

Tanzu Application Platform v1.4

VMware by Broadcom 67

More information 1134

testing-pipeline 1134

Purpose 1135

Used by 1135

Creates 1135

Parameters 1135

More information 1135

source-scanner-template 1135

Purpose 1136

Used by 1136

Creates 1136

Parameters 1136

More information 1136

image-provider-template 1136

Purpose 1136

Used by 1136

Creates 1137

Parameters 1137

More information 1137

kpack-template 1137

Purpose 1137

Used by 1137

Creates 1137

Parameters 1137

More information 1138

kaniko-template 1138

Purpose 1138

Used by 1139

Creates 1139

Parameters 1139

More information 1139

image-scanner-template 1140

Purpose 1140

Used by 1140

Creates 1140

Parameters 1140

More information 1140

convention-template 1140

Purpose 1140

Used by 1140

Creates 1141

Parameters 1141

Tanzu Application Platform v1.4

VMware by Broadcom 68

More information 1142

config-template 1142

Purpose 1142

Used by 1142

Creates 1142

Parameters 1142

More information 1142

worker-template 1143

Purpose 1143

Used by 1143

Creates 1143

Parameters 1143

More information 1143

server-template 1143

Purpose 1143

Used by 1143

Creates 1143

Parameters 1144

More information 1144

service-bindings 1144

Purpose 1144

Used by 1144

Creates 1144

Parameters 1144

More information 1145

api-descriptors 1145

Purpose 1145

Used by 1145

Creates 1145

Parameters 1145

More information 1146

config-writer-template 1146

Purpose 1146

Used by 1146

Creates 1146

Parameters 1146

More information 1148

config-writer-and-pull-requester-template 1148

Purpose 1148

Used by 1148

Creates 1148

Parameters 1148

Tanzu Application Platform v1.4

VMware by Broadcom 69

More information 1150

deliverable-template 1150

Purpose 1150

Used by 1150

Creates 1150

Parameters 1151

More information 1152

external-deliverable-template 1152

Purpose 1152

Used by 1152

Creates 1152

Parameters 1153

More information 1154

delivery-source-template 1154

Purpose 1154

Used by 1154

Creates 1154

GitRepository 1154

Parameters 1155

More information 1155

ImageRepository 1155

Parameters 1155

More information 1155

app-deploy 1156

Purpose 1156

Used by 1156

Creates 1156

Parameters 1156

More information 1156

carvel-package (experimental) 1156

Purpose 1156

Used by 1156

Creates 1157

Parameters 1157

More information 1161

package-config-writer-template (experimental) 1161

Purpose 1161

Used by 1161

Creates 1161

Parameters 1161

More information 1163

package-config-writer-and-pull-requester-template (experimental) 1163

Tanzu Application Platform v1.4

VMware by Broadcom 70

Purpose 1164

Used by 1164

Creates 1164

Parameters 1164

More information 1166

ClusterRunTemplate reference 1166

tekton-source-pipelinerun 1166

Purpose 1166

Used by 1166

Creates 1166

Inputs 1166

ClusterRunTemplate reference 1166
More information 1167

tekton-taskrun 1167

Purpose 1167

Used by 1167

Creates 1167

Inputs 1167

commit-and-pr-pipelinerun 1167

Purpose 1168

Used by 1168

Creates 1168

Inputs 1168

More information 1169

Delivery reference 1169
delivery-basic 1169

Purpose 1169

Resources 1169

source-provider 1169

Deployer 1169

Package 1169

More information 1169

Git 1169
Supported Git Repositories 1170

Related Articles 1170

GitOps versus RegistryOps 1170
GitOps 1170

Examples 1171

Tanzu Application Platform v1.4

VMware by Broadcom 71

Deprecated parameters 1172

Examples 1173

Pull requests 1174

Authentication 1174

Authentication 1175

HTTP(S) Basic-auth or Token-based authentication 1175

SSH 1176

GitOps workload parameters 1177

Read more on Git 1178

RegistryOps 1178

Overview of Supply Chain Security Tools - Scan 1178
Overview 1178

Language support 1179

Use cases 1179

Supply Chain Security Tools - Scan features 1179

A Note on Vulnerability Scanners 1179

Missed CVEs 1179

False positives 1180

Overview of Supply Chain Security Tools - Scan 1181

Overview 1181

Language support 1181

Use cases 1181

Supply Chain Security Tools - Scan features 1181

A Note on Vulnerability Scanners 1181

Missed CVEs 1182

False positives 1182

Install Supply Chain Security Tools - Scan 1183
Prerequisites 1183

Configure properties 1183

Install 1185

Option 1: Install to multiple namespaces with the Namespace Provisioner 1185

Option 2: Install manually to each individual namespace 1185

Upgrade Supply Chain Security Tools - Scan 1189
Prerequisites 1189

General Upgrades for SCST - Scan 1189

Upgrading a scanner in all namespaces 1189

Installation by using Namespace Provisioner 1189

Manual installation 1189

Upgrade to Version v1.2.0 1190

Tanzu Application Platform v1.4

VMware by Broadcom 72

Install another scanner for Supply Chain Security Tools - Scan 1193
Prerequisites 1193

Install 1193

Verify Installation 1195

Install scanner to multiple namespaces 1198

Configure Tanzu Application Platform Supply Chain to use new scanner 1198

Uninstall Scanner 1199

Other Available Scanner Integrations 1199

Prerequisites for Snyk Scanner for Supply Chain Security Tools - Scan
(Beta)

1200

Prepare the Snyk Scanner configuration 1200

Supply Chain Security Tools - Store integration 1201

Sample ScanPolicy for Snyk in SPDX JSON format 1202

Prerequisites for Carbon Black Scanner for Supply Chain Security Tools -
Scan(Beta)

1203

Prepare the Carbon Black Scanner configuration 1203

Supply Chain Security Tools - Store integration 1204

Using Supply Chain Security Tools - Store Integration 1204

Without Supply Chain Security Tools - Store Integration 1205

Sample ScanPolicy in CycloneDX format 1205

Prerequisites for Prisma Scanner for Supply Chain Security Tools - Scan
(Alpha)

1206

Verify the latest alpha package version 1206

Relocate images to a registry 1207

Add the Prisma Scanner package repository 1208

Prepare the Prisma Scanner configuration 1209

Obtain Console url and Access Keys/Token 1209

Access key and secret authentication 1209

Access Token Authentication 1210

Create Prisma Secret 1210

Access Token Authentication 1210

Access Key Authentication 1211

Supply Chain Security Tools - Store integration 1212

Multiple Scanners installed 1213

Prisma Only Scanner Installed 1213

No Store Integration 1214

Prepare the ScanPolicy 1214

Sample ScanPolicy using Prisma Policies 1214

Sample ScanPolicy using Local Policies 1215

Install Prisma Scanner 1216

Tanzu Application Platform v1.4

VMware by Broadcom 73

Self-Signed Registry Certificate 1216

Tanzu Application Platform Values Shared CA 1216

Secret within Developer Namespace 1216

Known Limits 1217

Spec reference 1217
About source and image scans 1217

About policy enforcement around vulnerabilities found 1218

Scan samples for Supply Chain Security Tools - Scan 1218

Scan samples for Supply Chain Security Tools - Scan 1218

Sample public image scan with compliance check for Supply Chain
Security Tools - Scan

1218

Public image scan 1218

Define the ScanPolicy and ImageScan 1219

(Optional) Set up a watch 1220

Deploy the resources 1220

View the scan results 1220

Edit the ScanPolicy 1220

Clean up 1220

Sample public source code scan with compliance check for Supply Chain
Security Tools - Scan

1221

Public source scan 1221

Run an example public source scan 1221

Sample private image scan for Supply Chain Security Tools - Scan 1223
Define the resources 1223

Set up target image pull secret 1223

Create the private image scan 1224

(Optional) Set up a watch 1224

Deploy the resources 1224

View the scan results 1225

Clean up 1225

View vulnerability reports 1225

Sample private source scan for Supply Chain Security Tools - Scan 1225
Define the resources 1225

(Optional) Set up a watch 1227

Deploy the resources 1227

View the scan status 1227

Clean up 1227

View vulnerability reports 1227

Tanzu Application Platform v1.4

VMware by Broadcom 74

Sample public source scan of a blob for Supply Chain Security Tools -
Scan

1227

Define the resources 1228

(Optional) Set up a watch 1228

Deploy the resources 1228

View the scan results 1228

Clean up 1228

View vulnerability reports 1228

Using Grype in air-gapped (offline) environments for Supply Chain
Security Tools - Scan

1229

To enable Grype in offline air-gapped environments 1229

Troubleshooting 1229

ERROR failed to fetch latest cli version 1229

Solution 1230

Database is too old 1230

Solution 1230

Grype package overlays are not applied to scantemplates created by Namespace

Provisioner
1231

Solution 1232

Debug Grype database in a cluster 1233

Triage and Remediate CVEs for Supply Chain Security Tools - Scan 1234
Confirm that Supply Chain stopped due to failed policy enforcement 1234

Triage 1234

Remediation 1234

Updating the affected component 1234

Amending the scan policy 1235

Observe Supply Chain Security Tools - Scan 1235
Observability 1235

Troubleshoot Supply Chain Security Tools - Scan 1235

Debugging commands 1235

Debugging Scan pods 1235

Debugging SourceScan and ImageScan 1236

Debugging Scanning within a SupplyChain 1236

Viewing the Scan-Controller manager logs 1236

Restarting Deployment 1236

Troubleshooting scanner to MetadataStore configuration 1237

Insight CLI failed to post scan results to metadata store due to failed certificate verification 1237

Troubleshooting issues 1238

Missing target SSH secret 1238

Missing target image pull secret 1238

Tanzu Application Platform v1.4

VMware by Broadcom 75

Deactivate Supply Chain Security Tools (SCST) - Store 1238

Resolving Incompatible Syft Schema Version 1239

Resolving incompatible scan policy 1239

Could not find CA in secret 1239

Blob Source Scan is reporting wrong source URL 1239

Resolving failing scans that block a Supply Chain 1240

Policy not defined in the Tanzu Application Platform GUI 1240

Lookup error when connecting to SCST - Store 1240

Sourcescan error with SCST - Store endpoint without a prefix 1241

Deprecated pre-v1.2 templates 1241

Incorrectly configured self-signed certificate 1241

Unable to pull scan controller and scanner images from a specified registry 1241

Grype database not available 1242

Configure code repositories and image artifacts for Supply Chain
Security Tools - Scan

1242

Prerequisite 1242

Deploy scan custom resources 1242

SourceScan 1242

ImageScan 1244

Configure code repositories and image artifacts for Supply Chain
Security Tools - Scan

1245

Prerequisite 1245

Deploy scan custom resources 1245

SourceScan 1245

ImageScan 1247

Enforce compliance policy using Open Policy Agent 1248
Writing a policy template 1248

Rego file contract 1248

Define a Rego file for policy enforcement 1249

Further refine the Scan Policy for use 1250

Enable Tanzu Application Platform GUI to view ScanPolicy Resource 1253

Deprecated Rego file Definition 1253

Create a ScanTemplate with Supply Chain Security Tools - Scan 1254
Overview 1254

Output Model 1254

ScanTemplate Structure 1255

Sample Outputs 1255

View scan status conditions for Supply Chain Security Tools - Scan 1256
Viewing scan status 1256

Tanzu Application Platform v1.4

VMware by Broadcom 76

Understanding conditions 1256

Condition types for the scans 1256

Scanning 1256

Succeeded 1256

SendingResults 1257

PolicySucceeded 1257

Understanding CVECount 1257

Understanding MetadataURL 1257

Understanding Phase 1257

Understanding ScannedBy 1258

Understanding ScannedAt 1258

Overview of Supply Chain Security Tools for VMware Tanzu - Policy
Controller

1258

Overview of Supply Chain Security Tools for VMware Tanzu - Policy
Controller

1259

Install Supply Chain Security Tools - Policy Controller 1260
Prerequisites 1260

Install 1261

Install Sigstore Stack 1265
Download Stack Release Files 1265

Migrate Images onto Internal Registry 1265

Copy Release Files to Cluster Accessible Machine 1267

Prepare Patching Fulcio Release File 1267

OIDCIssuer 1267

MetaIssuers 1268

Applying the patch for Fulcio release file 1269

Patch Knative-Serving 1269

Create OIDC Reviewer Binding 1269

Install Trillian 1269

Install Rekor 1270

Install Fulcio 1271

Install Certificate Transparency Log (CTLog) 1271

Install TUF 1272

Update Policy Controller with TUF Mirror and Root 1273

Uninstall Sigstore Stack 1275

Migration From Supply Chain Security Tools - Sign 1275
Enable Policy Controller on Namespaces 1275

Policy Controller ClusterImagePolicy 1275

Excluding Namespaces 1275

Tanzu Application Platform v1.4

VMware by Broadcom 77

Specifying Public Keys 1276

Specifying Image Matching 1277

Specifying policy mode 1278

Configuring Supply Chain Security Tools - Policy 1278
Admission of Images 1278

Including Namespaces 1278

Create a ClusterImagePolicy resource 1279

mode 1279

images 1280

match 1280

authorities 1280

static.action 1282

Provide credentials for the package 1282

Provide secrets for authentication in your policy 1283

Verify your configuration 1283

Overview of Supply Chain Security Tools for VMware Tanzu - Sign 1285

Overview of Supply Chain Security Tools for Tanzu – Store 1285
Overview 1285

Using the Tanzu Insight CLI plug-in 1285

Multicluster configuration 1285

Integrating with Tanzu Application Platform GUI 1285

Additional documentation 1286

Overview of Supply Chain Security Tools for Tanzu – Store 1286
Overview 1286

Using the Tanzu Insight CLI plug-in 1286

Multicluster configuration 1286

Integrating with Tanzu Application Platform GUI 1287

Additional documentation 1287

Configure your target endpoint and certificate for Supply Chain Security
Tools - Store

1287

Overview 1287

Using Ingress 1287

Single Cluster setup 1287

Set Target 1288
Next Step 1288

Additional Resources 1288

Configure your access tokens for Supply Chain Security Tools - Store 1288

Tanzu Application Platform v1.4

VMware by Broadcom 78

Setting the Access Token 1288

Additional Resources 1289

Security details for Supply Chain Security Tools - Store 1289

Application security 1289

TLS encryption 1289

Cryptographic algorithms 1289

Access controls 1289

Authentication 1289

Authorization 1289

Container security 1290

Non-root user 1290

Security scanning 1290

Static Application Security Testing (SAST) 1290

Software Composition Analysis (SCA) 1290

Additional documentation for Supply Chain Security Tools - Store 1291
Use and operate 1291

Troubleshooting and logging 1291

Configuration 1291

Access control 1291

Certificates 1291

Database 1291

Other 1292

Additional documentation for Supply Chain Security Tools - Store 1292
Use and operate 1292

Troubleshooting and logging 1292

Configuration 1292

Access control 1292

Certificates 1292

Database 1292

Other 1293

API reference for Supply Chain Security Tools - Store 1293
Information 1293

Version 1293

Content negotiation 1293

URI Schemes 1293

Consumes 1293

Produces 1293

All endpoints 1293

images 1293

Tanzu Application Platform v1.4

VMware by Broadcom 79

Operations 1293

Packages 1293

Sources 1294

v1artifact_groups 1294

v1images 1294

v1packages 1295

v1sources 1295

v1vulnerabilities 1295

vulnerabilities 1295

Paths 1296

Create an artifact group with specified labels and entity (CreateArtifactGroup) 1296

Parameters 1296

All responses 1296

Responses 1296

201 - ArtifactGroupPostResponse 1296

Schema 1296

400 - ErrorMessage 1296

Schema 1296

Default Response 1296

Schema 1296

Create a new image report. Related packages and vulnerabilities are also created.

(CreateImageReport)
1296

Parameters 1297

All responses 1297

Responses 1297

200 - Image 1297

Schema 1297

Default Response 1297

Schema 1297

Create a new source report. Related packages and vulnerabilities are also created.

(CreateSourceReport)
1297

Parameters 1297

All responses 1297

Responses 1297

200 - Source 1297

Schema 1298

Default Response 1298

Schema 1298

Search image by ID (GetImageByID) 1298

Parameters 1298

All responses 1298

Responses 1298

Tanzu Application Platform v1.4

VMware by Broadcom 80

200 - Image 1298

Schema 1298

404 - ErrorMessage 1298

Schema 1298

Default Response 1298

Schema 1299

List the packages in an image. (GetImagePackages) 1299

Parameters 1299

All responses 1299

Responses 1299

200 - Package 1299

Schema 1299

Default Response 1299

Schema 1299

List packages of the given image. (GetImagePackagesQuery) 1299

Parameters 1299

All responses 1299

Responses 1300

200 - Package 1300

Schema 1300

Default Response 1300

Schema 1300

List vulnerabilities from the given image. (GetImageVulnerabilities) 1300

Parameters 1300

All responses 1300

Responses 1300

200 - Vulnerability 1300

Schema 1300

Default Response 1301

Schema 1301

Search image by id, name or digest . (GetImages) 1301

All responses 1301

Responses 1301

200 - Image 1301

Schema 1301

Default Response 1301

Schema 1301

Search package by ID (GetPackageByID) 1301

Parameters 1301

All responses 1301

Responses 1302

200 - Package 1302

Tanzu Application Platform v1.4

VMware by Broadcom 81

Schema 1302

404 - ErrorMessage 1302

Schema 1302

Default Response 1302

Schema 1302

List the images that contain the given package. (GetPackageImages) 1302

Parameters 1302

All responses 1302

Responses 1302

200 - Image 1302

Schema 1303

Default Response 1303

Schema 1303

List the sources containing the given package. (GetPackageSources) 1303

Parameters 1303

All responses 1303

Responses 1303

200 - Source 1303

Schema 1303

Default Response 1303

Schema 1303

List vulnerabilities from the given package. (GetPackageVulnerabilities) 1303

Parameters 1304

All responses 1304

Responses 1304

200 - Vulnerability 1304

Schema 1304

Default Response 1304

Schema 1304

Search packages by id, name and/or version. (GetPackages) 1304

Parameters 1304

All responses 1304

Responses 1305

200 - Package 1305

Schema 1305

Default Response 1305

Schema 1305

Search source by ID (GetSourceByID) 1305

Parameters 1305

All responses 1305

Responses 1305

200 - Source 1305

Tanzu Application Platform v1.4

VMware by Broadcom 82

Schema 1305

404 - ErrorMessage 1305

Schema 1306

Default Response 1306

Schema 1306

get source packages (GetSourcePackages) 1306

Parameters 1306

All responses 1306

Responses 1306

200 - Package 1306

Schema 1306

Default Response 1306

Schema 1306

List packages of the given source. (GetSourcePackagesQuery) 1306

Parameters 1307

All responses 1307

Responses 1307

200 - Package 1307

Schema 1307

Default Response 1307

Schema 1307

get source vulnerabilities (GetSourceVulnerabilities) 1307

Parameters 1307

All responses 1307

Responses 1307

200 - Vulnerability 1308

Schema 1308

Default Response 1308

Schema 1308

List vulnerabilities of the given source. (GetSourceVulnerabilitiesQuery) 1308

Parameters 1308

All responses 1308

Responses 1308

200 - Vulnerability 1308

Schema 1308

Default Response 1309

Schema 1309

Search for sources by ID, repository, commit sha and/or organization. (GetSources) 1309

Parameters 1309

All responses 1309

Responses 1309

200 - Source 1309

Tanzu Application Platform v1.4

VMware by Broadcom 83

Schema 1309

Default Response 1309

Schema 1309

Search for vulnerabilities by CVE id. (GetVulnerabilities) 1309

Parameters 1310

All responses 1310

Responses 1310

200 - Vulnerability 1310

Schema 1310

Default Response 1310

Schema 1310

Search vulnerability by ID (GetVulnerabilityByID) 1310

Parameters 1310

All responses 1310

Responses 1311

200 - Vulnerability 1311

Schema 1311

404 - ErrorMessage 1311

Schema 1311

Default Response 1311

Schema 1311

List the images that contain the given vulnerability. (GetVulnerabilityImages) 1311

Parameters 1311

All responses 1311

Responses 1311

200 - Image 1311

Schema 1311

Default Response 1312

Schema 1312

List packages that contain the given CVE id. (GetVulnerabilityPackages) 1312

Parameters 1312

All responses 1312

Responses 1312

200 - Package 1312

Schema 1312

Default Response 1312

Schema 1312

List sources that contain the given vulnerability. (GetVulnerabilitySources) 1312

Parameters 1312

All responses 1313

Responses 1313

200 - Source 1313

Tanzu Application Platform v1.4

VMware by Broadcom 84

Schema 1313

Default Response 1313

Schema 1313

health check (HealthCheck) 1313

All responses 1313

Responses 1313

200 1313

Schema 1313

Default Response 1313

Schema 1313

Query for a list of artifact group that contains image(s) with specified digests, and or

source(s) with specified shas. At least one image digest or source sha must be provided.

This query can be further refined by matching images and sources with a specific

combination of package name and/or cve id. (SearchArtifactGroups)

1314

Parameters 1314

All responses 1314

Responses 1314

200 - PaginatedArtifactGroupResponse 1314

Schema 1314

400 - ErrorMessage 1314

Schema 1314

Default Response 1314

Schema 1314

Search for how many artifact groups are affected by vulnerabilities associated with the

specified image(s) digests, and/or source(s) shas. At least one image digest or source

sha must be provided. (SearchArtifactGroupsVulnReach)

1315

Parameters 1315

All responses 1315

Responses 1315

200 - PaginatedArtifactGroupVulnReachResponse 1315

Schema 1315

400 - ErrorMessage 1315

Schema 1315

Default Response 1315

Schema 1315

Search for all vulnerabilities associated with an artifact group that contains image(s) with

specified digests, and/or source(s) with specified shas. At least one image digest or

source sha must be provided. (SearchArtifactGroupsVulnerabilities)

1316

Parameters 1316

All responses 1316

Responses 1316

200 - PaginatedArtifactGroupVulnerabilityResponse 1316

Schema 1316

Tanzu Application Platform v1.4

VMware by Broadcom 85

400 - ErrorMessage 1316

Schema 1316

Default Response 1316

Schema 1316

Query for images. If no parameters are given, this endpoint will return all images.

(V1GetImages)
1316

Parameters 1317

All responses 1317

Responses 1317

200 - PaginatedImageResponse 1317

Schema 1317

404 - ErrorMessage 1317

Schema 1317

Default Response 1317

Schema 1318

Query for packages with images parameters. If no parameters are given, this endpoint

will return all packages related to images. (V1GetImagesPackages)
1318

Parameters 1318

All responses 1318

Responses 1318

200 - PaginatedPackageResponse 1318

Schema 1318

404 - ErrorMessage 1319

Schema 1319

Default Response 1319

Schema 1319

Query for vulnerabilities with image parameters. If no parameters are give, this endpoint

will return all vulnerabilities. (V1GetImagesVulnerabilities)
1319

Parameters 1319

All responses 1319

Responses 1320

200 - PaginatedVulnerabilityResponse 1320

Schema 1320

404 - ErrorMessage 1320

Schema 1320

Default Response 1320

Schema 1320

Query for packages. If no parameters are given, this endpoint will return all packages.

(V1GetPackages)
1320

Parameters 1320

All responses 1321

Responses 1321

Tanzu Application Platform v1.4

VMware by Broadcom 86

200 - PaginatedPackageResponse 1321

Schema 1321

404 - ErrorMessage 1321

Schema 1321

Default Response 1321

Schema 1321

Query for sources. If no parameters are given, this endpoint will return all sources.

(V1GetSources)
1321

Parameters 1321

All responses 1322

Responses 1322

200 - PaginatedSourceResponse 1322

Schema 1322

404 - ErrorMessage 1322

Schema 1322

Default Response 1322

Schema 1322

Query for packages with source parameters. If no parameters are given, this endpoint

will return all packages related to sources. (V1GetSourcesPackages)
1323

All responses 1323

Responses 1323

200 - PaginatedPackageResponse 1323

Schema 1323

404 - ErrorMessage 1323

Schema 1323

Default Response 1323

Schema 1323

Query for vulnerabilities with source parameters. If no parameters are given, this

endpoint will return all vulnerabilities. (V1GetSourcesVulnerabilities)
1323

Parameters 1323

All responses 1324

Responses 1324

200 - PaginatedVulnerabilityResponse 1324

Schema 1324

404 - ErrorMessage 1324

Schema 1324

Default Response 1324

Schema 1325

Models 1325

ArtifactGroupPostRequest 1325

ArtifactGroupResponse 1325

ArtifactGroupSearchFilters 1325

Tanzu Application Platform v1.4

VMware by Broadcom 87

ArtifactGroupVulnReachFiltersPostRequest 1326

ArtifactGroupVulnReachPostResponse 1327

ArtifactGroupVulnSearchFilters 1327

DeletedAt 1328

Entity 1328

ErrorMessage 1328

Image 1329

MethodType 1329

Model 1329

NullTime 1330

Package 1330

PaginatedArtifactGroupVulnReachResponse 1330

PaginatedResponse 1330

Rating 1331

RatingResponse 1331

Source 1331

StringArray 1332

VulnResponse 1332

Vulnerability 1332

artifactGroupPostEntity 1333

artifactGroupPostResponse 1333

artifactGroupVulnArtifactGroup 1333

artifactGroupVulnEntity 1333

artifactGroupVulnPackage 1334

artifactGroupVulnResult 1334

paginatedArtifactGroupResponse 1335

paginatedArtifactGroupVulnerabilityResponse 1335

paginatedImageResponse 1335

paginatedPackageResponse 1336

paginatedSourceResponse 1336

paginatedVulnerabilityResponse 1336

responseImage 1336

responsePackage 1337

responseSource 1337

responseVulnerability 1338

API walkthrough for Supply Chain Security Tools - Store 1338
Using curl to post an image report 1338

Connect to the PostgreSQL database 1340

Deployment details and configuration for Supply Chain Security Tools -
Store

1341

Tanzu Application Platform v1.4

VMware by Broadcom 88

What is deployed 1341

Deployment configuration 1342

Supported Network Configurations 1342

App service type 1342

Ingress support 1342

Database configuration 1342

Using AWS RDS PostgreSQL database 1342

Using external PostgreSQL database 1343

Custom database password 1343

Service accounts 1343

Exporting certificates 1343

Configure your AWS RDS PostgreSQL configuration 1343
Prerequisites 1343

Setup certificate and configuration 1343

Use external PostgreSQL database for Supply Chain Security Tools -
Store

1344

Prerequisites 1344

Set up certificate and configuration 1344

Validation 1345

Database backup recommendations for Supply Chain Security Tools -
Store

1345

Backup 1345

Restore 1346

Log configuration and usage for Supply Chain Security Tools - Store 1346

Verbosity levels 1346

Error Logs 1347

Obtaining logs 1347

API endpoint log output 1348

Format 1348

Key-value pairs 1348

Common to all logs 1348

Logging query and path parameter values 1349

API payload log output 1350

SQL Query log output 1350

Format 1350

Connect to the PostgreSQL database 1350

Troubleshooting Supply Chain Security Tools - Store 1351

Querying by insight source returns zero CVEs even though there are CVEs in the source scan 1351

Tanzu Application Platform v1.4

VMware by Broadcom 89

Symptom 1351

Solution 1352

Persistent volume retains data 1352

Symptom 1352

Solution 1352

Missing persistent volume 1352

Symptom 1352

Solution 1353

Builds fail due to volume errors on EKS running Kubernetes v1.23 1353

Symptom 1353

Explanation 1353

Solution 1353

Certificate Expiries 1353

Symptom 1353

Explanation 1354

Solution 1354

Troubleshooting errors from Tanzu Application Platform GUI related to SCST - Store 1354

An error occurred while loading data from the Metadata Store 1354

Symptom 1354

Cause 1354

Solution 1355

Troubleshoot upgrading Supply Chain Security Tools - Store 1355

Database deployment does not exist 1355

Invalid checkpoint record 1355

Upgraded pod hanging 1355

Failover, redundancy, and backups for Supply Chain Security Tools -
Store

1356

API Server 1356

Database 1356

Custom certificate configuration for Supply Chain Security Tools - Store 1356

Default configuration 1357

(Optional) Setting up custom ingress TLS certificate 1357

Place the certificates in secret 1357

Update tap-values.yaml 1357

Additional resources 1357

TLS configuration for Supply Chain Security Tools - Store 1357

Setting up custom ingress TLS ciphers 1357

Example custom TLS settings 1358

Additional resources 1358

Tanzu Application Platform v1.4

VMware by Broadcom 90

Certificate rotation for Supply Chain Security Tools - Store 1358
Certificates 1358

Certificate duration setting 1359

Ingress support for Supply Chain Security Tools - Store 1359
Ingress configuration 1359

Get the TLS CA certificate 1361

Additional Resources 1361

Use your LoadBalancer with Supply Chain Security Tools - Store 1361
Configure LoadBalancer 1361

Port forwarding 1362

Edit your /etc/hosts file for Port Forwarding 1362

Configure the Insight plug-in 1362

Use your NodePort with Supply Chain Security Tools - Store 1363

Overview 1363

Edit your /etc/hosts file for Port Forwarding 1363

Configure the Insight plug-in 1363

Multicluster setup for Supply Chain Security Tools - Store 1364
Overview 1364

Prerequisites 1364

Procedure summary 1364

Copy SCST - Store CA certificate from View cluster 1364

Copy SCST - Store authentication token from the View cluster 1365

Apply the CA certificate and authentication token to a new Kubernetes cluster 1365

Install Build profile 1366

More information about how Build profile uses the configuration 1366

Configure developer namespaces 1366

Exporting SCST - Store secrets to a developer namespace in a Tanzu Application Platform

multicluster deployment
1366

Additional resources 1367

Developer namespace setup for Supply Chain Security Tools - Store 1367

Overview 1367

Single cluster - Using the Tanzu Application Platform values file 1367

Multicluster - Using SecretExport 1368

Next steps 1368

Retrieve access tokens for Supply Chain Security Tools - Store 1368
Overview 1368

Retrieving the read-write access token 1368

Retrieving the read-only access token 1368

Tanzu Application Platform v1.4

VMware by Broadcom 91

Using an access token 1368

Additional Resources 1369

Retrieve and create service accounts for Supply Chain Security Tools -
Store

1369

Overview 1369

Create read-write service account 1369

Create a read-only service account 1370

With a default cluster role 1370

With a custom cluster role 1371

Additional Resources 1371

Create a service account with a custom cluster role for Supply Chain
Security Tools - Store

1371

Example service account 1371

Additional Resources 1372

Install Supply Chain Security Tools - Store independent from Tanzu
Application Platform profiles

1372

Prerequisites 1372

Install 1373

Overview of Tanzu Developer Tools for Visual Studio 1376

Extension Features 1377

Overview of Tanzu Developer Tools for Visual Studio 1377
Extension Features 1377

Install Tanzu Developer Tools for Visual Studio 1378
Prerequisites 1378

Install 1378

Uninstall 1378

Next steps 1378

Use Tanzu Developer Tools for Visual Studio 1379
Configure settings 1379

Workload Actions 1379

Apply a workload 1379

Delete a workload 1379

Start debugging on the cluster 1379

Live Update 1380

Start Live Update 1380

Stop Live Update 1380

Tanzu Workloads panel 1380

Stop Remote Debug 1380

Tanzu Application Platform v1.4

VMware by Broadcom 92

Extension logs 1380

Troubleshoot Tanzu Developer Tools for Visual Studio 1381
Erroneous WorkloadNotRunningState error message 1381

Symptom 1381

Solution 1381

Live Update fails to update remote app 1381

Symptom 1381

Cause 1381

Solution 1381

Delete workload command fails to delete workload 1382

Symptom 1382

Cause 1382

Solution 1382

Live Update does not work with the Jammy ClusterBuilder 1382

Symptom 1382

Solution 1382

Frequent application restarts 1382

Symptom 1382

Cause 1382

Solution 1382

Overview of Tanzu Developer Tools for VS Code 1383
Extension features 1383

Overview of Tanzu Developer Tools for VS Code 1383
Extension features 1383

Install Tanzu Developer Tools for your VS Code 1384
Prerequisites 1384

Install 1384

Configure 1385

Uninstall 1385

Next steps 1385

Get started with Tanzu Developer Tools for VS Code 1385
Prerequisite 1385

Set up Tanzu Developer Tools 1386

Create the workload.yaml file 1386

Create the catalog-info.yaml file 1387

Create the Tiltfile file 1388

Create a .tanzuignore file 1389

View an example project 1389

Tanzu Application Platform v1.4

VMware by Broadcom 93

Next steps 1390

Use Tanzu Developer Tools for VS Code 1390
Configure for multiple projects in the workspace 1390

Apply a workload 1390

Debugging on the cluster 1391

Start debugging on the cluster 1392

Stop Debugging on the cluster 1392

Debug apps in a microservice repository 1392

Live Update 1392

Start Live Update 1393

Stop Live Update 1393

Deactivate Live Update 1394

Live Update status 1394

Live Update apps in a microservices repository 1394

Delete a workload 1395

Switch namespaces 1395

Tanzu Workloads panel 1396

Working with Microservices in a Monorepo 1396

Recommended structure: Microservices that can be built independently 1397

Alternative structure: Services with build-time interdependencies 1397

Pinniped compatibility 1399
OAuth 1399

LDAP 1399

Integrate Live Hover by using Spring Boot Tools 1399
Prerequisites 1399

Activate the Live Hover feature 1399

Deploy a Workload to the Cluster 1399

Use Memory View in Spring Boot Dashboard 1401
Prerequisites 1401

Deploy a workload 1401

View memory use in Spring Boot Dashboard 1402

Troubleshoot Tanzu Developer Tools for VS Code 1406

Unable to view workloads on the panel when connected to GKE cluster 1406

Symptom 1406

Cause 1406

Solution 1406

Live Update fails with UnsupportedClassVersionError 1406

Symptom 1406

Tanzu Application Platform v1.4

VMware by Broadcom 94

Cause 1406

Solution 1407

Timeout error when Live Updating 1407

Symptom 1407

Cause 1407

Solution 1407

Task-related error when running a Tanzu Debug launch configuration 1407

Symptom 1407

Cause 1407

Solution 1407

Frequent application restarts 1407

Symptom 1407

Cause 1408

Solution 1408

Overview of Tanzu Developer Tools for IntelliJ 1408
Extension features 1408

Next steps 1408

Overview of Tanzu Developer Tools for IntelliJ 1409
Extension features 1409

Next steps 1409

Install Tanzu Developer Tools for IntelliJ 1409
Prerequisites 1409

Install 1410

Update 1410

Uninstall 1410

Next steps 1411

Get Started with Tanzu Developer Tools for IntelliJ 1411
Prerequisite 1411

Run Tanzu Developer Tools for IntelliJ 1411

Set up Tanzu Developer Tools 1411

Create the workload.yaml file 1412

Create the catalog-info.yaml file 1412

Create the Tiltfile file 1413

Create the .tanzuignore file 1414

View an example project 1414

Next steps 1414

Use Tanzu Developer Tools for IntelliJ 1415
Apply a workload 1415

Tanzu Application Platform v1.4

VMware by Broadcom 95

Delete a workload 1415

Debugging on the cluster 1416

Start debugging on the cluster 1416

Stop Debugging on the Cluster 1417

Live Update 1418

Start Live Update 1418

Stop Live Update 1418

Tanzu Workloads panel 1418

Working with microservices in a monorepo 1419

Recommended structure: Microservices that can be built independently 1419

Alternative structure: Services with build-time interdependencies 1420

Glossary of terms 1421
Live Update 1421

Tiltfile 1421

Debugging on the cluster 1421

YAML file format 1422

workload.yaml file 1422

catalog-info.yaml file 1422

Code snippet 1422

Source image 1422

Local path 1422

Kubernetes context 1422

Kubernetes namespace 1422

Troubleshoot Tanzu Developer Tools for IntelliJ 1422
Tanzu Debug re-applies the workload when namespace field is empty 1423

Symptoms 1423

Cause 1423

Solution 1423

Workload is wrongly re-applied because of debug configuration selected from the launch

configuration drop-down menu
1423

Symptoms 1423

Cause 1423

Solution 1423

Unable to view workloads on the panel when connected to GKE cluster 1423

Symptom 1423

Cause 1423

Solution 1423

Deactivated launch controls after running a launch configuration 1424

Symptom 1424

Cause 1424

Starting a Tanzu Debug session fails with Unable to open debugger port 1424

Tanzu Application Platform v1.4

VMware by Broadcom 96

Symptom 1424

Cause 1424

Solution 1424

Timeout error when Live Updating 1424

Symptom 1424

Cause 1425

Solution 1425

Tanzu Panel empty when using a GKE cluster on macOS 1425

Symptom 1425

Cause 1425

Solution 1425

The Describe action in the Activity panel fails when used on PodIntent resources 1425

Symptom 1425

Cause 1425

Solution 1426

Tanzu panel shows workloads but doesn’t show Kubernetes resources 1426

Symptom 1426

Cause 1426

Solution 1426

Live Update does not work with the Jammy ClusterBuilder 1426

Symptom 1426

Solution 1426

Frequent application restarts 1426

Symptom 1426

Cause 1426

Solution 1426

Overview of Tanzu Application Platform GUI 1426

Overview of Tanzu Application Platform GUI 1428

Install Tanzu Application Platform GUI 1429

Prerequisites 1429

Procedure 1429

Runtime configuration options for Tanzu Application Platform GUI 1431

Identify the Tanzu Application Platform GUI version you have available 1431

Display the possible values options for Tanzu Application Platform GUI 1431

Customize the Tanzu Application Platform GUI portal 1432

Customize branding 1432

Customize the Software Catalog page 1433

Customize the name of the organization 1433

Tanzu Application Platform v1.4

VMware by Broadcom 97

Prevent changes to the software catalog 1433

Customize the Authentication page 1434

Customize the default view 1434

Customize the Tanzu Application Platform GUI portal 1435
Customize branding 1435

Customize the Software Catalog page 1436

Customize the name of the organization 1436

Prevent changes to the software catalog 1437

Customize the Authentication page 1437

Customize the default view 1437

Customize the Support menu 1438
Overview 1438

Customizing 1439

Structure of the support configuration 1439

URL 1439

Items 1440

Title 1440

Icon 1440

Links 1441

Access Tanzu Application Platform GUI 1441
Access with the LoadBalancer method (default) 1441

Access with the shared Ingress method 1441

Catalog operations 1442
Adding catalog entities 1442

Users and groups 1443

Systems 1444

Components 1444

Update software catalogs 1444

Register components 1445

Deregister components 1445

Add or change organization catalog locations 1445

Install demo apps and their catalogs 1446

Yelb system 1446

Install Yelb 1446

Install the Yelb catalog 1447

View resources on multiple clusters in Tanzu Application Platform GUI 1447
Set up a Service Account to view resources on a cluster 1447

Update Tanzu Application Platform GUI to view resources on multiple clusters 1450

Tanzu Application Platform v1.4

VMware by Broadcom 98

View resources on multiple clusters in the Runtime Resources Visibility plug-in 1451

Set up authentication for Tanzu Application Platform GUI 1452
View your Backstage Identity 1452

Configure an authentication provider 1453

(Optional) Allow guest access 1455

(Optional) Customize the login page 1455

View resources on remote clusters 1455

View resources on remote clusters 1456

View resources on remote EKS clusters 1456
Set up the OIDC provider 1456

Configure the Kubernetes cluster with the OIDC provider 1457

Configure the Tanzu Application Platform GUI 1458

Upgrade the Tanzu Application Platform GUI package 1459

View resources on remote GKE clusters 1459
Leverage an external OIDC provider 1459

Set up the OIDC provider 1459

Configure the GKE cluster with the OIDC provider 1460

Configure visibility of the remote cluster 1460

Update the tap-gui package to finish leveraging the external OIDC provider 1461

Leverage Google’s OIDC provider 1461

Add redirect configuration on the OIDC side 1461

Configure visibility of the remote GKE cluster 1461

Update the tap-gui package to finish leveraging the Google OIDC provider 1462

View runtime resources on authorization-enabled clusters 1463
Globally-scoped components 1463

Namespace-scoped components 1464

Assign roles and permissions on Kubernetes clusters 1464
Create roles 1465

Cluster-scoped roles 1465

Namespace-scoped roles 1465

Create users 1465

Assign users to their roles 1466

Add Tanzu Application Platform GUI integrations 1466
Add a GitHub provider integration 1466

Add a Git-based provider integration that isn’t GitHub 1467

Add a non-Git provider integration 1467

Update the package profile 1467

Tanzu Application Platform v1.4

VMware by Broadcom 99

Configure the Tanzu Application Platform GUI database 1468
Configure a PostgreSQL database 1468

Edit tap-values.yaml 1468

(Optional) Configure extra parameters 1469

Update the package profile 1469

Generate and publish TechDocs 1470

Create an Amazon S3 bucket 1470

Configure Amazon S3 access 1470

Create an AWS IAM user group 1470

Create an AWS IAM user 1471

Find the catalog locations and their entities’ namespace, kind, and name 1471

Use the TechDocs CLI to generate and publish TechDocs 1471

Update the techdocs section in app-config.yaml to point to the Amazon S3 bucket 1472

Overview of Tanzu Application Platform GUI plug-ins 1473

Overview of Tanzu Application Platform GUI plug-ins 1474

Runtime resources visibility in Tanzu Application Platform GUI 1474

Prerequisite 1474

If you have a metrics server 1474

Visualize Workloads on Tanzu Application Platform GUI 1475

Navigate to the Runtime Resources Visibility screen 1475

Resources 1475

Resources details page 1476

Overview card 1477

Status card 1478

Ownership card 1479

Annotations and Labels 1479

Selecting completed supply chain pods 1480

Navigating to the pod Details page 1480

Overview of pod metrics 1480

Navigating to Application Live View 1481

Viewing pod logs 1481

Pausing and resuming logs 1482

Filtering by container 1482

Filtering by date and time 1482

Changing log levels 1482

Line wrapping 1483

Downloading logs 1483

Connection interruptions 1483

Tanzu Application Platform v1.4

VMware by Broadcom 100

Application Live View in Tanzu Application Platform GUI 1484
Overview 1484

Entry point to Application Live View plug-in 1484

Application Live View in Tanzu Application Platform GUI 1484
Overview 1484

Entry point to Application Live View plug-in 1485

Application Live View for Spring Boot applications in Tanzu Application
Platform GUI

1485

Details page 1485

Health page 1486

Environment page 1486

Log Levels page 1487

Threads page 1488

Memory page 1488

Request Mappings page 1489

HTTP Requests page 1490

Caches page 1491

Configuration Properties page 1491

Conditions page 1492

Scheduled Tasks page 1492

Beans page 1493

Metrics page 1493

Actuator page 1494

Troubleshooting 1494

Application Live View for Spring Cloud Gateway applications in Tanzu
Application Platform GUI

1494

API Success Rate page 1495

API Overview page 1495

API Authentications By Path page 1495

Troubleshooting 1496

Application Live View for Steeltoe applications in Tanzu Application
Platform GUI

1496

Details page 1496

Health page 1496

Environment page 1497

Log Levels page 1498

Threads page 1499

Memory page 1499

Request Mappings page 1499

HTTP Requests page 1500

Tanzu Application Platform v1.4

VMware by Broadcom 101

Metrics page 1500

Actuator page 1501

Troubleshooting 1501

Application Accelerator in Tanzu Application Platform GUI 1501
Overview 1502

Access Application Accelerator 1502

Configure project generation 1502

Create the project 1503

Develop your code 1503

Next steps 1504

Application Accelerator in Tanzu Application Platform GUI 1504
Overview 1504

Access Application Accelerator 1504

Configure project generation 1505

Create the project 1506

Develop your code 1506

Next steps 1506

Install Application Accelerator 1507
Prerequisites 1507

Configure properties and resource use 1507

Install 1508

Troubleshooting 1510

Verify installed packages 1510

Look at resource events 1510

Create an Application Accelerator Git repository during project creation 1511
Overview 1511

Supported Providers 1511

Configure 1511

(Optional) Deactivate Git repository creation in the Application Accelerator extension for

VS Code
1512

Create a Project 1512

API documentation plug-in in Tanzu Application Platform GUI 1513
Overview 1513

Use the API documentation plug-in 1514

Create a new API entry 1515

Manually create a new API entry 1516

Automatically create a new API entry 1517

API documentation plug-in in Tanzu Application Platform GUI 1517

Tanzu Application Platform v1.4

VMware by Broadcom 102

Overview 1517

Use the API documentation plug-in 1518

Create a new API entry 1520

Manually create a new API entry 1520

Automatically create a new API entry 1521

Get started with the API documentation plug-in 1521

API entries 1521

About API entities 1521

Add a demo API entity to the Tanzu Application Platform GUI software catalog 1521

Update your demo API entry 1524

Validation Analysis of API specifications 1525

About the Validation Analysis card 1525

Automatic OpenAPI specification validation 1526

Security Analysis in Tanzu Application Platform GUI 1526
Overview 1526

Installing and configuring 1526

Accessing the plug-in 1526

Viewing vulnerability data 1527

Viewing CVE and package details 1528

Supply Chain Choreographer in Tanzu Application Platform GUI 1529
Overview 1529

Prerequisites 1529

Enable CVE scan results 1530

Enable GitOps Pull Request Flow 1530

Supply Chain Visibility 1530

View Vulnerability Scan Results 1531

Overview of enabling TLS for Tanzu Application Platform GUI 1532
Concepts 1532

Certificate delegation 1532

cert-manager, certificates, and ClusterIssuers 1532

Guides 1533

Overview of enabling TLS for Tanzu Application Platform GUI 1533

Concepts 1533

Certificate delegation 1534

cert-manager, certificates, and ClusterIssuers 1534

Guides 1535

Configure a TLS certificate by using an existing certificate 1535
Prerequisites 1535

Tanzu Application Platform v1.4

VMware by Broadcom 103

Procedure 1536

Configure a TLS certificate by using a self-signed certificate 1537
Prerequisite 1537

Procedure 1537

Configure a TLS certificate by using cert-manager and a ClusterIssuer 1538
Prerequisites 1539

Procedure 1539

Upgrade Tanzu Application Platform GUI 1541
Considerations 1541

Upgrade within a Tanzu Application Platform profile 1541

Upgrade Tanzu Application Platform GUI individually 1541

Troubleshoot Tanzu Application Platform GUI 1542
General issues 1542

Tanzu Developer Portal reports that the port range is not valid 1542

Symptom 1542

Cause 1542

Solution 1542

Tanzu Application Platform GUI does not load the catalog 1543

Symptom 1543

Cause 1543

Solution 1543

Updating a supply chain causes an error (Can not create edge...) 1544

Symptom 1544

Solution 1544

Catalog not found 1544

Symptom 1544

Cause 1544

Solution 1544

Issues updating the values file 1545

Symptom 1545

Solution 1545

Pull logs from Tanzu Application Platform GUI 1545

Symptom 1545

Solution 1546

Runtime Resources tab issues 1546

Error communicating with Tanzu Application Platform web server 1546

Symptom 1546

Causes 1546

Solution 1546

Tanzu Application Platform v1.4

VMware by Broadcom 104

No data available 1546

Symptom 1546

Cause 1546

Solution 1546

Errors retrieving resources 1546

Symptom 1547

Accelerators page issues 1547

No accelerators 1547

Symptom 1547

Cause 1547

Solution 1547

Security Analysis plug-in issues 1548

Empty dashboard after upgrading from Tanzu Application Platform v1.3 1548

Symptom 1548

Cause 1548

Solution 1548

Supply Chain Choreographer plug-in issues 1548

An error occurred while loading data from the Metadata Store 1548

Symptom 1548

Cause 1549

Solution 1549

Overview of Tanzu Application Platform Telemetry 1549

Tanzu Application Platform usage reports 1549

Overview of Tanzu Application Platform Telemetry 1551
Tanzu Application Platform usage reports 1551

Install Tanzu Application Platform Telemetry 1553

Prerequisites 1553

Install 1553

Deployment details and configurations of Tanzu Application Platform
Telemetry

1555

What is deployed 1555

Deployment configuration 1555

Overview of Tanzu Build Service 1555

Overview 1556

Overview of Tanzu Build Service 1556
Overview 1556

Install Tanzu Build Service 1556

Tanzu Application Platform v1.4

VMware by Broadcom 105

Before you begin 1556

Prerequisites 1556

Deprecated Features 1557

Install the Tanzu Build Service package 1557

(Optional) Alternatives to plaintext registry credentials 1559

Use Secret references for registry credentials 1559

Use AWS IAM authentication for registry credentials 1560

Install full dependencies 1561

(Optional) Configure automatic dependency updates 1562

(Optional) Deactivate the CNB BOM format 1562

Install Tanzu Build Service on an air-gapped environment 1563
Before you begin 1563

Prerequisites 1563

Deprecated Features 1563

Install the Tanzu Build Service package 1563

Install the Tanzu Build Service dependencies 1564

Configure Tanzu Build Service properties on a workload 1565
Overview 1565

Configure build-time service bindings 1565

Configure environment variables 1566

Configure the service account 1566

Configure the cluster builder 1566

Configure the workload container image registry 1567

Configure custom CA certificates for a single workload using service bindings 1567

Using custom CA certificates for all workloads 1568

Create a signed container image with Tanzu Build Service 1568

Prerequisites 1568

Configure Tanzu Build Service to sign your image builds 1568

Tanzu Build Service Dependencies 1571

How dependencies are installed 1571

View installed dependencies 1571

Bionic and Jammy stacks 1572

Use Jammy stacks for a workload 1572

Default all workloads to Jammy stacks 1572

About lite and full dependencies 1572

Lite dependencies 1573

Lite dependencies: stacks 1573

Lite dependencies: buildpacks 1573

Full dependencies 1573

Tanzu Application Platform v1.4

VMware by Broadcom 106

Full dependencies: stacks 1574

Full dependencies: buildpacks 1574

Dependency comparison 1574

About automatic dependency updates (deprecated) 1575

Descriptors (deprecated) 1575

Security context constraint for OpenShift 1576

Troubleshoot Tanzu Build Service 1577
Builds fail due to volume errors on EKS running Kubernetes v1.23 1577

Symptom 1577

Cause 1578

Solution 1578

Smart-warmer-image-fetcher reports ErrImagePull due to dockerd’s layer depth limitation 1578

Symptom 1578

Cause 1578

Solution 1578

Nodes fail due to “trying to send message larger than max” error 1579

Symptom 1579

Cause 1579

Solution 1579

Build platform uses the old build cache after upgrade to new stack 1579

Symptom 1579

Solution 1579

Create a GitHub build action (Alpha) 1579
Prerequisites 1579

Procedure 1580

Developer namespace 1580

Access to Kubernetes API server 1580

Permissions Required 1580

Use the action 1582

Debugging 1582

Overview of Tekton 1582

Overview of Tekton 1583

Install Tekton 1583
Prerequisites 1583

Install Tekton Pipelines 1583

Configure a namespace to use Tekton Pipelines 1584

Tanzu Application Platform v1.4

VMware by Broadcom 107

Tanzu Application Platform v1.4

VMware Tanzu Application Platform (commonly known as TAP) is an application development
platform with a rich set of developer tools. It offers developers a paved path to production to build
and deploy software quickly and securely on any compliant public cloud or on-premises Kubernetes
cluster.

Tanzu Application Platform overview

Tanzu Application Platform:

Delivers a superior developer experience for enterprises building and deploying cloud-
native applications on Kubernetes.

Allows developers to quickly build and test applications regardless of their familiarity with
Kubernetes.

Helps application teams get to production faster by automating source-to-production
pipelines.

Clearly defines the roles of developers and operators so they can work collaboratively and
integrate their efforts.

Operations teams can create application scaffolding templates with built-in security and compliance
guardrails, making those considerations mostly invisible to developers. Starting with the templates,
developers turn source code into a container and get a URL to test their app in minutes.

After the container is built, it updates every time there’s a new code commit or dependency patch.
An internal API management portal facilitates connecting to other applications and data, regardless
of how they’re built or the infrastructure they run on.

Simplified workflows

When creating supply chains, you can simplify workflows in both the inner and outer loop of
Kubernetes-based app development with Tanzu Application Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 108

Inner Loop

The inner loop describes a developer’s development cycle of iterating on code.

Inner loop activities include coding, testing, and debugging before making a
commit.

On cloud-native or Kubernetes platforms, developers in the inner loop often build
container images and connect their apps to all necessary services and APIs to
deploy them to a development environment.

Outer Loop

The outer loop describes how operators deploy apps to production and maintain
them over time.

On a cloud-native platform, outer loop activities include:

Building container images.

Adding container security.

Configuring continuous integration and continuous delivery (CI/CD)
pipelines.

Outer loop activities are challenging in a Kubernetes-based development
environment. App delivery platforms are constructed from various third-party and
open source components with numerous configuration options.

Supply Chains and choreography

Tanzu Application Platform uses the choreography pattern inherited from the
context of microservices^1 and applies it to CI/CD to create a path to production.^2

Supply chains provide a way of codifying all of the steps of your path to production, or what is more
commonly known as CI/CD. A supply chain differs from CI/CD in that with a supply chain, you can
add every step necessary for an application to reach production or a lower environment.

To address the developer experience gap, the path to production allows users to create a unified
access point for all of the tools required for their applications to reach a customer-facing
environment.

Instead of having separate tools that are loosely coupled to each other for testing and building,
security, deploying, and running apps, a path to production defines all four tools in a single, unified
layer of abstraction. Where tools typically can’t integrate with one another and additional scripting
or webhooks are necessary, a unified automation tool codifies all interactions between each of the
tools.

Tanzu Application Platform provides a default set of components that automates pushing an app to
staging and production on Kubernetes. This removes the pain points for both inner and outer loops.
It also allows operators to customize the platform by replacing Tanzu Application Platform
components with other products.

Tanzu Application Platform v1.4

VMware by Broadcom 109

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography
https://tanzu.vmware.com/developer/guides/supply-chain-choreography/

For more information about Tanzu Application Platform components, see Components and
installation profiles.

Notice of telemetry collection for Tanzu Application
Platform
Tanzu Application Platform participates in the VMware Customer Experience Improvement
Program (CEIP). As part of CEIP, VMware collects technical information about your organization’s
use of VMware products and services in association with your organization’s VMware license keys.
For information about CEIP, see the Trust & Assurance Center. You may join or leave CEIP at any
time. The CEIP Standard Participation Level provides VMware with information to improve its
products and services, identify and fix problems, and advise you on how to best deploy and use
VMware products. For example, this information can enable a proactive product deployment
discussion with your VMware account team or VMware support team to help resolve your issues.
This information cannot directly identify any individual.

You must acknowledge that you have read the VMware CEIP policy before you can proceed with
the installation. For more information, see Install your Tanzu Application Platform profile. To opt out
of telemetry participation after installation, see Opting out of telemetry collection.

Tanzu Application Platform v1.4

VMware by Broadcom 110

http://www.vmware.com/trustvmware/ceip.html

Tanzu Application Platform release notes

This topic describes the changes in Tanzu Application Platform (commonly known as TAP) v1.4.

v1.4.13

Release Date: 09 January 2024

v1.4.13 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

cnrs.tanzu.vmware.com CVE-2023-24534

CVE-2023-24536

CVE-2023-29403

CVE-2023-44487

v1.4.13 Known issues

This release introduces no new known issues.

v1.4.12
Release Date: 12 December 2023

v1.4.12 Security fixes

This release has the following security fixes, listed by component and area.

Tanzu Application Platform v1.4

VMware by Broadcom 111

https://nvd.nist.gov/vuln/detail/CVE-2023-24534
https://nvd.nist.gov/vuln/detail/CVE-2023-24536
https://nvd.nist.gov/vuln/detail/CVE-2023-29403
https://nvd.nist.gov/vuln/detail/CVE-2023-44487

Package Name Vulnerabilities Resolved

api-portal.tanzu.vmware.com Expand to see the list

GHSA-qppj-fm5r-hxr3

GHSA-6mjq-h674-j845

GHSA-2wrh-6pvc-2jm9

CVE-2023-5363

CVE-2023-3817

CVE-2023-3446

CVE-2023-31484

CVE-2023-2975

CVE-2023-29491

CVE-2023-2650

CVE-2023-2603

CVE-2023-2602

CVE-2023-22049

CVE-2023-22045

CVE-2023-22044

CVE-2023-22041

CVE-2023-22036

CVE-2023-22006

CVE-2023-1255

Tanzu Application Platform v1.4

VMware by Broadcom 112

https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-6mjq-h674-j845
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-29491
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-2603
https://nvd.nist.gov/vuln/detail/CVE-2023-2602
https://nvd.nist.gov/vuln/detail/CVE-2023-22049
https://nvd.nist.gov/vuln/detail/CVE-2023-22045
https://nvd.nist.gov/vuln/detail/CVE-2023-22044
https://nvd.nist.gov/vuln/detail/CVE-2023-22041
https://nvd.nist.gov/vuln/detail/CVE-2023-22036
https://nvd.nist.gov/vuln/detail/CVE-2023-22006
https://nvd.nist.gov/vuln/detail/CVE-2023-1255

Package Name Vulnerabilities Resolved

buildservice.tanzu.vmware.com Expand to see the list

GHSA-m8cg-xc2p-r3fc

GHSA-hp87-p4gw-j4gq

GHSA-g2j6-57v7-gm8c

GHSA-4374-p667-p6c8

CVE-2023-5981

CVE-2023-5363

CVE-2023-5197

CVE-2023-4921

CVE-2023-4911

CVE-2023-4881

CVE-2023-4623

CVE-2023-4622

CVE-2023-45871

CVE-2023-44487

CVE-2023-44466

CVE-2023-42756

CVE-2023-42755

CVE-2023-42753

CVE-2023-42752

CVE-2023-4273

CVE-2023-4244

CVE-2023-4208

CVE-2023-4207

CVE-2023-4206

CVE-2023-4194

CVE-2023-4155

CVE-2023-4132

CVE-2023-4016

CVE-2023-3866

CVE-2023-3865

CVE-2023-3863

CVE-2023-38546

CVE-2023-38545

CVE-2023-38432

CVE-2023-38429

CVE-2023-38428

CVE-2023-38426

CVE-2023-3817

CVE-2023-3772

CVE-2023-36054

CVE-2023-35829

CVE-2023-35828

Tanzu Application Platform v1.4

VMware by Broadcom 113

https://github.com/advisories/GHSA-m8cg-xc2p-r3fc
https://github.com/advisories/GHSA-hp87-p4gw-j4gq
https://github.com/advisories/GHSA-g2j6-57v7-gm8c
https://github.com/advisories/GHSA-4374-p667-p6c8
https://nvd.nist.gov/vuln/detail/CVE-2023-5981
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-5197
https://nvd.nist.gov/vuln/detail/CVE-2023-4921
https://nvd.nist.gov/vuln/detail/CVE-2023-4911
https://nvd.nist.gov/vuln/detail/CVE-2023-4881
https://nvd.nist.gov/vuln/detail/CVE-2023-4623
https://nvd.nist.gov/vuln/detail/CVE-2023-4622
https://nvd.nist.gov/vuln/detail/CVE-2023-45871
https://nvd.nist.gov/vuln/detail/CVE-2023-44487
https://nvd.nist.gov/vuln/detail/CVE-2023-44466
https://nvd.nist.gov/vuln/detail/CVE-2023-42756
https://nvd.nist.gov/vuln/detail/CVE-2023-42755
https://nvd.nist.gov/vuln/detail/CVE-2023-42753
https://nvd.nist.gov/vuln/detail/CVE-2023-42752
https://nvd.nist.gov/vuln/detail/CVE-2023-4273
https://nvd.nist.gov/vuln/detail/CVE-2023-4244
https://nvd.nist.gov/vuln/detail/CVE-2023-4208
https://nvd.nist.gov/vuln/detail/CVE-2023-4207
https://nvd.nist.gov/vuln/detail/CVE-2023-4206
https://nvd.nist.gov/vuln/detail/CVE-2023-4194
https://nvd.nist.gov/vuln/detail/CVE-2023-4155
https://nvd.nist.gov/vuln/detail/CVE-2023-4132
https://nvd.nist.gov/vuln/detail/CVE-2023-4016
https://nvd.nist.gov/vuln/detail/CVE-2023-3866
https://nvd.nist.gov/vuln/detail/CVE-2023-3865
https://nvd.nist.gov/vuln/detail/CVE-2023-3863
https://nvd.nist.gov/vuln/detail/CVE-2023-38546
https://nvd.nist.gov/vuln/detail/CVE-2023-38545
https://nvd.nist.gov/vuln/detail/CVE-2023-38432
https://nvd.nist.gov/vuln/detail/CVE-2023-38429
https://nvd.nist.gov/vuln/detail/CVE-2023-38428
https://nvd.nist.gov/vuln/detail/CVE-2023-38426
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3772
https://nvd.nist.gov/vuln/detail/CVE-2023-36054
https://nvd.nist.gov/vuln/detail/CVE-2023-35829
https://nvd.nist.gov/vuln/detail/CVE-2023-35828

Package Name Vulnerabilities Resolved

CVE-2023-35824

CVE-2023-35823

CVE-2023-3446

CVE-2023-34319

CVE-2023-34256

CVE-2023-3338

CVE-2023-3268

CVE-2023-32248

CVE-2023-3212

CVE-2023-31484

CVE-2023-3141

CVE-2023-31085

CVE-2023-31084

CVE-2023-31083

CVE-2023-2975

CVE-2023-29491

CVE-2023-2898

CVE-2023-2650

CVE-2023-2603

CVE-2023-2602

CVE-2023-25775

CVE-2023-23004

CVE-2023-2269

CVE-2023-2235

CVE-2023-2163

CVE-2023-2156

CVE-2023-21255

CVE-2023-2124

CVE-2023-1255

CVE-2023-1206

CVE-2023-1192

CVE-2023-0465

CVE-2023-0464

CVE-2022-48502

CVE-2022-48425

CVE-2022-40982

CVE-2022-3996

Tanzu Application Platform v1.4

VMware by Broadcom 114

https://nvd.nist.gov/vuln/detail/CVE-2023-35824
https://nvd.nist.gov/vuln/detail/CVE-2023-35823
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-34319
https://nvd.nist.gov/vuln/detail/CVE-2023-34256
https://nvd.nist.gov/vuln/detail/CVE-2023-3338
https://nvd.nist.gov/vuln/detail/CVE-2023-3268
https://nvd.nist.gov/vuln/detail/CVE-2023-32248
https://nvd.nist.gov/vuln/detail/CVE-2023-3212
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://nvd.nist.gov/vuln/detail/CVE-2023-3141
https://nvd.nist.gov/vuln/detail/CVE-2023-31085
https://nvd.nist.gov/vuln/detail/CVE-2023-31084
https://nvd.nist.gov/vuln/detail/CVE-2023-31083
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-29491
https://nvd.nist.gov/vuln/detail/CVE-2023-2898
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-2603
https://nvd.nist.gov/vuln/detail/CVE-2023-2602
https://nvd.nist.gov/vuln/detail/CVE-2023-25775
https://nvd.nist.gov/vuln/detail/CVE-2023-23004
https://nvd.nist.gov/vuln/detail/CVE-2023-2269
https://nvd.nist.gov/vuln/detail/CVE-2023-2235
https://nvd.nist.gov/vuln/detail/CVE-2023-2163
https://nvd.nist.gov/vuln/detail/CVE-2023-2156
https://nvd.nist.gov/vuln/detail/CVE-2023-21255
https://nvd.nist.gov/vuln/detail/CVE-2023-2124
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-1206
https://nvd.nist.gov/vuln/detail/CVE-2023-1192
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-48502
https://nvd.nist.gov/vuln/detail/CVE-2022-48425
https://nvd.nist.gov/vuln/detail/CVE-2022-40982
https://nvd.nist.gov/vuln/detail/CVE-2022-3996

Package Name Vulnerabilities Resolved

cnrs.tanzu.vmware.com Expand to see the list

CVE-2023-39319

CVE-2023-39318

CVE-2023-29409

CVE-2023-29406

CVE-2023-29403

CVE-2023-24536

CVE-2023-24534

CVE-2023-24532

developer-conventions.tanzu.vmware.com Expand to see the list

GHSA-qppj-fm5r-hxr3

GHSA-4374-p667-p6c8

GHSA-2wrh-6pvc-2jm9

CVE-2023-5363

CVE-2023-3817

CVE-2023-3446

CVE-2023-2975

CVE-2023-2650

CVE-2023-1255

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

eventing.tanzu.vmware.com Expand to see the list

GHSA-m425-mq94-257g

GHSA-4374-p667-p6c8

GHSA-2wrh-6pvc-2jm9

metadata-store.apps.tanzu.vmware.com Expand to see the list

CVE-2023-5363

CVE-2023-4911

CVE-2023-3817

CVE-2023-3446

CVE-2023-2975

CVE-2023-1255

CVE-2022-3996

v1.4.12 Known issues

This release introduces no new known issues.

v1.4.11

Release Date: 14 November 2023

Tanzu Application Platform v1.4

VMware by Broadcom 115

https://nvd.nist.gov/vuln/detail/CVE-2023-39319
https://nvd.nist.gov/vuln/detail/CVE-2023-39318
https://nvd.nist.gov/vuln/detail/CVE-2023-29409
https://nvd.nist.gov/vuln/detail/CVE-2023-29406
https://nvd.nist.gov/vuln/detail/CVE-2023-29403
https://nvd.nist.gov/vuln/detail/CVE-2023-24536
https://nvd.nist.gov/vuln/detail/CVE-2023-24534
https://nvd.nist.gov/vuln/detail/CVE-2023-24532
https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-4374-p667-p6c8
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://github.com/advisories/GHSA-m425-mq94-257g
https://github.com/advisories/GHSA-4374-p667-p6c8
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-4911
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2022-3996

v1.4.11 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

contour.tanzu.vmware.com Expand to see the list

GHSA-qppj-fm5r-hxr3

GHSA-m425-mq94-257g

GHSA-4374-p667-p6c8

GHSA-2wrh-6pvc-2jm9

eventing.tanzu.vmware.com Expand to see the list

GHSA-hp87-p4gw-j4gq

CVE-2023-2650

CVE-2023-1255

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

v1.4.11 Known issues

This release introduces no new known issues.

v1.4.10

Release Date: 10 October 2023

v1.4.10 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

accelerator.apps.tanzu.vmware.com Expand to see the list

CVE-2023-43642

buildservice.tanzu.vmware.com Expand to see the list

CVE-2022-48064

learningcenter.tanzu.vmware.com Expand to see the list

CVE-2022-48064

CVE-2022-45919

CVE-2022-45887

CVE-2021-3712

services-toolkit.tanzu.vmware.com Expand to see the list

GHSA-hp87-p4gw-j4gq

Tanzu Application Platform v1.4

VMware by Broadcom 116

https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-m425-mq94-257g
https://github.com/advisories/GHSA-4374-p667-p6c8
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://github.com/advisories/GHSA-hp87-p4gw-j4gq
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://nvd.nist.gov/vuln/detail/CVE-2023-43642
https://nvd.nist.gov/vuln/detail/CVE-2022-48064
https://nvd.nist.gov/vuln/detail/CVE-2022-48064
https://nvd.nist.gov/vuln/detail/CVE-2022-45919
https://nvd.nist.gov/vuln/detail/CVE-2022-45887
https://nvd.nist.gov/vuln/detail/CVE-2021-3712
https://github.com/advisories/GHSA-hp87-p4gw-j4gq

Package Name Vulnerabilities Resolved

tekton.tanzu.vmware.com Expand to see the list

CVE-2022-48566

CVE-2022-48565

CVE-2022-48564

CVE-2022-48560

CVE-2022-48064

CVE-2022-45919

CVE-2022-45887

workshops.learningcenter.tanzu.vmware.com Expand to see the list

CVE-2022-48064

CVE-2022-45919

CVE-2022-45887

CVE-2021-3712

v1.4.10 Known issues

This release introduces no new known issues.

v1.4.9

Release Date: 12 September 2023

v1.4.9 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

api-portal.tanzu.vmware.com Expand to see the list

GHSA-pmhc-2g4f-85cg

CVE-2023-34478

Tanzu Application Platform v1.4

VMware by Broadcom 117

https://nvd.nist.gov/vuln/detail/CVE-2022-48566
https://nvd.nist.gov/vuln/detail/CVE-2022-48565
https://nvd.nist.gov/vuln/detail/CVE-2022-48564
https://nvd.nist.gov/vuln/detail/CVE-2022-48560
https://nvd.nist.gov/vuln/detail/CVE-2022-48064
https://nvd.nist.gov/vuln/detail/CVE-2022-45919
https://nvd.nist.gov/vuln/detail/CVE-2022-45887
https://nvd.nist.gov/vuln/detail/CVE-2022-48064
https://nvd.nist.gov/vuln/detail/CVE-2022-45919
https://nvd.nist.gov/vuln/detail/CVE-2022-45887
https://nvd.nist.gov/vuln/detail/CVE-2021-3712
https://github.com/advisories/GHSA-pmhc-2g4f-85cg
https://nvd.nist.gov/vuln/detail/CVE-2023-34478

Package Name Vulnerabilities Resolved

buildservice.tanzu.vmware.com Expand to see the list

GHSA-69cg-p879-7622

CVE-2023-35788

CVE-2023-35001

CVE-2023-3439

CVE-2023-3390

CVE-2023-3389

CVE-2023-32233

CVE-2023-3220

CVE-2023-31436

CVE-2023-31248

CVE-2023-3117

CVE-2023-3090

CVE-2023-30456

CVE-2023-2985

CVE-2023-2612

CVE-2023-25012

CVE-2023-2283

CVE-2023-1667

CVE-2023-1380

CVE-2023-0361

CVE-2022-48303

CVE-2022-4415

CVE-2022-3821

learningcenter.tanzu.vmware.com Expand to see the list

GHSA-cf7p-gm2m-833m

CVE-2023-4147

CVE-2023-4015

CVE-2023-4004

CVE-2023-3995

CVE-2023-3777

CVE-2023-3635

CVE-2023-3610

CVE-2023-3609

CVE-2022-45886

tap-gui.tanzu.vmware.com Expand to see the list

GHSA-cchq-frgv-rjh5

GHSA-g644-9gfx-q4q4

tekton.tanzu.vmware.com Expand to see the list

CVE-2022-45886

Tanzu Application Platform v1.4

VMware by Broadcom 118

https://github.com/advisories/GHSA-69cg-p879-7622
https://nvd.nist.gov/vuln/detail/CVE-2023-35788
https://nvd.nist.gov/vuln/detail/CVE-2023-35001
https://nvd.nist.gov/vuln/detail/CVE-2023-3439
https://nvd.nist.gov/vuln/detail/CVE-2023-3390
https://nvd.nist.gov/vuln/detail/CVE-2023-3389
https://nvd.nist.gov/vuln/detail/CVE-2023-32233
https://nvd.nist.gov/vuln/detail/CVE-2023-3220
https://nvd.nist.gov/vuln/detail/CVE-2023-31436
https://nvd.nist.gov/vuln/detail/CVE-2023-31248
https://nvd.nist.gov/vuln/detail/CVE-2023-3117
https://nvd.nist.gov/vuln/detail/CVE-2023-3090
https://nvd.nist.gov/vuln/detail/CVE-2023-30456
https://nvd.nist.gov/vuln/detail/CVE-2023-2985
https://nvd.nist.gov/vuln/detail/CVE-2023-2612
https://nvd.nist.gov/vuln/detail/CVE-2023-25012
https://nvd.nist.gov/vuln/detail/CVE-2023-2283
https://nvd.nist.gov/vuln/detail/CVE-2023-1667
https://nvd.nist.gov/vuln/detail/CVE-2023-1380
https://nvd.nist.gov/vuln/detail/CVE-2023-0361
https://nvd.nist.gov/vuln/detail/CVE-2022-48303
https://nvd.nist.gov/vuln/detail/CVE-2022-4415
https://nvd.nist.gov/vuln/detail/CVE-2022-3821
https://github.com/advisories/GHSA-cf7p-gm2m-833m
https://nvd.nist.gov/vuln/detail/CVE-2023-4147
https://nvd.nist.gov/vuln/detail/CVE-2023-4015
https://nvd.nist.gov/vuln/detail/CVE-2023-4004
https://nvd.nist.gov/vuln/detail/CVE-2023-3995
https://nvd.nist.gov/vuln/detail/CVE-2023-3777
https://nvd.nist.gov/vuln/detail/CVE-2023-3635
https://nvd.nist.gov/vuln/detail/CVE-2023-3610
https://nvd.nist.gov/vuln/detail/CVE-2023-3609
https://nvd.nist.gov/vuln/detail/CVE-2022-45886
https://github.com/advisories/GHSA-cchq-frgv-rjh5
https://github.com/advisories/GHSA-g644-9gfx-q4q4
https://nvd.nist.gov/vuln/detail/CVE-2022-45886

Package Name Vulnerabilities Resolved

workshops.learningcenter.tanzu.vmware.com Expand to see the list

CVE-2023-4147

CVE-2023-4015

CVE-2023-4004

CVE-2023-3995

CVE-2023-3777

CVE-2023-3635

CVE-2023-3610

CVE-2023-3609

CVE-2022-45886

v1.4.9 Resolved issues

The following issues, listed by component and area, are resolved in this release.

v1.4.9 Resolved issues: Tanzu CLI and plug-ins

This release includes Tanzu CLI v1.0.0 and a set of installable plug-in groups that are
versioned so that the CLI is compatible with all supported Tanzu Application Platform
versions. For more information see Install Tanzu CLI.

v1.4.9 Known issues

This release has the following known issues, listed by component and area.

v1.4.9 Known issues: Tanzu Build Service

Tanzu Application Platform installation temporarily fails with this error related to the
deactivate_smart_warmer key: waiting on reconcile packageinstall/buildservice.
Overlaying data values (in following order: ca-cert.yaml, cert-injection-

webhook/upstream/imagevalues.yaml, cert-injection-webhook/values.yaml, additional

data values) . This issue resolves after a few minutes.

v1.4.8
Release Date: 15 August 2023

v1.4.8 Security fixes

This release has the following security fixes, listed by component and area.

Tanzu Application Platform v1.4

VMware by Broadcom 119

https://nvd.nist.gov/vuln/detail/CVE-2023-4147
https://nvd.nist.gov/vuln/detail/CVE-2023-4015
https://nvd.nist.gov/vuln/detail/CVE-2023-4004
https://nvd.nist.gov/vuln/detail/CVE-2023-3995
https://nvd.nist.gov/vuln/detail/CVE-2023-3777
https://nvd.nist.gov/vuln/detail/CVE-2023-3635
https://nvd.nist.gov/vuln/detail/CVE-2023-3610
https://nvd.nist.gov/vuln/detail/CVE-2023-3609
https://nvd.nist.gov/vuln/detail/CVE-2022-45886

Package Name Vulnerabilities Resolved

ootb-templates.tanzu.vmware.com Expand to see the list

GHSA-m8cg-xc2p-r3fc

GHSA-hw7c-3rfg-p46j

GHSA-g2j6-57v7-gm8c

CVE-2023-31484

CVE-2023-3138

CVE-2023-29491

CVE-2023-29007

CVE-2023-2650

CVE-2023-2603

CVE-2023-2602

CVE-2023-25815

CVE-2023-25652

CVE-2023-2283

CVE-2023-1667

CVE-2023-1255

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

buildservice.tanzu.vmware.com Expand to see the list

CVE-2023-0466

CVE-2022-44034

CVE-2022-44033

CVE-2022-44032

CVE-2022-41848

CVE-2022-3114

CVE-2022-29458

CVE-2021-45261

CVE-2021-39801

CVE-2021-32078

CVE-2021-26934

CVE-2018-6952

CVE-2018-20657

CVE-2018-12928

CVE-2017-13693

CVE-2017-13165

CVE-2017-11164

CVE-2016-20013

CVE-2015-8985

CVE-2009-5155

v1.4.8 Resolved issues

Tanzu Application Platform v1.4

VMware by Broadcom 120

https://github.com/advisories/GHSA-m8cg-xc2p-r3fc
https://github.com/advisories/GHSA-hw7c-3rfg-p46j
https://github.com/advisories/GHSA-g2j6-57v7-gm8c
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://nvd.nist.gov/vuln/detail/CVE-2023-3138
https://nvd.nist.gov/vuln/detail/CVE-2023-29491
https://nvd.nist.gov/vuln/detail/CVE-2023-29007
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-2603
https://nvd.nist.gov/vuln/detail/CVE-2023-2602
https://nvd.nist.gov/vuln/detail/CVE-2023-25815
https://nvd.nist.gov/vuln/detail/CVE-2023-25652
https://nvd.nist.gov/vuln/detail/CVE-2023-2283
https://nvd.nist.gov/vuln/detail/CVE-2023-1667
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://nvd.nist.gov/vuln/detail/CVE-2023-0466
https://nvd.nist.gov/vuln/detail/CVE-2022-44034
https://nvd.nist.gov/vuln/detail/CVE-2022-44033
https://nvd.nist.gov/vuln/detail/CVE-2022-44032
https://nvd.nist.gov/vuln/detail/CVE-2022-41848
https://nvd.nist.gov/vuln/detail/CVE-2022-3114
https://nvd.nist.gov/vuln/detail/CVE-2022-29458
https://nvd.nist.gov/vuln/detail/CVE-2021-45261
https://nvd.nist.gov/vuln/detail/CVE-2021-39801
https://nvd.nist.gov/vuln/detail/CVE-2021-32078
https://nvd.nist.gov/vuln/detail/CVE-2021-26934
https://nvd.nist.gov/vuln/detail/CVE-2018-6952
https://nvd.nist.gov/vuln/detail/CVE-2018-20657
https://nvd.nist.gov/vuln/detail/CVE-2018-12928
https://nvd.nist.gov/vuln/detail/CVE-2017-13693
https://nvd.nist.gov/vuln/detail/CVE-2017-13165
https://nvd.nist.gov/vuln/detail/CVE-2017-11164
https://nvd.nist.gov/vuln/detail/CVE-2016-20013
https://nvd.nist.gov/vuln/detail/CVE-2015-8985
https://nvd.nist.gov/vuln/detail/CVE-2009-5155

The following issues, listed by component and area, are resolved in this release.

v1.4.8 Resolved issues: Tanzu Build Service

Fixed an issue where some buildpacks caused the builder image to become excessively
large.

v1.4.8 Known issues

This release has the following known issues, listed by component and area.

v1.4.8 Known issues: Tanzu Build Service

Tanzu Application Platform installation fails if the automatic dependency updater is used
with a Kubernetes secret ref, that is, using the fields buildservice.tanzunet_secret.name
and buildservice.tanzunet_secret.name in the tap-values.yaml file. For a workaround,
use plaintext secrets by using the fields buildservice.tanzunet_username and
buildservice.tanzunet_password in the tap-values.yaml file.

v1.4.7

Release Date: 11 July 2023

v1.4.7 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

sso.apps.tanzu.vmware.com Expand to see the list

GHSA-m8cg-xc2p-r3fc

GHSA-g2j6-57v7-gm8c

GHSA-f3fp-gc8g-vw66

CVE-2023-2650

CVE-2023-20863

CVE-2023-20861

CVE-2023-1255

CVE-2023-0466

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

CVE-2022-3821

learningcenter.tanzu.vmware.com Expand to see the list

CVE-2023-2004

workshops.learningcenter.tanzu.vmware.com Expand to see the list

CVE-2023-2004

v1.4.7 Known issues

This release introduces no new known issues.

Tanzu Application Platform v1.4

VMware by Broadcom 121

https://github.com/advisories/GHSA-m8cg-xc2p-r3fc
https://github.com/advisories/GHSA-g2j6-57v7-gm8c
https://github.com/advisories/GHSA-f3fp-gc8g-vw66
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-20863
https://nvd.nist.gov/vuln/detail/CVE-2023-20861
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0466
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://nvd.nist.gov/vuln/detail/CVE-2022-3821
https://nvd.nist.gov/vuln/detail/CVE-2023-2004
https://nvd.nist.gov/vuln/detail/CVE-2023-2004

v1.4.6

Release Date: 13 June 2023

v1.4.6 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

api-portal.tanzu.vmware.com Expand to see the list

CVE-2022-41881

buildservice.tanzu.vmware.com Expand to see the list

CVE-2023-1829

CVE-2023-1281

CVE-2023-0386

cert-manager.tanzu.vmware.com Expand to see the list

GHSA-vvpx-j8f3-3w6h

sso.apps.tanzu.vmware.com Expand to see the list

CVE-2023-31484

tap-gui.tanzu.vmware.com Expand to see the list

GHSA-f9xv-q969-pqx4

v1.4.6 Resolved issues

The following issues, listed by component and area, are resolved in this release.

v1.4.6 Resolved issues: Tanzu Developer Tools for IntelliJ

Resolved permission-denied errors encountered during Live Update when operating
against platforms configured to use the Jammy build stack.

v1.4.6 Resolved issues: Tanzu Developer Tools for Visual Studio

Resolved permission-denied errors encountered during Live Update when operating
against platforms configured to use the Jammy build stack.

v1.4.6 Resolved issues: Tanzu Developer Tools for VS Code

Resolved permission-denied errors encountered during Live Update when operating
against platforms configured to use the Jammy build stack.

v1.4.6 Known issues

This release introduces no new known issues.

v1.4.5

Release Date: 09 May 2023

Tanzu Application Platform v1.4

VMware by Broadcom 122

https://nvd.nist.gov/vuln/detail/CVE-2022-41881
https://nvd.nist.gov/vuln/detail/CVE-2023-1829
https://nvd.nist.gov/vuln/detail/CVE-2023-1281
https://nvd.nist.gov/vuln/detail/CVE-2023-0386
https://github.com/advisories/GHSA-vvpx-j8f3-3w6h
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://github.com/advisories/GHSA-f9xv-q969-pqx4

v1.4.5 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

accelerator.apps.tanzu.vmware.com Expand to see the list

CVE-2023-21930

api-portal.tanzu.vmware.com Expand to see the list

GHSA-493p-pfq6-5258

CVE-2023-21930

CVE-2023-20860

sso.apps.tanzu.vmware.com Expand to see the list

CVE-2023-21930

buildservice.tanzu.vmware.com Expand to see the list

CVE-2023-0468

CVE-2023-0461

CVE-2023-0179

ootb-templates.tanzu.vmware.com Expand to see the list

GHSA-vvpx-j8f3-3w6h

v1.4.4

Release Date: 12 April 2023

v1.4.4 Security fixes

This release has the following security fixes, listed by package name and vulnerabilities.

Package Name Vulnerabilities Resolved

buildservice.tanzu.vmware.com Expand to see the list

GHSA-fxg5-wq6x-vr4w

eventing.tanzu.vmware.com Expand to see the list

GHSA-fxg5-wq6x-vr4w

GHSA-69ch-w2m2-3vjp

GHSA-69cg-p879-7622

Tanzu Application Platform v1.4

VMware by Broadcom 123

https://nvd.nist.gov/vuln/detail/CVE-2023-21930
https://github.com/advisories/GHSA-493p-pfq6-5258
https://nvd.nist.gov/vuln/detail/CVE-2023-21930
https://nvd.nist.gov/vuln/detail/CVE-2023-20860
https://nvd.nist.gov/vuln/detail/CVE-2023-21930
https://nvd.nist.gov/vuln/detail/CVE-2023-0468
https://nvd.nist.gov/vuln/detail/CVE-2023-0461
https://nvd.nist.gov/vuln/detail/CVE-2023-0179
https://github.com/advisories/GHSA-vvpx-j8f3-3w6h
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://github.com/advisories/GHSA-69ch-w2m2-3vjp
https://github.com/advisories/GHSA-69cg-p879-7622

Package Name Vulnerabilities Resolved

learningcenter.tanzu.vmware.com Expand to see the list

GHSA-x4qr-2fvf-3mr5

GHSA-ppp9-7jff-5vj2

GHSA-fxg5-wq6x-vr4w

GHSA-83g2-8m93-v3w7

GHSA-69ch-w2m2-3vjp

GHSA-3vm4-22fp-5rfm

GHSA-2hrw-hx67-34x6

CVE-2023-24329

CVE-2023-23919

CVE-2023-0461

policy.apps.tanzu.vmware.com Expand to see the list

GHSA-fxg5-wq6x-vr4w

snyk.scanning.apps.tanzu.vmware.com Expand to see the list

CVE-2023-24329

tap-gui.tanzu.vmware.com Expand to see the list

CVE-2023-23919

CVE-2023-23918

CVE-2023-0361

CVE-2023-0286

CVE-2023-0215

CVE-2022-4450

workshops.learningcenter.tanzu.vmware.com Expand to see the list

GHSA-ppp9-7jff-5vj2

GHSA-fxg5-wq6x-vr4w

GHSA-83g2-8m93-v3w7

GHSA-69ch-w2m2-3vjp

GHSA-3vm4-22fp-5rfm

CVE-2023-24329

CVE-2023-23919

CVE-2023-0461

v1.4.4 Resolved issues

The following issues, listed by component and area, are resolved in this release.

v1.4.4 Resolved issues: Grype Scanner

Updated Syft version to fix image scans failing with panic. This fixes an issue that caused the
scanner to fail with an index out of range error. This happened when parsing APK metadata
to identify the installed OS packages if a package’s list of provided files is empty.

v1.4.4 Resolved issues: Source Controller

Tanzu Application Platform v1.4

VMware by Broadcom 124

https://github.com/advisories/GHSA-x4qr-2fvf-3mr5
https://github.com/advisories/GHSA-ppp9-7jff-5vj2
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://github.com/advisories/GHSA-83g2-8m93-v3w7
https://github.com/advisories/GHSA-69ch-w2m2-3vjp
https://github.com/advisories/GHSA-3vm4-22fp-5rfm
https://github.com/advisories/GHSA-2hrw-hx67-34x6
https://nvd.nist.gov/vuln/detail/CVE-2023-24329
https://nvd.nist.gov/vuln/detail/CVE-2023-23919
https://nvd.nist.gov/vuln/detail/CVE-2023-0461
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://nvd.nist.gov/vuln/detail/CVE-2023-24329
https://nvd.nist.gov/vuln/detail/CVE-2023-23919
https://nvd.nist.gov/vuln/detail/CVE-2023-23918
https://nvd.nist.gov/vuln/detail/CVE-2023-0361
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0215
https://nvd.nist.gov/vuln/detail/CVE-2022-4450
https://github.com/advisories/GHSA-ppp9-7jff-5vj2
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://github.com/advisories/GHSA-83g2-8m93-v3w7
https://github.com/advisories/GHSA-69ch-w2m2-3vjp
https://github.com/advisories/GHSA-3vm4-22fp-5rfm
https://nvd.nist.gov/vuln/detail/CVE-2023-24329
https://nvd.nist.gov/vuln/detail/CVE-2023-23919
https://nvd.nist.gov/vuln/detail/CVE-2023-0461

Updated imgpkg API to v0.36.0 to fix file permissions after extracting the source tarball.
File permissions were stripped from source files while using IMGPKG v0.25.0. This issue is
fixed in IMGPKG v0.29.0 and later.

v1.4.4 Known issues

This release has the following known issues, listed by component and area.

v1.4.4 Known issues: API Auto Registration

Users cannot update their APIs through API Auto Registration due to a issue with the ID
used to retrieve APIs. This issue causes errors in the API Descriptor CRD similar to the
following: Unable to find API entity's uid within TAP GUI. Retrying the sync.

v1.4.4 Known issues: Grype Scanner

Scanning Java source code that uses Gradle package manager might not reveal
vulnerabilities:

For most languages, source code scanning only scans files present in the source code
repository. Except for support added for Java projects using Maven, no network calls fetch
dependencies. For languages using dependency lock files, such as golang and Node.js,
Grype uses the lock files to verify dependencies for vulnerabilities.

For Java using Gradle, dependency lock files are not guaranteed, so Grype uses
dependencies present in the built binaries, such as .jar or .war files.

Because VMware discourages committing binaries to source code repositories, Grype fails
to find vulnerabilities during a source scan. The vulnerabilities are still found during the
image scan after the binaries are built and packaged as images.

v1.4.2

Release Date: 06 March 2023

v1.4.2 Security fixes

This release has the following security fixes, listed by package name and vulnerabilities.

accelerator.apps.tanzu.vmware.com: GHSA-69cg-p879-7622 and CVE-2023-0286

api-portal.tanzu.vmware.com: CVE-2023-0286

apis.apps.tanzu.vmware.com: CVE-2023-0286

buildservice.tanzu.vmware.com: GHSA-69cg-p879-7622, CVE-2023-0286, and GHSA-
69ch-w2m2-3vjp

cartographer.tanzu.vmware.com: CVE-2023-0286 and GHSA-fxg5-wq6x-vr4w

cert-manager.tanzu.vmware.com: GHSA-69cg-p879-7622, GHSA-69ch-w2m2-3vjp, and
GHSA-83g2-8m93-v3w7

cnrs.tanzu.vmware.com: GHSA-69cg-p879-7622, CVE-2023-0286, GHSA-fxg5-wq6x-
vr4w, and GHSA-69ch-w2m2-3vjp

controller.conventions.apps.tanzu.vmware.com: GHSA-69cg-p879-7622, CVE-2023-
0286, GHSA-fxg5-wq6x-vr4w, and GHSA-69ch-w2m2-3vjp

controller.source.apps.tanzu.vmware.com: CVE-2023-0286 and GHSA-fxg5-wq6x-vr4w

Tanzu Application Platform v1.4

VMware by Broadcom 125

https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286

conventions.appliveview.tanzu.vmware.com: GHSA-69cg-p879-7622 and GHSA-fxg5-
wq6x-vr4w

developer-conventions.tanzu.vmware.com: CVE-2023-0286

eventing.tanzu.vmware.com: CVE-2023-0286

external-secrets.apps.tanzu.vmware.com: CVE-2023-0286

fluxcd.source.controller.tanzu.vmware.com: CVE-2023-0286

metadata-store.apps.tanzu.vmware.com: GHSA-69cg-p879-7622, CVE-2023-0286,
GHSA-fxg5-wq6x-vr4w, GHSA-69ch-w2m2-3vjp, GHSA-8c26-wmh5-6g9v, and GHSA-
r48q-9g5r-8q2h

namespace-provisioner.apps.tanzu.vmware.com: GHSA-fxg5-wq6x-vr4w

ootb-templates.tanzu.vmware.com: GHSA-69cg-p879-7622, CVE-2023-0286, GHSA-
fxg5-wq6x-vr4w, GHSA-69ch-w2m2-3vjp, GHSA-3vm4-22fp-5rfm, GHSA-8c26-wmh5-
6g9v, GHSA-gwc9-m7rh-j2ww, GHSA-83g2-8m93-v3w7, and GHSA-ppp9-7jff-5vj2

policy.apps.tanzu.vmware.com: CVE-2023-0286

services-toolkit.tanzu.vmware.com: GHSA-69cg-p879-7622 and GHSA-fxg5-wq6x-vr4w

spring-boot-conventions.tanzu.vmware.com: GHSA-69cg-p879-7622 and GHSA-fxg5-
wq6x-vr4w

sso.apps.tanzu.vmware.com: CVE-2023-0286, CVE-2022-4450, and CVE-2023-0215

tekton.tanzu.vmware.com: CVE-2023-0286, CVE-2022-45061, CVE-2022-42703, and
CVE-2022-4378

v1.4.2 Resolved issues

The following issues, listed by area and component, are resolved in this release.

v1.4.2 Resolved issues: Tanzu Build Service

Fixed an issue that prevented the Cloud Native Buildpacks lifecycle component from
upgrading with Tanzu Build Service.

Outdated lifecycle components can be built with older versions of Golang containing
CVEs in the standard library.

Upgrading to Tanzu Application Platform v1.4.2 ensures the lifecycle component is
updated to the latest version.

v1.4.2 Known issues

This release has the following known issues, listed by area and component.

v1.4.2 Known issues: Grype scanner

Scanning Java source code that uses Gradle package manager might not reveal
vulnerabilities:

For most languages, source code scanning only scans files present in the source code
repository. Except for support added for Java projects using Maven, no network calls fetch
dependencies. For languages using dependency lock files, such as Golang and Node.js,
Grype uses the lock files to check dependencies for vulnerabilities.

For Java using Gradle, dependency lock files are not guaranteed, so Grype uses
dependencies present in the built binaries, such as .jar or .war files.

Tanzu Application Platform v1.4

VMware by Broadcom 126

https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2022-4450
https://nvd.nist.gov/vuln/detail/CVE-2023-0215
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2022-45061
https://nvd.nist.gov/vuln/detail/CVE-2022-42703
https://nvd.nist.gov/vuln/detail/CVE-2022-4378

Because VMware discourages committing binaries to source code repositories, Grype fails
to find vulnerabilities during a source scan. The vulnerabilities are still found during the
image scan after the binaries are built and packaged as images.

Scanning some Alpine-based container images fails with a panic:

An issue in Syft causes the scanner to crash with index out of range, while parsing APK
metadata to identify installed OS packages if a package’s list of provided files is empty. This
problem is resolved in SCST - Scan (Grype) version 1.4.1 or in the Tanzu Application
Platform version 1.5.0+.

v1.4.1

Release Date: 16 February 2023

v1.4.1 Security fixes

This release has the following security fixes, listed by area and component.

v1.4.1 Security fixes: Tanzu Application Platform GUI

GHSA-3xq5-wjfh-ppjc

GHSA-36fh-84j7-cv5h

v1.4.1 Resolved issues

The following issues, listed by area and component, are resolved in this release.

v1.4.1 Resolved issues: Source Controller

Fixed an issue that caused some registries, including DockerHub, to incur higher than
expected pulls because all HTTP GET calls are considered to be pulls. With this fix, HTTP
requests use HEAD operations instead of GET operations, which reduces the number of
pulls while checking updated image versions.

v1.4.1 Resolved issues: Tanzu Application Platform GUI

Fixed SVG icons that appeared overly large on the sidebar.

Added catalog graph cards and diagram defaults to align with upstream Backstage.

v1.4.1 Resolved issues: Tanzu Application Platform plug-ins

API Validation and Scoring Toolkit plug-in

Better error-handling for when a scoring value is missing in the API YAML.

Adjusted some styles of the components to meet requirements.

Application Accelerator plug-in

Fixed the rendering of options that share an identical dependsOn array value. Added system
property configuration for the Git repository creation feature.

Added a workflow scope to the Git repository creation feature.

Application Live View plug-in

Tanzu Application Platform v1.4

VMware by Broadcom 127

https://github.com/advisories/GHSA-3xq5-wjfh-ppjc
https://github.com/advisories/GHSA-36fh-84j7-cv5h

Fixed the reset button in the root logger of the Application Live View log levels page.

Out of the Box Supply Chain Templates plug-in

Fixed deliverable content written into ConfigMaps in a multicluster setup. Added labels to
attribute the deliverable content with the supply chain and the template. This was done to
be consistent with the delivery on a non-Build profile cluster. For more information, see
Multicluster Tanzu Application Platform overview.

Security Analysis plug-in

Updated the data model for the response of metadata-store.

Changed the table’s position on the index page.

Updated the filter for workloads with no associated policy.

Updated the bar graph for workloads with big and small values for different severities.

Fixed a discrepancy between the widget and the information in Workload Build
Vulnerabilities.

Supply Chain Choreographer plug-in

The Generation box now shows the correct amended scan policy version. Clicking the scan
policy link displays the amended policy.

The Approve a Request button now appears in the Stage Details section of the Supply
Chain view when the Config Writer stage is selected and the GitOps PR flow is configured.

When an error occurs and the scan policy documentation link appears, the link now targets
the latest version of the Tanzu Application Platform documentation.

Supply Chain Security Tools plug-in

Fixed view approval failing to display in the Config Writer stage.

Fixed the check box status in the Table filter.

Updated the Scan policy documentation URL.

Fixed the Generation number displayed after the scan policy is updated.

v1.4.1 Known issues

This release has the following known issues, listed by area and component.

v1.4.1 Known issues: Grype scanner

Scanning Java source code that uses Gradle package manager might not reveal
vulnerabilities:

For most languages, source code scanning only scans files present in the source code
repository. Except for support added for Java projects using Maven, no network calls fetch
dependencies. For languages using dependency lock files, such as Golang and Node.js,
Grype uses the lock files to check dependencies for vulnerabilities.

For Java using Gradle, dependency lock files are not guaranteed, so Grype uses
dependencies present in the built binaries, such as .jar or .war files.

Tanzu Application Platform v1.4

VMware by Broadcom 128

Because VMware discourages committing binaries to source code repositories, Grype fails
to find vulnerabilities during a source scan. The vulnerabilities are still found during the
image scan after the binaries are built and packaged as images.

Scanning some Alpine-based container images fails with a panic:

An issue in Syft causes the scanner to crash with index out of range, while parsing APK
metadata to identify installed OS packages if a package’s list of provided files is empty. This
problem is resolved in SCST - Scan (Grype) version 1.4.1 or in the Tanzu Application
Platform version 1.5.0+.

v1.4.1 Known issues: Security Analysis GUI

After upgrading to Tanzu Application Platform v1.4 from v1.3, the Security Analysis GUI
dashboard might appear empty because the dashboard now displays information from the
Metadata Store. To repopulate the dashboard, see Troubleshooting.

v1.4.0
Release Date: 10 January 2023

v1.4.0 Tanzu Application Platform new features

This release includes the following platform-wide enhancements.

Shared Ingress Issuer for secure ingress communication by default. CNRs, AppSSO, and
Tanzu Application Platform GUI use this issuer to secure ingress. Over future releases,
VMware plans to incrementally update all Tanzu Application Platform components to
support the shared ingress issuer.

Namespace Provisioner provides a secure, automated way for Platform Operators to
provision namespaces with the resources and proper namespace-level privileges required
for their workloads to function as intended.

Tanzu Application Platform Telemetry Reports offers the option to enroll in a usage
reporting program that provides a usage summary of your Tanzu Application Platform.

Tanzu Developer Tools for Visual Studio is an IDE extension for Visual Studio to help you
develop, providing the rapid iteration experience for .NET Core apps in Tanzu Application
Platform.

v1.4.0 New features by component and area

This release includes the following changes, listed by component and area.

v1.4.0 Features: API Validation and Scoring Toolkit

API Validation and Scoring focuses on scanning and validating an OpenAPI specification.
The API specification is generated from the API Auto Registration of Tanzu Application
Platform. See API Validation and Scoring for more information.

v1.4.0 Features: Application Single Sign-On (AppSSO)

Added ability to configure custom Redis storage for an AuthServer by using a
ProvisionedService-style API. For more information, see Storage.

Added package field default_authserver_clusterissuer that inherits the
shared.ingress_issuer value from Tanzu Application Platform if not set. For more

Tanzu Application Platform v1.4

VMware by Broadcom 129

information, see IssuerURI and TLS.

Added AuthServer.spec.tls.deactivated to deprecate AuthServer.spec.tls.disabled.

AuthServer.spec.tokenSignatures is now a required field.

In addition to globally trusted CA certificates, granular trust can be extended with
AuthServer.spec.caCerts.

LDAP is now a supported identity provider protocol. For more information, see LDAP.

LDAP bind is validated on AuthServer creation when an LDAP identity provider is
defined.

Introduced identityProviders.ldap.url in AuthServer.spec.

Introduced identityProviders.ldap.group.search.

identityProviders.ldap.group is now optional in AuthServer.spec.

v1.4.0 Features: Application Accelerator

Optional Git repository creation during project generation is supported in the Application
Accelerator extension for VS Code.

The parameter .app_config.gitProviders.active in tap-values.yaml was added to
deactivate optional Git repository creation in the VS Code extension during project
creation.

Added custom types, which allows for 1-N number of repeating sets of options in an
accelerator’s form during project creation.

Added the Loop transform to allow for transforms to be applied on list options.

Added generate-from-local command to the Application Accelerator plug-in for the Tanzu
CLI to generate projects from local assets without needing to commit code.

Additional Application Accelerator plug-ins for Tanzu CLI improvements:

fragment create now supports --local-path and --source-image.

fragment update now supports --source-image.

Application Accelerator Samples:

Accelerators - the following accelerators were added:

Angular Frontend Accelerator

Quickly bootstrap an Angular-based Single Page App.

React Frontend Accelerator

Quickly bootstrap a React-based Single Page App.

Fragments - the following fragments were added:

Spring Boot H2 Fragment

Spring Boot MySQL Fragment

Spring Boot PostgreSQL Fragment

v1.4.0 Features: Application Live View

Users can now activate or deactivate the automatic configuration of Spring Boot actuators
on Tanzu Application Platform and on workloads. For more information, see Configure and
access Spring Boot actuators in Tanzu Application Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 130

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/angular-frontend
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/react-frontend
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/fragments/spring-boot-h2
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/fragments/spring-boot-mysql
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/fragments/spring-boot-postgresql

Added Application Live View Memory View panel in Visual Studio Code as part of Spring
Boot Dashboard extension.

Added support for Spring Boot 3. Spring Boot 3 Native Image is not supported.

Added new Application Live View pages HTTP Requests and Request Mappings for Steeltoe
workloads.

Added appliveview_connnector.backend.sslDeactivated to deprecate
appliveview_connnector.backend.sslDisabled.

v1.4.0 Features: Apps plug-in for Tanzu CLI

Added --update-strategy flag to allow you to change tanzu apps workload apply behavior
when contents from file are applied. See How-to-guides section for use and examples.

Added ability to pass URL for --file flag.

Show fully qualified resource name in the resources column of Supply chain and Delivery
sections of the tanzu apps workload get command. Example output is found in tanzu apps
workload get command description.

Added new shorthand flag aliases: -a for --app, -e for --env, -i for --image, -l for label, -p
for --param, and -t for --type. For more information, see Tanzu apps workload apply flags
list.

Added emojis to tanzu apps workload create/apply/delete commands.

Do not print emojis when --no-color flag is set.

Added namespace to tanzu apps workload get command’s overview section.

Added progress bar to provide feedback to users when uploading source code to registry.

Removed color from tail command output when --no-color flag is passed.

v1.4.0 Features: cert-manager

cert-manager.tap.tanzu.vmware.com can optionally install self-signed ClusterIssuers.

v1.4.0 Features: Eventing

Upgraded Knative Eventing version from 1.6 to 1.8.

Added a Kubernetes tracing attribute to ApiServerSource.

The ApiServerSource is a Knative Eventing Kubernetes custom resource that listens for
events emitted by the Kubernetes API server. For example, pod creation, deployment
updates, and so on. It then forwards them as CloudEvents to a sink.

v1.4.0 Features: External Secrets Operator (alpha)

The External Secrets Operator is a Kubernetes operator that integrates with external secret
management systems. With this release, Tanzu Application Platform repackages this open
source Kubernetes operator into a Carvel bundle that ships with Tanzu Application Platform.
External Secrets Operator is currently in alpha and is intended for evaluation and test
purposes only. Do not use in a production environment.

v1.4.0 Features: Services Toolkit

Added new ClassClaim API that allows claims for service instances to be created by
referring to a ClusterInstanceClass. For more information, see When to use ClassClaim vs

Tanzu Application Platform v1.4

VMware by Broadcom 131

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/resource_claims-which_claim.html

ResourceClaim and Introducing different service implementations in different environments.

Added corresponding tanzu services class-claims CLI plug-in command.

Added support for OpenShift v4.11.

Added support for Kubernetes v1.25.

All containers are now configured with read-only root file systems.

v1.4.0 Features: Tanzu Application Platform GUI plug-ins

Security Analysis Plug-in

Understand the total number of affected packages and vulnerabilities on the Security
Analysis Dashboard: The Vulnerabilities by Severity widget and the Workload Build
Vulnerabilities table have updated logic to count all CVEs and packages, providing a better
idea of the discrete, affected packages. Previously, the logic counted unique CVEs, even if
a particular CVE affected multiple packages.

Quickly identify all affected workloads for a specific CVE, package, or dependency:
The CVE and Package details pages include a new table that shows all affected workloads
for a specific CVE or package. You access the CVE and Package details page on the source
or image scan stage in the Supply Chain Choreographer Plug-in.

Supply Chain Choreographer plug-in

Events are now emitted when resources are applied and when their output or health status
changes. See Events reference.

Source Tester stage now includes a link to the Jenkins job when Jenkins is configured for
use in the supply chain.

spec.source.git.url is added to the Overview section of the Source Provider stage in the
supply chain.

Added support to include current and historical Kaniko build logs in the Stage Details
section of the supply chain when Kaniko is used as the build service in the Image Provider
stage.

Scanning stages now include a Show Unique CVEs filter so that the scan results show one
CVE per ID as opposed to each CVE per package. This allows better alignment between
the data in the Supply Chain Choreographer plug-in and the Security Analysis plug-in.

v1.4.0 Features: Supply Chain Security Tools - Policy

Added ability to configure action when no policy matches the admitting image digest.

Added ability to allow empty authorities for ClusterImagePolicies.

Added ability to specify which resources a ClusterImagePolicy should enforce.

v1.4.0 Features: Supply Chain Security Tools - Scan

Users no longer need to create a package overlay to enable Grype in offline and air-gapped
environments. See Using Grype in offline and air-gapped environments.

Increased compatibility with customers’ existing environments by supporting custom
certificate authorities (CAs) by using the tap-values.yml for both Grype and Snyk scanners.

Alpha release of Prisma Scanner integration. See Install Prisma Scanner.

Tanzu Application Platform v1.4

VMware by Broadcom 132

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/resource_claims-which_claim.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-introducing_different_service_implementations_in_different_environments.html

v1.4.0 Features: Tanzu Developer Tools for IntelliJ

The developer sandbox enables developers to Live Update their code and simultaneously
debug the updated code, without having to deactivate Live Update when debugging.

An Activity pane was added in the Tanzu Panel that allows developers to visualize the
supply chain, delivery, and running application pods. It displays detailed error messages on
each resource and enables developers to describe and view logs on these resources from
within their IDE.

Tanzu workload apply and delete actions were added to ​IntelliJ.

Code snippets to create workload.yaml and catalog-info.yaml files were added to IntelliJ.

v1.4.0 Features: Tanzu Developer Tools for Visual Studio

See code updates running on-cluster in seconds: By using Live Update facilitated by Tilt,
deploy your workload once, save changes to the code, and then in seconds see those
changes reflected in the workload running on the cluster. All Live Update output is filtered
to its own output pane window within Visual Studio.

Debug workloads directly on the cluster: Debug your application in a production-like
environment by debugging on your Kubernetes cluster that has Tanzu Application Platform.
An environment’s similarity to production relies on keeping dependencies updated, among
other variables.

v1.4.0 Features: Tanzu Developer Tools for Visual Studio Code

The developer sandbox enables developers to Live Update their code, and simultaneously
debug the updated code, without having to deactivate Live Update when debugging.

v1.4.0 Breaking changes

This release has the following breaking changes, listed by area and component.

v1.4.0 Breaking changes: Application Single Sign-On (AppSSO)

Removed
AuthServer.spec.identityProvider.ldap.group.search{Filter,Base,Depth,SubTree} and
introduced ldap.group.search: {}.

If ldap.group is defined and ldap.group.search is not defined, the LDAP is
considered an ActiveDirectory style LDAP and groups are loaded from the user’s
memberOf attribute.

If ldap.group and ldap.group.search are both defined, the LDAP is considered a
Classic LDAP and group search is done by searching in the ldap.group.search.base.

There used to be a mixed mode, when both searches were attempted every time.

Removed AuthServer.spec.identityProviders.ldap.server field.

Removed AuthServer.status.deployments.authServer.lastParentGenerationWithRestart
field.

Removed deprecated field AuthServer.spec.issuerURI. For more information, see
IssuerURI and TLS.

v1.4.0 Breaking changes: Out of the Box Supply Chain Templates

Tanzu Application Platform v1.4

VMware by Broadcom 133

In a multicluster setup, when a Deliverable is created on a Build profile cluster, the
ConfigMap it’s in is renamed from <workload-name> to <workload-name>-deliverable. Any
automation that depends on obtaining the Deliverable content by the former name must be
updated with the new name. For more information, see Multicluster Tanzu Application
Platform overview.

v1.4.0 Breaking changes: Supply Chain Security Tools - Image Policy Webhook

The Image Policy Webhook component is removed in Tanzu Application Platform v1.4. This
component is deprecated in favor of the Policy Controller.

v1.4.0 Breaking changes: Supply Chain Security Tools - Policy Controller

Policy Controller no longer initializes TUF by default. TUF is required to support the keyless
authorities in ClusterImagePolicy. To continue to use keyless authorities, provide the value
policy.tuf_enabled: true by using the tap-values.yaml file while upgrading. By default,
the public Sigstore The Update Framework (TUF) server is used. To target an alternative
Sigstore stack, specify policy.tuf_mirror and policy.tuf_root.

v1.4.0 Breaking changes: Tanzu Application Platform GUI

Ingress URL: As mentioned in the new features section, Tanzu Application Platform GUI
participates in the shared ingress issuer feature. You might need to change your scheme
from http to https. For more information, see Troubleshooting.

Communication with Supply Chain Security Tools - Store: In previous versions of Tanzu
Application Platform, you configured Tanzu Application Platform GUI to use the read-only
access token to communicate with Supply

In v1.4, you must use the read-write access token to use new features in the Security
Analysis GUI plug-in. If upgrading from v1.3, update your Tanzu Application Platform GUI
configuration accordingly. See the updated instructions in Enable CVE scan results.

v1.4.0 Breaking changes: Tanzu Developer Tools for IntelliJ

IntelliJ IDEA v2022.2 to v2022.3 is required to install the extension.

v1.4.0 Breaking changes: Tanzu Developer Tools for Visual Studio Code

Tanzu Debug no longer port forwards the application port (8080).

v1.4.0 Security fixes

This release has the following security fixes, listed by area and component.

v1.4.0 Security fixes: API Auto Registration

Base image updated to use the latest Paketo Jammy Base image.

v1.4.0 Security fixes: Contour

Update to Contour v1.22.3. Includes an update to go v1.19.4, which contains security fixes
to the net/http and os packages.

v1.4.0 Security fixes: Supply Chain Security Tools - Grype

Tanzu Application Platform v1.4

VMware by Broadcom 134

https://github.com/projectcontour/contour/releases/tag/v1.22.3
https://go.dev/doc/devel/release#go1.19.minor

python is updated to 3.7.5-22.ph3.

v1.4.0 Security fixes: Remediated vulnerabilities

The following is a list of vulnerabilities remediated with this release:

GHSA-7hfm-57qf-j43q, GHSA-crv7-7245-f45f, GHSA-mc84-pj99-q6hh, GHSA-xqfj-vm6h-
2x34, CVE-2022-42003, CVE-2022-42004, GHSA-jjjh-jjxp-wpff, GHSA-rgv9-q543-rqg4,
GHSA-3mc7-4q67-w48m, GHSA-36p3-wjmg-h94x, CVE-2022-23960, CVE-2022-43945,
GHSA-crp2-qrr5-8pq7, GHSA-7qw8-847f-pggm, GHSA-c3xm-pvg7-gh7r, GHSA-f524-rf33-
2jjr, CVE-2022-2509, CVE-2022-3171, CVE-2022-3509, CVE-2022-3510, GHSA-4gg5-
vx3j-xwc7, GHSA-g5ww-5jh7-63cx, GHSA-66x3-6cw3-v5gj, CVE-2022-3515, CVE-2022-
2602, CVE-2022-41222, CVE-2022-32212, CVE-2022-35255, CVE-2021-27478, CVE-
2021-27482, CVE-2021-27498, CVE-2021-27500, CVE-2019-12900, CVE-2021-28861,
CVE-2021-3737, CVE-2022-0391, GHSA-4w2j-2rg4-5mjw, CVE-2022-2586, CVE-2022-
2588, CVE-2022-34918, GHSA-4wf5-vphf-c2xc, CVE-2022-42916, CVE-2022-43551,
CVE-2022-43552, CVE-2021-3999, GHSA-m974-647v-whv7

Note about CVE-2022-4378

CVE-2022-4378 is a high severity, exploitable stack overflow flaw found in the Linux
kernel’s SYSCTL subsystem. At this time, there is no available patch from Canonical in their
upstream Ubuntu distribution. Once there is a patch available for the 22.04 release line,
Tanzu Application Platform will release a patched base stack image. The current status for
patching this vulnerability in the Jammy stack is available on Ubuntu’s security page.

It is important for customers to understand CVE-2022-4378 is a kernel exploit, and the
kernel runs on the customers’ container host VM, not the Tanzu Application Platform
container image. Even with a patched image, the vulnerability will not be mitigated until
customers deploy their containers on a host with a patched OS. An unpatched host OS may
be exploitable if the base image is deployed allowing users to modify SYSCTL parameters.

RedHat has published a potential mitigation preventing regular users from accessing sysctl
files and increasing privileges until a patch becomes available.

v1.4.0 Resolved issues

The following issues, listed by area and component, are resolved in this release.

v1.4.0 Resolved issues: API Auto Registration

API Auto Registration periodically checks the original API specification from the defined
location to find changes and registers any changes into the API Descriptor. This triggers
reconciliation into the Tanzu Application Platform GUI catalog. This synchronization period
or frequency is configurable through the new value sync_period. The default value is 5
minutes.

v1.4.0 Resolved issues: Application Single Sign-On (AppSSO)

Fixed infinite redirect loops for an AuthServer configured with a single OIDC or SAML
identity provider.

Authorization Code request rejected audit event from anonymous users logging proper IP
address.

AuthServer no longer attempts to configure Redis event listeners.

Tanzu Application Platform v1.4

VMware by Broadcom 135

https://nvd.nist.gov/vuln/detail/CVE-2022-4378
https://ubuntu.com/security/CVE-2022-4378
https://access.redhat.com/security/cve/cve-2022-4378

OpenShift: custom SecurityContextConstraint resource is created for Kubernetes
platforms versions 1.23.x and lower.

LDAP error log now contains proper error message.

v1.4.0 Resolved issues: Out of the Box Supply Chain Templates

Fixed deliverable content written into ConfigMaps in multicluster setup. ConfigMap is renamed to
avoid conflict with config-template.

For more information, see Multicluster Tanzu Application Platform overview.

v1.4.0 Resolved issues: Tanzu CLI Apps Plug-in

Fixed tanzu apps workload tail command output, which was displaying extra init
container log lines.

Fixed tanzu apps workload tail command not including all logs.

v1.4.0 Resolved issues: Tanzu Application Platform GUI plug-ins

Immediate entity provider back-end plug-in

The entity provider, used mainly by API Auto Registration, now allows a body size of
5Mb to accept larger API specifications.

Considering the restriction of Backstage for Entity Provider mutations, whenever an
existing entity is intended for a mutation through this plug-in, and its origin is a
different entity provider, a 409 Conflict error is returned.

v1.4.0 Resolved issues: Supply Chain Choreographer plug-in

The UI no longer shows the error Unable to retrieve details from Image Provider Stage
when the Builder is not available or configured. It now correctly shows the same error as
the CLI, Builder default is not ready.

Build logs are now displayed when the Image Provider stage fails

v1.4.0 Known issues

This release has the following known issues, listed by area and component.

v1.4.0 Known issues: API Auto Registration

Unknown Certificate Authority and connection refused errors from the APIDescriptor CRD.
For more information, see Troubleshoot API Auto Registration.

v1.4.0 Known issues: Application Accelerator for Visual Studio Code

When using custom types, if there is a check box in the list of attributes then re-ordering
the inputs doesn’t work.

v1.4.0 Known issues: Cloud Native Runtimes for VMware Tanzu

Knative Serving: Certain app name, namespace, and domain combinations produce invalid
HTTPProxy resources. See Cloud Native Runtimes Troubleshooting.

Tanzu Application Platform v1.4

VMware by Broadcom 136

https://backstage.io/docs/features/software-catalog/external-integrations#provider-mutations
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/2.1/tanzu-cloud-native-runtimes/GUID-troubleshooting.html#invalid-httpproxy

Knative Serving and Cert Manager: When auto-tls is enabled, the default in Tanzu
Application Platform v1.4.0, Knative services fail with certificateNotReady if workload
name, namespace, and domain are more than 64 bytes. See Cloud Native Runtimes
Troubleshooting.

v1.4.0 Known issues: Grype scanner

Scanning Java source code that uses Gradle package manager might not reveal
vulnerabilities:

For most languages, Source Code Scanning only scans files present in the source code
repository. Except for support added for Java projects using Maven, no network calls fetch
dependencies. For languages using dependency lock files, such as Golang and Node.js,
Grype uses the lock files to check dependencies for vulnerabilities.

For Java using Gradle, dependency lock files are not guaranteed, so Grype uses
dependencies present in the built binaries, such as .jar or .war files.

Because VMware discourages committing binaries to source code repositories, Grype fails
to find vulnerabilities during a source scan. The vulnerabilities are still found during the
image scan after the binaries are built and packaged as images.

Scanning some Alpine-based container images fails with a panic:

An issue in Syft causes the scanner to crash with index out of range, while parsing APK
metadata to identify installed OS packages if a package’s list of provided files is empty. This
problem is resolved in SCST - Scan (Grype) version 1.4.1 or in the Tanzu Application
Platform version 1.5.0+.

v1.4.0 Known issues: Namespace Provisioner

Applying the label selector used by the namespace provisioner controller to the developer
namespace, which is configured at deployment time under the grype package values, will
cause the provisioner Carvel app to crash due to ownership issues. This is because it’s
trying to install Grype in a namespace where it’s already been installed.

v1.4.0 Known issues: Out of the Box Supply Chain Templates

In a Build profile cluster, Deliverables will be created with the labels to associate them with their
Workload missing. As a workaround, they will have to be manually injected. For more information,
see Multicluster Tanzu Application Platform overview.

v1.4.0 Known issues: Tanzu Application Platform GUI plug-ins

Security Analysis plug-in

The No Associated Policy tab in Workload Build Vulnerabilities does not show workloads
that lack associated scan policies.

The CVEs bar graph in Workload Build Vulnerabilities sometimes cuts numbers off.

Supply Chain Choreographer plug-in

The Generation field and scan policy link in the Overview section does not update when
you amend a scan policy. The correct version and details of the policy are shown in the CLI.

Customizing the Source Tester stage in an Out Of the Box supply chain does not show
details in the Stage Details section.

Tanzu Application Platform v1.4

VMware by Broadcom 137

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/2.1/tanzu-cloud-native-runtimes/GUID-troubleshooting.html#certificate-not-ready

When a GitOps PR flow is configured, the Approve a Request link no longer appears in the
supply chain graph.

v1.4.0 Known issues: Tanzu Developer Tools for IntelliJ

If a workload is deployed onto a namespace by using Live Update, you must set that
namespace as the namespace of the current context of your kubeconfig file. Otherwise, if
you run Tanzu Debug, it causes the workload to re-deploy. For more information, see
Troubleshooting.

On macOS, Tanzu Panel might be empty when using a GKE cluster. For more information,
see Troubleshooting.

The Describe action in the pop-up menu in the Activity panel can fail when used on
PodIntent resources. For more information, see Troubleshooting.

The Tanzu panel might show workloads without showing Kubernetes resources in the
center panel of the activity pane. For more information, see Troubleshooting.

The Details table and Messages pane in the activity panel can show stale data because
these views only refresh when the selection in the Resource tree is changed. As a
workaround, make the views refresh by clicking somewhere in the Resource tree to change
the current selection.

Live Update does not work when using the Jammy ClusterBuilder.

v1.4.0 Known issues: Tanzu Developer Tools for Visual Studio

The Tanzu: Delete Workload command can fail with the extension erroneously reporting
that the workload isn’t running. For more information, see Troubleshooting.

The Tanzu: Start Live Update command can fail because the specified path was not
found. For more information, see Troubleshooting.

Live Update does not work when using the Jammy ClusterBuilder.

v1.4.0 Known issues: Tanzu Developer Tools for Visual Studio Code

Could not find the task 'tanzuManagement: Kill Port Forward fortune-service'. You
might see this error message if an app was deployed with a previous version of the Visual
Studio Code extension. For more information, see Troubleshooting.

Deprecations
The following features, listed by component, are deprecated. Deprecated features will remain on
this list until they are retired from Tanzu Application Platform.

Application Live View deprecations

appliveview_connnector.backend.sslDisabled is deprecated and marked for removal in
Tanzu Application Platform 1.7.0. For more information on the migration, see Deprecate the
sslDisabled key.

Application Single Sign-On (AppSSO) deprecations

AuthServer.spec.tls.disabled is deprecated and marked for removal in the next release.
For more information about how to migrate to AuthServer.spec.tls.deactivated, see
Migration guides.

Tanzu Application Platform v1.4

VMware by Broadcom 138

Services Toolkit deprecations

The tanzu services claims CLI plug-in command is now deprecated. It is hidden from help
text output, but continues to work until officially removed after the deprecation period. The
new tanzu services resource-claims command provides the same functionality.

Supply Chain Security Tools - Image Policy Webhook deprecations

The Image Policy Webhook component is removed in Tanzu Application Platform v1.4. This
component is deprecated in favor of the Policy Controller.

Supply Chain Security Tools - Scan deprecations

Removed deprecated ScanTemplates:

Deprecated Grype ScanTemplates shipped with versions prior to Tanzu Application
Platform 1.2.0 are removed and no longer supported. Use Grype ScanTemplates
v1.2 and later.

docker field and related sub-fields used in Supply Chain Security Tools - Scan are
deprecated and marked for removal in Tanzu Application Platform 1.7.0.

The deprecation impacts the following components: Scan Controller, Grype
Scanner, and Snyk Scanner. Carbon Black Scanner is not impacted.

For information about the migration path, see Troubleshooting.

Supply Chain Security Tools - Sign deprecations

Supply Chain Security Tools - Sign is deprecated. For migration information, see Migration
From Supply Chain Security Tools - Sign.

Tanzu Build Service deprecations

The Ubuntu Bionic stack is deprecated: Ubuntu Bionic stops receiving support in April
2023. VMware recommends you migrate builds to Jammy stacks in advance. For how to
migrate builds, see Use Jammy stacks for a workload.

The Cloud Native Buildpack Bill of Materials (CNB BOM) format is deprecated. It is still
activated by default in Tanzu Application Platform v1.3 and v1.4. VMware plans to deactivate
this format by default in Tanzu Application Platform v1.6 and remove support in Tanzu
Application Platform v1.8. To manually deactivate legacy CNB BOM support, see Deactivate
the CNB BOM format.

Tanzu CLI Apps plug-in deprecations

The default value for the --update-strategy flag will change from merge to replace in Tanzu
Application Platform v1.7.0.

The tanzu apps workload update command is deprecated and marked for removal in Tanzu
Application Platform 1.5.0. Use tanzu apps workload apply instead.

Linux Kernel CVEs

Kernel level vulnerabilities are regularly identified and patched by Canonical. Tanzu Application
Platform releases with available images, which might contain known vulnerabilities. When Canonical
makes patched images available, Tanzu Application Platform incorporates these fixed images into
future releases.

Tanzu Application Platform v1.4

VMware by Broadcom 139

The kernel runs on your container host VM, not the Tanzu Application Platform container image.
Even with a patched Tanzu Application Platform image, the vulnerability is not mitigated until you
deploy your containers on a host with a patched OS. An unpatched host OS might be exploitable if
the base image is deployed.

Tanzu Application Platform v1.4

VMware by Broadcom 140

Components and installation profiles for
Tanzu Application Platform

This topic lists the components you can install with Tanzu Application Platform (commonly known as
TAP). You can install components as individual packages or you can install them using a profile
containing a predefined group of packages.

Tanzu Application Platform components

API Auto Registration

When users deploy a workload that exposes an API, they want that API to automatically
show in Tanzu Application Platform GUI without requiring any added manual steps.

API Auto Registration is an automated workflow that can use a supply chain to create and
manage a Kubernetes Custom Resource (CR) of type APIDescriptor. A Kubernetes
controller reconciles the CR and updates the API entity in Tanzu Application Platform GUI
to achieve automated API registration from workloads. You can also use API Auto
Registration without supply chains by directly applying an APIDescriptor CR to the cluster.

API portal for VMware Tanzu

API portal for VMware Tanzu enables API consumers to find APIs they can use in their own
applications.

Consumers can view detailed API documentation and try out an API to see if it meets their
needs. API portal assembles its dashboard and detailed API documentation views by
ingesting OpenAPI documentation from the source URLs. An API portal operator can add
any number of OpenAPI source URLs to to appear in a single instance.

API Scoring and Validation

API Validation and Scoring focuses on scanning and validating an OpenAPI specification.
The API specification is generated from the API Auto Registration. After an API is
registered, the API specification goes through static scan analysis and is validated. Based on
the validation, a scoring is provided to indicate the quality and health of the API
specification as it relates to Documentation, OpenAPI best practices, and Security.

Application Accelerator for VMware Tanzu

The Application Accelerator component helps app developers and app operators create
application accelerators.

Accelerators are templates that codify best practices and ensure that important
configurations and structures are in place. Developers can bootstrap their applications and
get started with feature development right away.

Application operators can create custom accelerators that reflect their desired architectures
and configurations and enable fleets of developers to use them. This helps ease operator
concerns about whether developers are implementing their best practices.

Application Live View

Tanzu Application Platform v1.4

VMware by Broadcom 141

https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/index.html

Application Live View is a lightweight insight and troubleshooting tool that helps application
developers and application operators look inside running applications.

It is based on the concept of Spring Boot Actuators. The application provides information
from inside the running processes by using endpoints (in our case, HTTP endpoints).
Application Live View uses those endpoints to get the data from the application and to
interact with it.

Application Single Sign-On for VMware Tanzu

Application Single Sign-On enables application users to sign in to their identity provider
once and be authorized and identified to access any Kubernetes-deployed workload. It is a
secure and straightforward approach for developers and operators to manage access across
all workloads in the enterprise.

Cloud Native Runtimes for VMware Tanzu

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is
based on Knative and runs on a single Kubernetes cluster. For information about Knative,
see the Knative documentation.

cert-manager

cert-manager adds certificates and certificate issuers as resource types to Kubernetes
clusters. It also helps you to obtain, renew, and use those certificates. For more information
about cert-manager, see the cert-manager documentation.

Contour

Contour is an ingress controller for Kubernetes that supports dynamic configuration updates
and multi-team ingress delegation. It provides the control plane for the Envoy edge and
service proxy. For more information about Contour, see the Contour documentation.

Convention Service for VMware Tanzu

Convention Service provides a means for people in operational roles to express their hard-
won knowledge and opinions about how apps run on Kubernetes as a convention. The
convention service applies these opinions to fleets of developer workloads as they are
deployed to the platform, saving time for operators and developers.

Default roles for Tanzu Application Platform

This package includes five default roles for users, including app-editor, app-viewer, app-
operator, and service accounts including workload and deliverable. These roles are available
to help operators limit permissions a user or service account requires on a cluster that runs
Tanzu Application Platform. They are built by using aggregated cluster roles in Kubernetes
role-based access control (RBAC).

Default roles only apply to a user interacting with the cluster by using kubectl and Tanzu
CLI. Tanzu Application Platform GUI support for default roles is planned for a future release.

Developer Conventions

Developer conventions configure workloads to prepare them for inner loop development.

It’s meant to be a “deploy and forget” component for developers. After it is installed on the
cluster with the Tanzu Package CLI, developers do not need to directly interact with it.
Developers instead interact with the Tanzu Developer Tools for VSCode IDE Extension or
Tanzu CLI Apps plug-in, which rely on the Developer Conventions to edit the workload to
enable inner loop capabilities.

Eventing for VMware Tanzu

Tanzu Application Platform v1.4

VMware by Broadcom 142

https://knative.dev/docs/
https://cert-manager.io/docs
https://projectcontour.io/docs/v1.22.0/

Eventing for VMware Tanzu focuses on providing tooling and patterns for Kubernetes
applications to manage event-triggered systems through Knative Eventing. For information
about Knative, see the Knative documentation.

Flux CD Source Controller

The main role of this source management component is to provide a common interface for
artifact acquisition.

Grype

Grype is a vulnerability scanner for container images and file systems.

Namespace Provisioner

Namespace provisioner provides an easy, secure, automated way for Platform Operators to
provision namespaces with the resources and proper namespace-level privileges needed for
developer workloads to function as intended.

Services Toolkit for VMware Tanzu

Services Toolkit comprises a number of Kubernetes-native components that support the
management, life cycle, discoverability, and connectivity of Service Resources (databases,
message queues, DNS records, and so on) on Kubernetes.

Source Controller

Tanzu Source Controller provides a standard interface for artifact acquisition and extends
the function of Flux CD Source Controller. Tanzu Source Controller supports the following
two resource types:

ImageRepository

MavenArtifact

Spring Boot conventions

The Spring Boot convention server has a bundle of smaller conventions applied to any
Spring Boot application that is submitted to the supply chain in which the convention
controller is configured.

Supply Chain Choreographer for VMware Tanzu

Supply Chain Choreographer is based on open-source Cartographer. It enables app
operators to create preapproved paths to production by integrating Kubernetes resources
with the elements of their existing toolchains, such as Jenkins.

Each pre-approved supply chain creates a paved road to production. It orchestrates supply
chain resources, namely test, build, scan, and deploy. Enabling developers to focus on
delivering value to their users. Pre-approved supply chains also assure application operators
that all code in production has passed through the steps of an approved workflow.

Supply Chain Security tools for Tanzu - Scan

With Supply Chain Security Tools for VMware Tanzu - Scan, you can build and deploy
secure trusted software that complies with their corporate security requirements.

To enable this, Supply Chain Security Tools - Scan provides scanning and gate keeping
capabilities that Application and DevSecOps teams can incorporate earlier in their path to
production. This is an established industry best practice for reducing security risk and
ensuring more efficient remediation.

Supply Chain Security Tools - Sign (Deprecated)

Supply Chain Security Tools - Sign provides an admission controller that allows a cluster
operator to specify a policy that allows or denies images from running based on signature

Tanzu Application Platform v1.4

VMware by Broadcom 143

https://knative.dev/docs/
https://github.com/anchore/grype
https://cartographer.sh/docs/

verification against public keys. SCST - Sign works with cosign signature format and allows
for fine-tuned configuration based on image source patterns.

Supply Chain Security Tools - Policy Controller

Supply Chain Security Tools - Policy is an admission controller that allows a cluster operator
to specify policies to verify image container signatures before admitting them to a cluster. It
works with cosign signature format and allows for fine-tuned configuration of policies based
on image source patterns.

Supply Chain Security Tools - Store

Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database
and enables you to query for image, source, package, and vulnerability relationships. It
integrates with SCST - Scan to automatically store the resulting source and image
vulnerability reports.

Tanzu Application Platform GUI

Tanzu Application Platform GUI lets your developers view your organization’s running
applications and services. It provides a central location for viewing dependencies,
relationships, technical documentation, and even service status. Tanzu Application Platform
GUI is built from the Cloud Native Computing Foundation’s project Backstage.

Tanzu Build Service

Tanzu Build Service uses the open-source Cloud Native Build packs project to turn
application source code into container images.

Tanzu Build Service executes reproducible builds that align with modern container
standards and keeps images up to date. It does so by leveraging Kubernetes infrastructure
with kpack, a Cloud Native Build packs Platform, to orchestrate the image life cycle.

The kpack CLI tool, kp, can aid in managing kpack resources. Build Service helps you
develop and automate containerized software workflows securely and at scale.

Tanzu Developer Tools for IntelliJ

Tanzu Developer Tools for IntelliJ is the official VMware Tanzu IDE extension for IntelliJ
IDEA to help you develop code by using Tanzu Application Platform. This extension enables
you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

Tanzu Developer Tools for Visual Studio

Tanzu Developer Tools for Visual Studio is the official VMware Tanzu IDE extension for
Visual Studio to help you develop code by using Tanzu Application Platform. The Visual
Studio extension enables live updates of your application while it runs on the cluster and
lets you debug your application directly on the cluster.

Tanzu Developer Tools for Visual Studio Code

Tanzu Developer Tools for VS Code is the official VMware Tanzu IDE extension for VS Code
to help you develop code by using Tanzu Application Platform. The VS Code extension
enables live updates of your application while it runs on the cluster and lets you debug your
application directly on the cluster.

Tanzu Learning Center

Learning Center provides a platform for creating and self-hosting workshops. With Learning
Center, content creators can create workshops from markdown files that learners can view
in a terminal shell environment with an instructional wizard UI. The UI can embed slide
content, an integrated development environment (IDE), a web console for accessing the
Kubernetes cluster, and other custom web applications.

Tanzu Application Platform v1.4

VMware by Broadcom 144

https://github.com/sigstore/cosign#quick-start
https://github.com/sigstore/cosign#quick-start

Although Learning Center requires Kubernetes to run, and it teaches users about
Kubernetes, you can use it to host training for other purposes as well. For example, you can
use it to train users on web-based applications, use of databases, or programming
languages.

Tekton Pipelines

Tekton is a powerful and flexible open-source framework for creating CI/CD systems,
enabling developers to build, test, and deploy across cloud providers and on-premise
systems.

Tanzu Application Platform Telemetry

Tanzu Application Platform Telemetry is a set of objects that collect data about the use of
Tanzu Application Platform and send it back to VMware for product improvements. A
benefit of remaining enrolled in telemetry and identifying your company during Tanzu
Application Platform installation is that VMware can provide your organization with use
reports about Tanzu Application Platform. See Tanzu Application Platform usage reports for
more information about enrolling in telemetry reports.

Installation profiles in Tanzu Application Platform v1.4

You can deploy Tanzu Application Platform through predefined profiles, each containing various
packages, or you can install the packages individually. The profiles allow Tanzu Application Platform
to scale across an organization’s multicluster, multi-cloud, or hybrid cloud infrastructure. These
profiles are not meant to cover all use cases, but serve as a starting point to allow for further
customization.

The following profiles are available in Tanzu Application Platform:

Full (full): Contains all of the Tanzu Application Platform packages.

Iterate (iterate): Intended for iterative application development.

Build (build): Intended for the transformation of source revisions to workload revisions.
Specifically, hosting workloads and SupplyChains.

Run (run): Intended for the transformation of workload revisions to running pods.
Specifically, hosting deliveries and deliverables.

View (view): Intended for instances of applications related to centralized developer
experiences. Specifically, Tanzu Application Platform GUI and Metadata Store.

The following tables list the packages contained in each profile. For a diagram showing the
packages contained in each profile, see Overview of multicluster Tanzu Application Platform.

Packages: A to C

Package Name Full Iterate Build Run View

API Auto Registration ✓ ✓ ✓

API portal ✓ ✓

Application Accelerator ✓ ✓

Note

You can opt out of telemetry collection by following the instructions in Opting out
of telemetry collection.

Tanzu Application Platform v1.4

VMware by Broadcom 145

Package Name Full Iterate Build Run View

Application Live View back end ✓ ✓

Application Live View connector ✓ ✓ ✓

Application Live View conventions ✓ ✓ ✓

Application Single Sign-On ✓ ✓ ✓

cert-manager ✓ ✓ ✓ ✓ ✓

Cloud Native Runtimes ✓ ✓ ✓

Contour ✓ ✓ ✓ ✓ ✓

Convention controller ✓ ✓ ✓

Packages: D to R

Package Name Full Iterate Build Run View

Default Roles ✓ ✓ ✓ ✓

Developer Conventions ✓ ✓

Eventing ✓ ✓ ✓

Flux Source Controller ✓ ✓ ✓ ✓ ✓

Grype ✓ ✓

Learning Center ✓ ✓

Namespace Provisioner ✓ ✓ ✓ ✓

Out of the Box Delivery - Basic ✓ ✓ ✓

Out of the Box Supply Chain - Basic ✓ ✓ ✓

Out of the Box Supply Chain - Testing ✓ ✓ ✓

Out of the Box Supply Chain - Testing and
Scanning

✓ ✓

Out of the Box Templates ✓ ✓ ✓ ✓

Packages: S to Z

Package Name Full Iterate Build Run View

Service Bindings ✓ ✓ ✓

Services Toolkit ✓ ✓ ✓

Source Controller ✓ ✓ ✓ ✓ ✓

Spring Boot conventions ✓ ✓ ✓

Supply Chain Choreographer ✓ ✓ ✓ ✓

SCST - Policy Controller ✓ ✓ ✓

SCST - Scan ✓ ✓

SCST - Sign (deprecated) ✓ ✓ ✓

SCST - Store ✓ ✓

Tanzu Application Platform v1.4

VMware by Broadcom 146

Package Name Full Iterate Build Run View

Tanzu Build Service ✓ ✓ ✓

Tanzu Application Platform GUI ✓ ✓

Tekton Pipelines ✓ ✓ ✓

Telemetry ✓ ✓ ✓ ✓ ✓

Language and framework support in Tanzu Application
Platform

The following table shows the languages and frameworks supported by Tanzu Application Platform
components.

Language or
Framework

Tanzu
Build
Service

Runtime
Conventions

Tanzu
Developer
Tooling

Application
Live View

Functions
Extended Scanning
Coverage using
Buildpack SBOM's

Java ✓ ✓ ✓ ✓ ✓

Spring Boot ✓ ✓ ✓ ✓ ✓ ✓

.NET Core ✓ ✓ ✓ ✓

Steeltoe ✓ ✓ ✓ ✓

NodeJS ✓ ✓ ✓

Python ✓ ✓ ✓

golang ✓ ✓

PHP ✓ ✓

Ruby ✓ ✓

Tanzu Developer Tooling: refers to the developer conventions that enable debugging and Live
Update function in the inner loop.

Extended Scanning Coverage: When building container images with the Tanzu Build Service, the
Cloud Native Build Packs used in the build process for the specified languages produce a Software
Bill of Materials (SBOM). Some scan engines support the enhanced ability to use this SBOM as a
source for the scan. Out of the Box Supply Chain - Testing and Scanning leverages Anchore’s
Grype for the image scan, which suppports this capability. In addition, users have the ability to
leverage Carbon Black Container image scans, which also supports this enhanced scan coverage.

Installing Tanzu Application Platform

For more information about installing Tanzu Application Platform, see Installing Tanzu Application
Platform.

Note

You can only install one supply chain at any given time. For information about
switching supply chains, see Add testing and scanning to your application.

Tanzu Application Platform v1.4

VMware by Broadcom 147

Install Tanzu Application Platform

You can install Tanzu Application Platform (commonly known as TAP) by using one of the following
methods:

Install Tanzu Application Platform online. For Tanzu Application Platform on a Kubernetes
cluster with internet access.

Install Tanzu Application Platform in an air-gapped environment. For Tanzu Application
Platform on a Kubernetes cluster air-gapped from external traffic.

Install Tanzu Application Platform in AWS. For installing Tanzu Application platform using
AWS Cloud Services.

Install Tanzu Application Platform on OpenShift. For Tanzu Application Platform on an
OpenShift cluster with internet access.

Install Tanzu Application Platform

You can install Tanzu Application Platform (commonly known as TAP) by using one of the following
methods:

Install Tanzu Application Platform online. For Tanzu Application Platform on a Kubernetes
cluster with internet access.

Install Tanzu Application Platform in an air-gapped environment. For Tanzu Application
Platform on a Kubernetes cluster air-gapped from external traffic.

Install Tanzu Application Platform in AWS. For installing Tanzu Application platform using
AWS Cloud Services.

Install Tanzu Application Platform on OpenShift. For Tanzu Application Platform on an
OpenShift cluster with internet access.

Prerequisites for installing Tanzu Application Platform

The following are required to install Tanzu Application Platform (commonly known as TAP):

VMware Tanzu Network and container image registry
requirements

Installation requires:

Access to VMware Tanzu Network:

A Tanzu Network account to download Tanzu Application Platform packages.

Network access to https://registry.tanzu.vmware.com.

Cluster-specific registry:

A container image registry, such as Harbor or Docker Hub for application images,
base images, and runtime dependencies. When available, VMware recommends

Tanzu Application Platform v1.4

VMware by Broadcom 148

https://network.tanzu.vmware.com/
https://goharbor.io/
https://hub.docker.com/

using a paid registry account to avoid potential rate-limiting associated with some
free registry offerings.

Recommended storage space for container image registry:

1 GB of available storage if installing Tanzu Build Service with the lite set of
dependencies.

10 GB of available storage if installing Tanzu Build Service with the full set
of dependencies, which are suitable for offline environments.

Registry credentials with read and write access available to Tanzu Application Platform to
store images.

Network access to your chosen container image registry.

DNS Records

There are some optional but recommended DNS records you must allocate if you decide to use
these particular components:

Cloud Native Runtimes (Knative): Allocate a wildcard subdomain for your developer’s
applications. This is specified in the shared.ingress_domain key of the tap-values.yaml
configuration file that you input with the installation. This wildcard must be pointed at the
external IP address of the tanzu-system-ingress’s envoy service. See Access with the
shared Ingress method for more information about tanzu-system-ingress.

Tanzu Learning Center: Similar to Cloud Native Runtimes, allocate a wildcard subdomain for
your workshops and content. This is also specified by the shared.ingress_domain key of the
tap-values.yaml configuration file that you input with the installation. This wildcard must be
pointed at the external IP address of the tanzu-system-ingress’s envoy service.

Tanzu Application Platform GUI: If you decide to implement the shared ingress and include
Tanzu Application Platform GUI, allocate a fully Qualified Domain Name (FQDN) that can be
pointed at the tanzu-system-ingress service. The default host name consists of tap-gui
and the shared.ingress_domain value. For example, tap-gui.example.com.

Supply Chain Security Tools - Store: Similar to Tanzu Application Platform GUI, allocate a
fully Qualified Domain Name (FQDN) that can be pointed at the tanzu-system-ingress
service. The default host name consists of metadata-store and the shared.ingress_domain
value. For example, metadata-store.example.com.

Application Live View: If you select the ingressEnabled option, allocate a corresponding
fully Qualified Domain Name (FQDN) that can be pointed at the tanzu-system-ingress
service. The default host name consists of appliveview and the shared.ingress_domain
value. For example, appliveview.example.com.

Tanzu Application Platform GUI

For Tanzu Application Platform GUI, you must have:

Latest version of Chrome, Firefox, or Edge. Tanzu Application Platform GUI currently does
not support Safari browser.

Note

For production environments, full dependencies are recommended
to optimize security and performance. For more information about
Tanzu Build Service dependencies, see About lite and full
dependencies.

Tanzu Application Platform v1.4

VMware by Broadcom 149

https://goharbor.io/
https://hub.docker.com/

Git repository for Tanzu Application Platform GUI’s software catalogs, with a token allowing
read access. For more information about how to use your Git repository, see Create an
application accelerator. Supported Git infrastructure includes:

GitHub

GitLab

Azure DevOps

Tanzu Application Platform GUI Blank Catalog from the Tanzu Application section of
VMware Tanzu Network.

To install, navigate to Tanzu Network. Under the list of available files to download,
there is a folder titled tap-gui-catalogs-latest. Inside that folder is a compressed
archive titled Tanzu Application Platform GUI Blank Catalog. You must extract
that catalog to the preceding Git repository of choice. This serves as the
configuration location for your organization’s catalog inside Tanzu Application
Platform GUI.

The Tanzu Application Platform GUI catalog allows for two approaches to store catalog
information:

The default option uses an in-memory database and is suitable for test and
development scenarios. This reads the catalog data from Git URLs that you specify
in the tap-values.yaml file. This data is temporary. Any operations that cause the
server pod in the tap-gui namespace to be re-created also cause this data to be
rebuilt from the Git location. This can cause issues when you manually register
entities by using the UI, because they only exist in the database and are lost when
that in-memory database gets rebuilt.

For production use cases, use a PostgreSQL database that exists outside the Tanzu
Application Platform packaging. The PostgreSQL database stores all the catalog
data persistently both from the Git locations and the UI manual entity registrations.
For more information, see Configure the Tanzu Application Platform GUI database

Kubernetes cluster requirements

Installation requires Kubernetes cluster v1.23, v1.24 or v1.25 on one of the following Kubernetes
providers:

Azure Kubernetes Service.

Amazon Elastic Kubernetes Service.

containerd must be used as the Container Runtime Interface (CRI). Some versions of
EKS default to Docker as the container runtime and must be changed to containerd.

EKS clusters on Kubernetes version 1.23 and above require the Amazon EBS CSI
Driver due to CSIMigrationAWS is enabled by default in Kubernetes version 1.23 and
above.

Users currently on EKS Kubernetes version 1.22 must install the Amazon
EBS CSI Driver before upgrading to Kubernetes version 1.23 and above. See
AWS documentation for more information.

AWS Fargate is not supported.

Google Kubernetes Engine.

GKE Autopilot clusters do not have the required features enabled.

GKE clusters that are set up in zonal mode might detect Kubernetes API errors
when the GKE control plane is resized after traffic increases. Users can mitigate this
by creating a regional cluster with three control-plane nodes right from the start.

Tanzu Application Platform v1.4

VMware by Broadcom 150

https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-kubernetes-1-23/
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi-migration-faq.html

Minikube.

Reference the resource requirements in the following section.

Hyperkit driver is supported on macOS only. Docker driver is not supported.

Red Hat OpenShift Container Platform v4.10 or v4.11.

vSphere

Baremetal

Tanzu Kubernetes Grid multicloud.

vSphere with Tanzu v7.0 U3f or later.
For vSphere with Tanzu, pod security policies must be configured so that Tanzu Application
Platform controller pods can run as root. For more information, see the Kubernetes
documentation.

To set the pod security policies, run:

kubectl create clusterrolebinding default-tkg-admin-privileged-binding --cluste

rrole=psp:vmware-system-privileged --group=system:authenticated

For more information about pod security policies on Tanzu for vSphere, see Using Pod
Security Policies with Tanzu Kubernetes Clusters in VMware vSphere Product
Documentation.

For more information about the supported Kubernetes versions, see Kubernetes version support
for Tanzu Application Platform.

Resource requirements

To deploy Tanzu Application Platform packages iterate profile on local Minikube cluster,
your cluster must have at least:

8 vCPUs for i9 (or equivalent) available to Tanzu Application Platform components
on Mac OS.

12 vCPUs for i7 (or equivalent) available to Tanzu Application Platform components
on Mac OS.

8 vCPUs available to Tanzu Application Platform components on Linux and
Windows.

12 GB of RAM available to Tanzu Application Platform components on Mac OS,
Linux and Windows.

70 GB of disk space available per node.

To deploy Tanzu Application Platform packages full profile, your cluster must have at least:

8 GB of RAM available per node to Tanzu Application Platform.

16 vCPUs available across all nodes to Tanzu Application Platform.

100 GB of disk space available per node.

To deploy Tanzu Application Platform packages build, run and iterate (shared) profile, your
cluster must have at least:

8 GB of RAM available per node to Tanzu Application Platform.

12 vCPUs available across all nodes to Tanzu Application Platform.

100 GB of disk space available per node.

To deploy Tanzu Application Platform packages view profile, your cluster must have at least:

Tanzu Application Platform v1.4

VMware by Broadcom 151

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-CD033D1D-BAD2-41C4-A46F-647A560BAEAB.html

8 GB of RAM available per node to Tanzu Application Platform.

8 vCPUs available across all nodes to Tanzu Application Platform.

100 GB of disk space available per node.

For the full profile or use of Security Chain Security Tools - Store, your cluster must have a
configured default StorageClass.

Pod security policies must be configured so that Tanzu Application Platform controller pods
can run as root in the following optional configurations:

Tanzu Build Service, in which CustomStacks require root privileges. For more
information, see Tanzu Build Service documentation.

Supply Chain, in which Kaniko usage requires root privileges to build containers.

Tanzu Learning Center, which requires root privileges.

For more information about pod security policies, see Kubernetes documentation.

Tools and CLI requirements

Installation requires:

The Kubernetes CLI (kubectl) v1.23, v1.24, or v1.25 installed and authenticated with admin
rights for your target cluster. See Install Tools in the Kubernetes documentation.

Next steps

Accept Tanzu Application Platform EULAs and installing the Tanzu CLI

Kubernetes version support for Tanzu Application Platform

The following is a matrix table providing details of the compatible Kubernetes cluster versions for
Tanzu Application Platform v1.4.

Kubernetes Cluster Support Information Notes

Kubernetes v1.23, v1.24, v1.25

VMware Tanzu Kubernetes
Grid

v1.6

Tanzu Kubernetes releases
(vSphere with Tanzu)

TKr v1.25.7 for
vSphere v8.x,
TKr v1.24.9 for
vSphere v8.x,
TKr v1.23.8 for
vSphere v7.x (Photon)

Support for TKr v1.25.7 begins with Tanzu Application Platform
v1.4.8

Support for TKr v1.24.9 begins with Tanzu Application Platform
v1.4.4

OpenShift v4.10, v4.11 OpenShift v4.10 reached its end of life on September 10, 2023,
which means it no longer receives support for Tanzu Application
Platform v1.4.9, and v1.4.10

Azure Kubernetes Service Supported

Elastic Kubernetes
Service

Supported

Google Kubernetes
Engine

Supported

Install Tanzu CLI

Tanzu Application Platform v1.4

VMware by Broadcom 152

https://docs.vmware.com/en/Tanzu-Build-Service/1.9/vmware-tanzu-build-service/managing-custom-stacks.html
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/tasks/tools/

This topic tells you how to accept the EULAs, and install the Tanzu CLI and plug-ins on Tanzu
Application Platform (commonly known as TAP).

Install Tanzu CLI

Accept the End User License Agreements

Example of accepting the Tanzu Application Platform EULA

Set the Kubernetes cluster context

Install or update the Tanzu CLI and plug-ins

Install the Tanzu CLI

Install Tanzu CLI Plug-ins

List the versions of each plug-in group available across Tanzu

List the versions of the Tanzu Application Platform specific plug-in group

Install the version of the Tanzu Application Platform plug-in group matching
your target environment

Verify the plug-in group list against the plug-ins that were installed

Next steps

Accept the End User License Agreements
Before downloading and installing Tanzu Application Platform packages, you must accept the End
User License Agreements (EULAs) as follows:

1. Sign in to VMware Tanzu Network.

2. Accept or confirm that you have accepted the EULAs for each of the following:

Tanzu Application Platform

Cluster Essentials for VMware Tanzu

Example of accepting the Tanzu Application Platform EULA

To accept the Tanzu Application Platform EULA:

1. Go to Tanzu Application Platform.

2. Select the Click here to sign the EULA link in the yellow warning box under the release
drop-down menu. If the yellow warning box is not visible, the EULA has already been
accepted.

Tanzu Application Platform v1.4

VMware by Broadcom 153

https://network.tanzu.vmware.com/
https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://network.tanzu.vmware.com/products/tanzu-cluster-essentials/
https://network.tanzu.vmware.com/products/tanzu-application-platform/

3. Select Agree in the bottom-right of the dialog box as seen in the following screenshot.

Tanzu Application Platform v1.4

VMware by Broadcom 154

Set the Kubernetes cluster context

For information about the supported Kubernetes cluster providers and versions, see Kubernetes
cluster requirements.

To set the Kubernetes cluster context:

1. List the existing contexts by running:

kubectl config get-contexts

For example:

$ kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO

NAMESPACE

 aks-repo-trial aks-repo-trial clusterUser_aks-r

g-01_aks-repo-trial

* aks-tap-cluster aks-tap-cluster clusterUser_aks-r

g-01_aks-tap-cluster

2. If you are managing multiple cluster contexts, set the context to the cluster that you want
to use for the Tanzu Application Platform packages installation by running:

kubectl config use-context CONTEXT

Where CONTEXT is the cluster that you want to use. For example, aks-tap-cluster.

For example:

Tanzu Application Platform v1.4

VMware by Broadcom 155

$ kubectl config use-context aks-tap-cluster

Switched to context "aks-tap-cluster".

Install or update the Tanzu CLI and plug-ins

The Tanzu CLI and plug-ins enable you to install and use the Tanzu Application Platform functions
and features.

Install the Tanzu CLI

The Tanzu CLI core v1.0.0 distributed with Tanzu Application Platform is forward and backward
compatible with all supported Tanzu Application Platform versions. Run a single command to install
the plug-in group version that matches the Tanzu Application Platform version on any target
environment. For more information, see Install Plugins.

Use a package manager to install Tanzu CLI on Windows, Mac, or Linux OS. Alternatively,
download and install manually from Tanzu Network, VMware Customer Connect, or GitHub.

Basic installation instructions are provided below. For more information including how to install the
Tanzu CLI and CLI plug-ins in Internet-restricted environments, see the VMware Tanzu CLI
documentation.

Install using a package manager
To install the Tanzu CLI using a package manager:

1. Follow the instructions for your package manager below. This installs the latest version of
the CLI available in the package registry.

Homebrew (MacOS):

brew update

brew install vmware-tanzu/tanzu/tanzu-cli

Chocolatey (Windows):

choco install tanzu-cli

The tanzu-cli package is part of the main Chocolatey Community Repository.
When a new tanzu-cli version is released, it might not be available immediately.
If the above command fails, run:

choco install tanzu-cli --version TANZU-CLI-VERSION

Where TANZU-CLI-VERSION is the Tanzu CLI version you want to install.

For example:

choco install tanzu-cli --version 1.1.0

APT (Debian or Ubuntu):

Note

To retain an existing installation of the Tanzu CLI, move the CLI binary from
/usr/local/bin/tanzu or C:\Program Files\tanzu on Windows to a different
location before following the steps below.

Tanzu Application Platform v1.4

VMware by Broadcom 156

https://docs.vmware.com/en/VMware-Tanzu-CLI/1.0/tanzu-cli/index.html
https://community.chocolatey.org/packages

sudo mkdir -p /etc/apt/keyrings/

sudo apt-get update

sudo apt-get install -y ca-certificates curl gpg

curl -fsSL https://packages.vmware.com/tools/keys/VMWARE-PACKAGING-GPG

-RSA-KEY.pub | sudo gpg --dearmor -o /etc/apt/keyrings/tanzu-archive-k

eyring.gpg

echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/tanzu-archive-keyrin

g.gpg] https://storage.googleapis.com/tanzu-cli-os-packages/apt tanzu-

cli-jessie main" | sudo tee /etc/apt/sources.list.d/tanzu.list

sudo apt-get update

sudo apt-get install -y tanzu-cli

YUM or DNF (RHEL):

cat << EOF | sudo tee /etc/yum.repos.d/tanzu-cli.repo

[tanzu-cli]

name=Tanzu CLI

baseurl=https://storage.googleapis.com/tanzu-cli-os-packages/rpm/tanzu

-cli

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://packages.vmware.com/tools/keys/VMWARE-PACKAGING-GPG-RSA

-KEY.pub

EOF

sudo yum install -y tanzu-cli # If you are using DNF, run sudo dnf ins

tall -y tanzu-cli.

2. Check that the correct version of the CLI is properly installed.

tanzu version

version: v1.1.0

...

Install from a binary release
To install the Tanzu CLI from a binary release:

1. Download the Tanzu CLI binary from one of the following locations:

VMware Tanzu Network

1. Go to VMware Tanzu Network.

2. Choose the 1.4.13 release from the Release dropdown menu.

3. Click the tanzu-core-cli-binaries item from the result set.

4. Download the Tanzu CLI binary for your operating system.

VMware Customer Connect

1. Go to VMware Customer Connect.

2. Download the Tanzu CLI binary for your operating system.

GitHub

1. Go to Tanzu CLI release v1.1.0 on GitHub.

2. Download the Tanzu CLI binary for your operating system, for example,
tanzu-cli-windows-amd64.tar.gz.

2. Use an extraction tool to unpack the binary file:

macOS:

Tanzu Application Platform v1.4

VMware by Broadcom 157

https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://customerconnect.vmware.com/downloads/details?downloadGroup=TCLI-100&productId=1455&rPId=109066
https://github.com/vmware-tanzu/tanzu-cli/releases/tag/v1.1.0

tar -xvf tanzu-cli-darwin-amd64.tar.gz

Linux:

tar -xvf tanzu-cli-linux-amd64.tar.gz

Windows:

Use the Windows extractor tool to unzip tanzu-cli-windows-amd64.zip.

3. Make the CLI available to the system:

cd to the directory containing the extracted CLI binary

macOS:

Install the binary to /usr/local/bin:

install tanzu-cli-darwin_amd64 /usr/local/bin/tanzu

Linux:

Install the binary to /usr/local/bin:

sudo install tanzu-cli-linux_amd64 /usr/local/bin/tanzu

Windows:

1. Create a new Program Files\tanzu folder.

2. Copy the tanzu-cli-windows_amd64.exe file into the new Program
Files\tanzu folder.

3. Rename tanzu-cli-windows_amd64.exe to tanzu.exe.

4. Right-click the tanzu folder, select Properties > Security, and make sure
that your user account has the Full Control permission.

5. Use Windows Search to search for env.

6. Select Edit the system environment variables and click the
Environment Variables button.

7. Select the Path row under System variables, and click Edit.

8. Click New to add a new row and enter the path to the Tanzu CLI. The
path value must not include the .exe extension. For example, C:\Program
Files\tanzu.

4. Check that the correct version of the CLI is properly installed:

tanzu version

version: v1.1.0

...

Install Tanzu CLI Plug-ins

There is a group of Tanzu CLI plug-ins which extend the Tanzu CLI Core with Tanzu Application
Platform specific feature functionality. The plug-ins can be installed as a group with a single
command. Versioned releases of the Tanzu Application Platform specific plug-in group align to each
supported Tanzu Application Platform version. This makes it easy to switch between different
versions of Tanzu Application Platforms environments.

Use the following commands to search for, install, and verify Tanzu CLI plug-in groups.

Tanzu Application Platform v1.4

VMware by Broadcom 158

List the versions of each plug-in group available across Tanzu

tanzu plugin group search --show-details

List the versions of the Tanzu Application Platform specific plug-in group

tanzu plugin group search --name vmware-tanzu/default --show-details

Install the version of the Tanzu Application Platform plug-in group matching your target
environment

tanzu plugin install --group vmware-tap/default:v1.4.13

Verify the plug-in group list against the plug-ins that were installed

tanzu plugin group get vmware-tap/default:v1.4.13

tanzu plugin list

For air-gapped installation, see the [Installing the Tanzu CLI in Internet-Restricted

Environments](https://docs.vmware.com/en/VMware-Tanzu-CLI/1.1/tanzu-cli/index.html#int

ernet-restricted-install) section of the Tanzu CLI

documentation.

Next steps

For online installation:

- [Deploy Cluster Essentials*](https://docs.vmware.com/en/Cluster-Essentials-for-VMwar

e-Tanzu/1.4/cluster-essentials/deploy.html)

- [Install the Tanzu Application Platform package and profiles](install-online/profil

e.hbs.md)

For air-gapped installation:

- [Deploy Cluster Essentials](https://docs.vmware.com/en/Cluster-Essentials-for-VMware

-Tanzu/1.4/cluster-essentials/deploy.html)

- [Install Tanzu Application Platform in an air-gapped environment](install-offline/pr

ofile.hbs.md)

* _When you use a VMware Tanzu Kubernetes Grid cluster, you do not need to install Cl

uster

Essentials because the contents of Cluster Essentials are already installed on your cl

uster._

Install Tanzu Application Platform (online)
To install Tanzu Application Platform (commonly known as TAP) on your Kubernetes clusters with
internet access:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements before
installing.

Prerequisites

Tanzu Application Platform v1.4

VMware by Broadcom 159

Step Task Link

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install the Tanzu Application
Platform package and profiles

5. (Optional) Install any additional packages that were not in the profile. Install individual packages

6. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

7. Install developer tools into your integrated development environment
(IDE).

Install Tanzu Developer Tools for
your VS Code

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your Kubernetes clusters, proceed with Get
started with Tanzu Application Platform.

Install Tanzu Application Platform (online)

To install Tanzu Application Platform (commonly known as TAP) on your Kubernetes clusters with
internet access:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements before
installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install the Tanzu Application
Platform package and profiles

5. (Optional) Install any additional packages that were not in the profile. Install individual packages

6. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

7. Install developer tools into your integrated development environment
(IDE).

Install Tanzu Developer Tools for
your VS Code

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your Kubernetes clusters, proceed with Get
started with Tanzu Application Platform.

Install Tanzu Application Platform package and profiles

This topic tells you how to install Tanzu Application Platform (commonly known as TAP) packages
from your Tanzu Application Platform package repository.

Before installing the packages, ensure you have:

Completed the Prerequisites.

Configured and verified the cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 160

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html

Accepted Tanzu Application Platform EULA and installed Tanzu CLI with any required plug-
ins.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. If you don’t relocate the images, Tanzu
Application Platform depends on VMware Tanzu Network for continued operation, and VMware
Tanzu Network offers no uptime guarantees. The option to skip relocation is documented for
evaluation and proof-of-concept only.

The supported registries are Harbor, Azure Container Registry, Google Container Registry, and
Quay.io. See the following documentation for a registry to learn how to set it up:

Harbor documentation

Google Container Registry documentation

Quay.io documentation

To relocate images from the VMware Tanzu Network registry to your registry:

1. Install Docker if it is not already installed.

2. Log in to your image registry by running:

docker login MY-REGISTRY

Where MY-REGISTRY is your own container registry.

3. Log in to the VMware Tanzu Network registry with your VMware Tanzu Network
credentials by running:

docker login registry.tanzu.vmware.com

4. Set up environment variables for installation use by running:

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export TAP_VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own container registry.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13.

TARGET-REPOSITORY is your target repository, a folder/repository on MY-REGISTRY that
serves as the location for the installation files for Tanzu Application Platform.

VMware recommends using a JSON key file to authenticate with Google Container
Registry. In this case, the value of INSTALL_REGISTRY_USERNAME is _json_key and the value of
INSTALL_REGISTRY_PASSWORD is the content of the JSON key file. For more information
about how to generate the JSON key file, see Google Container Registry documentation.

5. Install the Carvel tool imgpkg CLI.

Tanzu Application Platform v1.4

VMware by Broadcom 161

https://goharbor.io/docs/2.5.0/
https://cloud.google.com/container-registry/docs
https://docs.projectquay.io/welcome.html
https://cloud.google.com/container-registry/docs/advanced-authentication
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path

To query for the available versions of Tanzu Application Platform on VMWare Tanzu
Network Registry, run:

imgpkg tag list -i registry.tanzu.vmware.com/tanzu-application-platform/tap-pac

kages | grep -v sha | sort -V

6. Relocate the images with the imgpkg CLI by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/tap-package

s:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-pac

kages

Add the Tanzu Application Platform package repository
Tanzu CLI packages are available on repositories. Adding the Tanzu Application Platform package
repository makes Tanzu Application Platform and its packages available for installation.

Relocate images to a registry is strongly recommended but not required for installation. If you skip
this step, you can use the following values to replace the corresponding variables:

INSTALL_REGISTRY_HOSTNAME is registry.tanzu.vmware.com

INSTALL_REPO is tanzu-application-platform

INSTALL_REGISTRY_USERNAME and INSTALL_REGISTRY_PASSWORD are the credentials to run
docker login registry.tanzu.vmware.com

TAP_VERSION is your Tanzu Application Platform version. For example, 1.4.13

To add the Tanzu Application Platform package repository to your cluster:

1. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

2. Create a registry secret by running:

tanzu secret registry add tap-registry \

 --username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWOR

D} \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tap-install

3. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-packages:$TAP_VERSION

\

 --namespace tap-install

4. Get the status of the Tanzu Application Platform package repository, and ensure the status
updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

For example:

$ tanzu package repository get tanzu-tap-repository --namespace tap-install

- Retrieving repository tap...

NAME: tanzu-tap-repository

Tanzu Application Platform v1.4

VMware by Broadcom 162

VERSION: 16253001

REPOSITORY: tapmdc.azurecr.io/mdc/1.4.0/tap-packages

TAG: 1.4.13

STATUS: Reconcile succeeded

REASON:

5. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

A unified user interface for API discovery and exploration at scale.

 apis.apps.tanzu.vmware.com API Auto Registration fo

r VMware Tanzu A TAP component to automatica

lly register API exposing workloads as API entities

in TAP GUI.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 buildservice.tanzu.vmware.com Tanzu Build Service

Tanzu Build Service enables the building and automation of containerized

software workflows securely and at scale.

 carbonblack.scanning.apps.tanzu.vmware.com VMware Carbon Black for

Supply Chain Security Tools - Scan Default scan templates using

VMware Carbon Black

 cartographer.tanzu.vmware.com Cartographer

Kubernetes native Supply Chain Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

Cloud Native Runtimes is a serverless runtime based on Knative

 connector.appliveview.tanzu.vmware.com Application Live View Co

nnector for VMware Tanzu App for discovering and regis

tering running apps

 controller.conventions.apps.tanzu.vmware.com Convention Service for V

Mware Tanzu Convention Service enables ap

p operators to consistently apply desired runtime

configurations to fleets of workloads.

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

Tanzu Source Controller enables workload create/update from source code.

 conventions.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 eventing.tanzu.vmware.com Eventing

Eventing is an event-driven architecture platform based on Knative Eventing

 external-secrets.apps.tanzu.vmware.com External Secrets Operato

Note

The VERSION and TAG numbers differ from the earlier example if you are on
Tanzu Application Platform v1.0.2 or earlier.

Tanzu Application Platform v1.4

VMware by Broadcom 163

r External Secrets Operator is

a Kubernetes operator that integrates external

secret management systems.

 fluxcd.source.controller.tanzu.vmware.com Flux Source Controller

The source-controller is a Kubernetes operator, specialised in artifacts

acquisition from external sources such as Git, Helm repositories and S3 bucket

s.

 grype.scanning.apps.tanzu.vmware.com Grype for Supply Chain S

ecurity Tools - Scan Default scan templates using

Anchore Grype

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 metadata-store.apps.tanzu.vmware.com Supply Chain Security To

ols - Store Post SBoMs and query for imag

e, package, and vulnerability metadata.

 namespace-provisioner.apps.tanzu.vmware.com Namespace Provisioner

Automatic Provisioning of Developer Namespaces.

 ootb-delivery-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Delivery Basic Out of The Box Delivery Basi

c.

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 policy.apps.tanzu.vmware.com Supply Chain Security To

ols - Policy Controller Policy Controller enables def

ining of a policy to restrict unsigned container

images.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native

Supply Chains.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

The Services Toolkit enables the management, lifecycle, discoverability and

connectivity of Service Resources (databases, message queues, DNS records,

etc.).

 snyk.scanning.apps.tanzu.vmware.com Snyk for Supply Chain Se

curity Tools - Scan Default scan templates using

Snyk

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 sso.apps.tanzu.vmware.com AppSSO

Application Single Sign-On for Tanzu

 tap-auth.tanzu.vmware.com Default roles for Tanzu

Application Platform Default roles for Tanzu Appli

cation Platform

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

Tanzu Application Platform v1.4

VMware by Broadcom 164

 tap-telemetry.tanzu.vmware.com Telemetry Collector for

Tanzu Application Platform Tanzu Application Plaform Tel

emetry

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use

case.

 tekton.tanzu.vmware.com Tekton Pipelines

Tekton Pipelines is a framework for creating CI/CD systems.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile
settings. This is done by using the package manager installed by Tanzu Cluster Essentials.

For more information about profiles, see Components and installation profiles.

To prepare to install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

2. Create a tap-values.yaml file by using the Full Profile sample in the following section as a
guide. These samples have the minimum configuration required to deploy Tanzu Application
Platform. The sample values file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package.

Subordinate packages, or individual child packages.

Keep the values file for future configuration use.

3. View possible configuration settings for your package

Full profile

The following is the YAML file sample for the full-profile. The profile: field takes full as the
default value, but you can also set it to iterate, build, run or view. Refer to Install multicluster
Tanzu Application Platform profiles for more information.

shared:

 ingress_domain: "INGRESS-DOMAIN"

 ingress_issuer: # Optional, can denote a cert-manager.io/v1/ClusterIssuer of your ch

oice. Defaults to "tap-ingress-selfsigned".

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME"

 username: "KP-DEFAULT-REPO-USERNAME"

 password: "KP-DEFAULT-REPO-PASSWORD"

 kubernetes_distribution: "openshift" # To be passed only for OpenShift. Defaults to

"".

Note

tap-values.yaml is set as a Kubernetes secret, which provides secure
means to read credentials for Tanzu Application Platform components.

Tanzu Application Platform v1.4

VMware by Broadcom 165

 kubernetes_version: "K8S-VERSION"

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

#The above keys are minimum numbers of entries needed in tap-values.yaml to get a func

tioning TAP Full profile installation.

#Below are the keys which may have default values set, but can be overridden.

profile: full # Can take iterate, build, run, view.

supply_chain: basic # Can take testing, testing_scanning.

ootb_supply_chain_basic: # Based on supply_chain set above, can be changed to ootb_sup

ply_chain_testing, ootb_supply_chain_testing_scanning.

 registry:

 server: "SERVER-NAME" # Takes the value from shared section above by default, but

can be overridden by setting a different value.

 repository: "REPO-NAME" # Takes the value from shared section above by default, bu

t can be overridden by setting a different value.

 gitops:

 ssh_secret: "SSH-SECRET-KEY" # Takes "" as value by default; but can be overridden

by setting a different value.

contour:

 envoy:

 service:

 type: LoadBalancer # This is set by default, but can be overridden by setting a

different value.

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

tap_gui:

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

metadata_store:

 ns_for_export_app_cert: "MY-DEV-NAMESPACE"

 app_service_type: ClusterIP # Defaults to LoadBalancer. If shared.ingress_domain is

set earlier, this must be set to ClusterIP.

scanning:

 metadataStore:

 url: "" # Configuration is moved, so set this string to empty.

grype:

 namespace: "MY-DEV-NAMESPACE"

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

policy:

 tuf_enabled: false # By default, TUF initialization and keyless verification are dea

ctivated.

tap_telemetry:

Tanzu Application Platform v1.4

VMware by Broadcom 166

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s External IP address. It is not required to know the External IP address or
set up the DNS record while installing. Installing the Tanzu Application Platform package
creates the tanzu-shared-ingress and its External IP address. You can create the DNS
record after completing the installation.

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service".

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service".

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service".

KP-DEFAULT-REPO-USERNAME is the user name that can write to KP-DEFAULT-REPO. You can
docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key.

Alternatively, you can configure this credential as a secret reference.

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-REPO.
You can docker push to this location with this credential.

For Google Cloud Registry, use the contents of the service account JSON file.

Alternatively, you can configure this credential as a secret reference.

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. If this key is passed through
the shared section earlier and AWS ECR registry is used, you must ensure that the SERVER-
NAME/REPO-NAME/buildservice and SERVER-NAME/REPO-NAME/workloads exist. AWS ECR
expects the paths to be pre-created. Images are written to SERVER-NAME/REPO-
NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to
fetch source code from and push configuration to. This field is only required if you use a
private repository, otherwise, leave it empty. See Git authentication for more information.

Tanzu Application Platform v1.4

VMware by Broadcom 167

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built
and posted on the Git infrastructure.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Store exports secrets
to the namespace, and SCST - Scan deploys the ScanTemplates there. This allows the
scanning feature to run in this namespace. If there are multiple developer namespaces, use
ns_for_export_app_cert: "*" to export the SCST - Store CA certificate to all namespaces.
To install Grype in multiple namespaces, use a namespace provisioner. For more
information, see Namespace Provisioner.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from the registry for scanning.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See Locating the Entitlement Account number for
new orders for more information about identifying the Entitlement Account Number.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

If you use AWS, the default settings creates a classic LoadBalancer. To use the Network
LoadBalancer instead of the classic LoadBalancer for ingress, add the following to your tap-
values.yaml:

contour:

 infrastructure_provider: aws

 envoy:

 service:

 aws:

 LBType: nlb

CEIP policy disclosure

Tanzu Application Platform is part of VMware’s CEIP program where data is collected to help
improve the customer experience. By setting ceip_policy_disclosed to true (not a string), you
acknowledge the program is disclosed to you and you are aware data collection is happening. This
field must be set for the installation to be completed.

See Opt out of telemetry collection for more information.

(Optional) Additional Build Service configurations

The following tasks are optional during the Tanzu Application Platform installation process:

(Optional) Configure your profile with full dependencies

(Optional) Configure your profile with the Jammy stack only

(Optional) Configure your profile with full dependencies

When you install a profile that includes Tanzu Build Service, Tanzu Application Platform is installed
with the lite set of dependencies. These dependencies consist of buildpacks and stacks required
for application builds.

Tanzu Application Platform v1.4

VMware by Broadcom 168

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018
https://kb.vmware.com/s/article/2148565
https://www.vmware.com/solutions/trustvmware/ceip-products.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html

The lite set of dependencies do not contain all buildpacks and stacks. To use all buildpacks and
stacks, you must install the full dependencies. For more information about the differences
between lite and full dependencies, see About lite and full dependencies.

To configure full dependencies, add the key-value pair exclude_dependencies: true to your tap-
values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

 exclude_dependencies: true

After configuring full dependencies, you must install the dependencies after you have finished
installing your Tanzu Application Platform package. See Install the full dependencies package for
more information.

(Optional) Configure your profile with the Jammy stack only

Tanzu Application Platform v1.3.0 supports building applications with the Ubuntu 22.04 (Jammy)
stack. By default, workloads are built with Ubuntu 18.04 (Bionic) stack. However, if you do not need
access to the Bionic stack, you can install Tanzu Application Platform without the Bionic stack and
all workloads are built with the Jammy stack by default.

To install Tanzu Application Platform with Jammy as the only available stack, include the
stack_configuration: jammy-only field under the buildservice: section in tap-values.yaml.

Install your Tanzu Application Platform package

Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

tap-values.yaml -n tap-install

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This can take 5-10 minutes because it installs several packages on your cluster.

3. Verify that the necessary packages in the profile are installed by running:

tanzu package installed list -A

4. If you configured full dependencies in your tap-values.yaml file, install the full
dependencies by following the procedure in Install full dependencies.

Important

After installing the full profile on your cluster, you must set up developer
namespaces. Otherwise, creating a workload, a Knative service or other Tanzu
Application Platform packages fails. For more information, see Set up developer
namespaces to use your installed packages.

Tanzu Application Platform v1.4

VMware by Broadcom 169

You can run the following command after reconfiguring the profile to reinstall the Tanzu Application
Platform:

tanzu package installed update tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-f

ile tap-values.yaml -n tap-install

Install the full dependencies package

If you configured full dependencies in your tap-values.yaml file in Configure your profile with full
dependencies earlier, you must install the full dependencies package.

For more information about the differences between lite and full dependencies, see About lite
and full dependencies.

To install the full dependencies package:

1. If you have not done so already, add the key-value pair exclude_dependencies: true to
your tap-values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

 exclude_dependencies: true

...

2. Get the latest version of the buildservice package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

3. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

 --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps

Where VERSION is the version of the buildservice package you retrieved in the previous
step.

4. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps:VERSION \

 --namespace tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

5. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

Access Tanzu Application Platform GUI

To access Tanzu Application Platform GUI, you can use the host name that you configured earlier.
This host name is pointed at the shared ingress. To configure LoadBalancer for Tanzu Application
Platform GUI, see Access Tanzu Application Platform GUI.

Tanzu Application Platform v1.4

VMware by Broadcom 170

You’re now ready to start using Tanzu Application Platform GUI. Proceed to the Getting Started
topic or the Tanzu Application Platform GUI - Catalog Operations topic.

Exclude packages from a Tanzu Application Platform
profile
To exclude packages from a Tanzu Application Platform profile:

1. Find the full subordinate (child) package name:

tanzu package available list --namespace tap-install

2. Update your tap-values file with a section listing the exclusions:

profile: PROFILE-VALUE

excluded_packages:

 - tap-gui.tanzu.vmware.com

 - service-bindings.lab.vmware.com

Next steps
(Optional) Install individual packages

Set up developer namespaces to use your installed packages

View possible configuration settings for your package
To view possible configuration settings for a package, run:

tanzu package available get tap.tanzu.vmware.com/$TAP_VERSION --values-schema --namesp

ace tap-install

Important

If you exclude a package after performing a profile installation including that
package, you cannot see the accurate package states immediately after running tap
package installed list -n tap-install. Also, you can break package
dependencies by removing a package. Allow 20 minutes to verify that all packages
have reconciled correctly while troubleshooting.

Note

The tap.tanzu.vmware.com package does not show all configuration settings for
packages it plans to install. The package only shows top-level keys. You can view
individual package configuration settings with the same tanzu package available
get command. For example, to find the keys for Cloud Native Runtimes, you must
first identify the version of the package with tanzu package installed list -n
tap-install, which lists all the installed packages versions. Then run the command
tanzu package available get -n tap-install cnrs.tanzu.vmware.com/CNRS-

VERSION --values-schema by using the package version listed for Cloud Native
Runtimes.

Tanzu Application Platform v1.4

VMware by Broadcom 171

profile: full

...

For example, CNRs specific values go under its name

cnrs:

 provider: local

For example, App Accelerator specific values go under its name

accelerator:

 server:

 service_type: "ClusterIP"

The following table summarizes the top-level keys used for package-specific configuration within
your tap-values.yaml.

Package Top-level Key

see table below shared

API Auto Registration api_auto_registration

API portal api_portal

Application Accelerator accelerator

Application Live View appliveview

Application Live View connector appliveview_connector

Application Live View conventions appliveview-conventions

Cartographer cartographer

Cloud Native Runtimes cnrs

Convention controller convention_controller

Source Controller source_controller

Supply Chain supply_chain

Supply Chain Basic ootb_supply_chain_basic

Supply Chain Testing ootb_supply_chain_testing

Supply Chain Testing Scanning ootb_supply_chain_testing_scanning

Supply Chain Security Tools - Scan scanning

Supply Chain Security Tools - Scan (Grype Scanner) grype

Supply Chain Security Tools - Store metadata_store

Build Service buildservice

Tanzu Application Platform GUI tap_gui

Learning Center learningcenter

Shared Keys define values that configure multiple packages. These keys are defined under the
shared Top-level Key, as summarized in the following table:

Shared Key Used By Description

ca_cert_da

ta

convention_controller, scanning,
source_controller

Optional: PEM-encoded certificate data to trust TLS
connections with a private CA

For information about package-specific configuration, see Install individual packages.

Tanzu Application Platform v1.4

VMware by Broadcom 172

Install individual packages

You can install Tanzu Application Platform (commonly known as TAP) through predefined profiles or
through individual packages. Use this topic to learn how to install each individual package. For more
information about installing through profiles, see Components and installation profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile
to install packages or if you want to install additional packages after installing a profile. Before
installing the packages, be sure to complete the prerequisites, configure and verify the cluster,
accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see
Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install API Auto Registration

Install API portal

Install Application Accelerator

Install Application Live View

Install Application Single Sign-On

Install cert-manager

Install Cloud Native Runtimes

Install Contour

Install default roles for Tanzu Application Platform

Install Developer Conventions

Install Eventing

Install Flux CD Source Controller

Install Learning Center for Tanzu Application Platform

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Service Bindings

Install Services Toolkit

Install Source Controller

Install Spring Boot conventions

Install Supply Chain Choreographer

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Policy Controller

Install Supply Chain Security Tools - Scan

Install Tanzu Application Platform GUI

Install Tanzu Build Service

Install Tekton

Tanzu Application Platform v1.4

VMware by Broadcom 173

Install Telemetry

Verify the installed packages

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.

0.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.

1.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.

0.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.

7.0 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.

3.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.

1.2 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.

0.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.

5.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.

5.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

service-bindings service-bindings.labs.vmware.com 0.

5.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.

8.0 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.

2.0 Reconcile succeeded

sso4k8s-install sso.apps.tanzu.vmware.com 1.

0.0-beta.2-31 Reconcile succeeded

tap-gui tap-gui.tanzu.vmware.com 0.

3.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.

5.0 Reconcile succeeded

Next steps
Set up developer namespaces to use your installed packages

Tanzu Application Platform v1.4

VMware by Broadcom 174

Set up developer namespaces to use your installed
packages

To automatically set up your developer namespaces. see Provision namespace resources.

For more information about Namespace Provisioner, see Namespace Provisioner overview.

Additional configuration for testing and scanning

If you plan to install or have already installed Out of the Box Supply Chains with Testing and
Scanning, you can use Namespace Provisioner to set up the required resources. For more
information, see Add the resources required by Out of the Box Testing and Scanning Supply Chain .

Legacy namespace setup

To use the legacy manual process for setting up developer namespaces, see Legacy namespace
setup.

Next steps

Install Tanzu Developer Tools for your VS Code

Legacy manual developer namespace setup instructions

Using Namespace Provisioner is the recommended best practice for setting up developer
namespaces on Tanzu Application Platform.

To provision namespaces manually, complete the following steps:

1. Enable single user access.

2. (Optional) Enable additional users with Kubernetes RBAC.

Enable single user access

1. To add read/write registry credentials to the developer namespace, run the following
command:

tanzu secret registry add registry-credentials --server REGISTRY-SERVER --usern

ame REGISTRY-USERNAME --password REGISTRY-PASSWORD --namespace YOUR-NAMESPACE

Where:

YOUR-NAMESPACE is the name you give to the developer namespace. For example,
use default for the default namespace.

REGISTRY-SERVER is the URL of the registry. You can use the same registry server as
in ootb_supply_chain_basic - registry - server. For more information, see Install
Tanzu Application Platform package and profiles.

For Docker Hub, the value is https://index.docker.io/v1/. It must have
the leading https://, the v1 path, and the trailing /.

For Google Container Registry (GCR), the value is gcr.io.

REGISTRY-PASSWORD is the password of the registry.

For GCR or Google Artifact Registry, this must be the concatenated version
of the JSON key. For example: "$(cat ~/gcp-key.json)"

Tanzu Application Platform v1.4

VMware by Broadcom 175

If you observe the following issue:

panic: runtime error: invalid memory address or nil pointer dereference

[signal SIGSEGV: segmentation violation code=0x1 addr=0x128 pc=0x2bcce00]

Use kubectl to create the secret instead:

kubectl create secret docker-registry registry-credentials --docker-server=REGI

STRY-SERVER --docker-username=REGISTRY-USERNAME --docker-password=REGISTRY-PASS

WORD -n YOUR-NAMESPACE

2. Run the following to add secrets, a service account to execute the supply chain, and RBAC
rules to authorize the service account to the developer namespace:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: tap-registry

 annotations:

 secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: e30K

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-deliverable

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: deliverable

subjects:

 - kind: ServiceAccount

 name: default

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-workload

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: workload

Note

This step is not required if you install Tanzu Application Platform on AWS
with EKS and use IAM Roles for Kubernetes Service Accounts instead of
secrets. You can specify the Role Amazon Resource Name (ARN) in the
next step.

Tanzu Application Platform v1.4

VMware by Broadcom 176

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

subjects:

 - kind: ServiceAccount

 name: default

EOF

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

 annotations:

 eks.amazonaws.com/role-arn: <Role ARN>

imagePullSecrets:

 - name: tap-registry

Enable additional users with Kubernetes RBAC

Follow these steps to enable additional users in your namespace by using Kubernetes RBAC:

1. Before you begin, ensure that you have enabled single user access.

2. Choose either of the following options to give developers namespace-level access and view
access to the appropriate cluster-level resources:

Option 1: Use the Tanzu Application Platform RBAC CLI plug-in (beta).

To use the tanzu rbac plug-in to grant app-viewer and app-editor roles to an
identity provider group, run:

tanzu rbac binding add -g GROUP-FOR-APP-VIEWER -n YOUR-NAMESPACE -r app-v

iewer

tanzu rbac binding add -g GROUP-FOR-APP-EDITOR -n YOUR-NAMESPACE -r app-e

ditor

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

For more information about tanzu rbac, see Bind a user or group to a default role

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster. For an example of how to set

Note

If you install Tanzu Application Platform on AWS with EKS and use IAM
Roles for Kubernetes Service Accounts, you must annotate the ARN of the
IAM Role and remove the registry-credentials secret. Your service
account entry then looks like the following:

Tanzu Application Platform v1.4

VMware by Broadcom 177

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

up Azure Active Directory (Azure AD) with your cluster, see Integrate Azure Active
Directory.

Option 2: Use the native Kubernetes YAML.

Run the following to apply the RBAC policy:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

EOF

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

Tanzu Application Platform v1.4

VMware by Broadcom 178

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster.

Rather than granting roles directly to individuals, VMware recommends using your
identity provider’s user groups system to grant access to a group of developers.

For an example of how to set up Azure Active Directory (AD) with your cluster, see
Integrate Azure Active Directory.

3. (Optional) Log in as a non-admin user, such as a developer, to see the effects of RBAC after
the role bindings are applied.

Additional configuration for testing and scanning

If you plan to install Out of the Box Supply Chains with Testing and Scanning, see Developer
Namespace.

Install Tanzu Developer Tools for your VS Code

This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites

Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

Tanzu Application Platform v1.4

VMware by Broadcom 179

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Configure
To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall

Tanzu Application Platform v1.4

VMware by Broadcom 180

https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps

Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Install Tanzu Application Platform (offline)

To install Tanzu Application Platform (commonly known as TAP) on your Kubernetes clusters in an
air-gapped environment:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements
before installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install Tanzu Application Platform in
an air-gapped environment

5. Install Tanzu Build Service full dependencies. Install the Tanzu Build Service
dependencies

6. Configure custom certificate authorities for Tanzu Application Platform
GUI.

Configure custom certificate
authorities for Tanzu Application
Platform GUI

7. Add the certificate for the private Git repository in the Accelerator
system namespace.

Configure Application Accelerator

8. Apply patch to Grype. Use Grype in offline and air-gapped
environments

9. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your air-gapped cluster, you can start creating
workloads that run in your air-gapped containers. For instructions, see Deploy an air-gapped
workload.

Install Tanzu Application Platform (offline)

To install Tanzu Application Platform (commonly known as TAP) on your Kubernetes clusters in an
air-gapped environment:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements
before installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

Tanzu Application Platform v1.4

VMware by Broadcom 181

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html

Step Task Link

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install Tanzu Application Platform in
an air-gapped environment

5. Install Tanzu Build Service full dependencies. Install the Tanzu Build Service
dependencies

6. Configure custom certificate authorities for Tanzu Application Platform
GUI.

Configure custom certificate
authorities for Tanzu Application
Platform GUI

7. Add the certificate for the private Git repository in the Accelerator
system namespace.

Configure Application Accelerator

8. Apply patch to Grype. Use Grype in offline and air-gapped
environments

9. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your air-gapped cluster, you can start creating
workloads that run in your air-gapped containers. For instructions, see Deploy an air-gapped
workload.

Install Tanzu Application Platform in your air-gapped
environment
This topic tells you how to install Tanzu Application Platform (commonly known as TAP) on your
Kubernetes cluster and registry that are air-gapped from external traffic.

Before installing the packages, ensure that you have completed the following tasks:

Review the Prerequisites to ensure that you have set up everything required before
beginning the installation.

Accept Tanzu Application Platform EULA and install Tanzu CLI.

Deploy Cluster Essentials. This step is optional if you are using VMware Tanzu Kubernetes
Grid cluster.

Relocate images to a registry
To relocate images from the VMware Tanzu Network registry to your air-gapped registry:

1. Set up environment variables for installation use by running:

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export IMGPKG_REGISTRY_HOSTNAME_1=MY-REGISTRY

export IMGPKG_REGISTRY_USERNAME_1=MY-REGISTRY-USER

export IMGPKG_REGISTRY_PASSWORD_1=MY-REGISTRY-PASSWORD

export TAP_VERSION=VERSION-NUMBER

export REGISTRY_CA_PATH=PATH-TO-CA

Where:

MY-REGISTRY is your air-gapped container registry.

Tanzu Application Platform v1.4

VMware by Broadcom 182

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-TANZUNET-USERNAME is the user with access to the images in the VMware Tanzu
Network registry registry.tanzu.vmware.com

MY-TANZUNET-PASSWORD is the password for MY-TANZUNET-USERNAME.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13

2. Copy the images into a .tar file from the VMware Tanzu Network onto an external storage
device with the Carvel tool imgpkg by running:

imgpkg copy \

 -b registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:$TAP_VER

SION \

 --to-tar tap-packages-$TAP_VERSION.tar \

 --include-non-distributable-layers

Where:

TANZUNET-REGISTRY-USERNAME is your username of the VMware Tanzu Network.

TANZUNET-REGISTRY-PASSWORD is your password of the VMware Tanzu Network.

3. Relocate the images with the Carvel tool imgpkg by running:

imgpkg copy \

 --tar tap-packages-$TAP_VERSION.tar \

 --to-repo $IMGPKG_REGISTRY_HOSTNAME/tap-packages \

 --include-non-distributable-layers \

 --registry-ca-cert-path $REGISTRY_CA_PATH

4. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

5. Create a registry secret by running:

tanzu secret registry add tap-registry \

 --server $IMGPKG_REGISTRY_HOSTNAME \

 --username $IMGPKG_REGISTRY_USERNAME \

 --password $IMGPKG_REGISTRY_PASSWORD \

 --namespace tap-install \

 --export-to-all-namespaces \

 --yes

6. Create a internal registry secret by running:

tanzu secret registry add registry-credentials \

 --server $MY_REGISTRY \

 --username $MY_REGISTRY_USER \

 --password $MY_REGISTRY_PASSWORD \

 --namespace tap-install \

 --export-to-all-namespaces \

 --yes

Where:

MY_REGISTRY is where the workload images and the Tanzu Build Service
dependencies are stored.

Tanzu Application Platform v1.4

VMware by Broadcom 183

MY_REGISTRY_USER is the user with write access to MY_REGISTRY.

MY_REGISTRY_PASSWORD is the password for MY_REGISTRY_USER.

7. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url $IMGPKG_REGISTRY_HOSTNAME/tap-packages:$TAP_VERSION \

 --namespace tap-install

Where:

$TAP_VERSION is the Tanzu Application Platform version environment variable you
defined earlier.

TARGET-REPOSITORY is the necessary repository.

8. Get the status of the Tanzu Application Platform package repository, and ensure the status
updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

9. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

A unified user interface for API discovery and exploration at scale.

 apis.apps.tanzu.vmware.com API Auto Registration fo

r VMware Tanzu A TAP component to automatica

lly register API exposing workloads as API entities

in TAP GUI.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 buildservice.tanzu.vmware.com Tanzu Build Service

Tanzu Build Service enables the building and automation of containerized

software workflows securely and at scale.

 carbonblack.scanning.apps.tanzu.vmware.com VMware Carbon Black for

Supply Chain Security Tools - Scan Default scan templates using

VMware Carbon Black

 cartographer.tanzu.vmware.com Cartographer

Kubernetes native Supply Chain Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

Cloud Native Runtimes is a serverless runtime based on Knative

 connector.appliveview.tanzu.vmware.com Application Live View Co

Note

The VERSION and TAG numbers differ from the earlier example if you are on
Tanzu Application Platform v1.0.2 or earlier.

Tanzu Application Platform v1.4

VMware by Broadcom 184

nnector for VMware Tanzu App for discovering and regis

tering running apps

 controller.conventions.apps.tanzu.vmware.com Convention Service for V

Mware Tanzu Convention Service enables ap

p operators to consistently apply desired runtime

configurations to fleets of workloads.

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

Tanzu Source Controller enables workload create/update from source code.

 conventions.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 eventing.tanzu.vmware.com Eventing

Eventing is an event-driven architecture platform based on Knative Eventing

 external-secrets.apps.tanzu.vmware.com External Secrets Operato

r External Secrets Operator is

a Kubernetes operator that integrates external

secret management systems.

 fluxcd.source.controller.tanzu.vmware.com Flux Source Controller

The source-controller is a Kubernetes operator, specialised in artifacts

acquisition from external sources such as Git, Helm repositories and S3 bucket

s.

 grype.scanning.apps.tanzu.vmware.com Grype for Supply Chain S

ecurity Tools - Scan Default scan templates using

Anchore Grype

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 metadata-store.apps.tanzu.vmware.com Supply Chain Security To

ols - Store Post SBoMs and query for imag

e, package, and vulnerability metadata.

 namespace-provisioner.apps.tanzu.vmware.com Namespace Provisioner

Automatic Provisioning of Developer Namespaces.

 ootb-delivery-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Delivery Basic Out of The Box Delivery Basi

c.

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 policy.apps.tanzu.vmware.com Supply Chain Security To

ols - Policy Controller Policy Controller enables def

ining of a policy to restrict unsigned container

images.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native

Supply Chains.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

The Services Toolkit enables the management, lifecycle, discoverability and

Tanzu Application Platform v1.4

VMware by Broadcom 185

connectivity of Service Resources (databases, message queues, DNS records,

etc.).

 snyk.scanning.apps.tanzu.vmware.com Snyk for Supply Chain Se

curity Tools - Scan Default scan templates using

Snyk

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 sso.apps.tanzu.vmware.com AppSSO

Application Single Sign-On for Tanzu

 tap-auth.tanzu.vmware.com Default roles for Tanzu

Application Platform Default roles for Tanzu Appli

cation Platform

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap-telemetry.tanzu.vmware.com Telemetry Collector for

Tanzu Application Platform Tanzu Application Platform Te

lemetry

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use

case.

 tekton.tanzu.vmware.com Tekton Pipelines

Tekton Pipelines is a framework for creating CI/CD systems.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Prepare Sigstore Stack for air-gapped policy controller

By default, the public official Sigstore “The Update Framework (TUF) server” is used. You can use
an alternative Sigstore Stack by setting policy.tuf_mirror and policy.tuf_root.

The Sigstore Stack consists of:

Trillian

Rekor

Fulcio

Certificate Transparency Log (CTLog)

The Update Framework (TUF)

For an air-gapped environment, an internally accessible Sigstore Stack is required for keyless
authorities.

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile
settings. This is done by using the package manager installed by Tanzu Cluster Essentials.

Important

This section only applies if the target environment requires support for keyless
authorities in ClusterImagePolicy. You must set the policy.tuf_enabled field to
true when installing Tanzu Application Platform. By default, keyless authorities
support is deactivated.

Tanzu Application Platform v1.4

VMware by Broadcom 186

https://github.com/google/trillian
https://github.com/sigstore/rekor
https://github.com/sigstore/fulcio
https://github.com/google/certificate-transparency-go
https://theupdateframework.io/

For more information about profiles, see Components and installation profiles.

To prepare to install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

2. Create a tap-values.yaml file by using the Full Profile sample as a guide. These samples
have the minimum configuration required to deploy Tanzu Application Platform. The sample
values file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package

Subordinate packages, or individual child packages

Keep the values file for future configuration use.

Full Profile

To install Tanzu Application Platform with Supply Chain Basic, you must retrieve your cluster’s
base64 encoded ca certificate from $HOME/.kube/config. Retrieve the certificate-authority-data
from the respective cluster section and input it as B64_ENCODED_CA in the tap-values.yaml.

The following is the YAML file sample for the full-profile:

shared:

 ingress_domain: "INGRESS-DOMAIN"

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME"

 secret:

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

 ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

profile: full

ceip_policy_disclosed: true

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_secret: # Takes the value from the shared section by default,

but can be overridden by setting a different value.

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

 exclude_dependencies: true

supply_chain: basic

scanning:

 metadataStore:

 url: ""

contour:

 infrastructure_provider: aws

 envoy:

 service:

 type: LoadBalancer

Important

Tanzu Build Service is installed by default with lite depndencies. When installing
Tanzu Build Service in an air-gapped environment, the lite dependencies are not
available because they require Internet access. You must install the full
dependencies by setting exclude_dependencies to true.

Tanzu Application Platform v1.4

VMware by Broadcom 187

 annotations:

 # This annotation is for air-gapped AWS only.

 service.kubernetes.io/aws-load-balancer-internal: "true"

ootb_supply_chain_basic:

 registry:

 server: "SERVER-NAME" # Takes the value from the shared section by default, but

can be overridden by setting a different value.

 repository: "REPO-NAME" # Takes the value from the shared section by default, bu

t can be overridden by setting a different value.

 gitops:

 ssh_secret: "SSH-SECRET"

 maven:

 repository:

 url: https://MAVEN-URL

 secret_name: "MAVEN-CREDENTIALS"

accelerator:

 ingress:

 include: true

 enable_tls: false

 git_credentials:

 secret_name: git-credentials

 username: GITLAB-USER

 password: GITLAB-PASSWORD

appliveview:

 ingressEnabled: true

appliveview_connector:

 backend:

 ingressEnabled: true

 sslDeactivated: false

 host: appliveview.INGRESS-DOMAIN

 caCertData: |-

 -----BEGIN CERTIFICATE-----

 MIIGMzCCBBugAwIBAgIJALHHzQjxM6wMMA0GCSqGSIb3DQEBDQUAMGcxCzAJBgNV

 BAgMAk1OMRQwEgYDVQQHDAtNaW5uZWFwb2xpczEPMA0GA1UECgwGVk13YXJlMRMw

 -----END CERTIFICATE-----

tap_gui:

 app_config:

 kubernetes:

 serviceLocatorMethod:

 type: multiTenant

 clusterLocatorMethods:

 - type: config

 clusters:

 - url: https://${KUBERNETES_SERVICE_HOST}:${KUBERNETES_SERVICE_PORT}

 name: host

 authProvider: serviceAccount

 serviceAccountToken: ${KUBERNETES_SERVICE_ACCOUNT_TOKEN}

 skipTLSVerify: false

 caData: B64_ENCODED_CA

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 #Example Integration for custom GitLab:

 integrations:

 gitlab:

 - host: GITLAB-URL

 token: GITLAB-TOKEN

 apiBaseUrl: https://GITLABURL/api/v4/

 backend:

 reading:

Tanzu Application Platform v1.4

VMware by Broadcom 188

 allow:

 - host: GITLAB-URL # Example URL: gitlab.example.com

metadata_store:

 ns_for_export_app_cert: "MY-DEV-NAMESPACE"

 app_service_type: ClusterIP # Defaults to LoadBalancer. If shared.ingress_domain is

set earlier, this must be set to ClusterIP.

grype:

 namespace: "MY-DEV-NAMESPACE"

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s External IP address.

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service".

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service".

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service".

KP-DEFAULT-REPO-SECRET is the user name that can write to KP-DEFAULT-REPO. You can
docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key.

You must create the secret before the installation. For example, you can use the
registry-credentials secret created earlier.

KP-DEFAULT-REPO-SECRET-NAMESPACE is the namespace where KP-DEFAULT-REPO-SECRET is
created.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. If this key is passed through
the shared section earlier and AWS ECR registry is used, you must ensure that the SERVER-
NAME/REPO-NAME/buildservice and SERVER-NAME/REPO-NAME/workloads exist. AWS ECR
expects the paths to be pre-created.

Images are written to SERVER-NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET is the secret name for https authentication, certificate authority, and SSH
authentication. See Git authentication for more information.

MAVEN-CREDENTIALS is the name of the secret with maven creds. This secret must be in the
developer namespace. You can create it after the fact.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform

Tanzu Application Platform v1.4

VMware by Broadcom 189

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018

product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built
and posted on the Git infrastructure.

GITLABURL is the host name of your GitLab instance.

GITLAB-USER is the user name of your GitLab instance.

GITLAB-PASSWORD is the password for the GITLAB-USER of your GitLab instance. This can also
be the GITLAB-TOKEN.

GITLAB-TOKEN is the API token for your GitLab instance.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Store exports secrets
to the namespace, and SCST - Scan deploys the ScanTemplates there. This allows the
scanning feature to run in this namespace. If there are multiple developer namespaces, use
ns_for_export_app_cert: "*" to export the SCST - Store CA certificate to all namespaces.

Note: To install Grype in multiple namespaces, use a namespace provisioner. See
Namespace Provisioner.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from the registry for scanning.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

The ingressEnabled key is set to false by default. Set this key to true for the Application Live
View back end to be exposed on the ingress domain. This creates a HTTPProxy object in the
cluster.

You must create the app-live-view namespace and the TLS secret appliveview-cert for the
domain before installing the Tanzu Application Platform packages on the cluster so that the
HTTPProxy is updated with the TLS secret. To create a TLS secret, run:

kubectl create -n app-live-view secret tls appliveview-cert --cert=CRT-FILE --key=KEY-

FILE

To verify the HTTPProxy object with the secret, run:

kubectl get httpproxy -A

Expected output:

NAMESPACE NAME

FQDN TLS SECRET

STATUS STATUS DESCRIPTION

app-live-view appliveview

appliveview.192.168.42.55.nip.io appliveview-cert va

lid Valid HTTPProxy

The appliveview_connector.backend.host key is the back end host in the view cluster. The
appliveview_connector.backend.caCertData key is the certificate retrieved from the HTTPProxy
secret exposed by Application Live View back end in the view cluster. To retrieve this certificate,
run the following command in the view cluster:

Note

The appliveview_connector.backend.sslDisabled key is deprecated and renamed
to appliveview_connector.backend.sslDeactivated.

Tanzu Application Platform v1.4

VMware by Broadcom 190

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018

kubectl get secret appliveview-cert -n app-live-view -o yaml | yq '.data."ca.crt"' |

base64 -d

Install your Tanzu Application Platform package

Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

tap-values.yaml -n tap-install

Where $TAP_VERSION is the Tanzu Application Platform version environment variable you
defined earlier.

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This may take 5-10 minutes because it installs several packages on your cluster.

3. Verify that all the necessary packages in the profile are installed by running:

tanzu package installed list -A

Next steps

Install the Tanzu Build Service dependencies

Install the Tanzu Build Service dependencies

This topic tells you how to install the Tanzu Build Service (TBS) full dependencies on Tanzu
Application Platform (commonly known as TAP).

By default, Tanzu Build Service is installed with lite dependencies.

When installing Tanzu Build Service on an air-gapped environment, the lite dependencies cannot
be used as they require Internet access. You must install the full dependencies.

To install full dependencies:

1. Get the latest version of the Tanzu Build Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

2. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

 --to-tar=tbs-full-deps.tar

move tbs-full-deps.tar to environment with registry access

imgpkg copy --tar tbs-full-deps.tar \

 --to-repo=INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps

Where:

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

INSTALL-REGISTRY-HOSTNAME is your container registry.

Tanzu Application Platform v1.4

VMware by Broadcom 191

TARGET-REPOSITORY is your target repository.

3. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps:VERSION \

 --namespace tap-install

Where:

INSTALL-REGISTRY-HOSTNAME is your container registry.

TARGET-REPOSITORY is your target repository.

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

4. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

Next steps
Configure custom CAs for Tanzu Application Platform GUI

Configure custom certificate authorities for Tanzu
Application Platform GUI

This topic tells you how to configure your Tanzu Application Platform GUI (commonly known as
TAP GUI) to trust unusual certificate authorities (CA) when making outbound connections.

Tanzu Application Platform GUI might require custom certificates when connecting to persistent
databases or custom catalog locations that require SSL. You use overlays with PackageInstalls to
make this possible. There are two ways to implement this workaround: you can add a custom CA or
you can deactivate all SSL verification.

Add a custom CA
The overlay previously available in this section is no longer necessary. As of Tanzu Application
Platform v1.3, the value ca_cert_data is supported at the top level of its values file. Any number
of newline-delimited CA certificates in PEM format are accepted.

For example:

tap-gui-values.yaml

ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 cert data here

 -----END CERTIFICATE-----

 -----BEGIN CERTIFICATE-----

 other cert data here

 -----END CERTIFICATE-----

app_config:

 # ...

Tanzu Application Platform GUI also inherits shared.ca_cert_data from your tap-values.yaml
file. shared.ca_cert_data is newline-concatenated with ca_certs given directly to Tanzu
Application Platform GUI.

Tanzu Application Platform v1.4

VMware by Broadcom 192

shared:

 ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 cert data here

 -----END CERTIFICATE-----

tap_gui:

 ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 other cert data here

 -----END CERTIFICATE-----

 app_config:

 # ...

To verify that Tanzu Application Platform GUI has processed the custom CA certificates, check
that the ca-certs-data volume with mount path /etc/custom-ca-certs-data is mounted in the
Tanzu Application Platform GUI server pod.

Deactivate all SSL verification
To deactivate SSL verification to allow for self-signed certificates, set the Tanzu Application
Platform GUI pod’s environment variable as NODE_TLS_REJECT_UNAUTHORIZED=0. When the value
equals 0, certificate validation is deactivated for TLS connections.

To do this, use the package_overlays key in the Tanzu Application Platform values file. For
instructions, see Customize Package Installation.

The following YAML is an example Secret containing an overlay to deactivate TLS:

apiVersion: v1

kind: Secret

metadata:

 name: deactivate-tls-overlay

 namespace: tap-install

stringData:

 deactivate-tls-overlay.yml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind":"Deployment", "metadata": {"name": "se

rver", "namespace": "NAMESPACE"}}),expects="1+"

 spec:

 template:

 spec:

 containers:

 #@overlay/match by=overlay.all,expects="1+"

 #@overlay/match-child-defaults missing_ok=True

 - env:

 - name: NODE_TLS_REJECT_UNAUTHORIZED

 value: "0"

Where NAMESPACE is the namespace in which your Tanzu Application Platform GUI instance is
deployed. For example, tap-gui.

Next steps

Configure Application Accelerator

Configure Application Accelerator

This topic describes advanced configuration options available for Application Accelerator. This
includes configuring Git-Ops style deployments of accelerators and configurations for use with non-

Tanzu Application Platform v1.4

VMware by Broadcom 193

public repositories and in air-gapped environments.

Accelerators are created either using the Tanzu CLI or by applying a YAML manifest using kubectl.
Another option is Using a Git-Ops style configuration for deploying a set of managed accelerators.

Application Accelerator pulls content from accelerator source repositories using either the “Flux
SourceController” or the “Tanzu Application Platform Source Controller” components. If the
repository used is accessible anonymously from a public server, you do not have to configure
anything additional. Otherwise, provide authentication as explained in Using non-public
repositories. There are also options for making these configurations easier explained in Configuring
tap-values.yaml with Git credentials secret

Using a Git-Ops style configuration for deploying a set of
managed accelerators
To enable a Git-Ops style of managing resources used for deploying accelerators, there is a new set
of properties for the Application Accelerator configuration. The resources are managed using a
Carvel kapp-controller App in the accelerator-system namespace that watches a Git repository
containing the manifests for the accelerators. This means that you can make changes to the
manifests, or to the accelerators they point to, and the changes are reconciled and reflected in the
deployed resources.

You can specify the following accelerator configuration properties when installing the Application
Accelerator. The same properties are provided in the accelerator section of the tap-values.yaml
file:

accelerator:

 managed_resources:

 enable: true

 git:

 url: GIT-REPO-URL

 ref: origin/main

 sub_path: null

 secret_ref: git-credentials

Where:

GIT-REPO-URL is the URL of a Git repository that contains manifest YAML files for the
accelerators that you want to have managed. The URL must start with https:// or git@.
You can specify a sub_path if necessary and also a secret_ref if the repository requires
authentication. If not needed, then leave these additional properties out.

For more information, see Configure tap-values.yaml with Git credentials secret and
Creating a manifest with multiple accelerators and fragments in this topic.

Functional and Organizational Considerations

Any accelerator manifest that is defined under the GIT-REPO-URL and optional sub_path is selected
by the kapp-controller app. If there are multiple manifests at the defined GIT-REPO-URL, they are all
watched for changes and displayed to the user as a merged catalog.

For example: if you have two manifests containing multiple accelerator or fragment definitions,
manifest-1.yaml, and manifest-2.yaml, on the same path in the organizational considerations. The
resulting catalog is (manifest-1.yaml + manifest-2.yaml).

Examples for creating accelerators

A minimal example for creating an accelerator

Tanzu Application Platform v1.4

VMware by Broadcom 194

A minimal example might look like the following manifest:

spring-cloud-serverless.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: spring-cloud-serverless

spec:

 git:

 url: https://github.com/vmware-tanzu/application-accelerator-samples

 subPath: spring-cloud-serverless

 ref:

 branch: main

This example creates an accelerator named spring-cloud-serverless. The displayName,
description, iconUrl, and tags text boxes are populated based on the content under the
accelerator key in the accelerator.yaml file found in the main branch of the Git repository at
Application Accelerator Samples under the sub-path spring-cloud-serverless. For example:

accelerator.yaml

accelerator:

 displayName: Spring Cloud Serverless

 description: A simple Spring Cloud Function serverless app

 iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

 tags:

 - java

 - spring

 - cloud

 - function

 - serverless

 - tanzu

...

To create this accelerator with kubectl, run:

kubectl apply --namespace --accelerator-system --filename spring-cloud-serverless.yaml

Or, you can use the Tanzu CLI and run:

tanzu accelerator create spring-cloud-serverless --git-repo https://github.com/vmware-

tanzu/application-accelerator-samples.git --git-branch main --git-sub-path spring-clou

d-serverless

An example for creating an accelerator with customized properties

You can specify the displayName, description, iconUrl, and tags text boxes and this overrides any
values provided in the accelerator’s Git repository. The following example explicitly sets those text
boxes and the ignore text box:

my-spring-cloud-serverless.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: my-spring-cloud-serverless

spec:

 displayName: My Spring Cloud Serverless

 description: My own Spring Cloud Function serverless app

 iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

Tanzu Application Platform v1.4

VMware by Broadcom 195

https://github.com/vmware-tanzu/application-accelerator-samples

ng

 tags:

 - spring

 - cloud

 - function

 - serverless

 git:

 ignore: ".git/, bin/"

 url: https://github.com/vmware-tanzu/application-accelerator-samples

 subPath: spring-cloud-serverless

 ref:

 branch: test

To create this accelerator with kubectl, run:

kubectl apply --namespace --accelerator-system --filename my-spring-cloud-serverless.y

aml

To use the Tanzu CLI, run:

tanzu accelerator create my-spring-cloud-serverless --git-repo https://github.com/vmwa

re-tanzu/application-accelerator-samples --git-branch main --git-sub-path spring-cloud

-serverless \

 --description "My own Spring Cloud Function serverless app" \

 --display-name "My Spring Cloud Serverless" \

 --icon-url https://raw.githubusercontent.com/simple-starters/icons/master/icon-clou

d.png \

 --tags "spring,cloud,function,serverless"

Creating a manifest with multiple accelerators and fragments

You might have a manifest that contains multiple accelerators or fragments. For example:

accelerator-collection.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: spring-cloud-serverless

spec:

 git:

 url: https://github.com/vmware-tanzu/application-accelerator-samples

 subPath: spring-cloud-serverless

 ref:

 branch: main

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: tanzu-java-web-app

spec:

 git:

 url: https://github.com/vmware-tanzu/application-accelerator-samples.git

 subPath: tanzu-java-web-app

 ref:

 branch: main

Note

It is not possible to provide the git.ignore option with the Tanzu CLI.

Tanzu Application Platform v1.4

VMware by Broadcom 196

For a larger example of this, see Sample Accelerators Main. Optionally, use this to create an initial
catalog of accelerators and fragments during a fresh Application Accelerator install.

Configure tap-values.yaml with Git credentials secret

When deploying accelerators using Git repositories that requires authentication or are installed with
custom CA certificates, you must provide some additional authentication values in a secret. The
examples in the next section provide more details. This section describes how to configure a Git
credentials secret that is used in later Git-based examples.

You can specify the following accelerator configuration properties when installing Application
Accelerator. The same properties are provided in the accelerator section of the tap-values.yaml
file:

accelerator:

 git_credentials:

 secret_name: git-credentials

 username: GIT-USER-NAME

 password: GIT-CREDENTIALS

 ca_file: CUSTOM-CA-CERT

Where:

GIT-USER-NAME is the user name for authenticating with the Git repository.

GIT-CREDENTIALS is the password or access token used for authenticating with the Git
repository. VMware recommends using an access token for this.

CUSTOM-CA-CERT is the certificate data needed when accessing the Git repository.

This is an example of this part of a tap-values.yaml configuration:

accelerator:

 git_credentials:

 secret_name: git-credentials

 username: testuser

 password: s3cret

 ca_file: |

 -----BEGIN CERTIFICATE-----

 .

 .

 . < certificate data >

 .

 .

 -----END CERTIFICATE-----

You can specify the custom CA certificate data using the shared config value shared.ca_cert_data
and it propagates to all components that can make use of it, including the App Accelerator
configuration. The example earlier produces an output such as this using the shared value:

shared:

 ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 .

 .

Note

For how to create a new OAuth Token for optional Git repository creation, see
Create an Application Accelerator Git repository during project creation.

Tanzu Application Platform v1.4

VMware by Broadcom 197

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/sample-accelerators-main.yaml

 . < certificate data >

 .

 .

 -----END CERTIFICATE-----

accelerator:

 git_credentials:

 secret_name: git-credentials

 username: testuser

 password: s3cret

Using non-public repositories

For GitHub repositories that aren’t accessible anonymously, you must provide credentials in a
Secret.

For HTTPS repositories the secret must contain user name and password fields. The
password field can contain a personal access token instead of an actual password. For more
information, see Fluxcd/source-controller basic access authentication.

For HTTPS with self-signed certificates, you can add a .data.caFile value to the secret
created for HTTPS authentication. For more information, see fluxcd/source-controller
HTTPS Certificate Authority.

For SSH repositories, the secret must contain identity, identity.pub, and known_hosts text
boxes. For more information, see fluxcd/source-controller SSH authentication.

For Image repositories that aren’t publicly available, an image pull secret might be provided.
For more information, see Kubernetes documentation on using imagePullSecrets.

Examples for a private Git repository

Example using http credentials

To create an accelerator using a private Git repository, first create a secret with the HTTP
credentials.

kubectl create secret generic https-credentials \

 --namespace accelerator-system \

 --from-literal=username=<user> \

 --from-literal=password=<access-token>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system https-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

 name: https-credentials

 namespace: accelerator-system

type: Opaque

data:

Note

For better security, use an access token as the password.

Tanzu Application Platform v1.4

VMware by Broadcom 198

https://fluxcd.io/docs/components/source/gitrepositories/#basic-access-authentication
https://fluxcd.io/docs/components/source/gitrepositories/#https-certificate-authority
https://fluxcd.io/docs/components/source/gitrepositories/#ssh-authentication
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

 username: <BASE64>

 password: <BASE64>

After you created and verified the secret, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: private-acc

spec:

 displayName: private

 description: Accelerator using a private repository

 git:

 url: REPOSITORY-URL

 ref:

 branch: main

 secretRef:

 name: https-credentials

For https credentials, the REPOSITORY-URL must use https:// as the URL scheme.

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Example using http credentials with self-signed certificate

To create an accelerator using a private Git repository with a self-signed certificate, create a secret
with the HTTP credentials and the certificate.

kubectl create secret generic https-ca-credentials \

 --namespace accelerator-system \

 --from-literal=username=<user> \

 --from-literal=password=<access-token> \

 --from-file=caFile=<path-to-CA-file>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system https-ca-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

 name: https-ca-credentials

 namespace: accelerator-system

type: Opaque

data:

 username: <BASE64>

 password: <BASE64>

 caFile: <BASE64>

Note

For better security, use an access token as the password.

Tanzu Application Platform v1.4

VMware by Broadcom 199

After you have the secret created, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: private-acc

spec:

 displayName: private

 description: Accelerator using a private repository

 git:

 url: REPOSITORY-URL

 ref:

 branch: main

 secretRef:

 name: https-ca-credentials

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Example using SSH credentials

To create an accelerator using a private Git repository, create a secret with the SSH credentials
such as this example:

ssh-keygen -q -N "" -f ./identity

ssh-keyscan github.com > ./known_hosts

kubectl create secret generic ssh-credentials \

 --namespace accelerator-system \

 --from-file=./identity \

 --from-file=./identity.pub \

 --from-file=./known_hosts

If you have a key file already created, skip the ssh-keygen and ssh-keyscan steps and replace the
values for the kubectl create secret command. Such as:

--from-file=identity=<path to your identity file>

--from-file=identity.pub=<path to your identity.pub file>

--from-file=known_hosts=<path to your know_hosts file>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system ssh-credentials -o yaml

The output is similar to :

apiVersion: v1

kind: Secret

metadata:

 name: ssh-credentials

 namespace: accelerator-system

type: Opaque

data:

Important

For https credentials, the REPOSITORY-URL must use https:// as the URL scheme.

Tanzu Application Platform v1.4

VMware by Broadcom 200

 identity: <BASE64>

 identity.pub: <BASE64>

 known_hosts: <BASE64>

To use this secret when creating an accelerator, provide the secret name in the
spec.git.secretRef.name property:

private-acc-ssh.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: private-acc

spec:

 displayName: private

 description: Accelerator using a private repository

 git:

 url: REPOSITORY-URL

 ref:

 branch: main

 secretRef:

 name: ssh-credentials

When using SSH credentials, the REPOSITORY-URL must include the user name as part of the URL.
For example: ssh://user@example.com:22/repository.git. For more information, see Flux
documentation.

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Examples for a private source-image repository

If your registry uses a self-signed certificate then you must add the CA certificate data to the
configuration for the “Tanzu Application Platform Source Controller” component. Add it under
source_controller.ca_cert_data in your tap-values.yaml file that is used during installation.

tap-values.yaml

source_controller:

 ca_cert_data: |-

 -----BEGIN CERTIFICATE-----

 .

 .

 . < certificate data >

 .

 .

 -----END CERTIFICATE-----

Example using image-pull credentials

To create an accelerator using a private source-image repository, create a secret with the image-
pull credentials:

create secret generic registry-credentials \

 --namespace accelerator-system \

 --from-literal=username=<user> \

 --from-literal=password=<password>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system registry-credentials -o yaml

Tanzu Application Platform v1.4

VMware by Broadcom 201

https://fluxcd.io/flux/components/source/gitrepositories/#url

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

 name: registry-credentials

 namespace: accelerator-system

type: Opaque

data:

 username: <BASE64>

 password: <BASE64>

After you have the secret created, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: private-acc

spec:

 displayName: private

 description: Accelerator using a private repository

 source:

 image: "registry.example.com/test/private-acc-src:latest"

 imagePullSecrets:

 - name: registry-credentials

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Configure ingress timeouts when some accelerators take
longer to generate

If Tanzu Application Platform is configured to use an ingress for Tanzu Application Platform GUI and
the Accelerator Server, then it might detect a timeout during accelerator generation. This can
happen if the accelerator takes a longer time to generate than the default timeout. When this
happens, Tanzu Application Platform GUI appears to continue to run for an indefinite period. In the
IDE extension, it shows a 504 error. To mitigate this, you can increase the timeout value for the
HTTPProxy resources used for the ingress by applying secrets with overlays to edit the HTTPProxy
resources.

Configure an ingress timeout overlay secret for each HTTPProxy

For Tanzu Application Platform GUI, create the following overlay secret in the tap-install
namespace:

apiVersion: v1

kind: Secret

metadata:

 name: patch-tap-gui-timeout

 namespace: tap-install

stringData:

 patch.yaml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind": "HTTPProxy", "metadata": {"name": "tap-

gui"}})

 spec:

 routes:

Tanzu Application Platform v1.4

VMware by Broadcom 202

 #@overlay/match by=overlay.subset({"services": [{"name": "server"}]})

 #@overlay/match-child-defaults missing_ok=True

 - timeoutPolicy:

 idle: 30s

 response: 30s

For Accelerator Server (used for IDE extension), create the following overlay secret in the tap-
install namespace:

apiVersion: v1

kind: Secret

metadata:

 name: patch-accelerator-timeout

 namespace: tap-install

stringData:

 patch.yaml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind": "HTTPProxy", "metadata": {"name": "acce

lerator"}})

 spec:

 routes:

 #@overlay/match by=overlay.subset({"services": [{"name": "acc-server"}]})

 #@overlay/match-child-defaults missing_ok=True

 - timeoutPolicy:

 idle: 30s

 response: 30s

Apply the timeout overlay secrets in tap-values.yaml

Add the following package_overlays section to tap-values.yaml before installing or updating Tanzu
Application Platform:

package_overlays:

- name: tap-gui

 secrets:

 - name: patch-tap-gui-timeout

- name: accelerator

 secrets:

 - name: patch-accelerator-timeout

Configuring skipping TLS verification for access to Source
Controller
You can configure the Flux or Tanzu Application Platform Source Controller to use Transport Layer
Security (TLS) and use custom certificates. In that case, configure the Accelerator System to skip
the TLS verification for calls to access the sources by providing the following property in the
accelerator section of the tap-values.yaml file:

sources:

 skip_tls_verify: true

Enabling TLS for Accelerator Server

To enable TLS for the Accelerator Server, the following properties must be provided in the
accelerator section of the tap-values.yaml file:

server:

 tls:

Tanzu Application Platform v1.4

VMware by Broadcom 203

 enabled: true

 key: SERVER-PRIVATE-KEY

 crt: SERVER-CERTIFICATE

Where:

SERVER-PRIVATE-KEY is the pem encoded server private key.

SERVER-CERTIFICATE is the pem encoded server certificate.

Here is a sample tap-values.yaml configuration with TLS enabled for Accelerators Server:

server:

 tls:

 enabled: true

 key: |

 -----BEGIN PRIVATE KEY-----

 .

 . < private key data >

 .

 -----END PRIVATE KEY-----

 crt: |

 -----BEGIN CERTIFICATE-----

 .

 . < certificate data >

 .

 -----END CERTIFICATE-----

Configuring skipping TLS verification of Engine calls for
Accelerator Server

If you configure the Accelerator Engine to use TLS and use custom certificates, then you can
configure the Accelerator Server to skip the TLS verification for calls to the Engine by providing the
following property in the accelerator section of the tap-values.yaml file:

server:

 engine_skip_tls_verify: true

Enabling TLS for Accelerator Engine

To enable TLS for the Accelerator Engine, the following properties are provided in the accelerator
section of the tap-values.yaml file:

engine:

 tls:

 enabled: true

 key: ENGINE-PRIVATE-KEY

 crt: ENGINE-CERTIFICATE

Where:

ENGINE-PRIVATE-KEY is the pem encoded acc-engine private key.

ENGINE-CERTIFICATE is the pem encoded acc-engine certificate.

Here is a sample tap-values.yaml configuration with TLS enabled for Accelerators Engine:

engine:

 tls:

 enabled: true

 key: |

 -----BEGIN PRIVATE KEY-----

Tanzu Application Platform v1.4

VMware by Broadcom 204

 .

 . < private key data >

 .

 -----END PRIVATE KEY-----

 crt: |

 -----BEGIN CERTIFICATE-----

 .

 . < certificate data >

 .

 -----END CERTIFICATE-----

Next steps

Using Grype in offline and air-gapped environments

Use Grype in offline and air-gapped environments

The grype CLI attempts to perform two over the Internet calls:

One to verify for later versions of the CLI.

One to update the vulnerability database before scanning.

For the grype CLI to function in an offline or air-gapped environment, the vulnerability database
must be hosted within the environment. You must configure the grype CLI with the internal URL.

The grype CLI accepts environment variables to satisfy these needs.

For information about setting up an offline vulnerability database, see the Anchore Grype README
in GitHub.

To enable Grype in offline air-gapped environments

1. Add the following to your tap-values.yaml file:

grype:

 db:

 dbUpdateUrl: INTERNAL-VULN-DB-URL

Where INTERNAL-VULN-DB-URL is the URL that points to the internal file server.

2. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Troubleshooting

ERROR failed to fetch latest cli version

Note

If you are using the Namespace Provisioner to provision a new developer
namespace and want to apply a package overlay for Grype, you must complete
additional configuration steps. See Grype package overlays are not applied to
scantemplates created by Namespace Provisioner.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 205

https://github.com/anchore/grype#offline-and-air-gapped-environments

The Grype CLI checks for later versions of the CLI by contacting the anchore endpoint over the
Internet.

ERROR failed to fetch latest version: Get "https://toolbox-data.anchore.io/grype/relea

ses/latest/VERSION": dial tcp: lookup toolbox-data.anchore.io on [::1]:53: read udp

[::1]:65010->[::1]:53: read: connection refused

Solution

To deactivate this check, set the environment variable GRYPE_CHECK_FOR_APP_UPDATE to false by
using a package overlay with the following steps:

1. Create a secret that contains the ytt overlay to add the Grype environment variable to the
ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

 name: grype-airgap-deactivate-cli-check-overlay

 namespace: tap-install #! namespace where tap is installed

stringData:

 patch.yaml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1+"

 spec:

 template:

 initContainers:

 #@overlay/match by=overlay.subset({"name": "scan-plugin"}), expects

="1+"

 - name: scan-plugin

 #@overlay/match missing_ok=True

 env:

 #@overlay/append

 - name: GRYPE_CHECK_FOR_APP_UPDATE

 value: "false"

2. Configure tap-values.yaml to use package_overlays. Add the following to your tap-
values.yaml file:

package_overlays:

 - name: "grype"

 secrets:

 - name: "grype-airgap-deactivate-cli-check-overlay"

3. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Database is too old

1 error occurred:

 * db could not be loaded: the vulnerability database was built N days/weeks ago (max

allowed age is 5 days)

This message is a warning and the Grype scan still runs with this message.

Tanzu Application Platform v1.4

VMware by Broadcom 206

Grype needs up-to-date vulnerability information to provide accurate matches. By default, it fails to
run if the local database was not built in the last 5 days.

Solution

Two options to resolve this:

1. Stale databases weaken your security posture. VMware recommends updating the
database daily as the first recommended solution.

2. If updating the database daily is not an option, the data staleness check is configurable by
using the environment variable GRYPE_DB_MAX_ALLOWED_BUILT_AGE and is addressed using a
package overlay with the following steps:

1. Create a secret that contains the ytt overlay to add the Grype environment variable
to the ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

 name: grype-airgap-override-stale-db-overlay

 namespace: tap-install #! namespace where tap is installed

stringData:

 patch.yaml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1

+"

 spec:

 template:

 initContainers:

 #@overlay/match by=overlay.subset({"name": "scan-plugin"}), exp

ects="1+"

 - name: scan-plugin

 #@overlay/match missing_ok=True

 env:

 #@overlay/append

 - name: GRYPE_DB_MAX_ALLOWED_BUILT_AGE #! see note on best

practices

 value: "120h"

2. Configure tap-values.yaml to use package_overlays. Add the following to your tap-
values.yaml file:

package_overlays:

 - name: "grype"

 secrets:

 - name: "grype-airgap-override-stale-db-overlay"

3. Update Tanzu Application Platform:

Note

The default maximum allowed built age of Grype’s vulnerability
database is 5 days. This means that scanning with a 6 day old
database causes the scan to fail. You can use the
GRYPE_DB_MAX_ALLOWED_BUILT_AGE parameter to override the default
in accordance with your security posture.

Tanzu Application Platform v1.4

VMware by Broadcom 207

tanzu package installed update tap -f tap-values.yaml -n tap-install

Grype package overlays are not applied to scantemplates created by
Namespace Provisioner

If you used the Namespace Provisioner to provision a new developer namespace and want to apply
a package overlay for Grype, see Import overlay secrets.

scan-pod[scan-plugin] 1 error occurred:

scan-pod[scan-plugin] * failed to load vulnerability db: vulnerability database is in

valid (run db update to correct): database metadata not found: /.cache/grype/db/5

Solution

Examine the listing.json file you created. This matches the format of the listing file. The listing file
is located at Anchore Grype’s public endpoint. See the Grype README.md in GitHub.

Here is an example of a properly formatted listing.json:

#@ load("@ytt:overlay", "overlay")

#@ def matchGrypeScanners(index, left, right):

 #@ if left["apiVersion"] != "packaging.carvel.dev/v1alpha1" or left["kind"] != "Pack

ageInstall":

 #@ return False

 #@ end

 #@ return left["metadata"]["name"].startswith("grype-scanner")

#@ end

#@ def customize():

#@overlay/match by=matchGrypeScanners, expects="0+"

metadata:

 annotations:

 #@overlay/match missing_ok=True

 ext.packaging.carvel.dev/ytt-paths-from-secret-name.0: SECRET-NAME

#@ end

Where:

5 refers to the Grype’s vulnerability database schema.

built is the build timestamp in the format yyyy-MM-ddTHH:mm:ssZ.

url is the download URL for the tarball containing the database. This points at your internal
endpoint. The tarball contains the following files:

vulnerability.db is an SQLite file that is Grype’s vulnerability database. Each time
the data shape of the vulnerability database changes, a new schema is created.
Different Grype versions require specific database schema versions. For example,
Grype v0.54.0 requires database schema version v5.

metadata.json file

checksum is the SHA used to verify the database’s integrity.

Verify these possible reasons why the vulnerability database is not valid:

1. The database schema is invalid. Confirm that the required database schema for the installed
Grype version is used. Confirm that the top level version key matches the nested version.

Tanzu Application Platform v1.4

VMware by Broadcom 208

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/namespace-provisioner-customize-installation.html
https://github.com/anchore/grype#how-database-updates-work

For example, the top level version 1 in the following snippet does not match the nested
version: 5.

{

 "available": {

 "1": [{

 "built": "2023-02-08T08_17_20Z",

 "version": 5,

 "url": "https://INTERNAL-ENDPOINT/PATH-TO-TARBALL/vulnerability-db_v

5_2023-02-08T08_17_20Z_6ef73016d160043c630f.tar.gz",

 "checksum": "sha256:aab8d369933c845878ef1b53bb5c26ee49b91ddc5cd87c9e

b57ffb203a88a72f"

 }]

 }

}

Where PATH-TO-TARBALL is the path to the tarball containing the vulnerability database.

As stale databases weaken your security posture, VMware recommends using the newest
entry of the relevant schema version in the listing.json file. See Anchore’s grype-db in
GitHub.

2. The built parameters in the listing.json file are incorrectly formatted. The proper format
is yyyy-MM-ddTHH:mm:ssZ.

3. The url that you modified to point at an internal endpoint is not reachable from within the
cluster. For information about verifying connectivity, see Debug Grype database in a
cluster.

Debug Grype database in a cluster

1. Describe the failed source scan or image scan to verify the name of the ScanTemplate
being used.

For sourcescan, run:

kubectl describe sourcescan SCAN-NAME -n DEV-NAMESPACE

For imagescan, run:

kubectl describe imagescan SCAN-NAME -n DEV-NAMESPACE

Where SCAN-NAME is the name of the source or image scan that failed.

2. Edit the ScanTemplate’s scan-plugin container to include a “sleep” entrypoint which allows
you to troubleshoot inside the container:

- name: scan-plugin

 volumeMounts:

 ...

 image: #@ data.values.scanner.image

 imagePullPolicy: IfNotPresent

 env:

 ...

 command: ["/bin/bash"]

 args:

 - "sleep 1800" # insert 30 min sleep here

3. Re-run the scan.

4. Get the name of the scan-plugin pod.

Tanzu Application Platform v1.4

VMware by Broadcom 209

https://github.com/anchore/grype-db

kubectl get pods -n DEV-NAMESPACE

5. Get a shell to the container. See the Kubernetes documentation:

kubectl exec --stdin --tty SCAN-PLUGIN-POD -c step-scan-plugin -- /bin/bash

Where SCAN-PLUGIN-POD is the name of the scan-plugin pod.

6. Inside the container, run Grype CLI commands to report database status and verify
connectivity from cluster to mirror. See the Grype documentation in GitHub.

Report current status of Grype’s database (location, build date, and checksum):

grype db status

7. Ensure that the built parameters in the listing.json has timestamps in this proper format
yyyy-MM-ddTHH:mm:ssZ.

Set up developer namespaces to use your installed
packages

To automatically set up your developer namespaces. see Provision namespace resources.

For more information about Namespace Provisioner, see Namespace Provisioner overview.

Additional configuration for testing and scanning

If you plan to install or have already installed Out of the Box Supply Chains with Testing and
Scanning, you can use Namespace Provisioner to set up the required resources. For more
information, see Add the resources required by Out of the Box Testing and Scanning Supply Chain .

Legacy namespace setup

To use the legacy manual process for setting up developer namespaces, see Legacy namespace
setup.

Next steps

Deploy an air-gapped workload

Install Tanzu Application Platform (AWS)

You can install Tanzu Application Platform (commonly known as TAP) on Amazon Elastic
Kubernetes Services (EKS) by using Amazon Elastic Container Registry (ECR).

To install, take the following steps.

Step Task Link

1. Review the prerequisites to ensure that you have set up everything
required before beginning the installation

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Create AWS Resources (EKS Cluster, roles, etc) Create AWS Resources

4. Install Cluster Essentials for Tanzu Deploy Cluster Essentials

Tanzu Application Platform v1.4

VMware by Broadcom 210

https://kubernetes.io/docs/tasks/debug/debug-application/get-shell-running-container/
https://github.com/anchore/grype#cli-commands-for-database-management
https://aws.amazon.com/eks/
https://aws.amazon.com/ecr/
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html

Step Task Link

5. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster

Install the Tanzu Application
Platform package and profiles

6. (Optional) Install any additional packages that were not in the profile Install individual packages

7. Set up developer namespaces to use your installed packages Set up developer namespaces to use
your installed packages

8. Install developer tools into your integrated development environment
(IDE)

Install Tanzu Developer Tools for
your VS Code

After installing Tanzu Application Platform on your Kubernetes clusters, get started with Tanzu
Application Platform and create your ECR repositories for your workload, such as tanzu-
application-platform/tanzu-java-web-app-default, tanzu-application-platform/tanzu-java-
web-app-default-bundle, and tanzu-application-platform/tanzu-java-web-app-default-source.

Install Tanzu Application Platform (AWS)

You can install Tanzu Application Platform (commonly known as TAP) on Amazon Elastic
Kubernetes Services (EKS) by using Amazon Elastic Container Registry (ECR).

To install, take the following steps.

Step Task Link

1. Review the prerequisites to ensure that you have set up everything
required before beginning the installation

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Create AWS Resources (EKS Cluster, roles, etc) Create AWS Resources

4. Install Cluster Essentials for Tanzu Deploy Cluster Essentials

5. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster

Install the Tanzu Application
Platform package and profiles

6. (Optional) Install any additional packages that were not in the profile Install individual packages

7. Set up developer namespaces to use your installed packages Set up developer namespaces to use
your installed packages

8. Install developer tools into your integrated development environment
(IDE)

Install Tanzu Developer Tools for
your VS Code

After installing Tanzu Application Platform on your Kubernetes clusters, get started with Tanzu
Application Platform and create your ECR repositories for your workload, such as tanzu-
application-platform/tanzu-java-web-app-default, tanzu-application-platform/tanzu-java-
web-app-default-bundle, and tanzu-application-platform/tanzu-java-web-app-default-source.

Create AWS Resources for Tanzu Application Platform

To install Tanzu Application Platform (commonly known as TAP) within the Amazon Web Services
(AWS) Ecosystem, you must create several AWS resources. Use this topic to learn how to create:

An Amazon Elastic Kubernetes Service (EKS) cluster to install Tanzu Application Platform.

Identity and Access Management (IAM) roles to allow authentication and authorization to
read and write from Amazon Elastic Container Registry (ECR).

ECR Repositories for the Tanzu Application Platform container images.

Tanzu Application Platform v1.4

VMware by Broadcom 211

https://aws.amazon.com/eks/
https://aws.amazon.com/ecr/
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html

Creating these resources enables Tanzu Application Platform to use an IAM role bound to a
Kubernetes service account for authentication, rather than the typical username and password
stored in a Kubernetes secret strategy. For more information, see this AWS documentation.

This is important when using ECR because authenticating to ECR is a two-step process:

1. Retrieve a token using your AWS credentials.

2. Use the token to authenticate to the registry.

To increase security, the token has a lifetime of 12 hours. This makes storing it as a secret for a
service impractical because it has to be refereshed every 12 hours.

Using an IAM role on a service account mitigates the need to retrieve the token at all because it is
handled by credential helpers within the services.

Prerequisites

Before installing Tanzu Application Platform on AWS, you need:

An AWS Account. You need to create all of your resources within Amazon Web Services,
so you need an Amazon account. For more information, see How do I create and activate a
new AWS account?. You need your account ID for this walkthrough.

AWS CLI. This walkthrough uses the AWS CLI to both query and configure resources in
AWS, such as IAM roles. For more information, see this AWS documentation.

eksctl command line. The eksctl command line helps you manage the life cycle of EKS
clusters. This guide uses it to create clusters. To install eksctl, see the eksctl
documentation.

Export environment variables

Variables are used throughout this guide. To simplify the process and minimize the opportunity for
errors, export these variables:

export AWS_ACCOUNT_ID=012345678901

export AWS_REGION=us-west-2

export EKS_CLUSTER_NAME=tap-on-aws

Where:

Variable Description

AWS_ACCOUNT_ID Your AWS account ID

AWS_REGION The AWS region you are going to deploy to

EKS_CLUSTER_NAME The name of your EKS Cluster

Create an EKS cluster

To create an EKS cluster in the specified region, run:

eksctl create cluster --name $EKS_CLUSTER_NAME --managed --region $AWS_REGION --instan

ce-types t3.xlarge --version 1.23 --with-oidc -N 5

Creating the control plane and node group can take anywhere from 30-60 minutes.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 212

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://eksctl.io/installation/

Install EBS CSI driver

As a requirement for Tanzu Application Platform, EBS CSI driver is no longer installed by default
starting from EKS 1.23. For more information about how to install EBS CSI driver, see AWS
documentation.

Create the container repositories

ECR requires that the container repositories are already created. For Tanzu Application Platform,
you need to create two repositories:

A repository to store the Tanzu Application Platform service container images.

A repository to store Tanzu Build Service Base OS and Buildpack container images.

To create these repositories, run:

aws ecr create-repository --repository-name tap-images --region $AWS_REGION

aws ecr create-repository --repository-name tap-build-service --region $AWS_REGION

Name the repositories any name you want, but remember the names for when you later build the
configuration.

Create the workload container repositories

Similar to the two repositories created earlier for the platform, you must create repositories for
each workload that Tanzu Application Platform creates before creating any workloads so that a
repository is available to upload container images and workload bundles. This is because AWS ECR
does not support automatically creating container repositories on initial push. For more information,
see the AWS repository in GitHub.

When installing Tanzu Application Platform, you must specify a prefix for all workload registries. This
topic uses tanzu-application-platform as the default value, but you can customize this value in
the profile configuration created in Install Tanzu Application Platform package and profiles on AWS.

To use the default value, create two workload repositories for each workload with the following
format:

tanzu-application-platform/WORKLOADNAME-NAMESPACE

tanzu-application-platform/WORKLOADNAME-NAMESPACE-bundle

For example, to create these repositories for the sample workload tanzu-java-web-app in the
default namespace, you can run the following ECR command:

aws ecr create-repository --repository-name tanzu-application-platform/tanzu-java-web-

app-default --region $AWS_REGION

aws ecr create-repository --repository-name tanzu-application-platform/tanzu-java-web-

app-default-bundle --region $AWS_REGION

This step is optional if you already have an existing EKS Cluster v1.23 or later with
OpenID Connect (OIDC) authentication enabled. For more information about how
to enable the OIDC provider, see AWS documentation.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 213

https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://github.com/aws/containers-roadmap/issues/853
https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html

Create IAM roles

By default, the EKS cluster is provisioned with an EC2 instance profile that provides read-only
access for the entire EKS cluster to the ECR registry within your AWS account. For more
information, see this AWS documentation.

However, some of the services within Tanzu Application Platform require write access to the
container repositories. To provide that access, create IAM roles and add the ARN to the
Kubernetes service accounts that those services use. This ensures that only the required services
have access to write container images to ECR, rather than a blanket policy that applies to the entire
cluster.

You must create two IAM Roles:

Tanzu Build Service: Gives write access to the repository to allow the service to
automatically upload new images. This is limited in scope to the service account for kpack
and the dependency updater.

Workload: Gives write access to the entire ECR registry with a prepended path. This
prevents you from having to update the policy for each new workload created.

To create the roles, you must establish two policies:

Trust Policy: Limits the scope to the OIDC endpoint for the Kubernetes cluster and the
Kubernetes service account you attach the role to.

Permission Policy: Limits the scope of actions the role can take on resources.

To simplify this walkthrough, use a script to create these policy documents and the roles. This script
outputs the files and then creates the IAM roles by using the policy documents.

Run:

Retrieve the OIDC endpoint from the Kubernetes cluster and store it for use in the p

olicy.

export OIDCPROVIDER=$(aws eks describe-cluster --name $EKS_CLUSTER_NAME --region $AWS_

REGION --output json | jq '.cluster.identity.oidc.issuer' | tr -d '"' | sed 's/http

s:\/\///')

cat << EOF > build-service-trust-policy.json

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDCPROVI

DER}"

 },

The default Supply Chain Choreographer method of storing Kubernetes
configuration is RegistryOps, which requires the bundle repository. If you enabled
the GitOps capability, this repository is not required. For more information about
the differences between RegistryOps and GitOps, see Use GitOps or RegistryOps
with Supply Chain Choreographer.

Note

These policies attempt to achieve a least privilege model. Review them to confirm
they adhere to your organization’s policies.

Tanzu Application Platform v1.4

VMware by Broadcom 214

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html

 "Action": "sts:AssumeRoleWithWebIdentity",

 "Condition": {

 "StringEquals": {

 "${OIDCPROVIDER}:aud": "sts.amazonaws.com"

 },

 "StringLike": {

 "${OIDCPROVIDER}:sub": [

 "system:serviceaccount:kpack:controller",

 "system:serviceaccount:build-service:dependency-updater-contro

ller-serviceaccount"

]

 }

 }

 }

]

}

EOF

cat << EOF > build-service-policy.json

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "ecr:DescribeRegistry",

 "ecr:GetAuthorizationToken",

 "ecr:GetRegistryPolicy",

 "ecr:PutRegistryPolicy",

 "ecr:PutReplicationConfiguration",

 "ecr:DeleteRegistryPolicy"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "TAPEcrBuildServiceGlobal"

 },

 {

 "Action": [

 "ecr:DescribeImages",

 "ecr:ListImages",

 "ecr:BatchCheckLayerAvailability",

 "ecr:BatchGetImage",

 "ecr:BatchGetRepositoryScanningConfiguration",

 "ecr:DescribeImageReplicationStatus",

 "ecr:DescribeImageScanFindings",

 "ecr:DescribeRepositories",

 "ecr:GetDownloadUrlForLayer",

 "ecr:GetLifecyclePolicy",

 "ecr:GetLifecyclePolicyPreview",

 "ecr:GetRegistryScanningConfiguration",

 "ecr:GetRepositoryPolicy",

 "ecr:ListTagsForResource",

 "ecr:TagResource",

 "ecr:UntagResource",

 "ecr:BatchDeleteImage",

 "ecr:BatchImportUpstreamImage",

 "ecr:CompleteLayerUpload",

 "ecr:CreatePullThroughCacheRule",

 "ecr:CreateRepository",

 "ecr:DeleteLifecyclePolicy",

 "ecr:DeletePullThroughCacheRule",

 "ecr:DeleteRepository",

 "ecr:InitiateLayerUpload",

 "ecr:PutImage",

 "ecr:PutImageScanningConfiguration",

 "ecr:PutImageTagMutability",

 "ecr:PutLifecyclePolicy",

Tanzu Application Platform v1.4

VMware by Broadcom 215

 "ecr:PutRegistryScanningConfiguration",

 "ecr:ReplicateImage",

 "ecr:StartImageScan",

 "ecr:StartLifecyclePolicyPreview",

 "ecr:UploadLayerPart",

 "ecr:DeleteRepositoryPolicy",

 "ecr:SetRepositoryPolicy"

],

 "Resource": [

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tap-build-serv

ice",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tap-images"

],

 "Effect": "Allow",

 "Sid": "TAPEcrBuildServiceScoped"

 }

]

}

EOF

cat << EOF > workload-policy.json

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "ecr:DescribeRegistry",

 "ecr:GetAuthorizationToken",

 "ecr:GetRegistryPolicy",

 "ecr:PutRegistryPolicy",

 "ecr:PutReplicationConfiguration",

 "ecr:DeleteRegistryPolicy"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "TAPEcrWorkloadGlobal"

 },

 {

 "Action": [

 "ecr:DescribeImages",

 "ecr:ListImages",

 "ecr:BatchCheckLayerAvailability",

 "ecr:BatchGetImage",

 "ecr:BatchGetRepositoryScanningConfiguration",

 "ecr:DescribeImageReplicationStatus",

 "ecr:DescribeImageScanFindings",

 "ecr:DescribeRepositories",

 "ecr:GetDownloadUrlForLayer",

 "ecr:GetLifecyclePolicy",

 "ecr:GetLifecyclePolicyPreview",

 "ecr:GetRegistryScanningConfiguration",

 "ecr:GetRepositoryPolicy",

 "ecr:ListTagsForResource",

 "ecr:TagResource",

 "ecr:UntagResource",

 "ecr:BatchDeleteImage",

 "ecr:BatchImportUpstreamImage",

 "ecr:CompleteLayerUpload",

 "ecr:CreatePullThroughCacheRule",

 "ecr:CreateRepository",

 "ecr:DeleteLifecyclePolicy",

 "ecr:DeletePullThroughCacheRule",

 "ecr:DeleteRepository",

 "ecr:InitiateLayerUpload",

 "ecr:PutImage",

 "ecr:PutImageScanningConfiguration",

Tanzu Application Platform v1.4

VMware by Broadcom 216

 "ecr:PutImageTagMutability",

 "ecr:PutLifecyclePolicy",

 "ecr:PutRegistryScanningConfiguration",

 "ecr:ReplicateImage",

 "ecr:StartImageScan",

 "ecr:StartLifecyclePolicyPreview",

 "ecr:UploadLayerPart",

 "ecr:DeleteRepositoryPolicy",

 "ecr:SetRepositoryPolicy"

],

 "Resource": [

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tap-build-serv

ice",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tanzu-applicat

ion-platform/tanzu-java-web-app",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tanzu-applicat

ion-platform/tanzu-java-web-app-bundle",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tanzu-applicat

ion-platform",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tanzu-applicat

ion-platform/*"

],

 "Effect": "Allow",

 "Sid": "TAPEcrWorkloadScoped"

 }

]

}

EOF

cat << EOF > workload-trust-policy.json

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDCPROVI

DER}"

 },

 "Action": "sts:AssumeRoleWithWebIdentity",

 "Condition": {

 "StringEquals": {

 "${OIDCPROVIDER}:sub": "system:serviceaccount:default:default",

 "${OIDCPROVIDER}:aud": "sts.amazonaws.com"

 }

 }

 }

]

}

EOF

Create the Tanzu Build Service Role

aws iam create-role --role-name tap-build-service --assume-role-policy-document fil

e://build-service-trust-policy.json

Attach the Policy to the Build Role

aws iam put-role-policy --role-name tap-build-service --policy-name tapBuildServicePol

icy --policy-document file://build-service-policy.json

Create the Workload Role

aws iam create-role --role-name tap-workload --assume-role-policy-document file://work

load-trust-policy.json

Attach the Policy to the Workload Role

aws iam put-role-policy --role-name tap-workload --policy-name tapWorkload --policy-do

cument file://workload-policy.json

Tanzu Application Platform v1.4

VMware by Broadcom 217

Install Tanzu Application Platform package and profiles on
AWS

This topic tells you how to install Tanzu Application Platform (commonly known as TAP) packages
from your Tanzu Application Platform package repository on to AWS.

Before installing the packages, ensure you have:

Completed the Prerequisites.

Created AWS Resources.

Accepted Tanzu Application Platform EULA and installed Tanzu CLI with any required plug-
ins.

Installed Cluster Essentials for Tanzu.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. If you don’t relocate the images, Tanzu
Application Platform will depend on VMware Tanzu Network for continued operation, and VMware
Tanzu Network offers no uptime guarantees. The option to skip relocation is documented for
evaluation and proof-of-concept only.

This section describes how to relocate images to the tap-images repository created in Amazon
ECR. See Creating AWS Resources for more information.

To relocate images from the VMware Tanzu Network registry to the ECR registry:

1. Install Docker if it is not already installed.

2. Log in to your ECR image registry by following the AWS documentation.

3. Log in to the VMware Tanzu Network registry with your VMware Tanzu Network
credentials by running:

docker login registry.tanzu.vmware.com

4. Set up environment variables for installation use by running:

export AWS_ACCOUNT_ID=MY-AWS-ACCOUNT-ID

export AWS_REGION=TARGET-AWS-REGION

export TAP_VERSION=VERSION-NUMBER

export INSTALL_REGISTRY_HOSTNAME=$AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.

com

export INSTALL_REPO=tap-images

Where:

MY-AWS-ACCOUNT-ID is the account ID you depoloy Tanzu Application Platform in. No
dashes and must be in the format 012345678901.

TARGET-AWS-REGION is the region you deploy the Tanzu Application Platform to.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13.

Note

This is a one time copy of images from the VMware Tanzu Network to ECR,
so the ECR token expiring in 12 hours is not a concern.

Tanzu Application Platform v1.4

VMware by Broadcom 218

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html
https://aws.amazon.com/ecr/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/registry_auth.html

5. Install the Carvel tool imgpkg CLI.

6. Relocate the images with the imgpkg CLI by running:

imgpkg copy --concurrency 1 -b registry.tanzu.vmware.com/tanzu-application-plat

form/tap-packages:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTA

LL_REPO}

7. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

8. (Optional) If you haven’t relocated the images to ECR, create a secret to your registry by
running:

tanzu secret registry add tap-registry \

 --username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWOR

D} \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tap-install

9. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}:$TAP_VERSION \

 --namespace tap-install

10. Get the status of the Tanzu Application Platform package repository, and ensure the status
updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

For example:

$ tanzu package repository get tanzu-tap-repository --namespace tap-install

- Retrieving repository tap...

NAME: tanzu-tap-repository

VERSION: 16253001

REPOSITORY: 123456789012.dkr.ecr.us-west-2.amazonaws.com/tap-images

TAG: 1.4.13

STATUS: Reconcile succeeded

REASON:

11. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

Note

The VERSION and TAG numbers differ from the earlier example if you are on
Tanzu Application Platform v1.0.2 or earlier.

Tanzu Application Platform v1.4

VMware by Broadcom 219

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path

SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

A unified user interface for API discovery and exploration at scale.

 apis.apps.tanzu.vmware.com API Auto Registration fo

r VMware Tanzu A TAP component to automatica

lly register API exposing workloads as API entities

in TAP GUI.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 buildservice.tanzu.vmware.com Tanzu Build Service

Tanzu Build Service enables the building and automation of containerized

software workflows securely and at scale.

 carbonblack.scanning.apps.tanzu.vmware.com VMware Carbon Black for

Supply Chain Security Tools - Scan Default scan templates using

VMware Carbon Black

 cartographer.tanzu.vmware.com Cartographer

Kubernetes native Supply Chain Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

Cloud Native Runtimes is a serverless runtime based on Knative

 connector.appliveview.tanzu.vmware.com Application Live View Co

nnector for VMware Tanzu App for discovering and regis

tering running apps

 controller.conventions.apps.tanzu.vmware.com Convention Service for V

Mware Tanzu Convention Service enables ap

p operators to consistently apply desired runtime

configurations to fleets of workloads.

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

Tanzu Source Controller enables workload create/update from source code.

 conventions.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 eventing.tanzu.vmware.com Eventing

Eventing is an event-driven architecture platform based on Knative Eventing

 external-secrets.apps.tanzu.vmware.com External Secrets Operato

r External Secrets Operator is

a Kubernetes operator that integrates external

secret management systems.

 fluxcd.source.controller.tanzu.vmware.com Flux Source Controller

The source-controller is a Kubernetes operator, specialised in artifacts

acquisition from external sources such as Git, Helm repositories and S3 bucket

s.

 grype.scanning.apps.tanzu.vmware.com Grype for Supply Chain S

ecurity Tools - Scan Default scan templates using

Anchore Grype

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 metadata-store.apps.tanzu.vmware.com Supply Chain Security To

ols - Store Post SBoMs and query for imag

e, package, and vulnerability metadata.

 namespace-provisioner.apps.tanzu.vmware.com Namespace Provisioner

Automatic Provisioning of Developer Namespaces.

 ootb-delivery-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Delivery Basic Out of The Box Delivery Basi

c.

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

Tanzu Application Platform v1.4

VMware by Broadcom 220

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 policy.apps.tanzu.vmware.com Supply Chain Security To

ols - Policy Controller Policy Controller enables def

ining of a policy to restrict unsigned container

images.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native

Supply Chains.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

The Services Toolkit enables the management, lifecycle, discoverability and

connectivity of Service Resources (databases, message queues, DNS records,

etc.).

 snyk.scanning.apps.tanzu.vmware.com Snyk for Supply Chain Se

curity Tools - Scan Default scan templates using

Snyk

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 sso.apps.tanzu.vmware.com AppSSO

Application Single Sign-On for Tanzu

 tap-auth.tanzu.vmware.com Default roles for Tanzu

Application Platform Default roles for Tanzu Appli

cation Platform

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap-telemetry.tanzu.vmware.com Telemetry Collector for

Tanzu Application Platform Tanzu Application Plaform Tel

emetry

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use

case.

 tekton.tanzu.vmware.com Tekton Pipelines

Tekton Pipelines is a framework for creating CI/CD systems.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile
settings. This is done by using the package manager installed by Tanzu Cluster Essentials.

For more information about profiles, see Components and installation profiles.

To prepare to install a profile:

Tanzu Application Platform v1.4

VMware by Broadcom 221

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

2. Create a tap-values.yaml file by using the Full Profile (AWS), which contains the minimum
configurations required to deploy Tanzu Application Platform on AWS. The sample values
file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package.

Subordinate packages, or individual child packages.

Keep the values file for future configuration use.

3. View possible configuration settings for your package

Full profile (AWS)

The following command generates the YAML file sample for the full-profile on AWS by using the
ECR repositories you created earlier. The profile: field takes full as the default value, but you can
also set it to iterate, build, run, or view. Refer to Install multicluster Tanzu Application Platform
profiles for more information.

cat << EOF > tap-values.yaml

shared:

 ingress_domain: "INGRESS-DOMAIN"

ceip_policy_disclosed: true

#The above keys are minimum numbers of entries needed in tap-values.yaml to get a func

tioning TAP Full profile installation.

#Below are the keys which may have default values set, but can be overridden.

profile: full # Can take iterate, build, run, view.

supply_chain: basic # Can take testing, testing_scanning.

ootb_supply_chain_basic: # Based on supply_chain set above, can be changed to ootb_sup

ply_chain_testing, ootb_supply_chain_testing_scanning.

 registry:

 server: ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com

 # The prefix of the ECR repository. Workloads will need

 # two repositories created:

 #

 # tanzu-application-platform/<workloadname>-<namespace>

 # tanzu-application-platform/<workloadname>-<namespace>-bundle

 repository: tanzu-application-platform

contour:

 envoy:

 service:

 type: LoadBalancer # This is set by default, but can be overridden by setting a

different value.

buildservice:

 kp_default_repository: ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/tap-bui

Note

tap-values.yaml is set as a Kubernetes secret, which provides secure
means to read credentials for Tanzu Application Platform components.

Tanzu Application Platform v1.4

VMware by Broadcom 222

ld-service

 # Enable the build service k8s service account to bind to the AWS IAM Role

 kp_default_repository_aws_iam_role_arn: "arn:aws:iam::${AWS_ACCOUNT_ID}:role/tap-bui

ld-service"

ootb_templates:

 # Enable the config writer service to use cloud based iaas authentication

 # which are retrieved from the developer namespace service account by

 # default

 iaas_auth: true

tap_gui:

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

metadata_store:

 ns_for_export_app_cert: "MY-DEV-NAMESPACE"

 app_service_type: ClusterIP # Defaults to LoadBalancer. If shared.ingress_domain is

set earlier, this must be set to ClusterIP.

scanning:

 metadataStore:

 url: "" # Configuration is moved, so set this string to empty.

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

EOF

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s External IP address.

kp_default_repository_aws_iam_role_arn is the ARN that was created to write to the ECR
repository for the build service. This value is generated by the script, but you can modify it
manually.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built
and posted on the Git infrastructure.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Store exports secrets
to the namespace, and SCST - Scan deploys the ScanTemplates there. This allows the
scanning feature to run in this namespace. If there are multiple developer namespaces, use
ns_for_export_app_cert: "*" to export the SCST - Store CA certificate to all namespaces.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See Kubernetes Grid documentation for more
information about identifying the Entitlement Account Number.

For AWS, the default settings creates a classic LoadBalancer. To use the Network LoadBalancer
instead of the classic LoadBalancer for ingress, add the following to your tap-values.yaml:

contour:

 infrastructure_provider: aws

 envoy:

 service:

Tanzu Application Platform v1.4

VMware by Broadcom 223

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2

 aws:

 LBType: nlb

(Optional) Configure your profile with full dependencies

When you install a profile that includes Tanzu Build Service, Tanzu Application Platform is installed
with the lite set of dependencies. These dependencies consist of buildpacks and stacks required
for application builds.

The lite set of dependencies do not contain all buildpacks and stacks. To use all buildpacks and
stacks, you must install the full dependencies. For more information about the differences
between lite and full dependencies, see About lite and full dependencies.

To configure full dependencies, add the key-value pair exclude_dependencies: true to your tap-
values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/tap-bui

ld-service

 exclude_dependencies: true

After configuring full dependencies, you must install the dependencies after you have finished
installing your Tanzu Application Platform package. See Install the full dependencies package for
more information.

Install your Tanzu Application Platform package
Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

tap-values.yaml -n tap-install

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This can take 5-10 minutes because it installs several packages on your cluster.

3. Verify that the necessary packages in the profile are installed by running:

tanzu package installed list -A

4. If you configured full dependencies in your tbs-values.yaml file, install the full
dependencies by following the procedure in Install full dependencies.

After installing the Full profile on your cluster, you can install the Tanzu Developer Tools for VS
Code Extension to help you develop against it. For instructions, see Install Tanzu Developer Tools
for your VS Code.

tanzu package installed update tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-f

Note

You can run the following command after reconfiguring the profile to reinstall the
Tanzu Application Platform:

Tanzu Application Platform v1.4

VMware by Broadcom 224

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html

ile tap-values.yaml -n tap-install

Install the full dependencies package

If you configured full dependencies in your tap-values.yaml file in Configure your profile with full
dependencies earlier, you must install the full dependencies package.

For more information about the differences between lite and full dependencies, see About lite
and full dependencies.

To install the full dependencies package:

1. If you have not done so already, add the key-value pair exclude_dependencies: true to
your tap-values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/

tap-build-service

 exclude_dependencies: true

...

2. Get the latest version of the buildservice package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

3. Create an ECR repository for Tanzu Build Service full dependencies by running:

aws ecr create-repository --repository-name tbs-full-deps --region ${AWS_REGIO

N}

4. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

 --to-repo ${INSTALL_REGISTRY_HOSTNAME}/tbs-full-deps

Where VERSION is the version of the buildservice package you retrieved in the previous
step.

5. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps:VERSION \

 --namespace tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

6. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

Access Tanzu Application Platform GUI

To access Tanzu Application Platform GUI, you can use the host name that you configured earlier.
This host name is pointed at the shared ingress. To configure LoadBalancer for Tanzu Application
Platform GUI, see Access Tanzu Application Platform GUI.

Tanzu Application Platform v1.4

VMware by Broadcom 225

You’re now ready to start using Tanzu Application Platform GUI. Proceed to the Getting Started
topic or the Tanzu Application Platform GUI - Catalog Operations topic.

Exclude packages from a Tanzu Application Platform
profile
To exclude packages from a Tanzu Application Platform profile:

1. Find the full subordinate (child) package name:

tanzu package available list --namespace tap-install

2. Update your tap-values file with a section listing the exclusions:

profile: PROFILE-VALUE

excluded_packages:

 - tap-gui.tanzu.vmware.com

 - service-bindings.lab.vmware.com

Next steps
(Optional) Install Individual Packages

Set up developer namespaces to use your installed packages

View possible configuration settings for your package
To view possible configuration settings for a package, run:

tanzu package available get tap.tanzu.vmware.com/$TAP_VERSION --values-schema --namesp

ace tap-install

Important

If you exclude a package after performing a profile installation including that
package, you cannot see the accurate package states immediately after running tap
package installed list -n tap-install. Also, you can break package
dependencies by removing a package. Allow 20 minutes to verify that all packages
have reconciled correctly while troubleshooting.

Note

The tap.tanzu.vmware.com package does not show all configuration settings for
packages it plans to install. The package only shows top-level keys. You can view
individual package configuration settings with the same tanzu package available
get command. For example, to find the keys for Cloud Native Runtimes, you must
first identify the version of the package with tanzu package installed list -n
tap-install, which lists all the installed packages versions. Then run the command
tanzu package available get -n tap-install cnrs.tanzu.vmware.com/CNRS-

VERSION --values-schema by using the package version listed for Cloud Native
Runtimes.

Tanzu Application Platform v1.4

VMware by Broadcom 226

profile: full

...

For example, CNRs specific values go under its name

cnrs:

 provider: local

For example, App Accelerator specific values go under its name

accelerator:

 server:

 service_type: "ClusterIP"

The following table summarizes the top-level keys used for package-specific configuration within
your tap-values.yaml.

Package Top-level Key

see table below shared

API Auto Registration api_auto_registration

API portal api_portal

Application Accelerator accelerator

Application Live View appliveview

Application Live View connector appliveview_connector

Application Live View conventions appliveview-conventions

Cartographer cartographer

Cloud Native Runtimes cnrs

Convention controller convention_controller

Source Controller source_controller

Supply Chain supply_chain

Supply Chain Basic ootb_supply_chain_basic

Supply Chain Testing ootb_supply_chain_testing

Supply Chain Testing Scanning ootb_supply_chain_testing_scanning

Supply Chain Security Tools - Scan scanning

Supply Chain Security Tools - Scan (Grype Scanner) grype

Supply Chain Security Tools - Store metadata_store

Build Service buildservice

Tanzu Application Platform GUI tap_gui

Learning Center learningcenter

Shared Keys define values that configure multiple packages. These keys are defined under the
shared Top-level Key, as summarized in the following table:

Shared Key Used By Description

ca_cert_da

ta

convention_controller, scanning,
source_controller

Optional: PEM-encoded certificate data to trust TLS
connections with a private CA

For information about package-specific configuration, see Install individual packages.

Tanzu Application Platform v1.4

VMware by Broadcom 227

Install individual packages

You can install Tanzu Application Platform (commonly known as TAP) through predefined profiles or
through individual packages. Use this topic to learn how to install each individual package. For more
information about installing through profiles, see Components and installation profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile
to install packages or if you want to install additional packages after installing a profile. Before
installing the packages, be sure to complete the prerequisites, configure and verify the cluster,
accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see
Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install API Auto Registration

Install API portal

Install Application Accelerator

Install Application Live View

Install Application Single Sign-On

Install cert-manager

Install Cloud Native Runtimes

Install Contour

Install default roles for Tanzu Application Platform

Install Developer Conventions

Install Eventing

Install Flux CD Source Controller

Install Learning Center for Tanzu Application Platform

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Service Bindings

Install Services Toolkit

Install Source Controller

Install Spring Boot conventions

Install Supply Chain Choreographer

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Policy Controller

Install Supply Chain Security Tools - Scan

Install Tanzu Application Platform GUI

Install Tanzu Build Service

Install Tekton

Tanzu Application Platform v1.4

VMware by Broadcom 228

Install Telemetry

Verify the installed packages

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.

0.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.

1.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.

0.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.

7.0 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.

3.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.

1.2 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.

0.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.

5.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.

5.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

service-bindings service-bindings.labs.vmware.com 0.

5.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.

8.0 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.

2.0 Reconcile succeeded

sso4k8s-install sso.apps.tanzu.vmware.com 1.

0.0-beta.2-31 Reconcile succeeded

tap-gui tap-gui.tanzu.vmware.com 0.

3.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.

5.0 Reconcile succeeded

Next steps
Set up developer namespaces to use your installed packages

Tanzu Application Platform v1.4

VMware by Broadcom 229

Set up developer namespaces to use your installed
packages

You can choose either one of the following two approaches to create a Workload for your
application by using the registry credentials specified, add credentials and Role-Based Access
Control (RBAC) rules to the namespace that you plan to create the Workload in:

Enable single user access.

Enable additional users access with Kubernetes RBAC.

Enable single user access

Follow these steps to enable your current user to submit jobs to the Supply Chain:

1. (Optional) If the variable AWS_ACCOUNT_ID environment is not set during the installation
process, export the AWS Account ID.

export AWS_ACCOUNT_ID=MY-AWS-ACCOUNT-ID

2. Add a service account to execute the supply chain and RBAC rules to authorize the service
account to the developer namespace.

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

 annotations:

 eks.amazonaws.com/role-arn: "arn:aws:iam::${AWS_ACCOUNT_ID}:role/tap-worklo

ad"

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-workload

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: workload

subjects:

 - kind: ServiceAccount

 name: default

EOF

Where YOUR-NAMESPACE is your developer namespace.

3. (Optional) If you haven’t relocated the images to ECR, add a placeholder secret for
gathering the credentials used for pulling container images.

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: tap-registry

 annotations:

 secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: e30K

apiVersion: v1

Tanzu Application Platform v1.4

VMware by Broadcom 230

kind: ServiceAccount

metadata:

 name: default

 annotations:

 eks.amazonaws.com/role-arn: "arn:aws:iam::${AWS_ACCOUNT_ID}:role/tap-worklo

ad"

imagePullSecrets:

 - name: tap-registry

EOF

Where YOUR-NAMESPACE is your developer namespace.

Enable additional users access with Kubernetes RBAC

Follow these steps to enable additional users by using Kubernetes RBAC to submit jobs to the
Supply Chain:

1. Enable single user access.

2. Choose either of the following options to give developers namespace-level access and view
access to appropriate cluster-level resources:

Option 1: Use the Tanzu Application Platform RBAC CLI plug-in (beta).

To use the tanzu rbac plug-in to grant app-viewer and app-editor roles to an
identity provider group, run:

tanzu rbac binding add -g GROUP-FOR-APP-VIEWER -n YOUR-NAMESPACE -r app-v

iewer

tanzu rbac binding add -g GROUP-FOR-APP-EDITOR -n YOUR-NAMESPACE -r app-e

ditor

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

For more information about tanzu rbac, see Bind a user or group to a default role.

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster. For an example of how to set
up Azure Active Directory (AD) with your cluster, see Integrating Azure Active
Directory.

Option 2: Use the native Kubernetes YAML.

To apply the RBAC policy, run:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-viewer

roleRef:

Tanzu Application Platform v1.4

VMware by Broadcom 231

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

EOF

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster. For an example of how to set

Tanzu Application Platform v1.4

VMware by Broadcom 232

up Azure Active Directory (AD) with your cluster, see Integrating Azure Active
Directory.

Rather than granting roles directly to individuals, VMware recommends using your
identity provider’s user groups system to grant access to a group of developers. For
an example of how to set up Azure AD with your cluster, see Integrating Azure
Active Directory.

3. (Optional) Log in as a non-admin user, such as a developer, to see the effects of RBAC after
the bindings are applied.

Next steps

Install Tanzu Developer Tools for your VS Code

Install Tanzu Developer Tools for your VS Code

This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites

Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

Tanzu Application Platform v1.4

VMware by Broadcom 233

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Configure
To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall
To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps
Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Install Tanzu Application Platform (OpenShift)

Tanzu Application Platform v1.4

VMware by Broadcom 234

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

To install Tanzu Application Platform (commonly known as TAP) on your OpenShift clusters with
internet access:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements before
installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install the Tanzu Application
Platform package and profiles

5. (Optional) Install any additional packages that were not in the profile. Install individual packages

6. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

7. Install developer tools into your integrated development environment
(IDE).

Install Tanzu Developer Tools for
your VS Code

After installing Tanzu Application Platform on to your OpenShift clusters, proceed with Get started
with Tanzu Application Platform.

Install Tanzu Application Platform (OpenShift)

To install Tanzu Application Platform (commonly known as TAP) on your OpenShift clusters with
internet access:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements before
installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install the Tanzu Application
Platform package and profiles

5. (Optional) Install any additional packages that were not in the profile. Install individual packages

6. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

7. Install developer tools into your integrated development environment
(IDE).

Install Tanzu Developer Tools for
your VS Code

After installing Tanzu Application Platform on to your OpenShift clusters, proceed with Get started
with Tanzu Application Platform.

Install Tanzu Application Platform on your OpenShift
clusters
This topic tells you how to install Tanzu Application Platform (commonly known as TAP) packages
on your OpenShift clusters.

Before installing the packages, ensure you have:

Completed the Prerequisites.

Tanzu Application Platform v1.4

VMware by Broadcom 235

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html

Configured and verified the cluster.

Accepted Tanzu Application Platform EULA and installed Tanzu CLI with any required plug-
ins.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. If you don’t relocate the images, Tanzu
Application Platform will depend on VMware Tanzu Network for continued operation, and VMware
Tanzu Network offers no uptime guarantees. The option to skip relocation is documented for
evaluation and proof-of-concept only.

The supported registries are Harbor, Azure Container Registry, Google Container Registry, and
Quay.io. See the following documentation for a registry to learn how to set it up:

Harbor documentation

Google Container Registry documentation

Quay.io documentation

To relocate images from the VMware Tanzu Network registry to your registry:

1. Install Docker if it is not already installed.

2. Log in to your image registry by running:

docker login MY-REGISTRY

Where MY-REGISTRY is your own container registry.

3. Log in to the VMware Tanzu Network registry with your VMware Tanzu Network
credentials by running:

docker login registry.tanzu.vmware.com

4. Set up environment variables for installation use by running:

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export TAP_VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own container registry.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13.

TARGET-REPOSITORY is your target repository, a folder/repository on MY-REGISTRY that
serves as the location for the installation files for Tanzu Application Platform.

5. Install the Carvel tool imgpkg CLI.

6. Relocate the images with the imgpkg CLI by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/tap-package

s:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-pac

Tanzu Application Platform v1.4

VMware by Broadcom 236

https://goharbor.io/docs/2.5.0/
https://cloud.google.com/container-registry/docs
https://docs.projectquay.io/welcome.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path

kages

7. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

8. Create a registry secret by running:

tanzu secret registry add tap-registry \

 --username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWOR

D} \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tap-install

9. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-packages:$TAP_VERSION

\

 --namespace tap-install

10. Get the status of the Tanzu Application Platform package repository, and ensure the status
updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

For example:

$ tanzu package repository get tanzu-tap-repository --namespace tap-install

- Retrieving repository tap...

NAME: tanzu-tap-repository

VERSION: 16253001

REPOSITORY: tapmdc.azurecr.io/mdc/1.4.0/tap-packages

TAG: 1.4.13

STATUS: Reconcile succeeded

REASON:

11. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

A unified user interface for API discovery and exploration at scale.

 apis.apps.tanzu.vmware.com API Auto Registration fo

Note

The VERSION and TAG numbers differ from the earlier example if you are on
Tanzu Application Platform v1.0.2 or earlier.

Tanzu Application Platform v1.4

VMware by Broadcom 237

r VMware Tanzu A TAP component to automatica

lly register API exposing workloads as API entities

in TAP GUI.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 buildservice.tanzu.vmware.com Tanzu Build Service

Tanzu Build Service enables the building and automation of containerized

software workflows securely and at scale.

 carbonblack.scanning.apps.tanzu.vmware.com VMware Carbon Black for

Supply Chain Security Tools - Scan Default scan templates using

VMware Carbon Black

 cartographer.tanzu.vmware.com Cartographer

Kubernetes native Supply Chain Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

Cloud Native Runtimes is a serverless runtime based on Knative

 connector.appliveview.tanzu.vmware.com Application Live View Co

nnector for VMware Tanzu App for discovering and regis

tering running apps

 controller.conventions.apps.tanzu.vmware.com Convention Service for V

Mware Tanzu Convention Service enables ap

p operators to consistently apply desired runtime

configurations to fleets of workloads.

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

Tanzu Source Controller enables workload create/update from source code.

 conventions.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 eventing.tanzu.vmware.com Eventing

Eventing is an event-driven architecture platform based on Knative Eventing

 external-secrets.apps.tanzu.vmware.com External Secrets Operato

r External Secrets Operator is

a Kubernetes operator that integrates external

secret management systems.

 fluxcd.source.controller.tanzu.vmware.com Flux Source Controller

The source-controller is a Kubernetes operator, specialised in artifacts

acquisition from external sources such as Git, Helm repositories and S3 bucket

s.

 grype.scanning.apps.tanzu.vmware.com Grype for Supply Chain S

ecurity Tools - Scan Default scan templates using

Anchore Grype

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 metadata-store.apps.tanzu.vmware.com Supply Chain Security To

ols - Store Post SBoMs and query for imag

e, package, and vulnerability metadata.

 namespace-provisioner.apps.tanzu.vmware.com Namespace Provisioner

Automatic Provisioning of Developer Namespaces.

 ootb-delivery-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Delivery Basic Out of The Box Delivery Basi

c.

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

Tanzu Application Platform v1.4

VMware by Broadcom 238

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 policy.apps.tanzu.vmware.com Supply Chain Security To

ols - Policy Controller Policy Controller enables def

ining of a policy to restrict unsigned container

images.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native

Supply Chains.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

The Services Toolkit enables the management, lifecycle, discoverability and

connectivity of Service Resources (databases, message queues, DNS records,

etc.).

 snyk.scanning.apps.tanzu.vmware.com Snyk for Supply Chain Se

curity Tools - Scan Default scan templates using

Snyk

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 sso.apps.tanzu.vmware.com AppSSO

Application Single Sign-On for Tanzu

 tap-auth.tanzu.vmware.com Default roles for Tanzu

Application Platform Default roles for Tanzu Appli

cation Platform

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap-telemetry.tanzu.vmware.com Telemetry Collector for

Tanzu Application Platform Tanzu Application Platform Te

lemetry

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use

case.

 tekton.tanzu.vmware.com Tekton Pipelines

Tekton Pipelines is a framework for creating CI/CD systems.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile
settings. This is done by using the package manager installed by Tanzu Cluster Essentials.

For more information about profiles, see Components and installation profiles.

To prepare to install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

2. Create a tap-values.yaml file by using the Full Profile sample in the following section as a
guide. These samples have the minimum configuration required to deploy Tanzu Application

Tanzu Application Platform v1.4

VMware by Broadcom 239

Platform. The sample values file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package.

Subordinate packages, or individual child packages.

Keep the values file for future configuration use.

3. View possible configuration settings for your package

Full profile

The following is the YAML file sample for the full-profile. The profile: field takes full as the
default value, but you can also set it to iterate, build, run or view. Refer to Install multicluster
Tanzu Application Platform profiles for more information.

shared:

 ingress_domain: "INGRESS-DOMAIN"

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME"

 username: "KP-DEFAULT-REPO-USERNAME"

 password: "KP-DEFAULT-REPO-PASSWORD"

 kubernetes_distribution: "openshift" # To be passed only for OpenShift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

#The above keys are minimum numbers of entries needed in tap-values.yaml to get a func

tioning TAP Full profile installation.

#Below are the keys which may have default values set, but can be overridden.

profile: full # Can take iterate, build, run, view.

supply_chain: basic # Can take testing, testing_scanning.

ootb_supply_chain_basic: # Based on supply_chain set above, can be changed to ootb_sup

ply_chain_testing, ootb_supply_chain_testing_scanning.

 registry:

 server: "SERVER-NAME" # Takes the value from shared section above by default, but

can be overridden by setting a different value.

 repository: "REPO-NAME" # Takes the value from shared section above by default, bu

t can be overridden by setting a different value.

 gitops:

 ssh_secret: "SSH-SECRET-KEY" # Takes "" as value by default; but can be overridden

by setting a different value.

contour:

 envoy:

 service:

 type: LoadBalancer # This is set by default, but can be overridden by setting a

different value.

Note

tap-values.yaml is set as a Kubernetes secret, which provides secure
means to read credentials for Tanzu Application Platform components.

Tanzu Application Platform v1.4

VMware by Broadcom 240

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

tap_gui:

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

metadata_store:

 ns_for_export_app_cert: "MY-DEV-NAMESPACE"

 app_service_type: ClusterIP # Defaults to LoadBalancer. If shared.ingress_domain is

set earlier, this must be set to ClusterIP.

scanning:

 metadataStore:

 url: "" # Configuration is moved, so set this string to empty.

grype:

 namespace: "MY-DEV-NAMESPACE"

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s External IP address.

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service".

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service".

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service".

KP-DEFAULT-REPO-USERNAME is the user name that can write to KP-DEFAULT-REPO. You can
docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key.

Alternatively, you can configure this credential as a secret reference.

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-REPO.
You can docker push to this location with this credential.

For Google Cloud Registry, use the contents of the service account JSON file.

Alternatively, you can configure this credential as a secret reference.

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Tanzu Application Platform v1.4

VMware by Broadcom 241

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. If this key is passed through
the shared section earlier and AWS ECR registry is used, you must ensure that the SERVER-
NAME/REPO-NAME/buildservice and SERVER-NAME/REPO-NAME/workloads exist. AWS ECR
expects the paths to be pre-created. Images are written to SERVER-NAME/REPO-
NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to
fetch source code from and push configuration to. This field is only required if you use a
private repository, otherwise, leave it empty. See Git authentication for more information.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built
and posted on the Git infrastructure.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Store exports secrets
to the namespace, and SCST - Scan deploys the ScanTemplates there. This allows the
scanning feature to run in this namespace. If there are multiple developer namespaces, use
ns_for_export_app_cert: "*" to export the SCST - Store CA certificate to all namespaces.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from the registry for scanning.

Tanzu Application Platform is part of VMware’s CEIP program where data is collected to help
improve the customer experience. By setting ceip_policy_disclosed to true (not a string), you
acknowledge the program is disclosed to you and you are aware data collection is happening. This
field must be set for the installation to be completed. See Opt out of telemetry collection for more
information.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

If you use AWS, the default settings creates a classic LoadBalancer. To use the Network
LoadBalancer instead of the classic LoadBalancer for ingress, add the following to your tap-
values.yaml:

contour:

 infrastructure_provider: aws

 envoy:

 service:

 aws:

 LBType: nlb

(Optional) Additional Build Service configurations

The following tasks are optional during the Tanzu Application Platform installation process:

(Optional) Configure your profile with full dependencies

(Optional) Configure your profile with the Jammy stack only

(Optional) Configure your profile with full dependencies

Tanzu Application Platform v1.4

VMware by Broadcom 242

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018
https://www.vmware.com/solutions/trustvmware/ceip-products.html

When you install a profile that includes Tanzu Build Service, Tanzu Application Platform is installed
with the lite set of dependencies. These dependencies consist of buildpacks and stacks required
for application builds.

The lite set of dependencies do not contain all buildpacks and stacks. To use all buildpacks and
stacks, you must install the full dependencies. For more information about the differences
between lite and full dependencies, see About lite and full dependencies.

To configure full dependencies, add the key-value pair exclude_dependencies: true to your tap-
values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

 exclude_dependencies: true

After configuring full dependencies, you must install the dependencies after you have finished
installing your Tanzu Application Platform package. See Install the full dependencies package for
more information.

(Optional) Configure your profile with the Jammy stack only

Tanzu Application Platform v1.3.0 supports building applications with the Ubuntu 22.04 (Jammy)
stack. By default, workloads are built with Ubuntu 18.04 (Bionic) stack. However, if you do not need
access to the Bionic stack, you can install Tanzu Application Platform without the Bionic stack and
all workloads are built with the Jammy stack by default.

To install Tanzu Application Platform with Jammy as the only available stack, include the
stack_configuration: jammy-only field under the buildservice: section in tap-values.yaml.

Security Context Constraints

Security Context Constraints (SCC) define a set of rules that a pod must satisfy to be created. Tanzu
Application Platform components use the built-in nonroot-v2 or restricted-v2 SCC.

In Red Hat OpenShift, SCC are used to restrict privileges for pods. In Tanzu Application Platform
v1.4 there is no custom SCC.

Tanzu Application Platform packages reconcile without any issues when using OpenShift v4.11 with
restricted-v2 or nonroot-v2.

(Optional) Exclude components that require RedHat OpenShift privileged SCC

Learning Center package uses privileged SCC. To exclude this package, update your tap-values file
with a section listing the exclusions:

...

excluded_packages:

 - learningcenter.tanzu.vmware.com

 - workshops.learningcenter.tanzu.vmware.com

...

See Exclude packages from a Tanzu Application Platform profile for more information.

Install your Tanzu Application Platform package

Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

Tanzu Application Platform v1.4

VMware by Broadcom 243

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html
https://github.com/openshift/cluster-kube-apiserver-operator/blob/d373b65cf454fd594b6affd202e5cedb48d88964/bindata/bootkube/scc-manifests/0000_20_kube-apiserver-operator_00_scc-nonroot-v2.yaml
https://github.com/openshift/cluster-kube-apiserver-operator/blob/d373b65cf454fd594b6affd202e5cedb48d88964/bindata/bootkube/scc-manifests/0000_20_kube-apiserver-operator_00_scc-restricted-v2.yaml

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

tap-values.yaml -n tap-install

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This can take 5-10 minutes because it installs several packages on your cluster.

3. Verify that the necessary packages in the profile are installed by running:

tanzu package installed list -A

4. If you configured full dependencies in your tbs-values.yaml file, install the full
dependencies by following the procedure in Install full dependencies.

After installing the Full profile on your cluster, you can install the Tanzu Developer Tools for VS
Code Extension to help you develop against it. For instructions, see Install Tanzu Developer Tools
for your VS Code.

tanzu package installed update tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-f

ile tap-values.yaml -n tap-install

Install the full dependencies package
If you configured full dependencies in your tap-values.yaml file in Configure your profile with full
dependencies earlier, you must install the full dependencies package.

For more information about the differences between lite and full dependencies, see About lite
and full dependencies.

To install the full dependencies package:

1. If you have not done so already, add the key-value pair exclude_dependencies: true to
your tap-values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

 exclude_dependencies: true

...

2. Get the latest version of the buildservice package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

3. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

 --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps

Note

You can run the following command after reconfiguring the profile to reinstall the
Tanzu Application Platform:

Tanzu Application Platform v1.4

VMware by Broadcom 244

Where VERSION is the version of the buildservice package you retrieved in the previous
step.

4. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps:VERSION \

 --namespace tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

5. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

Access Tanzu Application Platform GUI
To access Tanzu Application Platform GUI, you can use the host name that you configured earlier.
This host name is pointed at the shared ingress. To configure LoadBalancer for Tanzu Application
Platform GUI, see Access Tanzu Application Platform GUI.

You’re now ready to start using Tanzu Application Platform GUI. Proceed to the Getting Started
topic or the Tanzu Application Platform GUI - Catalog Operations topic.

Exclude packages from a Tanzu Application Platform
profile

To exclude packages from a Tanzu Application Platform profile:

1. Find the full subordinate (child) package name:

tanzu package available list --namespace tap-install

2. Update your tap-values file with a section listing the exclusions:

profile: PROFILE-VALUE

excluded_packages:

 - tap-gui.tanzu.vmware.com

 - service-bindings.lab.vmware.com

View possible configuration settings for your package

To view possible configuration settings for a package, run:

tanzu package available get tap.tanzu.vmware.com/$TAP_VERSION --values-schema --namesp

Important

If you exclude a package after performing a profile installation including that
package, you cannot see the accurate package states immediately after running tap
package installed list -n tap-install. Also, you can break package
dependencies by removing a package. Allow 20 minutes to verify that all packages
have reconciled correctly while troubleshooting.

Tanzu Application Platform v1.4

VMware by Broadcom 245

ace tap-install

profile: full

...

For example, CNRs specific values go under its name

cnrs:

 provider: local

For example, App Accelerator specific values go under its name

accelerator:

 server:

 service_type: "ClusterIP"

The following table summarizes the top-level keys used for package-specific configuration within
your tap-values.yaml.

Package Top-level Key

see table below shared

API Auto Registration api_auto_registration

API portal api_portal

Application Accelerator accelerator

Application Live View appliveview

Application Live View connector appliveview_connector

Application Live View conventions appliveview-conventions

Cartographer cartographer

Cloud Native Runtimes cnrs

Convention controller convention_controller

Source Controller source_controller

Supply Chain supply_chain

Supply Chain Basic ootb_supply_chain_basic

Supply Chain Testing ootb_supply_chain_testing

Supply Chain Testing Scanning ootb_supply_chain_testing_scanning

Supply Chain Security Tools - Scan scanning

Note

The tap.tanzu.vmware.com package does not show all configuration settings for
packages it plans to install. The package only shows top-level keys. You can view
individual package configuration settings with the same tanzu package available
get command. For example, to find the keys for Cloud Native Runtimes, you must
first identify the version of the package with tanzu package installed list -n
tap-install, which lists all the installed packages versions. Then run the command
tanzu package available get -n tap-install cnrs.tanzu.vmware.com/CNRS-

VERSION --values-schema by using the package version listed for Cloud Native
Runtimes.

Tanzu Application Platform v1.4

VMware by Broadcom 246

Package Top-level Key

Supply Chain Security Tools - Scan (Grype Scanner) grype

Supply Chain Security Tools - Store metadata_store

Build Service buildservice

Tanzu Application Platform GUI tap_gui

Learning Center learningcenter

Shared Keys define values that configure multiple packages. These keys are defined under the
shared Top-level Key, as summarized in the following table:

Shared Key Used By Description

ca_cert_da

ta

convention_controller, scanning,
source_controller

Optional: PEM-encoded certificate data to trust TLS
connections with a private CA

For information about package-specific configuration, see Install individual packages.

Install individual packages

You can install Tanzu Application Platform (commonly known as TAP) through predefined profiles or
through individual packages. Use this topic to learn how to install each individual package. For more
information about installing through profiles, see Components and installation profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile
to install packages or if you want to install additional packages after installing a profile. Before
installing the packages, be sure to complete the prerequisites, configure and verify the cluster,
accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see
Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install API Auto Registration

Install API portal

Install Application Accelerator

Install Application Live View

Install Application Single Sign-On

Install cert-manager

Install Cloud Native Runtimes

Install Contour

Install default roles for Tanzu Application Platform

Install Developer Conventions

Install Eventing

Install Flux CD Source Controller

Install Learning Center for Tanzu Application Platform

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Tanzu Application Platform v1.4

VMware by Broadcom 247

Install Out of the Box Supply Chain with Testing and Scanning

Install Service Bindings

Install Services Toolkit

Install Source Controller

Install Spring Boot conventions

Install Supply Chain Choreographer

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Policy Controller

Install Supply Chain Security Tools - Scan

Install Tanzu Application Platform GUI

Install Tanzu Build Service

Install Tekton

Install Telemetry

Verify the installed packages

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.

0.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.

1.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.

0.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.

7.0 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.

3.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.

1.2 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.

0.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.

5.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.

5.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.

Tanzu Application Platform v1.4

VMware by Broadcom 248

0.0 Reconcile succeeded

service-bindings service-bindings.labs.vmware.com 0.

5.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.

8.0 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.

2.0 Reconcile succeeded

sso4k8s-install sso.apps.tanzu.vmware.com 1.

0.0-beta.2-31 Reconcile succeeded

tap-gui tap-gui.tanzu.vmware.com 0.

3.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.

5.0 Reconcile succeeded

Next steps

Set up developer namespaces to use your installed packages

Set up developer namespaces to use your installed
packages
To automatically set up your developer namespaces. see Provision namespace resources.

For more information about Namespace Provisioner, see Namespace Provisioner overview.

Additional configuration for testing and scanning
If you plan to install or have already installed Out of the Box Supply Chains with Testing and
Scanning, you can use Namespace Provisioner to set up the required resources. For more
information, see Add the resources required by Out of the Box Testing and Scanning Supply Chain .

Legacy namespace setup
To use the legacy manual process for setting up developer namespaces, see Legacy namespace
setup.

Next steps
Install Tanzu Developer Tools for your VS Code

Install Tanzu Developer Tools for your VS Code
This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites
Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

Tanzu Application Platform v1.4

VMware by Broadcom 249

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Configure
To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Tanzu Application Platform v1.4

VMware by Broadcom 250

https://network.tanzu.vmware.com/products/tanzu-application-platform
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall

To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps

Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Custom Security Context Constraint details for Tanzu
Application Platform
Custom Security Context Constraint (commonly known as SCC) details for Tanzu Application
Platform (commonly known as TAP) components are as follows:

Application Accelerator on OpenShift cluster

Application Live View on OpenShift

Application Single Sign-On for OpenShift cluster

Contour for OpenShift cluster

Developer Conventions for OpenShift cluster

Tanzu Build Service for OpenShift cluster

Application Accelerator on OpenShift
On OpenShift clusters, Application Accelerator must run with a custom SecurityContextConstraint
(SCC) to enable compliance with restricted Kubernetes pod security standards. Tanzu Application
Platform configures the following SCC for Application Accelerator when you configure the
kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

#@ load("@ytt:data", "data")

#@ load("@ytt:assert", "assert")

#@ kubernetes_distribution = data.values.kubernetes_distribution

#@ validDistributions = [None, "", "openshift"]

#@ if kubernetes_distribution not in validDistributions:

#@ assert.fail("{} not in {}".format(kubernetes_distribution, validDistributions))

#@ end

#@ if kubernetes_distribution == "openshift":

Tanzu Application Platform v1.4

VMware by Broadcom 251

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: accelerator-system-nonroot-scc

 namespace: accelerator-system

rules:

- apiGroups:

 - security.openshift.io

 resourceNames:

 - nonroot

 resources:

 - securitycontextconstraints

 verbs:

 - use

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: accelerator-system-nonroot-scc

 namespace: accelerator-system

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: accelerator-system-nonroot-scc

subjects:

- apiGroup: rbac.authorization.k8s.io

 kind: Group

 name: system:serviceaccounts:accelerator-system

#@ end

Application Live View on OpenShift

Application Live View must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards on Openshift. Tanzu Application
Platform configures the following SCC for Application Live View back end, Application Live View
connector, and Application Live View convention service when you configure the
kubernetes_distribution: openshift key in the tap-values.yaml file.

The following is a SecurityContextConstraints specification for Application Live View connector:

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

 name: appliveview-connector-restricted-with-seccomp

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities: null

defaultAddCapabilities: null

fsGroup:

 type: MustRunAs

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

 - ALL

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

Tanzu Application Platform v1.4

VMware by Broadcom 252

 type: MustRunAs

supplementalGroups:

 type: RunAsAny

volumes:

 - configMap

 - downwardAPI

 - emptyDir

 - persistentVolumeClaim

 - projected

 - secret

seccompProfiles:

 - runtime/default

The preceding SecurityContextConstraints specification is applicable to Application Live View
back end and Application Live View convention service as well.

Application Single Sign-On for OpenShift cluster

On OpenShift clusters, AppSSO must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards. Tanzu Application Platform
configures the following SCC for AppSSO controller and its AuthServer managed resources when
you configure the kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

kind: SecurityContextConstraints

apiVersion: security.openshift.io/v1

metadata:

 name: appsso-scc

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities: null

defaultAddCapabilities: null

fsGroup:

 type: MustRunAs

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

 - KILL

 - MKNOD

 - SETUID

 - SETGID

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

 type: MustRunAs

volumes:

 - configMap

 - downwardAPI

 - emptyDir

 - persistentVolumeClaim

 - projected

 - secret

seccompProfiles:

 - 'runtime/default'

Tanzu Application Platform v1.4

VMware by Broadcom 253

AppSSO controller’s ServiceAccount is given the following additional permissions, including a use
permission for AppSSO SCC, so AuthServer can use the custom SCC:

- apiGroups:

 - security.openshift.io

 resources:

 - securitycontextconstraints

 verbs:

 - "get"

 - "list"

 - "watch"

- apiGroups:

 - security.openshift.io

 resourceNames:

 - appsso-scc

 resources:

 - securitycontextconstraints

 verbs:

 - "use"

Contour for OpenShift cluster
On OpenShift clusters, Contour must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards. Tanzu Application Platform
configures the following SCC for the service accounts in the tanzu-system-ingress namespace,
which applies to Contour’s controller and Envoy pods, when you configure the
kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

 annotations:

 include.release.openshift.io/ibm-cloud-managed: "true"

 include.release.openshift.io/self-managed-high-availability: "true"

 include.release.openshift.io/single-node-developer: "true"

 kubernetes.io/description: nonroot provides all features of the restricted SCC

 but allows users to run with any non-root UID. The user must specify the UID

 or it must be specified on the by the manifest of the container runtime. On

 top of the legacy 'nonroot' SCC, it also requires to drop ALL capabilities and

 does not allow privilege escalation binaries. It will also default the seccomp

 profile to runtime/default if unset, otherwise this seccomp profile is required.

 name: contour-seccomp-nonroot-v2

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities:

- NET_BIND_SERVICE

defaultAddCapabilities: null

fsGroup:

 type: RunAsAny

groups: []

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

- ALL

Tanzu Application Platform v1.4

VMware by Broadcom 254

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

 type: MustRunAs

seccompProfiles:

- runtime/default

supplementalGroups:

 type: RunAsAny

users: []

volumes:

- configMap

- downwardAPI

- emptyDir

- persistentVolumeClaim

- projected

- secret

The SCC is bound to the service accounts by using the following Role and RoleBinding:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: contour-seccomp-nonroot-v2

 namespace: tanzu-system-ingress

rules:

- apiGroups:

 - security.openshift.io

 resourceNames:

 - contour-seccomp-nonroot-v2

 resources:

 - securitycontextconstraints

 verbs:

 - use

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: contour-seccomp-nonroot-v2

 namespace: tanzu-system-ingress

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: contour-seccomp-nonroot-v2

subjects:

- apiGroup: rbac.authorization.k8s.io

 kind: Group

 name: system:serviceaccounts:tanzu-system-ingress

Developer Conventions for OpenShift cluster

On OpenShift clusters, Developer Conventions must run with a custom SecurityContextConstraint
(SCC) to enable compliance with restricted Kubernetes pod security standards. Tanzu Application
Platform configures the following SCC for the Developer Convention’s webhook when you
configure the kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 255

 name: developer-conventions-scc

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

defaultAddCapabilities: null

fsGroup:

 type: RunAsAny

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities: null

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

 type: MustRunAs

supplementalGroups:

 type: RunAsAny

volumes:

 - secret

seccompProfiles: []

groups:

 - system:serviceaccounts:developer-conventions

Tanzu Build Service for OpenShift cluster

On OpenShift clusters Tanzu Build Service must run with a custom Security Context Constraint
(SCC) to enable compliance. Tanzu Application Platform configures the following SCC for Tanzu
Build Service when you configure the kubernetes_distribution: openshift key in the tap-
values.yaml file.

kind: SecurityContextConstraints

apiVersion: security.openshift.io/v1

metadata:

 name: tbs-restricted-scc-with-seccomp

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities:

 - NET_BIND_SERVICE

defaultAddCapabilities: null

fsGroup:

 type: RunAsAny

groups: []

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

 - ALL

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

 type: MustRunAs

seccompProfiles:

 - runtime/default

supplementalGroups:

 type: RunAsAny

users: []

Tanzu Application Platform v1.4

VMware by Broadcom 256

https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constraints.html

volumes:

 - configMap

 - downwardAPI

 - emptyDir

 - persistentVolumeClaim

 - projected

 - secret

It also applies the following RBAC to allow Tanzu Build Service services to use the SCC:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 labels:

 apps.tanzu.vmware.com/aggregate-to-workload: "true"

 annotations:

 rbac.authorization.kubernetes.io/autoupdate: "true"

 name: system:tbs:scc:restricted-with-seccomp

rules:

 - apiGroups:

 - security.openshift.io

 resourceNames:

 - tbs-restricted-scc-with-seccomp

 resources:

 - securitycontextconstraints

 verbs:

 - use

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: system:tbs:scc:restricted-with-seccomp

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: system:tbs:scc:restricted-with-seccomp

subjects:

 - kind: ServiceAccount

 namespace: build-service

 name: dependency-updater-serviceaccount

 - kind: ServiceAccount

 namespace: build-service

 name: dependency-updater-controller-serviceaccount

 - kind: ServiceAccount

 namespace: build-service

 name: secret-syncer-service-account

 - kind: ServiceAccount

 namespace: build-service

 name: warmer-service-account

 - kind: ServiceAccount

 namespace: build-service

 name: build-service-daemonset-serviceaccount

 - kind: ServiceAccount

 namespace: cert-injection-webhook

 name: cert-injection-webhook-sa

 - kind: ServiceAccount

 namespace: kpack

 name: kp-default-repository-serviceaccount

 - kind: ServiceAccount

 namespace: kpack

 name: kpack-pull-lifecycle-serviceaccount

 - kind: ServiceAccount

 namespace: kpack

 name: controller

 - kind: ServiceAccount

Tanzu Application Platform v1.4

VMware by Broadcom 257

 namespace: kpack

 name: webhook

 - kind: ServiceAccount

 namespace: stacks-operator-system

 name: controller-manager

Customize your package installation

You can customize your package configuration that is not exposed through data values by using
annotations and ytt overlays.

You can customize a package that was installed manually or that was installed by using a Tanzu
Application Platform profile.

Customize a package that was manually installed

To customize a package that was installed manually:

1. Create a secret.yml file with a Secret that contains your ytt overlay. For example:

apiVersion: v1

kind: Secret

metadata:

 name: tap-overlay

 namespace: tap-install

stringData:

 custom-package-overlay.yml: |

 CUSTOM-OVERLAY

For more information about ytt overlays, see the Carvel documentation.

2. Apply the Secret to your cluster by running:

kubectl apply -f secret.yml

3. Update your PackageInstall to include the ext.packaging.carvel.dev/ytt-paths-from-
secret-name.x annotation to reference your new overlay Secret. For example:

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

 name: PACKAGE-NAME

 namespace: tap-install

 annotations:

 ext.packaging.carvel.dev/ytt-paths-from-secret-name: tap-overlay

...

Customize a package that was installed by using a profile

To add an overlay to a package that was installed by using a Tanzu Application Platform profile:

Note

You can suffix the extension annotation with .x, where x is a number, to
apply multiple overlays. For more information, see the Carvel
documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 258

https://carvel.dev/ytt/docs/v0.43.0/ytt-overlays/
https://carvel.dev/kapp-controller/docs/v0.40.0/package-install-extensions/

1. Create a Secret with your ytt overlay. For more information about ytt overlays, see the
Carvel documentation.

2. Update your values file to include a package_overlays field:

package_overlays:

- name: PACKAGE-NAME

 secrets:

 - name: SECRET-NAME

Where PACKAGE-NAME is the target package for the overlay. For example, tap-gui.

3. Update Tanzu Application Platform by running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v 1.4.13 --values-

file tap-values.yaml -n tap-install

For information about Tanzu Application Platform profiles, see Installing Tanzu Application Platform
package and profiles.

Upgrade your Tanzu Application Platform
This document tells you how to upgrade your Tanzu Application Platform (commonly known as
TAP).

You can perform a fresh install of Tanzu Application Platform by following the instructions in
Installing Tanzu Application Platform.

Prerequisites
Before you upgrade Tanzu Application Platform:

Verify that you meet all the prerequisites of the target Tanzu Application Platform version. If
the target Tanzu Application Platform version does not support your existing Kubernetes
version, VMware recommends upgrading to a supported version before proceeding with
the upgrade.

For information about installing your Tanzu Application Platform, see Install your Tanzu
Application Platform profile.

Ensure that Tanzu CLI is updated to the version recommended by the target Tanzu
Application Platform version. For information about installing or updating the Tanzu CLI and
plug-ins, see Install or update the Tanzu CLI and plug-ins.

For information about Tanzu Application Platform GUI considerations, see Tanzu Application
Platform GUI Considerations.

Verify all packages are reconciled by running tanzu package installed list -A.

To avoid the temporary warning state that is described in Update the new package
repository, upgrade to Cluster Essentials v1.4. See Cluster Essentials documentation for
more information about the upgrade procedures.

Update the new package repository
Follow these steps to update the new package repository:

1. Relocate the latest version of Tanzu Application Platform images by following step 1 through
step 6 in Relocate images to a registry.

Tanzu Application Platform v1.4

VMware by Broadcom 259

https://carvel.dev/ytt/docs/v0.43.0/ytt-overlays/
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html#upgrade

2. Add the target version of the Tanzu Application Platform package repository by running:

Cluster Essentials 1.2 or above

tanzu package repository add tanzu-tap-repository \

--url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-packages:$TAP_VERSION

\

--namespace tap-install

Cluster Essentials 1.1 or 1.0

tanzu package repository update tanzu-tap-repository \

--url ${INSTALL_REGISTRY_HOSTNAME}/TARGET-REPOSITORY/tap-packages:${TAP_VERSI

ON} \

--namespace tap-install

Expect to see the installed Tanzu Application Platform packages in a temporary
“Reconcile Failed” state, following a “Package not found” warning. These warnings will
disappear after you upgrade the installed Tanzu Application Platform packages to version
1.2.0.

3. Verify you have added the new package repository by running:

tanzu package repository get TAP-REPO-NAME --namespace tap-install

Where TAP-REPO-NAME is the package repository name. It must match with either NEW-
TANZU-TAP-REPOSITORY or tanzu-tap-repository in the previous step.

Perform the upgrade of Tanzu Application Platform

The following sections describe how to upgrade in different scenarios.

Upgrade instructions for Profile-based installation

The following changes affect the upgrade procedures:

Keyless support deactivated by default

In Tanzu Application Platform v1.4.0, keyless support is deactivated by default. For more
information, see Install Supply Chain Security Tools - Policy Controller.

To support the keyless authorities in ClusterImagePolicy, Policy Controller no longer
initializes TUF by default. To continue using keyless authorities, you must set the
policy.tuf_enabled field to true in the tap-values.yaml file during the upgrade process.

By default, the public official Sigstore “The Update Framework (TUF) server” is used. You
can use an alternative Sigstore Stack by setting policy.tuf_mirror and policy.tuf_root.

Image Policy Webhook no longer in use

Tanzu Application Platform v1.4.0 removes Image Policy Webhook. If you use Image Policy
Webhook in the previous version of Tanzu Application Platform, you must migrate the

Important

Make sure to update the TAP_VERSION to the target version of Tanzu
Application Platform you are migrating to. For example, 1.4.13.

Tanzu Application Platform v1.4

VMware by Broadcom 260

ClusterImagePolicy resource from Image Policy Webhook to Policy Controller. For more
information, see Migration From Supply Chain Security Tools - Sign.

CVE results require a read-write service account

Tanzu Application Platform v1.3.0 uses a read-only service account. In Tanzu Application
Platform v1.4.0, enabling CVE results for the Supply Chain Choreographer and Security
Analysis GUI plug-ins requires a read-write service account. For more information, see
Enable CVE scan results.

If you installed Tanzu Application Platform by using a profile, you can perform the upgrade by
running the following command in the directory where the tap-values.yaml file resides:

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --values

-file tap-values.yaml -n tap-install

Upgrade the full dependencies package

If you installed the full dependencies package, you can upgrade the package by following these
steps:

1. After upgrading Tanzu Application Platform, retrieve the latest version of the Tanzu Build
Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

2. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

--to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps

Where VERSION is the version of the Tanzu Build Service package you retrieved in the
previous step.

3. Update the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps:VERSION \

 --namespace tap-install

4. Update the full dependencies package by running:

tanzu package installed update full-tbs-deps -p full-tbs-deps.tanzu.vmware.com

-v VERSION -n tap-install

Multicluster upgrade order

Upgrading a multicluster deployment requires updating multiple clusters with different profiles. If
upgrades are not performed at the exact same time, different clusters have different versions of
profiles installed temporarily. This might cause a temporary API mismatch that leads to errors.
Those errors eventually disappear when the versions are consistent across all clusters.

To reduce the likelihood of temporary failures, follow these steps to upgrade your multicluster
deployment:

1. Upgrade the view-profile cluster.

2. Upgrade the remaining clusters in any order.

Tanzu Application Platform v1.4

VMware by Broadcom 261

Upgrade instructions for component-specific installation

For information about upgrading Tanzu Application Platform GUI, see Upgrade Tanzu Application
Platform GUI. For information about upgrading Supply Chain Security Tools - Scan, see Upgrade
Supply Chain Security Tools - Scan.

Verify the upgrade

Verify the versions of packages after the upgrade by running:

tanzu package installed list --namespace tap-install

Your output is similar, but probably not identical, to the following example output:

- Retrieving installed packages...

 NAME PACKAGE-NAME

PACKAGE-VERSION STATUS

 accelerator accelerator.apps.tanzu.vmware.com

1.3.0 Reconcile succeeded

 api-auto-registration apis.apps.tanzu.vmware.com

0.1.1 Reconcile succeeded

 api-portal api-portal.tanzu.vmware.com

1.2.2 Reconcile succeeded

 appliveview backend.appliveview.tanzu.vmware.com

1.3.0 Reconcile succeeded

 appliveview-connector connector.appliveview.tanzu.vmware.com

1.3.0 Reconcile succeeded

 appliveview-conventions conventions.appliveview.tanzu.vmware.com

1.3.0 Reconcile succeeded

 appsso sso.apps.tanzu.vmware.com

2.0.0 Reconcile succeeded

 buildservice buildservice.tanzu.vmware.com

1.7.1 Reconcile succeeded

 cartographer cartographer.tanzu.vmware.com

0.5.3 Reconcile succeeded

 cert-manager cert-manager.tanzu.vmware.com

1.7.2+tap.1 Reconcile succeeded

 cnrs cnrs.tanzu.vmware.com

2.0.1 Reconcile succeeded

 contour contour.tanzu.vmware.com

1.22.0+tap.3 Reconcile succeeded

 conventions-controller controller.conventions.apps.tanzu.vmware.com

0.7.1 Reconcile succeeded

 developer-conventions developer-conventions.tanzu.vmware.com

0.8.0 Reconcile succeeded

 eventing eventing.tanzu.vmware.com

2.0.1 Reconcile succeeded

 fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

0.27.0+tap.1 Reconcile succeeded

 grype grype.scanning.apps.tanzu.vmware.com

1.3.0 Reconcile succeeded

 image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.c

om 1.1.7 Reconcile succeeded

 learningcenter learningcenter.tanzu.vmware.com

0.2.3 Reconcile succeeded

 learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

0.2.2 Reconcile succeeded

 metadata-store metadata-store.apps.tanzu.vmware.com

1.3.3 Reconcile succeeded

 ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

0.10.2 Reconcile succeeded

 ootb-supply-chain-testing-scanning ootb-supply-chain-testing-scanning.tanzu.vmware.

com 0.10.2 Reconcile succeeded

 ootb-templates ootb-templates.tanzu.vmware.com

Tanzu Application Platform v1.4

VMware by Broadcom 262

0.10.2 Reconcile succeeded

 policy-controller policy.apps.tanzu.vmware.com

1.1.1 Reconcile succeeded

 scanning scanning.apps.tanzu.vmware.com

1.3.0 Reconcile succeeded

 service-bindings service-bindings.labs.vmware.com

0.8.0 Reconcile succeeded

 services-toolkit services-toolkit.tanzu.vmware.com

0.8.0 Reconcile succeeded

 source-controller controller.source.apps.tanzu.vmware.com

0.5.0 Reconcile succeeded

 spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

0.5.0 Reconcile succeeded

 tap tap.tanzu.vmware.com

1.3.0 Reconcile succeeded

 tap-auth tap-auth.tanzu.vmware.com

1.1.0 Reconcile succeeded

 tap-gui tap-gui.tanzu.vmware.com

1.3.0 Reconcile succeeded

 tap-telemetry tap-telemetry.tanzu.vmware.com

0.3.1 Reconcile succeeded

 tekton-pipelines tekton.tanzu.vmware.com

0.39.0+tap.2 Reconcile succeeded

Opt out of telemetry collection

This topic tells you how to opt out of the VMware Customer Experience Improvement Program
(CEIP). By default, when you install Tanzu Application Platform (commonly known as TAP), you are
opted into telemetry collection.

Follow these steps to turn off telemetry collection:

kubectl
To turn off telemetry collection on your Tanzu Application Platform by using kubectl:

1. Ensure your Kubernetes context is pointing to the cluster where Tanzu Application
Platform is installed.

2. Run the following kubectl command:

kubectl apply -f - <<EOF

apiVersion: v1

kind: Namespace

metadata:

 name: vmware-system-telemetry

apiVersion: v1

kind: ConfigMap

metadata:

 namespace: vmware-system-telemetry

 name: vmware-telemetry-cluster-ceip

data:

 level: disabled

EOF

Note

If you opt out of telemetry collection, VMware cannot offer you proactive support
and the other benefits that accompany participation in the CEIP.

Tanzu Application Platform v1.4

VMware by Broadcom 263

3. If you already have Tanzu Application Platform installed, restart the telemetry collector to
pick up the change:

kubectl delete pods --namespace tap-telemetry --all

Tanzu CLI
The Tanzu CLI provides a telemetry plugin enabled by the Tanzu Framework v0.25.0, which has
been included in Tanzu Application Platform since v1.3.

To turn off telemetry collection on your Tanzu Application Platform by using the Tanzu CLI:

$ tanzu telemetry update --CEIP-opt-out

no output

To learn more about how to update the telemetry settings:

$ tanzu telemetry update --help

Update tanzu telemetry settings

Usage:

 tanzu telemetry update [flags]

Examples:

 # opt into ceip

 tanzu telemetry update --CEIP-opt-in

 # opt out of ceip

 tanzu telemetry update --CEIP-opt-out

 # update shared configuration settings

 tanzu telemetry update --env-is-prod "true" --entitlement-account-number "1234"

--csp-org-id "XXXX"

Flags:

 --CEIP-opt-in opt into VMware's CEIP program

 --CEIP-opt-out opt out of VMware's CEIP program

 --csp-org-id string Accepts a string and sets a cluster-wide

CSP

 org ID.

Empty string is equivalent to

 unsettin

g this value.

 --entitlement-account-number string Accepts a string and sets a cluster-wide

 entitlem

ent account number. Empty string is

 equivale

nt to unsetting this value

 --env-is-prod string Accepts a boolean and sets a cluster-wid

e

 value de

noting whether the target is a

 producti

on cluster or not.

 -h, --help help for update

At this point, your Tanzu Application Platform deployment no longer emits telemetry, and you are
opted out of the CEIP.

Tanzu Application Platform v1.4

VMware by Broadcom 264

Overview of security and compliance in
Tanzu Application Platform

Security is a primary focus for Tanzu Application Platform (commonly known as TAP).

This section describes:

Secure Ingress certificates in Tanzu Application Platform

[Use custom CA certificates in Tanzu Application Platform(custom-ca-certificates.hbs.md)

Assess Tanzu Application Platform against the NIST 800-53 Moderate Assessment

Overview of security and compliance in Tanzu Application
Platform
Security is a primary focus for Tanzu Application Platform (commonly known as TAP).

This section describes:

Secure Ingress certificates in Tanzu Application Platform

[Use custom CA certificates in Tanzu Application Platform(custom-ca-certificates.hbs.md)

Assess Tanzu Application Platform against the NIST 800-53 Moderate Assessment

Overview of security and compliance in Tanzu Application
Platform

Security is a primary focus for Tanzu Application Platform (commonly known as TAP).

This section describes:

Secure Ingress certificates in Tanzu Application Platform

[Use custom CA certificates in Tanzu Application Platform(custom-ca-certificates.hbs.md)

Assess Tanzu Application Platform against the NIST 800-53 Moderate Assessment

Secure Ingress certificates in Tanzu Application Platform

This topic tells you about securing ingress communication in Tanzu Application Platform (commonly
known as TAP).

By default, Tanzu Application Platform installs and uses a self-signed CA for issuing TLS certificates
to components for the purpose of securing ingress communication.

The ingress issuer is a self-signed cert-manager.io/v1/ClusterIssuer and is provided by Tanzu
Application Platform’s cert-manager package. Its default name is tap-ingress-selfsigned.

To understand how each component uses the ingress issuer, see Component documentation.

As of v1.4.0, not all components use the ingress issuer. For an overview of the components that
participate, see the Release notes.

Tanzu Application Platform v1.4

VMware by Broadcom 265

Replacing the default ingress issuer

Tanzu Application Platform’s default ingress issuer can be replaced by any other cert-
manager.io/v1/ClusterIssuer.

To replace the default ingress issuer, create a ClusterIssuer and set shared.ingress_issuer to the
name of the issuer. After the configuration is applied, components eventually obtain certificates
from the new issuer and serve them.

Tanzu Application Platform’scert-manager package must be present for the ClusterIssuer API to
be available. This means you can only provide your own ClusterIssuer after the initial installation.
You can, however, reference your issuer in the initial installation.

For example, to use Let’s Encrypts production API to issue TLS certificates:

1. Update and apply Tanzu Application Platform’s installation values such that
shared.ingress_issuer denotes the bespoke issuer:

#! my-tap-values.yaml

#! ...

shared:

 ingress_issuer: letsencrypt-production

#! ...

2. Create a ClusterIssuer for Let’s Encrypts production API:

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: letsencrypt-production

spec:

 acme:

 email: certificate-notices@my-company.com

 privateKeySecretRef:

 name: letsencrypt-production

 server: https://acme-v02.api.letsencrypt.org/directory

 solvers:

 - http01:

 ingress:

 class: contour

Let's Encrypts production API has rate limits.

For more information about the possible configurations of ClusterIssuer, see cert-manager
documentation.

Deactivating TLS for ingress

Although VMware discourages this, you can deactivate the ingress issuer by setting
shared.ingress_issuer: "". As a result, components consider TLS for ingress to be deactivated.

Overriding TLS for components

You can override TLS settings for each component. In your Tanzu Application Platform installation
values, set the component’s values that you want, and they take precedence over shared values.
See components to understand its settings for ingress and TLS.

Use custom CA certificates in Tanzu Application Platform

Tanzu Application Platform v1.4

VMware by Broadcom 266

https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/docs/rate-limits/
https://cert-manager.io/docs/configuration/

This topic tells you about configuring custom CA certificates in Tanzu Application Platform
(commonly known as TAP).

You configure trust for custom CAs. This is helpful if any Tanzu Application Platforms components
are connecting to services that serve certificates issued by private certificate authorities.

The shared.ca_cert_data installation value can contain a PEM-encoded CA bundle. Each
component then trusts the CAs contained in the bundle.

You can also configure trust per component by providing a CA bundle in the component’s
installation values. The component then trusts those CAs and the CAs configured in
shared.ca_cert_data. For more information, see components.

Use External Secrets Operator in Tanzu Application
Platform (alpha)
The External Secrets Operator is a Kubernetes operator that integrates with external secret
management systems, for example, Google Secrets Manager and Hashicorp Vault. It reads
information from external APIs and automatically injects the values into a Kubernetes secret.
Starting with v1.4.0, Tanzu Application Platform repackages the External Secrets Operator v0.6.1
into a Carvel bundle.

Installing the External Secrets Operator

Tanzu Application Platform packages a version of the External Secrets Operator that you can install
in the tap-install namespace. The External Secrets Operator is an optional Tanzu Application
Platform component. It does not come installed with any of the default Tanzu Application Platform
profiles.

ESO_VERSION=0.6.1+tap.2

TAP_NAMESPACE=tap-install

tanzu package install external-secrets \

 --package-name external-secrets.apps.tanzu.vmware.com \

 --version "$ESO_VERSION" \

 --namespace "$TAP_NAMESPACE"

Using the External Secrets Operator

The following example demonstrates a use case for configuring external secrets in a Supply Chain.

Connecting to a secret manager

Example : Google Secret Manager

To connect to a Google Secret Manager instance, you need a service account with the appropriate
permissions. The following steps detail how to create a ClusterStore resource that uses this service
account to connect to your Secret Manager.

Caution

External Secrets Operator is in alpha and is intended for evaluation and test
purposes only. Do not use in a production environment. this package does not
constitute an entire solution. VMware expects later Tanzu Application Platform
releases to have a more comprehensive secret management solution.

Tanzu Application Platform v1.4

VMware by Broadcom 267

https://external-secrets.io/

1. Create a secret that holds the service account. Run:

ytt -f google-secrets-manager-secret.yaml \

 --data-value gcp_secret_name=google-secrets-manager-secret \

 --data-value secrets_namespace=external-secrets \

 --data-value-file service_account_json=<path_to_service_account_json> | kubec

tl apply -f-

Where:

❯ cat google-secrets-manager-secret.yaml

#@ load("@ytt:data", "data")

apiVersion: v1

kind: Secret

metadata:

 labels:

 type: gcpsm

 name: #@ data.values.gcp_secret_name

 namespace: #@ data.values.secrets_namespace

stringData:

 secret-access-credentials: #@ data.values.service_account_json

type: Opaque

2. Create a ClusterStoreSecret resource that references the earlier secret. Run:

export GOOGLE_PROJECT_ID="project-id-name"

ytt -f google-secrets-store.yaml \

--data-value cluster_store_name=google-secrets-manager-store-secret \

--data-value secret_name=google-secrets-manager-secret-store \

--data-value google_project_id="#{GOOGLE_PROJECT_ID}" | kubectl delete -f-

Where:

❯ cat google-secrets-store.yaml

#@ load("@ytt:data", "data")

apiVersion: external-secrets.io/v1beta1

kind: ClusterSecretStore

metadata:

 name: #@ data.values.cluster_store_name

spec:

 provider:

 gcpsm:

 auth:

 secretRef:

 secretAccessKeySecretRef:

 key: secret-access-credentials

 name: #@ data.values.secret_name

 namespace: external-secrets

 projectID: #@ data.values.google_project_id

3. To verify that you have correctly authenticated to the Secret Manager, run:

 tanzu external-secrets stores list -A

 NAMESPACE NAME PROVIDER STAT

US

 Cluster google-secrets-manager-cluster-store Google Secrets Manager Vali

d

For more information about using the External Secrets Operator, see the External Secrets
Operator site.

Tanzu Application Platform v1.4

VMware by Broadcom 268

https://external-secrets.io/

Create a sychronized secret

The secret to be sychronized must exist on your Secret Manager. Alternatively, you can create
one. For example, say you want to access your secret to access a maven repository stored in a
secret maven-registry-credential in your Secret Manager. First, create an external secrets
resource with a reference to the secret to be sychronized and the Valid ClusterStore configured
earlier. Run:

kubectl apply -f external-secret.yaml

Where:

apiVersion: external-secrets.io/v1beta1

kind: ExternalSecret

metadata:

 name: git-secret

 namespace: my-apps

spec:

 data:

 # SecretStoreRef defines which SecretStore to use when fetching the secret data

 - remoteRef:

 conversionStrategy: Default

 key: maven-registry-credentials

 secretKey: apitoken

 refreshInterval: 1m

 secretStoreRef:

 kind: ClusterSecretStore

 name: google-secrets-manager-cluster-store

 # the target describes the secret that shall be created

 # there can only be one target per ExternalSecret

 target:

 creationPolicy: Owner

 deletionPolicy: Retain

 name: maven-registry-credentials

 template:

 metadata:

 annotations:

 tekton.dev/git-0: https://github.com

 type: kubernetes.io/basic-auth

 data:

 password: '{{ .apitoken | toString }}'

 username: "_json_key"

 engineVersion: v2

Using a sychronized secret

The following example uses the sychronized secret to access a maven artifact:

local readonly workload_name='java-web-app'

tanzu apps wld apply $workload_name \

 --service-account supply-chain-service-account \

 --param-yaml maven='{"artifactId": "spring-petclinic", "version": "3.7.4", "grou

pId": "org.springframework.samples"}' \

 --param maven_repository_secret_name="maven-registry-credentials"\

 --type web \

 --app spring-petclinic -y -n my-apps

Assess Tanzu Application Platform against the NIST 800-53
Moderate Assessment

Tanzu Application Platform v1.4

VMware by Broadcom 269

This topic provides you with an assessment of Tanzu Application Platform (commonly known as
TAP) against the NIST SP 800-53 Revision 4 Moderate baseline controls. This translates to FISMA
Moderate and CNSSI 1253 Mod/Mod/Mod for use in US Federal systems accreditation.

The Moderate baseline applies to only technical controls. Organizational policy controls, physical
security, media policies, and similar are excluded as they are not applicable to Tanzu Application
Platform. These excluded controls are still relevant to the system at large and must be inherited
from existing accreditations or otherwise addressed.

The initial iteration of this assessment delineates responsible parties. Incremental updates will add
more details about implementation and updates to 800-53 Revision 5.

Name Title
Responsible
Party

Notes

AC-2(1) Automated
System
Account
Management

Customer Implemented on customer identity store. The customer must employ
automated mechanisms to support the management of information
system accounts used to access their Tanzu Application Platform
installation.

AC-2(2) Removal of
Temporary /
Emergency
Accounts

Customer Implemented on customer identity store. If the customer chooses to use
temporary or emergency accounts, they must ensure that the system
automatically deactivates or removes the account following an
organization-defined time period.

AC-2(3) Deactivate
Inactive
Accounts

Customer Implemented on customer identity store. The customer must
automatically deactivate inactive accounts used to access their Tanzu
Application Platform installation following an organization-defined time
period of inactivity.

AC-2(4) Automated
Audit
Actions

Customer Implemented on customer identity store. The customer must
automatically audit account creation, modification, enabling,
deactivating, and removal actions associated with accounts used to
access their Tanzu Application Platform installation and must notify an
organization-defined personnel or role.

AC-3 Access
Enforcement

Customer The customer must federate their IdP with Tanzu Application Platform to
enforce approved access authorizations to their Tanzu Application
Platform installation.

AC-4 Information
Flow
Enforcement

Customer The customer is responsible for enforcing approved authorizations for
controlling the flow of information between Tanzu Application Platform
and interconnected systems, based on organization-defined information
flow control policies, for example, a SIEM. Tanzu Application Platform
does not restrict intra-service or inter-system communication. Future
versions of Tanzu Application Platform will include this feature using
service mesh architecture or similar methods.

AC-6 Least
Privilege

Shared The customer is responsible for enforcing least privilege by ensuring Tanzu
Application Platform users have the minimum permissions necessary to
perform their job function. Tanzu Application Platform is responsible for
providing RBAC functionality to enforce least privilege.

AC-6(1) Authorize
Access to
Security
Functions

Shared The customer is responsible for explicitly authorizing access to
organization-defined security functions and security-relevant information
as it relates to their Tanzu Application Platform installation. Tanzu
Application Platform is responsible for providing the RBAC functionality
necessary to restrict which users can access security functions and
security-related information.

AC-6(5) Privileged
Accounts

Shared The customer must restrict privileged Tanzu Application Platform
accounts to organization-defined personnel or roles. Tanzu Application
Platform is responsible for providing the RBAC functionality for customers
to restrict privileged Tanzu Application Platform accounts to
organization-defined personnel or roles.

Tanzu Application Platform v1.4

VMware by Broadcom 270

Name Title
Responsible
Party

Notes

AC-6(9) Auditing Use
of Privileged
Functions

Shared The customer is responsible for configuring Tanzu Application Platform
and underlying Kubernetes to send log streams to their SIEM tool for log
analysis to be capable of auditing the execution of privileged functions.
Tanzu Application Platform is responsible for generating logs pertaining
to the execution of privileged functions that can be ingested by the
customer SIEM tool for analysis.

AC-6(10) Prohibit
Non-
Privileged
Users from
Executing
Privileged
Functions

Tanzu
Application
Platform

This functionality is inherent to Tanzu Application Platform/Kubernetes
RBAC and can’t be configured otherwise.

AC-7
AC-7a
AC-7b

Unsuccessful
Logon
Attempts

Customer Implemented on customer identity provider. The customer is responsible
for configuring their IdP to enforce a limit of consecutive invalid logon
attempts by a user during an organization-defined time period which
locks the user’s account for an organization-defined time period, or until
released by an administrator.

AC-8
AC-8a
AC-8a.1
AC-8a.2
AC-8a.3
AC-8a.4
AC-8b
AC-8c
AC-8c.1
AC-8c.2
AC-8c.3

System Use
Notification

Customer Implemented on customer identity provider. Customer must configure
their IdP to display the system use notification banner before login.

AC-11
AC-11a
AC-11b

Session Lock Customer The customer must configure sessions locks on user workstations used to
access their Tanzu Application Platform installation. Tanzu Application
Platform does not have a concept of session locks and relies on sessions
locks applied by the user’s workstation. Tanzu Application Platform
provides logout functionality in place of session locking.

AC-11(1) Pattern-
Hiding
Displays

Customer The customer must configure sessions locks on user workstations used to
access their Tanzu Application Platform installation. This includes hiding
the user’s private session with a publicly available image. Tanzu
Application Platform does not have a concept of session locks and relies
on sessions locks applied by the user’s workstation. Tanzu Application
Platform provides logout functionality in place of session locking.

AC-12 Session
Termination

Shared Implemented on customer identity provider. The customer is responsible
for configuring IdP token TTL and refresh policies that apply to Tanzu
Application Platform sessions. Tanzu Application Platform enforces token
policies and cannot be configured otherwise.

AC-14
AC-14a

Permitted
Actions
Without
Identification
or
Authenticati
on

Shared The customer is responsible for identifying organization-defined user
actions that can be performed on the information system without
identification or authentication consistent with organizational
missions/business functions. For production installations, Tanzu
Application Platform GUI must be configured with OIDC authentication
and guest access deactivated.

AC-17(1) Automated
Monitoring /
Control

Customer “Remote Access” is defined as outside-the-org endpoints like remote
workers over VPN. This is outside the scope of Tanzu Application
Platform. The customer is responsible for all aspects regarding “remote
access” to Tanzu Application Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 271

Name Title
Responsible
Party

Notes

AC-17(2) Protection of
Confidentialit
y / Integrity
Using
Encryption

Customer “Remote Access” is defined as outside-the-org endpoints like remote
workers over VPN. This is outside the scope of Tanzu Application
Platform. The customer is responsible for implementing cryptographic
mechanisms to protect the confidentiality and integrity of “remote
access” sessions to Tanzu Application Platform.

AC-17(3) Managed
Access
Control
Points

Customer “Remote Access” is defined as outside-the-org endpoints like remote
workers over VPN. This is outside the scope of Tanzu Application
Platform. The customer is responsible for routing all “remote accesses” to
Tanzu Application Platform through an organization-defined number of
managed network access control points.

AC-19
AC-19
AC-19b

Access
Control for
Mobile
Devices

Customer The customer is responsible for all aspects regarding mobile devices
which grant access to Tanzu Application Platform.

AU-3 Content of
Audit
Records

Tanzu
Application
Platform

The Tanzu Application Platform application must be capable of
generating audit logs that contain the minimum content required by the
customer consuming the application.

AU-3(1) Additional
Audit
Information

Customer Implemented on customer SIEM. The customer is responsible for parsing
Tanzu Application Platform logs on their SIEM to extract organization-
defined extra information.

AU-4 Audit
Storage
Capacity

Customer Implemented on customer Kubernetes. Tanzu Application Platform logs
are all captured by Kubernetes logging. The customer is responsible for
configuring their Kubernetes hosts with record storage capacity to ensure
that there is adequate storage of logs generated by Tanzu Application
Platform clusters.

AU-5
AU-5a
AU-5b

Response to
Audit
Processing
Failures

Customer Implemented on customer Kubernetes. Tanzu Application Platform audit
records are collected and managed by Kubernetes and are out of Tanzu
Application Platform scope. The customer is responsible for configuring
their Kubernetes hosts to account for audit processing failures and to alert
the appropriate personnel responsible to take appropriate action.

AU-7
AU-7a
AU-7b

Audit
Reduction
and Report
Generation

Customer Implemented on customer Kubernetes and SIEM Tanzu Application
Platform audit records are collected and managed by Kubernetes. The
customer is responsible for ensuring that Kubernetes ships Tanzu
Application Platform audit records to a central SIEM for review and
analysis.

AU-7(1) Automatic
Processing

Customer Implemented on customer Kubernetes and SIEM Tanzu Application
Platform audit records are collected and managed by Kubernetes. The
customer is responsible for ensuring that Kubernetes ships Tanzu
Application Platform audit records to a central SIEM for review and
analysis.

AU-8
AU-8a
AU-8b

Time Stamps Tanzu
Application
Platform

Tanzu Application Platform components pull their system time from the
container OS and the Kubernetes host and cannot be configured
otherwise. Tanzu Application Platform components log statements
include UTC timestamps and cannot be configured otherwise.

AU-8(1)
AU-8(1)
(a)
AU-8(1)
(b)

Synchronizat
ion With
Authoritative
Time Source

Customer The customer is responsible for configuring authoritative time sources on
K8 clusters.

AU-9 Protection of
Audit
Information

Customer Tanzu Application Platform audit records are collected and managed by
Kubernetes. The customer is responsible for protecting Kubernetes and
Kubernetes logging configurations from unauthorized access,
modification, and deletion.

Tanzu Application Platform v1.4

VMware by Broadcom 272

Name Title
Responsible
Party

Notes

AU-12
AU-12a
AU-12b
AU-12c

Audit
Generation

Shared Tanzu Application Platform audit records are collected and managed by
Kubernetes. The customer is responsible for ensuring that Kubernetes
ships Tanzu Application Platform audit records to a central SIEM for
review and analysis. Tanzu Application Platform cannot be configured to
audit specific information. Tanzu Application Platform logs verbosely and
lets the customer filter out what is relevant to them using their SIEM.
Tanzu Application Platform logging cannot be deactivated.

CM-7
CM-7a
CM-7b

Least
Functionality

Shared The customer is responsible for configuring Tanzu Application Platform to
provide only essential capabilities. Tanzu Application Platform is
responsible for providing customers with the capability to deactivate
non-essential features not required by the customer. The customer must
restrict the use of functions, ports, protocols, and services for the Tanzu
Application Platform installation. Tanzu Application Platform is
responsible for ensuring that functions, ports, protocols, and services are
limited to those explicitly required for the application to operate.

CM-7(2) Prevent
Program
Execution

Tanzu
Application
Platform

As an extension of CM-7, Least Functionality, this control is a
responsibility of Tanzu Application Platform. Tanzu Application Platform
only consists of containers with purposeful services with no extra
programs running or bloat. This cannot be configured by the customer.

CM-7(4)
(b)

Unauthorized
Software/De
nylisting

Tanzu
Application
Platform

Tanzu Application Platform service containers do not implement a deny-
by-exception policy to prohibit the execution of unauthorized software
programs. Tanzu Application Platform service containers are built to
provide stripped-down services and do not include extra programs or
bloat. Tanzu Application Platform can provide a SBOM to compare
against customer organization policies on disallowed software.

IA-2 Identification
and
Authenticati
on
(Organizatio
nal Users)

Shared The customer is responsible for configuring Tanzu Application Platform to
use their IdP which is capable of uniquely identifying and authenticating
organizational users. Tanzu Application Platform is responsible for
providing customers with the capability to integrate their IdP to allow
Tanzu Application Platform to uniquely identify organizational users.

IA-2(1) Network
Access to
Privileged
Accounts

Customer Implemented on customer identity provider. The customer is responsible
for implementing multifactor authentication on their IdP for network
access to privileged accounts.

IA-2(2) Network
Access to
Non-
Privileged
Accounts

Customer Implemented on customer identity provider. The customer is responsible
for implementing multifactor authentication on their IdP for network
access to non-privileged accounts.

IA-2(3) Local Access
to Privileged
Accounts

N/A Tanzu Application Platform does not use local accounts. All access occurs
over a network connection.

IA-2(8) Network
Access to
Privileged
Accounts -
Replay
Resistant

Tanzu
Application
Platform

Tanzu Application Platform is responsible for ensuring that all connections
to the customer IdP are over TLS 1.2+.

IA-2(11) Remote
Access -
Separate
Device

Customer The customer is responsible for all aspects of MFA and MFA devices used
to authenticate to their Tanzu Application Platform installation, including
using remote access.

Tanzu Application Platform v1.4

VMware by Broadcom 273

Name Title
Responsible
Party

Notes

IA-2(12) Acceptance
of Piv
Credentials

Customer Implemented on customer identity provider. The customer is responsible
for implementing CAC/PIV credentials with their IdP.

IA-3 Device
Identification
and
Authenticati
on

Customer The customer is responsible for uniquely identifying and authenticating
organization-defined specific and/or types of devices before establishing
a local, remote, or network connection.

IA-4e Identifier
Management

Customer Implemented on customer identity provider. The customer is responsible
for configuring IdP token TTL and refresh policies that apply to Tanzu
Application Platform sessions. Tanzu Application Platform enforces token
policies and cannot be configured otherwise.

IA-5(1)
IA-5(1)(a)
IA-5(1)(b)
IA-5(1)(c)
IA-5(1)(d)
IA-5(1)(e)
IA-5(1)(f)

Password-
Based
Authenticati
on

Customer Implemented on customer identity store. The customer is responsible for
all aspects of password-based authentication to their IdP, using their
identity store. Tanzu Application Platform does not employ password-
based authentication itself.

IA-5(2)
IA-5(2)(a)
IA-5(2)(b)
IA-5(2)(c)
IA-5(2)(d)

PKI-Based
Authenticati
on

Customer Implemented on customer identity provider. The customer is responsible
for all aspects of PKI-based authentication on the IdP used to access their
Tanzu Application Platform installation.

IA-5(11) Hardware
Token-Based
Authenticati
on

Customer The customer is responsible for ensuring hardware token-based
authentication employs mechanisms that satisfy organization-defined
token quality requirements.

IA-6 Authenticato
r Feedback

Customer Implemented on customer identity provider. The customer is responsible
for ensuring their IdP obscures feedback of authentication information
during the authentication process.

IA-7 Cryptographi
c Module
Authenticati
on

Customer Implemented on customer identity provider. The customer is responsible
for ensuring their IdP implements FIPS 140-2 validated cryptographic
modules.

IA-8 Identification
and
Authenticati
on(Non-
Organization
al Users)

Customer Implemented on customer identity provider. The customer is responsible
for ensuring that their IdP uniquely identifies and authenticates non-
organizational Tanzu Application Platform users, or processes acting on
behalf of non-organizational users.

IA-8(1) Acceptance
of Piv
Credentials
from Other
Agencies

Customer Implemented on customer identity provider. The customer is responsible
for configuring their IdP to accept and electronically verify Personal
Identity Verification(PIV) credentials from other federal agencies.

IA-8(2) Acceptance
of Third-
Party
Credentials

Customer Implemented on customer identity provider. The customer is responsible
for configuring their IdP to accept only FICAM-approved third-party
credentials.

IA-8(3) Use of
FICAM-
Approved
Products

Customer Implemented on customer identity provider. The customer is responsible
for employing only FICAM-approved information system components on
their IdP to accept third-party credentials.

Tanzu Application Platform v1.4

VMware by Broadcom 274

Name Title
Responsible
Party

Notes

IA-8(4) Use of
FICAM-
Issued
Profiles

Customer Implemented on customer identity provider. The customer is responsible
for ensuring their IdP conforms to FICAM-issued profiles.

SC-2 Application
Partitioning

Tanzu
Application
Platform

Tanzu Application Platform does not isolate user and management
functionality on separate network interfaces, instances, CPUs, or similar.
Tanzu Application Platform relies on different roles and Kubernetes RBAC
to keep user and management functionality distinct.

SC-4 Information
in Shared
Resources

Tanzu
Application
Platform

Tanzu Application Platform creates dedicated Kubernetes namespaces
upon deployment. Kubernetes namespaces prevent unauthorized and
unintended information transfer using shared system resources.

SC-5 Denial of
Service
Protection

Customer The customer is responsible for ensuring that organizational DoS
protections at the network layer include the Tanzu Application Platform
installation.

SC-7
SC-7a
SC-7b
SC-7c

Boundary
Protection

Customer The customer is responsible for the configuration and management of
boundary protection devices.

SC-7(4)(c) External
Telecommun
ications
Services

Customer The customer is responsible for external telecommunication services used
to establish connections to their Tanzu Application Platform installation.

SC-7(5) Deny by
Default /
Allow by
Exception

Shared Tanzu Application Platform does not implement “deny by default”
network policies. This might be mitigated by network-level access
controls configured by the customer.

SC-7(7) Prevent Split
Tunneling for
Remote
Devices

Customer The customer is responsible for all configuration of remote devices used
to access Tanzu Application Platform.

SC-8 Transmission
Confidentialit
y and
Integrity

Tanzu
Application
Platform

Tanzu Application Platform is responsible for ensuring all communications
occur over TLS 1.2+.

SC-8(1) Cryptographi
c or
Alternate
Physical
Protection

Tanzu
Application
Platform

Tanzu Application Platform is responsible for ensuring all communications
occur over TLS 1.2+.

SC-10 Network
Disconnect

Tanzu
Application
Platform

Tanzu Application Platform tears down TCP connections and deallocates
system resources following the expiration of a session token and cannot
be configured otherwise.

SC-12 Cryptographi
c Key
Establishmen
t and
Management

Tanzu
Application
Platform

Tanzu Application Platform is responsible for providing customers with
the ability to manage trust stores.

SC-13 Cryptographi
c Protection

Tanzu
Application
Platform

Tanzu Application Platform is responsible for implementing FIPS 140
validated cryptographic modules and providing the customer with a
means to enable “FIPS Mode”.

Tanzu Application Platform v1.4

VMware by Broadcom 275

Name Title
Responsible
Party

Notes

SC-21 Secure
Name /
Address
Resolution
Service
(Recursive or
Caching
Resolver)

Customer Tanzu Application Platform inherits the DNSSEC capabilities of the
organization resolvers it is configured to use. The customer is responsible
for configuring the Tanzu Application Platform and Kubernetes
infrastructure to use DNSSEC-capable resolvers.

SC-23 Session
Authenticity

Tanzu
Application
Platform

Tanzu Application Platform is responsible for ensuring all communications
occur over TLS 1.2+.

SC-28 Protection of
Information
at Rest

Customer Tanzu Application Platform does not natively provide encryption for data
at rest, but instead relies on the underlying Kubernetes persistent volumes
for appropriate cryptographic protections. The customer is responsible
for deploying Tanzu Application Platform to Kubernetes with persistent
volumes for appropriate cryptographic protections.

SC-39 Process
Isolation

Tanzu
Application
Platform

Tanzu Application Platform container OS enforces the use of separate
execution domains for each executing process and cannot be configured
otherwise. The underlying Kubernetes host isolates each container from
the other.

SI-2c Flaw
Remediation

Tanzu
Application
Platform

The customer is responsible for keeping the Tanzu Application Platform
installation up to date, to within org-defined standards. Tanzu Application
Platform does not automatically update itself.

SI-3(2) Automatic
Updates

N/A Tanzu Application Platform does not include malicious code protection
mechanisms therefore automatic update to such mechanisms does not
apply.

SI-7(1) Integrity
Checks

Tanzu
Application
Platform

Tanzu Application Platform performs a hash check when images are
downloaded, and a cryptographic signature validation at runtime. This
cannot be configured otherwise.

SI-10 Information
Input
Validation

Tanzu
Application
Platform

Tanzu Application Platform is responsible for performing input validation
of user-supplied input to Tanzu Application Platform.

SI-11
SI-11a
SI-11b

Error
Handling

Tanzu
Application
Platform

Tanzu Application Platform limits error message verbosity but does
display errors to users. Given the development/coding nature of Tanzu
Application Platform, deployment errors and similar must be raised to the
user so they can be corrected.

SI-16 Memory
Protection

Tanzu
Application
Platform

Tanzu Application Platform container OS protects its memory from
unauthorized code execution and cannot be configured otherwise. The
underlying Kubernetes host also isolates container memory pages.

Tanzu Application Platform v1.4

VMware by Broadcom 276

Overview of multicluster Tanzu Application
Platform

You can install Tanzu Application Platform (commonly known as TAP) in various topologies to
reflect your existing landscape. VMware has tested and recommends a multicluster topology for
production use. Because flexibility and choice are core to Tanzu Application Platform’s design, none
of the implementation recommendations are set in stone.

The multicluster topology uses the profile capabilities supported by Tanzu Application Platform.
Each cluster adopts one of following multicluster-aligned profiles:

Iterate: Intended for inner-loop iterative application development.

Build: Transforms source revisions to workload revisions; specifically, hosting workloads and
supply chains.

Run: Transforms workload revisions to running pods; specifically, hosting deliveries and
deliverables.

View: For applications related to centralized developer experiences; specifically, Tanzu
Application Platform GUI and metadata store.

The following diagram illustrates this topology.

Next steps

To get started with installing a multicluster topology, see Install multicluster Tanzu Application
Platform profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 277

Overview of multicluster Tanzu Application Platform

You can install Tanzu Application Platform (commonly known as TAP) in various topologies to
reflect your existing landscape. VMware has tested and recommends a multicluster topology for
production use. Because flexibility and choice are core to Tanzu Application Platform’s design, none
of the implementation recommendations are set in stone.

The multicluster topology uses the profile capabilities supported by Tanzu Application Platform.
Each cluster adopts one of following multicluster-aligned profiles:

Iterate: Intended for inner-loop iterative application development.

Build: Transforms source revisions to workload revisions; specifically, hosting workloads and
supply chains.

Run: Transforms workload revisions to running pods; specifically, hosting deliveries and
deliverables.

View: For applications related to centralized developer experiences; specifically, Tanzu
Application Platform GUI and metadata store.

The following diagram illustrates this topology.

Next steps

To get started with installing a multicluster topology, see Install multicluster Tanzu Application
Platform profiles.

Install multicluster Tanzu Application Platform profiles

This topic tells you how to install a multicluster topology for your Tanzu Application Platform
(commonly known as TAP).

Prerequisites

Tanzu Application Platform v1.4

VMware by Broadcom 278

Before installing multicluster Tanzu Application Platform profiles, you must meet the following
prerequisites:

All clusters must satisfy all the requirements to install Tanzu Application Platform. See
Prerequisites.

Accept Tanzu Application Platform EULA and install Tanzu CLI with any required plug-ins.

Install Tanzu Cluster Essentials on all clusters. For more information, see Deploy Cluster
Essentials.

Multicluster Installation Order of Operations

The installation order is flexible given the ability to update the installation with a modified values file
using the tanzu package installed update command. The following is an example of the order of
operations to be used:

1. Install View profile cluster.

2. Install Build profile cluster.

3. Install Run profile cluster.

4. Install Iterate profile cluster.

5. Add Build, Run and Iterate clusters to Tanzu Application Platform GUI.

6. Update the View cluster’s installation values file with the previous information and run the
following command to pass the updated config values to Tanzu Application Platform GUI:

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION --val

ues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the Tanzu Application Platform version you’ve installed.

Install View cluster

Install the View profile cluster first, because some components must exist before installing the Run
clusters. For example, the Application Live View back end must be present before installing the
Run clusters. For more information about profiles, see About Tanzu Application Platform package
profiles.

To install the View cluster:

1. Follow the steps described in Installing the Tanzu Application Platform package and profiles
by using a reduced values file as shown in View profile.

2. Verify that you can access Tanzu Application Platform GUI by using the ingress that you set
up. The address must follow this format: https://tap-gui.INGRESS-DOMAIN, where INGRESS-
DOMAIN is the DNS domain you set in shared.ingress_domain which points to the shared
Contour installation in the tanzu-system-ingress namespace with the service envoy.

3. Deploy Supply Chain Security Tools (SCST) - Store. See Multicluster setup for more
information.

Install Build clusters

To install the Build profile cluster, follow the steps described in Installing the Tanzu Application
Platform package and profiles by using a reduced values file as shown in Build profile.

Install Run clusters

Tanzu Application Platform v1.4

VMware by Broadcom 279

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html

To install the Run profile cluster:

1. Follow the steps described in Install the Tanzu Application Platform package and profiles by
using a reduced values file as shown in Run profile.

2. To use Application Live View, set the INGRESS-DOMAIN for appliveview_connector to match
the value you set on the View profile for the appliveview in the values file.

Install Iterate clusters

To install the Iterate profile cluster, follow the steps described in Install the Tanzu Application
Platform package and profiles by using a reduced values file as shown in Iterate profile.

Add Build, Run and Iterate clusters to Tanzu Application
Platform GUI

After installing the Build, Run and Iterate clusters, follow the steps in View resources on multiple
clusters in Tanzu Application Platform GUI to:

1. Create the Service Accounts that Tanzu Application Platform GUI uses to read objects from
the clusters.

2. Add a remote cluster.

These steps create the necessary RBAC elements allowing you to pull the URL and token from the
Build, Run and Iterate clusters that allows them come back and add to the View cluster’s values
file.

You must add the Build, Run and Iterate clusters to the View cluster for all plug-ins to function as
expected.

Next steps

After setting up the four profiles, you’re ready to run a workload by using the supply chain. See Get
started with multicluster Tanzu Application Platform.

Get started with multicluster Tanzu Application Platform

This topic tells you how to validate the implementation of a multicluster topology by taking a
sample workload and passing it by using the supply chains on the Build and Run clusters.

Use this topic to build an application on the Build profile clusters and run the application on the Run
profile clusters.

You can view the workload and associated objects from Tanzu Application Platform GUI (commonly
known as TAP GUI) interface on the View profile cluster.

You can take various approaches to configuring the supply chain in this topology, but the following
procedures validate the most basic capabilities.

Prerequisites

Note

The default configuration of shared.ingress_domain points to the local Run
cluster, rather than the View cluster, as a result, shared.ingress_domain
must be set explicitly.

Tanzu Application Platform v1.4

VMware by Broadcom 280

Before implementing a multicluster topology, complete the following:

1. Complete all installation steps for the four profiles: Build, Run, View and Iterate.

2. For the sample workload, VMware uses the same Application Accelerator - Tanzu Java
Web App in the non-multicluster Get Started guide. You can download this accelerator to
your own Git infrastructure of choice. You might need to configure additional permissions.
Alternatively, you can also use the application-accelerator-samples GitHub repository.

3. The two supply chains are ootb-supply-chain-basic on the Build/Iterate profile and ootb-
delivery-basic on the Run profile. For the Build/Iterate and Run profiled clusters, perform
the steps described in Setup Developer Namespace. This guide assumes that you use the
default namespace.

4. To set the value of DEVELOPER_NAMESPACE to the namespace you setup in the previous step,
run:

export GIT_PROJECT_URL=GIT-URL-TO-PROJECT-REPO

export GIT_BRANCH=GIT-PROJECT-BRANCH

export DEVELOPER_NAMESPACE=YOUR-DEVELOPER-NAMESPACE

Where:

GIT-URL-TO-PROJECT-REPO is the git URL of the repository you uploaded your source
code to. For example, https://github.com/my-org/repository.git.

GIT-PROJECT-BRANCH is the git branch of the project. For example, main.

YOUR-DEVELOPER-NAMESPACE is the namespace you set up in Set up developer
namespaces to use your installed packages. default is used in this example.

Start the workload on the Build profile cluster

The Build cluster starts by building the necessary bundle for the workload that is delivered to the
Run cluster.

1. Use the Tanzu CLI to start the workload down the first supply chain:

tanzu apps workload create tanzu-java-web-app \

--git-repo ${GIT_PROJECT_URL} \

--git-branch ${GIT_BRANCH} \

--sub-path tanzu-java-web-app \

--git-branch main \

--type web \

--label app.kubernetes.io/part-of=tanzu-java-web-app \

--yes \

--namespace ${DEVELOPER_NAMESPACE}

2. To monitor the progress of this process, run:

tanzu apps workload tail tanzu-java-web-app --since 10m --timestamp --namespace

${DEVELOPER_NAMESPACE}

3. To exit the monitoring session, press CTRL + C.

4. Verify that your supply chain has produced the necessary ConfigMap containing Deliverable
content produced by the Workload:

kubectl get configmap tanzu-java-web-app-deliverable --namespace ${DEVELOPER_NA

MESPACE} -o go-template='{{.data.deliverable}}'

The output resembles the following:

Tanzu Application Platform v1.4

VMware by Broadcom 281

https://github.com/vmware-tanzu/application-accelerator-samples

apiVersion: carto.run/v1alpha1

kind: Deliverable

metadata:

 name: tanzu-java-web-app-deliverable

 labels:

 apis.apps.tanzu.vmware.com/register-api: "true"

 app.kubernetes.io/part-of: tanzu-java-web-app

 apps.tanzu.vmware.com/workload-type: web

 app.kubernetes.io/component: deliverable

 app.tanzu.vmware.com/deliverable-type: web

spec:

 params:

 - name: gitops_ssh_secret

 value: ""

 source:

 git:

 url: http://git-server.default.svc.cluster.local/app-namespace/tanzu-java

-web-app

 ref:

 branch: main

5. Store the Deliverable content, which you can take to the Run profile clusters from the
ConfigMap by running:

kubectl get configmap tanzu-java-web-app-deliverable -n ${DEVELOPER_NAMESPACE}

-o go-template='{{.data.deliverable}}' > deliverable.yaml

6. (v1.4.0 only) Patch the Deliverable created on the Run profile cluster to add missing labels.
See known issues.

kubectl patch deliverable tanzu-java-web-app \

-n ${DEVELOPER_NAMESPACE} \

--type merge \

--patch "{\"metadata\":{\"labels\":{\"carto.run/workload-name\":\"tanzu-java-we

b-app\",\"carto.run/workload-namespace\":\"${DEVELOPER_NAMESPACE}\"}}}"

7. Take this Deliverable file to the Run profile clusters by running:

kubectl apply -f deliverable.yaml --namespace ${DEVELOPER_NAMESPACE}

8. Verify that this Deliverable is started and Ready by running:

kubectl get deliverables --namespace ${DEVELOPER_NAMESPACE}

The output resembles the following:

kubectl get deliverables --namespace default

NAME SOURCE

DELIVERY READY REASON AGE

tanzu-java-web-app tapmulticloud.azurecr.io/tap-multi-build-dev/tanzu-java-we

b-app-default-bundle:xxxx-xxxx-xxxx-xxxx-1a7beafd6389 delivery-basic True

Ready 7m2s

9. To test the application, query the URL for the application. Look for the httpProxy by
running:

kubectl get httpproxy --namespace ${DEVELOPER_NAMESPACE}

The output resembles the following:

Tanzu Application Platform v1.4

VMware by Broadcom 282

kubectl get httpproxy --namespace default

NAME FQDN

TLS SECRET STATUS STATUS DESCRIPTION

tanzu-java-web-app-contour-a98df54e3629c5ae9c82a395501ee1fdtanz tanzu-java-we

b-app.default.svc.cluster.local valid Valid HTTPP

roxy

tanzu-java-web-app-contour-e1d997a9ff9e7dfb6c22087e0ce6fd7ftanz tanzu-java-we

b-app.default.apps.run.multi.kapplegate.com valid Valid HTTPP

roxy

tanzu-java-web-app-contour-tanzu-java-web-app.default tanzu-java-we

b-app.default valid Valid HTTPP

roxy

tanzu-java-web-app-contour-tanzu-java-web-app.default.svc tanzu-java-we

b-app.default.svc valid Valid HTTPP

roxy

Select the URL that corresponds to the domain you specified in your Run cluster’s profile
and enter it into a browser. Expect to see the message “Greetings from Spring Boot +
Tanzu!”.

10. View the component in Tanzu Application Platform GUI, by following these steps and using
the catalog file from the sample accelerator in GitHub.

Install Tanzu Application Platform Build profile

This topic tells you how to install Build profile cluster by using a reduced values file.

Prerequisites

Before installing the Build profile, follow all the steps in Install View cluster.

Example values.yaml

The following is the YAML file sample for the build-profile:

profile: build

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

shared:

 ingress_domain: "INGRESS-DOMAIN"

 kubernetes_distribution: "openshift" # To be passed only for Openshift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME" # To be used by Build Service by appending

"/buildservice" and used by Supply chain by appending "/workloads".

 username: "KP-DEFAULT-REPO-USERNAME"

 password: "KP-DEFAULT-REPO-PASSWORD"

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

The above shared keys can be overridden in the below section.

buildservice: # Optional if the corresponding shared keys are provided.

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

supply_chain: testing_scanning

ootb_supply_chain_testing_scanning: # Optional if the corresponding shared keys are pr

Tanzu Application Platform v1.4

VMware by Broadcom 283

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/tanzu-java-web-app/catalog/catalog-info.yaml

ovided.

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 gitops:

 ssh_secret: "SSH-SECRET-KEY" # (Optional) Defaults to "".

grype:

 namespace: "MY-DEV-NAMESPACE" # (Optional) Defaults to default namespace.

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

 metadataStore:

 url: METADATA-STORE-URL-ON-VIEW-CLUSTER

 caSecret:

 name: store-ca-cert

 importFromNamespace: metadata-store-secrets

 authSecret:

 name: store-auth-token

 importFromNamespace: metadata-store-secrets

scanning:

 metadataStore:

 url: "" # Configuration is moved, so set this string to empty.

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

Where:

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service"

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service"

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service"

KP-DEFAULT-REPO-USERNAME is the user name that can write to KP-DEFAULT-REPO. You can
docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-REPO.
You can docker push to this location with this credential. This credential can also be
configured by using a Secret reference. For more information, see Install Tanzu Build
Service for details.

For Google Cloud Registry, use the contents of the service account JSON file.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. Images are written to
SERVER-NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Tanzu Application Platform v1.4

VMware by Broadcom 284

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to
fetch source code from and push configuration to. See Git authentication for more
information.

METADATA-STORE-URL-ON-VIEW-CLUSTER is the URL of the Supply Chain Security Tools (SCST)
- Store deployed on the View cluster. For example, https://metadata-store.example.com

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Scan deploys the
ScanTemplates there. This allows the scanning feature to run in this namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the Secret that contains the
credentials to pull an image from the registry for scanning.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See the Tanzu Kubernetes Grid documentation for
more information about identifying the Entitlement Account Number.

When you install Tanzu Application Platform, it is bootstrapped with the lite set of dependencies,
including buildpacks and stacks, for application builds. For more information about buildpacks, see
the VMware Tanzu Buildpacks Documentation. You can find the buildpack and stack artifacts
installed with Tanzu Application Platform on Tanzu Network. You can update dependencies by
upgrading Tanzu Application Platform to the latest patch, or by using an automatic update process
(deprecated).

See Multicluster setup for more information about the value settings of grype.metadataStore.

You must set the scanning.metadatastore.url to an empty string if you’re installing Grype Scanner
v1.2.0 and later or Snyk Scanner to deactivate the embedded SCST - Store integration.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

Install Tanzu Application Platform Run profile

This topic tells you how to install Run profile cluster by using a reduced values file.

The following is the YAML file sample for the run-profile:

profile: run

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

shared:

 ingress_domain: INGRESS-DOMAIN

 kubernetes_distribution: "openshift" # To be passed only for Openshift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

supply_chain: basic

contour:

 envoy:

 service:

Tanzu Application Platform v1.4

VMware by Broadcom 285

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://network.tanzu.vmware.com/products/tbs-dependencies

 type: LoadBalancer # NodePort can be used if your Kubernetes cluster doesn't sup

port LoadBalancing.

appliveview_connector:

 backend:

 sslDeactivated: TRUE-OR-FALSE-VALUE

 ingressEnabled: true

 host: appliveview.VIEW-CLUSTER-INGRESS-DOMAIN

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s external IP address.

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

VIEW-CLUSTER-INGRESS-DOMAIN is the subdomain you setup on the View profile cluster. This
matches the value key appliveview.ingressDomain or shared.ingress_domain on the view
cluster. Include the default host name appliveview. ahead of the domain.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See the Tanzu Kubernetes Grid documentation for
more information about identifying the Entitlement Account Number.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

If you set shared.ingress_domain in run profile, the appliveview_connector.backend.host is
automatically configured as host: appliveview.INGRESS-DOMAIN. To override the shared ingress for
Application Live View to connect to the view cluster, set the appliveview_connector.backend.host
key to appliveview.VIEW-CLUSTER-INGRESS-DOMAIN.

Install Tanzu Application Platform View profile

This topic tells you how to install View profile cluster by using a reduced values file.

The following is the YAML file sample for the view-profile:

profile: view

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

shared:

 ingress_domain: "INGRESS-DOMAIN"

 kubernetes_distribution: "openshift" # To be passed only for Openshift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

Tanzu Application Platform v1.4

VMware by Broadcom 286

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2

contour:

 envoy:

 service:

 type: LoadBalancer # NodePort can be used if your Kubernetes cluster doesn't sup

port LoadBalancing.

tap_gui:

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 kubernetes:

 serviceLocatorMethod:

 type: 'multiTenant'

 clusterLocatorMethods:

 - type: 'config'

 clusters:

 - url: CLUSTER-URL

 name: CLUSTER-NAME # Build profile cluster can go here.

 authProvider: serviceAccount

 serviceAccountToken: CLUSTER-TOKEN

 skipTLSVerify: TRUE-OR-FALSE-VALUE

 - url: CLUSTER-URL

 name: CLUSTER-NAME # Run profile cluster can go here.

 authProvider: serviceAccount

 serviceAccountToken: CLUSTER-TOKEN

 skipTLSVerify: TRUE-OR-FALSE-VALUE

appliveview:

 ingressEnabled: true

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s external IP address.

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, use a Backstage-compliant catalog you’ve already built and
posted on the Git infrastructure in the Integration section.

CLUSTER-URL, CLUSTER-NAME and CLUSTER-TOKEN are described in the View resources on
multiple clusters in Tanzu Application Platform GUI. Observe the order of operations laid out
in the previous steps.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See the Tanzu Kubernetes Grid documentation for
more information about identifying the Entitlement Account Number.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform

Tanzu Application Platform v1.4

VMware by Broadcom 287

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2

component packages inherit that value by default.

The appliveview.ingressEnabled key is set to false by default. In a multicluster setup,
ingressEnabled key must be set to true. If the shared.ingress_domain key is set, the Application
Live View back end is automatically exposed through the shared ingress.

Install Tanzu Application Platform Iterate profile

This topic tells you how to install Iterate profile cluster by using a reduced values file.

The following is the YAML file sample for the iterate-profile:

profile: iterate

shared:

 ingress_domain: "INGRESS-DOMAIN"

 kubernetes_distribution: "openshift" # To be passed only for OpenShift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME" # To be used by Build Service by appending

"/buildservice" and used by Supply chain by appending "/workloads"

 username: "KP-DEFAULT-REPO-USERNAME"

 password: "KP-DEFAULT-REPO-PASSWORD"

 ca_cert_data: | # To be passed if using custom certificates

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

The above shared keys may be overridden in the below section.

buildservice: # Optional if the corresponding shared keys are provided.

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

supply_chain: basic

ootb_supply_chain_basic: # Optional if the shared above mentioned shared keys are prov

ided.

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 gitops:

 ssh_secret: "SSH-SECRET-KEY" # (Optional) Defaults to "".

image_policy_webhook:

 allow_unmatched_tags: true

contour:

 envoy:

 service:

 type: LoadBalancer # (Optional) Defaults to LoadBalancer.

cnrs:

 domain_name: "TAP-ITERATE-CNRS-DOMAIN" # Optional if the shared.ingress_domain is pr

ovided.

appliveview_connector:

 backend:

 sslDeactivated: TRUE-OR-FALSE-VALUE

 ingressEnabled: true

 host: appliveview.VIEW-CLUSTER-INGRESS-DOMAIN

Tanzu Application Platform v1.4

VMware by Broadcom 288

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

Where:

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service".

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service".

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service".

KP-DEFAULT-REPO-USERNAME is the user name that can write to KP-DEFAULT-REPO. You can
docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key.

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-REPO.
You can docker push to this location with this credential. This credential can also be
configured by using a Secret reference. For more information, see Install Tanzu Build
Service for details.

For Google Cloud Registry, use the contents of the service account JSON file.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. Images are written to
SERVER-NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to
fetch source code from and push configuration to. See Git authentication for more
information.

TAP-ITERATE-CNRS-DOMAIN is the iterate cluster CNRS domain.

VIEW-CLUSTER-INGRESS-DOMAIN is the subdomain you setup on the View profile cluster. This
matches the value key appliveview.ingressDomain or shared.ingress_domain on the view
cluster. Include the default host name appliveview. ahead of the domain.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular

Tanzu Application Platform v1.4

VMware by Broadcom 289

customers and prepare usage reports. See the Tanzu Kubernetes Grid documentation for
more information about identifying the Entitlement Account Number.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

If you set shared.ingress_domain in the iterate profile, the appliveview_connector.backend.host is
automatically configured as host: appliveview.INGRESS-DOMAIN. To override the shared ingress for
Application Live View to connect to the view cluster, set the appliveview_connector.backend.host
key to appliveview.VIEW-CLUSTER-INGRESS-DOMAIN.

Tanzu Application Platform v1.4

VMware by Broadcom 290

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2

Get started with Tanzu Application
Platform

Welcome to Tanzu Application Platform. The guides in this section provide hands-on instructions
for developers and operators to help you get started on Tanzu Application Platform.

Prerequisites

Before you start, verify you have successfully:

Installed Tanzu Application Platform
See Installing Tanzu Application Platform.

Installed Tanzu Application Platform on the target Kubernetes cluster
See Installing the Tanzu CLI and Installing the Tanzu Application Platform Package and
Profiles.

Set the default kubeconfig context to the target Kubernetes cluster
See Changing clusters.

Installed Out of The Box (OOTB) Supply Chain Basic
See Install Out of The Box Supply Chain Basic. If you used the default profiles provided in
Installing the Tanzu Application Platform Package and Profiles, you have already installed
the Out of The Box (OOTB) Supply Chain Basic.

Installed Tekton Pipelines
See Install Tekton Pipelines. If you used the default profiles provided in Installing the Tanzu
Application Platform Package and Profiles, you have already installed Tekton Pipelines.

Set up a developer namespace to accommodate the developer workload
See Set up developer namespaces to use your installed packages.

Installed Tanzu Application Platform GUI
See Install Tanzu Application Platform GUI. If you used the Full or View profiles provided in
Installing the Tanzu Application Platform Package and Profiles, you have already installed
Tanzu Application Platform GUI.

Installed the VS Code Tanzu Extension
See Install the Visual Studio Code Tanzu Extension for instructions.

When you have completed these prerequisites, you are ready to get started.

Next steps

For developers:

Deploy an app on Tanzu Application Platform

For operators:

Create an application accelerator

Get started with Tanzu Application Platform

Tanzu Application Platform v1.4

VMware by Broadcom 291

Welcome to Tanzu Application Platform. The guides in this section provide hands-on instructions
for developers and operators to help you get started on Tanzu Application Platform.

Prerequisites

Before you start, verify you have successfully:

Installed Tanzu Application Platform
See Installing Tanzu Application Platform.

Installed Tanzu Application Platform on the target Kubernetes cluster
See Installing the Tanzu CLI and Installing the Tanzu Application Platform Package and
Profiles.

Set the default kubeconfig context to the target Kubernetes cluster
See Changing clusters.

Installed Out of The Box (OOTB) Supply Chain Basic
See Install Out of The Box Supply Chain Basic. If you used the default profiles provided in
Installing the Tanzu Application Platform Package and Profiles, you have already installed
the Out of The Box (OOTB) Supply Chain Basic.

Installed Tekton Pipelines
See Install Tekton Pipelines. If you used the default profiles provided in Installing the Tanzu
Application Platform Package and Profiles, you have already installed Tekton Pipelines.

Set up a developer namespace to accommodate the developer workload
See Set up developer namespaces to use your installed packages.

Installed Tanzu Application Platform GUI
See Install Tanzu Application Platform GUI. If you used the Full or View profiles provided in
Installing the Tanzu Application Platform Package and Profiles, you have already installed
Tanzu Application Platform GUI.

Installed the VS Code Tanzu Extension
See Install the Visual Studio Code Tanzu Extension for instructions.

When you have completed these prerequisites, you are ready to get started.

Next steps

For developers:

Deploy an app on Tanzu Application Platform

For operators:

Create an application accelerator

Create an accelerator

This topic guides you through creating an accelerator and registering it in a Tanzu Application
Platform instance.

Note

This guide follows a quick start format. See the Application Accelerator
documentation for advanced features.

Tanzu Application Platform v1.4

VMware by Broadcom 292

What you will do

Create a new accelerator project that contains an accelerator.yaml file and README.md file.

Configure the accelerator.yaml file to alter the project’s README.md.

Test your accelerator locally using the Tanzu CLI generate-from-local command.

Create a new Git repository for the project and push the project to it.

Register the accelerator in a Tanzu Application Platform instance.

Verify project generation with the new accelerator by using Tanzu Application Platform
GUI.

Set up Visual Studio Code

1. To simplify accelerator authoring, code assist capabilities are available. To install the
extension, navigate to the Marketplace page for the YAML plug-in and click Install.

2. After you install the plug-in, editing files entitled accelerator.yaml automatically uses the
code assist capabilities.

Create a simple project

To create your project, follow these instructions to set up the project directory, prepare the
README.md and accelerator.yaml, and test your accelerator.

Set up the project directory

1. Create a new directory for the project named myProject and change to the newly created
directory.

mkdir myProject

cd myProject

2. Create two new files in the myProject directory named README.md and accelerator.yaml.

touch README.MD accelerator.yaml

Prepare the README.md and accelerator.yaml

The following instructions require using Visual Studio Code to edit the files.

1. Using Visual Studio Code, open the README.md, copy and paste the following code block into
it, and save the file. CONFIGURABLE_PARAMETER_# is targeted to be transformed during project
generation in the upcoming accelerator.yaml definition.

Tanzu Application Accelerator Sample Project

Note

Code assist for authoring accelerators is also available in the IntelliJ IDE. You
can enable this by selecting Application Accelerator in the schema
mapping drop-down menu. For more information about how to enable this,
see the IntelliJ Using schemas from JSON Schema Store documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 293

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://www.jetbrains.com/help/idea/json.html#ws_json_using_schemas

This is some very important placeholder text that should describe what this pro

ject can do and how to use it.

Here are some configurable parameters:

* CONFIGURABLE_PARAMETER_1

* CONFIGURABLE_PARAMETER_2

2. Open accelerator.yaml and begin populating the file section using the snippet below. This
section contains important information, such as the accelerator’s display name, description,
tags, and more.

For all possible parameters available in this section, see Creating accelerator.yaml.

accelerator:

 displayName: Simple Accelerator

 description: Contains just a README

 iconUrl: https://blogs.vmware.com/wp-content/uploads/2022/02/tap.png

 tags:

 - simple

 - getting-started

3. Add the configuration parameters using the following code snippet. This configures what
parameters are displayed in the accelerator form during project creation.

In this example snippet, the field firstConfigurableParameter takes in text the user
provides. The secondConfigurableParameter does the same, except it is only displayed if
the user checks secondConfigurableParameterCheckbox because of the dependsOn
parameter.

For more information about possible options, see Creating accelerator.yaml.

Place this after the 'tags' section from the previous step

 options:

 - name: firstConfigurableParameter

 inputType: text

 label: The text used to replace the first placeholder text in the README.

md. Converted to lowercase.

 defaultValue: Configurable Parameter 1

 required: true

 - name: secondConfigurableParameterCheckbox

 inputType: checkbox

 dataType: boolean

 label: Enable to configure the second configurable parameter, otherwise u

se the default value.

 - name: secondConfigurableParameter

 inputType: text

 label: The text used to replace the second placeholder text in the READM

E.md. Converted to lowercase.

 defaultValue: Configurable Parameter 2

 dependsOn:

 name: secondConfigurableParameterCheckbox

4. Add the engine configuration by using the following code snippet and save the file.

The engine configuration tells the accelerator engine behind the scenes what must be
done to the project files during project creation. In this example, this instructs the engine to
replace CONFIGURABLE_PARAMETER_1 and, if the check box is checked,
CONFIGURABLE_PARAMETER_2 with the parameters that the user passes in during project
creation.

This also leverages Spring Expression Language (SpEL) syntax to convert the text input to
all lowercase.

Tanzu Application Platform v1.4

VMware by Broadcom 294

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions

For more information about the possible parameters for use within the engine section, see
Creating accelerator.yaml.

Place this after the `options` section from the previous step

engine:

 merge:

 - include: ["README.md"]

 chain:

 - type: ReplaceText

 substitutions:

 - text: "CONFIGURABLE_PARAMETER_1"

 with: "#firstConfigurableParameter.toLowerCase()"

 - condition: "#secondConfigurableParameterCheckbox"

 chain:

 - type: ReplaceText

 substitutions:

 - text: "CONFIGURABLE_PARAMETER_2"

 with: "#secondConfigurableParameter.toLowerCase()"

Test the accelerator

It is important to quickly test and iterate on accelerators as they are being developed to ensure
that the resulting project is generated as expected.

1. Using the terminal of your choice with access to the tanzu command, run the following
command to test the accelerator created earlier.

This step takes the local accelerator.yaml and project files, configures the project using the
parameters passed in through the --options field, and outputs the project to a specified
directory.

tanzu accelerator generate-from-local \

 --accelerator-path simple-accelerator="$(pwd)" `# The path to new accelerat

or` \

 --server-url TANZU-APPLICATION-ACCELERATOR-URL `# Example: https://accelera

tor.mytapcluster.myorg.com` \

 --options '{"firstConfigurableParameter": "Parameter 1", "secondConfigurabl

eParameterCheckbox": true, "secondConfigurableParameter":"Parameter 2"}' \

 -o "${HOME}/simple-accelerator/" `# Change this path to change where the pr

oject folder gets generated`

2. After the project is generated, a status message is displayed.

generated project simple-accelerator

3. Navigate to the output directory and verify that the README.md is updated based on the --
options specified in the preceding generate-from-local command.

Tanzu Application Accelerator Sample Project

This is some very important placeholder text that should describe what this pro

ject can do and how to use it.

Here are some configurable parameters:

Important

This step requires that the TANZU-APPLICATION-ACCELERATOR-URL endpoint is
exposed and accessible. For more information, see Server API connections
for operators and developers.

Tanzu Application Platform v1.4

VMware by Broadcom 295

- parameter 1

- parameter 2

Upload the project to a Git repository

The Application Accelerator system and Tanzu Application Platform GUI depend on an accelerator
project residing inside a Git repository. For this example, GitHub is used.

1. Create a new repository in GitHub and ensure that Visibility is set to Public. Click Create
Repository.

2. To push your accelerator project (not the generated project from generate-from-local) to
GitHub, follow the instructions that GitHub provides for the …or create a new repository on
the command line that is shown after clicking Create Repository. Instructions can also be
found in the GitHub documentation.

3. Verify that the project is pushed to the target repository.

Register the accelerator to the Tanzu Application Platform
and verify project generation output
Now that the accelerator is committed to its own repository, you can register the accelerator to
Tanzu Application Platform GUI for developers to generate projects from the newly created
accelerator.

To do so, use the URL of the Git repository and branch name created earlier and run the following
command using the Tanzu CLI to register the accelerator to Tanzu Application Platform GUI.

tanzu accelerator create simple-accelerator --git-repository https://github.com/myuser

name/myprojectrepository --git-branch main

The accelerator can take time to reconcile. After it has reconciled, it is available for use in Tanzu
Application Platform GUI and the Application Accelerator extension for Visual Studio Code.

Verify project generation output by using Tanzu Application
Platform GUI

1. Navigate to your organization’s instance of Tanzu Application Platform GUI.

2. On the left navigation pane, click Create.

3. Using the search bar near the left side of the page, search for simple accelerator. After
you’ve found it, click Choose on the accelerator card.

Note

tanzu accelerator create works with monorepos as well. Add the --git-sub-path
parameter with the desired subpath to fetch the accelerator project in that
directory. For more information, see tanzu accelerator create.

Tanzu Application Platform v1.4

VMware by Broadcom 296

https://github.com/
https://docs.github.com/en/get-started/quickstart/create-a-repo
https://docs.github.com/en/get-started/importing-your-projects-to-github/importing-source-code-to-github/adding-locally-hosted-code-to-github#adding-a-local-repository-to-github-using-git

4. Configure the project by filling in the parameters in the form.

The options you defined in accelerator.yaml are now displayed for you to configure. The
secondConfigurableParameter dependsOn secondConfigurableParameterCheckbox might be
hidden depending on whether the check box is selected.

Tanzu Application Platform v1.4

VMware by Broadcom 297

5. After configuration is complete, click Next.

6. On the Review and generate step, review the parameters and click Generate
Accelerator.

7. Explore the ZIP file of the configured project and verify that the project is generated with
the parameters you provided during configuration.

Learn more about Application Accelerator

Note

Depending on your organization’s Tanzu Application Platform configuration,
you might be presented with an option to create a Git repository. In this
guide, this is skipped and is covered in Deploy an app on Tanzu Application
Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 298

For advanced functionality when creating accelerators, such as accelerator best practices,
accelerator fragments, engine transforms, and more, see the Application Accelerator
documentation.

For more information about Application Accelerator configurations, see the Configure
Application Accelerator documentation.

For information about installing the Application Accelerator extension for Visual Studio
Code, see the Application Accelerator Visual Studio Code extension documentation.

For general accelerator troubleshooting, see Troubleshooting Application Accelerator for
VMware Tanzu.

Create an accelerator

This topic guides you through creating an accelerator and registering it in a Tanzu Application
Platform instance.

What you will do

Create a new accelerator project that contains an accelerator.yaml file and README.md file.

Configure the accelerator.yaml file to alter the project’s README.md.

Test your accelerator locally using the Tanzu CLI generate-from-local command.

Create a new Git repository for the project and push the project to it.

Register the accelerator in a Tanzu Application Platform instance.

Verify project generation with the new accelerator by using Tanzu Application Platform
GUI.

Set up Visual Studio Code

1. To simplify accelerator authoring, code assist capabilities are available. To install the
extension, navigate to the Marketplace page for the YAML plug-in and click Install.

2. After you install the plug-in, editing files entitled accelerator.yaml automatically uses the
code assist capabilities.

Create a simple project

Note

This guide follows a quick start format. See the Application Accelerator
documentation for advanced features.

Note

Code assist for authoring accelerators is also available in the IntelliJ IDE. You
can enable this by selecting Application Accelerator in the schema
mapping drop-down menu. For more information about how to enable this,
see the IntelliJ Using schemas from JSON Schema Store documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 299

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://www.jetbrains.com/help/idea/json.html#ws_json_using_schemas

To create your project, follow these instructions to set up the project directory, prepare the
README.md and accelerator.yaml, and test your accelerator.

Set up the project directory

1. Create a new directory for the project named myProject and change to the newly created
directory.

mkdir myProject

cd myProject

2. Create two new files in the myProject directory named README.md and accelerator.yaml.

touch README.MD accelerator.yaml

Prepare the README.md and accelerator.yaml

The following instructions require using Visual Studio Code to edit the files.

1. Using Visual Studio Code, open the README.md, copy and paste the following code block into
it, and save the file. CONFIGURABLE_PARAMETER_# is targeted to be transformed during project
generation in the upcoming accelerator.yaml definition.

Tanzu Application Accelerator Sample Project

This is some very important placeholder text that should describe what this pro

ject can do and how to use it.

Here are some configurable parameters:

* CONFIGURABLE_PARAMETER_1

* CONFIGURABLE_PARAMETER_2

2. Open accelerator.yaml and begin populating the file section using the snippet below. This
section contains important information, such as the accelerator’s display name, description,
tags, and more.

For all possible parameters available in this section, see Creating accelerator.yaml.

accelerator:

 displayName: Simple Accelerator

 description: Contains just a README

 iconUrl: https://blogs.vmware.com/wp-content/uploads/2022/02/tap.png

 tags:

 - simple

 - getting-started

3. Add the configuration parameters using the following code snippet. This configures what
parameters are displayed in the accelerator form during project creation.

In this example snippet, the field firstConfigurableParameter takes in text the user
provides. The secondConfigurableParameter does the same, except it is only displayed if
the user checks secondConfigurableParameterCheckbox because of the dependsOn
parameter.

For more information about possible options, see Creating accelerator.yaml.

Place this after the 'tags' section from the previous step

 options:

 - name: firstConfigurableParameter

Tanzu Application Platform v1.4

VMware by Broadcom 300

 inputType: text

 label: The text used to replace the first placeholder text in the README.

md. Converted to lowercase.

 defaultValue: Configurable Parameter 1

 required: true

 - name: secondConfigurableParameterCheckbox

 inputType: checkbox

 dataType: boolean

 label: Enable to configure the second configurable parameter, otherwise u

se the default value.

 - name: secondConfigurableParameter

 inputType: text

 label: The text used to replace the second placeholder text in the READM

E.md. Converted to lowercase.

 defaultValue: Configurable Parameter 2

 dependsOn:

 name: secondConfigurableParameterCheckbox

4. Add the engine configuration by using the following code snippet and save the file.

The engine configuration tells the accelerator engine behind the scenes what must be
done to the project files during project creation. In this example, this instructs the engine to
replace CONFIGURABLE_PARAMETER_1 and, if the check box is checked,
CONFIGURABLE_PARAMETER_2 with the parameters that the user passes in during project
creation.

This also leverages Spring Expression Language (SpEL) syntax to convert the text input to
all lowercase.

For more information about the possible parameters for use within the engine section, see
Creating accelerator.yaml.

Place this after the `options` section from the previous step

engine:

 merge:

 - include: ["README.md"]

 chain:

 - type: ReplaceText

 substitutions:

 - text: "CONFIGURABLE_PARAMETER_1"

 with: "#firstConfigurableParameter.toLowerCase()"

 - condition: "#secondConfigurableParameterCheckbox"

 chain:

 - type: ReplaceText

 substitutions:

 - text: "CONFIGURABLE_PARAMETER_2"

 with: "#secondConfigurableParameter.toLowerCase()"

Test the accelerator

It is important to quickly test and iterate on accelerators as they are being developed to ensure
that the resulting project is generated as expected.

1. Using the terminal of your choice with access to the tanzu command, run the following
command to test the accelerator created earlier.

This step takes the local accelerator.yaml and project files, configures the project using the
parameters passed in through the --options field, and outputs the project to a specified
directory.

Important

Tanzu Application Platform v1.4

VMware by Broadcom 301

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions

tanzu accelerator generate-from-local \

 --accelerator-path simple-accelerator="$(pwd)" `# The path to new accelerat

or` \

 --server-url TANZU-APPLICATION-ACCELERATOR-URL `# Example: https://accelera

tor.mytapcluster.myorg.com` \

 --options '{"firstConfigurableParameter": "Parameter 1", "secondConfigurabl

eParameterCheckbox": true, "secondConfigurableParameter":"Parameter 2"}' \

 -o "${HOME}/simple-accelerator/" `# Change this path to change where the pr

oject folder gets generated`

2. After the project is generated, a status message is displayed.

generated project simple-accelerator

3. Navigate to the output directory and verify that the README.md is updated based on the --
options specified in the preceding generate-from-local command.

Tanzu Application Accelerator Sample Project

This is some very important placeholder text that should describe what this pro

ject can do and how to use it.

Here are some configurable parameters:

- parameter 1

- parameter 2

Upload the project to a Git repository

The Application Accelerator system and Tanzu Application Platform GUI depend on an accelerator
project residing inside a Git repository. For this example, GitHub is used.

1. Create a new repository in GitHub and ensure that Visibility is set to Public. Click Create
Repository.

2. To push your accelerator project (not the generated project from generate-from-local) to
GitHub, follow the instructions that GitHub provides for the …or create a new repository on
the command line that is shown after clicking Create Repository. Instructions can also be
found in the GitHub documentation.

3. Verify that the project is pushed to the target repository.

Register the accelerator to the Tanzu Application Platform
and verify project generation output

Now that the accelerator is committed to its own repository, you can register the accelerator to
Tanzu Application Platform GUI for developers to generate projects from the newly created
accelerator.

To do so, use the URL of the Git repository and branch name created earlier and run the following
command using the Tanzu CLI to register the accelerator to Tanzu Application Platform GUI.

This step requires that the TANZU-APPLICATION-ACCELERATOR-URL endpoint is
exposed and accessible. For more information, see Server API connections
for operators and developers.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 302

https://github.com/
https://docs.github.com/en/get-started/quickstart/create-a-repo
https://docs.github.com/en/get-started/importing-your-projects-to-github/importing-source-code-to-github/adding-locally-hosted-code-to-github#adding-a-local-repository-to-github-using-git

tanzu accelerator create simple-accelerator --git-repository https://github.com/myuser

name/myprojectrepository --git-branch main

The accelerator can take time to reconcile. After it has reconciled, it is available for use in Tanzu
Application Platform GUI and the Application Accelerator extension for Visual Studio Code.

Verify project generation output by using Tanzu Application
Platform GUI

1. Navigate to your organization’s instance of Tanzu Application Platform GUI.

2. On the left navigation pane, click Create.

3. Using the search bar near the left side of the page, search for simple accelerator. After
you’ve found it, click Choose on the accelerator card.

4. Configure the project by filling in the parameters in the form.

The options you defined in accelerator.yaml are now displayed for you to configure. The
secondConfigurableParameter dependsOn secondConfigurableParameterCheckbox might be
hidden depending on whether the check box is selected.

tanzu accelerator create works with monorepos as well. Add the --git-sub-path
parameter with the desired subpath to fetch the accelerator project in that
directory. For more information, see tanzu accelerator create.

Tanzu Application Platform v1.4

VMware by Broadcom 303

5. After configuration is complete, click Next.

6. On the Review and generate step, review the parameters and click Generate
Accelerator.

7. Explore the ZIP file of the configured project and verify that the project is generated with
the parameters you provided during configuration.

Learn more about Application Accelerator

Note

Depending on your organization’s Tanzu Application Platform configuration,
you might be presented with an option to create a Git repository. In this
guide, this is skipped and is covered in Deploy an app on Tanzu Application
Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 304

For advanced functionality when creating accelerators, such as accelerator best practices,
accelerator fragments, engine transforms, and more, see the Application Accelerator
documentation.

For more information about Application Accelerator configurations, see the Configure
Application Accelerator documentation.

For information about installing the Application Accelerator extension for Visual Studio
Code, see the Application Accelerator Visual Studio Code extension documentation.

For general accelerator troubleshooting, see Troubleshooting Application Accelerator for
VMware Tanzu.

Add testing and scanning to your application

This topic guides you through installing the optional OOTB Supply Chain with Testing and the
optional OOTB Supply Chain with Testing and Scanning.

For more information about available supply chains, see Supply chains on Tanzu Application
Platform.

What you will do

Install OOTB Supply Chain with Testing.

Add a Tekton pipeline to the cluster and update the workload to point to the pipeline and
resolve errors.

Install OOTB Supply Chain with Testing and Scanning.

Update the workload to point to the Tekton pipeline and resolve errors.

Query for vulnerabilities and dependencies.

Overview

The default Out of the Box (OOTB) Supply Chain Basic and its dependencies were installed on your
cluster during the Tanzu Application Platform install. As demonstrated in this guide, you can add
testing and security scanning to your application. When you activate OOTB Supply Chain with
Testing, it deactivates OOTB Supply Chain Basic.

The following installations also provide a sample Tekton pipeline that tests your sample application.
The pipeline is configurable. Therefore, you can customize the steps to perform either additional
testing or other tasks with Tekton Pipelines.

Install OOTB Supply Chain with Testing

To install OOTB Supply Chain with Testing:

1. You can activate the OOTB Supply Chain with Testing by updating your profile to use
testing rather than basic as the selected supply chain for workloads in this cluster. The
tap-values.yaml is the file used to customize the profile in Tanzu package install tap --
values-file=.... Update tap-values.yaml with the following changes:

- supply_chain: basic

+ supply_chain: testing

- ootb_supply_chain_basic:

+ ootb_supply_chain_testing:

 registry:

Tanzu Application Platform v1.4

VMware by Broadcom 305

 server: "SERVER-NAME"

 repository: "REPO-NAME"

Where:

SERVER-NAME is the name of your server.

REPO-NAME is the name of the image repository that hosts the container images.

2. Update the installed profile by running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION-NUMBER --

values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13.

Tekton pipeline config example

In this section, a Tekton pipeline is added to the cluster. In the next section, the workload is
updated to point to the pipeline and resolve any current errors.

To add the Tekton pipeline to the cluster, apply the following YAML to the cluster:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 namespace: DEVELOPER-NAMESPACE

 labels:

 apps.tanzu.vmware.com/pipeline: test # (!) required

spec:

 params:

 - name: source-url # (!) required

 - name: source-revision # (!) required

 tasks:

 - name: test

 params:

 - name: source-url

 value: $(params.source-url)

 - name: source-revision

 value: $(params.source-revision)

 taskSpec:

 params:

 - name: source-url

 - name: source-revision

 steps:

 - name: test

 image: gradle

 script: |-

 cd `mktemp -d`

 wget -qO- $(params.source-url) | tar xvz -m

 ./mvnw test

Where DEVELOPER-NAMESPACE is the name of your developer namespace.

Note

Developers can perform this step because they know how their application must be
tested. The operator can also add the Tekton pipeline to a cluster before the
developer gets access.

Tanzu Application Platform v1.4

VMware by Broadcom 306

The preceding YAML puts a Tekton pipeline in the developer namespace you specify. It defines the
Tekton pipeline with a single step. The step contained in the steps pulls the code from the
repository indicated in the developers workload and runs the tests within the repository. The steps
of the Tekton pipeline are configurable and allow the developer to add additional items needed to
test their code.

There are many steps in the supply chain. In this case, the next step is an image build. Any
additional steps the developer adds to the Tekton pipeline to test their code are independent of
the image being built and of any subsequent steps executed in the supply chain. This
independence gives the developer freedom to focus on testing their code.

The params are templated by Supply Chain Choreographer. Additionally, Tekton pipelines require a
Tekton pipelineRun to execute on the cluster. Supply Chain Choreographer handles creating the
pipelineRun dynamically each time that step of the supply chain requires execution.

Workload update

To connect the new supply chain to the workload, the workload must be updated to point at your
Tekton pipeline.

1. Update the workload by running the following with the Tanzu CLI:

tanzu apps workload apply tanzu-java-web-app \

 --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

 --sub-path tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --yes \

 --namespace ${DEVELOPER_NAMESPACE}

2. After accepting the workload creation, monitor the creation of new resources by the
workload by running:

kubectl get workload,gitrepository,pipelinerun,images.kpack,podintent,app,servi

ces.serving

The result is output similar to the following example that shows the objects created by
Supply Chain Choreographer:

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

NAME URL

READY STATUS AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

vmware-tanzu/application-accelerator-samples True Fetched revision: main/8

72ff44c8866b7805fb2425130edb69a9853bfdf 109s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

77s

NAME LATESTIMAGE

READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME READY REASON

AGE

Tanzu Application Platform v1.4

VMware by Broadcom 307

podintent.conventions.carto.run/tanzu-java-web-app True 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

LATESTCREATED LATESTREADY READY REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

Install OOTB Supply Chain with Testing and Scanning

Prerequisites

Both the Scan Controller and the default Grype scanner must be installed for scanning.
Refer to the verify installation steps later in the topic.

Add the necessary configuration to enable CVE scan results in the Tanzu Application
Platform GUI. This configuration allows the Supply Chain Choreographer Tanzu Application
Platform GUI plug-in to retrieve metadata about project packages and their vulnerabilities.

To install OOTB Supply Chain with Testing and Scanning:

1. Supply Chain Security Tools (SCST) - Scan is installed as part of the Tanzu Application
Platform profiles. Verify that both Scan Controller and Grype Scanner are installed by
running:

tanzu package installed get scanning -n tap-install

tanzu package installed get grype -n tap-install

If the packages are not already installed, follow the steps in Supply Chain Security Tools -
Scan to install the required scanning components.

During installation of the Grype Scanner, sample ScanTemplates are installed into the
default namespace. If the workload is deployed into another namespace, these sample
ScanTemplates must also be present in the other namespace. One way to accomplish this is
to install Grype Scanner again and provide the namespace in the values file.

A ScanPolicy is required and must be in the required namespace. A sample ScanPolicy is
provided as follows to block a supply chain when CVEs with critical, high, and unknown
ratings are found using notAllowedSeverities :=
["Critical","High","UnknownSeverity"]. You can also configure the supply chain to use
your own custom policies and apply exceptions when you want to ignore certain CVEs. See
Out of the Box Supply Chain with Testing and Scanning. To apply the sample ScanPolicy,
you can either add the namespace flag to the kubectl command or add the namespace text
box to the template by running:

Note

When leveraging both Tanzu Build Service and Grype in your Tanzu
Application Platform supply chain, you can receive enhanced scanning
coverage for the languages and frameworks with check marks in the column
“Extended Scanning Coverage using Anchore Grype” on the Language and
Framework Support Table.

Tanzu Application Platform v1.4

VMware by Broadcom 308

kubectl apply -f - -o yaml << EOF

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: scan-policy

 labels:

 'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

 regoFile: |

 package main

 # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

 notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

 ignoreCves := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 severities := { e | e := match.ratings.rating.severity } | { e | e := mat

ch.ratings.rating[_].severity }

 some i

 fails := contains(notAllowedSeverities, severities[i])

 not fails

 }

 isSafe(match) {

 ignore := contains(ignoreCves, match.id)

 ignore

 }

 deny[msg] {

 comps := { e | e := input.bom.components.component } | { e | e := input.b

om.components.component[_] }

 some i

 comp := comps[i]

 vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := com

p.vulnerabilities.vulnerability[_] }

 some j

 vuln := vulns[j]

 ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ra

tings.rating[_].severity }

 not isSafe(vuln)

 msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

 }

EOF

2. (optional) The Tanzu Application Platform profiles install the Supply Chain Security Tools -
Store package by default. To persist and query the vulnerability results post-scan, confirm it
is installed by running:

tanzu package installed get metadata-store -n tap-install

If the package is not installed, follow the installation instructions at Install Supply Chain
Security Tools - Store independent from Tanzu Application Platform profiles.

3. Update the profile to use the supply chain with testing and scanning by updating tap-
values.yaml (the file used to customize the profile in tanzu package install tap --
values-file=...) with the following changes:

Tanzu Application Platform v1.4

VMware by Broadcom 309

- supply_chain: testing

+ supply_chain: testing_scanning

- ootb_supply_chain_testing:

+ ootb_supply_chain_testing_scanning:

 registry:

 server: "<SERVER-NAME>"

 repository: "<REPO-NAME>"

4. Update the tap package:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION-NUMBER --

values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13.

Workload update

To connect the new supply chain to the workload, update the workload to point to your Tekton
pipeline:

1. Update the workload by running the following using the Tanzu CLI:

tanzu apps workload apply tanzu-java-web-app \

 --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

 --sub-path tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --yes \

 --namespace ${DEVELOPER_NAMESPACE}

2. After accepting the workload creation, view the new resources that the workload created
by running:

kubectl get workload,gitrepository,sourcescan,pipelinerun,images.kpack,imagesca

n,podintent,app,services.serving

The following is an example output, which shows the objects that Supply Chain
Choreographer created:

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

NAME URL

READY STATUS AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

vmware-tanzu/application-accelerator-samples True Fetched revision: main/8

72ff44c8866b7805fb2425130edb69a9853bfdf 109s

NAME PHASE SCAN

NEDREVISION SCANNEDREPOSITORY

AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOTAL

sourcescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 1878

50b39b754e425621340787932759a0838795 https://github.com/vmware-tanzu/applicat

ion-accelerator-samples 90s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

77s

Tanzu Application Platform v1.4

VMware by Broadcom 310

NAME LATESTIMAGE

READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME PHASE SCANN

EDIMAGE

AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOTAL

imagescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 10.18

8.0.3:5000/foo/tanzu-java-web-app@sha256:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b8965

46e005f1efd98fbc4e79b7552c 14s

NAME READY REASON

AGE

podintent.conventions.carto.run/tanzu-java-web-app True 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

LATESTCREATED LATESTREADY READY REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

Query for vulnerabilities

Scan reports are automatically saved to the Supply Chain Security Tools - Store, and you can query
them for vulnerabilities and dependencies. For example, related to open-source software (OSS) or
third-party packages.

Query the tanzu-java-web-app image dependencies and vulnerabilities by running:

tanzu insight image get --digest DIGEST

tanzu insight image vulnerabilities --digest DIGEST

Where DIGEST is the component version or image digest printed in the KUBECTL GET command.

For additional information and examples, see Tanzu Insight plug-in overview.

Congratulations! You have successfully added testing and security scanning to your application on
the Tanzu Application Platform.

Take the next steps to learn about recommended supply chain security best practices and gain a
powerful services journey experience on the Tanzu Application Platform by enabling several
advanced use cases.

Next steps

Configure image signing and verification in your supply chain

Important

If the source or image scan has a “Failed” phase this means that the scan
failed due to a scan policy violation and the supply chain stops. For
information about the CVE triage workflow, see Out of the Box Supply
Chain with Testing and Scanning.

Tanzu Application Platform v1.4

VMware by Broadcom 311

Configure image signing and verification in your supply
chain

This topic guides you through configuring your Tanzu Application Platform supply chain to sign and
verify your image builds.

What you will do

Configure your supply chain to sign your image builds.

Configure an admission control policy to verify image signatures before admitting pods to
the cluster.

Configure your supply chain to sign and verify your image
builds

1. Use Cosign to configure Tanzu Build Service to sign your container image builds. For
instructions, see Configure Tanzu Build Service to sign your image builds.

2. Create a values.yaml file, and install the Supply Chain Security Tools - Policy Controller. For
instructions, see Install Supply Chain Security Tools - Policy Controller.

3. Create a ClusterImagePolicy that passes Tanzu Application Platform images. It is planned
for a future release for these to be signed and verifiable, but currently we recommend
creating a policy to pass them:

For example:

kubectl apply -f - -o yaml << EOF

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

 name: image-policy-exceptions

spec:

 images:

 - glob: registry.example.org/myproject/*

 - glob: REPO-NAME*

 authorities:

 - static:

 action: pass

EOF

Where:

REPO-NAME is the repository in your registry where Tanzu Build Service dependencies
are stored. This is the exact same value conigured in the kp_default_repository
inside your tap-values.yaml or tbs-values.yaml files. Examples:

Harbor has the form "my-harbor.io/my-project/build-service".

Docker Hub has the form "my-dockerhub-user/build-service" or
"index.docker.io/my-user/build-service".

Google Cloud Registry has the form "gcr.io/my-project/build-service".

Add any unsigned image that must run in your namespace to the previous policy.
For example, if you add a Tekton pipeline that runs a Gradle image for testing, you
need to add glob: index.docker.io/library/gradle* to spec.images.glob in the
preceding code.

Tanzu Application Platform v1.4

VMware by Broadcom 312

Replace registry.example.org/myproject/* with your target registry for your Tanzu
Application Platform images. If you did not relocate the Tanzu Application Platform
images to your own registry during installation, use
registry.tanzu.vmware.com/tanzu-application-platform/tap-packages*.

4. Configure and apply a ClusterImagePolicy resource to the cluster to verify image
signatures when deploying resources. For instructions, see Create a ClusterImagePolicy
resource.

For example:

kubectl apply -f - -o yaml << EOF

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

 name: example-policy

spec:

 images:

 - glob: registry.example.org/myproject/*

 authorities:

 - key:

 data: |

 -----BEGIN PUBLIC KEY-----

 <content ...>

 -----END PUBLIC KEY-----

EOF

5. Enable the policy controller verification in your namespace by adding the label
policy.sigstore.dev/include: "true" to the namespace resource.

For example:

kubectl label namespace YOUR-NAMESPACE policy.sigstore.dev/include=true

Where YOUR-NAMESPACE is the name of your secure namespace.

When you apply the ClusterImagePolicy resource, your cluster requires valid signatures for all
images that match the spec.images.glob[] you define in the configuration. For more information
about configuring an image policy, see Configuring Supply Chain Security Tools - Policy.

Next steps

Consume services on Tanzu Application Platform

Or learn more about Supply Chain Security Tools:

Overview for Supply Chain Security Tools - Policy

Configuring Supply Chain Security Tools - Policy

Supply Chain Security Tools - Policy known issues

Set up services for consumption by developers

Note

Supply Chain Security Tools - Policy Controller only validates resources in
namespaces that have chosen to opt in.

Tanzu Application Platform v1.4

VMware by Broadcom 313

This topic for service operators and application operators guides you through setting up services for
consumption by application developers. In this example, you set up the RabbitMQ Cluster
Kubernetes operator, but the process is the same for any other services you want to set up.

You will learn about the tanzu services CLI plug-in and the most important APIs for working with
services on Tanzu Application Platform.

What you will do

Set up a service.

Create a service instance.

Claim a service instance.

This enables the application developer to bind an application workload to the service instance, as
described in Consume services on Tanzu Application Platform.

Before you begin, for important background, see Consume services on Tanzu Application Platform.

Overview

The following diagram depicts a summary of what this walkthrough covers, including binding an
application workload to the service instance by the application developer.

Tanzu Application Platform v1.4

VMware by Broadcom 314

Bear the following observations in mind as you work through this guide:

1. There is a clear separation of concerns across the various user roles.

Application developers set the life cycle of workloads.

Application operators set the life cycle of claims.

Service operators set the life cycle of service instances.

The life cycle of service bindings is implicitly tied to the life cycle of workloads.

2. Claims and resource claim policies are the mechanism to enable cross-namespace binding.

3. ProvisionedService is the contract allowing credentials and connectivity information to flow
from the service instance to the class claim, to the resource claim, to the service binding,
and ultimately to the application workload. For more information, see ProvisionedService on
GitHub.

4. Exclusivity of claims: claims are considered to be mutually exclusive, meaning that claims for
a service instance can only be fulfilled by at most one claim at a time.

Prerequisites

Before following this walkthrough, you must:

1. Have access to a cluster with Tanzu Application Platform installed.

2. Have downloaded and installed the Tanzu CLI and the corresponding plug-ins.

3. Ensure that your Tanzu Application Platform cluster can pull the container images required
by the Kubernetes operator providing the service. For more information, see VMware
RabbitMQ for Kubernetes.

Although the examples in this walkthrough use the RabbitMQ Cluster Kubernetes operator, the
setup steps remain largely the same for any compatible operator.

This walkthrough uses the open source RabbitMQ Cluster operator for Kubernetes. For most real-
world deployments, VMware recommends that you use the official, supported version provided by
VMware. For more information, see the following VMware provided services:

VMware RabbitMQ for Kubernetes.

VMware SQL with Postgres for Kubernetes.

VMware SQL with MySQL for Kubernetes.

Set up a service

This section covers the following:

Installing the selected service Kubernetes operator.

Creating the role-based access control (RBAC) rules to grant Tanzu Application Platform
permission to interact with the APIs provided by the newly installed Kubernetes operator.

Creating the additional supporting resources to aid with discovery of services.

For this part of the walkthrough, you assume the role of the service operator.

To set up a service:

1. Use kapp to install the open source RabbitMQ Cluster Kubernetes operator by running:

kapp -y deploy --app rmq-operator --file https://github.com/rabbitmq/cluster-op

erator/releases/latest/download/cluster-operator.yml

Tanzu Application Platform v1.4

VMware by Broadcom 315

https://github.com/servicebinding/spec#provisioned-service
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/index.html
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/index.html
https://docs.vmware.com/en/VMware-SQL-with-Postgres-for-Kubernetes/index.html
https://docs.vmware.com/en/VMware-SQL-with-MySQL-for-Kubernetes/index.html

As a result, a new API Group (rabbitmq.com) and Kind (RabbitmqCluster) are now available
in the cluster.

PostgreSQL: Installing a Tanzu Postgres Operator

MySQL: Installing the Tanzu SQL for Kubernetes Operator

2. Apply RBAC rules to grant Tanzu Application Platform permission to interact with the new
API.

1. In a file named rmq-reader-for-binding-and-claims.yaml, create a ClusterRole
that defines the rules and label it so that the rules are aggregated to the appropriate
controller:

rmq-reader-for-binding-and-claims.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: rmq-reader-for-binding-and-claims

 labels:

 servicebinding.io/controller: "true"

rules:

- apiGroups: ["rabbitmq.com"]

 resources: ["rabbitmqclusters"]

 verbs: ["get", "list", "watch"]

2. Apply rmq-reader-for-binding-and-claims.yaml by running:

kubectl apply -f rmq-reader-for-binding-and-claims.yaml

PostgreSQL: Creating Service Bindings

MySQL: Connecting an Application to a MySQL Instance

3. Make the new API discoverable to application operators.

1. In a file named rmq-class.yaml, create a ClusterInstanceClass that refers to the
new service, and set any additional metadata. For example:

rmq-class.yaml

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

 name: rabbitmq

spec:

 description:

 short: It's a RabbitMQ cluster!

 pool:

 group: rabbitmq.com

 kind: RabbitmqCluster

for Postgres

group: sql.tanzu.vmware.com

kind: Postgres

for MySql

group: with.sql.tanzu.vmware.com

kind: MySQL

2. Apply rmq-class.yaml by running:

kubectl apply -f rmq-class.yaml

Tanzu Application Platform v1.4

VMware by Broadcom 316

https://docs.vmware.com/en/VMware-SQL-with-Postgres-for-Kubernetes/1.8/vmware-postgres-k8s/GUID-install-operator.html
https://docs.vmware.com/en/VMware-SQL-with-MySQL-for-Kubernetes/1.5/vmware-mysql-k8s/install-operator.html
https://docs.vmware.com/en/VMware-SQL-with-Postgres-for-Kubernetes/1.8/vmware-postgres-k8s/GUID-creating-service-bindings.html#setup-postgres-with-services-toolkit
https://docs.vmware.com/en/VMware-SQL-with-MySQL-for-Kubernetes/1.5/vmware-mysql-k8s/creating-service-bindings.html#setup-mysql-with-services-toolkit

After applying this resource, it is listed in the output of the tanzu service classes
list command, and is discoverable in the tanzu tooling.

Create a service instance

This section covers:

Using kubectl to create a RabbitmqCluster service instance.

Creating a resource claim policy that permits the service instance to be claimed.

For this part of the walkthrough, you assume the role of the service operator.

To create a service instance:

1. Create a dedicated namespace for service instances by running:

kubectl create namespace service-instances

2. Create a RabbitmqCluster service instance.

1. Create a file named rmq-1-service-instance.yaml:

rmq-1-service-instance.yaml

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

 name: rmq-1

 namespace: service-instances

2. Apply rmq-1-service-instance.yaml by running:

kubectl apply -f rmq-1-service-instance.yaml

PostgreSQL: Deploying a Postgres Instance

MySQL: Creating a MySQL Instance

3. Create a resource claim policy to define the namespaces the instance can be claimed and
bound from.

Note

Using namespaces to separate service instances from application workloads
allows for greater separation of concerns, and means that you can achieve
greater control over who has access to what. However, this is not a strict
requirement. You can create both service instances and application
workloads in the same namespace. There is no need to create a resource
claim policy if the service instance resides in the same namespace as the
application workload.

Note

If using Openshift, you might have to provide additional
configuration for the RabbitmqCluster. For more details, see Using
the RabbitMQ Kubernetes Operators on Openshift in the RabbitMQ
documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 317

https://docs.vmware.com/en/VMware-Tanzu-SQL-with-Postgres-for-Kubernetes/1.8/tanzu-postgres-k8s/GUID-create-delete-postgres.html#deploying-a-postgres-instance
https://docs.vmware.com/en/VMware-SQL-with-MySQL-for-Kubernetes/1.5/vmware-mysql-k8s/create-delete-mysql.html#create-a-mysql-instance
https://www.rabbitmq.com/kubernetes/operator/using-on-openshift.html

By default, you can only claim and bind to service instances that are running in the same
namespace as the application workloads. To claim service instances running in a different
namespace, you must create a resource claim policy.

1. Create a file named rmq-claim-policy.yaml as follows:

rmq-claim-policy.yaml

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

 name: rabbitmqcluster-cross-namespace

 namespace: service-instances

spec:

 consumingNamespaces:

 - '*'

 subject:

 group: rabbitmq.com

 kind: RabbitmqCluster

for Postgres

group: sql.tanzu.vmware.com

kind: Postgres

for MySql

group: with.sql.tanzu.vmware.com

kind: MySQL

2. Apply rmq-claim-policy.yaml by running:

kubectl apply -f rmq-claim-policy.yaml

This policy states that any resource of kind RabbitmqCluster on the rabbitmq.com API group
in the service-instances namespace can be consumed from any namespace.

Claim a service instance
This section covers:

Using tanzu service class list to view details about available classes from which
instances can be claimed.

Using tanzu service class-claim create to create a claim for the service instance.

For this part of the walkthrough, you assume the role of the application operator.

Claims in Tanzu Application Platform are a powerful concept that serve many purposes. Arguably
their most important role is to enable application operators to request services to use with their
application workloads without having to create and manage the services themselves. For more
information, see Resource Claims.

In cases where service instances are running in the same namespace as application workloads, you
do not have to create a claim. You can bind to the service instance directly.

In this section you use the tanzu service class-claim create command to create a claim that the
RabbitmqCluster service instance you created earlier can fulfill. This command requires the
following information to create a claim:

--class

To claim a service instance:

1. Find the claimable instance and the necessary claim information by running:

tanzu service class list

Tanzu Application Platform v1.4

VMware by Broadcom 318

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/resource_claims-api_docs.html

Expected output:

 tanzu service class list

 NAME DESCRIPTION

 rabbitmq It's a RabbitMQ cluster!

2. Using the information from the previous command, create a claim for the service instance
by running:

tanzu service class-claim create rmq-1 \

 --class rabbitmq

You have set the scene for the application developer to inspect the claim and to use it to bind to
application workloads, as described in Consume services on Tanzu Application Platform.

Further use cases and reading
There are more service use cases not covered in this Getting started guide. See the following:

Use Case Short Description

Introducing Different Service
Implementatations in Different Environments

Using classes to have a claim resolve to a different backing service
resource depending on which environment it is in.
This removes the need for application operators to change `ClassClaim`s
and `Workload`s as they are promoted through environments.

Consuming AWS RDS on Tanzu Application
Platform

Using the Controllers for Kubernetes (ACK) to provision an RDS instance
and consume it from a Tanzu Application Platform workload.
Involves making a third-party API consumable from Tanzu Application
Platform.

Consuming AWS RDS on Tanzu Application
Platform with Crossplane

Using Crossplane to provision an RDS instance and consume it from a
Tanzu Application Platform workload.
Involves making a third-party API consumable from Tanzu Application
Platform.

Consuming Google Cloud SQL on Tanzu
Application Platform with Config Connector

Using GCP Config Connector to provision a Cloud SQL instance and
consume it from a Tanzu Application Platform workload.
Involves making a third-party API consumable from Tanzu Application
Platform.

Consuming Google Cloud SQL on Tanzu
Application Platform with Crossplane

Using Crossplane to provision a Cloud SQL instance and consume it
from a Tanzu Application Platform workload.
Involves making a third-party API consumable from Tanzu Application
Platform.

Direct Secret References Binding to services running external to the cluster, for example, an in-
house oracle database.
Binding to services that do not conform with the binding specification.

Dedicated Service Clusters (Experimental) Separates application workloads from service instances across
dedicated clusters.

For more information about the APIs and concepts underpinning Services on Tanzu Application
Platform, see the Services Toolkit Component documentation

Next steps
Now that you completed the Getting started guides, learn about:

Multicluster Tanzu Application Platform

Tanzu Application Platform v1.4

VMware by Broadcom 319

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-introducing_different_service_implementations_in_different_environments.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_aws_rds_with_ack.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_aws_rds_with_crossplane.html
https://crossplane.io/
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_gcp_sql_with_config_connector.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_gcp_sql_with_crossplane.html
https://crossplane.io/
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-direct_secret_references.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-dedicated_service_clusters.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/overview.html

Deploy an app on Tanzu Application Platform

This is the first in a series of Getting started how-to guides for developers. It walks you through
deploying your first application on Tanzu Application Platform by using Tanzu Application Platform
GUI.

What you will do
Generate a project from an application accelerator.

(Optional) Provision a new Git repository for the project.

Upload it to your Git repository of choice.

Deploy the app using the Tanzu CLI.

View the build and runtime logs for your app.

View the web app in your browser.

(Optional) Add your application to Tanzu Application Platform GUI software catalog.

Before you start, complete all Getting started prerequisites. For background on application
accelerators, see Application Accelerator.

Generate a new project using an application accelerator
In this example, you use the Tanzu-Java-Web-App accelerator. You also use Tanzu Application
Platform GUI. For information about connecting to Tanzu Application Platform GUI, see Access
Tanzu Application Platform GUI.

1. From Tanzu Application Platform GUI portal, click Create located on the left side of the
navigation pane to see the list of available accelerators.

2. Locate the Tanzu Java Web App accelerator and click CHOOSE.

3. In the Generate Accelerators dialog box, replace the default value dev.local in the prefix
for container image registry text box with the registry in the form of SERVER-NAME/REPO-

Note

This walkthrough uses Tanzu Application Platform GUI. Alternatively, you can
deploy your first application on Tanzu Application Platform using the Application
Accelerator Extension for VS Code.

Tanzu Application Platform v1.4

VMware by Broadcom 320

NAME. The SERVER-NAME/REPO-NAME must match what was specified for registry as part of
the installation values for ootb_supply_chain_basic. See the Full Profile section on Installing
Tanzu Application Platform package and profiles. Click NEXT.

4. If your instance has optional Git repository support enabled, continue with the following
sub-steps. If your instance does not support this, skip to step 5, “Verify the provided
information.”

1. Select Create Git repo?

2. Select the Host Git repository provider from the drop-down menu. In this example,
select github.com.

3. Populate the Owner and Repository properties.

Tanzu Application Platform v1.4

VMware by Broadcom 321

4. As you are populating the form, a dialog box appears asking for permission to
provision Git repositories. Follow the prompts and continue.

5. Click NEXT.

5. Verify the provided information, and click GENERATE ACCELERATOR.

6. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

7. After downloading the ZIP file, expand it in a workspace directory. If you did not create a
Git repository in the preceding steps, follow your preferred procedure for uploading the
generated project files to a Git repository for your new project.

Deploy your application through Tanzu Application
Platform GUI

1. Set up environment variables by running:

export GIT_PROJECT_URL=GIT-URL-TO-PROJECT-REPO

export GIT_BRANCH=GIT-PROJECT-BRANCH

export DEVELOPER_NAMESPACE=YOUR-DEVELOPER-NAMESPACE

Where:

GIT-URL-TO-PROJECT-REPO is the git URL of the repository you uploaded your source
code to earlier. e.g. https://github.com/my-org/repository.git

GIT-PROJECT-BRANCH is the git branch of the project. e.g. main

Tanzu Application Platform v1.4

VMware by Broadcom 322

YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

2. Deploy the Tanzu Java Web App accelerator by running the tanzu apps workload create
command:

tanzu apps workload create tanzu-java-web-app \

 --git-repo ${GIT_PROJECT_URL} \

 --git-branch ${GIT_BRANCH} \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --yes \

 --namespace ${DEVELOPER_NAMESPACE}

For more information, see Tanzu Apps Workload Apply.

3. View the build and runtime logs for your app by running the tail command:

tanzu apps workload tail tanzu-java-web-app --since 10m --timestamp --namespace

YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

4. After the workload is built and running, you can view the web app in your browser. View
the URL of the web app by running the following command and then press ctrl-click on the
Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get tanzu-java-web-app --namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

Add your application to Tanzu Application Platform GUI
software catalog

1. Navigate to the home page of Tanzu Application Platform GUI and click Home, located on
the left navigation pane. Click REGISTER ENTITY.

Alternatively, you can add a link to the catalog-info.yaml to the tap-values.yaml
configuration file in the tap_gui.app_config.catalog.locations section. See Installing the
Tanzu Application Platform Package and Profiles.

2. Register an existing component prompts you to type a repository URL. Type the link to
the catalog-info.yaml file of the tanzu-java-web-app in the Git repository text box. For
example, https://github.com/USERNAME/PROJECTNAME/blob/main/catalog-info.yaml.

Note

This deployment uses an accelerator source from Git, but in later steps you
use the VS Code extension to debug and live-update this application.

Tanzu Application Platform v1.4

VMware by Broadcom 323

3. Click ANALYZE.

4. Review the catalog entities to be added and click IMPORT.

5. Navigate back to the home page. The catalog changes and entries are visible for further
inspection.

Next steps

Iterate on your new app

Deploy an app on Tanzu Application Platform

This is the first in a series of Getting started how-to guides for developers. It walks you through
deploying your first application on Tanzu Application Platform by using Tanzu Application Platform
GUI.

Note

If your Tanzu Application Platform GUI instance does not have a PostgreSQL
database configured, the catalog-info.yaml location must be re-registered after
the instance is restarted or upgraded.

Note

This walkthrough uses Tanzu Application Platform GUI. Alternatively, you can
deploy your first application on Tanzu Application Platform using the Application

Tanzu Application Platform v1.4

VMware by Broadcom 324

What you will do

Generate a project from an application accelerator.

(Optional) Provision a new Git repository for the project.

Upload it to your Git repository of choice.

Deploy the app using the Tanzu CLI.

View the build and runtime logs for your app.

View the web app in your browser.

(Optional) Add your application to Tanzu Application Platform GUI software catalog.

Before you start, complete all Getting started prerequisites. For background on application
accelerators, see Application Accelerator.

Generate a new project using an application accelerator

In this example, you use the Tanzu-Java-Web-App accelerator. You also use Tanzu Application
Platform GUI. For information about connecting to Tanzu Application Platform GUI, see Access
Tanzu Application Platform GUI.

1. From Tanzu Application Platform GUI portal, click Create located on the left side of the
navigation pane to see the list of available accelerators.

2. Locate the Tanzu Java Web App accelerator and click CHOOSE.

3. In the Generate Accelerators dialog box, replace the default value dev.local in the prefix
for container image registry text box with the registry in the form of SERVER-NAME/REPO-
NAME. The SERVER-NAME/REPO-NAME must match what was specified for registry as part of
the installation values for ootb_supply_chain_basic. See the Full Profile section on Installing
Tanzu Application Platform package and profiles. Click NEXT.

Accelerator Extension for VS Code.

Tanzu Application Platform v1.4

VMware by Broadcom 325

4. If your instance has optional Git repository support enabled, continue with the following
sub-steps. If your instance does not support this, skip to step 5, “Verify the provided
information.”

1. Select Create Git repo?

2. Select the Host Git repository provider from the drop-down menu. In this example,
select github.com.

3. Populate the Owner and Repository properties.

Tanzu Application Platform v1.4

VMware by Broadcom 326

4. As you are populating the form, a dialog box appears asking for permission to
provision Git repositories. Follow the prompts and continue.

5. Click NEXT.

5. Verify the provided information, and click GENERATE ACCELERATOR.

6. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

7. After downloading the ZIP file, expand it in a workspace directory. If you did not create a
Git repository in the preceding steps, follow your preferred procedure for uploading the
generated project files to a Git repository for your new project.

Deploy your application through Tanzu Application
Platform GUI

1. Set up environment variables by running:

export GIT_PROJECT_URL=GIT-URL-TO-PROJECT-REPO

export GIT_BRANCH=GIT-PROJECT-BRANCH

export DEVELOPER_NAMESPACE=YOUR-DEVELOPER-NAMESPACE

Where:

GIT-URL-TO-PROJECT-REPO is the git URL of the repository you uploaded your source
code to earlier. e.g. https://github.com/my-org/repository.git

GIT-PROJECT-BRANCH is the git branch of the project. e.g. main

Tanzu Application Platform v1.4

VMware by Broadcom 327

YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

2. Deploy the Tanzu Java Web App accelerator by running the tanzu apps workload create
command:

tanzu apps workload create tanzu-java-web-app \

 --git-repo ${GIT_PROJECT_URL} \

 --git-branch ${GIT_BRANCH} \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --yes \

 --namespace ${DEVELOPER_NAMESPACE}

For more information, see Tanzu Apps Workload Apply.

3. View the build and runtime logs for your app by running the tail command:

tanzu apps workload tail tanzu-java-web-app --since 10m --timestamp --namespace

YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

4. After the workload is built and running, you can view the web app in your browser. View
the URL of the web app by running the following command and then press ctrl-click on the
Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get tanzu-java-web-app --namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

Add your application to Tanzu Application Platform GUI
software catalog

1. Navigate to the home page of Tanzu Application Platform GUI and click Home, located on
the left navigation pane. Click REGISTER ENTITY.

Alternatively, you can add a link to the catalog-info.yaml to the tap-values.yaml
configuration file in the tap_gui.app_config.catalog.locations section. See Installing the
Tanzu Application Platform Package and Profiles.

2. Register an existing component prompts you to type a repository URL. Type the link to
the catalog-info.yaml file of the tanzu-java-web-app in the Git repository text box. For
example, https://github.com/USERNAME/PROJECTNAME/blob/main/catalog-info.yaml.

Note

This deployment uses an accelerator source from Git, but in later steps you
use the VS Code extension to debug and live-update this application.

Tanzu Application Platform v1.4

VMware by Broadcom 328

3. Click ANALYZE.

4. Review the catalog entities to be added and click IMPORT.

5. Navigate back to the home page. The catalog changes and entries are visible for further
inspection.

Next steps

Iterate on your new app

Iterate on your new app

This topic guides you through starting to iterate on your first application on Tanzu Application
Platform, which you deployed in the previous how-to, Deploy your first application.

What you will do

Prepare your IDE to iterate on your application.

Live update your application to view code changes updating live on the cluster.

Note

If your Tanzu Application Platform GUI instance does not have a PostgreSQL
database configured, the catalog-info.yaml location must be re-registered after
the instance is restarted or upgraded.

Tanzu Application Platform v1.4

VMware by Broadcom 329

Debug your application.

Monitor your running application on the Application Live View UI.

Prepare your IDE to iterate on your application

In the previous Getting started how-to topic, Deploy your first application, you deployed your first
application on Tanzu Application Platform. Now that you have a skeleton workload developed, you
are ready to begin to iterate on your new application and test code changes on the cluster.

Tanzu Developer Tools for Visual Studio Code is VMware Tanzu’s official IDE extension for VS
Code. It helps you develop and receive fast feedback on your workloads running on the Tanzu
Application Platform.

The VS Code extension enables live updates of your application while running on the cluster and
allows you to debug your application directly on the cluster. For information about installing the
prerequisites and the Tanzu Developer Tools for VS Code extension, see Install Tanzu Developer
Tools for Visual Studio Code.

1. Open the Tanzu Java Web App as a project within your VS Code IDE.

2. To ensure your extension assists you with iterating on the correct project, configure its
settings using the following instructions.

1. In Visual Studio Code, navigate to Preferences > Settings > Extensions > Tanzu
Developer Tools.

2. In the Local Path field, provide the path to the directory containing the Tanzu Java
Web App. The current directory is the default.

3. In the Source Image field, provide the destination image repository to publish an
image containing your workload source code. For example, gcr.io/myteam/tanzu-
java-web-app-source.

You are now ready to iterate on your application.

Live update your application

Deploy the application to view it updating live on the cluster to see how code changes behave on a
production cluster.

Follow the following steps to live update your application:

1. From the Command Palette (⇧⌘P), type in and select Tanzu: Live Update Start. You can
view output from Tanzu Application Platform and from Tilt indicating that the container is
being built and deployed.

Important

Use Tilt v0.30.12 or a later version for the sample application.

Note

See the documentation for the registry you’re using to find out
which steps are necessary to authenticate and gain push access.

For example, if you use Docker, see the Docker documentation, or if
you use Harbor, see the Harbor documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 330

https://docs.docker.com/engine/reference/commandline/login/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/pulling-pushing-images/

You see “Live Update starting…” in the status bar at the bottom right.

Live update can take 1 to 3 minutes while the workload deploys and the Knative
service becomes available.

2. When the Live Update status in the status bar is visible, resolve to “Live Update Started,”
navigate to http://localhost:8080 in your browser, and view your running application.

3. In the IDE, make a change to the source code. For example, in HelloController.java, edit
the string returned to say Hello! and save.

4. The container is updated when the logs stop streaming. Navigate to your browser and
refresh the page.

5. View the changes to your workload running on the cluster.

6. Either continue making changes, or stop and deactivate the live update when finished.
Open the command palette (⇧⌘P), type Tanzu, and choose an option.

Debug your application

Debug your cluster either on the application or in your local environment.

Use the following steps to debug your cluster:

1. Set a breakpoint in your code.

2. Right-click the file workload.yaml within the config directory and select Tanzu: Java
Debug Start. In a few moments, the workload is redeployed with debugging enabled. The
“Deploy and Connect” Task completes and the debug menu actions are made available to
you, indicating that the debugger has attached.

3. Navigate to http://localhost:8080 in your browser. This hits the breakpoint within VS
Code. Play to the end of the debug session using VS Code debugging controls.

Monitor your running application

Inspect the runtime characteristics of your running application using the Application Live View UI to
monitor:

Resource consumption

Java Virtual Machine (JVM) status

Incoming traffic

Change log level

You can also troubleshoot environment variables and fine-tune the running application.

Use the following steps to diagnose Spring Boot-based applications by using Application Live View:

Note

Depending on the type of cluster you use, you might see an error similar to
the following:

ERROR: Stop! cluster-name might be production. If you're sure you

want to deploy there, add: allow_k8s_contexts('cluster-name') to

your Tiltfile. Otherwise, switch k8scontexts and restart Tilt. Follow
the instructions and add the line, allow_k8s_contexts('cluster-name') to
your Tiltfile.

Tanzu Application Platform v1.4

VMware by Broadcom 331

1. Confirm that the Application Live View components installed successfully. For instructions,
see Install Application Live View.

2. Access the Application Live View Tanzu Application Platform GUI. For instructions, see
Entry point to Application Live View plug-in.

3. Select your running application to view the diagnostic options and inside the application.
For more information, see Application Live View features.

Next steps

Consume services on Tanzu Application Platform

Consume services on Tanzu Application Platform

This topic for application developers guides you through deploying two application workloads and
configuring them to communicate using a service instance. The topic uses RabbitMQ as an
example, but the process is the same regardless of the service you want to consume.

You will use the Tanzu Service CLI plug-in and will learn about classes, claims, and bindings.

What you will do

Inspect the claim created for the service instance by the application operator.

Bind the application workload to the claim so the workload utilizes the service instance.

Overview

The following diagram depicts a summary of what this walkthrough covers, including the work of
the service and application operators described in Set up services for consumption by developers.

Tanzu Application Platform v1.4

VMware by Broadcom 332

Bear the following observations in mind as you work through this guide:

1. There is a clear separation of concerns across the various user roles.

Application developers set the life cycle of workloads.

Application operators set the life cycle of claims.

Service operators set the life cycle of service instances.

The life cycle of service bindings is implicitly tied to the life cycle of workloads.

2. ProvisionedService is the contract allowing credentials and connectivity information to flow
from the service instance to the class claim, to the resource claim, to the service binding,
and ultimately to the application workload. For more information, see ProvisionedService on
GitHub.

Prerequisites

Before following this walkthrough, as app developer you must:

1. Have access to a cluster with Tanzu Application Platform installed.

2. Have downloaded and installed the Tanzu CLI and the corresponding plug-ins.

3. Have set up the default namespace to use installed packages and use it as your developer
namespace. For more information, see Set up developer namespaces to use your installed

Tanzu Application Platform v1.4

VMware by Broadcom 333

https://github.com/servicebinding/spec#provisioned-service

packages.

4. Ensure that your Tanzu Application Platform cluster can pull source code from GitHub.

5. Ensure that the service operator and application operator have completed:

Setting up the service.

Creating the service instance.

Creating a claim for the service instance.

After you’ve completed these prerequisites, you are ready to inspect the claim created for the
service instance by the application operator in Set up services for consumption by developers and
use it to bind to application workloads.

Bind an application workload to the service instance

This section covers:

Using tanzu service class-claim list and tanzu service class-claim get to find
information about the claim to use for binding.

Using tanzu apps workload create with the --service-ref flag to create a workload and
bind it to the service instance.

In Tanzu Application Platform, service bindings are created when you create application workloads
that specify .spec.serviceClaims. In this section, you create such workloads by using the --
service-ref flag of the tanzu apps workload create command.

To create an application workload:

1. Inspect the claims in the developer namespace to find the value to pass to --service-ref
command by running:

tanzu services class-claims list

Expected output:

 NAME CLASS READY REASON

 rmq-1 rabbitmq True Ready

2. Retrieve detailed information about the claim by running:

tanzu services class-claims get rmq-1

Expected output:

Name: rmq-1

Namespace: default

Claim Reference: services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:rmq-1

Class Reference:

 Name: rabbitmq

Status:

 Ready: True

 Claimed Resource:

 Name: rmq-1

 Namespace: service-instances

 Group: rabbitmq.com

 Version: v1beta1

 Kind: RabbitmqCluster

Tanzu Application Platform v1.4

VMware by Broadcom 334

3. Record the value of Claim Reference from the previous command. This is the value to pass
to --service-ref to create the application workload.

4. Create the application workload by running:

tanzu apps workload create spring-sensors-consumer-web \

 --git-repo https://github.com/tanzu-end-to-end/spring-sensors \

 --git-branch rabbit \

 --type web \

 --label app.kubernetes.io/part-of=spring-sensors \

 --annotation autoscaling.knative.dev/minScale=1 \

 --service-ref="rmq=services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:rmq-1"

tanzu apps workload create \

 spring-sensors-producer \

 --git-repo https://github.com/tanzu-end-to-end/spring-sensors-sensor \

 --git-branch main \

 --type web \

 --label app.kubernetes.io/part-of=spring-sensors \

 --annotation autoscaling.knative.dev/minScale=1 \

 --service-ref="rmq=services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:rmq-1"

Using the --service-ref flag instructs Tanzu Application Platform to bind the application
workload to the service provided in the ref.

You are not passing a service ref to the RabbitmqCluster service instance directly, but
rather to the claim that has claimed the RabbitmqCluster service instance. See the
consuming services diagram at the beginning of this walkthrough.

5. After the workloads are ready, visit the URL of the spring-sensors-consumer-web app.
Confirm that sensor data, passing from the spring-sensors-producer workload to the
create spring-sensors-consumer-web workload using the RabbitmqCluster service
instance, is displayed.

Further use cases and reading

There are more service use cases not covered in this getting started guide. See the following:

Use Case Short Description

Consuming AWS RDS on Tanzu Application
Platform

Using the Controllers for Kubernetes (ACK) to provision an RDS instance
and consume it from a Tanzu Application Platform workload.
Involves making a third-party API consumable from Tanzu Application
Platform.

Consuming AWS RDS on Tanzu Application
Platform with Crossplane

Using Crossplane to provision an RDS instance and consume it from a
Tanzu Application Platform workload.
Involves making a third-party API consumable from Tanzu Application
Platform.

Note

The deliverable produced eventually fails if the referenced resource in --
service-ref consistently does not exist. This behavior is encoded in the
OOTB supply chains through the use of the OOTB templates. The service-
bindings OOTB template can be used to replicate the same behavior in
bespoke supply chains.

Tanzu Application Platform v1.4

VMware by Broadcom 335

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_aws_rds_with_ack.html#dscvr-claim-bind
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_aws_rds_with_crossplane.html#claim-the-rds-postgresql-instance-and-connect-to-it-from-the-tanzu-application-platform-workload-8
https://crossplane.io/

Use Case Short Description

Consuming Google Cloud SQL on Tanzu
Application Platform with Config Connector

Using GCP Config Connector to provision a Cloud SQL instance and
consume it from a Tanzu Application Platform workload.
Involves making a third-party API consumable from Tanzu Application
Platform.

Consuming Google Cloud SQL on Tanzu
Application Platform with Crossplane

Using Crossplane to provision a Cloud SQL instance and consume it
from a Tanzu Application Platform workload.
Involves making a third-party API consumable from Tanzu Application
Platform.

Direct Secret References Binding to services running external to the cluster, for example, an in-
house oracle database.
Binding to services that do not conform with the binding specification.

Dedicated Service Clusters (Experimental) Separates application workloads from service instances across
dedicated clusters.

For more information about the APIs and concepts underpinning Services on Tanzu Application
Platform, see the Services Toolkit Component documentation.

Next steps

Now that you completed the Getting started guides, learn about:

Multicluster Tanzu Application Platform

Deploy an air-gapped workload on Tanzu Application
Platform
This topic for developers guides you through deploying your first workload on Tanzu Application
Platform (commonly known as TAP) in an air-gapped environment.

For information about installing Tanzu Application Platform in an air-gapped environment, see
Install Tanzu Application Platform in an air-gapped environment.

What you will do
Create a workload from Git.

Create a basic supply chain workload.

Create a testing supply chain workload.

Create a testing scanning supply chain workload.

Create a workload from Git
To create a workload from Git through HTTPS, follow these steps:

1. Create a secret in your developer namespace with the caFile that matches the
gitops_ssh_secret name in the tap_values.yaml file:

kubectl create secret generic custom-ca --from-file=caFile=CA_PATH -n NAMESPACE

2. (Optional) To pass in login credentials for a Git repository with the certificate authority (CA)
certificate, create a file called git-credentials.yaml. For example:

apiVersion: v1

kind: Secret

Tanzu Application Platform v1.4

VMware by Broadcom 336

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_gcp_sql_with_config_connector.html#discover-claim-and-bind-to-a-google-cloud-sql-postgresql-instance-3
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_gcp_sql_with_crossplane.html#claim-the-cloudsql-postgresql-instance-and-connect-to-it-from-the-tanzu-application-platform-workload-8
https://crossplane.io/
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-direct_secret_references.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-dedicated_service_clusters.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/overview.html

metadata:

 name: git-ca

 # namespace: default

type: Opaque

stringData:

 username: USERNAME

 password: PASSWORD

 caFile: |

 CADATA

Where:

USERNAME is the user name.

PASSWORD is the password.

CADATA is the PEM-encoded CA certificate for the Git repository.

3. To pass in a custom settings.xml for Java, create a file called settings-xml.yaml. For
example:

apiVersion: v1

kind: Secret

metadata:

 name: settings-xml

type: service.binding/maven

stringData:

 type: maven

 provider: sample

 settings.xml: |

 <settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 https://maven.

apache.org/xsd/settings-1.0.0.xsd">

 <mirrors>

 <mirror>

 <id>reposilite</id>

 <name>Tanzu seal Internal Repo</name>

 <url>https://reposilite.tap-trust.cf-app.com/releases</url>

 <mirrorOf>*</mirrorOf>

 </mirror>

 </mirrors>

 <servers>

 <server>

 <id>reposilite</id>

 <username>USERNAME</username>

 <password>PASSWORD</password>

 </server>

 </servers>

 </settings>

4. Apply the file:

kubectl create -f settings-xml.yaml -n DEVELOPER-NAMESPACE

Create a basic supply chain workload
Next, create your basic supply chain workload.

To pass the CA certificate in when you create the workload, run:

tanzu apps workload create APP-NAME --git-repo https://GITREPO --git-branch BRANCH --

type web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml buildService

Tanzu Application Platform v1.4

VMware by Broadcom 337

Bindings='[{"name": "settings-xml", "kind": "Secret"}]' --param "gitops_ssh_secret=git

-ca"

Create a testing supply chain workload

For instructions about creating a workload with the testing supply chain, see Install OOTB Supply
Chain with Testing.

To add the Tekton supply chain to the cluster, apply the following YAML to the cluster:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 labels:

 apps.tanzu.vmware.com/pipeline: test # (!) required

spec:

 params:

 - name: source-url # (!) required

 - name: source-revision # (!) required

 tasks:

 - name: test

 params:

 - name: source-url

 value: $(params.source-url)

 - name: source-revision

 value: $(params.source-revision)

 taskSpec:

 params:

 - name: source-url

 - name: source-revision

 steps:

 - name: test

 image: MY-REGISTRY/gradle

 script: |-

 cd `mktemp -d`

Where MY-REGISTRY is your container image registry. Relocate all the images given in the pipeline
YAML to your private container registry.

Create the workload by running:

tanzu apps workload create APP-NAME --git-repo https://GITURL --git-branch BRANCH --t

ype web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml --label apps.

tanzu.vmware.com/has-tests=true buildServiceBindings='[{"name": "settings-xml", "kin

d": "Secret"}]'

To instead pass the CA certificate when you create the workload, run:

tanzu apps workload create APP-NAME --git-repo https://GITREPO --git-branch BRANCH --

type web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml --label app

s.tanzu.vmware.com/has-tests=true buildServiceBindings='[{"name": "settings-xml", "kin

d": "Secret"}]' --param "gitops_ssh_secret=git-ca"

Create a testing scanning supply chain workload

For instructions about creating a workload with the testing and scanning supply chain, see Install
OOTB Supply Chain with Testing and Scanning.

In addition to the prerequisites given at Prerequisites, follow Using Grype in offline and air-gapped
environments before workload creation.

Tanzu Application Platform v1.4

VMware by Broadcom 338

Create workload by running:

tanzu apps workload create APP-NAME --git-repo https://GITURL --git-branch BRANCH --t

ype web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml --label apps.

tanzu.vmware.com/has-tests=true buildServiceBindings='[{"name": "settings-xml", "kin

d": "Secret"}]'

To instead pass the CA certificate when you create the workload, run:

tanzu apps workload create APP-NAME --git-repo https://GITREPO --git-branch BRANCH --

type web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml --label app

s.tanzu.vmware.com/has-tests=true buildServiceBindings='[{"name": "settings-xml", "kin

d": "Secret"}]' --param "gitops_ssh_secret=git-ca"

Learn about Tanzu Application Platform
The topics in this section explain concepts important to getting started with Tanzu Application
Platform.

In this section:

Application Accelerator

Supply chains on Tanzu Application Platform

Vulnerability scanning and metadata storage for your supply chain

Consume services on Tanzu Application Platform

Application accelerators on Tanzu Application Platform
This topic describes the key concepts you need to know about application accelerators on Tanzu
Application Platform (commonly known as TAP).

What are application accelerators
Application accelerators are templates that not only codify best practices but also provide important
configuration and structures ready and available for use. Developers can create applications and get
started with feature development immediately with the help of application accelerators.

Enterprise Architects use Application Accelerator to create application accelerators, which provide
developers and admins in their organization with ready-made, enterprise-conforming code and
configurations. Accelerators contain complete and runnable application code and deployment
configurations. They also contain metadata for altering the code and deployment configurations
based on input values provided for specific options defined in the accelerator metadata.

Working with accelerators
The Application Accelerator plug-in for Tanzu Application Platform GUI helps you to discover
accelerators and to enter extra information used for processing the files before downloading. As of
Tanzu Application Platform v1.2, developers can also discover and work on accelerators right in
Visual Studio Code with the Tanzu Application Accelerator for VS Code extension. Developers can
use the list, get, and generate commands to use accelerators available in an Application
Accelerator server.

Admins use the create, update, and delete commands for managing accelerators in a Kubernetes
context. When admins want to use the get and list commands, they can specify the --from-
context flag to access accelerators in a Kubernetes context.

Tanzu Application Platform v1.4

VMware by Broadcom 339

Next steps

Apply what you have learned:

Developers:

Deploy an app on Tanzu Application Platform

Operators:

Create an application accelerator

Supply chains on Tanzu Application Platform

This topic describes the key concepts you need to know about supply chains and Continuous
Integration/Continuous Delivery (CI/CD) on Tanzu Application Platform (commonly known as TAP).

What are supply chains

Supply chains provide a way of codifying all of the steps of your path to production, more
commonly known as CI/CD. CI/CD is a method to frequently deliver applications by introducing
automation into the stages of application development. The main concepts attributed to CI/CD are
continuous integration, continuous delivery, and continuous deployment.

CI/CD is the method used by supply chains to deliver applications through automation. Tanzu
Application Platform supply chains allow you to use CI/CD and add any other steps necessary for an
application to reach production or a different environment, such as staging.

A path to production

A path to production allows you to create a unified access point for all of the tools required for your
applications to reach a customer-facing environment. Instead of having four tools that are loosely
coupled to each other, a path to production defines all four tools in a single, unified layer of
abstraction. The path to production can be automated and repeatable between teams for
applications at scale.

Typically tools cannot integrate with one another without scripting or webhooks. Whereas with a
path to production, there is a unified automation tool to codify all the interactions between each of
the tools. Supply chains that are used to codify the path to production for an organization are
configurable. This allows their authors to add all of the steps of the path to production for their
applications.

Available supply chains

Tanzu Application Platform provides three out of the box (OOTB) supply chains to work with the
Tanzu Application Platform components. They include:

OOTB Supply Chain Basic (default)

OOTB Supply Chain with Testing (optional)

OOTB Supply Chain with Testing+Scanning (optional)

1: OOTB Basic (default)

Tanzu Application Platform v1.4

VMware by Broadcom 340

The default OOTB Basic supply chain and its dependencies were installed on your cluster during
the Tanzu Application Platform install. The following diagram and table provide a description of the
supply chain and dependencies provided with Tanzu Application Platform.

Name Package Name Description Dependencies

Out of the Box
Basic (Default -
Installed during
Installing Part 2)

ootb-supply-

chain-

basic.tanzu.vm

ware.com

This supply chain monitors a repository that is
identified in the developer’s workload.yaml file.
When any new commits are made to the
application, the supply chain:

Creates a new image.

Applies any predefined conventions.

Deploys the application to the cluster.

Flux/Source
Controller

Tanzu Build
Service

Convention
Service

Tekton

Cloud Native
Runtimes

If using
Service
References:

Servi
ce
Bindi
ngs

Servi
ces
Tool
kit

2: OOTB Testing

OOTB Testing supply chain runs a Tekton pipeline within the supply chain. The following diagram
and table provide a description of the supply chain and dependencies provided with Tanzu
Application Platform.

Name Package Name Description Dependencies

Out of
the Box
Testing

ootb-supply-

chain-

testing.tanzu.vm

ware.com

Out of the Box Testing contains all of the same elements as the
Source to URL. It allows developers to specify a Tekton
pipeline that runs as part of the CI step of the supply chain.

The application tests using the Tekton pipeline.

A new image is created.

Any predefined conventions are applied.

The application is deployed to the cluster.

All of the Source to
URL dependencies

3: OOTB Testing+Scanning

OOTB Testing+Scanning supply chain includes integrations for secure scanning tools. The
following diagram and table provide a description of the supply chain and dependencies provided
with Tanzu Application Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 341

Name Package Name Description Dependencies

Out of the
Box
Testing
and
Scanning

ootb-supply-

chain-testing-

scanning.tanzu.

vmware.com

Out of the Box Testing and Scanning contains all of the
same elements as the Out of the Box Testing supply
chain, and it also includes integrations with the secure
scanning components of Tanzu Application Platform.

The application is tested using the provided
Tekton pipeline.

The application source code is scanned for
vulnerabilities.

A new image is created.

The image is scanned for vulnerabilities.

Any predefined conventions are applied.

The application deploys to the cluster.

All of the Source to URL
dependencies, and:

The secure
scanning
components
included with
Tanzu Application
Platform

Next steps

Apply what you have learned:

Add testing and scanning to your application

Or learn about:

Vulnerability scanning and metadata storage for your supply chain

Vulnerability scanning, storing, and viewing for your supply
chain

This topic describes the vulnerability scanning features you can use with Tanzu Application Platform
(commonly known as TAP).

This feature set allows an application operator to introduce source code and image vulnerability
scanning, storing, and viewing to their Tanzu Application Platform supply chain. It also allows for the
creation of scan-time rules that prevent critical vulnerabilities from flowing to the supply chain
unresolved.

Features

Features include:

Scan source code repositories and images for known common vulnerabilities and exposures
(CVEs) before deploying to a cluster.

Identify CVEs by scanning continuously on each new code commit or each new image built.

Analyze scan results against user-defined policies by using Open Policy Agent. Create scan
policy to prevent vulnerable components from going into production.

Produce vulnerability scan results and post them to the SCST - Store where they can be
queried.

Query the store for such use cases as:

What images and packages are affected by a specific vulnerability?

What source code repositories are affected by a specific vulnerability?

What packages and vulnerabilities does a particular image have?

Visualize the supply chain and its packages and vulnerabilities of your supply chain.

Tanzu Application Platform v1.4

VMware by Broadcom 342

Components

Supply Chain Security Tools (SCST) - Scan scans source code and images for their packages
and vulnerabilities.

SCST - Store takes the vulnerability scanning results and stores them.

Tanzu Insight plug-in provides a CLI to query for packages and vulnerabilities.

Supply Chain Choreographer in Tanzu Application Platform GUI visualizes the supply chain,
including scans, packages, and vulnerabilities.

Next steps

Apply what you have learned:

Add testing and scanning to your application

Enable CVE scan results in Supply Chain Choreographer in Tanzu Application Platform GUI

Or learn about:

Supply chains on Tanzu Application Platform

Or go deeper into scanning on Tanzu Application Platform:

Scan samples to try the scan and store features as individual one-off scans

Configure Code Repositories and Image Artifacts to be Scanned

Code and Image Compliance Policy Enforcement Using Open Policy Agent (OPA)

How to Create a ScanTemplate

Viewing and Understanding Scan Status Conditions

Observing and Troubleshooting

Tanzu Insight plug-in overview

Troubleshooting

SCST Scan - Observing and Troubleshooting

SCST Store - Troubleshooting

TAP GUI - Troubleshooting

About consuming services on Tanzu Application Platform
This topic describes the key concepts and terms you need to know about consuming services on
Tanzu Application Platform (commonly known as TAP).

As part of Tanzu Application Platform, you can work with backing services such as RabbitMQ,
PostgreSQL, and MySQL among others. The most common use of services is binding an application
workload to a service instance.

Key concepts
When working with services on Tanzu Application Platform, you must be familiar with service
instances, service bindings, and resource claims. This section provides a brief overview of each of
these key concepts.

Service instances

Tanzu Application Platform v1.4

VMware by Broadcom 343

A service instance is a logical grouping of one or more Kubernetes resources that together expose
a known capability through a well-defined interface. For example, a theoretical “MySQL” service
instance might consist of a MySQLDatabase and a MySQLUser resource. When considering
compatibility of service instances for Tanzu Application Platform, one of the resources of a service
instance must adhere to the Service Binding for Kubernetes specification.

Service bindings

Service binding refers to a mechanism in which connectivity information, such as service instance
credentials, and connectivity information, such as host and port, are automatically communicated to
application workloads. Tanzu Application Platform uses a standard named Service Binding for
Kubernetes to implement this mechanism. See this standard to fully understand the services aspect
of Tanzu Application Platform.

Resource claims

Resource claims are inspired in part by Persistent Volume Claims. For more information, see the
Kubernetes documentation. Resource claims provide a mechanism for users to claim service
instances on a cluster, while also decoupling the life cycle of application workloads and service
instances.

Services you can use with Tanzu Application Platform
The following list of Kubernetes operators expose APIs that integrate well with Tanzu Application
Platform:

1. VMware RabbitMQ for Kubernetes.

2. VMware SQL with Postgres for Kubernetes.

3. VMware SQL with MySQL for Kubernetes.

Compatibility of a service with Tanzu Application Platform ranges on a scale between fully
compatible and incompatible. The minimum requirement for compatibility is that there must be a
declarative, Kubernetes-based API on which at least one API resource type adheres to the
Provisioned Service duck type defined by the Service Binding Specification for Kubernetes in
GitHub. This duck type includes any resource type with the following schema:

status:

 binding:

 name: # string

The value of .status.binding.name must point to a Secret in the same namespace. The Secret
contains required credentials and connectivity information for the resource.

Typically, APIs that include these resource types are installed onto the Tanzu Application Platform
cluster as Kubernetes operators. These Kubernetes operators provide custom resource definitions
(CRDs) and corresponding controllers to reconcile the resources of the CRDs, as is the case with
the three Kubernetes operators listed earlier.

For services that do not provide a resource adhering to the Service Binding Specification for
Kubernetes, it may still be possible to provide configurations allowing such services to integrate
with Tanzu Application Platform. See the following for examples of how to do this for Amazon AWS
RDS.

Consuming AWS RDS on Tanzu Application Platform (TAP) with AWS Controllers for
Kubernetes (ACK)

Consuming AWS RDS on Tanzu Application Platform (TAP) with Crossplane

Tanzu Application Platform v1.4

VMware by Broadcom 344

https://servicebinding.io/
https://servicebinding.io/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/index.html
https://docs.vmware.com/en/VMware-SQL-with-Postgres-for-Kubernetes/index.html
https://docs.vmware.com/en/VMware-SQL-with-MySQL-for-Kubernetes/index.html
https://github.com/servicebinding/spec#provisioned-service
https://github.com/servicebinding/spec
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_aws_rds_with_ack.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_aws_rds_with_crossplane.html

User roles and responsibilities

It is important to understand the user roles for services on Tanzu Application Platform and the
responsibilities assumed by each. The following table describes each user role.

User role Exists as a default role in Tanzu
Application Platform?

Responsibilities

Service operator Yes - service-operator Life cycle management (CRUD) of service
instances

Life cycle management (CRUD) of service
instance classes

Life cycle management (CRUD) of resource
claim policies

View and query for resource claims across
namespaces

Application
operator

Yes - app-operator Life cycle management (CRUD) of resource claims

Application
developer

Yes - app-editor and app-viewer Binding service instances to application workloads

Next steps
Apply what you’ve learned:

Consume services on Tanzu Application Platform

Tanzu Application Platform v1.4

VMware by Broadcom 345

Set up Tanzu Service Mesh

This topic tells you how to set up a Tanzu Application Platform application deployed on Kubernetes
with Tanzu Service Mesh (commonly called TSM).

Sample applications are used to demonstrate how a global namespace can provide a network for
Kubernetes workloads that are connected and secured within and across clusters, and across
clouds.

Prerequisites

Meet the prerequisites, which includes having

A supported Kubernetes platform

The correct resource configuration (number of nodes, CPUs, RAM, and so on)

The required connectivity requirements

Connectivity is only required from your local clusters out to Tanzu Service Mesh and not inwards.
This can traverse a corporate proxy as well. In addition, connectivity in the data plane is required
between the clusters that must communicate, specifically egress to ingress gateways. No data
plane traffic needs to reach the Tanzu Service Mesh software as a service (SaaS) management
plane.

Activate your Tanzu Service Mesh subscription

Activate your Tanzu Service Mesh subscription at cloud.vmware.com. After purchasing your Tanzu
Service Mesh subscription, the VMware Cloud team sends you instructions. If you don’t receive
them, you can follow these instructions.

Onboard clusters

Tanzu Application Platform v1.4

VMware by Broadcom 346

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/tanzu-service-mesh-environment-requirements-and-supported-platforms/GUID-D0B939BE-474E-4075-9A65-3D72B5B9F237.html
https://www.vmware.com/cloud-solutions.html
https://pathfinder.vmware.com/v3/path/tsm_activation

Onboard your clusters to Tanzu Service Mesh as described later in this topic. This deploys the
Tanzu Service Mesh local control plane and OSS Istio on your Kubernetes cluster and connects the
local control plane to your Tanzu Service Mesh tenant.

As part of the onboarding of the cluster and Tanzu Application Platform integration as well as
upgrades to the clusters, these namespaces must remain excluded while getting the Envoy proxy
sidecars injected for Run profiles.

Including them might cause the components to stop working at some point in the future when a
pod within them is rescheduled or updated.

The following namespaces must be specified as part of the onboarding process and excluded:

api-auto-registration

app-live-view-connector

appsso

cartographer-system

cert-manager

cosign-system

default

flux-system

image-policy-system

kapp-controller

knative-eventing

knative-serving

knative-sources

kube-node-lease

kube-public

kube-system

secretgen-controller

service-bindings

services-toolkit

source-system

tanzu-cluster-essentials

tanzu-package-repo-global

tanzu-system-ingress

tap-install

tap-telemetry

triggermesh

Vmware-sources

You must also exclude these namespaces in case of an upgrade to Tanzu Application Platform. For
more information, see Onboard a Cluster to Tanzu Service Mesh.

Set up Tanzu Application Platform

Tanzu Application Platform v1.4

VMware by Broadcom 347

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/getting-started-guide/GUID-DE9746FD-8369-4B1E-922C-67CF4FB22D21.html#:~:text=To%20exclude%20a%20specific%20namespace,the%20right%20drop%2Ddown%20menu

To enable Tanzu Service Mesh support in Tanzu Application Platform Build clusters:

1. Add the following key to tap-values.yaml under the buildservice top-level key:

buildservice:

 injected_sidecar_support: true

2. Install Tanzu Application Platform on the run cluster.

End-to-end workload build and deployment scenario
The following sections describe how to build and deploy a workload.

Apply a workload resource to a build cluster

Workloads can be built by using a Tanzu Application Platform supply chain by applying a workload
resource to a build cluster. At this time, Tanzu Service Mesh and Tanzu Application Platform cannot
use the Knative resources that are the default runtime target when using the web resource type.

In Tanzu Application Platform v1.4, two workload types support a Tanzu Service Mesh and Tanzu
Application Platform integration: server and worker.

To work with Tanzu Service Mesh, web workloads must be converted to the server or worker
workload type. Server workloads cause a Kubernetes Deployment resource to be created with a
Service resource that uses port 8080 by default.

1. If the service port that you want is 80 or some other port, add port information to
workload.yaml. The following example YAML snippets show the changes to make from the
web to server workload type. This is an example before applying the changes:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: hungryman

 labels:

 apps.tanzu.vmware.com/workload-type: web

 app.kubernetes.io/part-of: hungryman-api-gateway

spec:

 params:

 - name: annotations

value:

autoscaling.knative.dev/minScale: "1"

 source:

 git:

 url: https://github.com/gm2552/hungryman.git

 ref:

 branch: main

 subPath: hungryman-api-gateway

This is an example modified for Tanzu Service Mesh, which includes the removal of the
autoscaling annotation:

apiVersion: carto.run/v1alpha1

kind: Workload

Important

Tanzu Application Platform Build cluster support for Tanzu Service Mesh is limited to
basic and testing supply chains. Supply Chains with scanning are not currently
supported.

Tanzu Application Platform v1.4

VMware by Broadcom 348

metadata:

 name: hungryman

 labels:

 apps.tanzu.vmware.com/workload-type: server # modification

 app.kubernetes.io/part-of: hungryman-api-gateway

spec:

 params:

 - name: ports # modification

 value:

 - port: 80 # modification

 containerPort: 8080 # modification

 name: http # modification

 source:

 git:

 url: https://github.com/gm2552/hungryman.git

 ref:

 branch: main

 subPath: hungryman-api-gateway

This results in a deployment and a service that listens on port 80 and forwards traffic to port
8080 on the pod’s workload container.

2. Submit the modified YAML to your build cluster by running:

tanzu apps NAMESPACE apply --file WORKLOAD-YAML-FILE

Where:

NAMESPACE is the namespace that the build cluster uses for building.

WORKLOAD-YAML-FILE is the name of your workload YAML file, such as
workload.yaml.

After your workload is built a Deliverable resource is created.

Configure egress for Tanzu Build Service

For Tanzu Build Service to properly work, provide egress to access the registry where Tanzu Build
Service writes application images, and define the registry in the kp_default_repository key and
the Tanzu Application Platform install registry.

Additionally, configure egress for buildpack builds to download any required dependencies. This
configuration varies with different buildpacks and language environments. For example, Java builds
might need to download dependencies from Maven central.

Create a global namespace

Using the Tanzu Service Mesh portal or API, create a global namespace (GNS) that includes the
namespaces where your application components are deployed. For more information, see Global
Namespaces

Whether in a single cluster or multiple clusters, or within the same site or across clouds, after you
add a namespace selection to the GNS, the services that Tanzu Application Platform deploys are
connected based on the GNS configuration for service discovery and connectivity policies.

If a service must be accessible through the ingress from the outside, it can be configured through
the public service option in Tanzu Service Mesh or directly through Istio on the clusters where that
service resides. It’s best practice to configure the service’s accessibility through the GNS.

Run cluster deployment

Before deploying a workload to a run cluster, ensure that any prerequisite resources have already
been created on the run cluster. This includes concepts such as data, messaging, routing, security

Tanzu Application Platform v1.4

VMware by Broadcom 349

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/concepts-guide/GUID-9E3F1F90-4310-415B-98C8-C06E59B8A5EE.html

services, RBAC, ResourceClaims, and so on.

After a successful build in a build cluster, workloads can be deployed to the run cluster by applying
resulting deliverable resources to the run cluster as described in Getting Started with Multicluster
Tanzu Application Platform.

Another option is to create a kapp application that references a GitOps repository to include all
deliverable resources for a given cluster. See the following example of a kapp definition that points
to a GitOps repository:

apiVersion: kappctrl.k14s.io/v1alpha1

kind: App

metadata:

 name: deliverable-gitops

 namespace: hungryman

spec:

 serviceAccountName: default

 fetch:

 - git:

 url: https://github.com/gm2552/tap-play-gitops

 ref: origin/deliverables-tap-east01

 subPath: config

 template:

 - ytt: {}

 deploy:

 - kapp: {}

The advantage of this model is that applications can be deployed or uninstalled from a cluster by
managing the contents of the deliverable resources from within the GitOps repository and enabling
a GitOps workflow for application and service change control.

Deployment use case: Hungryman

The following instructions describe an end-to-end process for configuring, building, and deploying
the Hungryman application into a Tanzu Service Mesh global namespace.

These instructions use the default configuration of Hungryman, which consists of only needing a
single-node RabbitMQ cluster, an in-memory database, and no security. The application is deployed
across two Tanzu Application Platform run clusters. It requires the ytt command to execute the
build and deployment commands.

The configuration resources referenced in this scenario are located in the hungryman-tap-tsm
GitHub repository.

Create an initial set of configuration files from the accelerator

This use case deployment includes a pre-built set of configuration files in a Git repository. However,
they were created from a set of configuration files by using a bootstrapped process that uses the
Hungryman accelerator, and were later modified.

For reference, you can create an initial set of configuration files from the Hungryman accelerator,
which is available in Tanzu Application Platform v1.3.

This section does not include instructions for modifying the configuration files from the accelerator
into configuration files used in a later section.

From the accelerator, accept all of the default options with the following exceptions:

Workload namespace: Update this field with the name of the namespace you will use to
build the application in your build cluster

Tanzu Application Platform v1.4

VMware by Broadcom 350

https://github.com/gm2552/hungryman-tap-tsm

Service namespace: Update this field with the name of the namespace you will use to
deploy a RabbitMQ cluster on your Tanzu Application Platform run cluster

Apply the workload resources to your build cluster

To build the application services, run the following command to apply the workload resources to
your build cluster. You can also clone or fork the repository in this command to either use the
YAML files locally or point to your own Git repository.

ytt -f workloads.yaml -v workloadNamespace=WORKLOAD-NAMESPACE | kubectl apply -f-

Where WORKLOAD-NAMESPACE is the name of your build namespace

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/workloads.yaml

\

-v workloadNamespace=workloads | kubectl apply -f-

If you are using a GitOps workflow with your build cluster, after the workloads are built the
deployment information is pushed to your GitOps repository.

If you follow these instructions without pull requests in the GitOps workflow, the config-writer pods
that commit deployment information to the GtiOps repository might fail because of concurrency
conflicts. A workaround for this is to delete the failed workloads from the build cluster and re-run
the command provided in the instructions.

Install service claim resources on the cluster

Hungryman requires a RabbitMQ cluster installed on your run cluster. You must install RabbitMQ on
the same run cluster that is named RunCluster01 in the following deployment section. Additionally,
you must install service claim resources on this cluster.

1. If you haven’t already done so, install the RabbitMQ Cluster Operator on the run cluster by
running:

kubectl apply -f "https://github.com/rabbitmq/cluster-operator/releases/downloa

d/v1.13.1/cluster-operator.yml"

2. Spin up an instance of a RabbitMQ cluster by running:

kubectl create ns SERVICE-NAMESPACE

ytt -f rmqCluster.yaml -v serviceNamespace=SERVICE-NAMESPACE | kubectl apply -f

-

Where SERVICE-NAMESPACE is the namespace of where you want to deploy your RabbitMQ
cluster

For example:

kubectl create ns service-instances

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/rmqClust

er.yaml -v \

serviceNamespace=service-instances | kubectl apply -f-

3. Create service toolkit resources for the RabbitMQ class and resource claim by running:

Tanzu Application Platform v1.4

VMware by Broadcom 351

ytt -f rmqResourceClaim.yaml -v serviceNamespace=SERVICE-NAMESPACE -v \

workloadNamespace=WORKLOAD-NAMESPACE | kubectl apply -f-

Where SERVICE-NAMESPACE and WORKLOAD-NAMESPACE are the namespaces where you
deployed your RabbitMQ cluster and the namespace where the application service will run.

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/rmqResou

rceClaim.yaml \

-v serviceNamespace=service-instances -v workloadNamespace=hungryman | kubectl

apply -f-

Run cluster deployment

Workloads are deployed to the run cluster using deliverable resources. This section applies the
deliverable resources directly to the run clusters instead of using a kapp application.

This deployment assumes that two clusters are part of the Tanzu Service Mesh GNS Hungryman.
These example clusters are named RunCluster01 and RunCluster02. The majority of the workload is
deployed to RunCluster01 while the crawler workload is deployed to RunCluster02.

The deliverable objects reference the GitOps repository, where the build cluster has written
deployment information, and needs to reference this repository in the following commands.

Deploy the workloads to the run clusters by running these commands against their respective
clusters:

ytt -f cluster01Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads are deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

ytt -f cluster02Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads are deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

To run this deployment on cluster RunCluster01, for example, you run:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/cluster01Delive

rables.yaml -v \

workloadNamespace=hungryman -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

To run this deployment on cluster RunCluster02, for example, you run:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/cluster02Delive

rables.yaml -v \

Tanzu Application Platform v1.4

VMware by Broadcom 352

workloadNamespace=hungryman -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

You can create an Istio ingress resource on RunCluster01 if you do not plan on using the GNS
capabilities to expose the application to external networks.

You must create a domain name system address (DNS A) record in your DNS provider’s
configuration tool to point to the Istio load-balanced IP address of RunCluster01. The DNS
configuration is out of the scope of this topic.

Create the ingress by running:

ytt -f ingress.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v domainName=DOMAIN-NAME

| kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workload is deployed

DOMAIN-NAME is the public domain that will host your application

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/ingress.yaml -v

\

workloadNamespace=hungryman -v domainName=tsmdemo.perfect300rock.com | kubectl apply -

f-

Create a global namespace

The example clusters have the names RunCluster01 and RunCluster02, and they assume the
workload and service namespaces of Hungryman and service-instances, respectively.

1. Open the Tanzu Service Mesh console and create a new GNS.

2. Configure the following settings in each step:

1. General details

GNS Name: hungryman

Domain: hungryman.lab

2. Namespace mapping

Namespace mapping Rule 1

Cluster name: RunCluster01

Namespace: hungryman

Namespace Mapping Rule 2

Cluster name: RunCluster02

Namespace: hungryman

Namespace Mapping Rule 3

Cluster name: RunCluster01

Namespace: service-instances

3. Autodiscovery. Use the default settings.

4. Public services

Service name: hungryman

Service port: 80

Tanzu Application Platform v1.4

VMware by Broadcom 353

Public URL: http hungryman . Select a domain.

5. Global server load balancing and resiliency. Use the default settings.

You can now access the Hungryman application with the URL configured earlier.

Deployment use case: ACME Fitness Store

The following instructions describe an end-to-end process for configuring, building, and deploying
the ACME Fitness Store application into a Tanzu Service Mesh GNS. In this use case, the
application is deployed across two Tanzu Application Platform run clusters. ytt is used to run the
build and deployment commands.

The configuration resources referenced in this scenario are in the acme-fitness-tap-tsm Git
repository.

Deploy AppSSO

ACME requires the use of an AppSSO authorization server and client registration resource. Install
these resources on the same run cluster that is named RunCluster01 in the deployment section.

1. Deploy the authorization server instance by running:

ytt -f appSSOInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE \

-v devDefaultAccountUsername=DEV-DEFAULT-ACCOUNT-USERNAME -v \

devDefaultAccountPassword=DEV-DEFAULT-ACCOUNT-PASSWORD | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

DEV-DEFAULT-ACCOUNT-USERNAME is the user name for the ACME application
authentication

DEV-DEFAULT-ACCOUNT-PASSWORD is the password for the ACME application
authentication

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/appSS

OInstance.yaml -v \

workloadNamespace=acme -v devDefaultAccountUsername=acme -v \

devDefaultAccountPassword=fitness | kubectl apply -f-

2. Create a ClientRegistration resource by running:

ytt -f appSSOInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appSSORedirectURI=APP-SSO-REDIRECT-URI | kubectl apply –f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed.

APP-SSO-REDIRECT-URI is the public URI that the authorization server redirects to
after a login

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/clien

tRegistrationResourceClaim.yaml \

-v workloadNamespace=acme -v \

appSSORedirectURI=http://acme-fitness.tsmdemo.perfect300rock.com/login/oauth2/c

ode/sso | kubectl apply -f-

Tanzu Application Platform v1.4

VMware by Broadcom 354

https://github.com/gm2552/acme-fitness-tap-tsm

3. Obtain the appSSO Issuer URI by running:

kubectl get authserver -n WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the name of the namespace where the workloads will be
deployed.

4. Record the Issuer URI because you need it for the next section.

Apply the workload resources to your build cluster

To build the application services, run the following command to apply the workload resources to
your build cluster. You can also clone or fork the repository in the following command to either use
the YAML files locally or point to your own Git repository.

ytt -f workloads.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appSSOIssuerURI=APP-SSO-ISSUER-URL | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the name of your build namespace

APP-SSO-ISSUER-URL is the URL of the AppSSO authorization server that you deployed
earlier

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/workloads.ya

ml -v \

workloadNamespace=workloads -v \

appSSOIssuerURI=http://appsso-acme-fitness.acme.tsmdemo.perfect300rock.com | kubectl a

pply -f-

If you are using a GitOps workflow with your build cluster then, after building the workloads, the
deployment information is pushed to your GitOps repository.

If you follow these instructions without pull requests in the GitOps workflow, the config-writer
pods that commit deployment information to the GitOps repository might fail because of
concurrency conflicts. A workaround for this is to delete the failed workloads from the build cluster
and re-run the command provided in these instructions.

Create the Istio ingress resources

The authorization server requires a publicly accessible URL and must be available before the Spring
Cloud Gateway can deploy properly. The authorization server is deployed at the URI authserver app
domain.

You must create a domain name system address (DNS A) record in your DNS provider’s
configuration tool to point to the Istio load-balanced IP address of RunCluster01. The DNS
configuration is out of the scope of this topic.

Create the Istio ingress resources by running:

ytt -f istioGateway.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appDomainName=APP-DOMAIN | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the name of your build namespace

APP-DOMAIN is the application’s DNS domain

Tanzu Application Platform v1.4

VMware by Broadcom 355

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/istioGatewa

y.yaml -v \

workloadNamespace=acme -v appDomainName=tsmdemo.perfect300rock.com | kubectl apply -f-

Deploy Redis

A Redis instance is needed for caching the ACME fitness store cart service. Deploy the Redis
instance by running:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/redis.yaml -

v \

workloadNamespace=WORKLOAD-NAMESPACE -v redisPassword=REDIS-PASSWORD | kb apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

REDIS-PASSWORD is your password

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/redis.yaml -

v \

workloadNamespace=acme -v redisPassword=fitness | kubectl apply -f-

Run cluster deployment

Workloads are deployed to the run cluster by using deliverable resources. In this section you apply
the deliverable resources directly to the run clusters, instead of using a kapp application. This
deployment assumes that two clusters are part of the Tanzu Service Mesh GNS ACME. In this
example these clusters are named RunCluster01 and RunCluster02.

The deliverable objects reference the GitOps repository, where the build cluster has written
deployment information, and need to reference this repository in the following commands.

To deploy the workloads to the run clusters, run these commands against their respective clusters:

ytt -f cluster01Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

ytt -f cluster02Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

Tanzu Application Platform v1.4

VMware by Broadcom 356

For the RunCluster01 example, run:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/cluster01Del

iverables.yaml \

-v workloadNamespace=acme -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

For the RunCluster02 example, run:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/cluster02Del

iverables.yaml \

-v workloadNamespace=acme -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

Deploy Spring Cloud Gateway

The following sections describe how to deploy Spring Cloud Gateway.

Install the Spring Cloud Gateway package

The section requires the Spring Cloud Gateway for Kubernetes package to be installed on
RunCluster01. For instructions, see Installing Spring Cloud Gateway for Kubernetes using the Tanzu
CLI.

The Spring Cloud Gateway spec.service.name configuration was not built with multi, cross-cluster
support. The configuration for the gateway routes currently implements a workaround, which is
brittle in terms of where certain services are deployed. Future releases of the gateway might have
better support for this use case.

Deploy the gateway and applicable routes by running:

ytt -f scgInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the namespace where the workload is deployed.

ytt -f scgRoutes.yaml -v workloadNamespace=WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the namespace where the workload is deployed.

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/scgInstance.

yaml -v \

workloadNamespace=acme | kubectl apply -f-

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/scgRoutes.ya

ml -v \

workloadNamespace=acme | kubectl apply -f-

Create a global namespace

The example clusters are named RunCluster01 and RunCluster02, and they assume a workload
namespace of ACME.

1. Open the Tanzu Service Mesh console and create a new global namespace.

2. Configure the following settings in each step:

1. General details

GNS name: acme-tap

Tanzu Application Platform v1.4

VMware by Broadcom 357

https://docs.vmware.com/en/VMware-Spring-Cloud-Gateway-for-Kubernetes/1.2/scg-k8s/GUID-installation-tanzu-cli.html

Domain: acme-tap.lab

2. Namespace mapping

Namespace mapping Rule 1

Cluster name: RunCluster01

Namespace: acme

Namespace Mapping Rule 2

Cluster name: RunCluster02

Namespace: acme

3. Autodiscovery. Use the default settings.

4. Public Services

No Public service

5. Global server load-balancing and resiliency. Use the default settings.

You can access the application by going to the URL http://acme-fitness.

Set up Tanzu Service Mesh

This topic tells you how to set up a Tanzu Application Platform application deployed on Kubernetes
with Tanzu Service Mesh (commonly called TSM).

Sample applications are used to demonstrate how a global namespace can provide a network for
Kubernetes workloads that are connected and secured within and across clusters, and across
clouds.

Prerequisites

Meet the prerequisites, which includes having

A supported Kubernetes platform

The correct resource configuration (number of nodes, CPUs, RAM, and so on)

The required connectivity requirements

Connectivity is only required from your local clusters out to Tanzu Service Mesh and not inwards.
This can traverse a corporate proxy as well. In addition, connectivity in the data plane is required
between the clusters that must communicate, specifically egress to ingress gateways. No data
plane traffic needs to reach the Tanzu Service Mesh software as a service (SaaS) management
plane.

Tanzu Application Platform v1.4

VMware by Broadcom 358

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/tanzu-service-mesh-environment-requirements-and-supported-platforms/GUID-D0B939BE-474E-4075-9A65-3D72B5B9F237.html

Activate your Tanzu Service Mesh subscription

Activate your Tanzu Service Mesh subscription at cloud.vmware.com. After purchasing your Tanzu
Service Mesh subscription, the VMware Cloud team sends you instructions. If you don’t receive
them, you can follow these instructions.

Onboard clusters

Onboard your clusters to Tanzu Service Mesh as described later in this topic. This deploys the
Tanzu Service Mesh local control plane and OSS Istio on your Kubernetes cluster and connects the
local control plane to your Tanzu Service Mesh tenant.

As part of the onboarding of the cluster and Tanzu Application Platform integration as well as
upgrades to the clusters, these namespaces must remain excluded while getting the Envoy proxy
sidecars injected for Run profiles.

Including them might cause the components to stop working at some point in the future when a
pod within them is rescheduled or updated.

The following namespaces must be specified as part of the onboarding process and excluded:

api-auto-registration

app-live-view-connector

appsso

cartographer-system

cert-manager

cosign-system

default

flux-system

image-policy-system

kapp-controller

knative-eventing

knative-serving

knative-sources

Tanzu Application Platform v1.4

VMware by Broadcom 359

https://www.vmware.com/cloud-solutions.html
https://pathfinder.vmware.com/v3/path/tsm_activation

kube-node-lease

kube-public

kube-system

secretgen-controller

service-bindings

services-toolkit

source-system

tanzu-cluster-essentials

tanzu-package-repo-global

tanzu-system-ingress

tap-install

tap-telemetry

triggermesh

Vmware-sources

You must also exclude these namespaces in case of an upgrade to Tanzu Application Platform. For
more information, see Onboard a Cluster to Tanzu Service Mesh.

Set up Tanzu Application Platform

To enable Tanzu Service Mesh support in Tanzu Application Platform Build clusters:

1. Add the following key to tap-values.yaml under the buildservice top-level key:

buildservice:

 injected_sidecar_support: true

2. Install Tanzu Application Platform on the run cluster.

End-to-end workload build and deployment scenario
The following sections describe how to build and deploy a workload.

Apply a workload resource to a build cluster

Workloads can be built by using a Tanzu Application Platform supply chain by applying a workload
resource to a build cluster. At this time, Tanzu Service Mesh and Tanzu Application Platform cannot
use the Knative resources that are the default runtime target when using the web resource type.

In Tanzu Application Platform v1.4, two workload types support a Tanzu Service Mesh and Tanzu
Application Platform integration: server and worker.

To work with Tanzu Service Mesh, web workloads must be converted to the server or worker
workload type. Server workloads cause a Kubernetes Deployment resource to be created with a

Important

Tanzu Application Platform Build cluster support for Tanzu Service Mesh is limited to
basic and testing supply chains. Supply Chains with scanning are not currently
supported.

Tanzu Application Platform v1.4

VMware by Broadcom 360

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/getting-started-guide/GUID-DE9746FD-8369-4B1E-922C-67CF4FB22D21.html#:~:text=To%20exclude%20a%20specific%20namespace,the%20right%20drop%2Ddown%20menu

Service resource that uses port 8080 by default.

1. If the service port that you want is 80 or some other port, add port information to
workload.yaml. The following example YAML snippets show the changes to make from the
web to server workload type. This is an example before applying the changes:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: hungryman

 labels:

 apps.tanzu.vmware.com/workload-type: web

 app.kubernetes.io/part-of: hungryman-api-gateway

spec:

 params:

 - name: annotations

value:

autoscaling.knative.dev/minScale: "1"

 source:

 git:

 url: https://github.com/gm2552/hungryman.git

 ref:

 branch: main

 subPath: hungryman-api-gateway

This is an example modified for Tanzu Service Mesh, which includes the removal of the
autoscaling annotation:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: hungryman

 labels:

 apps.tanzu.vmware.com/workload-type: server # modification

 app.kubernetes.io/part-of: hungryman-api-gateway

spec:

 params:

 - name: ports # modification

 value:

 - port: 80 # modification

 containerPort: 8080 # modification

 name: http # modification

 source:

 git:

 url: https://github.com/gm2552/hungryman.git

 ref:

 branch: main

 subPath: hungryman-api-gateway

This results in a deployment and a service that listens on port 80 and forwards traffic to port
8080 on the pod’s workload container.

2. Submit the modified YAML to your build cluster by running:

tanzu apps NAMESPACE apply --file WORKLOAD-YAML-FILE

Where:

NAMESPACE is the namespace that the build cluster uses for building.

WORKLOAD-YAML-FILE is the name of your workload YAML file, such as
workload.yaml.

After your workload is built a Deliverable resource is created.

Tanzu Application Platform v1.4

VMware by Broadcom 361

Configure egress for Tanzu Build Service

For Tanzu Build Service to properly work, provide egress to access the registry where Tanzu Build
Service writes application images, and define the registry in the kp_default_repository key and
the Tanzu Application Platform install registry.

Additionally, configure egress for buildpack builds to download any required dependencies. This
configuration varies with different buildpacks and language environments. For example, Java builds
might need to download dependencies from Maven central.

Create a global namespace

Using the Tanzu Service Mesh portal or API, create a global namespace (GNS) that includes the
namespaces where your application components are deployed. For more information, see Global
Namespaces

Whether in a single cluster or multiple clusters, or within the same site or across clouds, after you
add a namespace selection to the GNS, the services that Tanzu Application Platform deploys are
connected based on the GNS configuration for service discovery and connectivity policies.

If a service must be accessible through the ingress from the outside, it can be configured through
the public service option in Tanzu Service Mesh or directly through Istio on the clusters where that
service resides. It’s best practice to configure the service’s accessibility through the GNS.

Run cluster deployment

Before deploying a workload to a run cluster, ensure that any prerequisite resources have already
been created on the run cluster. This includes concepts such as data, messaging, routing, security
services, RBAC, ResourceClaims, and so on.

After a successful build in a build cluster, workloads can be deployed to the run cluster by applying
resulting deliverable resources to the run cluster as described in Getting Started with Multicluster
Tanzu Application Platform.

Another option is to create a kapp application that references a GitOps repository to include all
deliverable resources for a given cluster. See the following example of a kapp definition that points
to a GitOps repository:

apiVersion: kappctrl.k14s.io/v1alpha1

kind: App

metadata:

 name: deliverable-gitops

 namespace: hungryman

spec:

 serviceAccountName: default

 fetch:

 - git:

 url: https://github.com/gm2552/tap-play-gitops

 ref: origin/deliverables-tap-east01

 subPath: config

 template:

 - ytt: {}

 deploy:

 - kapp: {}

The advantage of this model is that applications can be deployed or uninstalled from a cluster by
managing the contents of the deliverable resources from within the GitOps repository and enabling
a GitOps workflow for application and service change control.

Deployment use case: Hungryman

Tanzu Application Platform v1.4

VMware by Broadcom 362

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/concepts-guide/GUID-9E3F1F90-4310-415B-98C8-C06E59B8A5EE.html

The following instructions describe an end-to-end process for configuring, building, and deploying
the Hungryman application into a Tanzu Service Mesh global namespace.

These instructions use the default configuration of Hungryman, which consists of only needing a
single-node RabbitMQ cluster, an in-memory database, and no security. The application is deployed
across two Tanzu Application Platform run clusters. It requires the ytt command to execute the
build and deployment commands.

The configuration resources referenced in this scenario are located in the hungryman-tap-tsm
GitHub repository.

Create an initial set of configuration files from the accelerator

This use case deployment includes a pre-built set of configuration files in a Git repository. However,
they were created from a set of configuration files by using a bootstrapped process that uses the
Hungryman accelerator, and were later modified.

For reference, you can create an initial set of configuration files from the Hungryman accelerator,
which is available in Tanzu Application Platform v1.3.

This section does not include instructions for modifying the configuration files from the accelerator
into configuration files used in a later section.

From the accelerator, accept all of the default options with the following exceptions:

Workload namespace: Update this field with the name of the namespace you will use to
build the application in your build cluster

Service namespace: Update this field with the name of the namespace you will use to
deploy a RabbitMQ cluster on your Tanzu Application Platform run cluster

Apply the workload resources to your build cluster

To build the application services, run the following command to apply the workload resources to
your build cluster. You can also clone or fork the repository in this command to either use the
YAML files locally or point to your own Git repository.

ytt -f workloads.yaml -v workloadNamespace=WORKLOAD-NAMESPACE | kubectl apply -f-

Where WORKLOAD-NAMESPACE is the name of your build namespace

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/workloads.yaml

\

-v workloadNamespace=workloads | kubectl apply -f-

If you are using a GitOps workflow with your build cluster, after the workloads are built the
deployment information is pushed to your GitOps repository.

If you follow these instructions without pull requests in the GitOps workflow, the config-writer pods
that commit deployment information to the GtiOps repository might fail because of concurrency
conflicts. A workaround for this is to delete the failed workloads from the build cluster and re-run
the command provided in the instructions.

Install service claim resources on the cluster

Hungryman requires a RabbitMQ cluster installed on your run cluster. You must install RabbitMQ on
the same run cluster that is named RunCluster01 in the following deployment section. Additionally,
you must install service claim resources on this cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 363

https://github.com/gm2552/hungryman-tap-tsm

1. If you haven’t already done so, install the RabbitMQ Cluster Operator on the run cluster by
running:

kubectl apply -f "https://github.com/rabbitmq/cluster-operator/releases/downloa

d/v1.13.1/cluster-operator.yml"

2. Spin up an instance of a RabbitMQ cluster by running:

kubectl create ns SERVICE-NAMESPACE

ytt -f rmqCluster.yaml -v serviceNamespace=SERVICE-NAMESPACE | kubectl apply -f

-

Where SERVICE-NAMESPACE is the namespace of where you want to deploy your RabbitMQ
cluster

For example:

kubectl create ns service-instances

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/rmqClust

er.yaml -v \

serviceNamespace=service-instances | kubectl apply -f-

3. Create service toolkit resources for the RabbitMQ class and resource claim by running:

ytt -f rmqResourceClaim.yaml -v serviceNamespace=SERVICE-NAMESPACE -v \

workloadNamespace=WORKLOAD-NAMESPACE | kubectl apply -f-

Where SERVICE-NAMESPACE and WORKLOAD-NAMESPACE are the namespaces where you
deployed your RabbitMQ cluster and the namespace where the application service will run.

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/rmqResou

rceClaim.yaml \

-v serviceNamespace=service-instances -v workloadNamespace=hungryman | kubectl

apply -f-

Run cluster deployment

Workloads are deployed to the run cluster using deliverable resources. This section applies the
deliverable resources directly to the run clusters instead of using a kapp application.

This deployment assumes that two clusters are part of the Tanzu Service Mesh GNS Hungryman.
These example clusters are named RunCluster01 and RunCluster02. The majority of the workload is
deployed to RunCluster01 while the crawler workload is deployed to RunCluster02.

The deliverable objects reference the GitOps repository, where the build cluster has written
deployment information, and needs to reference this repository in the following commands.

Deploy the workloads to the run clusters by running these commands against their respective
clusters:

ytt -f cluster01Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads are deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

Tanzu Application Platform v1.4

VMware by Broadcom 364

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

ytt -f cluster02Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads are deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

To run this deployment on cluster RunCluster01, for example, you run:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/cluster01Delive

rables.yaml -v \

workloadNamespace=hungryman -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

To run this deployment on cluster RunCluster02, for example, you run:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/cluster02Delive

rables.yaml -v \

workloadNamespace=hungryman -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

You can create an Istio ingress resource on RunCluster01 if you do not plan on using the GNS
capabilities to expose the application to external networks.

You must create a domain name system address (DNS A) record in your DNS provider’s
configuration tool to point to the Istio load-balanced IP address of RunCluster01. The DNS
configuration is out of the scope of this topic.

Create the ingress by running:

ytt -f ingress.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v domainName=DOMAIN-NAME

| kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workload is deployed

DOMAIN-NAME is the public domain that will host your application

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/ingress.yaml -v

\

workloadNamespace=hungryman -v domainName=tsmdemo.perfect300rock.com | kubectl apply -

f-

Create a global namespace

The example clusters have the names RunCluster01 and RunCluster02, and they assume the
workload and service namespaces of Hungryman and service-instances, respectively.

1. Open the Tanzu Service Mesh console and create a new GNS.

2. Configure the following settings in each step:

1. General details

Tanzu Application Platform v1.4

VMware by Broadcom 365

GNS Name: hungryman

Domain: hungryman.lab

2. Namespace mapping

Namespace mapping Rule 1

Cluster name: RunCluster01

Namespace: hungryman

Namespace Mapping Rule 2

Cluster name: RunCluster02

Namespace: hungryman

Namespace Mapping Rule 3

Cluster name: RunCluster01

Namespace: service-instances

3. Autodiscovery. Use the default settings.

4. Public services

Service name: hungryman

Service port: 80

Public URL: http hungryman . Select a domain.

5. Global server load balancing and resiliency. Use the default settings.

You can now access the Hungryman application with the URL configured earlier.

Deployment use case: ACME Fitness Store
The following instructions describe an end-to-end process for configuring, building, and deploying
the ACME Fitness Store application into a Tanzu Service Mesh GNS. In this use case, the
application is deployed across two Tanzu Application Platform run clusters. ytt is used to run the
build and deployment commands.

The configuration resources referenced in this scenario are in the acme-fitness-tap-tsm Git
repository.

Deploy AppSSO

ACME requires the use of an AppSSO authorization server and client registration resource. Install
these resources on the same run cluster that is named RunCluster01 in the deployment section.

1. Deploy the authorization server instance by running:

ytt -f appSSOInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE \

-v devDefaultAccountUsername=DEV-DEFAULT-ACCOUNT-USERNAME -v \

devDefaultAccountPassword=DEV-DEFAULT-ACCOUNT-PASSWORD | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

DEV-DEFAULT-ACCOUNT-USERNAME is the user name for the ACME application
authentication

DEV-DEFAULT-ACCOUNT-PASSWORD is the password for the ACME application
authentication

For example:

Tanzu Application Platform v1.4

VMware by Broadcom 366

https://github.com/gm2552/acme-fitness-tap-tsm

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/appSS

OInstance.yaml -v \

workloadNamespace=acme -v devDefaultAccountUsername=acme -v \

devDefaultAccountPassword=fitness | kubectl apply -f-

2. Create a ClientRegistration resource by running:

ytt -f appSSOInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appSSORedirectURI=APP-SSO-REDIRECT-URI | kubectl apply –f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed.

APP-SSO-REDIRECT-URI is the public URI that the authorization server redirects to
after a login

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/clien

tRegistrationResourceClaim.yaml \

-v workloadNamespace=acme -v \

appSSORedirectURI=http://acme-fitness.tsmdemo.perfect300rock.com/login/oauth2/c

ode/sso | kubectl apply -f-

3. Obtain the appSSO Issuer URI by running:

kubectl get authserver -n WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the name of the namespace where the workloads will be
deployed.

4. Record the Issuer URI because you need it for the next section.

Apply the workload resources to your build cluster

To build the application services, run the following command to apply the workload resources to
your build cluster. You can also clone or fork the repository in the following command to either use
the YAML files locally or point to your own Git repository.

ytt -f workloads.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appSSOIssuerURI=APP-SSO-ISSUER-URL | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the name of your build namespace

APP-SSO-ISSUER-URL is the URL of the AppSSO authorization server that you deployed
earlier

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/workloads.ya

ml -v \

workloadNamespace=workloads -v \

appSSOIssuerURI=http://appsso-acme-fitness.acme.tsmdemo.perfect300rock.com | kubectl a

pply -f-

If you are using a GitOps workflow with your build cluster then, after building the workloads, the
deployment information is pushed to your GitOps repository.

Tanzu Application Platform v1.4

VMware by Broadcom 367

If you follow these instructions without pull requests in the GitOps workflow, the config-writer
pods that commit deployment information to the GitOps repository might fail because of
concurrency conflicts. A workaround for this is to delete the failed workloads from the build cluster
and re-run the command provided in these instructions.

Create the Istio ingress resources

The authorization server requires a publicly accessible URL and must be available before the Spring
Cloud Gateway can deploy properly. The authorization server is deployed at the URI authserver app
domain.

You must create a domain name system address (DNS A) record in your DNS provider’s
configuration tool to point to the Istio load-balanced IP address of RunCluster01. The DNS
configuration is out of the scope of this topic.

Create the Istio ingress resources by running:

ytt -f istioGateway.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appDomainName=APP-DOMAIN | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the name of your build namespace

APP-DOMAIN is the application’s DNS domain

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/istioGatewa

y.yaml -v \

workloadNamespace=acme -v appDomainName=tsmdemo.perfect300rock.com | kubectl apply -f-

Deploy Redis

A Redis instance is needed for caching the ACME fitness store cart service. Deploy the Redis
instance by running:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/redis.yaml -

v \

workloadNamespace=WORKLOAD-NAMESPACE -v redisPassword=REDIS-PASSWORD | kb apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

REDIS-PASSWORD is your password

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/redis.yaml -

v \

workloadNamespace=acme -v redisPassword=fitness | kubectl apply -f-

Run cluster deployment

Workloads are deployed to the run cluster by using deliverable resources. In this section you apply
the deliverable resources directly to the run clusters, instead of using a kapp application. This
deployment assumes that two clusters are part of the Tanzu Service Mesh GNS ACME. In this
example these clusters are named RunCluster01 and RunCluster02.

Tanzu Application Platform v1.4

VMware by Broadcom 368

The deliverable objects reference the GitOps repository, where the build cluster has written
deployment information, and need to reference this repository in the following commands.

To deploy the workloads to the run clusters, run these commands against their respective clusters:

ytt -f cluster01Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

ytt -f cluster02Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

For the RunCluster01 example, run:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/cluster01Del

iverables.yaml \

-v workloadNamespace=acme -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

For the RunCluster02 example, run:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/cluster02Del

iverables.yaml \

-v workloadNamespace=acme -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

Deploy Spring Cloud Gateway

The following sections describe how to deploy Spring Cloud Gateway.

Install the Spring Cloud Gateway package

The section requires the Spring Cloud Gateway for Kubernetes package to be installed on
RunCluster01. For instructions, see Installing Spring Cloud Gateway for Kubernetes using the Tanzu
CLI.

The Spring Cloud Gateway spec.service.name configuration was not built with multi, cross-cluster
support. The configuration for the gateway routes currently implements a workaround, which is
brittle in terms of where certain services are deployed. Future releases of the gateway might have
better support for this use case.

Deploy the gateway and applicable routes by running:

ytt -f scgInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE

Tanzu Application Platform v1.4

VMware by Broadcom 369

https://docs.vmware.com/en/VMware-Spring-Cloud-Gateway-for-Kubernetes/1.2/scg-k8s/GUID-installation-tanzu-cli.html

Where WORKLOAD-NAMESPACE is the namespace where the workload is deployed.

ytt -f scgRoutes.yaml -v workloadNamespace=WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the namespace where the workload is deployed.

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/scgInstance.

yaml -v \

workloadNamespace=acme | kubectl apply -f-

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/scgRoutes.ya

ml -v \

workloadNamespace=acme | kubectl apply -f-

Create a global namespace

The example clusters are named RunCluster01 and RunCluster02, and they assume a workload
namespace of ACME.

1. Open the Tanzu Service Mesh console and create a new global namespace.

2. Configure the following settings in each step:

1. General details

GNS name: acme-tap

Domain: acme-tap.lab

2. Namespace mapping

Namespace mapping Rule 1

Cluster name: RunCluster01

Namespace: acme

Namespace Mapping Rule 2

Cluster name: RunCluster02

Namespace: acme

3. Autodiscovery. Use the default settings.

4. Public Services

No Public service

5. Global server load-balancing and resiliency. Use the default settings.

You can access the application by going to the URL http://acme-fitness.

Tanzu Application Platform v1.4

VMware by Broadcom 370

Overview of workloads

This topic provides you with an overview of workload types in Tanzu Application Platform
(commonly known as TAP).

Workload features

Tanzu Application Platform allows you to quickly build and test applications regardless of your
familiarity with Kubernetes.

You can turn source code into a workload that runs in a container with a URL. You can also use
supply chains to build applications that process work from a message queue, or provide arbitrary
network services.

A workload allows you to choose application specifications, such as repository location,
environment variables, service binding, and so on. For more information about workload creation
and management, see Commands Details.

The Out of the Box supply chains support a range of workload types, including

Scalable web applications (web)

Traditional application servers (server)

Background applications (worker)

Serverless functions

You can use a collection of workloads of different types to deploy microservices that function as a
logical application. Alternatively, you can deploy your entire application as a single monolith.

If you build your own supply chains, you can define additional deployment methods beyond those
in the Out of the Box supply-chain templates.

Available workload types

When using the Out of the Box supply chain, the apps.tanzu.vmware.com/workload-type
annotation selects which style of deployment is suitable for your application. The valid values are:

Type Description Indicators

web Scalable web applications Scales based on request load

Automatically exposed by HTTP Ingress

Does not perform background work

Works with Service Bindings

Stateless

Quick startup time

Tanzu Application Platform v1.4

VMware by Broadcom 371

Type Description Indicators

server Traditional applications Provides HTTP or TCP services on the network

Exposed by external Ingress or LoadBalancer settings

Might perform background work from a queue

Works with Service Bindings

Fixed scaling, no disk persistence

Startup time not an issue

worker Background applications Does not provide network services

Not exposed externally as a network service

Performs background work from a queue

Works with Service Bindings

Fixed scaling, no disk persistence

Startup time not an issue

Overview of workloads
This topic provides you with an overview of workload types in Tanzu Application Platform
(commonly known as TAP).

Workload features
Tanzu Application Platform allows you to quickly build and test applications regardless of your
familiarity with Kubernetes.

You can turn source code into a workload that runs in a container with a URL. You can also use
supply chains to build applications that process work from a message queue, or provide arbitrary
network services.

A workload allows you to choose application specifications, such as repository location,
environment variables, service binding, and so on. For more information about workload creation
and management, see Commands Details.

The Out of the Box supply chains support a range of workload types, including

Scalable web applications (web)

Traditional application servers (server)

Background applications (worker)

Serverless functions

You can use a collection of workloads of different types to deploy microservices that function as a
logical application. Alternatively, you can deploy your entire application as a single monolith.

If you build your own supply chains, you can define additional deployment methods beyond those
in the Out of the Box supply-chain templates.

Available workload types
When using the Out of the Box supply chain, the apps.tanzu.vmware.com/workload-type
annotation selects which style of deployment is suitable for your application. The valid values are:

Tanzu Application Platform v1.4

VMware by Broadcom 372

Type Description Indicators

web Scalable web applications Scales based on request load

Automatically exposed by HTTP Ingress

Does not perform background work

Works with Service Bindings

Stateless

Quick startup time

server Traditional applications Provides HTTP or TCP services on the network

Exposed by external Ingress or LoadBalancer settings

Might perform background work from a queue

Works with Service Bindings

Fixed scaling, no disk persistence

Startup time not an issue

worker Background applications Does not provide network services

Not exposed externally as a network service

Performs background work from a queue

Works with Service Bindings

Fixed scaling, no disk persistence

Startup time not an issue

Use web workloads

This topic tells you how to use the web workload type in Tanzu Application Platform (commonly
known as TAP).

Overview

The web workload type allows you to deploy web applications on Tanzu Application Platform. Using
an application workload specification, you can turn source code into a scalable, stateless application
that runs in a container with an automatically-assigned URL. This type of application is often called
serverless, and is deployed using Knative.

The web workload type is suitable for modern stateless web applications that follow the twelve-
factor app methodology and have the following characteristics:

Perform all work through HTTP requests, including gRPC and WebSocket

Do not perform work except when processing a request

Start up quickly

Store state in external databases instead of storing state locally

Applications using the web workload type have the following features:

Automatic request-based scaling, including scale-to-zero

Automatic URL provisioning and optional certificate provisioning

Automatic health-check definitions, if not provided by a convention

Blue-green application rollouts

Tanzu Application Platform v1.4

VMware by Broadcom 373

https://12factor.net/

When creating a workload with the tanzu apps workload create command, you can use the --
type=web argument to select the web workload type. For more information, see Use the web
Workload Type later in this topic.

You can also use the apps.tanzu.vmware.com/workload-type:web label in the YAML workload
description to support this deployment type.

Use the web workload type

The tanzu-java-web-app workload mentioned in Deploy an app on Tanzu Application Platform is a
good match for the web workload type. It is a good match because it serves HTTP requests and
does not perform any background processing.

You can experiment with the differences between the web and server workload types by changing
the workload type. To change the workload type run:

tanzu apps workload apply tanzu-java-web-app --type=server

After changing the workload type to server, the application does not auto-scale or expose an
external URL. For more information about the server workload type, see Use Server workloads.

Switch back to the web workload by running:

tanzu apps workload apply tanzu-java-web-app --type=web

Use this to test which applications can function well as serverless web applications, and which are
more suited to the server application style.

Calling web workloads within a cluster

When a web workload type is created, a Knative service is deployed to the cluster. To access your
application, you need the URL for the route created by the Knative Service. Obtain it by running
one of these commands:

tanzu apps workload get WORKLOAD-NAME --namespace DEVELOPER-NAMESPACE

kubectl get ksvc WORKLOAD-NAME -n YOUR-DEVELOPER-NAMESPACE -ojsonpath="{status.addres

s.url}"

When calling a Knative service, both the Service name and namespace are required. This behavior
is distinct from server type workloads, which do not rely on the namespace name to establish
service to service communication between applications within the same namespace.

Example of service to service communication for web and server
workloads

You have three applications deployed to the namespace called dev-namespace:

1. A server type workload named server-workload

2. A web type workload named web-workload

3. A pod running the busybox image with curl, named busybox

Open a shell to the running container of the busybox pod and send requests to the server and web
workloads using curl. Specify the namespace for both, as follows:

kubectl exec busybox -n dev-namespace -- curl server-workload.dev-namespace.svc.cluste

r.local -v

Tanzu Application Platform v1.4

VMware by Broadcom 374

kubectl exec busybox -n dev-namespace -- curl web-workload.dev-namespace.svc.cluster.l

ocal -v

Use server workloads

This topic tells you how to use the server workload type in Tanzu Application Platform (commonly
known as TAP).

Overview

The server workload type allows you to deploy traditional network applications on Tanzu
Application Platform.

Using an application workload specification, you can build and deploy application source code to a
manually-scaled Kubernetes deployment which exposes an in-cluster Service endpoint. If required,
you can use environment-specific LoadBalancer Services or Ingress resources to expose these
applications outside the cluster.

The server workload is suitable for traditional applications, including HTTP applications, which have
the following characteristics:

Store state locally

Run background tasks outside of requests

Provide multiple network ports or non-HTTP protocols

Are not a good match for the web workload type

An application using the server workload type has the following features:

Does not natively autoscale, but you can use these applications with the Kubernetes
Horizontal Pod Autoscaler.

By default, is exposed only within the cluster using a ClusterIP service.

Uses health checks if defined by a convention.

Uses a rolling update pattern by default.

When creating a workload with the tanzu apps workload create command, you can use the --
type=server argument to select the server workload type. For more information, see Use the
server Workload Type later in this topic. You can also use the apps.tanzu.vmware.com/workload-
type:server annotation in the YAML workload description to support this deployment type.

Use the server workload type

The spring-sensors-consumer-web workload in Bind an application workload to the service instance
in the Get started guide is a good match for the server workload type.

This is because it runs continuously to extract information from a RabbitMQ queue, and stores the
resulting data locally in memory and presents it through a web UI.

In the Services Toolkit example in Bind an application workload to the service instance, you can
update the spring-sensors-consumer-web workload to use the server supply chain by changing the
workload:

tanzu apps workload apply spring-sensors-consumer-web --type=server

This shows the change in the workload label and prompts you to accept the change. After the
workload finishes the new deployment, there are a few differences:

Tanzu Application Platform v1.4

VMware by Broadcom 375

The workload no longer exposes a URL. It’s available within the cluster as spring-sensors-
consumer-web within the namespace, but you must use kubectl port-forward
service/spring-sensors-consumer-web 8080 to access the web service on port 8080.

You can set up a Kubernetes Ingress rule to direct traffic from outside the cluster to the
workload. Use an Ingress rule to specify that specific host names or paths must be routed to
the application. For more information about Ingress rules, see the Kubernetes
documentation

The workload no longer autoscales based on request traffic. For the spring-sensors-
consumer-web workload, this means that it never spawns a second instance that consumes
part of the request queue. Also, it does not scale down to zero instances.

server-specific workload parameters

In addition to the common supply chain parameters, server workloads can expose one or more
network ports from the application to the Kubernetes cluster by using the ports parameter. This
parameter is a list of port objects, similar to a Kubernetes service specification.

If you do not configure the ports parameter, the applied container conventions in the cluster
establishes the set of exposed ports.

The following configuration exposes two ports on the Kubernetes cluster under the my-app host
name:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: my-app

 labels:

 apps.tanzu.vmware.com/workload-type: server

spec:

 params:

 - name: ports

 value:

 - containerPort: 2025

 name: smtp

 port: 25

 - port: 8080

 ...

This snippet configures:

One service on port 25, which is redirected to port 2025 on the application

One service on port 8080, which is routed to port 8080 on the application

You can set the ports parameter from the tanzu apps workload create command as --param-yaml
'ports=[{"port": 8080}]'.

The following values are valid within the ports argument:

Field Value

port The port on which the application is exposed to the rest of the cluster

containerPort The port on which the application listens for requests. Defaults to port if not set.

name A human-readable name for the port. Defaults to port if not set.

Expose server workloads outside the cluster

Tanzu Application Platform v1.4

VMware by Broadcom 376

https://kubernetes.io/docs/concepts/services-networking/ingress/

This section tells you how to expose server workloads outside the cluster.

Manual configuration for HTTP workloads

Expose HTTP server workloads by creating an Ingress resource and using cert-manager to
provision TLS-signed certificates.

1. Use the spring-sensors-consumer-web workload as an example from Bind an application
workload to the service instance. Create the following Ingress:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: spring-sensors-consumer-web

 namespace: DEVELOPER-NAMESPACE

 annotations:

 cert-manager.io/cluster-issuer: tap-ingress-selfsigned

 ingress.kubernetes.io/force-ssl-redirect: "true"

 kubernetes.io/ingress.class: contour

 kubernetes.io/tls-acme: "true"

spec:

 tls:

 - secretName: spring-sensors-consumer-web

 hosts:

 - "spring-sensors-consumer-web.INGRESS-DOMAIN"

 rules:

 - host: "spring-sensors-consumer-web.INGRESS-DOMAIN"

 http:

 paths:

 - pathType: Prefix

 path: /

 backend:

 service:

 name: spring-sensors-consumer-web

 port:

 number: 8080

Replace DEVELOPER-NAMESPACE with your developer namespace

Replace INGRESS-DOMAIN with the domain name defined in tap-values.yaml during
the installation

Set the annotation cert-manager.io/cluster-issuer to the shared.ingress_issuer
value configured during installation or leave it as tap-ingress-selfsigned to use the
default one

Update the port exposed by your Service resource, in the previous snippet it is set
to 8080

2. Access the server workload with https:

curl -k https://spring-sensors-consumer-web.INGRESS-DOMAIN

Define a workload type that exposes server workloads outside the
cluster

Tanzu Application Platform allows you to create new workload types. You start by adding an
Ingress resource to the server-template ClusterConfigTemplate when this new type of workload
is created.

1. Delete the Ingress resource previously created.

2. Install the yq CLI on your local machine.

Tanzu Application Platform v1.4

VMware by Broadcom 377

3. Save the existing server-template in a local file by running:

kubectl get ClusterConfigTemplate server-template -o yaml > secure-server-templ

ate.yaml

4. Extract the .spec.ytt field from this file and create another file by running:

yq eval '.spec.ytt' secure-server-template.yaml > spec-ytt.yaml

5. In the next step, you add the Ingress resource snippet to spec-ytt.yaml. This step
provides a sample Ingress resource snippet. Make the following edits before adding the
Ingress resource snippet to spec-ytt.yaml:

Replace INGRESS-DOMAIN with the Ingress domain you set during the installation.

Set the annotation cert-manager.io/cluster-issuer to the shared.ingress_issuer
value configured during installation or leave it as tap-ingress-selfsigned to use the
default one.

This configuration is based on your workload service running on port 8080.

The Ingress resource snippet looks like this:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: #@ data.values.workload.metadata.name

 annotations:

 cert-manager.io/cluster-issuer: tap-ingress-selfsigned

 ingress.kubernetes.io/force-ssl-redirect: "true"

 kubernetes.io/ingress.class: contour

 kubernetes.io/tls-acme: "true"

 kapp.k14s.io/change-rule: "upsert after upserting Services"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.run/wo

rkload-name": data.values.workload.metadata.name })

spec:

 tls:

 - secretName: #@ data.values.workload.metadata.name

 hosts:

 - #@ data.values.workload.metadata.name + ".INGRESS-DOMAIN"

 rules:

 - host: #@ data.values.workload.metadata.name + ".INGRESS-DOMAIN"

 http:

 paths:

 - pathType: Prefix

 path: /

 backend:

 service:

 name: #@ data.values.workload.metadata.name

 port:

 number: 8080

6. Add the Ingress resource snippet to the spec-ytt.yaml file and save. Look for the Service
resource, and insert the snippet before the last #@ end. For example:

THE TOP OF THE FILE IS NOT SHOWN

apiVersion: v1

kind: Service

metadata:

 name: #@ data.values.workload.metadata.name

Tanzu Application Platform v1.4

VMware by Broadcom 378

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.run/wo

rkload-name": data.values.workload.metadata.name })

spec:

 selector: #@ data.values.config.metadata.labels

 ports:

 #@ hasattr(data.values.params, "ports") and len(data.values.params.ports) or

assert.fail("one or more ports param must be provided.")

 #@ declared_ports = {}

 #@ if "ports" in data.values.params:

 #@ declared_ports = data.values.params.ports

 #@ else:

 #@ declared_ports = struct.encode([{ "containerPort": 8080, "port": 8080,

"name": "http"}])

 #@ end

 #@ for p in merge_ports(declared_ports, data.values.config.spec.containers):

 - #@ p

 #@ end

NEW INGRESS RESOURCE

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: #@ data.values.workload.metadata.name

 annotations:

 cert-manager.io/cluster-issuer: tap-ingress-selfsigned

 ingress.kubernetes.io/force-ssl-redirect: "true"

 kubernetes.io/ingress.class: contour

 kubernetes.io/tls-acme: "true"

 kapp.k14s.io/change-rule: "upsert after upserting Services"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.run/wo

rkload-name": data.values.workload.metadata.name })

spec:

 tls:

 - secretName: #@ data.values.workload.metadata.name

 hosts:

 - #@ data.values.workload.metadata.name + ".INGRESS-DOMAIN"

 rules:

 - host: #@ data.values.workload.metadata.name + ".INGRESS-DOMAIN"

 http:

 paths:

 - pathType: Prefix

 path: /

 backend:

 service:

 name: #@ data.values.workload.metadata.name

 port:

 number: 8080

END NEW INGRESS RESOURCE

#@ end

apiVersion: v1

kind: ConfigMap

metadata:

 name: #@ data.values.workload.metadata.name + "-server"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "config" })

data:

 delivery.yml: #@ yaml.encode(delivery())

7. Add the snippet to the .spec.ytt property in secure-server-template.yaml:

SPEC_YTT=$(cat spec-ytt.yaml) yq eval -i '.spec.ytt |= strenv(SPEC_YTT)' secure

-server-template.yaml

Tanzu Application Platform v1.4

VMware by Broadcom 379

8. Change the name of the ClusterConfigTemplate to secure-server-template by running:

yq eval -i '.metadata.name = "secure-server-template"' secure-server-template.y

aml

9. Create the new ClusterConfigTemplate by running:

kubectl apply -f secure-server-template.yaml

10. Verify the new ClusterConfigTemplate is in the cluster by running:

kubectl get ClusterConfigTemplate

Expected output:

kubectl get ClusterConfigTemplate

NAME AGE

api-descriptors 82m

config-template 82m

convention-template 82m

secure-server-template 22s

server-template 82m

service-bindings 82m

worker-template 82m

11. Add the new workload type to the tap-values.yaml. The new workload type is named
secure-server and the cluster_config_template_name is secure-server-template.

ootb_supply_chain_basic:

 supported_workloads:

 - type: web

 cluster_config_template_name: config-template

 - type: server

 cluster_config_template_name: server-template

 - type: worker

 cluster_config_template_name: worker-template

 - type: secure-server

 cluster_config_template_name: secure-server-template

12. Update your Tanzu Application Platform installation as follows:

tanzu package installed update tap -p tap.tanzu.vmware.com --values-file "/pat

h/to/your/config/tap-values.yaml" -n tap-install

13. Give privileges to the deliverable role to manage Ingress resources:

cat <<EOF | kubectl apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: deliverable-with-ingress

 labels:

 apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

rules:

- apiGroups:

 - networking.k8s.io

 resources:

 - ingresses

 verbs:

 - get

 - list

 - watch

Tanzu Application Platform v1.4

VMware by Broadcom 380

 - create

 - patch

 - update

 - delete

 - deletecollection

EOF

14. Update the workload type to secure-server:

tanzu apps workload apply spring-sensors-consumer-web --type=secure-server

15. After the process finishes, you see the resources Deployment, Service, and Ingress by
running:

kubectl get ingress,svc,deploy -l carto.run/workload-name=spring-sensors-consum

er-web

Expected output:

kubectl get ingress,svc,deploy -l carto.run/workload-name=tanzu-java-web-app-js

NAME CLASS HOSTS

ADDRESS PORTS AGE

ingress.networking.k8s.io/spring-sensors-consumer-web <none> spring-sensors

-consumer-web.INGRESS-DOMAIN 34.111.111.111 80, 443 37s

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

service/spring-sensors-consumer-web ClusterIP 10.32.15.194 <none>

8080/TCP 36m

NAME READY UP-TO-DATE AVAILABLE

AGE

deployment.apps/spring-sensors-consumer-web 1/1 1 1

37s

16. Access your secure-server workload with HTTPS by running:

curl -k https://spring-sensors-consumer-web.INGRESS-DOMAIN

Use worker workloads

This topic tells you how to create and install a supply chain for the worker workload type in Tanzu
Application Platform (commonly known as TAP).

Overview

The worker workload type allows you to deploy applications that run continuously without network
input on Tanzu Application Platform. Using an application workload specification, you can build and
deploy application source code to a manually scaled Kubernetes deployment with no network
exposure.

Note

If you created the Ingress resource manually in the previous section, delete
it before this.

Tanzu Application Platform v1.4

VMware by Broadcom 381

The worker workload is a good match for applications that manage their own work by reading from
a worker or a background scheduled time source, and don’t expose any network interfaces.

An application using the worker workload type has the following features:

Does not natively auto-scale but you can use it with the Kubernetes Horizontal Pod
Autoscaler

Does not expose any network services

Uses health checks if defined by a convention

Uses a rolling update pattern by default

When creating a workload with tanzu apps workload create, you can use the --type=worker
argument to select the worker workload type. For more information, see the Use the worker
Workload Type section. You can also use the apps.tanzu.vmware.com/workload-type:worker
annotation in the YAML workload description to support this deployment type.

Use the worker workload type

The spring-sensors-producer workload in the example in Consume services on Tanzu Application
Platform is a good match for the worker workload type. This is because it runs continuously without
a UI to report sensor information to a RabbitMQ topic.

If you followed the Services Toolkit example, you can update the spring-sensors-producer to use
the worker supply chain by changing the workload type. To do so, run:

tanzu apps workload apply spring-sensors-producer --type=worker

This shows a difference in the workload label, and prompts you to accept the change. After the
workload finishes the new deployment, there are a few differences:

The workload no longer has a URL. Because the workload does not present a web UI, this
more closely matches the original application intent.

The workload no longer auto-scales based on request traffic. For the spring-sensors-
producer workload, this means that it does not scale down to zero instances when there is
no request traffic.

Parameter reference

This topic tells you about the default supply chains and templates provided by Tanzu Application
Platform (commonly known as TAP). This topic describes the workload.spec.params parameters
that are configured in workload objects, and the deliverable.spec.params parameters that are
configured in the deliverable object.

Workload Parameter Reference

The supply chains and templates provided by the Out of the Box packages contain a series of
parameters that customize supply chain behavior. This section describes the workload.spec.params
parameters that can be configured in workload objects.

The following table provides a list of supply chain resources organized by the resource in the supply
chain where they are used. Some of these resources might not be applicable depending on the
supply chain in use.

List of Supply Chain Resources for Workload Object

Tanzu Application Platform v1.4

VMware by Broadcom 382

Supply Chain
Resource

Output Type Purpose Basic Testing Scanning

source-provider Source Fetches source code Yes Yes Yes

source-tester Source Tests source code No Yes Yes

source-scanner Source Scans source code No No Yes

image-provider Image Builds application container image Yes Yes Yes

image-scanner Image Scans application container image No No Yes

config-provider Podtemplate
spec

Tailors a pod spec based on the application image
and conventions set up in the cluster

Yes Yes Yes

app-config Kubernetes
configuration

Creates Kubernetes config files (knative
service/deployment - depending on workload
type)

Yes Yes Yes

service-bindings Kubernetes
configuration

Adds service bindings to the set of config files Yes Yes Yes

api-descriptors Kubernetes
configuration

Adds api descriptors to the set of config files Yes Yes Yes

config-writer Kubernetes
configuration

Writes configuration to a destination (git or
registry) for further deployment to a run cluster

Yes Yes Yes

deliverable Kubernetes
configuration

Writes deliverable content to be extracted for use
in a run cluster

Yes Yes Yes

For information about supply chains, see:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain Testing

Out of the Box Supply Chain Testing Scanning

source-provider

The source-provider resource in the supply chain creates objects that fetch either source code or
pre-compiled Java applications depending on how the workload is configured. For more
information, see Building from Source.

GitRepository

Use gitrepository when fetching source code from Git repositories. This resource makes further
resources available in the supply chain, such as the contents of the Git repository as a tarball
available in the cluster.

Parameters:

Parameter
name

Meaning Example

gitImplemen

tation

VMware recommends that you use the underlying library for fetching the
source code. Either libgit2, required for Azure DevOps, or go-git. - name:

gitImplementat

ion

 value:

libgit2

Tanzu Application Platform v1.4

VMware by Broadcom 383

Parameter
name

Meaning Example

gitops_ssh_

secret

The name of the secret in the same namespace as the `Workload` used for
providing credentials for fetching source code from the Git repository. For
more information, see Git authentication.

 - name:

gitops_ssh_sec

ret

 value:

git-credential

s

It might not be necessary to change the default Git implementation, but some providers such as
Azure DevOps, require you to use libgit2 as the server-side implementation provides support only
for git’s v2 protocol.

For information about the features supported by each implementation, see Git implementation in
the Flux documentation.

For information about how to create a workload that uses a GitHub repository as the provider of
source code, see Create a workload from GitHub repository.

For more information about GitRepository objects, see Git Repository in the Flux documentation.

ImageRepository

Use the ImageRepository when fetching source code from container images. It makes the contents
of the container image available as a tarball to further resources in the supply chain. The contents
of the container image are fetched by using Git or Maven.

For more information, see Create a workload from local source code.

Parameters:

Parameter
Name

Meaning Example

serviceAcco

unt

The name of the service account (in the same namespace as the workload) to
use to provide the credentials to `ImageRepository` for fetching the container
images.

 - name:

serviceAccount

 value:

default

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For information about custom resource details, see the ImageRepository reference topic.

For information about how to use ImageRepository with the Tanzu CLI, see Create a workload.

MavenArtifact

When carrying pre-built Java artifacts, MavenArtifact makes the artifact available to further
resources in the supply chain as a tarball. You can wrap the tarball as a container image for further
deployment. Differently from git and image, its configuration is solely driven by parameters in the
workload.

Parameters:

Tanzu Application Platform v1.4

VMware by Broadcom 384

https://git-scm.com/docs/protocol-v2
https://fluxcd.io/flux/components/source/gitrepositories/#git-implementation
https://fluxcd.io/flux/components/source/gitrepositories/

Parameter
Name

Meaning Example

maven Points to the maven artifact to fetch and the
polling interval. - name: maven

 value:

 artifactId: springboot-ini

tial

 groupId: com.example

 version: RELEASE

 classifier: sources

optional

 type: # optional

 artifactRetryTimeout: 1m0s

optional

For information about the custom resource, see the MavenArtifact reference documentation.

For information about how to use the custom resource with the tanzu apps workload CLI plug-in,
see Create a workload from Maven repository artifact.

source-tester

The source-tester resource is in ootb-supply-chain-testing and ootb-supply-chain-testing-
scanning. This resource is responsible for instantiating a Tekton PipelineRun object that calls the
execution of a Tekton Pipeline, in the same namespace as the workload, whenever its inputs
change. For example, the source code revision that you want to test changes.

A Runnable object is instantiated to ensure that there’s always a run for a particular set of inputs.
The parameters are passed from the workload down to Runnable’s Pipeline selection mechanism
through testing_pipeline_matching_labels and the execution of the PipelineRuns through
testing_pipeline_params.

Parameters:

Parameter name Meaning Example

testing_pipeli

ne_matching_la

bels

The set of labels to use when searching for Tekton Pipeline objects in the
same namespace as the workload. By default, a Pipeline labeled as
`apps.tanzu.vmware.com/pipeline: test` is selected, but when using this
parameter, it's possible to override the behavior.

 - name:

testing_pipeli

ne_matching_la

bels

 value:

 app

s.tanzu.com/pi

peline: test

 my.c

ompany/languag

e: golang

testing_pipeli

ne_params

The set of extra parameters, aside from `source-url` and `source-revision`,
to pass to the Tekton Pipeline. The Tekton Pipeline must declare both the
required parameters `source-url` and `source-revision` and the extra ones
declared in this table.

 - name:

testing_pipeli

ne_params

 value:

 - nam

e: verbose

 valu

e: true

Tanzu Application Platform v1.4

VMware by Broadcom 385

https://tekton.dev/docs/pipelines/pipelineruns/
https://cartographer.sh/docs/v0.4.0/reference/runnable/

For information about how to set up the Workload namespace for testing with Tekton, see Out of
the Box Supply Chain with Testing.

For information about how to use the parameters to customize this resource to test using a Jenkins
cluster, see Out of the Box Supply Chain with Testing on Jenkins.

source-scanner

The source-scanner resource is available in ootb-supply-chain-testing-scanning. It scans the
source code that is tested by pointing a SourceScan object at the same source code as the tests.

You can customize behavior for both CVEs evaluation with parameters.

Parameters:

Parameter name Meaning Example

scanning_source

_template

The name of the ScanTemplate object (in the same namespace
as the workload) to use for running the scans against the source
code.

 - name: scannin

g_source_template

 value: privat

e-source-scan-templat

e

scanning_source

_policy

The name of the ScanPolicy object (in the same namespace as
the workload) to use when evaluating the scan results of a
source scan.

 - name: scannin

g_source_policy

 value: allowl

ist-policy

For more information, see Out of the Box Supply Chain with Testing and Scanning for details about
how to set up the workload namespace with the ScanPolicy and ScanTemplate required for this
resource, and SourceScan reference for details about the SourceScan custom resource.

For information about how the artifacts found during scanning are catalogued, see Supply Chain
Security Tools for Tanzu – Store.

image-provider

The image-provider in the supply chains provides a container image carrying the application already
built to further resources.

Different semantics apply, depending on how the workload is configured, for example, if using pre-
built images or building from source:

pre-built: an ImageRepository object is created aiming at providing a reference to the latest
image found matching the name as specified in workload.spec.image

building from source: an image builder object is created (either Kpack’s Image or a Runnable
for creating Tekton TaskRuns for building images from Dockerfiles)

Kpack Image

Use the Kpack Image object to build a container image out of source code or pre-built Java artifact.

This makes the container image available to further resources in the supply chain through a content
addressable image reference that’s carried to the final deployment objects unchanged. For more
information, see Tanzu Build Service.

Parameters:

Tanzu Application Platform v1.4

VMware by Broadcom 386

Parameter
name

Meaning Example

serviceAccou

nt

The name of the serviceaccount (in the same namespace as the workload)
to use for providing credentials to `Image` for pushing the container
images it builds to the configured registry.

 - name: se

rviceAccount

 value: d

efault

clusterBuild

er

The name of the Kpack cluster builder to use in the Kpack Image object
created. - name: cl

usterBuilder

 value: n

odejs-cluster-bu

ilder

buildService

Bindings

The definition of a list of service bindings to use at build time. For
example, providing credentials for fetching dependencies from
repositories that require credentials.

 - name: bu

ildServiceBindin

gs

 value:

 - nam

e: settings-xml

 kin

d: Secret

 apiV

ersion: v1

live-update Enables the use of Tilt's live-update function.
 - name: li

ve-update

 value:

"true"

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For information about the integration with Tanzu Build Service, see Tanzu Build Service Integration.

For information about live-update, see Developer Conventions and Overview of Tanzu Developer
Tools for IntelliJ.

For information about using Kpack builders with clusterBuilder, see Builders.

For information about buildServiceBindings, see Service Bindings.

Runnable (TaskRuns for Dockerfile-based builds)

To perform Dockerfile-based builds, all the supply chains instantiate a Runnable object that
instantiates Tekton TaskRun objects to call the execution of kaniko builds.

Parameters:

Parameter name Meaning Example

dockerfile The relative path to the Dockerfile file in the build context.
./Dockerfile

Tanzu Application Platform v1.4

VMware by Broadcom 387

https://github.com/pivotal/kpack/blob/main/docs/builders.md
https://github.com/pivotal/kpack/blob/main/docs/servicebindings.md
https://github.com/GoogleContainerTools/kaniko

Parameter name Meaning Example

docker_build_context The relative path to the directory where the build context is.
.

docker_build_extra_a

rgs

List of flags to pass directly to Kaniko, such as providing
arguments to a build. - --build-arg=FOO

=BAR

For information about how to use Dockerfile-based builds and limitations associated with the
function, see Dockerfile-based builds.

Pre-built image (ImageRepository)

For applications that already have their container images built outside the supply chains, such as
providing an image reference under workload.spec.image, an ImageRepository object is created to
keep track of any images pushed under that name.

This makes the content-addressable name, such as the image name containing the digest, available
for further resources in the supply chain.

Parameters:

Parameter
name

Meaning Example

serviceAcco

unt

The name of the serviceaccount (in the same namespace as the workload) to
use for providing the credentials to `ImageRepository` for fetching the
container images.

 - name:

serviceAccount

 value:

default

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=....

For information about the ImageRepository resource, see the ImageRepository reference
documentation. For information about the prebuild image function, see Using a prebuilt image.

image-scanner

The image-scanner resource is included only in ootb-supply-chain-testing-scanning.

This resource scans a container image (either built by using the supply chain or prebuilt), persisting
the results in the store, and gating the image from moving forward in case the CVEs found are not
compliant with the ScanPolicy referenced by the ImageScan object create for doing so.

Parameters:

Parameter name Meaning Example

scanning_image_

template

The name of the ScanTemplate object (in the same namespace
as the workload) to use for running the scans against a container
image.

 - name: scanni

ng_image_template

 value: priva

te-image-scan-templa

te

Tanzu Application Platform v1.4

VMware by Broadcom 388

Parameter name Meaning Example

scanning_image_

policy

The name of the ScanPolicy object (in the same namespace as
the workload) to use when evaluating the scan results of an
image scan.

 - name: scanni

ng_image_policy

 value: allow

list-policy

For information about the ImageScan custom resource, see ImageScan reference.

For information about how the artifacts found during scanning are catalogued, see Supply Chain
Security Tools for Tanzu – Store.

config-provider

The config-provider resource in the supply chains generates a PodTemplateSpec to use in
application configs, such as Knative services and deployments, to represent the desired pod
configuration to instantiate to run the application in containers. For more information, see
PodTemplateSpec in the Kubernetes documentation.

The config-provider resource manages a PodIntent object that represents the intention of having
PodTemplateSpec enhanced with conventions installed in the cluster whose final representation is
then passed forward to other resources to form the final deployment configuration.

Parameters:

Parameter
name

Meaning Example

serviceAcc

ount

The name of the serviceaccount (in the same namespace as the workload) to use for
providing the necessary credentials to `PodIntent` for fetching the container image
to inspect the metadata to pass to convention servers and the
serviceAccountName set in the podtemplatespec.

 - nam

e: serviceA

ccount

 val

ue: default

annotation

s

An extra set of annotations to pass down to the PodTemplateSpec.
 - nam

e: annotati

ons

 val

ue:

 n

ame: my-app

lication

 v

ersion: v1.

2.3

 t

eam: store

debug Put the workload in debug mode.
 - nam

e: debug

 val

ue: "true"

Tanzu Application Platform v1.4

VMware by Broadcom 389

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec

Parameter
name

Meaning Example

live-

update

Enable live-updating of the code (for innerloop development).
 - nam

e: live-upd

ate

 val

ue: "true"

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For more information about the controller behind PodIntent, see Cartographer Conventions.

For more details about the two convention servers enabled by default in Tanzu Application
Platform installations, see Developer Conventions and Spring Boot conventions.

app-config

The app-config resource prepares a ConfigMap with the Kubernetes configuration that is used for
instantiating an application in the form of a particular workload type in a cluster.

The resource is configured in the supply chain to allow, by default, three types of workloads with
the selection of which workload type to apply based on the labels set in the workload object
created by the developer:

apps.tanzu.vmware.com/workload-type: web

apps.tanzu.vmware.com/workload-type: worker

apps.tanzu.vmware.com/workload-type: server

Only the server workload type has the following configurable parameters:

Parameter
name

Meaning example

ports The set of network ports to expose from the application to the
Kubernetes cluster. - name: ports

 value:

 - containerPor

t: 2025

 name: smtp

 port: 25

For more information about the three different types of workloads, see workload types. For a more
detailed overview of the ports parameter, see server-specific Workload parameters.

service-bindings

The service-bindings resource adds ServiceBindings to the set of Kubernetes configuration files to
promote for deployment.

Parameters:

Tanzu Application Platform v1.4

VMware by Broadcom 390

Parameter
name

Meaning Example

annotations The extra set of annotations to pass down to the ServiceBinding
and ResourceClaim objects. - name: annotat

ions

 value:

 name: my-ap

plication

 version: v

1.2.3

 team: store

For an example, see –service-ref in Tanzu CLI documentation.

For an overview of the function, see Consume services on Tanzu Application Platform.

api-descriptors

The api-descriptor resource adds an APIDescriptor to the set of Kubernetes objects to deploy.
This enables API auto registration.

Parameters:

Parameter
name

Meaning Example

annotations An extra set of annotations to pass down to
the APIDescriptor object. - name: annotations

 value:

 name: my-application

 version: v1.2.3

 team: store

api_descrip

tor

Information used to fill the state that you
want of the APIDescriptor object (its spec). - name: api_descriptor

 value:

 type: openapi

 location:

 baseURL: http://petclinic-

hard-coded.my-apps.tapdemo.vmware.com/

 path: "/v3/api"

 owner: team-petclinic

 system: pet-clinics

 description: "example"

The workload must include the apis.apps.tanzu.vmware.com/register-api: "true" label to
activate this function.

For more details about API auto registration, see Use API Auto Registration.

config-writer (git or registry)

The config-writer resource is responsible for performing the last mile of the supply chain:
persisting in an external system (registry or Git repository) the Kubernetes configuration generated
throughout the supply chain.

There are three methods:

Publishing the configuration to a container image registry

Tanzu Application Platform v1.4

VMware by Broadcom 391

Publishing the configuration to a Git repository by using the push of a commit

Publishing the configuration to a Git repository by pushing a commit and opening a pull
request

For more information about the different modes of operation, see Gitops vs RegistryOps.

deliverable

The deliverable resource creates a deliverable object that represents the intention of delivering
to the cluster the configurations that are produced by the supply chain.

Parameters:

Parameter
name

Meaning Example

serviceAcc

ount

The name of the serviceaccount (in the same namespace as the deliverable) to use
for providing the necessary permissions to create the children objects for
deploying the objects created by the supply chain to the cluster.

 - nam

e: serviceAc

count

 valu

e: default

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

On build clusters where a corresponding ClusterDelivery doesn’t exist, the deliverable takes no
effect (similarly to a workload without a SupplyChain, no action is taken).

Deliverable Parameters Reference

The deliverable object applies the configuration produced by the resources defined by a
ClusterSupplyChain to a Kubernetes cluster.

This section describes the deliverable.spec.params parameters that can be configured in the
deliverable object. The following section describes the two resources defined in the ClusterDelivery
resources section. These are part of the ootb-delivery-basic package:

List of Cluster Delivery Resources for Deliverable Object

Cluster Delivery
Resource

Output
Type

Purpose

source provider Source Fetches the Kubernetes configuration file from Git repository or image
registry

app deployer Source Applies configuration produced by a supply chain to the cluster

For information about the ClusterDelivery shipped with ootb-delivery-basic, and the templates
used by it, see:

Out of the Box Delivery Basic

Out of the Templates

For information about the use of the deliverable object in a multicluster environment, see Getting
started with multicluster Tanzu Application Platform.

For reference information about deliverable, see Deliverable and Delivery custom resources in the
Cartographer documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 392

https://cartographer.sh/docs/v0.5.0/reference/deliverable/

source-provider

The source-provider resource in the basic ClusterDelivery creates objects that continuously fetch
Kubernetes configuration files from a Git repository or container image registry so that it can apply
those to the cluster.

Regardless of where it fetches that Kubernetes configuration from (Git repository or image
registry), it exposes those files to further resources along the ClusterDelivery as a tarball.

GitRepository

A GitRepository object is instantiated when deliverable.spec.source.git is configured to
continuously look for a Kubernetes configuration pushed to a Git repository, making it available for
resources in the ClusterDelivery.

Parameters:

Parameter
name

Meaning Example

gitImplemen

tation

VMware recommends that you use the underlying library for fetching the source
code. Either libgit2, required for Azure DevOps, or go-git. - name:

gitImplementa

tion

 valu

e: libgit2

gitops_ssh_

secret

The name of the secret in the same namespace as the `deliverable` used for
providing credentials for fetching Kubernetes configuration files from the Git
repository pointed at. See [Git authentication](../scc/git-auth.md).

 - name:

gitops_ssh_se

cret

 valu

e: git-creden

tials

It might not be necessary to change the default Git implementation but some providers, such as
Azure DevOps, require you to use libgit2 as the server-side implementation provides support only
for git’s v2 protocol.

For information about the features supported by each implementation, see git implementation in
the Flux documentation.

For information about how to create a workload that uses a GitHub repository as the provider of
source code, see Create a workload from GitHub repository.

For information about GitRepository objects, see GitRepository.

ImageRepository

An ImageRepository object is instantiated when deliverable.spec.source.image is configured to
continuously look for Kubernetes configuration files pushed to a container image registry as
opposed to a Git repository.

Parameters:

Tanzu Application Platform v1.4

VMware by Broadcom 393

https://git-scm.com/docs/protocol-v2
https://fluxcd.io/flux/components/source/gitrepositories/#git-implementation
https://fluxcd.io/flux/components/source/gitrepositories/

Parameter
name

Meaning Example

serviceAcc

ount

The name of the service account, in the same namespace as the deliverable, you
want to use to provide the necessary permissions for `kapp-controller` to
deploy the objects to the cluster.

 - name:

serviceAccoun

t

 valu

e: default

The --service-account flag sets the spec.serviceAccountName key in the deliverable object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For information about custom resource details, see the ImageRepository reference documentation.

app deployer

The app-deploy resource in the ClusterDelivery applies the Kubernetes configuration that is built by
the supply chain, pushed to either a Git repository or image repository, and applied to the cluster.

App

Regardless of where the configuration comes from, an App object is instantiated to deploy the set
of Kubernetes configuration files to the cluster.

Parameters:

Parameter name Meaning Example

serviceAccount The name of the service account, in the same namespace as the
deliverable, you want to use to provide the necessary privileges for `App`
to apply the Kubernetes objects to the cluster.

 - name:

serviceAccoun

t

 valu

e: default

gitops_sub_path

(deprecated)

The subdirectory within the configuration bundle used for looking up the
files to apply to the Kubernetes cluster. - name:

gitops_sub_pa

th

 valu

e: ./config

The gitops_sub_path parameter is deprecated. Use deliverable.spec.source.subPath instead.

The --service-account flag sets the spec.serviceAccountName key in the deliverable object.

To configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For details about RBAC and how kapp-controller uses the ServiceAccount provided to it using the
serviceAccount parameter in the deliverable object, see the Carvel documentation.

Use functions (Beta)

This topic tells you how to create and deploy a HTTP or CloudEvent function from an Application
Accelerator starter template in an online or air-gapped environment on Tanzu Application Platform
(commonly known as TAP).

Tanzu Application Platform v1.4

VMware by Broadcom 394

https://carvel.dev/kapp-controller/docs/v0.41.0/app-overview/
https://carvel.dev/kapp-controller/docs/v0.41.0/security-model/

Overview
The function experience on Tanzu Application Platform enables you to deploy functions, use starter
templates to bootstrap your function, and write only the code that matters to your business. You
can run a single CLI command to deploy your functions to an auto-scaled cluster.

Functions provide a quick way to get started writing an application. Compared with a traditional
application:

Functions have a single entry-point and perform a single task. This means that functions can
be easier to understand and monitor.

The function buildpack manages the webserver. This means that you can focus on your
business logic.

A traditional webserver application might be a better fit if you want to implement an entire
website or API in a single container

Supported languages and frameworks

For HTTP and CloudEvents:

Language/framework HTTP CloudEvents

Java ✓ ✓

Python ✓ ✓

NodeJS ✓ N/A

For REST API:

Language/framework GET POST

Java N/A ✓

Python ✓ ✓

NodeJS ✓ ✓

Prerequisites

Important

Function Buildpacks for Knative and the corresponding Application Accelerator
starter templates for Python and Java are deprecated and will be removed in Tanzu
Application Platform v1.7. This beta product will not receive any future updates or
patches.

Important

Beta features have been tested for functionality, but not performance. Features
enter the beta stage so that customers can gain early access, and give feedback on
the design and behavior.

Beta features might undergo changes based on this feedback before the end of the
beta stage. VMware discourages running beta features in production. VMware
cannot guarantee that you can upgrade any beta feature in the future.

Tanzu Application Platform v1.4

VMware by Broadcom 395

Before using function workloads, follow all instructions to install Tanzu Application Platform for your
environment:

Installing Tanzu Application Platform online

Installing Tanzu Application Platform in an air-gapped environment

Create a function project from an accelerator

To create a function project from an accelerator:

1. From the Tanzu Application Platform GUI portal, click Create on the left navigation bar to
see the list of available accelerators.

2. Locate the function accelerator in the language or framework of your choice and click
CHOOSE.

3. Provide a name for your function project and your function.

4. If you are creating a Java function, select a project type.

5. Provide a Git repository to store the files for the accelerator.

6. Click NEXT STEP, verify the provided information, and then click CREATE.

7. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

Tanzu Application Platform v1.4

VMware by Broadcom 396

8. After downloading the ZIP file, expand it in a workspace directory and follow your preferred
procedure for uploading the generated project files to a Git repository for your new project.

Create a function project using the Tanzu CLI

From the CLI, to generate a function project using an accelerator template and then download the
project artifacts as a ZIP file:

1. Verify that you have added the function accelerator template to the application accelerator
server by running:

tanzu accelerator list

2. Get the server-url for the Application Accelerator server. The URL depends on the
configuration settings for Application Accelerator:

For installations configured with a shared ingress, use https://accelerator.DOMAIN
where DOMAIN is provided in the values file for the accelerator configuration.

For installations using a LoadBalancer, look up the External IP address by running:

kubectl get -n accelerator-system service/acc-server

Use http://EXTERNAL-IP as the URL.

For any other configuration, you can use port forwarding by running:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

Use http://localhost:8877 as the URL.

3. Generate a function project from an accelerator template by running:

tanzu accelerator generate ACCELERATOR-NAME \

--options '{"projectName": "FUNCTION-NAME", "interfaceType": "TYPE"}' \

--server-url APPLICATION-ACCELERATOR-URL

Where:

ACCELERATOR-NAME is the name of the function accelerator template you want to use.

FUNCTION-NAME is the name of your function project.

TYPE is the interface you want to use for your function. Available options are http or
cloudevents. CloudEvents is experimental.

APPLICATION-ACCELERATOR-URL is the URL for the Application Accelerator server that
you retrieved in the previous step.

For example:

tanzu accelerator generate java-function \

--options '{"projectName": "my-func", "interfaceType": "http"}' \

--server-url http://localhost:8877

4. After generating the ZIP file, expand it in your directory and follow your preferred
procedure for uploading the generated project files to a Git repository for your new project.

Deploy your function
To deploy and verify your function:

Tanzu Application Platform v1.4

VMware by Broadcom 397

1. Deploy the function accelerator by running the tanzu apps workload create command:

tanzu apps workload create functions-accelerator-python \

--local-path . \

--source-image SOURCE-IMAGE \

--type web \

--yes

--namespace YOUR-DEVELOPER-NAMESPACE

--build-env 'BP_FUNCTION=func.hello'

Where:

SOURCE-IMAGE is a writable repository in your registry in the form
REGISTRY/IMAGE:TAG.

Harbor has the form: “my-harbor.io/my-project/functions-accelerator-
python”.

Docker Hub has the form: “my-dockerhub-user/functions-accelerator-
python”.

Google Cloud Registry has the form: “gcr.io/my-project/functions-
accelerator-python”.

YOUR-DEVELOPER-NAMESPACE is the namespace you configured earlier.

2. View the build and runtime logs for your application by running the tail command:

tanzu apps workload tail functions-accelerator-python --since 10m --timestamp -

-namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

3. After the workload is built and running, you can view the web application in your browser.
To view the URL of the web application, run the following command and then ctrl-click the
Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get functions-accelerator-python --namespace YOUR-DEVELOPER

-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

4. (Optional) You can test your function using a curl command. To do so, you must have curl
installed on your computer. Java function POST example:

curl -w'\n' URL-FROM-YOUR-WORKLOAD-KNATIVE-SERVICES-SECTION \

-H "Content-Type: application/json" \

-d '{"firstName":"John", "lastName":"Doe"}'

For language support for the REST API, see Supported languages and frameworks earlier in
this topic.

Use functions (Beta)
This topic tells you how to create and deploy a HTTP or CloudEvent function from an Application
Accelerator starter template in an online or air-gapped environment on Tanzu Application Platform
(commonly known as TAP).

Important

Tanzu Application Platform v1.4

VMware by Broadcom 398

Overview

The function experience on Tanzu Application Platform enables you to deploy functions, use starter
templates to bootstrap your function, and write only the code that matters to your business. You
can run a single CLI command to deploy your functions to an auto-scaled cluster.

Functions provide a quick way to get started writing an application. Compared with a traditional
application:

Functions have a single entry-point and perform a single task. This means that functions can
be easier to understand and monitor.

The function buildpack manages the webserver. This means that you can focus on your
business logic.

A traditional webserver application might be a better fit if you want to implement an entire
website or API in a single container

Supported languages and frameworks

For HTTP and CloudEvents:

Language/framework HTTP CloudEvents

Java ✓ ✓

Python ✓ ✓

NodeJS ✓ N/A

For REST API:

Language/framework GET POST

Java N/A ✓

Python ✓ ✓

NodeJS ✓ ✓

Prerequisites
Before using function workloads, follow all instructions to install Tanzu Application Platform for your
environment:

Function Buildpacks for Knative and the corresponding Application Accelerator
starter templates for Python and Java are deprecated and will be removed in Tanzu
Application Platform v1.7. This beta product will not receive any future updates or
patches.

Important

Beta features have been tested for functionality, but not performance. Features
enter the beta stage so that customers can gain early access, and give feedback on
the design and behavior.

Beta features might undergo changes based on this feedback before the end of the
beta stage. VMware discourages running beta features in production. VMware
cannot guarantee that you can upgrade any beta feature in the future.

Tanzu Application Platform v1.4

VMware by Broadcom 399

Installing Tanzu Application Platform online

Installing Tanzu Application Platform in an air-gapped environment

Create a function project from an accelerator

To create a function project from an accelerator:

1. From the Tanzu Application Platform GUI portal, click Create on the left navigation bar to
see the list of available accelerators.

2. Locate the function accelerator in the language or framework of your choice and click
CHOOSE.

3. Provide a name for your function project and your function.

4. If you are creating a Java function, select a project type.

5. Provide a Git repository to store the files for the accelerator.

6. Click NEXT STEP, verify the provided information, and then click CREATE.

7. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

8. After downloading the ZIP file, expand it in a workspace directory and follow your preferred
procedure for uploading the generated project files to a Git repository for your new project.

Tanzu Application Platform v1.4

VMware by Broadcom 400

Create a function project using the Tanzu CLI

From the CLI, to generate a function project using an accelerator template and then download the
project artifacts as a ZIP file:

1. Verify that you have added the function accelerator template to the application accelerator
server by running:

tanzu accelerator list

2. Get the server-url for the Application Accelerator server. The URL depends on the
configuration settings for Application Accelerator:

For installations configured with a shared ingress, use https://accelerator.DOMAIN
where DOMAIN is provided in the values file for the accelerator configuration.

For installations using a LoadBalancer, look up the External IP address by running:

kubectl get -n accelerator-system service/acc-server

Use http://EXTERNAL-IP as the URL.

For any other configuration, you can use port forwarding by running:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

Use http://localhost:8877 as the URL.

3. Generate a function project from an accelerator template by running:

tanzu accelerator generate ACCELERATOR-NAME \

--options '{"projectName": "FUNCTION-NAME", "interfaceType": "TYPE"}' \

--server-url APPLICATION-ACCELERATOR-URL

Where:

ACCELERATOR-NAME is the name of the function accelerator template you want to use.

FUNCTION-NAME is the name of your function project.

TYPE is the interface you want to use for your function. Available options are http or
cloudevents. CloudEvents is experimental.

APPLICATION-ACCELERATOR-URL is the URL for the Application Accelerator server that
you retrieved in the previous step.

For example:

tanzu accelerator generate java-function \

--options '{"projectName": "my-func", "interfaceType": "http"}' \

--server-url http://localhost:8877

4. After generating the ZIP file, expand it in your directory and follow your preferred
procedure for uploading the generated project files to a Git repository for your new project.

Deploy your function

To deploy and verify your function:

1. Deploy the function accelerator by running the tanzu apps workload create command:

tanzu apps workload create functions-accelerator-python \

--local-path . \

Tanzu Application Platform v1.4

VMware by Broadcom 401

--source-image SOURCE-IMAGE \

--type web \

--yes

--namespace YOUR-DEVELOPER-NAMESPACE

--build-env 'BP_FUNCTION=func.hello'

Where:

SOURCE-IMAGE is a writable repository in your registry in the form
REGISTRY/IMAGE:TAG.

Harbor has the form: “my-harbor.io/my-project/functions-accelerator-
python”.

Docker Hub has the form: “my-dockerhub-user/functions-accelerator-
python”.

Google Cloud Registry has the form: “gcr.io/my-project/functions-
accelerator-python”.

YOUR-DEVELOPER-NAMESPACE is the namespace you configured earlier.

2. View the build and runtime logs for your application by running the tail command:

tanzu apps workload tail functions-accelerator-python --since 10m --timestamp -

-namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

3. After the workload is built and running, you can view the web application in your browser.
To view the URL of the web application, run the following command and then ctrl-click the
Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get functions-accelerator-python --namespace YOUR-DEVELOPER

-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

4. (Optional) You can test your function using a curl command. To do so, you must have curl
installed on your computer. Java function POST example:

curl -w'\n' URL-FROM-YOUR-WORKLOAD-KNATIVE-SERVICES-SECTION \

-H "Content-Type: application/json" \

-d '{"firstName":"John", "lastName":"Doe"}'

For language support for the REST API, see Supported languages and frameworks earlier in
this topic.

Tanzu Application Platform v1.4

VMware by Broadcom 402

Troubleshoot Tanzu Application Platform

These topics provide you with troubleshooting information to help resolve issues with your Tanzu
Application Platform (commonly known as TAP):

Troubleshoot installing Tanzu Application Platform

Troubleshoot using Tanzu Application Platform

Troubleshoot Tanzu Application Platform components

Troubleshoot Tanzu Application Platform

These topics provide you with troubleshooting information to help resolve issues with your Tanzu
Application Platform (commonly known as TAP):

Troubleshoot installing Tanzu Application Platform

Troubleshoot using Tanzu Application Platform

Troubleshoot Tanzu Application Platform components

Troubleshoot installing Tanzu Application Platform

This topic tells you how to troubleshoot installing Tanzu Application Platform (commonly known as
TAP).

Developer cannot be verified when installing Tanzu CLI on
macOS

You see the following error when you run Tanzu CLI commands, for example tanzu version, on
macOS:

"tanzu" cannot be opened because the developer cannot be verified

Explanation

Security settings are preventing installation.

Solution

To resolve this issue:

1. Click Cancel in the macOS prompt window.

2. Open System Preferences > Security & Privacy.

3. Click General.

4. Next to the warning message for the Tanzu binary, click Allow Anyway.

5. Enter your system username and password in the macOS prompt window to confirm the
changes.

6. In the terminal window, run:

Tanzu Application Platform v1.4

VMware by Broadcom 403

tanzu version

7. In the macOS prompt window, click Open.

Access .status.usefulErrorMessage details

When installing Tanzu Application Platform, you receive an error message that includes the
following:

(message: Error (see .status.usefulErrorMessage for details))

Explanation

A package fails to reconcile and you must access the details in .status.usefulErrorMessage.

Solution

Access the details in .status.usefulErrorMessage by running:

kubectl get packageinstall PACKAGE-NAME -n tap-install -o yaml

Where PACKAGE-NAME is the name of the package to target.

“Unauthorized to access” error
When running the tanzu package install command, you receive an error message that includes
the error:

UNAUTHORIZED: unauthorized to access repository

Example:

$ tanzu package install app-live-view -p appliveview.tanzu.vmware.com -v 0.1.0 -n tap-

install -f ./app-live-view.yml

Error: package reconciliation failed: vendir: Error: Syncing directory '0':

 Syncing directory '.' with imgpkgBundle contents:

 Imgpkg: exit status 1 (stderr: Error: Checking if image is bundle: Collecting imag

es: Working with registry.tanzu.vmware.com/app-live-view/application-live-view-install

-bundle@sha256:b13b9ba81bcc985d76607cfc04bcbb8829b4cc2820e64a99e0af840681da12aa: GET h

ttps://registry.tanzu.vmware.com/v2/app-live-view/application-live-view-install-bundl

e/manifests/sha256:b13b9ba81bcc985d76607cfc04bcbb8829b4cc2820e64a99e0af840681da12aa: U

NAUTHORIZED: unauthorized to access repository: app-live-view/application-live-view-in

stall-bundle, action: pull: unauthorized to access repository: app-live-view/applicati

on-live-view-install-bundle, action: pull

Explanation

The Tanzu Network credentials needed to access the package may be missing or incorrect.

Solution

To resolve this issue:

Note

This example shows an error received when with Application Live View as the
package. This error can also occur with other packages.

Tanzu Application Platform v1.4

VMware by Broadcom 404

1. Repeat the step to create a secret for the namespace. For instructions, see Add the Tanzu
Application Platform Package Repository in Installing the Tanzu Application Platform
Package and Profiles. Ensure that you provide the correct credentials.

When the secret has the correct credentials, the authentication error should resolve itself
and the reconciliation succeed. Do not reinstall the package.

2. List the status of the installed packages to confirm that the reconcile has succeeded. For
instructions, see Verify the Installed Packages in Installing Individual Packages.

“Serviceaccounts already exists” error

When running the tanzu package install command, you receive the following error:

failed to create ServiceAccount resource: serviceaccounts already exists

Example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 0.2.0

-n tap-install -f app-accelerator-values.yaml

Error: failed to create ServiceAccount resource: serviceaccounts "app-accelerator-tap-

install-sa" already exists

Explanation

The tanzu package install command may be executed again after failing.

Solution

To update the package, run the following command after the first use of the tanzu package
install command

tanzu package installed update

After package installation, one or more packages fails to
reconcile
You run the tanzu package install command and one or more packages fails to install. For
example:

tanzu package install tap -p tap.tanzu.vmware.com -v 0.4.0 --values-file tap-values.ya

ml -n tap-install

- Installing package 'tap.tanzu.vmware.com'

\ Getting package metadata for 'tap.tanzu.vmware.com'

| Creating service account 'tap-tap-install-sa'

/ Creating cluster admin role 'tap-tap-install-cluster-role'

| Creating cluster role binding 'tap-tap-install-cluster-rolebinding'

| Creating secret 'tap-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'tap'

/ 'PackageInstall' resource install status: Reconciling

| 'PackageInstall' resource install status: ReconcileFailed

Note

This example shows an error received with App Accelerator as the package. This
error can also occur with other packages.

Tanzu Application Platform v1.4

VMware by Broadcom 405

Please consider using 'tanzu package installed update' to update the installed package

with correct settings

Error: resource reconciliation failed: kapp: Error: waiting on reconcile packageinstal

l/tap-gui (packaging.carvel.dev/v1alpha1) namespace: tap-install:

 Finished unsuccessfully (Reconcile failed: (message: Error (see .status.usefulError

Message for details))). Reconcile failed: Error (see .status.usefulErrorMessage for de

tails)

Error: exit status 1

Explanation

Often, the cause is one of the following:

Your infrastructure provider takes longer to perform tasks than the timeout value allows.

A race-condition between components exists. For example, a package that uses Ingress
completes before the shared Tanzu ingress controller becomes available.

The VMware Carvel tools kapp-controller continues to try in a reconciliation loop in these cases.
However, if the reconciliation status is failed then there might be a configuration issue in the
provided tap-config.yml file.

Solution

1. Verify if the installation is still in progress by running:

tanzu package installed list -A

If the installation is still in progress, the command produces output similar to the following
example, and the installation is likely to finish successfully.

\ Retrieving installed packages...

 NAME PACKAGE-NAME

PACKAGE-VERSION STATUS NAMESPACE

 accelerator accelerator.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 api-portal api-portal.tanzu.vmware.com

1.0.6 Reconcile succeeded tap-install

 appliveview run.appliveview.tanzu.vmware.com

1.0.0-build.3 Reconciling tap-install

 appliveview-conventions build.appliveview.tanzu.vmware.com

1.0.0-build.3 Reconcile succeeded tap-install

 buildservice buildservice.tanzu.vmware.com

1.4.0-build.1 Reconciling tap-install

 cartographer cartographer.tanzu.vmware.com

0.1.0 Reconcile succeeded tap-install

 cert-manager cert-manager.tanzu.vmware.com

1.5.3+tap.1 Reconcile succeeded tap-install

 cnrs cnrs.tanzu.vmware.com

1.1.0 Reconcile succeeded tap-install

 contour contour.tanzu.vmware.com

1.18.2+tap.1 Reconcile succeeded tap-install

 conventions-controller controller.conventions.apps.tanzu.vmware.com

0.4.2 Reconcile succeeded tap-install

 developer-conventions developer-conventions.tanzu.vmware.com

0.4.0-build1 Reconcile succeeded tap-install

 fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

0.16.0 Reconcile succeeded tap-install

 grype grype.scanning.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com

1.0.0-beta.3 Reconcile succeeded tap-install

 learningcenter learningcenter.tanzu.vmware.com

Tanzu Application Platform v1.4

VMware by Broadcom 406

0.1.0-build.6 Reconcile succeeded tap-install

 learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

0.1.0-build.7 Reconcile succeeded tap-install

 ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 ootb-templates ootb-templates.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 scanning scanning.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 metadata-store metadata-store.apps.tanzu.vmware.com

1.0.2 Reconcile succeeded tap-install

 service-bindings service-bindings.labs.vmware.com

0.6.0 Reconcile succeeded tap-install

 services-toolkit services-toolkit.tanzu.vmware.com

0.7.1 Reconcile succeeded tap-install

 source-controller controller.source.apps.tanzu.vmware.com

0.2.0 Reconcile succeeded tap-install

 spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

0.2.0 Reconcile succeeded tap-install

 tap tap.tanzu.vmware.com

0.4.0-build.12 Reconciling tap-install

 tap-gui tap-gui.tanzu.vmware.com

1.0.0-rc.72 Reconcile succeeded tap-install

 tap-telemetry tap-telemetry.tanzu.vmware.com

0.1.0 Reconcile succeeded tap-install

 tekton-pipelines tekton.tanzu.vmware.com

0.30.0 Reconcile succeeded tap-install

If the installation has stopped running, one or more reconciliations have likely failed, as seen
in the following example:

NAME PACKAGE NAME

PACKAGE VERSION DESCRIPTION

AGE

accelerator accelerator.apps.tanzu.vmware.com

1.0.1 Reconcile succeeded

109m

api-portal api-portal.tanzu.vmware.com

1.0.9 Reconcile succeeded

119m

appliveview run.appliveview.tanzu.vmware.com

1.0.2-build.2 Reconcile succeeded

109m

appliveview-conventions build.appliveview.tanzu.vmware.com

1.0.2-build.2 Reconcile succeeded

109m

buildservice buildservice.tanzu.vmware.com

1.5.0 Reconcile succeeded

119m

cartographer cartographer.tanzu.vmware.com

0.2.1 Reconcile succeeded

117m

cert-manager cert-manager.tanzu.vmware.com

1.5.3+tap.1 Reconcile succeeded

119m

cnrs cnrs.tanzu.vmware.com

1.1.0 Reconcile succeeded

109m

contour contour.tanzu.vmware.com

1.18.2+tap.1 Reconcile succeeded

117m

conventions-controller controller.conventions.apps.tanzu.vmware.com

0.5.0 Reconcile succeeded

Tanzu Application Platform v1.4

VMware by Broadcom 407

117m

developer-conventions developer-conventions.tanzu.vmware.com

0.5.0 Reconcile succeeded

109m

fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

0.16.1 Reconcile succeeded

119m

grype grype.scanning.apps.tanzu.vmware.com

1.0.0 Reconcile failed: Error (see .status.usefulErrorMessage for d

etails) 109m

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com

1.0.1 Reconcile succeeded

117m

learningcenter learningcenter.tanzu.vmware.com

0.1.0 Reconcile succeeded

109m

learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

0.1.0 Reconcile succeeded

103m

metadata-store metadata-store.apps.tanzu.vmware.com

1.0.2 Reconcile succeeded

117m

ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

0.6.1 Reconcile succeeded

103m

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com

0.6.1 Reconcile succeeded

103m

ootb-templates ootb-templates.tanzu.vmware.com

0.6.1 Reconcile succeeded

109m

scanning scanning.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded

119m

service-bindings service-bindings.labs.vmware.com

0.6.0 Reconcile succeeded

119m

services-toolkit services-toolkit.tanzu.vmware.com

0.7.1 Reconcile succeeded

119m

source-controller controller.source.apps.tanzu.vmware.com

0.2.0 Reconcile succeeded

119m

spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

0.3.0 Reconcile succeeded

109m

tap tap.tanzu.vmware.com

1.0.1 Reconcile failed: Error (see .status.usefulErrorMessage for d

etails) 119m

tap-gui tap-gui.tanzu.vmware.com

1.0.2 Reconcile succeeded

109m

tap-telemetry tap-telemetry.tanzu.vmware.com

0.1.3 Reconcile succeeded

119m

tekton-pipelines tekton.tanzu.vmware.com

0.30.0 Reconcile succeeded

119m

In this example, packageinstall/grype and packageinstall/tap have reconciliation errors.

2. To get more details on the possible cause of a reconciliation failure, run:

kubectl describe packageinstall/NAME -n tap-install

Where NAME is the name of the failing package. For this example it would be grype.

Tanzu Application Platform v1.4

VMware by Broadcom 408

3. Use the displayed information to search for a relevant troubleshooting issue in this topic. If
none exists, and you are unable to fix the described issue yourself, please contact support.

4. Repeat these diagnosis steps for any other packages that failed to reconcile.

Failure to accept an End User License Agreement error

You cannot access Tanzu Application Platform or one of its components from VMware Tanzu
Network.

Explanation

You cannot access Tanzu Application Platform or one of its components from VMware Tanzu
Network before accepting the relevant EULA in VMware Tanzu Network.

Solution

Follow the steps in Accept the End User License Agreements in Installing the Tanzu CLI.

Ingress is broken on Kind cluster

Your Contour installation cannot provide ingress to workloads when installed on a Kind cluster
without a LoadBalancer solution. Your Kind cluster was created with port mappings, as described in
the Kind install guide.

Explanation

In Tanzu Application Platform v1.4.13, the default configuration for contour.envoy.service.type is
LoadBalancer. However, for the Envoy pods to be accessed by using the port mappings on your
Kind cluster, the service must be of type NodePort.

Solution

Configure contour.evnoy.service.type to be NodePort. Then, configure
envoy.service.nodePorts.http and envoy.service.nodePorts.https to the corresponding port
mappings on your Kind node. Otherwise, the NodePort service is assigned random ports, which are
not accessible through your Kind cluster.

Troubleshoot using Tanzu Application Platform

This topic tells you how to troubleshoot using Tanzu Application Platform (commonly known as
TAP).

Use events to find possible causes

Events can highlight issues with components in a supply chain. For example, high occurrences of
StampedObjectApplied or ResourceOutputChanged can indicate problems with trashing on a
component.

To view the recent events for a workload, run:

kubectl describe workload.carto.run <workload-name> -n <workload-ns>

Missing build logs after creating a workload

You create a workload, but no logs appear when you run:

tanzu apps workload tail workload-name --since 10m --timestamp

Tanzu Application Platform v1.4

VMware by Broadcom 409

https://tanzu.vmware.com/support

Explanation

Common causes include:

Misconfigured repository

Misconfigured service account

Misconfigured registry credentials

Solution

To resolve this issue, run:

kubectl get clusterbuilder.kpack.io -o yaml

kubectl get image.kpack.io <workload-name> -o yaml

kubectl get build.kpack.io -o yaml

Workload creation stops responding with “Builder default is
not ready” message

You can see the “Builder default is not ready” message in two places:

1. The “Messages” section of the tanzu apps workload get my-app command.

2. The Supply Chain section of Tanzu Application Platform GUI.

This message indicates there is something wrong with the Builder (the component that builds the
container image for your workload).

Explanation

This message is typically encountered when the core component of the Builder (kpack) transitions
into a bad state.

Although this isn’t the only scenario where this can happen, kpack can transition into a bad state
when Tanzu Application Platform is deployed to a local minikube or kind cluster, and especially
when that minikube or kind cluster is restarted.

Solution

1. Restart kpack by deleting the kpack-controller and kpack-webhook pods in the kpack
namespace. Deleting these resources triggers their recreation:

kubectl delete pods --all --namespace kpack

2. Verify status of the replacement pods:

kubectl get pods --namespace kpack

3. Verify the workload status after the new kpack pods STATUS are Running:

tanzu apps workload get YOUR-WORKLOAD-NAME

“Workload already exists” error after updating the
workload
When you update the workload, you receive the following error:

Tanzu Application Platform v1.4

VMware by Broadcom 410

Error: workload "default/APP-NAME" already exists

Error: exit status 1

Where APP-NAME is the name of the app.

For example, when you run:

tanzu apps workload create tanzu-java-web-app \

--git-repo https://github.com/dbuchko/tanzu-java-web-app \

--git-branch main \

--type web \

--label apps.tanzu.vmware.com/has-tests=true \

--yes

You receive the following error

Error: workload "default/tanzu-java-web-app" already exists

Error: exit status 1

Explanation

The app is running before performing a Live Update using the same app name.

Solution

To resolve this issue, either delete the app or use a different name for the app.

Workload creation fails due to authentication failure in
Docker Registry

You might encounter an error message similar to the following when creating or updating a
workload by using IDE or apps CLI plug-in:

Error: Writing 'index.docker.io/shaileshp2922/build-service/tanzu-java-web-app:lates

t': Error while preparing a transport to talk with the registry: Unable to create roun

d tripper: GET https://auth.ipv6.docker.com/token?scope=repository%3Ashaileshp2922%2Fb

uild-service%2Ftanzu-java-web-app%3Apush%2Cpull&service=registry.docker.io: unexpected

status code 401 Unauthorized: {"details":"incorrect username or password"}

Explanation

This type of error frequently occurs when the URL set for source image (IDE) or --source-image
flag (apps CLI plug-in) is not Docker registry compliant.

Solution

1. Verify that you can authenticate directly against the Docker registry and resolve any failures
by running:

docker login -u USER-NAME

2. Verify your --source-image URL is compliant with Docker.

The URL in this example index.docker.io/shaileshp2922/build-service/tanzu-java-web-
app includes nesting. Docker registry, unlike many other registry solutions, does not support
nesting.

Tanzu Application Platform v1.4

VMware by Broadcom 411

3. To resolve this issue, you must provide an unnested URL. For example,
index.docker.io/shaileshp2922/tanzu-java-web-app

Telemetry component logs show errors fetching the “reg-
creds” secret

When you view the logs of the tap-telemetry controller by running kubectl logs -n tap-
telemetry <tap-telemetry-controller-<hash> -f, you see the following error:

"Error retrieving secret reg-creds on namespace tap-telemetry","error":"secrets \"reg-

creds\" is forbidden: User \"system:serviceaccount:tap-telemetry:controller\" cannot g

et resource \"secrets\" in API group \"\" in the namespace \"tap-telemetry\""

Explanation

The tap-telemetry namespace misses a role that allows the controller to list secrets in the tap-
telemetry namespace. For more information about roles, see Role and ClusterRole Kubernetes
documentation.

Solution

To resolve this issue, run:

kubectl patch roles -n tap-telemetry tap-telemetry-controller --type='json' -p='[{"o

p": "add", "path": "/rules/-", "value": {"apiGroups": [""],"resources": ["secrets"],"v

erbs": ["get", "list", "watch"]} }]'

Debug convention might not apply

If you upgrade from Tanzu Application Platform v0.4, the debug convention can not apply to the
app run image.

Explanation

The Tanzu Application Platform v0.4 lacks SBOM data.

Solution

Delete existing app images that were built using Tanzu Application Platform v0.4.

Execute bit not set for App Accelerator build scripts

You cannot execute a build script provided as part of an accelerator.

Explanation

Build scripts provided as part of an accelerator do not have the execute bit set when a new project
is generated from the accelerator.

Solution

Explicitly set the execute bit by running the chmod command:

chmod +x BUILD-SCRIPT-NAME

Tanzu Application Platform v1.4

VMware by Broadcom 412

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole

Where BUILD-SCRIPT-NAME is the name of the build script.

For example, for a project generated from the “Spring PetClinic” accelerator, run:

chmod +x ./mvnw

“No live information for pod with ID” error

After deploying Tanzu Application Platform workloads, Tanzu Application Platform GUI shows a “No
live information for pod with ID” error.

Explanation

The connector must discover the application instances and render the details in Tanzu Application
Platform GUI.

Solution

Recreate the Application Live View connector pod by running:

kubectl -n app-live-view delete pods -l=name=application-live-view-connector

This allows the connector to discover the application instances and render the details in Tanzu
Application Platform GUI.

“image-policy-webhook-service not found” error

When installing a Tanzu Application Platform profile, you receive the following error:

Internal error occurred: failed calling webhook "image-policy-webhook.signing.apps.tan

zu.vmware.com": failed to call webhook: Post "https://image-policy-webhook-service.ima

ge-policy-system.svc:443/signing-policy-check?timeout=10s": service "image-policy-webh

ook-service" not found

Explanation

The “image-policy-webhook-service” service cannot be found.

Solution

Redeploy the trainingPortal resource.

“Increase your cluster resources” error
You receive an “Increase your cluster’s resources” error.

Explanation

Node pressure can be caused by an insufficient number of nodes or a lack of resources on nodes
necessary to deploy the workloads.

Solution

Follow instructions from your cloud provider to scale out or scale up your cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 413

MutatingWebhookConfiguration prevents pod admission

Admission of all pods is prevented when the image-policy-controller-manager deployment pods
do not start before the MutatingWebhookConfiguration is applied to the cluster.

Explanation

Pods are prevented from starting if nodes in a cluster are scaled to zero and the webhook is forced
to restart at the same time as other system components. A deadlock can occur when some
components expect the webhook to verify their image signatures and the webhook is not currently
running.

A known rare condition during Tanzu Application Platform profiles installation can cause this. If so,
you can see a message similar to one of the following in component statuses:

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning FailedCreate 4m28s replicaset-controller Error creati

ng: Internal error occurred: failed calling webhook "image-policy-webhook.signing.app

s.tanzu.vmware.com": Post "https://image-policy-webhook-service.image-policy-system.sv

c:443/signing-policy-check?timeout=10s": no endpoints available for service "image-pol

icy-webhook-service"

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning FailedCreate 10m replicaset-controller Error creating: Internal error occurr

ed: failed calling webhook "image-policy-webhook.signing.apps.tanzu.vmware.com": Post

"https://image-policy-webhook-service.image-policy-system.svc:443/signing-policy-chec

k?timeout=10s": service "image-policy-webhook-service" not found

Solution

Delete the MutatingWebhookConfiguration resource to resolve the deadlock and enable the system
to restart. After the system is stable, restore the MutatingWebhookConfiguration resource to re-
enable image signing enforcement.

1. Back up MutatingWebhookConfiguration to a file by running:

kubectl get MutatingWebhookConfiguration image-policy-mutating-webhook-configur

ation -o yaml > image-policy-mutating-webhook-configuration.yaml

2. Delete MutatingWebhookConfiguration by running:

kubectl delete MutatingWebhookConfiguration image-policy-mutating-webhook-confi

guration

3. Wait until all components are up and running in your cluster, including the image-policy-
controller-manager pods (namespace image-policy-system).

4. Re-apply MutatingWebhookConfiguration by running:

Important

These steps temporarily deactivate signature verification in your cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 414

kubectl apply -f image-policy-mutating-webhook-configuration.yaml

Priority class of webhook’s pods preempts less privileged
pods

When viewing the output of kubectl get events, you see events similar to:

$ kubectl get events

LAST SEEN TYPE REASON OBJECT MESSAGE

28s Normal Preempted pod/testpod Preempted by image-polic

y-system/image-policy-controller-manager-59dc669d99-frwcp on node test-node

Explanation

The Supply Chain Security Tools (SCST) - Sign component uses a privileged PriorityClass to start
its pods to prevent node pressure from preempting its pods. This can cause less privileged
components to have their pods preempted or evicted instead.

Solution

Solution 1: Reduce the number of pods deployed by the Sign component: If your
deployment of the Sign component runs more pods than necessary, scale the deployment
down as follows:

1. Create a values file named scst-sign-values.yaml with the following contents:

replicas: N

Where N is an integer indicating the lowest number of pods you necessary for your
current cluster configuration.

2. Apply the new configuration by running:

tanzu package installed update image-policy-webhook \

 --package-name image-policy-webhook.signing.apps.tanzu.vmware.com \

 --version 1.0.0-beta.3 \

 --namespace tap-install \

 --values-file scst-sign-values.yaml

3. Wait a few minutes for your configuration to take effect in the cluster.

Solution 2: Increase your cluster’s resources: Node pressure can be caused by an
insufficient number of nodes or a lack of resources on nodes necessary to deploy the
workloads. Follow instructions from your cloud provider to scale out or scale up your
cluster.

CrashLoopBackOff from password authentication fails
SCST - Store does not start. You see the following error in the metadata-store-app Pod logs:

$ kubectl logs pod/metadata-store-app-* -n metadata-store -c metadata-store-app

...

[error] failed to initialize database, got error failed to connect to `host=metadata-s

tore-db user=metadata-store-user database=metadata-store`: server error (FATAL: passwo

rd authentication failed for user "metadata-store-user" (SQLSTATE 28P01))

Tanzu Application Platform v1.4

VMware by Broadcom 415

Explanation

The database password has changed between deployments. This is not supported.

Solution

Redeploy the app either with the original database password or follow the latter steps to erase the
data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

Password authentication fails

SCST - Store does not start. You see the following error in the metadata-store-app pod logs:

$ kubectl logs pod/metadata-store-app-* -n metadata-store -c metadata-store-app

...

[error] failed to initialize database, got error failed to connect to `host=metadata-s

tore-db user=metadata-store-user database=metadata-store`: server error (FATAL: passwo

rd authentication failed for user "metadata-store-user" (SQLSTATE 28P01))

Explanation

The database password has changed between deployments. This is not supported.

Solution

Redeploy the app either with the original database password or follow the latter steps to erase the
data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

Tanzu Application Platform v1.4

VMware by Broadcom 416

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

metadata-store-db pod fails to start

When SCST - Store is deployed, deleted, and then redeployed, the metadata-store-db pod fails to
start if the database password changed during redeployment.

Explanation

The persistent volume used by PostgreSQL retains old data, even though the retention policy is set
to DELETE.

Solution

Redeploy the app either with the original database password or follow the later steps to erase the
data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

Missing persistent volume
After SCST - Store is deployed, metadata-store-db pod fails for missing volume while postgres-db-
pv-claim pvc is in the PENDING state.

Explanation

The cluster where SCST - Store is deployed does not have storageclass defined. The provisioner
of storageclass is responsible for creating the persistent volume after metadata-store-db attaches
postgres-db-pv-claim.

Solution

1. Verify that your cluster has storageclass by running:

kubectl get storageclass

2. Create a storageclass in your cluster before deploying SCST - Store. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 417

This is the storageclass that Kind uses

kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provision

er/master/deploy/local-path-storage.yaml

set the storage class as default

kubectl patch storageclass local-path -p '{"metadata": {"annotations":{"storage

class.kubernetes.io/is-default-class":"true"}}}'

Failure to connect Tanzu CLI to AWS EKS clusters

When using the Tanzu CLI to connect to AWS EKS clusters, you might see one of the following
errors:

Error: Unable to connect: connection refused. Confirm kubeconfig details and try

again

invalid apiVersion "client.authentication.k8s.io/v1alpha1"

Explanation

The cause is Kubernetes v1.24 dropping support for client.authentication.k8s.io/v1alpha1. For
more information, see aws/aws-cli/issues/6920 in GitHub.

Solution

Follow these steps to update your aws-cli to a supported v2.7.35 or later, and update the
kubeconfig entry for your EKS clusters:

1. Update aws-cli to the latest version. For more information see AWS documentation.

2. Update the kubeconfig entry for your EKS clusters:

aws eks update-kubeconfig --name ${EKS_CLUSTER_NAME} --region ${REGION}

3. In a new terminal window, run a Tanzu CLI command to verify the connection issue is
resolved. For example:

tanzu apps workload list

Expect the command to execute without error.

Invalid repository paths are propagated
When inputting shared.image_registry.project_path, invalid repository paths are propagated.

Explanation

The key shared.image_registry.project_path, which takes input as SERVER-NAME/REPO-NAME,
cannot take “/” at the end of the string.

Solution

Do not append “/” to the end of the string.

x509: certificate signed by unknown authority

Explanation

Tanzu Application Platform v1.4

VMware by Broadcom 418

https://kubernetes.io/blog/2022/05/03/kubernetes-1-24-release-announcement/
https://github.com/aws/aws-cli/issues/6920
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Tanzu Application Platform v1.4 introduces Shared Ingress Issuer to secure ingress communication
by default. The Certificate Authority for Shared Ingress Issuer is generated as self-signed. As a
result, you might see one of the following errors:

connection refused

x509: certificate signed by unknown authority

Solution

You can choose one of the following options to mitigate the issue:

Option 1: Configure the Shared Ingress Issuer’s Certificate Authority as a trusted Certificate
Authority

Follow these steps to trust the Shared Ingress Issuer’s Certificate Authority in Tanzu Application
Platform:

1. Extract the ClusterIssuer’s Certificate Authority.

For default installations where ingress_issuer is not set in tap_values.yml, you can extract
the ClusterIssuer’s Certificate Authority from cert-manager:

kubectl get secret tap-ingress-selfsigned-root-ca -n cert-manager -o yaml | yq

.data | cut -d' ' -f2 | head -1 | base64 -d

If you overrode the default ingress_issuer while installing Tanzu Application Platform, you
must refer to your issuer’s documentation to extract your ClusterIssuer’s Certificate
Authority instead of using the command above.

2. Add the certificate to the list of trusted certificate authorities by appending the certificate
authority to the shared.ca_cert_data field in your tap-values.yml.

3. Reapply your configuration:

tanzu package install tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --values-fi

le tap-values.yml -n tap-install

Option 2: Deactivate the shared ingress issuer

Follow these steps to deactivate TLS for Cloud Native Runtimes, AppSSO and Tanzu Application
Platform GUI:

1. Set shared.ingress_issuer to "" in your tap-values.yml:

shared:

 ingress_issuer: ""

2. Reapply your configuration:

Important

This is the recommended option for a secure instance.

Important

This option is recommended for testing purposes only.

Tanzu Application Platform v1.4

VMware by Broadcom 419

tanzu package install tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --values-fi

le tap-values.yml -n tap-install

Troubleshoot Tanzu Application Platform components

For component-level troubleshooting, see these topics:

Troubleshoot Tanzu Application Platform GUI

Troubleshoot Learning Center

Troubleshoot Service Bindings

Troubleshoot Source Controller

Troubleshoot Spring Boot conventions

Troubleshoot Supply Chain Security Tools - Scan

Troubleshoot Supply Chain Security Tools - Store

Troubleshoot Application Live View

Troubleshoot Cloud Native Runtimes for Tanzu

Tanzu Build Service FAQ

Troubleshoot Tanzu Build Service

Troubleshoot Services Toolkit

Tanzu Application Platform v1.4

VMware by Broadcom 420

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/1.3/tanzu-cloud-native-runtimes/GUID-troubleshooting.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.9/vmware-tanzu-build-service/faq.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/reference-troubleshooting.html

Uninstall Tanzu Application Platform

This document tells you how to uninstall Tanzu Application Platform (commonly known as TAP)
packages from your Tanzu Application Platform package repository.

To uninstall Tanzu Application Platform:

Delete the Packages

Delete the Tanzu Application Platform Package Repository

Remove Tanzu CLI, plug-ins, and associated files

Remove Cluster Essentials

Delete the packages

If you installed Tanzu Application Platform through predefined profiles, delete the tap
metadata package by running:

tanzu package installed delete tap --namespace tap-install

If you installed any additional packages that were not in the predefined profiles, delete the
individual packages by running:

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

2. Remove a package by running:

tanzu package installed delete PACKAGE-NAME --namespace tap-install

For example:

$ tanzu package installed delete cloud-native-runtimes --namespace tap-in

stall

| Uninstalling package 'cloud-native-runtimes' from namespace 'tap-instal

l'

/ Getting package install for 'cloud-native-runtimes'

\ Deleting package install 'cloud-native-runtimes' from namespace 'tap-in

stall'

\ Package uninstall status: Reconciling

/ Package uninstall status: Deleting

| Deleting admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Deleting role binding 'cloud-native-runtimes-tap-install-cluster-rolebi

nding'

| Deleting secret 'cloud-native-runtimes-tap-install-values'

/ Deleting service account 'cloud-native-runtimes-tap-install-sa'

 Uninstalled package 'cloud-native-runtimes' from namespace 'tap-install'

Where PACKAGE-NAME is the name of a package listed in step 1.

3. Repeat step 2 for each individual package installed.

Tanzu Application Platform v1.4

VMware by Broadcom 421

Delete the Tanzu Application Platform package repository

To delete the Tanzu Application Platform package repository:

1. Retrieve the name of the Tanzu Application Platform package repository by running:

tanzu package repository list --namespace tap-install

For example:

$ tanzu package repository list --namespace tap-install

- Retrieving repositories...

 NAME REPOSITORY

STATUS DETAILS

 tanzu-tap-repository registry.tanzu.vmware.com/tanzu-application-platform/ta

p-packages:0.2.0 Reconcile succeeded

2. Remove the Tanzu Application Platform package repository by running:

tanzu package repository delete PACKAGE-REPO-NAME --namespace tap-install

Where PACKAGE-REPO-NAME is the name of the packageRepository from the earlier step.

For example:

$ tanzu package repository delete tanzu-tap-repository --namespace tap-install

- Deleting package repository 'tanzu-tap-repository'...

 Deleted package repository 'tanzu-tap-repository' in namespace 'tap-install'

Remove Tanzu CLI, plug-ins, and associated files
To completely remove the Tanzu CLI, plug-ins, and associated files, run the script for your OS:

For Linux or MacOS, run:

#!/bin/zsh

rm -rf $HOME/tanzu/cli # Remove previously downloaded cli files

sudo rm /usr/local/bin/tanzu # Remove CLI binary (executable)

rm -rf ~/.config/tanzu/ # current location # Remove config directory

rm -rf ~/.tanzu/ # old location # Remove config directory

rm -rf ~/.cache/tanzu # remove cached catalog.yaml

rm -rf ~/Library/Application\ Support/tanzu-cli/* # Remove plug-ins

Remove Cluster Essentials

To completely remove Cluster Essentials, see Cluster Essentials documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 422

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html#uninstall

Component documentation for Tanzu
Application Platform

Tanzu Application Platform (commonly known as TAP) is a modular platform that you can enhance
by installing components. Most of the Tanzu Application Platform components are documented in
this section. In some cases, a component’s documentation is hosted on a separate site, and you’ll
find a link to it in this section.

Component documentation for Tanzu Application Platform

Tanzu Application Platform (commonly known as TAP) is a modular platform that you can enhance
by installing components. Most of the Tanzu Application Platform components are documented in
this section. In some cases, a component’s documentation is hosted on a separate site, and you’ll
find a link to it in this section.

Overview of Tanzu CLI

This topic tells you about the Tanzu command-line interface (commonly known as Tanzu CLI).

Tanzu CLI

The Tanzu CLI is a command-line interface that connects you to Tanzu. For example, you can use
the Tanzu CLI to:

Configure the Tanzu CLI itself

Install and manage packages

Create and manage application workloads

Tanzu CLI Architecture

The Tanzu CLI has a pluggable architecture. Plug-ins contain CLI commands. Here are the CLI
plug-ins that can be installed with Tanzu Application Platform.

Accelerator: manage accelerator’s in a Kubernetes cluster

Apps: manage application workloads running on workload clusters

Insight: post and query image, package, source, and vulnerability data

Package: package management

Secret: secret management

Services: discover service types, service instances, and manage resource claims

Tanzu CLI Installation

You install and initialize the Tanzu CLI on a computer. The computer can be a laptop, host, or
server.

Tanzu Application Platform v1.4

VMware by Broadcom 423

To install the CLI :

To use the Tanzu CLI with Tanzu Application Platform, see Installing the Tanzu CLI.

To use the Tanzu CLI with Tanzu Kubernetes Grid, see Install the Tanzu CLI and Other
Tools.

Tanzu CLI Command Groups

Tanzu CLI commands are organized into command groups. To view a list of available command
groups, run tanzu. The list of command groups that you see depends on which CLI plug-ins are
installed on your local machine.

Install New Plug-ins

To install a Tanzu CLI plug-in that was not automatically downloaded when running tanzu login or
tanzu plugin sync, install it manually by following these steps.

1. In a terminal, run:

tanzu plugin install PLUGIN-NAME

2. Verify that you installed the plug-in successfully by running:

tanzu plugin list

NAME DESCRIPTION

SCOPE DISCOVERY VERSION STATUS

login Login to the platform

Standalone default v0.11.6 not installed

management-cluster Kubernetes management-cluster operations

Standalone default v0.11.6 not installed

package Tanzu package management

Standalone default v0.11.6 installed

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.11.6

not installed

secret Tanzu secret management

Standalone default v0.11.6 installed

insight post & query image, package, source, and vulnerability data

Standalone v1.2.1 installed

test Test the CLI

Standalone v0.22.0 installed

accelerator Manage accelerators in a Kubernetes cluster

Standalone v1.2.0-build.1 installed

apps Applications on Kubernetes

Standalone v0.0.0-dev installed

builder Build Tanzu components

Standalone v0.22.0 installed

codegen Tanzu code generation tool

Standalone v0.22.0 installed

services Explore Service Instance Classes, discover claimable Servic

e Instances and manage Resource Claims Standalone v0.3.0-rc.2

installed

Install Local Plug-ins
If your network is not connected to the Internet or you want to download and inspect the Tanzu
CLI plug-in binaries before installing, follow these steps:

1. Download the plug-in tar.gz from the release artifacts for your distribution.

Tanzu Application Platform v1.4

VMware by Broadcom 424

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/1.14/tkgi/GUID-installing-cli.html#install-the-tkgi-cli-0

2. Extract the tar.gz to a location on your local machine using the extraction tool of your
choice. For example, the tar -xvf command.

3. From that location, run:

tanzu plugin install all --local /PATH/TO/FILE/

4. Verify that you installed the plug-ins successfully by running:

tanzu plugin list

NAME DESCRIPTION

SCOPE DISCOVERY VERSION STATUS

login Login to the platform

Standalone default v0.11.6 not installed

package Tanzu package management

Standalone default v0.11.6 installed

secret Tanzu secret management

Standalone default v0.11.6 installed

insight post & query image, package, source, and vulnerability data

Standalone v1.2.2 installed

accelerator Manage accelerators in a Kubernetes cluster

Standalone v1.2.0 installed

apps Applications on Kubernetes

Standalone v0.7.0 installed

services Explore Service Instance Classes, discover claimable Servic

e Instances and manage Resource Claims Standalone v0.3.0

installed

Overview of Tanzu CLI
This topic tells you about the Tanzu command-line interface (commonly known as Tanzu CLI).

Tanzu CLI
The Tanzu CLI is a command-line interface that connects you to Tanzu. For example, you can use
the Tanzu CLI to:

Configure the Tanzu CLI itself

Install and manage packages

Create and manage application workloads

Tanzu CLI Architecture
The Tanzu CLI has a pluggable architecture. Plug-ins contain CLI commands. Here are the CLI
plug-ins that can be installed with Tanzu Application Platform.

Accelerator: manage accelerator’s in a Kubernetes cluster

Apps: manage application workloads running on workload clusters

Insight: post and query image, package, source, and vulnerability data

Package: package management

Secret: secret management

Services: discover service types, service instances, and manage resource claims

Tanzu CLI Installation

Tanzu Application Platform v1.4

VMware by Broadcom 425

You install and initialize the Tanzu CLI on a computer. The computer can be a laptop, host, or
server.

To install the CLI :

To use the Tanzu CLI with Tanzu Application Platform, see Installing the Tanzu CLI.

To use the Tanzu CLI with Tanzu Kubernetes Grid, see Install the Tanzu CLI and Other
Tools.

Tanzu CLI Command Groups

Tanzu CLI commands are organized into command groups. To view a list of available command
groups, run tanzu. The list of command groups that you see depends on which CLI plug-ins are
installed on your local machine.

Install New Plug-ins

To install a Tanzu CLI plug-in that was not automatically downloaded when running tanzu login or
tanzu plugin sync, install it manually by following these steps.

1. In a terminal, run:

tanzu plugin install PLUGIN-NAME

2. Verify that you installed the plug-in successfully by running:

tanzu plugin list

NAME DESCRIPTION

SCOPE DISCOVERY VERSION STATUS

login Login to the platform

Standalone default v0.11.6 not installed

management-cluster Kubernetes management-cluster operations

Standalone default v0.11.6 not installed

package Tanzu package management

Standalone default v0.11.6 installed

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.11.6

not installed

secret Tanzu secret management

Standalone default v0.11.6 installed

insight post & query image, package, source, and vulnerability data

Standalone v1.2.1 installed

test Test the CLI

Standalone v0.22.0 installed

accelerator Manage accelerators in a Kubernetes cluster

Standalone v1.2.0-build.1 installed

apps Applications on Kubernetes

Standalone v0.0.0-dev installed

builder Build Tanzu components

Standalone v0.22.0 installed

codegen Tanzu code generation tool

Standalone v0.22.0 installed

services Explore Service Instance Classes, discover claimable Servic

e Instances and manage Resource Claims Standalone v0.3.0-rc.2

installed

Install Local Plug-ins

Tanzu Application Platform v1.4

VMware by Broadcom 426

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/1.14/tkgi/GUID-installing-cli.html#install-the-tkgi-cli-0

If your network is not connected to the Internet or you want to download and inspect the Tanzu
CLI plug-in binaries before installing, follow these steps:

1. Download the plug-in tar.gz from the release artifacts for your distribution.

2. Extract the tar.gz to a location on your local machine using the extraction tool of your
choice. For example, the tar -xvf command.

3. From that location, run:

tanzu plugin install all --local /PATH/TO/FILE/

4. Verify that you installed the plug-ins successfully by running:

tanzu plugin list

NAME DESCRIPTION

SCOPE DISCOVERY VERSION STATUS

login Login to the platform

Standalone default v0.11.6 not installed

package Tanzu package management

Standalone default v0.11.6 installed

secret Tanzu secret management

Standalone default v0.11.6 installed

insight post & query image, package, source, and vulnerability data

Standalone v1.2.2 installed

accelerator Manage accelerators in a Kubernetes cluster

Standalone v1.2.0 installed

apps Applications on Kubernetes

Standalone v0.7.0 installed

services Explore Service Instance Classes, discover claimable Servic

e Instances and manage Resource Claims Standalone v0.3.0

installed

Overview of Tanzu CLI plug-ins
The topics in this section tell you about the following plug-ins in your Tanzu Application Platform
(commonly known as TAP):

accelerator - The Application Accelerator Tanzu CLI plug-in includes commands for
developers and operators to create and use accelerators.

apps - This Tanzu CLI plug-in provides the ability to create, view, update, and delete
application workloads on any Kubernetes cluster that has the Tanzu Application Platform
components installed.

insight - The Tanzu Insight CLI plug-in enables querying vulnerability, image, and package
data.

Tanzu Apps CLI overview
This topic gives you an overview of the Tanzu Apps CLI. Use the Tanzu Apps CLI to create, view,
update, and delete application workloads on any Kubernetes cluster that has the Tanzu Application
Platform (commonly known as TAP) components installed.

About workloads
Tanzu Application Platform enables developers to quickly build and test applications regardless of
their familiarity with Kubernetes. Developers can turn source code into a workload that runs in a
container with a URL.

Tanzu Application Platform v1.4

VMware by Broadcom 427

A workload enables developers to choose application specifications, such as repository location,
environment variables, service binding, and more.

Tanzu Application Platform can support a range of workloads, including a serverless process that
starts on demand, a constellation of microservices that functions as a logical application, or a small
hello-world test app.

Tutorials

To get started with Tanzu Apps CLI and workload management, see Tutorials

How-to-guides

For more complex examples regarding Tanzu Apps CLI usage, see How-to-guides

Tanzu Apps CLI overview

This topic gives you an overview of the Tanzu Apps CLI. Use the Tanzu Apps CLI to create, view,
update, and delete application workloads on any Kubernetes cluster that has the Tanzu Application
Platform (commonly known as TAP) components installed.

About workloads

Tanzu Application Platform enables developers to quickly build and test applications regardless of
their familiarity with Kubernetes. Developers can turn source code into a workload that runs in a
container with a URL.

A workload enables developers to choose application specifications, such as repository location,
environment variables, service binding, and more.

Tanzu Application Platform can support a range of workloads, including a serverless process that
starts on demand, a constellation of microservices that functions as a logical application, or a small
hello-world test app.

Tutorials

To get started with Tanzu Apps CLI and workload management, see Tutorials

How-to-guides

For more complex examples regarding Tanzu Apps CLI usage, see How-to-guides

Install Tanzu Apps CLI plug-in

This topic describes how to install the Tanzu Apps CLI plug-in.

Prerequisites

Ensure that you installed or updated the Tanzu CLI, for more information, see Install Tanzu CLI.

Install Tanzu Apps CLI plug-in

Run:

Tanzu Application Platform v1.4

VMware by Broadcom 428

tanzu plugin install apps --group vmware-tap/default:v1.4

Verify that the plug-in is installed correctly:

tanzu apps version

sample output

v0.12.1

Uninstall Apps CLI plug-in

Run:

tanzu plugin delete apps

Change clusters
The Apps CLI plug-in refers to the default kubeconfig file to access a Kubernetes cluster. When
you run a tanzu apps command, the plug-in uses the default context that is defined in that
kubeconfig file (located by default at HOME/.kube/config).

There are two ways to change the target cluster:

1. Use kubectl config use-context CONTENT-NAME to change the default context. All
subsequent tanzu apps commands target the cluster defined in the new default kubeconfig
context.

2. Include the --context CONTENT-NAME flag when running any tanzu apps command.

Override the default kubeconfig

There are two approaches to overriding the default kubeconfig:

1. Set the environment variable KUBECONFIG=PATH to change the kubeconfig the Apps CLI
plug-in will reference.

All subsequent tanzu apps commands reference the non-default kubeconfig assigned to
the environment variable.

2. Include the --kubeconfig path flag when running any tanzu apps command.

For more information about kubeconfig, see Configure Access to Multiple Clusters in the
Kubernetes documentation.

Autocompletion

Note

Any subsequent tanzu apps commands that do not include the --context
CONTENT-NAME flag continue to use the default context set in the kubeconfig.

Note

Any subsequent tanzu apps commands that do not include the --context
CONTEXT-NAME flag continue to use the default context set in the kubeconfig.

Tanzu Application Platform v1.4

VMware by Broadcom 429

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

The Apps CLI plug-in has auto-completion support. The plug-in supports auto-completion for
commands, positional arguments, flags, and flag values. Add one of the following commands to the
shell config file according to your current setup:

Bash

tanzu completion bash > HOME/.tanzu/completion.bash.inc

Zsh

echo "autoload -U compinit; compinit" >> ~/.zshrc

tanzu completion zsh > "${fpath[1]}/_tanzu"

Create workloads
Create workloads from one of the following sources:

A Git repository, for example, a Git branch, Git tag, or Git commit

An existing local project

An image that is pulled from a registry to deploy the application.

A Maven repository artifact.

For more information, see Create a workload.

Debug and troubleshoot workloads
Check the workload status with the tanzu apps workload get and tanzu apps workload tail
commands.

Use tanzu apps workload get to see the workload specification, the resources attached to it, their
status and any associated high-level error messages (if they exist).

Use tanzu apps workload tail to see testing, scanning, build, configuration, deployment, and
runtime logs associated with a workload and its progression through the supply chain.

For more information about using these commands and common errors, see Debug workloads.

Create a workload
This topics tells you how to create a workload from example source code with Tanzu Application
Platform (commonly known as TAP).

Prerequisites
The following prerequisites are required to use workloads with Tanzu Application Platform:

Install kubectl.

Install Tanzu Application Platform components on a Kubernetes cluster. See Installing Tanzu
Application Platform.

Set your kubeconfig context to the prepared cluster kubectl config use-context
CONTEXT_NAME.

Install Tanzu CLI. See Install or update the Tanzu CLI and plug-ins.

Install the Apps plug-in. See the Install Apps plug-in.

Tanzu Application Platform v1.4

VMware by Broadcom 430

https://kubernetes.io/docs/tasks/tools/

Set up developer namespaces to use your installed packages.

For more information about the values you can provide when creating and managing the
life cycle of workloads, see Workload and Supply Chain Custom Resources in the
Cartographer documentation. Alternatively, run kubectl explain workload.spec for the
Kubernetes version running on the target cluster.

Get started with an example workload

You can create a workload from a GitHub repository or local source.

Create a workload from GitHub repository

Use the flags --git-repo, --git-branch, --git-tag, and --git-commit flags to create a workload
from an existing Git repository. This allows the supply chain to get the source from the given
repository to deploy the application.

To create a named workload and specify a Git source code location, run:

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.4.0 --

type web

Respond Y to prompts to complete process.

Where:

tanzu-java-web-app is the name of the workload.

--git-repo is the location of the code to build the workload from.

--sub-path is the relative path inside the repository to treat as application root.

--git-tag (optional) specifies which tag in the repository to pull the code from.

--git-branch (optional) specifies which branch in the repository to pull the code from.

--type distinguishes the workload type.

View the full list of supported workload configuration options by running tanzu apps workload
apply --help.

Create a workload from local source code

Use the --local-path and --source-image flags to create a workload from an existing local project.
This allows the supplychain to generate an image (carvel-imgpkg) and push it to the given registry
to be used in the workload.

To create a named workload and specify where the local source code is, run:

tanzu apps workload create pet-clinic --local-path /path/to/my/project --source-image

springio/petclinic

Respond Y to the dialog box about publishing local source code if the image must be updated.

Where:

pet-clinic is the name of the workload.

--local-path points to the directory where the source code is located.

--source-image is the registry path where the local source code is uploaded as an image.

Exclude Files

Tanzu Application Platform v1.4

VMware by Broadcom 431

https://cartographer.sh/docs/v0.6.0/reference/workload/
https://carvel.dev/imgpkg/

When working with local source code, you can exclude files from the source code to be uploaded
within the image by creating a .tanzuignore file at the root of the source code.

The file must contain a list of file paths to exclude from the image including the file itself and the
directories must not end with the system path separator (/ or \).

For more information regarding the .tanzuignore file see tanzuignorefile.

Create workload from an existing image

Create a workload from an existing registry image by providing the reference to that image through
the --image flag. The supplychain references the provided registry image when the workload is
deployed.

For example:

tanzu apps workload create petclinic-image --image springcommunity/spring-framework-pe

tclinic

Respond Y to prompts to complete process.

Where:

petclinic-image is the name of the workload.

--image is an existing image, pulled from a registry, that contains the source that the
workload is going to use to create the application.

Create a workload from Maven repository artifact

Create a workload from a Maven repository artifact Source-Controller by setting its properties
through the --maven-* flags when using the supply chain.

The Maven repository URL is set when the supply chain is created.

To create a Maven workload using the CLI provided flags, run:

tanzu apps workload apply my-workload \

 --maven-artifact hello-world \

 --maven-type jar

 --maven-version 0.0.1 \

 --maven-group carto.run \

 --type web -y

For more information about the Maven flags, see the Maven flags command reference information.

For information about how to configure the Maven artifact authentication credentials, see Maven
Repository Secret.

Working with YAML files

In many cases, workload life cycles are managed through CLI commands. However, there might be
cases where managing the workload through direct interactions and edits of a yaml file is preferred.
The Apps CLI plug-in supports using yaml files to meet the requirements.

When a workload is managed using a yaml file, that file must contain a single workload definition.

For example, a valid file looks similar to the following example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 432

 name: tanzu-java-web-app

 labels:

 app.kubernetes.io/part-of: tanzu-java-web-app

 apps.tanzu.vmware.com/workload-type: web

spec:

 source:

 git:

 url: https://github.com/vmware-tanzu/application-accelerator-samples

 ref:

 tag: tap-1.4.0

 subPath: tanzu-java-web-app

To create a workload from a file like the earlier example:

tanzu apps workload create --file my-workload-file.yaml

The workload YAML definition can also be passed in through stdin as follows:

tanzu apps workload create --file - --yes

The console waits for input, and the content with valid yaml definitions for a workload can either be
written or pasted. Then click Ctrl-D three times to start the workload creation. This can also be
done with the workload apply command.

Note To pass a workload through stdin, the --yes flag is required. If not provided, the command
fails.

Another way to pass a workload with the --file flag is using a URL, which, as mentioned before,
must contain a raw file with the workload definition.

For example:

tanzu apps workload apply --file https://raw.githubusercontent.com/vmware-tanzu/apps-c

li-plugin/main/pkg/commands/testdata/workload.yaml

Bind a service to a workload

Tanzu Application Platform supports creating a workload with binding to multiple services
(ServiceBinding). The cluster supply chain is in charge of provisioning those services.

The purpose of these bindings is to provide information from a service resource to an application.

To bind a database service to a workload, run:

tanzu apps workload apply pet-clinic --service-ref "database=services.tanzu.vmw

are.com/v1alpha1:MySQL:my-prod-db"

Where:

pet-clinic is the name of the workload to be updated.

--service-ref references the service using the format {service-ref-name}=
{apiVersion}:{kind}:{service-binding-name}.

Note

When flags are passed in combination with --file my-workload-file.yaml the flag
values take precedence over the associated property or values in the YAML.

Tanzu Application Platform v1.4

VMware by Broadcom 433

For more information about how to bind a service to a workload, see Consume services on Tanzu
Application Platform.

Next steps

You can verify workload details and status, add environment variables, export definitions or bind
services.

1. To verify a workload status and details, use tanzu apps workload get.

To get workload logs, use tanzu apps workload tail.

For more information, see debug workload section.

2. To add environment variables, run:

tanzu apps workload apply pet-clinic --env foo=bar

3. To export the workload definition into Git, or to migrate to another environment, run:

tanzu apps workload get pet-clinic --export

4. To bind a service to a workload, see the –service-ref flag.

5. To see flags available for the workload commands, run:

tanzu apps workload -h

tanzu apps workload get -h

tanzu apps workload create -h

Workload Examples

This topic provides you with examples of how to use the Tanzu Apps CLI apps workload apply
command flags.

Custom registry credentials

Either use a custom certificate on your system or pass the path to the certificate through flags.

To pass the certificate through flags, specify:

--registry-ca-cert: This is the path of the self-signed certificate needed for the custom or
private registry. This is also populated with a default value through the environment variable
TANZU_APPS_REGISTRY_CA_CERT.

--registry-password: Use this when the registry requires credentials to push. The value of
this flag can also be specified through TANZU_APPS_REGISTRY_PASSWORD.

--registry-username: Use with --registry-password to set the registry credentials. It can
also be provided as the environment variable TANZU_APPS_REGISTRY_USERNAME.

--registry-token: Set when the registry authentication is done through a token. The value
of this flag can also be taken from TANZU_APPS_REGISTRY_TOKEN environment variable.

For example:

tanzu apps workload apply WORKLOAD --local-path PATH-TO-REPO -s registry.url.nip.io/PA

CKAGE/IMAGE --type web --registry-ca-cert PATH-TO-CA-CERT.nip.io.crt --registry-userna

me USERNAME --registry-password PASSWORD

Alternatively, the same command can be run as:

Tanzu Application Platform v1.4

VMware by Broadcom 434


```console

export TANZU_APPS_REGISTRY_CA_CERT=PATH-TO-CA-CERT.nip.io.crt

export TANZU_APPS_REGISTRY_PASSWORD=USERNAME

export TANZU_APPS_REGISTRY_USERNAME=PASSWORD

tanzu apps workload apply WORKLOAD --local-path PATH-TO-REPO -s registry.url.nip.io/PA

CKAGE/IMAGE

–live-update and –debug

Use the --live-update flag to ensure that local source code changes are reflected quickly on the
running workload. This is particularly valuable when iterating on features that require the workload
to be deployed and running to validate.

Live update is ideally situated for running from within one of our supported IDE extensions, but it
can also be utilized independently as shown in the following Spring Boot application example:

Spring Boot application example

Prerequisites: Tilt must be installed on the client.

1. Clone the repository by running:

git clone https://github.com/vmware-tanzu/application-accelerator-samples

2. Change into the tanzu-java-web-app directory.

3. In Tiltfile, first, change the SOURCE_IMAGE variable to use your registry and project.

4. At the very end of the file add:

allow_k8s_contexts('your-cluster-name')

5. Inside the directory, run:

tanzu apps workload apply tanzu-java-web-app --live-update --local-path . -s

gcr.io/PROJECT/tanzu-java-web-app-live-update -y

Expected output:

The files and directories listed in the .tanzuignore file are being excluded fr

om the uploaded source code.

Publishing source in "." to "gcr.io/PROJECT/tanzu-java-web-app-live-update"...

📥 Published source

🔎 Create workload:

   1 + |---

   2 + |apiVersion: carto.run/v1alpha1

   3 + |kind: Workload

   4 + |metadata:

   5 + |  name: tanzu-java-web-app

   6 + |  namespace: default

   7 + |spec:

   8 + |  params:

   9 + |  - name: live-update

  10 + |    value: "true"

  11 + |  source:

  12 + |    image: gcr.io/PROJECT/tanzu-java-web-app-live-update:latest@sha256:

3c9fd738492a23ac532a709301fcf0c9aa2a8761b2b9347bdbab52ce9404264b

👍 Created workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 

1h"

Tanzu Application Platform v1.4

VMware by Broadcom 435

https://docs.tilt.dev/install.html


To get status: "tanzu apps workload get tanzu-java-web-app"

6. Run Tilt to deploy the workload.

tilt up

Tilt started on http://localhost:10350/

v0.23.6, built 2022-01-14

(space) to open the browser

(s) to stream logs (--stream=true)

(t) to open legacy terminal mode (--legacy=true)

(ctrl-c) to exit

Tilt started on http://localhost:10350/

v0.23.6, built 2022-01-14

Initial Build • (Tiltfile)

Loading Tiltfile at: /path/to/repo/tanzu-java-web-app/Tiltfile

Successfully loaded Tiltfile (1.500809ms)

tanzu-java-w… │

tanzu-java-w… │ Initial Build • tanzu-java-web-app

tanzu-java-w… │ WARNING: Live Update failed with unexpected error:

tanzu-java-w… │   Cannot extract live updates on this build graph structure

tanzu-java-w… │ Falling back to a full image build + deploy

tanzu-java-w… │ STEP 1/1 — Deploying

tanzu-java-w… │      Objects applied to cluster:

tanzu-java-w… │        → tanzu-java-web-app:workload

tanzu-java-w… │

tanzu-java-w… │      Step 1 - 8.87s (Deploying)

tanzu-java-w… │      DONE IN: 8.87s

tanzu-java-w… │

tanzu-java-w… │

tanzu-java-w… │ Tracking new pod rollout (tanzu-java-web-app-build-1-build-po

d):

tanzu-java-w… │      ┊ Scheduled       - (…) Pending

tanzu-java-w… │      ┊ Initialized     - (…) Pending

tanzu-java-w… │      ┊ Ready           - (…) Pending

...

–export

Use this flag to retrieve the workload definition with all the extraneous, cluster-specific, properties,
and values removed. For example, the status and metadata text boxes like creationTimestamp. This
allows you to apply the workload definition to a different environment without having to make
significant edits.

This means that the workload definition includes only the text boxes that were specified by the
developer that created it (--export preserves the essence of the developer’s intent for portability).

For example, if you create a workload with:

tanzu apps workload apply rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq-

sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:examp

le-rabbitmq-cluster-1" -t web

When querying the workload with --export, the default export format in YAML is as follows:

# with yaml format

    tanzu apps workload get rmq-sample-app --export

    ---

    apiVersion: carto.run/v1alpha1

    kind: Workload

Tanzu Application Platform v1.4

VMware by Broadcom 436



    metadata:

    labels:

        apps.tanzu.vmware.com/workload-type: web

    name: rmq-sample-app

    namespace: default

    spec:

    serviceClaims:

    - name: rmq

        ref:

        apiVersion: rabbitmq.com/v1beta1

        kind: RabbitmqCluster

        name: example-rabbitmq-cluster-1

    source:

        git:

        ref:

            branch: main

        url: https://github.com/jhvhs/rabbitmq-sample

# with json format

    tanzu apps workload get rmq-sample-app --export --output json

    {

        "apiVersion": "carto.run/v1alpha1",

        "kind": "Workload",

        "metadata": {

            "labels": {

                "apps.tanzu.vmware.com/workload-type": "web"

            },

            "name": "rmq-sample-app",

            "namespace": "default"

        },

        "spec": {

            "serviceClaims": [

                {

                    "name": "rmq",

                    "ref": {

                        "apiVersion": "rabbitmq.com/v1beta1",

                        "kind": "RabbitmqCluster",

                        "name": "example-rabbitmq-cluster-1"

                    }

                }

            ],

            "source": {

                "git": {

                    "ref": {

                        "branch": "main"

                    },

                    "url": "https://github.com/jhvhs/rabbitmq-sample"

                }

            }

        }

    }

–output

Use this flag to retrieve the workload including all the cluster-specifics. The --output flag can also
be used in conjunction with the --export flag to set the export format as json, yaml, or yml.

# with json format

tanzu apps workload get rmq-sample-app --output json # can also be used as tanzu apps 

workload get rmq-sample-app -ojson

    {

        "kind": "Workload",

        "apiVersion": "carto.run/v1alpha1",

        "metadata": {

Tanzu Application Platform v1.4

VMware by Broadcom 437



            "name": "rmq-sample-app",

            "namespace": "default",

            "uid": "3619ff6d-9e73-473a-9112-891a6d8aee9e",

            "resourceVersion": "11657434",

            "generation": 2,

            "creationTimestamp": "2022-11-28T05:10:32Z",

            "labels": {

                "apps.tanzu.vmware.com/workload-type": "web"

            },

            "managedFields": [

                {

                    "manager": "v0.10.0+dev-002cc44e",

                    "operation": "Update",

                    "apiVersion": "carto.run/v1alpha1",

                    "time": "2022-11-28T05:10:32Z",

                    "fieldsType": "FieldsV1",

                    "fieldsV1": {

                        "f:metadata": {

                            "f:labels": {

                                ".": {},

                                "f:apps.tanzu.vmware.com/workload-type": {}

                            }

                        },

                        ...

                    }

                },

                ...

            ]

        },

        ...

            "status": {

            "observedGeneration": 2,

            "conditions": [

                {

                    "type": "SupplyChainReady",

                    "status": "True",

                    "lastTransitionTime": "2022-11-28T05:10:32Z",

                    "reason": "Ready",

                    "message": ""

                },

                {

                    "type": "ResourcesSubmitted",

                    "status": "True",

                    "lastTransitionTime": "2022-11-28T05:13:33Z",

                    "reason": "ResourceSubmissionComplete",

                    "message": ""

                },

                ...

            ],

            "supplyChainRef": {

                "kind": "ClusterSupplyChain",

                "name": "source-to-url"

            },

            "resources": [

                {

                    "name": "source-provider",

                    "stampedRef": {

                        "kind": "GitRepository",

                        "namespace": "default",

                        "name": "rmq-sample-app",

                        "apiVersion": "source.toolkit.fluxcd.io/v1beta1",

                        "resource": "gitrepositories.source.toolkit.fluxcd.io"

                    },

                    "templateRef": {

                        "kind": "ClusterSourceTemplate",

                        "name": "source-template",

Tanzu Application Platform v1.4

VMware by Broadcom 438



                        "apiVersion": "carto.run/v1alpha1"

                    },

                ...

                }

            ...

            ]

            ...

        }

        ...

    }

## with yaml format

tanzu apps workload get rmq-sample-app --output yaml # can also be used as tanzu apps 

workload get rmq-sample-app -oyaml

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: "2022-11-28T05:10:32Z"

  generation: 2

  labels:

    apps.tanzu.vmware.com/workload-type: web

  managedFields:

  - apiVersion: carto.run/v1alpha1

      ...

    manager: v0.10.0+dev-002cc44e

    operation: Update

    time: "2022-11-28T05:10:32Z"

  - apiVersion: carto.run/v1alpha1

    fieldsType: FieldsV1

    ...

    manager: cartographer

    operation: Update

    subresource: status

    time: "2022-11-28T05:10:36Z"

  name: rmq-sample-app

  namespace: default

  resourceVersion: "11657434"

  uid: 3619ff6d-9e73-473a-9112-891a6d8aee9e

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

      url: https://github.com/jhvhs/rabbitmq-sample

status:

  conditions:

  - lastTransitionTime: "2022-11-28T05:10:32Z"

    message: ""

    reason: Ready

    status: "True"

    type: SupplyChainReady

  ...

  observedGeneration: 2

  resources:

  ...

    name: source-provider

    outputs:

    - digest: sha256:97b2cb779b4ea31339595cd204a3fec0053805eeacbbd6d6dd23af7d3000a6ae

      lastTransitionTime: "2022-11-28T05:16:01Z"

Tanzu Application Platform v1.4

VMware by Broadcom 439



      name: url

      preview: |

        http://fluxcd-source-controller.flux-system.svc.cluster.local./gitrepository/d

efault/rmq-sample-app/73c6311eefbf724fee9ad6f4524fa24ec842ff34.tar.gz

    - digest: sha256:e7884b071fe1bbb2551d42a171043d061a7591e744705572136e689c2a154b7a

      lastTransitionTime: "2022-11-28T05:16:01Z"

      name: revision

      preview: |

        HEAD/73c6311eefbf724fee9ad6f4524fa24ec842ff34

    stampedRef:

      apiVersion: source.toolkit.fluxcd.io/v1beta1

      kind: GitRepository

      name: rmq-sample-app

      namespace: default

      resource: gitrepositories.source.toolkit.fluxcd.io

    templateRef:

      apiVersion: carto.run/v1alpha1

      kind: ClusterSourceTemplate

      name: source-template

  - conditions:

    - lastTransitionTime: "2022-11-28T05:13:25Z"

      message: ""

      reason: ResourceSubmissionComplete

      status: "True"

      type: ResourceSubmitted

    ...

    inputs:

    - name: source-provider

–sub-path

Use this flag to support use cases where more than one application is in a single project or
repository.

Use --sub-path when creating a workload from a Git repository.

```console

tanzu apps workload apply subpathtester --git-repo https://github.com/PATH-TO-REPO --g

it-branch main --type web --sub-path SUBPATH

🔎 Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | name: subpathtester

 8 + | namespace: default

 9 + |spec:

 10 + | source:

 11 + | git:

 12 + | ref:

 13 + | branch: main

 14 + | url: https://github.com/path-to-repo/PATH-TO-REPO

 15 + | subPath: SUBPATH

❓ Do you want to create this workload? [yN]:

```

Use --sub-path when you create a workload from local source code. In the directory of the project
you want to create the workload from:

  ```console

 tanzu apps workload apply WORKLOAD --local-path . -s gcr.io/REGISTRY/WORKLOAD-IMAGE

Tanzu Application Platform v1.4

VMware by Broadcom 440

--sub-path SUBPATH

 ❓ Publish source in "." to "gcr.io/REGISTRY/WORKLOAD-IMAGE"? It might be visible to

others who can pull images from that repository Yes

 Publishing source in "." to "gcr.io/REGISTRY/WORKLOAD-IMAGE"...

 📥 Published source

 🔎 Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | name: WORKLOAD

 6 + | namespace: default

 7 + |spec:

 8 + | source:

 9 + | image: gcr.io/REGISTRY/my-workload-image:latest@sha256:f28c5fedd0e902

800e6df9605ce5e20a8e835df9e87b1a0aa256666ea179fc3f

 10 + | subPath: SUBPATH

 ❓ Do you want to create this workload? [yN]:

  ```

Note In cases where a workload must be created from local source code, to reduce the total
amount of code that is uploaded, set the --local-path value to point directly to the directory
containing the code rather than using --sub-path.

.tanzuignore file

There are many files and directories in projects that are not connected to running code (these files
are not part of the final running container). When creating a workload from local source code, list
these unused files and directories in the .tanzuignore file to avoid unnecessary consumption of
resources when uploading the source.

When iterating on code with the --live-update flag enabled, changes to directories or files listed in
.tanzuignore do not trigger the automatic re-deployment of the source code.

The following are some guidelines for the .tanzuignore file:

The .tanzuignore file should include a reference to itself, as it provides no value when
deployed.

Directories must not end with the system separator /, or \.

Comments using hashtag # can be included.

If the .tanzuignore file contains files or directories that are not found in the source code,
they are ignored.

Example of a .tanzuignore file

    .tanzuignore # must contain itself in order to be ignored

    # This is a comment

    this/is/a/folder/to/exclude

    this-is-a-file.ext

–dry-run

Use the --dry-run flag to prepare all the steps to submit a workload to the cluster but stop before
sending it, and display an output of the final structure of the workload.

Tanzu Application Platform v1.4

VMware by Broadcom 441



For example, when applying a workload from Git source:

tanzu apps workload apply rmq-app --git-repo https://github.com/jhvhs/rabbitmq-sample 

--git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:example-rabb

itmq-cluster-1" -t web --dry-run

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: null

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-app

  namespace: default

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

      url: https://github.com/jhvhs/rabbitmq-sample

status:

  supplyChainRef: {}

Certify how a workload is created or updated in the cluster based on the current specifications
passed through --file workload.yaml or command flags.

If there is an error applying the workload, this is shown with the --dry-run flag:

tanzu apps workload create rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq

-sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:exam

ple-rabbitmq-cluster-1" -t web --dry-run

Error: workload "default/rmq-sample-app" already exists

–update-strategy
Use this flag to control whether configuration properties and values passed through --file
workload.yaml for an existing workload merge with, or replace (overwrite), existing on-cluster
properties or values set for a workload.

The --update-strategy flag accepts two values: merge (default), and replace.

With the default merge:

If the --file workload.yaml deletes an existing on-cluster property or value, that property is not
removed from the on-cluster definition. If the --file workload.yaml includes a new property or
value, it is added to the on-cluster workload properties/values. If the --file workload.yaml
updates an existing value for a property, that property’s value on-cluster is updated.

With replace:

The on-cluster workload is updated to exactly what is specified in the --file workload.yaml
definition.

The intent of the current default merge strategy is to prevent unintentional deletions of critical
properties from existing workloads.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 442



Examples of the outcomes of both merge and replace update strategies are provided in the
following examples:

# Export workload if there is no previous yaml definition

tanzu apps workload get spring-petclinic --export > spring-petclinic.yaml

# modify the workload definition

vi rmq-sample-app.yaml

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

name: spring-petclinic

labels:

  app.kubernetes.io/part-of: spring-petclinic

  apps.tanzu.vmware.com/workload-type: web

spec:

resources:

  requests:

    memory: 1Gi

  limits:           # delete this line

    memory: 1Gi     # delete this line

    cpu: 500m       # delete this line

source:

  git:

    url: https://github.com/sample-accelerators/spring-petclinic

    ref:

      tag: tap-1.1

After saving the file, to verify how both of the update strategy options behave, run:

tanzu apps workload apply -f ./spring-petclinic.yaml --update-strategy merge # if flag 

is not specified, merge is taken as default

This produces the following output:

❗ WARNING: Configuration file update strategy is changing. By default, provided config

uration files

will replace rather than merge existing configuration. The change will take place in t

he January 2024

Tanzu Application Platform release (use "--update-strategy" to control strategy explic

itly).

Workload is unchanged, skipping update

By contrast, use replace as follows:

tanzu apps workload apply -f ./spring-petclinic.yaml --update-strategy replace

This produces the following output:

❗ WARNING: Configuration file update strategy is changing. By default, provided config

uration files

will replace rather than merge existing configuration. The change will take place in t

he January 2024

Tanzu Application Platform release (use "--update-strategy" to control strategy explic

itly).

🔎 Update workload:

The default value for the --update-strategy flag will change from merge to
replace in Tanzu Application Platform v1.7.0.

Tanzu Application Platform v1.4

VMware by Broadcom 443



...

  8,  8   |  name: spring-petclinic

  9,  9   |  namespace: default

 10, 10   |spec:

 11, 11   |  resources:

 12     - |    limits:

 13     - |      cpu: 500m

 14     - |      memory: 1Gi

 15, 12   |    requests:

 16, 13   |      memory: 1Gi

 17, 14   |  source:

 18, 15   |    git:

...

❓ Really update the workload "spring-petclinic"? [yN]:

The lines that were deleted in the YAML file are deleted as well in the workload running in the
cluster. The only text boxes that remain exactly as they were created are the system populated
metadata text boxes (resourceVersion, uuid, generation, creationTimestamp, deletionTimestamp).

Debug workloads

This topic tells you how to use the Tanzu Apps CLI to debug workloads.

Verify build logs

Check build logs

After a workload is created, tail the workload to view the build and runtime logs.

Check logs by running:

tanzu apps workload tail pet-clinic --since 10m --timestamp

Where:

pet-clinic is the name you gave the workload.

--since (optional) the amount of time to go back to begin streaming logs. The default is 1
second.

--timestamp (optional) prints the timestamp with each log entry.

Get the workload status and details
After the workload build process is complete, create a Knative service to run the workload. You can
view workload details at any time during the process. Some details, such as the workload URL, are
only available after the workload is running.

To check the workload details, run:

tanzu apps workload get pet-clinic

Where:

pet-clinic is the name of the workload you want details about.

You can now see the running workload. When the workload is created, tanzu apps workload get
includes the URL for the running workload. Some terminals allow you to ctrl+click the URL to view
it. You can also copy and paste the URL into your web browser to see the workload.

Tanzu Application Platform v1.4

VMware by Broadcom 444



Common workload errors

A workload can either be ready, on error or with an unknown status.

There are known errors that will make the workload enter in an error or unknown status. The most
common are:

Local Path Development Error Cases

Message: Writing registry/project/repo/workload:latest: Writing image: Unexpected status
code 401 Unauthorized (HEAD responses have no body, use GET for details)

Cause: Apps plug-in cannot talk to the registry because the registry credentials are missing or
invalid.

Resolution: Run docker logout registry and docker login registry commands and specify the
valid credentials for the registry.

Message: Writing registry/project/workload:latest: Writing image: HEAD Unexpected status
code 400 Bad Request (HEAD responses have no body, use GET for details)

Cause: Certain registries like Harbor or GCR have a concept of Project. A 400 Bad request is sent
when either the project does not exist, the user does not have access to it, or the path in the —
source-image flag is missing either project or repository.

Resolution: Fix the path in the —source-image flag value to point to a valid repository path.

WorkloadLabelsMissing/SupplyChainNotFound

Message: No supply chain found where full selector is satisfied by labels:
map[app.kubernetes.io/part-of:spring-petclinic]

Cause: The labels and attributes in the workload object did not fully satisfy any installed supply chain
on the cluster.

Resolution: Use the tanzu apps cluster-supply-chain list (alias csc) and tanzu apps csc get
<supply-chain-name> commands to see the workload selection criteria for the supply chain available
on the cluster. Apply any missing labels to a workload by using tanzu apps workload apply --
label required-label-name=required-label-value. For example:

tanzu apps workload apply workload-name —-type web

tanzu apps workload apply workload-name --label apps.tanzu.vmware.com/workload-type=we

b

MissingValueAtPath

Message: Waiting to read value [.status.artifact.url] from resource
gitrepository.source.toolkit.fluxcd.io in namespace [ns]

Possible Cause: The Git url/tag/branch/commit parameters passed in the workload are not valid.

Resolution: Fix the invalid Git parameters by using tanzu apps workload apply

Possible Cause: The Git repository is not accessible from the cluster

Resolution: Configure your cluster networking or your Git repository networking so that they can
communicate with each other.

Possible Cause: The namespace is missing the Git secret for communicating with the private
repository

Resolution: For more information, see Git authentication

Tanzu Application Platform v1.4

VMware by Broadcom 445



TemplateRejectedByAPIServer

Message: Unable to apply object [ns/workload-name] for resource [source-provider] in supply
chain [source-to-url]: failed to get unstructured [ns/workload-name] from API server:
imagerepositories.source.apps.tanzu.vmware.com “workload-name” is forbidden: User
“system:serviceaccount:ns:default” cannot get resource “imagerepositories” in API group
“source.apps.tanzu.vmware.com” in the namespace “ns”

Cause: This error happens when the service account in the workload object does not have
permission to create objects that are stamped out by the supply chain.

Resolution: Set up the Set up developer namespaces to use your installed packages with the
required service account and permissions.

Review supply chain steps

After you create a workload with the tanzu apps workload create (or) apply, command, you can
run the tanzu apps workload get command to display the current condition of each supply chain.

For example:

...

📦 Supply Chain

   name:   source-to-url

   NAME               READY   HEALTHY   UPDATED   RESOURCE

   source-provider    True    True      71m       gitrepositories.source.toolkit.fluxc

d.io/spring-petclinic

   image-provider     True    True      70m       images.kpack.io/spring-petclinic

   config-provider    True    True      69m       podintents.conventions.carto.run/spr

ing-petclinic

   app-config         True    True      69m       configmaps/spring-petclinic

   service-bindings   True    True      69m       configmaps/spring-petclinic-with-cla

ims

   api-descriptors    True    True      69m       configmaps/spring-petclinic-with-api

-descriptors

   config-writer      True    True      69m       runnables.carto.run/spring-petclinic

-config-writer

🚚 Delivery

   name:   delivery-basic

   NAME              READY   HEALTHY   UPDATED   RESOURCE

   source-provider   True    True      69m       imagerepositories.source.apps.tanzu.v

mware.com/spring-petclinic-delivery

   deployer          True    True      69m       apps.kappctrl.k14s.io/spring-petclini

c

💬 Messages

   No messages found.

...

The Supply Chain section displays the supply chain steps associated with the workload. If a step
fails, the READY column value is Unknown or False, and the HEALTHY column value is False. If there is
a resource in Unknown or False status, inspect it with:

kubectl describe RESOURCE-NAME

Where RESOURCE-NAME refers to the name of the stamped out resource, displayed in RESOURCE
column.

For example, if tanzu apps workload get command returns this resource:

Tanzu Application Platform v1.4

VMware by Broadcom 446



NAME               READY   HEALTHY   UPDATED   RESOURCE

source-provider    False   False     3h12m     gitrepositories.source.toolkit.fluxcd.i

o/spring-petclinic

Whatever is going on with this resource can be checked with:

kubectl describe gitrepositories.source.toolkit.fluxcd.io/spring-petclinic

The Messages section might give a hint as to what went wrong in the process. For example, a
message similar to the following is shown:

💬 Messages

   Workload [HealthyConditionRule]:   failed to checkout and determine revision: faile

d to resolve commit object for '425ae9a2a2f84d195a9f3862668e8b2abf81418a': object not 

found

This could mean that the given commit does not belong to the specified branch or does not exist in
the repo.

Additional Troubleshooting References
Additional Workload troubleshooting tips can be found on the Troubleshoot using Tanzu
Application Platform page.

Tanzu Apps CLI commands
The following topics describe the Tanzu CLI Apps plug-in commands.

tanzu apps clustersupplychain sub-commands and details.

tanzu apps workload sub-commands and flags usage for each:

tanzu apps workload get

tanzu apps workload list

tanzu apps workload tail

tanzu apps workload delete

tanzu apps workload apply

Tanzu Apps CLI commands

The following topics describe the Tanzu CLI Apps plug-in commands.

tanzu apps clustersupplychain sub-commands and details.

tanzu apps workload sub-commands and flags usage for each:

tanzu apps workload get

tanzu apps workload list

tanzu apps workload tail

tanzu apps workload delete

tanzu apps workload apply

tanzu apps cluster-supply-chain

This topic tells you about the Tanzu Apps CLI cluster-supply-chain command.

Tanzu Application Platform v1.4

VMware by Broadcom 447



Tanzu apps cluster supply chain list

The tanzu apps clustersupplychain list command lists the available supply chains installed in the
cluster (supported clustersupplychain alias is csc).

Run the following command to view more detailed information about the selectors and conditions
that must be met for a workload to be selected by a certain supply chain:

tanzu apps clustersupplychain get SUPPLYCHAIN-NAME`.

Default view
The default view displays the name of the supply chain, whether it is ready or not, and its age.

For example:

tanzu apps clustersupplychain list

NAME                 READY   AGE

basic-image-to-url   Ready   11d

source-to-url        Ready   11d

To view details: "tanzu apps cluster-supply-chain get <name>"

Tanzu apps cluster supply chain get

The tanzu apps clustersupplychain get command gets detailed information of the cluster supply
chain.

Default view

The default view displays the status of the supply chain, and the selectors that a workload must
match so it is taken by that supply chain.

For example:

tanzu apps cluster-supply-chain get source-to-url

---

# source-to-url: Ready

---

Supply Chain Selectors

   TYPE          KEY                                   OPERATOR   VALUE

   expressions   apps.tanzu.vmware.com/workload-type   In         web

   expressions   apps.tanzu.vmware.com/workload-type   In         server

   expressions   apps.tanzu.vmware.com/workload-type   In         worker

This output indicates the attributes a workload needs to be selected by the source-to-url supply
chain on the target cluster. For example:

The workload must have the --type flag value of web, server, or worker.

Or, if expressed through workload.yaml, the Workload.metadata.labels label
apps.tanzu.vmware.com/workload-type must exist and have a value of web, server , or
worker.

Another example is the testing/scanning pipeline, which has the tekton steps for testing and the
scanning steps.

---

# source-test-scan-to-url: Ready

Tanzu Application Platform v1.4

VMware by Broadcom 448



---

Supply Chain Selectors

   TYPE          KEY                                   OPERATOR   VALUE

   labels        apps.tanzu.vmware.com/has-tests                  true

   expressions   apps.tanzu.vmware.com/workload-type   In         web

   expressions   apps.tanzu.vmware.com/workload-type   In         server

   expressions   apps.tanzu.vmware.com/workload-type   In         worker

In this case, the workload must have both labels apps.tanzu.vmware.com/has-tests: true and
apps.tanzu.vmware.com/workload-type set up as web, server, or worker to be selected for the
supply chain.

tanzu apps workload apply

This topic tells you about the Tanzu Apps CLI tanzu apps workload apply command.

Use the tanzu apps workload apply command to create and update workloads that are deployed
in a cluster through a supply chain.

The tanzu apps workload apply and tanzu apps workload create commands have the same
behavior and flags with the following exceptions:

The tanzu apps workload create command fails if a workload with the same name
preexists on the target cluster.

the update-strategy flag is only applicable to the tanzu apps workload apply command.
The update-strategy flag is not applicable to the tanzu apps workload create command.

Default view

In the output of the tanzu apps workload apply command, the specification for the workload is
shown in YAML file format.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.3 --ty

pe web

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    git:

     12 + |      ref:

     13 + |        tag: tap-1.3

     14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     15 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

👍 Created workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

In the first section, the definition of workload is displayed. It’s followed by a dialog box asking
whether the workload should be created or updated. In the last section, if a workload is created

Tanzu Application Platform v1.4

VMware by Broadcom 449



or updated, some hints are displayed about the next steps.

Workload Apply flags

--annotation

Sets the annotations to be applied to the workload. To specify more than one annotation set the
flag multiple times. These annotations are passed as parameters to be processed in the supply
chain.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.3 --ty

pe web --annotation tag=tap-1.3 --annotation name="Tanzu Java Web"

🔎 Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  params:

   11 + |  - name: annotations

   12 + |    value:

   13 + |      name: Tanzu Java Web

   14 + |      tag: tap-1.3

   15 + |  source:

   16 + |    git:

   17 + |      ref:

   18 + |        tag: tap-1.3

   19 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   20 + |    subPath: tanzu-java-web-app

To delete an annotation, use - after its name.

Example

tanzu apps workload apply tanzu-java-web-app --annotation tag-

🔎 Update workload:

...

10, 10   |  params:

11, 11   |  - name: annotations

12, 12   |    value:

13, 13   |      name: Tanzu Java Web

14     - |      tag: tap-1.3

15, 14   |  source:

16, 15   |    git:

17, 16   |      ref:

18, 17   |        tag: tap-1.3

...

❓ Really update the workload "tanzu-java-web-app"? [yN]:

--app / -a

This is the application the workload is part of. This is part of the workload metadata section.

Example

Tanzu Application Platform v1.4

VMware by Broadcom 450



tanzu apps workload apply tanzu-app --git-repo https://github.com/vmware-tanzu/applica

tion-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.3 --type web --

app tanzu-java-web-app

🔎 Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    app.kubernetes.io/part-of: tanzu-java-web-app

    7 + |    apps.tanzu.vmware.com/workload-type: web

    8 + |  name: tanzu-app

    9 + |  namespace: default

   10 + |spec:

   11 + |  source:

   12 + |    git:

   13 + |      ref:

   14 + |        tag: tap-1.3

   15 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   16 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

👍 Created workload "tanzu-app"

To see logs:   "tanzu apps workload tail tanzu-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-app"

--build-env

Sets environment variables to use in the build phase by the build resources in the supply chain.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.3 --ty

pe web --build-env JAVA_VERSION=1.8

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  build:

     11 + |    env:

     12 + |    - name: JAVA_VERSION

     13 + |      value: "1.8"

     14 + |  source:

     15 + |    git:

     16 + |      ref:

     17 + |        tag: tap-1.3

     18 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     19 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

To delete a build environment variable, use - after its name.

Example

tanzu apps workload apply tanzu-java-web-app --build-env JAVA_VERSION-

🔎 Update workload:

Tanzu Application Platform v1.4

VMware by Broadcom 451



...

   6,  6   |    apps.tanzu.vmware.com/workload-type: web

   7,  7   |  name: tanzu-java-web-app

   8,  8   |  namespace: default

   9,  9   |spec:

  10     - |  build:

  11     - |    env:

  12     - |    - name: JAVA_VERSION

  13     - |      value: "1.8"

  14, 10   |  source:

  15, 11   |    git:

  16, 12   |      ref:

  17, 13   |        tag: tap-1.3

...

❓ Really update the workload "tanzu-java-web-app"? [yN]:

--debug

Sets the parameter variable debug to true in the workload.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --debug

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  params:

     11 + |  - name: debug

     12 + |    value: "true"

     13 + |  source:

     14 + |    git:

     15 + |      ref:

     16 + |        branch: main

     17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     18 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

--dry-run

Prepares all the steps to submit the workload to the cluster and stops before sending it, showing an
output of the final structure of the workload.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.3 --ty

pe web --build-env JAVA_VERSION=1.8 --param-yaml server=$'port: 8080\nmanagement-port: 

8181' --dry-run

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: null

  labels:

    apps.tanzu.vmware.com/workload-type: web

Tanzu Application Platform v1.4

VMware by Broadcom 452



  name: tanzu-java-web-app

  namespace: default

spec:

  build:

    env:

    - name: JAVA_VERSION

      value: "1.8"

  params:

  - name: server

    value:

      management-port: 8181

      port: 8080

  source:

    git:

      ref:

        tag: tap-1.3

      url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: tanzu-java-web-app

status:

  supplyChainRef: {}

--env / -e

Sets the environment variables to the workload so the supply chain resources can used it to deploy
the workload application.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.3 --ty

pe web --env NAME="Tanzu Java App"

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  env:

     11 + |  - name: NAME

     12 + |    value: Tanzu Java App

     13 + |  source:

     14 + |    git:

     15 + |      ref:

     16 + |        tag: tap-1.3

     17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     18 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

To unset an environment variable, use - after its name.

tanzu apps workload apply tanzu-java-web-app --env NAME-

🔎 Update workload:

...

   6,  6   |    apps.tanzu.vmware.com/workload-type: web

   7,  7   |  name: tanzu-java-web-app

   8,  8   |  namespace: default

   9,  9   |spec:

  10     - |  env:

  11     - |  - name: NAME

  12     - |    value: Tanzu Java App

Tanzu Application Platform v1.4

VMware by Broadcom 453



  13, 10   |  source:

  14, 11   |    git:

  15, 12   |      ref:

  16, 13   |        tag: tap-1.3

...

❓ Really update the workload "tanzu-java-web-app"? [yN]:

--file, -f

Sets the workload specification file to create the workload. This comes from any other workload
specification passed by flags to the command set or overrides what is in the file. Another way to
use this flag is by using - in the command to receive workload definition through stdin. See
Working with YAML Files for an example.

Example

tanzu apps workload apply tanzu-java-web-app -f java-app-workload.yaml --param-yaml se

rver=$'port: 9090\nmanagement-port: 9190'

🔎 Create workload:

       1 + |---

       2 + |apiVersion: carto.run/v1alpha1

       3 + |kind: Workload

       4 + |metadata:

       5 + |  labels:

       6 + |    apps.tanzu.vmware.com/workload-type: web

       7 + |  name: tanzu-java-web-app

       8 + |  namespace: default

       9 + |spec:

      10 + |  build:

      11 + |    env:

      12 + |    - name: JAVA_VERSION

      13 + |      value: "1.8"

      14 + |  params:

      15 + |  - name: server

      16 + |    value:

      17 + |      management-port: 9190

      18 + |      port: 9090

      19 + |  source:

      20 + |    git:

      21 + |      ref:

      22 + |        tag: tap-1.3

      23 + |      url: url: https://github.com/vmware-tanzu/application-accelerator-sa

mples

      24 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

--git-repo

The Git repository from which the workload is created. You can specify --git-tag, or --git-commit.

--git-branch

The branch in a Git repository from where the workload is created. This is specified with a commit
or a tag.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web

🔎 Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

Tanzu Application Platform v1.4

VMware by Broadcom 454



    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  source:

   11 + |    git:

   12 + |      ref:

   13 + |        branch: main

   14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   15 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

--git-tag

The tag in a Git repository from which the workload is created. This is used with --git-commit or --
git-branch.

--git-commit

Commit in Git repository from where the workload is resolved. Can be used with --git-branch or
git-tag.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.3 --gi

t-commit 1c4cf82e499f7e46da182922d4097908d4817320 --type web

🔎 Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  source:

   11 + |    git:

   12 + |      ref:

   13 + |        commit: 1c4cf82e499f7e46da182922d4097908d4817320

   14 + |        tag: tap-1.3

   15 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   16 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

--image / -i

Sets the OSI image to be used as the workload application source instead of a Git repository

Example

tanzu apps workload apply tanzu-java-web-app --image private.repo.domain.com/tanzu-jav

a-web-app --type web

🔎 Create workload:

       1 + |---

       2 + |apiVersion: carto.run/v1alpha1

       3 + |kind: Workload

       4 + |metadata:

       5 + |  labels:

Tanzu Application Platform v1.4

VMware by Broadcom 455



       6 + |    apps.tanzu.vmware.com/workload-type: web

       7 + |  name: tanzu-java-web-app

       8 + |  namespace: default

       9 + |spec:

      10 + |  build:

      11 + |    env:

      12 + |    - name: JAVA_VERSION

      13 + |      value: "1.8"

      14 + |  params:

      15 + |  - name: server

      16 + |    value:

      17 + |      management-port: 9190

      18 + |      port: 9090

      19 + |  source:

      20 + |    git:

      21 + |      ref:

      22 + |        tag: tap-1.3

      23 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

      24 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

--label / -l

Sets the label to be applied to the workload. To specify more than one label, set the flag multiple
times.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --label stage=production

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    stage: production

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

     10 + |spec:

     11 + |  source:

     12 + |    git:

     13 + |      ref:

     14 + |        branch: main

     15 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     16 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

To unset labels, use - after their name.

Example

tanzu apps workload apply tanzu-java-web-app --label stage-

🔎 Update workload:

...

   3,  3   |kind: Workload

   4,  4   |metadata:

   5,  5   |  labels:

   6,  6   |    apps.tanzu.vmware.com/workload-type: web

   7     - |    stage: production

   8,  7   |  name: tanzu-java-web-app

   9,  8   |  namespace: default

  10,  9   |spec:

Tanzu Application Platform v1.4

VMware by Broadcom 456



  11, 10   |  source:

...

❓ Really update the workload "tanzu-java-web-app"? [yN]:

--limit-cpu

The maximum CPU the workload pods are allowed to use.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --limit-cpu .2

🔎 Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  resources:

   11 + |    limits:

   12 + |      cpu: 200m

   13 + |  source:

   14 + |    git:

   15 + |      ref:

   16 + |        branch: main

   17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   18 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

--limit-memory

The maximum memory the workload pods are allowed to use.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --limit-memory 200Mi

🔎 Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  resources:

   11 + |    limits:

   12 + |      memory: 200Mi

   13 + |  source:

   14 + |    git:

   15 + |      ref:

   16 + |        branch: main

   17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   18 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

Tanzu Application Platform v1.4

VMware by Broadcom 457



--live-update

Enable this to deploy the workload once, save changes to the code, and see those changes
reflected in the workload running on the cluster.

Example

An example with a Spring Boot application:

1. Clone the repository by running:

git clone https://github.com/vmware-tanzu/application-accelerator-samples

2. Change into the tanzu-java-web-app directory.

3. In Tiltfile, first change the SOURCE_IMAGE variable to use your registry and project.

4. At the very end of the file add:

allow_k8s_contexts('your-cluster-name')

5. Inside the directory, run:

tanzu apps workload apply tanzu-java-web-app --live-update --local-path . -s

gcr.io/my-project/tanzu-java-web-app-live-update -y

Expected output:

The files and directories listed in the .tanzuignore file are being excluded fr

om the uploaded source code.

Publishing source in "." to "gcr.io/my-project/tanzu-java-web-app-live-updat

e"...

📥 Published source

🔎 Create workload:

   1 + |---

   2 + |apiVersion: carto.run/v1alpha1

   3 + |kind: Workload

   4 + |metadata:

   5 + |  name: tanzu-java-web-app

   6 + |  namespace: default

   7 + |spec:

   8 + |  params:

   9 + |  - name: live-update

  10 + |    value: "true"

  11 + |  source:

  12 + |    image: gcr.io/my-project/tanzu-java-web-app-live-update:latest@sha2

56:3c9fd738492a23ac532a709301fcf0c9aa2a8761b2b9347bdbab52ce9404264b

👍 Created workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 

1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

6. Run Tilt to deploy the workload.

tilt up

Tilt started on http://localhost:10350/

v0.23.6, built 2022-01-14

(space) to open the browser

Tanzu Application Platform v1.4

VMware by Broadcom 458



(s) to stream logs (--stream=true)

(t) to open legacy terminal mode (--legacy=true)

(ctrl-c) to exit

Tilt started on http://localhost:10350/

v0.23.6, built 2022-01-14

Initial Build • (Tiltfile)

Loading Tiltfile at: /path/to/repo/tanzu-java-web-app/Tiltfile

Successfully loaded Tiltfile (1.500809ms)

tanzu-java-w… │

tanzu-java-w… │ Initial Build • tanzu-java-web-app

tanzu-java-w… │ WARNING: Live Update failed with unexpected error:

tanzu-java-w… │   Cannot extract live updates on this build graph structure

tanzu-java-w… │ Falling back to a full image build + deploy

tanzu-java-w… │ STEP 1/1 — Deploying

tanzu-java-w… │      Objects applied to cluster:

tanzu-java-w… │        → tanzu-java-web-app:workload

tanzu-java-w… │

tanzu-java-w… │      Step 1 - 8.87s (Deploying)

tanzu-java-w… │      DONE IN: 8.87s

tanzu-java-w… │

tanzu-java-w… │

tanzu-java-w… │ Tracking new pod rollout (tanzu-java-web-app-build-1-build-po

d):

tanzu-java-w… │      ┊ Scheduled       - (…) Pending

tanzu-java-w… │      ┊ Initialized     - (…) Pending

tanzu-java-w… │      ┊ Ready           - (…) Pending

...

--local-path

Sets the path to a source in the local machine from where the workload creates an image to use as
an application source. The local path may be a directory, a JAR, a ZIP, or a WAR file. Java/Spring
Boot compiled binaries are also supported. This flag must be used with --source-image flag.

If Java/Spring compiled binary is passed instead of source code, the command takes less time to
apply the workload since the build pack skips the compiling steps and start uploading the image.

When working with local source code, you can exclude files from the source code to be uploaded
within the image by creating a file .tanzuignore at the root of the source code. The .tanzuignore
file contains a list of file paths to exclude from the image including the file itself. The directories
must not end with the system path separator (/ or \). If the file contains directories that are not in
the source code, they are ignored. Lines starting with a # hashtag are also ignored.

--maven-artifact

This artifact is an output of a Maven project build. This flag must be used with --maven-version and
--maven-group.

Example

tanzu apps workload apply petc-mvn --maven-artifact petc --maven-version 2.6.1 --maven

-group demo.com

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  name: petc-mvn

      6 + |  namespace: default

      7 + |spec:

      8 + |  params:

      9 + |  - name: maven

Tanzu Application Platform v1.4

VMware by Broadcom 459



     10 + |    value:

     11 + |      artifactId: petc

     12 + |      groupId: demo.com

     13 + |      version: 2.6.1

❓ Do you want to create this workload? [yN]:

--maven-group

This group identifies the project across all other Maven projects.

--maven-type

This specifies the type of artifact that the Maven project produces. This flag is optional and is set by
default as jar by the supply chain.

--maven-version

Definition of the current version of the Maven project.

--source-image, -s

Registry path where the local source code is uploaded as an image.

Example

tanzu apps workload apply spring-pet-clinic --local-path /home/user/workspace/spring-p

et-clinic --source-image gcr.io/spring-community/spring-pet-clinic --type web

❓ Publish source in "/home/user/workspace/spring-pet-clinic" to "gcr.io/spring-communi

ty/spring-pet-clinic"? It may be visible to others who can pull images from that repos

itory Yes

The files and/or directories listed in the .tanzuignore file are being excluded from t

he uploaded source code.

Publishing source in "/home/user/workspace/spring-pet-clinic" to "gcr.io/spring-commun

ity/spring-pet-clinic"...

📥 Published source

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: spring-pet-clinic

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    image:gcr.io/spring-community/spring-pet-clinic:latest@sha256:5feb0d9da

f3f639755d8683ca7b647027cfddc7012e80c61dcdac27f0d7856a7

❓ Do you want to create this workload? [yN]:

--namespace, -n

Specifies the namespace in which the workload is created or updated in.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --namespace my-namespace

🔎 Create workload:

    1 + |---

Tanzu Application Platform v1.4

VMware by Broadcom 460



    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: my-namespace

    9 + |spec:

   10 + |  source:

   11 + |    git:

   12 + |      ref:

   13 + |        branch: main

   14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

  15 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

--param / -p

Additional parameters to be sent to the supply chain, the value is sent as a string. For complex
YAML and JSON objects use --param-yaml.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --param port=9090 --param management-port=9190

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  params:

     11 + |  - name: port

     12 + |    value: "9090"

     13 + |  - name: management-port

     14 + |    value: "9190"

     15 + |  source:

     16 + |    git:

     17 + |      ref:

     18 + |        branch: main

     19 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     20 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

To unset parameters, use - after their name.

Example

tanzu apps workload apply tanzu-java-web-app --param port-

🔎 Update workload:

...

   7,  7   |  name: tanzu-java-web-app

   8,  8   |  namespace: default

   9,  9   |spec:

  10, 10   |  params:

  11     - |  - name: port

  12     - |    value: "9090"

  13, 11   |  - name: management-port

  14, 12   |    value: "9190"

  15, 13   |  source:

Tanzu Application Platform v1.4

VMware by Broadcom 461



  16, 14   |    git:

...

❓ Really update the workload "tanzu-java-web-app"? [yN]:

--param-yaml

Additional parameters to be sent to the supply chain, the value is sent as a complex object.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --param-yaml server=$'port: 9090\nmanagement-port: 9190'

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  params:

     11 + |  - name: server

     12 + |    value:

     13 + |      management-port: 9190

     14 + |      port: 9090

     15 + |  source:

     16 + |    git:

     17 + |      ref:

     18 + |        branch: main

     19 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     20 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

To unset parameters, use - after their name.

Example

tanzu apps workload apply tanzu-java-web-app --param-yaml server-

🔎 Update workload:

...

   6,  6   |    apps.tanzu.vmware.com/workload-type: web

   7,  7   |  name: tanzu-java-web-app

   8,  8   |  namespace: default

   9,  9   |spec:

  10     - |  params:

  11     - |  - name: server

  12     - |    value:

  13     - |      management-port: 9190

  14     - |      port: 9090

  15, 10   |  source:

  16, 11   |    git:

  17, 12   |      ref:

  18, 13   |        branch: main

...

❓ Really update the workload "tanzu-java-web-app"? [yN]:

--registry-ca-cert

Refers to the path of the self-signed certificate needed for the custom/private registry. This is also
populated with a default value through environment variables. If the environment variable

Tanzu Application Platform v1.4

VMware by Broadcom 462



TANZU_APPS_REGISTRY_CA_CERT is set, it’s not necessary to use it in the command.

See Custom registry credentials for the currently supported environment variables.

Example

tanzu apps workload apply my-workload --local-path . -s registry.url.nip.io/my-packag

e/my-image --type web --registry-ca-cert path/to/cacert/mycert.nip.io.crt --registry-u

sername my-username --registry-password my-password

❓ Publish source in "." to "registry.url.nip.io/my-package/my-image"? It may be visibl

e to others who can pull images from that repository Yes

Publishing source in "." to "registry.url.nip.io/my-package/my-image"...

📥 Published source

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: my-workload

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    image: registry.url.nip.io/my-package/my-image:latest@sha256:caeb7e3a0e

3ae0659f74d01095b6fdfe0d3c4a12856a15ac67ad6cd3b9e43648

❓ Do you want to create this workload? [yN]:

--registry-password

If credentials are needed, the user name and password values are set through the --registry-
password flag. The value of this flag can also be specified through TANZU_APPS_REGISTRY_PASSWORD.

--registry-token

Used for token authentication in the private registry. This flag is set as TANZU_APPS_REGISTRY_TOKEN
environment variable.

--registry-username

Often used with --registry-password to set private registry credentials. Can be provided using
TANZU_APPS_REGISTRY_USERNAME environment variable to avoid setting it every time in the
command.

--request-cpu

Refers to the minimum CPU the workload pods request to use.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --request-cpu .3

🔎 Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

Tanzu Application Platform v1.4

VMware by Broadcom 463



    9 + |spec:

   10 + |  resources:

   11 + |    requests:

   12 + |      cpu: 300m

   13 + |  source:

   14 + |    git:

   15 + |      ref:

   16 + |        branch: main

   17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   18 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

--request-memory

Refers to the minimum memory the workload pods are requesting to use.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --request-memory 300Mi

🔎 Create workload:

     1 + |---

     2 + |apiVersion: carto.run/v1alpha1

     3 + |kind: Workload

     4 + |metadata:

     5 + |  labels:

     6 + |    apps.tanzu.vmware.com/workload-type: web

     7 + |  name: tanzu-java-web-app

     8 + |  namespace: default

     9 + |spec:

    10 + |  resources:

    11 + |    requests:

    12 + |      memory: 300Mi

    13 + |  source:

    14 + |    git:

    15 + |      ref:

    16 + |        branch: main

    17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

    18 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

--service-account

Refers to the service account to associate with the workload. A service account provides an
identity for a workload object.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --service-account petc-serviceaccount

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  serviceAccountName: petc-serviceaccount

     11 + |  source:

Tanzu Application Platform v1.4

VMware by Broadcom 464



     12 + |    git:

     13 + |      ref:

     14 + |        branch: main

     15 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     16 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]:

To unset a service account, pass empty string.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --service-account ""

🔎 Update workload:

...

  6,  6   |    apps.tanzu.vmware.com/workload-type: web

  7,  7   |  name: tanzu-java-web-app

  8,  8   |  namespace: default

  9,  9   |spec:

 10     - |  serviceAccountName: petc-serviceaccount

 11, 10   |  source:

 12, 11   |    git:

 13, 12   |      ref:

 14, 13   |        branch: main

...

❓ Really update the workload "tanzu-java-web-app"? [yN]:

--service-ref

Binds a service to a workload to provide the information from a service resource to an application.

Note For more information see Tanzu Application Platform documentation.

Example

tanzu apps workload apply rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq-

sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:examp

le-rabbitmq-cluster-1"

🔎 Create workload:

     1 + |---

     2 + |apiVersion: carto.run/v1alpha1

     3 + |kind: Workload

     4 + |metadata:

     5 + |  name: rmq-sample-app

     6 + |  namespace: default

     7 + |spec:

     8 + |  serviceClaims:

     9 + |  - name: rmq

    10 + |    ref:

    11 + |      apiVersion: rabbitmq.com/v1beta1

    12 + |      kind: RabbitmqCluster

    13 + |      name: example-rabbitmq-cluster-1

    14 + |  source:

    15 + |    git:

    16 + |      ref:

    17 + |        branch: main

    18 + |      url: https://github.com/jhvhs/rabbitmq-sample

❓ Do you want to create this workload? [yN]:

To delete service binding, use the service name followed by -.

Example

Tanzu Application Platform v1.4

VMware by Broadcom 465

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-getting-started-consume-services.html#stk-bind


tanzu apps workload apply rmq-sample-app --service-ref rmq-

🔎 Update workload:

...

   4,  4   |metadata:

   5,  5   |  name: rmq-sample-app

   6,  6   |  namespace: default

   7,  7   |spec:

   8     - |  serviceClaims:

   9     - |  - name: rmq

  10     - |    ref:

  11     - |      apiVersion: rabbitmq.com/v1beta1

  12     - |      kind: RabbitmqCluster

  13     - |      name: example-rabbitmq-cluster-1

  14,  8   |  source:

  15,  9   |    git:

  16, 10   |      ref:

  17, 11   |        branch: main

...

❓ Really update the workload "rmq-sample-app"? [yN]:

--sub-path

Defines which path is used as the root path to create and update the workload.

Example

Git repository

tanzu apps workload apply subpathtester --git-repo https://github.com/path-to-r

epo/my-repo --git-branch main --type web --sub-path my-subpath

🔎 Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: subpathtester

    8 + |  namespace: default

    9 + |spec:

   10 + |  source:

   11 + |    git:

   12 + |      ref:

   13 + |        branch: main

   14 + |      url: https://github.com/path-to-repo/my-repo

   15 + |    subPath: my-subpath

❓ Do you want to create this workload? [yN]:

Local path

In the directory of the project you want to create the workload from

tanzu apps workload apply my-workload --local-path . -s gcr.io/my-registr

y/my-workload-image --sub-path subpath_folder

❓ Publish source in "." to "gcr.io/my-registry/my-workload-image"? It may 

be visible to others who can pull images from that repository Yes

Publishing source in "." to "gcr.io/my-registry/my-workload-image"...

📥 Published source

🔎 Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  name: myworkload

Tanzu Application Platform v1.4

VMware by Broadcom 466



    6 + |  namespace: default

    7 + |spec:

    8 + |  source:

    9 + |    image: gcr.io/my-registry/my-workload-image:latest@sha256:f2

8c5fedd0e902800e6df9605ce5e20a8e835df9e87b1a0aa256666ea179fc3f

   10 + |    subPath: subpath_folder

❓ Do you want to create this workload? [yN]:

--tail

Prints the logs of the workload creation in every step.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --tail

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    git:

     12 + |      ref:

     13 + |        branch: main

     14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     15 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]: y

👍 Created workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

Waiting for workload "tanzu-java-web-app" to become ready...

+ tanzu-java-web-app-build-1-build-pod › prepare

tanzu-java-web-app-build-1-build-pod[prepare] Build reason(s): CONFIG

tanzu-java-web-app-build-1-build-pod[prepare] CONFIG:

tanzu-java-web-app-build-1-build-pod[prepare]   + env:

tanzu-java-web-app-build-1-build-pod[prepare]   + - name: BP_OCI_SOURCE

tanzu-java-web-app-build-1-build-pod[prepare]   +   value: main/d381fb658cb435a04e2271

ca85bd3e8627a5e7e4

tanzu-java-web-app-build-1-build-pod[prepare]   resources: {}

tanzu-java-web-app-build-1-build-pod[prepare]   - source: {}

tanzu-java-web-app-build-1-build-pod[prepare]   + source:

tanzu-java-web-app-build-1-build-pod[prepare]   +   blob:

tanzu-java-web-app-build-1-build-pod[prepare]   +     url: http://source-controller.fl

ux-system.svc.cluster.local./gitrepository/default/tanzu-java-web-app/1c4cf82e499f7e46

da182922d4097908d4817320.tar.gz

...

...

...

--tail-timestamp

Prints the logs of the workload creation in every step adding the time in which the log is occurring.

Example

Tanzu Application Platform v1.4

VMware by Broadcom 467



tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --tail-timestamp

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    git:

     12 + |      ref:

     13 + |        branch: main

     14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     15 + |    subPath: tanzu-java-web-app

❓ Do you want to create this workload? [yN]: y

👍 Created workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

Waiting for workload "tanzu-java-web-app" to become ready...

+ tanzu-java-web-app-build-1-build-pod › prepare

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.348418803-05:00 Buil

d reason(s): CONFIG

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364719405-05:00 CONF

IG:

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364761781-05:00   + 

env:

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364771861-05:00   + 

- name: BP_OCI_SOURCE

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364781718-05:00   +   

value: main/d381fb658cb435a04e2271ca85bd3e8627a5e7e4

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364788374-05:00   re

sources: {}

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364795451-05:00   - 

source: {}

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.365344965-05:00   + 

source:

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.365364101-05:00   +   

blob:

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.365372427-05:00   +     

url: http://source-controller.flux-system.svc.cluster.local./gitrepository/default/tan

zu-java-web-app/1c4cf82e499f7e46da182922d4097908d4817320.tar.gz

...

...

...

--type / -t

Sets the type of workload by adding the label apps.tanzu.vmware.com/workload-type, which is used
as a matcher by supply chains. Use the TANZU_APPS_TYPE environment variable to have a default
value for this flag.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web

🔎 Create workload:

Tanzu Application Platform v1.4

VMware by Broadcom 468



      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    git:

     12 + |      ref:

     13 + |        branch: main

     14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     15 + |    subPath: tanzu-java-web-app

--update-strategy

Example

Assuming there is a workload created from a file, which has in its spec the following:

...

spec:

  resources:

    requests:

      memory: 1Gi

    limits:           # delete this line

      memory: 1Gi     # delete this line

      cpu: 500m       # delete this line

...

If the workload file is changed as specified in the comments, there are two ways to update the
workload running in the cluster.

One, with merge update strategy.

tanzu apps workload apply -f ./spring-petclinic.yaml # defaulting to merge

❗ WARNING: Configuration file update strategy is changing. By default, provided config

uration files will replace rather than merge existing configuration. The change will t

ake place in the January 2024 TAP release (use "--update-strategy" to control strategy 

explicitly).

Workload is unchanged, skipping update

The other, with replace update strategy, which will completely overwrite the workload in the
cluster according to the new specifications in the file.

tanzu apps workload apply -f ./spring-petclinic.yaml --update-strategy replace

❗ WARNING: Configuration file update strategy is changing. By default, provided config

uration files will replace rather than merge existing configuration. The change will t

ake place in the January 2024 TAP release (use "--update-strategy" to control strategy 

explicitly).

Note

This flag is only applicable to the tanzu apps workload apply command. It is not
applicable to the tanzu apps workload create command.

Tanzu Application Platform v1.4

VMware by Broadcom 469



🔎 Update workload:

...

  8,  8   |  name: spring-petclinic

  9,  9   |  namespace: default

 10, 10   |spec:

 11, 11   |  resources:

 12     - |    limits:

 13     - |      cpu: 500m

 14     - |      memory: 1Gi

 15, 12   |    requests:

 16, 13   |      memory: 1Gi

 17, 14   |  source:

 18, 15   |    git:

...

❓ Really update the workload "spring-petclinic"? [yN]:

--wait

Holds the command until the workload is ready.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.3 --ty

pe web --wait

🔎 Update workload:

...

10, 10   |  source:

11, 11   |    git:

12, 12   |      ref:

13, 13   |        branch: main

    14 + |        tag: tap-1.3

14, 15   |      url: https://github.com/vmware-tanzu/application-accelerator-samples

15, 16   |    subPath: tanzu-java-web-app

❓ Really update the workload "tanzu-java-web-app"? Yes

👍 Updated workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

Waiting for workload "tanzu-java-web-app" to become ready...

Workload "tanzu-java-web-app" is ready

--wait-timeout

Sets a timeout to wait for the workload to become ready.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.3-take

1 --type web --wait --wait-timeout 1m

🔎 Update workload:

...

10, 10   |  source:

11, 11   |    git:

12, 12   |      ref:

13, 13   |        branch: main

14     - |        tag: tap-1.3

    14 + |        tag: tap-1.3-take1

15, 15   |      url: https://github.com/vmware-tanzu/application-accelerator-samples

16, 16   |    subPath: tanzu-java-web-app

❓ Really update the workload "tanzu-java-web-app"? Yes

👍 Updated workload "tanzu-java-web-app"

Tanzu Application Platform v1.4

VMware by Broadcom 470



To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

Waiting for workload "tanzu-java-web-app" to become ready...

Workload "tanzu-java-web-app" is ready

--yes, -y

Assumes --yes on all the survey prompts.

Example

tanzu apps workload apply spring-pet-clinic --local-path/home/user/workspace/spring-pe

t-clinic --source-image gcr.io/spring-community/spring-pet-clinic --type web -y

The files and/or directories listed in the .tanzuignore file are being excluded from t

he uploaded source code.

Publishing source in "/Users/dalfonso/Documents/src/java/tanzu-java-web-app" to "gcr.i

o/spring-community/spring-pet-clinic"...

📥 Published source

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: spring-pet-clinic

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    image: gcr.io/spring-community/spring-pet-clinic:latest@sha256:5feb0d9d

af3f639755d8683ca7b647027cfddc7012e80c61dcdac27f0d7856a7

👍 Created workload "spring-pet-clinic"

To see logs:   "tanzu apps workload tail spring-pet-clinic --timestamp --since 1h"

To get status: "tanzu apps workload get spring-pet-clinic"

tanzu apps workload delete
This topic tells you about the Tanzu Apps CLI tanzu apps workload delete command. This
command deletes workloads in a cluster. Deleting a workload does not mean the images published
in the registry are deleted with it.

Default view
A message is displayed in the terminal asking if a workload should be deleted unless the --yes flag
is used. If you indicate “Y”, then the workload starts a deletion process inside the cluster.

tanzu apps workload delete spring-pet-clinic

❓ Really delete the workload "spring-pet-clinic"? Yes

👍 Deleted workload "spring-pet-clinic"

tanzu apps workload delete spring-pet-clinic --yes

👍 Deleted workload "spring-pet-clinic"

Workload Delete flags

Tanzu Application Platform v1.4

VMware by Broadcom 471



--all

Deletes all workloads in a namespace.

tanzu apps workload delete --all

❓ Really delete all workloads in the namespace "default"? (y/N) Y

👍 Deleted workloads in namespace "default"

tanzu apps workload delete --all -n my-namespace

❓ Really delete all workloads in the namespace "my-namespace"? Yes

👍 Deleted workloads in namespace "my-namespace"

--file, -f

Path to a file that contains the specification of the workload to be deleted.

tanzu apps workload delete -f path/to/file/spring-petclinic.yaml

❓ Really delete the workload "spring-petclinic"? Yes

👍 Deleted workload "spring-petclinic"

--namespace, -n

Specifies the namespace in which the workload is to be deleted.

tanzu apps workload delete spring-petclinic -n spring-petclinic-ns

❓ Really delete the workload "spring-petclinic"? Yes

👍 Deleted workload "spring-petclinic"

wait

Waits until workload is deleted.

tanzu apps workload delete -f path/to/file/spring-petclinic.yaml --wait

❓ Really delete the workload "spring-petclinic"? Yes

👍 Deleted workload "spring-petclinic"

Waiting for workload "spring-petclinic" to be deleted...

Workload "spring-petclinic" was deleted

--wait-timeout

Sets a timeout to wait for workload to be deleted.

tanzu apps workload delete -f path/to/file/spring-petclinic.yaml --wait --wait-timeout 

1m

❓ Really delete the workload "spring-petclinic"? Yes

👍 Deleted workload "spring-petclinic"

Waiting for workload "spring-petclinic" to be deleted...

Workload "spring-petclinic" was deleted

tanzu apps workload delete spring-petclinic -n spring-petclinic-ns --wait --wait-timeo

ut 1m

❓ Really delete the workload "spring-petclinic"? Yes

👍 Deleted workload "spring-petclinic"

Waiting for workload "spring-petclinic" to be deleted...

Error: timeout after 1m waiting for "spring-petclinic" to be deleted

To view status run: tanzu apps workload get spring-petclinic --namespace spring-petcli

nic-ns

Error: exit status 1

Tanzu Application Platform v1.4

VMware by Broadcom 472



✖  exit status 1

--yes, -f

Assume yes on all the survey prompts.

tanzu apps workload delete spring-petclinic --yes

👍 Deleted workload "spring-petclinic"

tanzu apps workload get
This topic tells you how to use the Tanzu Apps CLI tanzu apps workload get command to retrieve
information and status about a workload.

Some of the workload details in the command output are as follows:

Workload name, type, and namespace.

The source code used to build the workload (or the pre-built OCI image).

The supply chain that processed the workload.

The specific resources within the supply chain that interacted with the workload, and the
stamped out resources associated with each of those interactions.

The delivery workflow that the application follows.

Any issues associated with deploying the workload.

The pods the workload generates.

And when applicable, the knative services related to the workload.

Default view
There are multiple sections in the workload get command output. The following data is displayed:

Name of the workload and its status.

Displays source information of workload.

If the workload was matched with a supply chain, the information of its name and the status
is displayed.

Information and status of the individual steps that is defined in the supply chain for the
workload.

Any issue with the workload: the name and corresponding message.

Workload related resource information and status like services claims, related pods, knative
services.

At the very end of the command output, a hint to follow up commands is also displayed.

Note

the Supply Chain and Delivery sections are included in the command output
depending on whether those resources are present on the target cluster (e.g. If the
target includes only build components, there would be no Delivery resources
available and therefore the Delivery section would not be included in the command
output.).

Tanzu Application Platform v1.4

VMware by Broadcom 473



tanzu apps workload get rmq-sample-app

📡 Overview

   name:        rmq-sample-app

   type:        web

   namespace:   default

💾 Source

   type:     git

   url:      https://github.com/jhvhs/rabbitmq-sample

   branch:   main

📦 Supply Chain

   name:   source-to-url

   NAME               READY   HEALTHY   UPDATED   RESOURCE

   source-provider    True    True      7d11h     gitrepositories.source.toolkit.fluxc

d.io/rmq-sample-app

   image-provider     True    True      2d18h     images.kpack.io/rmq-sample-app

   config-provider    True    True      7d11h     podintents.conventions.carto.run/rmq

-sample-app

   app-config         True    True      7d11h     configmaps/rmq-sample-app

   service-bindings   True    True      7d11h     configmaps/rmq-sample-app-with-claim

s

   api-descriptors    True    True      7d11h     configmaps/rmq-sample-app-with-api-d

escriptors

   config-writer      True    True      2d18h     runnables.carto.run/rmq-sample-app-c

onfig-writer

🚚 Delivery

   name:   delivery-basic

   NAME              READY     HEALTHY   UPDATED   RESOURCE

   source-provider   True      True      7d11h     imagerepositories.source.apps.tanz

u.vmware.com/rmq-sample-app-delivery

   deployer          True      True      6m25s     apps.kappctrl.k14s.io/rmq-sample-ap

p

💬 Messages

   No messages found.

🔁 Services

   CLAIM   NAME                         KIND              API VERSION

   rmq     example-rabbitmq-cluster-1   RabbitmqCluster   rabbitmq.com/v1beta1

🛶 Pods

   NAME                                     READY   STATUS      RESTARTS   AGE

   rmq-sample-app-build-1-build-pod         0/1     Completed   0          56d

   rmq-sample-app-build-2-build-pod         0/1     Completed   0          46d

   rmq-sample-app-build-3-build-pod         0/1     Completed   0          45d

   rmq-sample-app-config-writer-54mwk-pod   0/1     Completed   0          6d12h

   rmq-sample-app-config-writer-74qvp-pod   0/1     Completed   0          6d16h

   rmq-sample-app-config-writer-78r5w-pod   0/1     Completed   0          45d

   rmq-sample-app-config-writer-9xs5f-pod   0/1     Completed   0          46d

🚢 Knative Services

   NAME             READY   URL

   rmq-sample-app   Ready   http://rmq-sample-app.default.127.0.0.1.nip.io

To see logs: "tanzu apps workload tail rmq-sample-app --timestamp --since 1h"

--export

Tanzu Application Platform v1.4

VMware by Broadcom 474



Exports the submitted workload in yaml format. This flag can also be used with the --output flag.
With export, the output is shortened because some text boxes are removed.

tanzu apps workload get tanzu-java-web-app --export

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

labels:

    apps.tanzu.vmware.com/workload-type: web

    autoscaling.knative.dev/min-scale: "1"

name: tanzu-java-web-app

namespace: default

spec:

source:

    git:

    ref:

        tag: tap-1.3

      url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: tanzu-java-web-app

--output/-o

Configures how the workload is being shown. This supports the values yaml, yml, and json, where
yaml and yml are equal. It shows the actual workload in the cluster.

yaml/yml

tanzu apps workload get tanzu-java-web-app -o yaml

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

creationTimestamp: "2022-06-03T18:10:59Z"

generation: 1

labels:

    apps.tanzu.vmware.com/workload-type: web

    autoscaling.knative.dev/min-scale: "1"

...

spec:

source:

    git:

        ref:

            tag: tap-1.1

        url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: tanzu-java-web-app

status:

    conditions:

    - lastTransitionTime: "2022-06-03T18:10:59Z"

        message: ""

        reason: Ready

        status: "True"

        type: SupplyChainReady

    - lastTransitionTime: "2022-06-03T18:14:18Z"

        message: ""

        reason: ResourceSubmissionComplete

        status: "True"

        type: ResourcesSubmitted

    - lastTransitionTime: "2022-06-03T18:14:18Z"

        message: ""

        reason: Ready

        status: "True"

        type: Ready

Tanzu Application Platform v1.4

VMware by Broadcom 475



    observedGeneration: 1

    resources:

    ...

    supplyChainRef:

        kind: ClusterSupplyChain

        name: source-to-url

        ...

json

tanzu apps workload get tanzu-java-web-app -o json

{

    "kind": "Workload",

    "apiVersion": "carto.run/v1alpha1",

    "metadata": {

        "name": "tanzu-java-web-app",

        "namespace": "default",

        "uid": "937679ca-9c72-4e23-bfef-6334e6c003a7",

        "resourceVersion": "111637840",

        "generation": 1,

        "creationTimestamp": "2022-06-03T18:10:59Z",

        "labels": {

            "apps.tanzu.vmware.com/workload-type": "web",

            "autoscaling.knative.dev/min-scale": "1"

        },

...

}

"spec": {

        "source": {

            "git": {

                "url": "https://github.com/vmware-tanzu/application-accelerator

-samples",

                "ref": {

                    "tag": "tap-1.3"

                }

            },

            "subPath": "tanzu-java-web-app"

        }

    },

    "status": {

        "observedGeneration": 1,

        "conditions": [

            {

                "type": "SupplyChainReady",

                "status": "True",

                "lastTransitionTime": "2022-06-03T18:10:59Z",

                "reason": "Ready",

                "message": ""

            },

            {

                "type": "ResourcesSubmitted",

                "status": "True",

                "lastTransitionTime": "2022-06-03T18:14:18Z",

                "reason": "ResourceSubmissionComplete",

                "message": ""

            },

            {

                "type": "Ready",

                "status": "True",

                "lastTransitionTime": "2022-06-03T18:14:18Z",

                "reason": "Ready",

                "message": ""

            }

        ],

        "supplyChainRef": {

            "kind": "ClusterSupplyChain",

Tanzu Application Platform v1.4

VMware by Broadcom 476



            "name": "source-to-url"

        },

        "resources": [

            {

                "name": "source-provider",

                "stampedRef": {

                    "kind": "GitRepository",

                    "namespace": "default",

                    "name": "tanzu-java-web-app",

                    ...

                }

            }

        ]

        ...

    }

    ...

}

--namespace/-n

Specifies the namespace where the workload is deployed.

tanzu apps workload get tanzu-java-web-app -n development

📡 Overview

   name:        tanzu-java-web-app

   type:        web

   namespace:   development

💾 Source

   type:     git

   url:      https://github.com/vmware-tanzu/application-accelerator-samples

   sub-path: tanzu-java-web-app

   tag:      tap-1.3

📦 Supply Chain

   name:   source-to-url

   NAME               READY   HEALTHY   UPDATED   RESOURCE

   source-provider    True    True      31m       gitrepositories.source.toolkit.fluxc

d.io/tanzu-java-web-app

   image-provider     True    True      30m       images.kpack.io/tanzu-java-web-app

   config-provider    True    True      30m       podintents.conventions.carto.run/tan

zu-java-web-app

   app-config         True    True      30m       configmaps/tanzu-java-web-app

   service-bindings   True    True      30m       configmaps/tanzu-java-web-app-with-c

laims

   api-descriptors    True    True      30m       configmaps/tanzu-java-web-app-with-a

pi-descriptors

   config-writer      True    True      30m       runnables.carto.run/tanzu-java-web-a

pp-config-writer

🚚 Delivery

   name:   delivery-basic

   NAME              READY   HEALTHY   UPDATED   RESOURCE

   source-provider   True    True      30m       imagerepositories.source.apps.tanzu.v

mware.com/tanzu-java-web-app-delivery

   deployer          True    True      30m       apps.kappctrl.k14s.io/tanzu-java-web-

app

💬 Messages

   No messages found.

🛶 Pods

Tanzu Application Platform v1.4

VMware by Broadcom 477



   NAME                                        READY   STATUS      RESTARTS   AGE

   tanzu-java-web-app-build-11-build-pod       0/1     Completed   0          6d12h

   tanzu-java-web-app-build-12-build-pod       0/1     Completed   0          22h

   tanzu-java-web-app-build-3-build-pod        0/1     Completed   0          60d

   tanzu-java-web-app-config-writer-655rb-pod  0/1     Completed   0          21d

   tanzu-java-web-app-config-writer-7h8bn-pod  0/1     Completed   0          6d12h

   tanzu-java-web-app-config-writer-7xr6m-pod  0/1     Completed   0          60d

   tanzu-java-web-app-config-writer-g9gp8-pod  0/1     Completed   0          45d

🚢 Knative Services

   NAME                READY   URL

   tanzu-java-web-app  Ready   http://tanzu-java-web-app.default.127.0.0.1.nip.io

To see logs: "tanzu apps workload tail tanzu-java-web-app --namespace development --ti

mestamp --since 1h"

tanzu apps workload list

This topic tells you about the Tanzu Apps CLI tanzu apps workload list command.

The tanzu apps workload list command gets the workloads present in the cluster, either in the
current namespace, in another namespace, or all namespaces.

Default view

The default view for workload list is a table with the workloads present in the cluster in the
specified namespace. This table has, in each row, the name of the workload, the app it is related to,
its status and how long it’s been in the cluster.

For example, in the default namespace

tanzu apps workload list

NAME                  TYPE      APP                  READY                   AGE

nginx4                web       <empty>              Ready                   7d9h

petclinic2            web       <empty>              Ready                   29h

rmq-sample-app        web       <empty>              Ready                   164m

rmq-sample-app4       web       <empty>              WorkloadLabelsMissing   29d

spring-pet-clinic     web       <empty>              Unknown                 166m

spring-petclinic2     web       spring-petclinic     Unknown                 29d

spring-petclinic3     <empty>   spring-petclinic     Ready                   29d

tanzu-java-web-app    web       tanzu-java-web-app   Ready                   40m

tanzu-java-web-app2   web       tanzu-java-web-app   Ready                   20m

>Workload List flags

--all-namespaces, -A

Shows workloads in all namespaces in cluster.

tanzu apps workload list -A

NAMESPACE   TYPE   NAME                  APP                  READY                         

AGE

default     web    nginx4                <empty>              Ready                         

7d9h

default     web    petclinic2            <empty>              Ready                         

30h

default     web    rmq-sample-app        <empty>              Ready                         

179m

Tanzu Application Platform v1.4

VMware by Broadcom 478



default     web    rmq-sample-app4       <empty>              WorkloadLabelsMissing         

29d

default     web    spring-pet-clinic     <empty>              Unknown                       

3h1m

default     web    spring-petclinic2     spring-petclinic     Unknown                       

29d

default     web    spring-petclinic3     spring-petclinic     Ready                         

29d

default     web    tanzu-java-web-app    tanzu-java-web-app   Ready                         

40m

default     web    tanzu-java-web-app2   tanzu-java-web-app   Ready                         

20m

nginx-ns    web    nginx2                <empty>              TemplateRejectedByAPISer

ver   8d

nginx-ns    web    nginx4                <empty>              TemplateRejectedByAPISer

ver   8d

--app

Shows workloads which app is the one specified in the command.

tanzu apps workload list --app spring-petclinic

NAME                TYPE   READY     AGE

spring-petclinic2   web    Unknown   29d

spring-petclinic3   web    Ready     29d

--namespace, -n

Lists all the workloads present in the specified namespace.

tanzu apps workload list -n my-namespace

NAME   TYPE   APP       READY                         AGE

app1   web    <empty>   TemplateRejectedByAPIServer   8d

app2   web    <empty>   Ready                         8d

app3   web    <empty>   Unknown                       8d

--output, -o

Allows to list all workloads in the specified namespace in yaml, yml or json format.

yaml/yml

---

- apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

    creationTimestamp: "2022-05-17T22:06:49Z"

    generation: 1

    labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

    managedFields:

    ...

    ...

    manager: cartographer

    operation: Update

    time: "2022-05-17T22:06:52Z"

name: tanzu-java-web-app2

namespace: default

resourceVersion: "6071972"

uid: 7fbcd40d-4eb3-41dc-a1db-657b64148708

Tanzu Application Platform v1.4

VMware by Broadcom 479



spec:

    source:

        git:

            ref:

              tag: tap-1.3

            url: https://github.com/vmware-tanzu/application-accelerator-sample

s

        subPath: tanzu-java-web-app

...

...

---

- apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

    creationTimestamp: "2022-05-17T22:06:49Z"

    generation: 1

    labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

    managedFields:

    ...

    ...

    manager: cartographer

    operation: Update

    time: "2022-05-17T22:06:52Z"

name: tanzu-java-web-app

namespace: default

resourceVersion: "6071972"

uid: 7fbcd40d-4eb3-41dc-a1db-657b64148708

spec:

    source:

        git:

            ref:

              tag: tap-1.3

            url: https://github.com/vmware-tanzu/application-accelerator-sample

s

        subPath: tanzu-java-web-app

...

...

json

[

    {

        "kind": "Workload",

        "apiVersion": "carto.run/v1alpha1",

        "metadata": {

            "name": "tanzu-java-web-app2",

            "namespace": "default",

            "uid": "7fbcd40d-4eb3-41dc-a1db-657b64148708",

            "resourceVersion": "6071972",

            "generation": 1,

            "creationTimestamp": "2022-05-17T22:06:49Z",

            "labels": {

                "app.kubernetes.io/part-of": "tanzu-java-web-app",

                "apps.tanzu.vmware.com/workload-type": "web"

            },

        ...

        }

    ...

    },

    {

        "kind": "Workload",

        "apiVersion": "carto.run/v1alpha1",

        "metadata": {

            "name": "tanzu-java-web-app",

Tanzu Application Platform v1.4

VMware by Broadcom 480



            "namespace": "default",

            "uid": "7fbcd40d-4eb3-41dc-a1db-657b64148708",

            "resourceVersion": "6071972",

            "generation": 1,

            "creationTimestamp": "2022-05-17T22:06:49Z",

            "labels": {

                "app.kubernetes.io/part-of": "tanzu-java-web-app",

                "apps.tanzu.vmware.com/workload-type": "web"

            },

        ...

        }

    ...

    },

...

...

]

tanzu apps workload tail

This topic tells you about the Tanzu Apps CLI tanzu apps workload tail command.

The tanzu apps workload tail checks the runtime logs of a workload.

Default view

Without timestamp set, workload tail will show the stage where it is and the log related.

+ spring-pet-clinic-build-1-build-pod › prepare

+ spring-pet-clinic-build-1-build-pod › detect

+ spring-pet-clinic-build-1-build-pod › analyze

+ spring-pet-clinic-build-1-build-pod › build

+ spring-pet-clinic-build-1-build-pod › restore

spring-pet-clinic-build-1-build-pod[detect] ======== Output: tanzu-buildpacks/poetry@

0.1.0 ========

spring-pet-clinic-build-1-build-pod[detect] pyproject.toml must include [tool.poetry.d

ependencies.python], see https://python-poetry.org/docs/pyproject/#dependencies-and-de

v-dependencies

spring-pet-clinic-build-1-build-pod[analyze] Restoring data for sbom from previous ima

ge

spring-pet-clinic-build-1-build-pod[detect] err:  tanzu-buildpacks/poetry@0.1.0 (1)

spring-pet-clinic-build-1-build-pod[detect] ======== Output: tanzu-buildpacks/poetry@

0.1.0 ========

spring-pet-clinic-build-1-build-pod[detect] pyproject.toml must include [tool.poetry.d

ependencies.python], see https://python-poetry.org/docs/pyproject/#dependencies-and-de

v-dependencies

spring-pet-clinic-build-1-build-pod[detect] err:  tanzu-buildpacks/poetry@0.1.0 (1)

spring-pet-clinic-build-1-build-pod[detect] 10 of 38 buildpacks participating

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/ca-certificates   3.1.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/bellsoft-liberica 9.2.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/syft              1.10.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/gradle            6.4.1

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/maven             6.4.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/executable-jar    6.1.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/apache-tomcat     7.2.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/dist-zip          5.2.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/spring-boot       5.8.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/image-labels      4.1.0

...

...

...

>Workload Tail flags

Tanzu Application Platform v1.4

VMware by Broadcom 481



--component

Set the component from which the tail command should stream the logs. The values that the flag
can take depend on the final deployed pods label app.kubernetes.io/component, for example,
build, run and, config-writer

tanzu apps workload tail pet-clinic --component build

pet-clinic-build-1-build-pod[export] Adding label 'io.buildpacks.project.metadata'

pet-clinic-build-1-build-pod[export] Adding label 'org.opencontainers.image.title'

pet-clinic-build-1-build-pod[export] Adding label 'org.opencontainers.image.version'

pet-clinic-build-1-build-pod[export] Adding label 'org.springframework.boot.version'

pet-clinic-build-1-build-pod[export] Adding label 'org.opencontainers.image.source'

pet-clinic-build-1-build-pod[export] Setting default process type 'web'

pet-clinic-build-1-build-pod[export] Saving gcr.io/dalfonso-tanzu-dev-frmwrk/pet-clini

c-default...

pet-clinic-build-1-build-pod[export] *** Images (sha256:2ae6154c4433d870a330a0c2fc8253

40c3ead2603e3d1526e47c47cb6297fffe):

pet-clinic-build-1-build-pod[export]       gcr.io/dalfonso-tanzu-dev-frmwrk/pet-clinic

-default

pet-clinic-build-1-build-pod[export]       gcr.io/dalfonso-tanzu-dev-frmwrk/pet-clinic

-default:b1.20220603.181107

pet-clinic-build-1-build-pod[export] Adding cache layer 'paketo-buildpacks/bellsoft-li

berica:jdk'

pet-clinic-build-1-build-pod[export] Adding cache layer 'paketo-buildpacks/syft:syft'

pet-clinic-build-1-build-pod[export] Adding cache layer 'paketo-buildpacks/maven:appli

cation'

pet-clinic-build-1-build-pod[export] Adding cache layer 'paketo-buildpacks/maven:cach

e'

pet-clinic-build-1-build-pod[export] Adding cache layer 'cache.sbom'

--namespace, -n

Specifies the namespace where the workload was deployed to get logs from.

tanzu apps workload tail pet-clinic -n development

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:52.684  INFO 1 

--- [           main] org.apache.catalina.core.StandardEngine  : Starting Servlet engi

ne: [Apache Tomcat/9.0.63]

+ pet-clinic-build-3-build-pod › export

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:52.699  INFO 1 

--- [           main] o.a.c.c.C.[Tomcat-1].[localhost].[/]     : Initializing Spring e

mbedded WebApplicationContext

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:52.699  INFO 1 

--- [           main] w.s.c.ServletWebServerApplicationContext : Root WebApplicationCo

ntext: initialization completed in 131 ms

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:52.755  INFO 1 

--- [           main] o.s.b.a.e.web.EndpointLinksResolver      : Exposing 13 endpoint

(s) beneath base path '/actuator'

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.059  INFO 1 

--- [           main] o.s.b.w.embedded.tomcat.TomcatWebServer  : Tomcat started on por

t(s): 8081 (http) with context path ''

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.074  INFO 1 

--- [           main] o.s.s.petclinic.PetClinicApplication     : Started PetClinicAppl

ication in 8.373 seconds (JVM running for 8.993)

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.229  INFO 1 

--- [nio-8081-exec-1] o.a.c.c.C.[Tomcat-1].[localhost].[/]     : Initializing Spring D

ispatcherServlet 'dispatcherServlet'

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.229  INFO 1 

--- [nio-8081-exec-1] o.s.web.servlet.DispatcherServlet        : Initializing Servlet 

'dispatcherServlet'

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.231  INFO 1 

Tanzu Application Platform v1.4

VMware by Broadcom 482



--- [nio-8081-exec-1] o.s.web.servlet.DispatcherServlet        : Completed initializat

ion in 2 ms

--since

Sets the time duration to start reading logs from, this is set in seconds (s), minutes(m) or hours (h) in
the format 0h0m0s, when the duration is 0 it is net necessary to be written for example, for 1 hour, 0
minutes and 1 seconds is 1h1s. The default value for this flag is 1 second 1s

tanzu apps workload tail pet-clinic --since 1h1s

pet-clinic-config-writer-9fbk6-pod[place-tools] 2022/06/14 16:28:04 Copied /ko-app/ent

rypoint to /tekton/bin/entrypoint

pet-clinic-config-writer-9fbk6-pod[place-scripts] 2022/06/14 16:28:06 Decoded script /

tekton/scripts/script-0-dz84w

pet-clinic-config-writer-9fbk6-pod[step-init] 2022/06/14 16:28:05 Setup /step director

ies

pet-clinic-config-writer-9fbk6-pod[step-main] ++ mktemp -d

pet-clinic-config-writer-9fbk6-pod[step-main] + cd /tmp/tmp.n4ObHYVxpl

pet-clinic-config-writer-9fbk6-pod[step-main] + echo -e eyJkZWxpdmVyeS55bWwiOiJhcGlWZX

JzaW9uOiBzZXJ2aW5nLmtuYXRpdmUuZGV2L3YxXG5raW5kOiBTZXJ2aWNlXG5tZXRhZGF0YTpcbiAgbmFtZTog

cGV0LWNsaW5pY1xuICBsYWJlbHM6XG4gICAgYXBwcy50YW56dS52bXdhcmUuY29tL3dvcmtsb2FkLXR5cGU6IH

dlYlxuICAgIGF1dG9zY2FsaW5nLmtuYXRpdmUuZGV2L21pbi1zY2FsZTogXCIxXCJcbiAgICBhcHAua3ViZXJu

ZXRlcy5pby9jb21wb25lbnQ6IHJ1blxuICAgIGNhcnRvLnJ1bi93b3JrbG9hZC1uYW1lOiBwZXQtY2xpbmljXG

5zcGVjOlxuICB0ZW1wbGF0ZTpcbiAgICBtZXRhZGF0YTpcbiAgICAgIGFubm90YXRpb25zOlxuICAgICAgICBi

b290LnNwcmluZy5pby9hY3R1YXRvcjogaHR0cDovLzo4MDgxL2FjdHVhdG9yXG4gICAgICAgIGJvb3Quc3ByaW

5nLmlvL3ZlcnNpb246IDIuNi44XG4gICAgICAgIGNvbnZlbnRpb25zLmFwcHMudGFuenUudm13YXJlLmNvbS9h

cHBsaWVkLWNvbnZlbnRpb25zOiB8LVxuICAgICAgICAgIHNwcmluZy1ib290LWNvbnZlbnRpb24vc3ByaW5nLW

Jvb3RcbiAgICAgICAgICBzcHJpbmctYm9vdC1jb252ZW50aW9uL3NwcmluZy1ib290LWdyYWNlZnVsLXNodXRk

b3duXG4gICAgICAgICAgc3ByaW5nLWJvb3QtY29udmVudGlvbi9zcHJpbmctYm9vdC13ZWJcbiAgICAgICAgIC

BzcHJpbmctYm9vdC1jb252ZW50aW9uL3NwcmluZy1ib290LWFjdHVhdG9yXG4gICAgICAgICAgc3ByaW5nLWJv

b3QtY29udmVudGlvbi9zcHJpbmctYm9vdC1hY3R1YXRvci1wcm9iZXNcbiAgICAgICAgICBzcHJpbmctYm9vdC

1jb252ZW50aW9uL3NlcnZpY2UtaW50ZW50LW15c3FsXG4gICAgICAgICAgc3ByaW5nLWJvb3QtY29udmVudGlv

bi9zZXJ2aWNlLWludGVudC1wb3N0Z3Jlc1xuICAgICAgICAgIGFwcGxpdmV2aWV3LXNhbXBsZS9hcHAtbGl2ZS

12aWV3LWNvbm5lY3RvclxuICAgICAgICAgIGFwcGxpdmV2aWV3LXNhbXBsZS9hcHAtbGl2ZS12aWV3LWFwcGZs

YXZvdXJzXG4gICAgICAgICAgYXBwbGl2ZXZpZXctc2FtcGxlL2FwcC1saXZlLXZpZXctc3lzdGVtcHJvcGVydG

llc1xuICAgICAgICBkZXZlbG9wZXIuY29udmVudGlvbnMvdGFyZ2V0LWNvbnRhaW5lcnM6IHdvcmtsb2FkXG4g

ICAgICAgIHNlcnZpY2VzLmNvbnZlbnRpb25zLmFwcHMudGFuenUudm13YXJlLmNvbS9teXNxbDogbXlzcWwtY2

9ubmVjdG9yLWphdmEvOC4wLjI5XG4gICAgICAgIHNlcnZpY2VzLmNvbnZlbnRpb25zLmFwcHMudGFuenUudm13

YXJlLmNvbS9wb3N0Z3JlczogcG9zdGdyZXNxbC80Mi4zLjVcbiAgICAgIGxhYmVsczpcbiAgICAgICAgYXBwLm

t1YmVybmV0ZXMuaW8vY29tcG9uZW50OiBydW5cbiAgICAgICAgYXBwcy50YW56dS52bXdhcmUuY29tL3dvcmts

b2FkLXR5cGU6IHdlYlxuICAgICAgICBjYXJ0by5ydW4vd29ya2xvYWQtbmFtZTogcGV0LWNsaW5pY1xuICAgIC

AgICBjb252ZW50aW9ucy5hcHBzLnRhbnp1LnZtd2FyZS5jb20vZnJhbWV3b3JrOiBzcHJpbmctYm9vdFxuICAg

ICAgICBzZXJ2aWNlcy5jb252ZW50aW9ucy5hcHBzLnRhbnp1LnZtd2FyZS5jb20vbXlzcWw6IHdvcmtsb2FkXG

4gICAgICAgIHNlcnZpY2VzLmNvbnZlbnRpb25zLmFwcHMudGFuenUudm13YXJlLmNvbS9wb3N0Z3Jlczogd29y

a2xvYWRcbiAgICAgICAgdGFuenUuYXBwLmxpdmUudmlldzogXCJ0cnVlXCJcbiAgICAgICAgdGFuenUuYXBwLm

xpdmUudmlldy5hcHBsaWNhdGlvbi5hY3R1YXRvci5wb3J0OiBcIjgwODFcIlxuICAgICAgICB0YW56dS5hcHAu

bGl2ZS52aWV3LmFwcGxpY2F0aW9uLmZsYXZvdXJzOiBzcHJpbmctYm9vdFxuICAgICAgICB0YW56dS5hcHAubG

l2ZS52aWV3LmFwcGxpY2F0aW9uLm5hbWU6IHBldGNsaW5pY1xuICAgIHNwZWM6XG4gICAgICBjb250YWluZXJz

OlxuICAgICAgLSBlbnY6XG4gICAgICAgIC0gbmFtZTogSkFWQV9UT09MX09QVElPTlNcbiAgICAgICAgICB2YW

x1ZTogLURtYW5hZ2VtZW50LmVuZHBvaW50LmhlYWx0aC5wcm9iZXMuYWRkLWFkZGl0aW9uYWwtcGF0aHM9XCJ0

cnVlXCIgLURtYW5hZ2VtZW50LmVuZHBvaW50LmhlYWx0aC5zaG93LWRldGFpbHM9YWx3YXlzIC1EbWFuYWdlbW

VudC5lbmRwb2ludHMud2ViLmJhc2UtcGF0aD1cIi9hY3R1YXRvclwiIC1EbWFuYWdlbWVudC5lbmRwb2ludHMu

d2ViLmV4cG9zdXJlLmluY2x1ZGU9KiAtRG1hbmFnZW1lbnQuaGVhbHRoLnByb2Jlcy5lbmFibGVkPVwidHJ1ZV

wiIC1EbWFuYWdlbWVudC5zZXJ2ZXIucG9ydD1cIjgwODFcIiAtRHNlcnZlci5wb3J0PVwiODA4MFwiIC1Ec2Vy

dmVyLnNodXRkb3duLmdyYWNlLXBlcmlvZD1cIjI0c1wiXG4gICAgICAgIGltYWdlOiBnY3IuaW8vZGFsZm9uc2

8tdGFuenUtZGV2LWZybXdyay9wZXQtY2xpbmljLWRlZmF1bHRAc2hhMjU2OjM5NjRiNTQwNTVlZjNkNmFiNWQ3

YTM5MmVjOGU3OWJhOTg2NjczODU2NmIyOGE2OGY4ZDM2YWY5YjkyMGJhODNcbiAgICAgICAgbGl2ZW5lc3NQcm

9iZTpcbiAgICAgICAgICBodHRwR2V0OlxuICAgICAgICAgICAgcGF0aDogL2xpdmV6XG4gICAgICAgICAgICBw

b3J0OiA4MDgwXG4gICAgICAgICAgICBzY2hlbWU6IEhUVFBcbiAgICAgICAgbmFtZTogd29ya2xvYWRcbiAgIC

AgICAgcG9ydHM6XG4gICAgICAgIC0gY29udGFpbmVyUG9ydDogODA4MFxuICAgICAgICAgIHByb3RvY29sOiBU

Q1BcbiAgICAgICAgcmVhZGluZXNzUHJvYmU6XG4gICAgICAgICAgaHR0cEdldDpcbiAgICAgICAgICAgIHBhdG

g6IC9yZWFkeXpcbiAgICAgICAgICAgIHBvcnQ6IDgwODBcbiAgICAgICAgICAgIHNjaGVtZTogSFRUUFxuICAg

ICAgICByZXNvdXJjZXM6IHt9XG4gICAgICAgIHNlY3VyaXR5Q29udGV4dDpcbiAgICAgICAgICBydW5Bc1VzZX

Tanzu Application Platform v1.4

VMware by Broadcom 483



I6IDEwMDBcbiAgICAgIHNlcnZpY2VBY2NvdW50TmFtZTogZGVmYXVsdFxuIn0=

pet-clinic-config-writer-9fbk6-pod[step-main] + base64 --decode

pet-clinic-config-writer-9fbk6-pod[step-main] ++ cat files.json

+ pet-clinic-config-writer-kpmc6-pod › place-tools

pet-clinic-config-writer-9fbk6-pod[step-main] ++ jq -r 'to_entries | .[] | @sh "mkdir 

-p $(dirname \(.key)) && echo \(.value) > \(.key)"'

+ pet-clinic-config-writer-kpmc6-pod › step-main

+ pet-clinic-config-writer-kpmc6-pod › step-init

+ pet-clinic-config-writer-kpmc6-pod › place-scripts

pet-clinic-config-writer-9fbk6-pod[step-main] + eval 'mkdir -p $(dirname '\''delivery.

yml'\'') && echo '\''apiVersion: serving.knative.dev/v1'

pet-clinic-config-writer-9fbk6-pod[step-main] kind: Service

pet-clinic-config-writer-9fbk6-pod[step-main] metadata:

pet-clinic-config-writer-9fbk6-pod[step-main]   name: pet-clinic

pet-clinic-config-writer-9fbk6-pod[step-main]   labels:

pet-clinic-config-writer-9fbk6-pod[step-main]     apps.tanzu.vmware.com/workload-type: 

web

pet-clinic-config-writer-9fbk6-pod[step-main]     autoscaling.knative.dev/min-scale: 

"1"

pet-clinic-config-writer-9fbk6-pod[step-main]     app.kubernetes.io/component: run

pet-clinic-config-writer-9fbk6-pod[step-main]     carto.run/workload-name: pet-clinic

--timestamp, -t

Adds the timestamp to the beginning of each log message

tanzu apps workload tail pet-clinic -t

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645910625-0

5:00

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645942876-0

5:00

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645951930-0

5:00               |\      _,,,--,,_

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645957151-0

5:00              /,`.-'`'   ._  \-;;,_

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645961411-0

5:00   _______ __|,4-  ) )_   .;.(__`'-'__     ___ __    _ ___ _______

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645967316-0

5:00  |       | '---''(_/._)-'(_\_)   |   |   |   |  |  | |   |       |

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645971010-0

5:00  |    _  |    ___|_     _|       |   |   |   |   |_| |   |       | __ _ _

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645976591-0

5:00  |   |_| |   |___  |   | |       |   |   |   |       |   |       | \ \ \ \

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645986474-0

5:00  |    ___|    ___| |   | |      _|   |___|   |  _    |   |      _|  \ \ \ \

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645990521-0

5:00  |   |   |   |___  |   | |     |_|       |   | | |   |   |     |_    ) ) ) )

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645994112-0

5:00  |___|   |_______| |___| |_______|_______|___|_|  |__|___|_______|  / / / /

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645998053-0

5:00  ==================================================================/_/_/_/

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.646001577-0

5:00

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.646005296-0

5:00 :: Built with Spring Boot :: 2.6.8

Tanzu Accelerator CLI overview
The Tanzu Accelerator Tanzu CLI includes commands for developers and operators to create and
use accelerators.

Tanzu Application Platform v1.4

VMware by Broadcom 484



Server API connections for operators and developers

The Tanzu Accelerator CLI must connect to a server for all provided commands except for the help
and version commands.

Operators typically use create, update, and delete commands for managing accelerators in a
Kubernetes context. They also use the fragment commands to manage accelerator fragments.
These commands require a Kubernetes context where the operator is already authenticated and is
authorized to create and edit the accelerator resources. Operators can also use the get and list
commands by using the same authentication. For any of these commands, the operator can specify
the --context flag to access accelerators in a specific Kubernetes context.

Developers use the list, get, and generate commands for using accelerators available in an
Application Accelerator server. Developers use the --server-url to point to the Application
Accelerator server they want to use. The URL depends on the configuration settings for
Application Accelerator:

For installations configured with a shared ingress, use https://accelerator.<domain>
where domain defaults to the shared.ingress_domain value provided in the values file of
Tanzu Application Platform.

For installations using a LoadBalancer, look up the External IP address by using:

kubectl get -n accelerator-system service/acc-server

Use http://<External-IP> as the URL.

For any other configuration, you can use port forwarding by using:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

Use http://localhost:8877 as the URL.

The developer can set an ACC_SERVER_URL environment variable to avoid having to provide the
same --server-url flag for every command. Run export ACC_SERVER_URL=<URL> for the terminal
session in use. If the developer explicitly specifies the --server-url flag, it overrides the
ACC_SERVER_URL environment variable if it is set.

Installation

For information about installing the Tanzu CLI Accelerator plug-in, see Install Accelerator CLI plug-
in.

Command reference

For information about available commands, see Command Reference.

Tanzu Accelerator CLI overview

The Tanzu Accelerator Tanzu CLI includes commands for developers and operators to create and
use accelerators.

Server API connections for operators and developers

The Tanzu Accelerator CLI must connect to a server for all provided commands except for the help
and version commands.

Tanzu Application Platform v1.4

VMware by Broadcom 485



Operators typically use create, update, and delete commands for managing accelerators in a
Kubernetes context. They also use the fragment commands to manage accelerator fragments.
These commands require a Kubernetes context where the operator is already authenticated and is
authorized to create and edit the accelerator resources. Operators can also use the get and list
commands by using the same authentication. For any of these commands, the operator can specify
the --context flag to access accelerators in a specific Kubernetes context.

Developers use the list, get, and generate commands for using accelerators available in an
Application Accelerator server. Developers use the --server-url to point to the Application
Accelerator server they want to use. The URL depends on the configuration settings for
Application Accelerator:

For installations configured with a shared ingress, use https://accelerator.<domain>
where domain defaults to the shared.ingress_domain value provided in the values file of
Tanzu Application Platform.

For installations using a LoadBalancer, look up the External IP address by using:

kubectl get -n accelerator-system service/acc-server

Use http://<External-IP> as the URL.

For any other configuration, you can use port forwarding by using:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

Use http://localhost:8877 as the URL.

The developer can set an ACC_SERVER_URL environment variable to avoid having to provide the
same --server-url flag for every command. Run export ACC_SERVER_URL=<URL> for the terminal
session in use. If the developer explicitly specifies the --server-url flag, it overrides the
ACC_SERVER_URL environment variable if it is set.

Installation
For information about installing the Tanzu CLI Accelerator plug-in, see Install Accelerator CLI plug-
in.

Command reference
For information about available commands, see Command Reference.

Install Tanzu Accelerator CLI
This topic tells you how to install the Tanzu Accelerator CLI.

Prerequisites

Before you install the Tanzu Accelerator CLI:

Note

Follow the steps in this topic if you do not want to use a profile to install Tanzu
Accelerator CLI. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 486



Follow the instructions to Install or update the Tanzu CLI and plug-ins.

Install

To install the Tanzu Accelerator CLI:

1. From the $HOME/tanzu directory, run:

tanzu plugin install accelerator

2. To verify that the CLI is installed correctly, run:

tanzu accelerator version

A version will be displayed in the output.

If the following error is displayed during installation:

Error: could not find plug-in "accelerator" in any known repositories

✖  could not find plug-in "accelerator" in any known repositories

Verify that there is an accelerator entry in the cli/manifest.yaml file:

plugins:

...

    - name: accelerator

    description: Manage accelerators in a Kubernetes cluster

    versions: []

Command reference

This topic provides you with a list of the Tanzu Accelerator CLI commands.

tanzu accelerator

tanzu accelerator apply

tanzu accelerator create

tanzu accelerator delete

tanzu accelerator fragment

tanzu accelerator fragment create

tanzu accelerator fragment delete

tanzu accelerator fragment get

tanzu accelerator fragment list

tanzu accelerator fragment update

tanzu accelerator generate

tanzu accelerator generate-from-local

tanzu accelerator get

tanzu accelerator list

tanzu accelerator push

tanzu accelerator update

Tanzu Application Platform v1.4

VMware by Broadcom 487



Command reference

This topic provides you with a list of the Tanzu Accelerator CLI commands.

tanzu accelerator

tanzu accelerator apply

tanzu accelerator create

tanzu accelerator delete

tanzu accelerator fragment

tanzu accelerator fragment create

tanzu accelerator fragment delete

tanzu accelerator fragment get

tanzu accelerator fragment list

tanzu accelerator fragment update

tanzu accelerator generate

tanzu accelerator generate-from-local

tanzu accelerator get

tanzu accelerator list

tanzu accelerator push

tanzu accelerator update

tanzu accelerator
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator command to manage
accelerators in a Kubernetes cluster.

Options

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

  -h, --help              help for accelerator

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator apply - Apply accelerator resource

tanzu accelerator create - Create a new accelerator

tanzu accelerator delete - Delete an accelerator

tanzu accelerator fragment create - Create a fragment

tanzu accelerator generate - Generate project from accelerator

tanzu accelerator generate-from-local - Generate a project from local or registered
accelerators/fragments

tanzu accelerator get - Get accelerator information

tanzu accelerator list - List accelerators

tanzu accelerator push - Push local path to source image

Tanzu Application Platform v1.4

VMware by Broadcom 488



tanzu accelerator update - Update an accelerator

tanzu accelerator

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator command to manage
accelerators in a Kubernetes cluster.

Options

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

  -h, --help              help for accelerator

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator apply - Apply accelerator resource

tanzu accelerator create - Create a new accelerator

tanzu accelerator delete - Delete an accelerator

tanzu accelerator fragment create - Create a fragment

tanzu accelerator generate - Generate project from accelerator

tanzu accelerator generate-from-local - Generate a project from local or registered
accelerators/fragments

tanzu accelerator get - Get accelerator information

tanzu accelerator list - List accelerators

tanzu accelerator push - Push local path to source image

tanzu accelerator update - Update an accelerator

tanzu accelerator apply

tanzu accelerator apply
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator apply command to
create or update accelerators.

Synopsis

Create or update accelerator resource using specified manifest file.

tanzu accelerator apply [flags]

Examples

tanzu accelerator apply --filename <path-to-resource-manifest>

Options

  -f, --filename string    path of manifest file for the resource

  -h, --help               help for apply

Tanzu Application Platform v1.4

VMware by Broadcom 489



  -n, --namespace string   namespace for the resource (default "accelerator-system")

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator create
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator create command to
create a new accelerator.

Synopsis
Create a new accelerator resource with specified configuration.

Accelerator configuration options include: - Git repository URL and branch/tag where accelerator
code and metadata is defined - Metadata like description, display-name, tags and icon-url

The Git repository option is required. Metadata options are optional and will override any values for
the same options specified in the accelerator metadata retrieved from the Git repository.

tanzu accelerator create [flags]

Examples

tanzu accelerator create <accelerator-name> --git-repository <URL> --git-branch <branc

h>

Options

      --description string    description of this accelerator

      --display-name string   display name for the accelerator

      --git-branch string     Git repository branch to be used

      --git-repo string       Git repository URL for the accelerator

      --git-sub-path string   Git repository subPath to be used

      --git-tag string        Git repository tag to be used

  -h, --help                  help for create

      --icon-url string       URL for icon to use with the accelerator

      --interval string       interval for checking for updates to Git or image reposi

tory

      --local-path string     path to the directory containing the source for the acce

lerator

  -n, --namespace string      namespace for accelerator system (default "accelerator-s

ystem")

      --secret-ref string     name of secret containing credentials for private Git or 

image repository

      --source-image string   name of the source image for the accelerator

      --tags strings          tags that can be used to search for accelerators

Options inherited from parent commands

Tanzu Application Platform v1.4

VMware by Broadcom 490



      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator delete

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator delete command to
delete an accelerator.

Synopsis

Delete the accelerator resource with the specified name.

tanzu accelerator delete [flags]

Examples

tanzu accelerator delete <accelerator-name>

Options

  -h, --help               help for delete

  -n, --namespace string   namespace for accelerator system (default "accelerator-syst

em")

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO
tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator fragment
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment command
to manage fragments.

Synopsis
Commands to manage accelerator fragments

Examples

tanzu accelerator fragment --help

Tanzu Application Platform v1.4

VMware by Broadcom 491



Options

  -h, --help   help for fragment

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator fragment create - Create a new accelerator fragment

tanzu accelerator fragment delete - Delete an accelerator fragment

tanzu accelerator fragment get - Get accelerator fragment information

tanzu accelerator fragment list - List accelerator fragments

tanzu accelerator fragment update - Update an accelerator fragment

tanzu accelerator fragment create

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment create
command to create a new accelerator fragment.

Synopsis

Create a new accelerator fragment resource with specified configuration.

Accelerator configuration options include: - Git repository URL and branch/tag where accelerator
code and metadata is defined - Metadata like description, display-name, tags and icon-url

The Git repository option is required. Metadata options are optional and will override any values for
the same options specified in the accelerator metadata retrieved from the Git repository.

tanzu accelerator fragment create [flags]

Example

tanzu accelerator fragment create <fragment-name> --git-repository <URL> --git-branch 

<branch> --git-sub-path <sub-path>

Options

      --display-name string   display name for the accelerator

      --git-branch string     Git repository branch to be used

      --git-repo string       Git repository URL for the accelerator

      --git-sub-path string   Git repository subPath to be used

      --git-tag string        Git repository tag to be used

  -h, --help                  help for create

      --interval string       interval for checking for updates to Git or image reposi

tory

  -n, --namespace string      namespace for accelerator system (default "accelerator-s

Tanzu Application Platform v1.4

VMware by Broadcom 492



ystem")

      --secret-ref string     name of secret containing credentials for private Git or 

image repository

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator fragment - Fragment commands

tanzu accelerator fragment delete

tanzu accelerator fragment delete

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment delete
command to delete an accelerator fragment.

Synopsis

Delete the accelerator fragment resource with the specified name.

tanzu accelerator fragment delete [flags]

Examples

tanzu accelerator fragment delete <fragment-name>

Options

  -h, --help               help for delete

  -n, --namespace string   namespace for accelerator system (default "accelerator-syst

em")

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator fragment - Fragment commands

tanzu accelerator fragment get

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment get
command to get accelerator fragment information.

Synopsis

Tanzu Application Platform v1.4

VMware by Broadcom 493



Get accelerator fragment information.

tanzu accelerator fragment get [flags]

Examples

tanzu accelerator get <fragment-name>

Options

  -h, --help               help for get

  -n, --namespace string   namespace for accelerator system (default "accelerator-syst

em")

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator fragment - Fragment commands

tanzu accelerator fragment list
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment list to list
accelerator fragments.

Synopsis
List all accelerator fragments.

tanzu accelerator fragment list [flags]

Examples

tanzu accelerator fragment list

Options

  -h, --help               help for list

  -n, --namespace string   namespace for accelerator system (default "accelerator-syst

em")

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

Tanzu Application Platform v1.4

VMware by Broadcom 494



SEE ALSO

tanzu accelerator fragment - Fragment commands

tanzu accelerator fragment update

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment update
command to update an accelerator fragment.

Synopsis

Update an accelerator fragment resource with the specified name using the specified configuration.

Accelerator configuration options include: - Git repository URL and branch/tag where accelerator
code and metadata is defined - Metadata like display-name

The update command also provides a –reconcile flag that will force the accelerator fragment to be
refreshed with any changes made to the associated Git repository.

tanzu accelerator fragment update [flags]

Examples

tanzu accelerator update <accelerator-name> --description "Lorem Ipsum"

Options

      --display-name string   display name for the accelerator fragment

      --git-branch string     Git repository branch to be used

      --git-repo string       Git repository URL for the accelerator fragment

      --git-sub-path string   Git repository subPath to be used

      --git-tag string        Git repository tag to be used

  -h, --help                  help for update

      --interval string       interval for checking for updates to Git repository

  -n, --namespace string      namespace for accelerator fragments (default "accelerato

r-system")

      --reconcile             trigger a reconciliation including the associated GitRep

ository resource

      --secret-ref string     name of secret containing credentials for private Git re

pository

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO
tanzu accelerator fragment - Fragment commands

tanzu accelerator generate

tanzu accelerator generate

Tanzu Application Platform v1.4

VMware by Broadcom 495



This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator generate command
to generate a project from an accelerator.

Synopsis

Generate a project from an accelerator using provided options and download project artifacts as a
ZIP file.

Generation options are provided as a JSON string and should match the metadata options that are
specified for the accelerator used for the generation. The options can include “projectName” which
defaults to the name of the accelerator. This “projectName” will be used as the name of the
generated ZIP file.

You can see the available options by using the “tanzu accelerator get ” command.

Here is an example of an options JSON string that specifies the “projectName” and an
“includeKubernetes” boolean flag:

--options '{"projectName":"test", "includeKubernetes": true}'

You can also provide a file that specifies the JSON string using the –options-file flag.

The generate command needs access to the Application Accelerator server. You can specify the –
server-url flag or set an ACC_SERVER_URL environment variable. If you specify the –server-url
flag it overrides the ACC_SERVER_URL environment variable if it is set.

tanzu accelerator generate [flags]

Examples

tanzu accelerator generate <accelerator-name> --options '{"projectName":"test"}'

Options

  -h, --help                  help for generate

      --options string        options JSON string

      --options-file string   path to file containing options JSON string

      --output-dir string     directory that the zip file will be written to

      --server-url string     the URL for the Application Accelerator server

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

Tanzu accelerator generate-from-local

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator generate-from-local
command to generate a project from a combination of registered and local artifacts.

Synopsis

Tanzu Application Platform v1.4

VMware by Broadcom 496



Use local files and registered accelerators or fragments to create a project, and download the
project artifacts as ZIP files.

Options values are provided as a JSON object and match the declared options that are specified for
the accelerator used for the generation. The options can include projectName which by default is
set to the name of the accelerator. This projectName is used as the name of the generated ZIP file.

Here is an example of an options JSON string that specifies the projectName and an
includeKubernetes Boolean flag:

--options '{"projectName":"test", "includeKubernetes": true}'

You can also provide a file that specifies the JSON string using the --options-file flag.

The generate-from-local command needs access to the Application Accelerator server. You can
specify the --server-url flag or set an ACC_SERVER_URL environment variable. If you specify the --
server-url flag it overrides the ACC_SERVER_URL environment variable if it is set.

Examples

Generate a project using a combination of local and registered assets

tanzu accelerator generate-from-local \

--accelerator-path java-rest=workspace/java-rest \ # Use a local accelerator

--fragment-paths java-version=workspace/version \ # Use a local fragment

--fragment-names tap-workload \ # Use a registered fragment

--options '{"projectName":"test"}' \

--output-dir "./generated-java-rest-app"

Options

    --accelerator-name string             name of the registered accelerator to use

    --accelerator-path "key=value" pair   key value pair of the name and path to the d

irectory containing the accelerator

-f, --force                               force clean and rewrite of output-dir

    --fragment-names strings              names of the registered fragments to use

    --fragment-paths stringToString       key value pairs of the name and path to the 

directory containing each fragment (default [])

-h, --help                                help for generate-from-local

    --options string                      options JSON string (default "{}")

    --options-file string                 path to file containing options JSON string

-o, --output-dir string                   the directory that the project will be creat

ed in (defaults to the project name)

    --server-url string                   the URL for the Application Accelerator serv

er

Options inherited from parent commands

    --context name      name of the kubeconfig context to use (default is current-cont

ext defined by kubeconfig)

    --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

tanzu accelerator get
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator get command to get
accelerator information.

Tanzu Application Platform v1.4

VMware by Broadcom 497



Synopsis

Get accelerator information.

You can choose to get the accelerator from the Application Accelerator server using –server-url
flag or from a Kubernetes context using –from-context flag. The default is to get accelerators from
the Kubernetes context. To override this, you can set the ACC_SERVER_URL environment
variable with the URL for the Application Accelerator server you want to access.

tanzu accelerator get [flags]

Examples

tanzu accelerator get <accelerator-name> --from-context

Options

      --from-context        retrieve resources from current context defined in kubecon

fig

  -h, --help                help for get

  -n, --namespace string    namespace for accelerator system (default "accelerator-sys

tem")

      --server-url string   the URL for the Application Accelerator server

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO
tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator list
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator list command to list
accelerators.

Synopsis
List all accelerators.

You can choose to list the accelerators from the Application Accelerator server using –server-url
flag or from a Kubernetes context using –from-context flag. The default is to list accelerators from
the Kubernetes context. To override this, you can set the ACC_SERVER_URL environment
variable with the URL for the Application Accelerator server you want to access.

tanzu accelerator list [flags]

Examples

Tanzu Application Platform v1.4

VMware by Broadcom 498



tanzu accelerator list

Options

      --from-context        retrieve resources from current context defined in kubecon

fig

  -h, --help                help for list

  -n, --namespace string    namespace for accelerator system (default "accelerator-sys

tem")

      --server-url string   the URL for the Application Accelerator server

  -t, --tags strings        accelerator tags to match against

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator push

tanzu accelerator push
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator push command to
push source code from local path to source image.

Synopsis

Push source code from local path to source image used by an accelerator

tanzu accelerator push [flags]

Examples

tanzu accelerator push --local-path <local path> --source-image <image>

Options

  -h, --help                  help for push

      --local-path string     path to the directory containing the source for the acce

lerator

      --source-image string   name of the source image for the accelerator

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

Tanzu Application Platform v1.4

VMware by Broadcom 499



tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator update

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator update command to
update an accelerator.

Synopsis

Update an accelerator resource with the specified name using the specified configuration.

Accelerator configuration options include: - Git repository URL and branch/tag where accelerator
code and metadata is defined - Metadata like description, display-name, tags and icon-url

The update command also provides a –reoncile flag that will force the accelerator to be refreshed
with any changes made to the associated Git repository.

tanzu accelerator update [flags]

Examples

tanzu accelerator update <accelerator-name> --description "Lorem Ipsum"

Options

      --description string    description of this accelerator

      --display-name string   display name for the accelerator

      --git-branch string     Git repository branch to be used

      --git-repo string       Git repository URL for the accelerator

      --git-sub-path string   Git repository subPath to be used

      --git-tag string        Git repository tag to be used

  -h, --help                  help for update

      --icon-url string       URL for icon to use with the accelerator

      --interval string       interval for checking for updates to Git or image reposi

tory

  -n, --namespace string      namespace for accelerator system (default "accelerator-s

ystem")

      --reconcile             trigger a reconciliation including the associated GitRep

ository resource

      --secret-ref string     name of secret containing credentials for private Git or 

image repository

      --source-image string   name of the source image for the accelerator

      --tags strings          tags that can be used to search for accelerators

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

Overview of Tanzu Insight plug-in

Tanzu Application Platform v1.4

VMware by Broadcom 500



The Tanzu Insight CLI plug-in helps you query vulnerability, image, and package data.

Follow these steps to install, configure, and use your Tanzu Insight CLI plug-in:

Note: Prior to using the CLI plug-in, you must install the Supply Chain Security Tools - Store, either
as its own package, or as part of Tanzu Application Platform View profile.

1. If the insight plug-in is not already installed, see Install the Tanzu Insight plug-in

2. Configure insight

Once tanzu insight CLI plug-in is set up:

1. Add data

2. Query data

Overview of Tanzu Insight plug-in
The Tanzu Insight CLI plug-in helps you query vulnerability, image, and package data.

Follow these steps to install, configure, and use your Tanzu Insight CLI plug-in:

Note: Prior to using the CLI plug-in, you must install the Supply Chain Security Tools - Store, either
as its own package, or as part of Tanzu Application Platform View profile.

1. If the insight plug-in is not already installed, see Install the Tanzu Insight plug-in

2. Configure insight

Once tanzu insight CLI plug-in is set up:

1. Add data

2. Query data

Install your Tanzu Insight CLI plug-in

This topic tells you how to install your Tanzu Insight CLI plug-in.

By following the instructions to install the Tanzu CLI and all the plug-ins, the Tanzu Insight plug-in is
also installed.

1. From your tanzu directory, install the local version of the Tanzu Insight plug-in you
downloaded by running:

cd $HOME/tanzu

tanzu plugin install insight

2. Follow the steps in Configure the Tanzu Insight CLI plug-in.

Configure your Tanzu Insight CLI plug-in
This topic tells you how to configure your Tanzu Insight CLI plug-in.

Note

Follow the steps in this topic if you do not want to use a profile to install the Tanzu
Insight CLI plug-in. For more information about profiles, see About Tanzu
Application Platform components and profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 501



Set the target and certificate authority (CA) certificate

Note These instructions are for the recommended configuration where ingress is enabled. For
instructions on non-ingress setups, see Configure target endpoint and certificate for more details.

Set the endpoint host to metadata-store.INGRESS-DOMAIN, such as metadata-
store.example.domain.com. Where INGRESS-DOMAIN isthe value of the ingress_domain property in
your deployment yaml.

Note In a multi-cluster setup, a DNS record is required for the domain. The below instructions for
single cluster setup do not apply, skip to Set Target section.

Single Cluster setup

In a single-cluster setup, a DNS record is still recommended. However, if no accessible DNS record
exists for the domain, edit the /etc/hosts file to add a local record:

ENVOY_IP=$(kubectl get svc envoy -n tanzu-system-ingress -o jsonpath="{.status.loadBal

ancer.ingress[0].ip}")

# Replace with your domain

METADATA_STORE_DOMAIN="metadata-store.example.domain.com"

# Delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "$ENVOY_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Set Target
To get the certificate, run:

kubectl get secret ingress-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN --ca-cert insight-ca.cr

t

Set the access token
When using the insight plug-in, you must set the METADATA_STORE_ACCESS_TOKEN environment
variable, or use the --access-token flag. VMware discourages using the --access-token flag as the
token appears in your shell history.

The following command retrieves the access token from the default metadata-store-read-write-
client service account and stores it in METADATA_STORE_ACCESS_TOKEN:

Important

The tanzu insight config set-target does not initiate a test connection. Use
tanzu insight health to test connecting using the configured endpoint and CA
certificate. Neither commands test whether the access token is correct. For that
you must use the plug-in to add data and query data.

Tanzu Application Platform v1.4

VMware by Broadcom 502



export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets metadata-store-read-write-cli

ent -n metadata-store -o jsonpath="{.data.token}" | base64 -d)

Verify the connection

Verify that your configuration is correct and you can make a connection using tanzu insight
health.

For example:

$ tanzu insight health

Success: Reached Metadata Store!

Query vulnerabilities, images, and packages

This topic tells you how to query the database to understand vulnerability, image, and dependency
relationships. The Tanzu Insight CLI plug-in queries the database for vulnerability scan reports or
Software Bill of Materials (commonly known as SBoM) files.

Supported use cases

The following are use cases supported by the CLI:

What packages and CVEs exist in a particular image? (image)

What packages and CVEs exist in my source code? (source)

What dependencies are affected by a specific CVE? (vulnerabilities)

Query using the Tanzu Insight CLI plug-in

Install the Tanzu Insight CLI plug-in if you have not already done so.

There are four commands for querying and adding data.

image - Post an image SBOM or query images for packages and vulnerabilities.

package - Query packages for vulnerabilities or by image or source code.

source - Post a source code SBOM or query source code for packages and vulnerabilities.

vulnerabilities - Query vulnerabilities by image, package, or source code.

Use tanzu insight -h or for more information see Tanzu Insight Details.

Example #1: What packages and CVEs does a specific
image contain?

Run:

tanzu insight image get --digest DIGEST

Important

The tanzu insight health command tests the configured endpoint and CA
certificate. However, it does not test whether the access token is correct. For that,
you must use the plug-in to add and query data.

Tanzu Application Platform v1.4

VMware by Broadcom 503



Where:

DIGEST is the component version or image digest.

For example:

$ tanzu insight image get --digest sha256:407d7099d6ce7e3632b6d00682a43028d75d3b088600

797a833607bd629d1ed5

Registry: docker.io

Image Name: checkr/flagr:1.1.12

Digest:    sha256:407d7099d6ce7e3632b6d00682a43028d75d3b088600797a833607bd629d1ed

5

Packages:

1. alpine-baselayout@3.1.2-r0

2. alpine-keys@2.1-r2

3. apk-tools@2.10.4-r2

CVEs:

1. CVE-2021-30139 (High)

2. CVE-2021-36159 (Critical)

4. busybox@1.30.1-r3

CVEs:

1. CVE-2021-28831 (High)

...

Example #2: What packages and CVEs does my source
code contain?

Determining source code org, repo, and commit SHA

To query a source scan for vulnerabilities, you need a Git org and Git repository, or the commit
SHA. Find these by examining the source scan resource.

Run:

kubectl describe sourcescan WORKLOAD-NAME -n WORKLOAD-NAMESPACE

For example:

kubectl describe sourcescan tanzu-java-web-app -n my-apps

In the resource look for the Spec.Blob field. Within, there’s Revision and URL.

For example:

Spec:

  Blob:

    Revision:     master/c7e4c27ba43250a4b7c46f030355c108aa73cc39

    URL:          http://source-controller.flux-system.svc.cluster.local./gitrepositor

y/my-apps/tanzu-java-web-app-gitops/c7e4c27ba43250a4b7c46f030355c108aa73cc39.tar.gz

In the earlier example, the URL is parsed and split into the org and repo. Revision is parsed as the
commit SHA.

Org is parsed as gitrepository

Repo is parsed as my-apps/tanzu-java-web-app-
gitops/c7e4c27ba43250a4b7c46f030355c108aa73cc39.tar.gz

Commit SHA is parsed as master/c7e4c27ba43250a4b7c46f030355c108aa73cc39

Use this information to perform your search.

Tanzu Application Platform v1.4

VMware by Broadcom 504



Source code query with repo and org

Run:

tanzu insight source get --repo REPO --org ORG

Where:

REPO specifies the repository. For example, java-web-app, my-apps/java-web-
app/c7ls8bakd87sakjda8d7.tar.gz

ORG is the source code’s organization. For example, gitrepository, gitrepositiory-kj32kal8

For example:

$ tanzu insight source get --repo my-apps/java-web-app/c7ls8bakd87sakjda8d7.tar.gz --o

rg gitrepository

ID:       1

Repository:  my-apps/java-web-app/c7ls8bakd87sakjda8d7.tar.gz

Commit:  c7e4c27ba43250a4b7c46f030355c108aa73cc39

Organization: gitrepository

Packages:

1. go.uber.org/atomic@v1.7.0

CVEs:

1. CVE-2022-42322 (Low)

2. golang.org/x/crypto@v0.0.0-20220518034528-6f7dac969898

3. github.com/valyala/bytebufferpool@v1.0.0

Source code query with commit SHA

Run:

tanzu insight source get --commit COMMIT

Where:

COMMIT specifies the commit. For example,
d7e4c27ba43250a4b7c46f030355c108aa73cc39,
main/d7e4c27ba43250a4b7c46f030355c108aa73cc39

For example:

$ tanzu insight source get --commit b66668e

ID:       2

Repository:  kpack

Commit:  b66668e

Organization: pivotal

Packages:

1. cloud.google.com/go/kms@v1.0.0

2. github.com/BurntSushi/toml@v3.1.1

CVEs:

1. CVE-2021-30999 (Low)

3. github.com/Microsoft/go-winio@v0.5.2

Example #3: What dependencies are affected by a specific
CVE?

Run:

tanzu insight vulnerabilities get --cveid CVE-IDENTIFIER

Tanzu Application Platform v1.4

VMware by Broadcom 505



Where:

CVE-IDENTIFIER is the CVE identifier, for example, CVE-2021-30139.

For example:

$ tanzu insight vulnerabilities get --cveid CVE-2010-4051

1. CVE-2010-4051 (Low)

Packages:

1. libc-bin@2.28-10

2. libc-l10n@2.28-10

3. libc6@2.28-10

4. locales@2.28-10

Add data

For more information about manually adding data, see Add Data.

Add data to your Supply Chain Security Tools - Store

This topic tells you how to add vulnerability scan reports or Software Bill of Materials (commonly
known as SBoM) files to your Supply Chain Security Tools (commonly known as SCST) - Store.

Supported formats and file types

Currently, only CycloneDX XML and JSON files are accepted.

Source commits and image files have been tested. Additional file types might work, but are not fully
supported (for example, JAR files).

Generate a CycloneDX file
A CycloneDX file is needed to post data. Supply Chain Security Tools - Scan outputs CycloneDX
files automatically. For more information, see Supply Chain Security Tools - Scan.

To generate a file to post manually, use Grype or another tool in the CycloneDX Tool Center.

To use Grype to scan an image and generate an image report in CycloneDX format:

1. Install Grype.

2. Scan the image and generate a report by running:

grype REPO:TAG -o cyclonedx > IMAGE-CVE-REPORT

Where:

REPO is the name of your repository

TAG is the name of a tag

IMAGE-CVE-REPORT is the resulting file name of the Grype image scan report

For example:

Note

If you are not using a source commit or image file, you must ensure the
component.version field in the CycloneDX file is non-null.

Tanzu Application Platform v1.4

VMware by Broadcom 506

https://cyclonedx.org/tool-center/
https://github.com/anchore/grype


$ grype docker.io/checkr/flagr:1.1.12 -o cyclonedx > image-cve-report

 ✔ Vulnerability DB        [updated]

 ✔ Parsed image

 ✔ Cataloged packages      [21 packages]

 ✔ Scanned image           [8 vulnerabilities]

Add data with the Tanzu Insight plug-in

Use the following commands to add data:

image add

source add

Example #1: Add an image report

To use a CycloneDX-formatted image report:

1. Run:

tanzu insight image add --cyclonedxtype TYPE --path IMAGE-CVE-REPORT

Where:

TYPE specifies XML or JSON, the two supported file types

IMAGE-CVE-REPORT is the location of a Cyclone DX formatted file

For example:

$ tanzu insight image add --cyclonedxtype xml --path downloads/image-cve-report

Image report created.

Example #2: Add a source report

To use a CycloneDX-formatted source report:

1. Run:

tanzu insight source add --cyclonedxtype TYPE --path SOURCE-CVE-REPORT

Where:

TYPE specifies XML or JSON, the two supported file types

SOURCE-CVE-REPORT is the location of a Cyclone DX formatted file

For example:

Note

If you are not using a source commit or image file, you can select either option.

Note

The Metadata Store only stores a subset of CycloneDX file data. Support for more
data might be added in the future.

Tanzu Application Platform v1.4

VMware by Broadcom 507



$ tanzu insight source add --cyclonedxtype json --path source-cve-report

Source report created.

Tanzu insight CLI plug-in command reference

This topic tells you about the Tanzu Insight CLI plug-in.

Synopsis

This Tanzu Insight CLI is used to post data and query the Supply Chain Security Tools - Store
through its secure REST API. Source commit and image vulnerability reports can be uploaded using
CycloneDX format (XML and JSON) and SPDX format (JSON). Source commit, image, package, and
vulnerabilities can be queried and outputted in CycloneDX XML, JSON, and human-readable text
formats.

Options

  -h, --help   help for tanzu insight

See also

Tanzu insight config - Config commands

Tanzu insight health - Checks if endpoint is reachable

Tanzu insight image - Image commands

Tanzu insight package - Package commands

Tanzu insight source - Source commands

Tanzu insight version - Display Tanzu Insight version

Tanzu insight vulnerabilities - Vulnerabilities commands

tanzu insight config set-target

tanzu insight config set-target
This topic tells you how to use the Tanzu Insight CLI tanzu insight config set-target command
to set your metadata store endpoint.

Synopsis

Set the target endpoint for the metadata store.

tanzu insight config set-target <endpoint> [--ca-cert <ca certificate path to verify p

eer against>] [--access-token <kubernetes service account access token>] [flags]

Note

Supply Chain Security Tools - Store only stores a subset of a CycloneDX file’s data.
Support for more data might be added in the future.

Tanzu Application Platform v1.4

VMware by Broadcom 508



Examples

tanzu insight config set-target https://localhost:8443 --ca-cert=/tmp/ca.crt --access-

token eyJhbGc...

Options

      --access-token string   Kubernetes access token. It is recommended to use the En

vironment Variable METADATA_STORE_ACCESS_TOKEN during the API calls, this will overrid

e access token flag. Note: using the the access-token flag stores the token on disk, t

he Environment Variable is retrieved at the time of the API call

      --ca-cert string        trusted ca certificate

  -h, --help                  help for set-target

See also

Tanzu insight config - Config commands

tanzu insight config
This topic tells you how to use the Tanzu Insight CLI tanzu insight config command to get help
for the configuration commands.

Options

  -h, --help   help for config

See also
Tanzu insight - This CLI is used to post data and make queries to the metadata store.

Tanzu insight config set-target - Set metadata store endpoint.

tanzu insight health

tanzu insight health

This topic tells you how to use the Tanzu Insight CLI tanzu insight health command to check if an
endpoint is reachable.

Synopsis

Checks if endpoint is reachable.

tanzu insight health [flags]

Examples

tanzu insight health

Options

  -h, --help   help for health

Tanzu Application Platform v1.4

VMware by Broadcom 509



See also

Tanzu insight

tanzu insight image

This topic tells you how to use the Tanzu Insight CLI tanzu insight image command to get help for
the image commands.

Options

  -h, --help   help for image

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight image add - Add an image report.

Tanzu insight image get - Get image by digest.

Tanzu insight image packages - Get image packages.

Tanzu insight image vulnerabilities - Get image vulnerabilities.

tanzu insight image add

This topic tells you how to use the Tanzu Insight CLI tanzu insight image add command to add an
image report.

tanzu insight image add [--cyclonedxtype <json|xml>] [--spdxtype json] --path <filepat

h>

If report type is not specified, it will be defaulted to --cyclonedxtype=xml

Examples

tanzu insight image add --cyclonedxtype json --path /path/to/file.json

Options

      --cyclonedxtype string   cyclonedx file type(xml/json, default: xml)

  -h, --help                   help for add

      --path string            path to file

      --spdxtype string        spdx file type(json)

See also

Tanzu insight image - Image commands

tanzu insight image get

This topic tells you how to use the Tanzu Insight CLI tanzu insight image get command to get an
image by digest.

Tanzu Application Platform v1.4

VMware by Broadcom 510



Synopsis

Get image by digest.

tanzu insight image get --digest <image-digest> [--format <image-format>] [flags]

Examples

tanzu insight image get --digest sha256:a86859ac1946065d93df9ecb5cb7060adeeb0288fad610

b1b659907 --format json

Options

  -d, --digest string   image digest

  -f, --format string   output format (default "text")

  -h, --help            help for get

See Also
Tanzu insight image - Image commands

tanzu insight image packages
This topic tells you how to use the Tanzu Insight CLI tanzu insight image packages command to
get the image packages.

Synopsis
Get image packages.

tanzu insight image packages [--digest <image-digest>] [--name <name>] [--format <imag

e-format>] [flags]

Examples

tanzu insight image packages --digest sha256:a86859ac1946065d93df9ecb5cb7060adeeb0288f

ad610b1b659907 --format json

Options

  -d, --digest string   image digest

  -f, --format string   output format (default "text")

  -h, --help            help for packages

  -n, --name string     image name

See also

Tanzu insight image - Image commands

tanzu insight image vulnerabilities

Tanzu Application Platform v1.4

VMware by Broadcom 511



This topic tells you how to use the Tanzu Insight CLI tanzu insight image vulnerabilities
command to get the image vulnerabilities.

tanzu insight image vulnerabilities --digest <image-digest> [--format <image-format>] 

[flags]

Examples

tanzu insight image vulnerabilities --digest sha256:a86859ac1946065d93df9ecb5cb7060ade

eb0288fad610b1b659907 --format json

Options

  -d, --digest string   image digest

  -f, --format string   output format (default "text")

  -h, --help            help for vulnerabilities

See also

Tanzu insight image - Image commands

tanzu insight package

This topic tells you how to use the Tanzu Insight CLI tanzu insight package command to get help
for the package commands.

Options

  -h, --help   help for package

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight package get - Get package by name, version, and package manager.

Tanzu insight package images - Get images that contain the given package by name.

Tanzu insight package sources - Get sources that contain the given package by name.

Tanzu insight package vulnerabilities - Get package vulnerabilities.

tanzu insight package get

This topic tells you how to use the Tanzu Insight CLI tanzu insight package get command to get
the package by name, version, and package manager.

Synopsis

Get package by name, version, and package manager.

tanzu insight package get --name <package name> --version <package version> --pkgmngr 

Unknown [--format <format>] [flags]

Tanzu Application Platform v1.4

VMware by Broadcom 512



Examples

tanzu insight package get --name client --version 1.0.0a --pkgmngr Unknown

Options

  -f, --format string    output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help             help for get

  -n, --name string      name of the package

  -p, --pkgmngr string   Package manager of the dependency. 'Unknown' is currently the 

only supported value (default "Unknown")

  -v, --version string   version of the package

See also

Tanzu insight package - Package commands

tanzu insight package images

This topic tells you how to use the Tanzu Insight CLI tanzu insight package images command to
get the images that contain the given package by name.

Synopsis

Get images that contain the given package by name.

tanzu insight package images --name <package name> [flags]

Examples

tanzu insight package images --name client

Options

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for images

  -n, --name string     name of the package

See also
Tanzu insight package - Package commands

tanzu insight package sources
This topic tells you how to use the Tanzu Insight CLI tanzu insight package sources command to
get the sources that contain the given package by name.

Synopsis
Get sources that contain the given package by name.

Tanzu Application Platform v1.4

VMware by Broadcom 513



tanzu insight package sources --name <package name> [flags]

Examples

tanzu insight package sources --name client

Options

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for sources

  -n, --name string     name of the package

See also

Tanzu insight package - Package commands

tanzu insight package vulnerabilities

This topic tells you how to use the Tanzu Insight CLI tanzu insight package vulnerabilities
command to get the package vulnerabilities.

Synopsis

Get package vulnerabilities.

tanzu insight package vulnerabilities --name <package name> [flags]

Examples

tanzu insight package vulnerabilities --name client

Options

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for vulnerabilities

  -n, --name string     name of the package

See also

Tanzu insight package - Package commands

tanzu insight source

This topic tells you how to use the Tanzu Insight CLI tanzu insight source command to get help
for the source commands.

Options

Tanzu Application Platform v1.4

VMware by Broadcom 514



  -h, --help   help for source

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight source add - Add a source report.

Tanzu insight source get - Get sources by repository, commit, or organization.

Tanzu insight source packages - Get source packages.

Tanzu insight source vulnerabilities - Get source vulnerabilities.

tanzu insight source add

This topic tells you how to use the Tanzu Insight CLI tanzu insight source add command to add a
source report.

tanzu insight source add [--cyclonedxtype <json|xml>] [--spdxtype json] --path <filepa

th>

If report type is not specified, it defaults to --cyclonedxtype=xml

Examples

tanzu insight source add --cyclonedxtype json --path  /path/to/file.json

Options

      --cyclonedxtype string   cyclonedx file type (xml/json, default: xml)

  -h, --help                   help for add

      --path string            path to file

      --spdxtype string        spdx file type (json)

See also

Tanzu insight source - Source commands

tanzu insight source get

This topic tells you how to use the Tanzu Insight CLI tanzu insight source get command to get
sources by repository, commit or organization.

Synopsis

Get sources by repository, commit, or organization.

tanzu insight source get --repo <repository> --commit <commit-hash> --org <organizatio

n-name> [--format <format>] [flags]

Examples

Tanzu Application Platform v1.4

VMware by Broadcom 515



tanzu insight source get --repo github.com/org/example --commit b33dfee51 --org compan

y

Options

  -c, --commit string   commit hash

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for get

  -o, --org string      organization that owns the source

  -r, --repo string     repository name

See also

Tanzu insight source - Source commands

tanzu insight source packages

This topic tells you how to use the Tanzu Insight CLI tanzu insight source packages command to
get the source packages.

Synopsis

Get source packages.

tanzu insight source packages [--commit <commit-hash>] [--repo <repo-url>] [--format <

format>] [flags]

Examples

tanzu insight sources packages --commit 0b1b659907 --format json

Options

  -c, --commit string   commit hash

  -f, --format string   output format (default "text")

  -h, --help            help for packages

  -r, --repo string     source repository url

See also

Tanzu insight source - Source commands

tanzu insight source vulnerabilities

This topic tells you how to use the Tanzu Insight CLI tanzu insight source vulnerabilities
command to get the source vulnerabilities.

Synopsis

Get source vulnerabilities. You can specify either commit or repository.

Tanzu Application Platform v1.4

VMware by Broadcom 516



tanzu insight source vulnerabilities [--commit <commit-hash>] [--repo <repo-url>] [--f

ormat <format>] [flags]

Examples

tanzu insight sources vulnerabilities --commit eb55fc13

Options

  -c, --commit string   commit hash

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for vulnerabilities

  -r, --repo string     source repository url

See also

Tanzu insight source - Source commands

tanzu insight version

This topic tells you how to use the Tanzu Insight CLI tanzu insight version command to display
the Tanzu insight version:

tanzu insight version [flags]

Options

  -h, --help   help for version

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

tanzu insight vulnerabilities

This topic tells you how to use the Tanzu Insight CLI tanzu insight vulnerabilities command to
get help for the vulnerabilities commands.

Options

  -h, --help   help for vulnerabilities

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight vulnerabilities get - Get vulnerability by CVE id.

Tanzu insight vulnerabilities images - Get images with a given vulnerability.

Tanzu insight vulnerabilities packages - Get packages with a given vulnerability.

Tanzu Application Platform v1.4

VMware by Broadcom 517



Tanzu insight vulnerabilities sources - Get sources with a given vulnerability.

tanzu insight vulnerabilities get

This topic tells you how to use the Tanzu Insight CLI tanzu insight vulnerabilities get
command to get a vulnerability by CVE ID.

Synopsis

Get vulnerability by CVE id.

tanzu insight vulnerabilities get --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities get --cveid CVE-123123-2021

Options

  -c, --cveid string    CVE id

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for get

See also

Tanzu insight vulnerabilities - Vulnerabilities commands

tanzu insight vulnerabilities images

This topic tells you how to use the Tanzu Insight CLI tanzu insight vulnerabilities images
command to get the images with a given vulnerability.

Synopsis

Get images with a given vulnerability.

tanzu insight vulnerabilities images --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities images --cveid CVE-123123-2021

Options

  -c, --cveid string    CVE id

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for images

Tanzu Application Platform v1.4

VMware by Broadcom 518



See also

Tanzu insight vulnerabilities - Vulnerabilities commands

tanzu insight vulnerabilities packages

This topic tells you how to use the Tanzu Insight CLI tanzu insight vulnerabilities packages
command to get the packages with a given vulnerability.

Synopsis

Get packages with a given vulnerability.

tanzu insight vulnerabilities packages --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities packages --cveid CVE-123123-2021

Options

  -c, --cveid string    CVE id

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for packages

See also
Tanzu insight vulnerabilities - Vulnerabilities commands

tanzu insight vulnerabilities sources
This topic tells you how to use the Tanzu Insight CLI tanzu insight vulnerabilities sources
command to get the sources with a given vulnerability.

Synopsis
Get sources with a given vulnerability.

tanzu insight vulnerabilities sources --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities sources --cveid CVE-123123-2021

Options

  -c, --cveid string    CVE id

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for sources

Tanzu Application Platform v1.4

VMware by Broadcom 519



See also

Tanzu insight vulnerabilities - Vulnerabilities commands

Overview of Default roles for Tanzu Application Platform

Tanzu Application Platform (commonly known as TAP) v1.4 includes:

Six default roles to help you set up permissions for users and service accounts within a
namespace on a cluster that runs one of the Tanzu Application Platform profiles.

A Tanzu CLI RBAC (role-based access control) plug-in for role binding. For more
information, see Bind a user or group to a default role.

Documentation for integrating with your existing identity management solution.

Default roles

Four roles are for users:

app-editor

app-viewer

app-operator

service-operator

Two roles are for service accounts associated with the Tanzu Supply Chain:

workload

deliverable

The default roles provide an opinionated starting point for the most common permissions that users
need when using Tanzu Application Platform. However, as described in the Kubernetes
documentation about RBAC, you can create customized roles and permissions that better meet
your needs. Aggregated cluster roles are used to build VMware Tanzu Application Platform default
roles.

Cluster admins must be careful when creating Roles or ClusterRoles. When changing roles or
adding new roles that carry one of the labels used by the default roles, the roles are automatically
updated to the aggregation state. It can lead to unintentional changes in functions and permissions
to all users.

The default roles are installed with every Tanzu Application Platform profile except for view. For an
overview of the different roles and their permissions, see Role Descriptions.

Working with roles using the RBAC CLI plug-in

For more information about working with roles, see Bind a user or group to a default role.

Disclaimer

Tanzu Application Platform GUI does not make use of the described roles. Instead, it provides the
user with view access for each cluster.

Overview of Default roles for Tanzu Application Platform

Tanzu Application Platform (commonly known as TAP) v1.4 includes:

Tanzu Application Platform v1.4

VMware by Broadcom 520

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Six default roles to help you set up permissions for users and service accounts within a
namespace on a cluster that runs one of the Tanzu Application Platform profiles.

A Tanzu CLI RBAC (role-based access control) plug-in for role binding. For more
information, see Bind a user or group to a default role.

Documentation for integrating with your existing identity management solution.

Default roles

Four roles are for users:

app-editor

app-viewer

app-operator

service-operator

Two roles are for service accounts associated with the Tanzu Supply Chain:

workload

deliverable

The default roles provide an opinionated starting point for the most common permissions that users
need when using Tanzu Application Platform. However, as described in the Kubernetes
documentation about RBAC, you can create customized roles and permissions that better meet
your needs. Aggregated cluster roles are used to build VMware Tanzu Application Platform default
roles.

Cluster admins must be careful when creating Roles or ClusterRoles. When changing roles or
adding new roles that carry one of the labels used by the default roles, the roles are automatically
updated to the aggregation state. It can lead to unintentional changes in functions and permissions
to all users.

The default roles are installed with every Tanzu Application Platform profile except for view. For an
overview of the different roles and their permissions, see Role Descriptions.

Working with roles using the RBAC CLI plug-in

For more information about working with roles, see Bind a user or group to a default role.

Disclaimer

Tanzu Application Platform GUI does not make use of the described roles. Instead, it provides the
user with view access for each cluster.

Set up authentication for your Tanzu Application Platform
deployment
There are multiple ways to set up authentication for your Tanzu Application Platform (commonly
known as TAP) deployment. You can manage authentication at the infrastructure level with your
Kubernetes provider, such as Tanzu Kubernetes Grid, EKS, AKS, or GKE.

VMware recommends Pinniped for integrating your identity management into Tanzu Application
Platform on multicloud. It provides many supported integrations for widely used identity providers.
To use Pinniped, see Installing Pinniped on Tanzu Application Platform and Log in by using
Pinniped.

Tanzu Application Platform v1.4

VMware by Broadcom 521

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


See Integrating Azure Active Directory for Azure Active Directory Integration.

Tanzu Kubernetes Grid

For Tanzu Kubernetes Grid clusters, Pinniped is the default identity solution and is installed as a
core package. For more information, see Core Packages and Enable Identity Management in an
Existing Deployment in the Tanzu Kubernetes Grid documentation.

Set up authentication for your Tanzu Application Platform
deployment
There are multiple ways to set up authentication for your Tanzu Application Platform (commonly
known as TAP) deployment. You can manage authentication at the infrastructure level with your
Kubernetes provider, such as Tanzu Kubernetes Grid, EKS, AKS, or GKE.

VMware recommends Pinniped for integrating your identity management into Tanzu Application
Platform on multicloud. It provides many supported integrations for widely used identity providers.
To use Pinniped, see Installing Pinniped on Tanzu Application Platform and Log in by using
Pinniped.

See Integrating Azure Active Directory for Azure Active Directory Integration.

Tanzu Kubernetes Grid
For Tanzu Kubernetes Grid clusters, Pinniped is the default identity solution and is installed as a
core package. For more information, see Core Packages and Enable Identity Management in an
Existing Deployment in the Tanzu Kubernetes Grid documentation.

Install Pinniped on Tanzu Application Platform
Pinniped is used to support authentication on Tanzu Application Platform (commonly known as
TAP). This topic tells you how to install Pinniped on a single cluster of Tanzu Application Platform.

Use this topic to learn how to deploy two Pinniped components into the cluster:

Pinniped Supervisor: An OIDC server which allows users to authenticate with an external
identity provider (IDP). It hosts an API for the concierge component to fulfill authentication
requests.

Pinniped Concierge: A credential exchange API that takes a credential from an identity
source, for example, Pinniped Supervisor, proprietary IDP, as input. The Pinniped Concierge
authenticates the user by using the credential, and returns another credential that is
parsable by the host Kubernetes cluster or by an impersonation proxy that acts on behalf of
the user.

Prerequisites

Note

This topic only provides an example of one possible installation method for Pinniped
on Tanzu Application Platform by using the default Contour ingress controler
included in the platform. See Pinniped documentation for more information about
the specific installation method that suits your environment.

Tanzu Application Platform v1.4

VMware by Broadcom 522

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.4/vmware-tanzu-kubernetes-grid-14/GUID-packages-core-index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.4/vmware-tanzu-kubernetes-grid-14/GUID-cluster-lifecycle-enable-identity-management.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.4/vmware-tanzu-kubernetes-grid-14/GUID-packages-core-index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.4/vmware-tanzu-kubernetes-grid-14/GUID-cluster-lifecycle-enable-identity-management.html
https://pinniped.dev/
https://pinniped.dev/docs/howto/


Meet these prerequisites:

Install the package certmanager. This is included in Tanzu Application Platform.

Install the package contour. This is included in Tanzu Application Platform.

Create a workspace directory to function as your workspace.

Environment planning

If you run Tanzu Application Platform on a single cluster, both Pinniped Supervisor and Pinniped
Concierge are installed to this cluster.

When running a multicluster setup, you must decide which cluster to deploy the Supervisor onto.
Furthermore, every cluster must have the Concierge deployed. Pinniped Supervisor runs as a
central component that is consumed by multiple Pinniped Concierge instances. As a result,
Pinniped Supervisor must be deployed to a single cluster that meets the prerequisites. You can
deploy Pinniped Supervisor to the View Cluster of your Tanzu Application Platform, because it is a
central single instance cluster. For more information, see Overview of multicluster Tanzu
Application Platform.

You must deploy the Pinniped Concierge to every cluster that you want to enable authentication
for, including the View Cluster itself.

See the following diagram for a possible deployment model:

Tanzu Application Platform v1.4

VMware by Broadcom 523



For more information about the Pinniped architecture and deployment model, see Pinniped
documentation.

Install Pinniped Supervisor by using Let’s Encrypt

Follow these steps to install pinniped-supervisor:

1. Switch tooling to the desired cluster.

2. Create the necessary certificate files.

3. Create the Ingress resources.

4. Create the pinniped-supervisor configuration.

5. Apply these resources to the cluster.

Create Certificates (letsencrypt or cert-manager)

Choose a fully qualified domain name (FQDN) that can resolve to the Contour instance in the
tanzu-system-ingress namespace. The FQDN pinniped-supervisor.example.com is used in the
following sections.

Create a ClusterIssuer for letsencrypt and a TLS certificate resource for Pinniped Supervisor by
creating the following resources and saving them into workspace/pinniped-
supervisor/certificates.yaml:

---

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-staging

  namespace: cert-manager

spec:

  acme:

    email: "EMAIL"

    privateKeySecretRef:

      name: letsencrypt-staging

    server: https://acme-staging-v02.api.letsencrypt.org/directory

    solvers:

    - http01:

        ingress:

          class: contour

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: pinniped-supervisor-cert

  namespace: pinniped-supervisor

spec:

  secretName: pinniped-supervisor-tls-cert

  dnsNames:

  - "DNS-NAME"

  issuerRef:

    name: letsencrypt-staging

    kind: ClusterIssuer

Where:

EMAIL is the user email address for letsencrypt. For example, your-mail@example.com

DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

Tanzu Application Platform v1.4

VMware by Broadcom 524

https://pinniped.dev/docs/background/architecture/


Create Ingress resources

Create a Service and Ingress resource to make the pinniped-supervisor accessible from outside
the cluster.

To do so, create the following resources and save them into workspace/pinniped-
supervisor/ingress.yaml:

---

apiVersion: v1

kind: Service

metadata:

  name: pinniped-supervisor

  namespace: pinniped-supervisor

spec:

  ports:

  - name: pinniped-supervisor

    port: 8443

    protocol: TCP

    targetPort: 8443

  selector:

    app: pinniped-supervisor

---

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

  name: pinniped-supervisor

  namespace: pinniped-supervisor

spec:

  virtualhost:

    fqdn: "DNS-NAME"

    tls:

      passthrough: true

  routes:

  - services:

    - name: pinniped-supervisor

      port: 8443

Where:

DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

tls.passthrough: true specifies that the TLS connection is forwarded to and terminated in
the supervisor pod.

Create the pinniped-supervisor configuration

Create a FederationDomain to link the concierge to the supervisor instance and configure an
OIDCIdentityProvider to connect the supervisor to your OIDC Provider. The following example
uses auth0 as the OIDCIdentityProvider. For more information about how to configure different
identity providers, including OKTA, GitLab, OpenLDAP, Dex, Microsoft AD and more, see Pinniped
documentation.

To create the pinniped-supervisor configuration, create the following resources and save them
into workspace/pinniped-supervisor/oidc_identity_provider.yaml:

apiVersion: idp.supervisor.pinniped.dev/v1alpha1

kind: OIDCIdentityProvider

metadata:

  namespace: pinniped-supervisor

  name: auth0

Tanzu Application Platform v1.4

VMware by Broadcom 525

https://pinniped.dev/docs/howto/


spec:

  # Specify the upstream issuer URL associated with your auth0 application.

  issuer: https://"APPLICATION-SUBDOMAIN".auth0.com/

  # Specify how to form authorization requests. 

  authorizationConfig:

    additionalScopes: ["openid", "email"]

    allowPasswordGrant: false

  # Specify how claims are mapped to Kubernetes identities. This varies by provider.

  claims:

    username: email

    groups: groups

  # Specify the name of the Kubernetes Secret that contains your

  # application's client credentials (created as follows).

  client:

    secretName: auth0-client-credentials

---

apiVersion: v1

kind: Secret

metadata:

  namespace: pinniped-supervisor

  name: auth0-client-credentials

type: secrets.pinniped.dev/oidc-client

stringData:

  clientID: "AUTH0-CLIENT-ID"

  clientSecret: "AUTH0-CLIENT-SECRET"

---

apiVersion: config.supervisor.pinniped.dev/v1alpha1

kind: FederationDomain

metadata:

  name: pinniped-supervisor-federation-domain

  namespace: pinniped-supervisor

spec:

  issuer: "DNS-NAME"

  tls:

    secretName: pinniped-supervisor-tls-cert

Where:

APPLICATION-SUBDOMAIN is the application specific subdomain that is assigned after the
application registration.

AUTH0-CLIENT-ID and AUTH0-CLIENT-SECRET are the credentials retrieved from the
application registration.

DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

Apply the resources

After creating the resource files, you can install them into the cluster. Follow these steps to deploy
them as a kapp application:

1. Install the pinniped-supervisor by running:

kapp deploy -y --app pinniped-supervisor -f pinniped-supervisor -f https://get.

pinniped.dev/v0.22.0/install-pinniped-supervisor.yaml

Note

Tanzu Application Platform v1.4

VMware by Broadcom 526

https://carvel.dev/kapp/


2. Get the external IP address of Ingress by running:

kubectl -n tanzu-system-ingress get svc/envoy -o jsonpath='{.status.loadBalance

r.ingress[0].ip}'

3. If not already covered by the Tanzu Application Platform wildcard DNS entry, add an entry
to the DNS system to bind the external IP address with.

Switch to production issuer (letsencrypt or cert-manager)

Follow these steps to switch to a letsencrypt production issuer so the generated TLS certificate is
recognized as valid by web browsers and clients:

1. Edit the ClusterIssuer for letsencrypt and add TLS certificate resource for pinniped-
supervisor by creating or updating the following resources and saving them into
workspace/pinniped-supervisor/certificates.yaml:

---

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-prod

  namespace: cert-manager

spec:

  acme:

    server: https://acme-v02.api.letsencrypt.org/directory

    email: "EMAIL"

    privateKeySecretRef:

      name: letsencrypt-prod

    solvers:

    - http01:

        ingress:

          class: contour

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: pinniped-supervisor-cert

  namespace: pinniped-supervisor

spec:

  secretName: pinniped-supervisor-tls-cert

  dnsNames:

  - "DNS-NAME"

  issuerRef:

    name: letsencrypt-prod

    kind: ClusterIssuer

Where:

EMAIL is the user email address for letsencrypt. For example, your-
mail@example.com

DNS-NAME is the domain in which the pinniped-supervisor is published. For
example, pinniped-supervisor.example.com

2. Create or update the pinniped-supervisor kapp application:

To keep the security patches up to date, you must install the most recent
version of Pinniped. See Vmware Tanzu Pinniped Releases in GitHub for
more information.

Tanzu Application Platform v1.4

VMware by Broadcom 527

https://github.com/vmware-tanzu/pinniped/releases


kapp deploy -y --app pinniped-supervisor -f pinniped-supervisor -f https://get.

pinniped.dev/v0.22.0/install-pinniped-supervisor.yaml

Install Pinniped Supervisor Private CA

Follow these steps to install pinniped-supervisor:

1. Switch tooling to the desired cluster.

2. Create the necessary certificate files.

3. Create the Ingress resources.

4. Create the pinniped-supervisor configuration.

5. Apply these resources to the cluster.

Create Certificate Secret

Choose a fully qualified domain name (FQDN) that can resolve to the Contour instance in the
tanzu-system-ingress namespace. Create a certificate by using a CA that the clients trust. This
FQDN can be under the ingress_domain in the TAP values file, or a dedicated DNS entry. The
FQDN pinniped-supervisor.example.com is used in the following sections.

After the certificate files are available, they must be encoded to base64 format in a single-line
layout. For example, you can encode the certificate file my.crt by running:

cat my.crt | base64 -w 0

Create the following resource and save it into workspace/pinniped-supervisor/ingress.yaml:

---

apiVersion: v1

kind: Secret

metadata:

  name: pinniped-supervisor-tls-cert

  namespace: pinniped-supervisor

type: kubernetes.io/tls

data:

  tls.crt: PRIVATE-KEY

  tls.key: PUBLIC-KEY

Where:

PRIVATE-KEY is the base64 encoded public key.

PUBLIC-KEY is the base64 encoded public key.

Create Ingress resources

Create a Service and Ingress resource to make the pinniped-supervisor accessible from outside
the cluster.

To do so, create the following resources and save them into workspace/pinniped-
supervisor/ingress.yaml:

---

apiVersion: v1

kind: Service

metadata:

  name: pinniped-supervisor

  namespace: pinniped-supervisor

spec:

Tanzu Application Platform v1.4

VMware by Broadcom 528



  ports:

  - name: pinniped-supervisor

    port: 8443

    protocol: TCP

    targetPort: 8080

  selector:

    app: pinniped-supervisor

---

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

  name: pinniped-supervisor

  namespace: pinniped-supervisor

spec:

  virtualhost:

    fqdn: "DNS-NAME"

    tls:

      passthrough: true

  routes:

  - services:

    - name: pinniped-supervisor

      port: 8443

Where:

DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

tls.passthrough: true specifies that the TLS connection is forwarded to and terminated in
the supervisor pod.

Create the pinniped-supervisor configuration

Create a FederationDomain to link the concierge to the supervisor instance and configure an
OIDCIdentityProvider to connect the supervisor to your OIDC Provider. The following example
uses auth0 as the OIDCIdentityProvider. For more information about how to configure different
identity providers, including OKTA, GitLab, OpenLDAP, Dex, Microsoft AD and more, see Pinniped
documentation.

To create the pinniped-supervisor configuration, create the following resources and save them
into workspace/pinniped-supervisor/oidc_identity_provider.yaml:

apiVersion: idp.supervisor.pinniped.dev/v1alpha1

kind: OIDCIdentityProvider

metadata:

  namespace: pinniped-supervisor

  name: auth0

spec:

  # Specify the upstream issuer URL associated with your auth0 application.

  issuer: https://"APPLICATION-SUBDOMAIN".auth0.com/

  # Specify how to form authorization requests. 

  authorizationConfig:

    additionalScopes: ["openid", "email"]

    allowPasswordGrant: false

  # Specify how claims are mapped to Kubernetes identities. This varies by provider.

  claims:

    username: email

    groups: groups

  # Specify the name of the Kubernetes Secret that contains your

  # application's client credentials (created as follows).

Tanzu Application Platform v1.4

VMware by Broadcom 529

https://pinniped.dev/docs/howto/


  client:

    secretName: auth0-client-credentials

---

apiVersion: v1

kind: Secret

metadata:

  namespace: pinniped-supervisor

  name: auth0-client-credentials

type: secrets.pinniped.dev/oidc-client

stringData:

  clientID: "AUTH0-CLIENT-ID"

  clientSecret: "AUTH0-CLIENT-SECRET"

---

apiVersion: config.supervisor.pinniped.dev/v1alpha1

kind: FederationDomain

metadata:

  name: pinniped-supervisor-federation-domain

  namespace: pinniped-supervisor

spec:

  issuer: "DNS-NAME"

  tls:

    secretName: pinniped-supervisor-tls-cert

Where:

APPLICATION-SUBDOMAIN is the application specific subdomain that is assigned after the
application registration.

AUTH0-CLIENT-ID and AUTH0-CLIENT-SECRET are the credentials retrieved from the
application registration.

DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

Apply the resources

After creating the resource files, you can install them into the cluster. Follow these steps to deploy
them as a kapp application:

1. Install the supervisor by running:

kapp deploy -y --app pinniped-supervisor -f pinniped-supervisor -f https://get.

pinniped.dev/v0.22.0/install-pinniped-supervisor.yaml

2. Get the external IP address of Ingress by running:

kubectl -n tanzu-system-ingress get svc/envoy -o jsonpath='{.status.loadBalance

r.ingress[0].ip}'

3. If not already covered by a Tanzu Application Platform wildcard DNS entry, add an entry to
the DNS system to bind the external IP address with.

Note

To keep the security patches up to date, you must install the most recent
version of Pinniped. See Vmware Tanzu Pinniped Releases in GitHub for
more information.

Tanzu Application Platform v1.4

VMware by Broadcom 530

https://carvel.dev/kapp/
https://github.com/vmware-tanzu/pinniped/releases


Install Pinniped Concierge

To install Pinniped Concierge:

1. Switch tooling to the desired cluster.

2. Deploy the Pinniped Concierge by running:

kapp deploy -y --app pinniped-concierge \

  -f https://get.pinniped.dev/v0.22.0/install-pinniped-concierge.yaml

3. Get the CA certificate of the supervisor by running the following command against the
cluster running the pinniped-supervisor:

kubectl get secret pinniped-supervisor-tls-cert -n pinniped-supervisor -o 'go-t

emplate={{index .data "tls.crt"}}'

4. Create the following resource to workspace/pinniped-concierge/jwt_authenticator.yaml:

---

apiVersion: authentication.concierge.pinniped.dev/v1alpha1

kind: JWTAuthenticator

metadata:

  name: pinniped-jwt-authenticator

spec:

  issuer: "DNS-NAME"

  audience: concierge

  tls:

    certificateAuthorityData: "CA-DATA"

If you use the letsencrypt production issuer, you can omit the tls section:

---

apiVersion: authentication.concierge.pinniped.dev/v1alpha1

kind: JWTAuthenticator

metadata:

  name: pinniped-jwt-authenticator

spec:

  issuer: "DNS-NAME"

  audience: concierge

Where:

DNS-NAME is the domain in which the pinniped-supervisor is published. For
example, pinniped-supervisor.example.com

CA-DATA is the public key of the signing CA or the public key of the Pinniped
httpproxy certificate.

5. Deploy the resource by running:

kapp deploy -y --app pinniped-concierge-jwt --into-ns pinniped-concierge -f pin

niped-concierge/jwt_authenticator.yaml

Note

The tls.crt contains the entire certificate chain including the CA certificate
for letsencrypt generated certificates.

Tanzu Application Platform v1.4

VMware by Broadcom 531



Log in to the cluster

See Log in by using Pinniped.

Integrate your Azure Active Directory

This topic tells you how to integrate your Azure Active Directory (commonly known as AD).

Integrate Azure AD with a new or existing AKS without
Pinniped

Perform the following procedures to integrate Azure AD with a new or existing AKS without
Pinniped.

Prerequisites

Meet these prerequisites:

Download and install the Azure CLI

Download and install the Tanzu CLI

Download and install the Tanzu CLI RBAC plug-in

Set up a platform operator

To set up a platform operator:

1. Navigate to the Azure Active Directory Overview page.

2. Select Groups under the Manage side menu.

3. Identify or create an admin group for the AKS cluster.

4. Retrieve the object ID of the admin group.

5. Take one of the following actions.

Create an AKS Cluster with Azure AD enabled by running:

az group create --name RESOURCE-GROUP --location LOCATION

az aks create -g RESOURCE-GROUP -n MANAGED-CLUSTER --enable-aad --aad-adm

in-group-object-ids OBJECT-ID

Where:

RESOURCE-GROUP is your resource group

LOCATION is your location

MANAGED-CLUSTER is your managed cluster

OBJECT-ID is the object ID

Enable Azure AD integration on the existing cluster by running:

az aks update -g RESOURCE-GROUP -n MANAGED-CLUSTER --enable-aad --aad-adm

in-group-object-ids OBJECT-ID

Where:

RESOURCE-GROUP is your resource group

MANAGED-CLUSTER is your managed cluster

Tanzu Application Platform v1.4

VMware by Broadcom 532

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli


OBJECT-ID is the object ID

6. Add Platform Operators to the admin group.

7. Log in to the AKS cluster by running:

az aks get-credentials --resource-group RESOURCE-GROUP --name MANAGED-CLUSTER -

-admin

Where:

RESOURCE-GROUP is your resource group

MANAGED-CLUSTER is your managed cluster

Set up a Tanzu Application Platform default role group

To set up a Tanzu Application Platform default role group:

1. Navigate to the Azure Active Directory Overview page.

2. Select Groups under the Manage side menu.

3. Identify or create a list of groups in the Azure AD for each of the Tanzu Application Platform
default roles (app-operator, app-viewer, and app-editor).

4. Retrieve the corresponding object IDs for each group.

5. Add users to the groups accordingly.

6. For each object ID retrieved earlier, use the Tanzu CLI RBAC plug-in to bind the object id
group to a role by running:

tanzu rbac binding add -g OBJECT-ID -r TAP-ROLE -n NAMESPACE

Where:

OBJECT-ID is the object ID

TAP-ROLE is the Tanzu Application Platform role

NAMESPACE is the namespace

Set up kubeconfig

To set up kubeconfig:

1. Set up the kubeconfig to point to the AKS cluster by running:

az aks get-credentials --resource-group RESOURCE-GROUP --name MANAGED-CLUSTER

Where:

RESOURCE-GROUP is your resource group

MANAGED-CLUSTER is your managed cluster

2. Run any kubectl command to trigger a browser login. For example:

kubectl get pods

Integrate Azure AD with Pinniped

Perform the following procedures to set up Azure AD with Pinniped.

Tanzu Application Platform v1.4

VMware by Broadcom 533



Prerequisites

Meet these prerequisites:

Download and install the Tanzu CLI

Download and install the Tanzu CLI RBAC plug-in

Install Pinniped supervisor and concierge on the cluster without setting up the
OIDCIdentityProvider and secret.

Set up the Azure AD app

To set up the Azure AD app:

1. Navigate to the Azure Active Directory Overview page.

2. Select App registrations under the Manage side menu.

3. Select New Registration.

4. Enter the name of the application. For example, gke-pinniped-supervisor-app.

5. Under Supported account types, select Accounts in this organisational directory only
(VMware, Inc. only - Single tenant).

6. Under Redirect URI, select Web as the platform.

7. Enter the call URI to the supervisor. For example, https://pinniped-
supervisor.example.com/callback.

8. Select Register to create the app.

9. If not already redirected, navigate to the app settings page.

10. Select Token configuration under the Manage menu.

11. Select Add groups claim > All groups (includes distribution lists but not groups
assigned to the application).

12. Select Add to create the group claim.

13. Select the app name in the breadcrumb navigation to return to the app settings page.

14. Select the Endpoints tab and record the value in the OpenID Connect metadata
document field.

15. Return to the app settings page.

16. Record the Application (client) ID.

17. Select Certificates & secrets under the Manage menu.

18. Create a new client secret and record this value.

19. Add the following YAML to oidc_identity_provider.yaml.

---

apiVersion: idp.supervisor.pinniped.dev/v1alpha1

kind: OIDCIdentityProvider

metadata:

  namespace: pinniped-supervisor

  name: azure-ad

spec:

  # Specify the upstream issuer URL.

  issuer: ISSUER-URL

  authorizationConfig:

    additionalScopes: ["openid", "email", "profile"]

Tanzu Application Platform v1.4

VMware by Broadcom 534



    allowPasswordGrant: false

  # Specify how claims are mapped to Kubernetes identities.

  claims:

    username: preferred_username

    groups: groups

  # Specify the name of the Kubernetes Secret that contains your

  # application's client credentials (created below).

  client:

    secretName: azure-ad-client-credentials

---

apiVersion: v1

kind: Secret

metadata:

  namespace: pinniped-supervisor

  name: azure-ad-client-credentials

type: secrets.pinniped.dev/oidc-client

stringData:

  clientID: "AZURE-AD-CLIENT-ID"

  clientSecret: "AZURE-AD-CLIENT-SECRET"

Where:

ISSUER-URL is the OpenID Connect metadata document URL you recorded earlier,
but without the trailing /.well-known/openid-configuration

AZURE-AD-CLIENT-ID is the Azure AD client ID you recorded earlier

AZURE-AD-CLIENT-SECRET is the Azure AD client secret you recorded earlier

20. Apply your changes from the kubectl CLI by running:

kubectl apply workspace/pinniped-supervisor/oidc_identity_provider.yaml

Set up the Tanzu Application Platform default role group

To set up a Tanzu Application Platform default role group:

1. Navigate to the Azure Active Directory Overview page.

2. Select Groups under the Manage side menu.

3. Identify or create a list of groups in the Azure AD for each of the Tanzu Application Platform
default roles (app-operator, app-viewer, and app-editor).

4. Retrieve the corresponding object IDs for each group.

5. Add users to the groups accordingly.

6. For each object ID retrieved earlier, use the Tanzu CLI RBAC plug-in to bind the object id
group to a role by running:

tanzu rbac binding add -g OBJECT-ID -r TAP-ROLE -n NAMESPACE

Where:

OBJECT-ID is the object ID

TAP-ROLE is the Tanzu Application Platform role

NAMESPACE is the namespace

Set up kubeconfig

Follow these steps to set up kubeconfig:

Tanzu Application Platform v1.4

VMware by Broadcom 535



1. Set up kubeconfig using the Pinniped CLI by running:

pinniped get kubeconfig --kubeconfig-context YOUR-KUBECONFIG-CONTEXT > /tmp/con

cierge-kubeconfig

Where YOUR-KUBECONFIG-CONTEXT is your your kubeconfig context.

2. Run any kubectl command to trigger a browser login. For example:

export KUBECONFIG="/tmp/concierge-kubeconfig"

kubectl get pods

Role descriptions for Tanzu Application Platform
This topic is a high level overview of each default role. For more information about the specific
permissions of each role for every Tanzu Application Platform (commonly known as TAP)
component, see Detailed role permissions for Tanzu Application Platform.

app-editor
The app-editor role can create, edit, and delete a Tanzu workload or deliverable.

Assign this role to a user, for example an app developer, to give permissions to create running
workloads on the cluster. This allows them to deploy their applications. This role allows the user to:

View, create, update, or delete a Tanzu workload or deliverable. This includes viewing the
logs of the pods spun up through the Tanzu workload and tracing a commit through the
build process.

Download the images associated with their Tanzu workload so they can test images locally,
or create a Tanzu workload from it instead of starting from source code in a repository.

View and use Application Accelerator templates.

View, create, update, or delete a Tanzu workload binding with an existing service.

app-viewer
The app-viewer role cannot create, edit, or delete a Tanzu workload or deliverable.

This role has a subset of the permissions of the app-editor role. Use it if you do not want a user to
create, edit, or delete a Tanzu workload or deliverable, but they need to view its status. For
example, give these permissions to an application developer that requires visibility into the state of
their Tanzu workload or micro-service, but does not have the permissions to deploy it, such as to
production or staging environments. This role cannot bind services with a Tanzu workload.

app-operator
The app-operator role can create, edit, and delete supply chain resources.

Assign this role to a user who defines the activities within a supply chain or the path to production.
For example, building, testing, or scanning. This role can view, create, update, or delete Tanzu
supply chain resources, including Tanzu Build Service control plane resources such as:

kpack’s builder, stack, and store

Scanning resources

Grype

The metadata store

Tanzu Application Platform v1.4

VMware by Broadcom 536



If this person must create Tanzu workloads, you can bind the user with the app-editor role as well.

service-operator

The service-operator role can create, edit, and delete service instances, service instance classes,
and resource claim policies to permit the claimability of service instances across one or more
namespaces.

Assign this role to a user who is responsible for the life cycle (create, edit and delete) of service
instances. This role can also view resource claims across all namespaces as well as query for the list
of claimable service instances in a given namespace.

workload

This role provides the service account associated with the Tanzu workload the permissions needed
to execute the activities in the supply chain. This role is for a "robot” versus a user.

deliverable

This role gives the delivery “robot” service account the permissions needed to create running
workloads. This role is not for a user.

Role descriptions for Tanzu Application Platform

This topic is a high level overview of each default role. For more information about the specific
permissions of each role for every Tanzu Application Platform (commonly known as TAP)
component, see Detailed role permissions for Tanzu Application Platform.

app-editor

The app-editor role can create, edit, and delete a Tanzu workload or deliverable.

Assign this role to a user, for example an app developer, to give permissions to create running
workloads on the cluster. This allows them to deploy their applications. This role allows the user to:

View, create, update, or delete a Tanzu workload or deliverable. This includes viewing the
logs of the pods spun up through the Tanzu workload and tracing a commit through the
build process.

Download the images associated with their Tanzu workload so they can test images locally,
or create a Tanzu workload from it instead of starting from source code in a repository.

View and use Application Accelerator templates.

View, create, update, or delete a Tanzu workload binding with an existing service.

app-viewer

The app-viewer role cannot create, edit, or delete a Tanzu workload or deliverable.

This role has a subset of the permissions of the app-editor role. Use it if you do not want a user to
create, edit, or delete a Tanzu workload or deliverable, but they need to view its status. For
example, give these permissions to an application developer that requires visibility into the state of
their Tanzu workload or micro-service, but does not have the permissions to deploy it, such as to
production or staging environments. This role cannot bind services with a Tanzu workload.

app-operator

Tanzu Application Platform v1.4

VMware by Broadcom 537



The app-operator role can create, edit, and delete supply chain resources.

Assign this role to a user who defines the activities within a supply chain or the path to production.
For example, building, testing, or scanning. This role can view, create, update, or delete Tanzu
supply chain resources, including Tanzu Build Service control plane resources such as:

kpack’s builder, stack, and store

Scanning resources

Grype

The metadata store

If this person must create Tanzu workloads, you can bind the user with the app-editor role as well.

service-operator

The service-operator role can create, edit, and delete service instances, service instance classes,
and resource claim policies to permit the claimability of service instances across one or more
namespaces.

Assign this role to a user who is responsible for the life cycle (create, edit and delete) of service
instances. This role can also view resource claims across all namespaces as well as query for the list
of claimable service instances in a given namespace.

workload

This role provides the service account associated with the Tanzu workload the permissions needed
to execute the activities in the supply chain. This role is for a "robot” versus a user.

deliverable

This role gives the delivery “robot” service account the permissions needed to create running
workloads. This role is not for a user.

Detailed role permissions for Tanzu Application Platform

This topic tells you the specific permissions of each role for every Tanzu Application Platform
(commonly known as TAP) component.

Native Kubernetes Resources

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: [""]

  resources: ["configmaps","endpoints","events","persistentvolumeclaims","pods","pods/

log","resourcequotas","services"]

  verbs: ["get","list","watch"]

- apiGroups: ["apps"]

  resources: ["deployments","replicasets","statefulsets"]

  verbs: ["get","list","watch"]

- apiGroups: ["batch"]

  resources: ["cronjobs","jobs"]

  verbs: ["get","list","watch"]

- apiGroups: ["events.k8s.io"]

  resources: ["events"]

  verbs: ["get","list","watch"]

- apiGroups: ["networking.k8s.io"]

Tanzu Application Platform v1.4

VMware by Broadcom 538



  resources: ["ingresses"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: [""]

  resources: ["configmaps","secrets"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

App Accelerator

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["accelerator.apps.tanzu.vmware.com"]

  resources: ["accelerators"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["accelerator.apps.tanzu.vmware.com"]

  resources: ["accelerators"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Cartographer

apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

- apiGroups: ["carto.run"]

  resources: ["deliverables","workloads"]

  verbs: ["create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["carto.run"]

  resources: ["deliverables","runnables","workloads"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["carto.run"]

  resources: ["clusterconfigtemplates","clusterconfigtemplates","clusterdeliveries","c

lusterdeploymenttemplates","clusterimagetemplates","clusterruntemplates","clustersourc

etemplates","clustersupplychains","clustertemplates"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["carto.run"]

  resources: ["clusterconfigtemplates","clusterconfigtemplates","clusterdeliveries","c

lusterdeploymenttemplates","clusterimagetemplates","clusterruntemplates","clustersourc

etemplates","clustersupplychains","clustertemplates"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tanzu Application Platform v1.4

VMware by Broadcom 539



Cloud Native Runtimes

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["apps"]

  resources: ["deployments","replicasets","statefulsets"]

  verbs: ["get","list","watch"]

- apiGroups: ["batch"]

  resources: ["cronjobs","jobs"]

  verbs: ["get","list","watch"]

- apiGroups: ["networking.k8s.io"]

  resources: ["ingresses"]

  verbs: ["get","list","watch"]

- apiGroups: ["eventing.knative.dev"]

  resources: ["brokers","triggers"]

  verbs: ["get","list","watch"]

- apiGroups: ["serving.knative.dev"]

  resources: ["configurations","services","revisions","routes"]

  verbs: ["get","list","watch"]

- apiGroups: ["sources.*"]

  resources: ["(many)"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["eventing.knative.dev"]

  resources: ["brokers"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["sources.*"]

  resources: ["(many)"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Convention Service

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["conventions.carto.run"]

  resources: ["podintents"]

  verbs: ["get","list","watch"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["podintents"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["conventions.carto.run"]

  resources: ["clusterpodconventions"]

  verbs: ["get","list","watch"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["clusterpodconventions"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["conventions.carto.run"]

  resources: ["clusterpodconventions"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tanzu Application Platform v1.4

VMware by Broadcom 540



- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["clusterpodconventions"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Developer Conventions

apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

- apiGroups: [""]

  resources: ["pods"]

  verbs: ["get","list","watch"]

- apiGroups: [""]

  resources: ["pods/exec","pods/portforward"]

  verbs: ["get","list","create"]

- apiGroups: ["carto.run"]

  resources: ["workloads"]

  verbs: ["get","list","watch"]

OOTB Templates

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: [""]

  resources: ["configmaps"]

  verbs: ["get","list","watch"]

- apiGroups: ["carto.run"]

  resources: ["deliverables","runnables"]

  verbs: ["get","list","watch"]

- apiGroups: ["conventions.carto.run"]

  resources: ["podintents"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["podintents"]

  verbs: ["get","list","watch"]

- apiGroups: ["kappctrl.k14s.io"]

  resources: ["apps"]

  verbs: ["get","list","watch"]

- apiGroups: ["kpack.io"]

  resources: ["images"]

  verbs: ["get","list","watch"]

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

  resources: ["imagescans","sourcescans"]

  verbs: ["get","list","watch"]

- apiGroups: ["servicebinding.io"]

  resources: ["servicebindings"]

  verbs: ["get","list","watch"]

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["resourceclaims"]

  verbs: ["get","list","watch"]

- apiGroups: ["serving.knative.dev"]

  resources: ["services"]

  verbs: ["get","list","watch"]

- apiGroups: ["source.apps.tanzu.vmware.com"]

  resources: ["imagerepositories","mavenartifacts"]

  verbs: ["get","list","watch"]

- apiGroups: ["source.toolkit.fluxcd.io"]

  resources: ["gitrepositories"]

  verbs: ["get","list","watch"]

- apiGroups: ["tekton.dev"]

  resources: ["pipelineruns","taskruns"]

  verbs: ["get","list","watch"]

Tanzu Application Platform v1.4

VMware by Broadcom 541



apps.tanzu.vmware.com/aggregate-to-workload: "true"

- apiGroups: ["carto.run"]

  resources: ["deliverables","runnables"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["conventions.carto.run"]

  resources: ["podintents"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["podintents"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["kpack.io"]

  resources: ["images"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

  resources: ["imagescans","sourcescans"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.apps.tanzu.vmware.com"]

  resources: ["imagerepositories","mavenartifacts"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.toolkit.fluxcd.io"]

  resources: ["gitrepositories"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["tekton.dev"]

  resources: ["pipelineruns","taskruns"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

- apiGroups: [""]

  resources: ["configmaps"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["kappctrl.k14s.io"]

  resources: ["apps"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["servicebinding.io"]

  resources: ["servicebindings"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["resourceclaims"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["serving.knative.dev"]

  resources: ["services"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.apps.tanzu.vmware.com"]

  resources: ["imagerepositories","mavenartifacts"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.toolkit.fluxcd.io"]

  resources: ["gitrepositories"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Service Bindings

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["servicebinding.io"]

  resources: ["servicebindings"]

  verbs: ["get","list","watch"]

Services Toolkit

Tanzu Application Platform v1.4

VMware by Broadcom 542



apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["resourceclaims"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["clusterresources"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["resourceclaims"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["clusterresources"]

  verbs: ["get","list","watch"]

Source Controller

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["source.apps.tanzu.vmware.com"]

  resources: ["imagerepositories","mavenartifacts"]

  verbs: ["get","list","watch"]

Supply Chain Security Tools — Scan

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

  resources: ["imagescans","scanpolicies","scantemplates","sourcescans"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

  resources: ["scanpolicies","scantemplates"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tanzu Build Service

apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

- apiGroups: ["kpack.io"]

  resources: ["builds"]

Tanzu Application Platform v1.4

VMware by Broadcom 543



  verbs: ["patch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["kpack.io"]

  resources: ["builds","builders","images"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["kpack.io"]

  resources: ["clusterbuilders","clusterstacks","clusterstores"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["kpack.io"]

  resources: ["builders"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["kpack.io"]

  resources: ["clusterbuilders","clusterstacks","clusterstores"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tekton

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["tekton.dev"]

  resources: ["pipelineresources","pipelineruns","pipelines","taskruns","tasks"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["tekton.dev"]

  resources: ["clustertasks"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["tekton.dev"]

  resources: ["pipelineresources","pipelines","tasks"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["tekton.dev"]

  resources: ["clustertasks"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tanzu Application Platform v1.4

VMware by Broadcom 544



Bind a user or group to a default role

You can choose one of the following two approaches to bind a user or group to a default role:

Use the Tanzu Application Platform RBAC CLI plug-in, which only supports binding Tanzu
Application Platform (commonly known as TAP) default roles.

Use Kubernetes role-based access control (RBAC) role binding.

VMware recommends that you use the Tanzu Application Platform RBAC CLI plug-in. This CLI
plug-in simplifies the process by binding the cluster-scoped resource permissions at the same time
as the namespace-scoped resource permissions, where applicable, for each default role. The
following sections cover the Tanzu Application Platform RBAC CLI plug-in.

Prerequisites

1. Download the latest Tanzu CLI version.

2. Download the Tanzu Application Platform RBAC CLI plug-in tar.gz file from Tanzu
Network.

3. Ensure you have admin access to the cluster.

4. Ensure you have configured an authentication solution for the cluster. You can use
Pinniped or the authentication service native to your Kubernetes distribution.

Install the Tanzu Application Platform RBAC CLI plug-in

Follow these steps to install the Tanzu Application Platform RBAC CLI plug-in:

1. Untar the tar.gz file:

tar -zxvf NAME-OF-THE-TAR

2. Install the Tanzu Application Platform RBAC CLI plug-in locally on your operating system:

macOS

tanzu plugin install rbac --local darwin-amd64

Linux

tanzu plugin install rbac --local linux-amd64

Windows

tanzu plugin install rbac --local windows-amd64

(Optional) Use a different kubeconfig location

You can use a different kubeconfig location by running:

Caution

The Tanzu Application Platform RBAC CLI plug-in is currently in beta and is
intended for evaluation and test purposes only.

Tanzu Application Platform v1.4

VMware by Broadcom 545

https://network.tanzu.vmware.com/products/tap-auth
https://pinniped.dev/


tanzu rbac --kubeconfig PATH-OF-KUBECONFIG binding add --user USER --role ROLE --names

pace NAMESPACE

For example:

$ tanzu rbac --kubeconfig /tmp/pinniped_kubeconfig.yaml binding add --user username@vm

ware.com --role app-editor --namespace user-ns

Add the specified user or group to a role

Add a user or group to a role by running:

tanzu rbac binding add --user USER --role ROLE --namespace NAMESPACE

tanzu rbac binding add --group GROUP --role ROLE --namespace NAMESPACE

For example:

$ tanzu rbac binding add --user username@vmware.com --role app-editor --namespace user

-ns

Get a list of users and groups from a role

Get a list of users and groups from a role by running:

tanzu rbac binding get --role ROLE --namespace NAMESPACE

For example:

$ tanzu rbac binding get --role app-editor --namespace user-ns

Remove the specified user or group from a role

Remove a user or group from a role by running:

tanzu rbac binding delete --user USER --role ROLE --namespace NAMESPACE

tanzu rbac binding delete --group GROUP --role ROLE --namespace NAMESPACE

For example:

$ tanzu rbac binding delete --user username@vmware.com --role app-editor --namespace u

ser-ns

Error logs

Note

The environment variable KUBECONFIG is not implemented. You must use the --
kubeconfig flag to enter a different location. Otherwise the default ~/.kube/config
is used.

Tanzu Application Platform v1.4

VMware by Broadcom 546



Authorization error logs might include the following errors:

Permission Denied:

The current user does not have permissions to create or edit rolebinding objects. Use an
admin account when using the RBAC CLI.

Error: rolebindings.rbac.authorization.k8s.io "app-operator" is forbidden: User 

"<subject>" cannot get resource "rolebindings" in API group "rbac.authorizatio

n.k8s.io" in the namespace "namespace"

Usage:

tanzu rbac binding add [flags]

Flags:

-g, --group string User Group

-h, --help help for add

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Global Flags:

--kubeconfig string kubeconfig file

Already Bound Error:

Adding a subject, user or group, to a role that already has the subject produces the
following error:

Error: User ‘test-user’ is already bound to 'app-operator' role

Usage:

tanzu rbac binding add [flags]

Flags:

-g, --group string User Group

-h, --help help for add

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Global Flags:

--kubeconfig string kubeconfig file

Could Not Find Error:

When removing a subject from a role, this error can occur in the following two scenarios:

1. The rolebinding does not exist.

2. The subject does not exist in the rolebinding.

Ensure the rolebinding exists and that the subject name is correctly spelled.

Error: Did not find User 'test-user' in RoleBinding 'app-operator'

Usage:

tanzu rbac binding delete [flags]

Flags:

-g, --group string User Group

-h, --help help for delete

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Global Flags:

--kubeconfig string kubeconfig file

Object Has Been Modified Error:

Tanzu Application Platform v1.4

VMware by Broadcom 547



This error is a race condition caused by running multiple RBAC CLI actions at the same
time. Rerunning the RBAC CLI might fix the issue.

Removed User 'test-user' from RoleBinding 'app-operator'

Removed User 'test-user' from ClusterRoleBinding 'app-operator-cluster-access'

Error: Operation cannot be fulfilled on rolebindings.rbac.authorization.k8s.io 

"app-operator": the object has been modified; please apply your changes to the 

latest version and try again

Usage:

tanzu rbac binding delete [flags]

Flags:

-g, --group string User Group

-h, --help help for delete

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Troubleshooting

1. Get a list of permissions for a user or a group:

export NAME=SUBJECT-NAME

kubectl get rolebindings,clusterrolebindings -A -o json | jq -r ".items[] | sel

ect(.subjects[]?.name == \"${NAME}\") | .roleRef.name" | xargs -n1 kubectl desc

ribe clusterroles

2. Get a list of user or group for a specific role:

tanzu rbac binding get --role ROLE --namespace NAMESPACE

Log in to Tanzu Application Platform by using Pinniped

This topic tells you how to log in to your Tanzu Application Platform (commonly known as TAP) by
using Pinniped.

As a prerequisite, the administrator must provide users access to resources by using rolebindings.
It can be done with the tanzu rbac plug-in. For more information, see Bind a user or group to a
default role.

To log in to your cluster by using Pinniped, follow these steps:

1. Install the Pinniped CLI.

For more information, see Pinniped documentation.

2. Generate and distribute kubeconfig to users.

3. Login with the provided kubeconfig.

Download the Pinniped CLI

Important

The latest compatible version of Pinniped CLI is required not only for the
administrator to generate the kubeconfig, but also for the user to log in with
the provided configuration.

Tanzu Application Platform v1.4

VMware by Broadcom 548

https://pinniped.dev/docs/howto/install-cli/


You must use a Pinniped CLI version that matches the installed Concierge or Supervisor. Use one
of the following links to download the Pinniped CLI version 0.22.0:

Mac OS with AMD64

Linux with AMD64

Windows with AMD64

You must install the command-line tool on your $PATH, such as /usr/local/bin on macOS or Linux.
You must also mark the file as executable.

Generate and distribute kubeconfig to users

As an administrator, you can generate the kubeconfig by using the following command:

pinniped get kubeconfig --kubeconfig-context <your-kubeconfig-context>  > /tmp/concier

ge-kubeconfig

Distribute this kubeconfig to your users so they can login by using pinniped.

Login with the provided kubeconfig

As a user of the cluster, you need the kubeconfig provided by your admin and the Pinniped CLI
installed on your local machine to log in. Logging in is required to request information from the
cluster. You can execute any resource request with kubectl to enter the authentication flow. For
example:

kubectl --kubeconfig /tmp/concierge-kubeconfig get pods

If you do not want to explicitly use --kubeconfig in every command, you can also export an
environment variable to set the kubeconfig path in your shell session.

export KUBECONFIG="/tmp/concierge-kubeconfig"

kubectl get pods

This command enables pinniped to print a URL for you to visit in the browser. You can then log in,
copy the authentication code and paste it back to the terminal. After the login succeeds, you either
see the resources or a message indicating that you have no permission to access the resources.

If you use a Windows machine, the command referenced in the generated kubeconfig might not
work. In this case, you must change the path under user.exec.command in the kubeconfig to point
to the install path of the Pinniped CLI.

Additional resources about Tanzu Application Platform
authentication and authorization
Use this topic to learn additional information about authentication and authorization for Tanzu
Application Platform (commonly known as TAP).

See Default roles for Tanzu Application Platform overview to get started.

Install
Default roles are released as part of Tanzu Application Platform. Alternatively, you can also install
default roles independently. See Install default roles independently for more information.

Tanzu Application Platform v1.4

VMware by Broadcom 549

https://get.pinniped.dev/v0.22.0/pinniped-cli-darwin-amd64
https://get.pinniped.dev/v0.22.0/pinniped-cli-linux-amd64
https://get.pinniped.dev/v0.22.0/pinniped-cli-windows-amd64.exe


Additional resources about Tanzu Application Platform
authentication and authorization

Use this topic to learn additional information about authentication and authorization for Tanzu
Application Platform (commonly known as TAP).

See Default roles for Tanzu Application Platform overview to get started.

Install

Default roles are released as part of Tanzu Application Platform. Alternatively, you can also install
default roles independently. See Install default roles independently for more information.

Install default roles independently for your Tanzu
Application Platform

This topic tells you how to install default roles for Tanzu Application Platform (commonly known as
TAP) without deploying a TAP profile.

Prerequisites
Before installing default roles, complete all prerequisites to install Tanzu Application Platform. For
more information, see Prerequisites.

Install
To install default roles:

1. List version information for the package by running:

tanzu package available list tap-auth.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list tap-auth.tanzu.vmware.com --namespace tap-instal

l

- Retrieving package versions for tap-auth.tanzu.vmware.com...

  NAME                         VERSION       RELEASED-AT

  tap-auth.tanzu.vmware.com    1.0.1

Note

The tanzu rbac CLI plug-in requires a separate installation.

Note

The tanzu rbac CLI plug-in requires a separate installation.

Note

Follow the steps in this topic if you do not want to use a profile to install default
roles. For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 550



2. Install the package by running:

tanzu package install tap-auth \

  --package-name tap-auth.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install

Where:

VERSION is the package version number. For example, 1.0.1.

For example:

$ tanzu package install tap-auth \

  --package-name tap-auth.tanzu.vmware.com \

  --version 1.0.1 \

  --namespace tap-install

Overview of API Auto Registration
This topic provides an overview of API Auto Registration for Tanzu Application Platform.

Overview
API Auto Registration automates the registration of API specification defined in a workload’s
configuration. The registered API specification is accessible in Tanzu Application Platform GUI
without any additional steps. An automated workflow using a supply chain, leverages API Auto
Registration to create and manage a Kubernetes Custom Resource (CR) of kind APIDescriptor. A
Kubernetes controller periodically reconciles the CR and updates the API entity in Tanzu
Application Platform GUI to achieve automated API specification registration from origin workloads.
You might also use API Auto Registration without supply chain automation, with other GitOps
processes, or by directly applying an APIDescriptor CR to the cluster.

Getting started
For information about API Auto Registration architecture, or the APIDescriptor CR and API entities
in Tanzu Application Platform GUI, see Key Concepts.

For information about configuring iterate, run, and full Tanzu Application Platform cluster profiles,
see Configure API Auto Registration.

For information about generating API specifications and registering them with Tanzu Application
Platform GUI catalog, see Use API Auto Registration.

For information about other profiles, install the api-auto-registration package. See Install API
Auto Registration.

For information about troubleshooting and debugging API Auto Registration, see Troubleshooting.

Overview of API Auto Registration
This topic provides an overview of API Auto Registration for Tanzu Application Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 551



Overview

API Auto Registration automates the registration of API specification defined in a workload’s
configuration. The registered API specification is accessible in Tanzu Application Platform GUI
without any additional steps. An automated workflow using a supply chain, leverages API Auto
Registration to create and manage a Kubernetes Custom Resource (CR) of kind APIDescriptor. A
Kubernetes controller periodically reconciles the CR and updates the API entity in Tanzu
Application Platform GUI to achieve automated API specification registration from origin workloads.
You might also use API Auto Registration without supply chain automation, with other GitOps
processes, or by directly applying an APIDescriptor CR to the cluster.

Getting started

For information about API Auto Registration architecture, or the APIDescriptor CR and API entities
in Tanzu Application Platform GUI, see Key Concepts.

For information about configuring iterate, run, and full Tanzu Application Platform cluster profiles,
see Configure API Auto Registration.

For information about generating API specifications and registering them with Tanzu Application
Platform GUI catalog, see Use API Auto Registration.

For information about other profiles, install the api-auto-registration package. See Install API
Auto Registration.

For information about troubleshooting and debugging API Auto Registration, see Troubleshooting.

Key Concepts for API Auto Registration

This topic explains key concepts you use with API Auto Registration.

API Auto Registration Architecture

You can use the full potential of API Auto Registration by using a distributed environment, like the
one in this diagram:

APIDescriptor Custom Resource Explained

Tanzu Application Platform v1.4

VMware by Broadcom 552



To use API Auto Registration, you must create a custom resource of type APIDescriptor. The
information from this custom resource is used to construct an API entity in Tanzu Application
Platform GUI.

This custom resource exposes the following text boxes:

apiVersion: apis.apps.tanzu.vmware.com/v1alpha1

kind: APIDescriptor

metadata:

  name:                  # name of your APIDescriptor

  namespace:             # optional namespace of your APIDescriptor

spec:

  type:                  # type of the API spec. oneOf(openapi, grpc, asyncapi, graphq

l)

  description:           # description for the API exposed

  system:                # system that the API is part of

  owner:                 # person/team that owns the API

  location:

    path:                # sub-path where the API spec is available

    baseURL:             # base URL object where the API spec is available. oneOf(url, 

ref)

      url:               # static absolute base URL

      ref:               # object ref to oneOf(HTTPProxy, Knative Service, Ingress)

        apiVersion:

        kind:

        name:

        namespace:

The text boxes cause specific behavior in Tanzu Application Platform GUI:

The system and owner are copied to the API entity. You might have to separately create
and add the System and Group kind to the catalog.

Tanzu Application Platform GUI uses the namespace for the API entity where the
APIDescriptor CR is applied. This causes the API entity’s name, system, and owner to all be
in that namespace.

To explicitly use a system or owner in a different namespace, you can specify that in the
system: my-namespace/my-other-system or owner: my-namespace/my-other-team text
boxes.

If the system or owner you are trying to link doesn’t have a namespace specified, you can
qualify them with the default namespace. For example, system: default/my-default-
system

With an Absolute URL

To create an APIDescriptor with a static baseURL.url, you must apply the following YAML to your
cluster.

apiVersion: apis.apps.tanzu.vmware.com/v1alpha1

kind: APIDescriptor

metadata:

  name: sample-absolute-url

spec:

  type: openapi

  description: A set of API endpoints to manage the resources within the petclinic ap

p.

  system: spring-petclinic

  owner: team-petclinic

  location:

    path: "/v3/api-docs.yaml"

Tanzu Application Platform v1.4

VMware by Broadcom 553

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-system
https://backstage.io/docs/features/software-catalog/descriptor-format#kind-group


    baseURL:

      url: https://myservice.com

With an Object Ref

You can use an object reference, instead of hard coding the URL, to point to a HTTPProxy, Knative
Service, or Ingress.

With an HTTPPRoxy Object Ref

This section includes an example YAML that points to an HTTPProxy from which the controller
extracts the .spec.virtualhost.fqdn as the baseURL.

apiVersion: apis.apps.tanzu.vmware.com/v1alpha1

kind: APIDescriptor

metadata:

  name: sample-contour-ref

spec:

  type: openapi

  description: A set of API endpoints to manage the resources within the petclinic ap

p.

  system: spring-petclinic

  owner: team-petclinic

  location:

    path: "/test/openapi"

    baseURL:

      ref:

        apiVersion: projectcontour.io/v1

        kind: HTTPProxy

        name: my-httpproxy

        namespace: my-namespace # optional

With a Knative Service Object Ref

To use a Knative Service, your controller reads the status.url as the baseURL. For example:

# all other fields similar to the above example

    baseURL:

      ref:

        apiVersion: serving.knative.dev/v1

        kind: Service

        name: my-knative-service

        namespace: my-namespace # optional

With an Ingress Object Ref

To use an Ingress instead, your controller reads the URL from the jsonPath specified. When
jsonPath is left empty, your controller reads the "{.spec.rules[0].host}" as the URL. For
example:

# all other fields similar to the above example

    baseURL:

      ref:

        apiVersion: networking.k8s.io/v1

        kind: Ingress

        name: my-ingress

        jsonPath: "{.spec.rules[1].host}"

        namespace: my-namespace # optional

Tanzu Application Platform v1.4

VMware by Broadcom 554



APIDescriptor Status Fields

When processing an APIDescriptor several fields are added to the status. One of these is
conditons, which provide information useful for troubleshooting. The conditions are explained in
the Troubleshooting Guide.

In addition to conditions the status contains a couple of other useful fields. The following is a list of
these fields with a brief explanation of what they contain.

status:

  registeredEntityURL:   # Url of the corresponding API Entity in TAP GUI

  registeredTapUID:      # Unique identifier for the corresponding API Entity in TAP G

UI

  resolvedAPISpec:       # Full API Spec as retrieved by Api Auto Registration

Install API Auto Registration

This topic describes how you can install API Auto Registration from the Tanzu Application Platform
package repository.

Tanzu Application Platform prerequisites
Before installing API Auto Registration, complete all prerequisites to install Tanzu Application
Platform. See Tanzu Application Platform Prerequisites.

Using with TLS
Starting in Tanzu Application Platform v1.4, TLS is turned on by default for several components. API
Auto Registration automatically trusts the CA for the shared ingress_issuer when using the default
ClusterIssuer tap-ingress-selfsigned. This change means that a Certificate is automatically
generated using this issuer.

If you do not want a Certificate to generate automatically, you can set the auto_generate_cert
flag to false in the values file. To replace the default with a custom ingress issuer, see Security and
compliance. Whenever you do not use the default ClusterIssuer tap-ingress-selfsigned, do not
automatically generate certificates, or use other custom CAs, you must manually set the certificate.
See Troubleshooting.

Install
To install the API Auto Registration package:

1. List version information for the package by running:

tanzu package available list apis.apps.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list apis.apps.tanzu.vmware.com --namespace tap-insta

ll

Note

Follow the steps in this topic if you do not want to use a profile to install API Auto
Registration. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 555



- Retrieving package versions for apis.apps.tanzu.vmware.com...

  NAME                                     VERSION  RELEASED-AT

  apis.apps.tanzu.vmware.com  0.1.0        2022-08-30 19:00:00 -0500 -05

  apis.apps.tanzu.vmware.com  0.2.0        2022-11-24 12:20:00 -0500 -05

2. (Optional) Gather values schema.

Display values schema of the package:

tanzu package available get apis.apps.tanzu.vmware.com/VERSION-NUMBER --values-

schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in the earlier step.

For example:

tanzu package available get apis.apps.tanzu.vmware.com/0.2.2 --values-schema --

namespace tap-install

Retrieving package details for apis.apps.tanzu.vmware.com/0.2.2...

KEY                        DEFAULT                                       TYPE     

DESCRIPTION

ca_cert_data                                                             string   

Optional: PEM-encoded certificate data for the controller to trust TLS connecti

ons with a custom CA.

ingress_issuer                                                           string   

Optional: Name of the default cluster issuer used to generate certificates.

auto_generate_cert         true                                          boolea

n  Flag that indicates if a cert-manager certificate should be generated using 

the ingress_issuer. Only applies if the ingress_issuer is specified.

cluster_name               dev                                           string   

Name of the cluster used for setting the API entity lifecycle in TAP GUI. The v

alue should be unique for each run cluster.

sync_period                5m                                            string   

Time period used for reconciling an APIDescriptor.

tap_gui_url                http://server.tap-gui.svc.cluster.local:7000  string   

FQDN URL for TAP GUI.

replicas                   1                                             intege

r  Number of controller replicas to deploy.

resources.limits.cpu       500m                                          string   

CPU limit of the controller.

resources.limits.memory    500Mi                                         string   

Memory limit of the controller.

resources.requests.cpu     20m                                           string   

CPU request of the controller.

resources.requests.memory  100Mi                                         string   

Memory request of the controller.

logging_profile            production                                    string   

Logging profile for controller. If set to development, use console logging with 

full stack traces, else use JSON logging.

3. Locate the Tanzu Application Platform GUI URL.

When running on a full profile Tanzu Application Platform cluster, the default value of Tanzu
Application Platform GUI URL is sufficient. You can edit this to match the externally
available FQDN of Tanzu Application Platform GUI to display the entity URL in the
externally accessible APIDescriptor status.

When installed in a run cluster or with a profile where Tanzu Application Platform GUI is not
installed in the same cluster, you must set the tap_gui_url parameters correctly for
successful entity registration with Tanzu Application Platform GUI.

You can locate the tap_gui_url by going to the view cluster with the Tanzu Application
Platform GUI you want to register the entity with:

Tanzu Application Platform v1.4

VMware by Broadcom 556



kubectl get secret tap-values -n tap-install -o jsonpath="{.data['tap-values\.y

aml']}" | base64 -d | yq '.tap_gui.app_config.app.baseUrl'

4. (Optional) VMware recommends creating api-auto-registration-values.yaml.

To overwrite the default values when installing the package, create a api-auto-
registration-values.yaml file:

tap_gui_url: https://tap-gui.view-cluster.com

cluster_name: staging-us-east

auto_generate_cert: false

ca_cert_data:  |

    -----BEGIN CERTIFICATE-----

    MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

    -----END CERTIFICATE-----

sync_period: 2m

5. Install the package using the Tanzu CLI:

tanzu package install api-auto-registration

--package-name apis.apps.tanzu.vmware.com

--namespace tap-install

--version $VERSION

--values-file api-auto-registration-values.yaml

6. Verify the package installation by running:

tanzu package installed get api-auto-registration -n tap-install

Verify that STATUS is Reconcile succeeded:

kubectl get pods -n api-auto-registration

7. Verify that applying an APIDescriptor resource to your cluster causes the STATUS showing
Ready:

kubectl apply -f - <<EOF

apiVersion: apis.apps.tanzu.vmware.com/v1alpha1

kind: APIDescriptor

metadata:

  name: sample-api-descriptor-with-absolute-url

spec:

  type: openapi

  description: A sample APIDescriptor to validate package installation successf

ul

  system: test-installation

  owner: test-installation

  location:

    path: "/api/v3/openapi.json"

    baseURL:

      url: https://petstore3.swagger.io

EOF

Verify that the APIDescriptor status shows Ready:

kubectl get apidescriptors

NAME                                       STATUS

sample-api-descriptor-with-absolute-url    Ready

kubectl get apidescriptors -owide

NAME                                       STATUS    TAP GUI ENTITY URL     API 

SPEC URL

Tanzu Application Platform v1.4

VMware by Broadcom 557



sample-api-descriptor-with-absolute-url    Ready     <url-to-the-entity>    <ur

l-to-the-api-spec>

If the status does not show Ready, you can inspect the reason with the detailed message
shown by running:

kubectl get apidescriptor sample-api-descriptor-with-absolute-url -o jsonpath

='{.status.conditions[?(@.type=="Ready")].message}'

Verify that the entity is created in your Tanzu Application Platform GUI: TAP-GUI-
URL/catalog/default/api/sample-api-descriptor-with-absolute-url

Use API Auto Registration

This topic describes how you can use API Auto Registration.

API Auto Registration requires the following:

1. A location exposing a dynamic or static API specification.

2. An APIDescriptor Custom Resource (CR) with that location created in the cluster.

3. (Optional) Configure Cross-Origin Resource Sharing (CORS) for OpenAPI specifications.

To generate OpenAPI Spec:

By creating a simple Spring Boot app

By scaffolding a new project using App Accelerator Template

In an existing Spring Boot project

To create APIDescriptor Custom Resource:

Using Out Of The Box Supply Chains

Using Custom Supply Chains

Using other GitOps processes or Manually

To configure:

CORS for viewing OpenAPI Spec in TAP GUI

Generate OpenAPI Spec

Using a Spring Boot app with a REST service

You can use a Spring Boot example app built using Building a RESTful Web Service guide. and has
the Springdoc dependency.

Example of a workload using the Spring Boot app:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: simple-rest-app

Note

The run profile requires you to update the install values before proceeding. For
iterate and full profiles, the default values work but you might prefer to update
them. For information about profiles, see About Tanzu Application Platform profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 558

https://github.com/making/rest-service
https://spring.io/guides/gs/rest-service/
https://springdoc.org/#getting-started


  labels:

    ...

    apis.apps.tanzu.vmware.com/register-api: "true"

spec:

  source:

    ...

  params:

    - name: api_descriptor

      value:

        type: openapi

        location:

          path: "/v3/api-docs"

        system: dev

        owner: team-a

        description: "A set of API endpoints."

Using App Accelerator Template

If you are creating a new application exposing an API, you might use the java-rest-service App
Accelerator template to get a pre-built app that includes a workload.yaml with a basic REST API.
From your Tanzu Application Platform GUI Accelerators tab, search for the accelerator and scaffold
it according to your needs.

Using an existing Spring Boot project using springdoc

If you have an existing Spring Boot app that exposes an API, you can generate OpenAPI
specifications using springdoc. See the springdoc documentation

After you have springdoc configured and an OpenAPI automatically generated, you can choose
one of the three methods of creating the APIDescriptor custom resource. VMware recommends
having your Spring Boot app to be managed using Workloads and the Out-Of-The-Box (OOTB)
supply chain. See the Use Out-Of-The-Box (OOTB) supply chains for further instructions.
Alternatively, if you want to use custom supply chains, see Using Custom Supply Chains. Lastly, if
you want to use a different Gitops process or manage the APIDescriptor CR manually, see the
Using other GitOps processes or Manually section.

Create APIDescriptor Custom Resource

Use Out-Of-The-Box (OOTB) supply chains

All the Out-Of-The-Box (OOTB) supply chains are modified so that they can use API Auto
Registration. If you want your workload to be auto registered, you must make modifications to your
workload YAML:

1. Add the label apis.apps.tanzu.vmware.com/register-api: "true".

2. Add a parameter of type api_descriptor:

  params:

    - name: api_descriptor

      value:

        type: openapi   # We currently support any of openapi, aysncapi, graphq

l, grpc

        location:

          path: "/v3/api-docs"  # The path to the api documentation

        owner: team-petclinic   # The team that owns this

        description: "A set of API endpoints to manage the resources within the 

petclinic app."

There are 2 different options for the location:

Tanzu Application Platform v1.4

VMware by Broadcom 559

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/java-rest-service
https://springdoc.org/#getting-started


The default supply chains use Knative to deploy your applications. In this event the only
location information you must send is the path to the API documentation. The controller
can figure out the base URL for you.

You can hardcode the URL using the baseURL property. The controller uses a combination
of this baseURL and your path to retrieve the YAML.

Example workload that exposes a Knative service:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: petclinic-knative

  labels:

    ...

    apis.apps.tanzu.vmware.com/register-api: "true"

spec:

  source:

    ...

  params:

    - name: api_descriptor

      value:

        type: openapi

        location:

          path: "/v3/api-docs"

        system: pet-clinics

        owner: team-petclinic

        description: "A set of API endpoints to manage the resources within the petcli

nic app."

Example of a workload with a hardcoded URL to the API documentation:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: petclinic-hard-coded

  labels:

    ...

    apis.apps.tanzu.vmware.com/register-api: "true"

spec:

  source:

    ...

  params:

    - name: api_descriptor

      value:

        type: openapi

        location:

          baseURL: http://petclinic-hard-coded.my-apps.tapdemo.vmware.com/

          path: "/v3/api-docs"

        owner: team-petclinic

        system: pet-clinics

        description: "A set of API endpoints to manage the resources within the petcli

nic app."

After the supply chain runs, it creates an APIDescriptor custom resource. This resource is what
Tanzu Application Platform uses to auto register your API. See APIDescriptor explained.

Using Custom Supply Chains

If you are creating custom supply chains, you can still use API Auto Registration. To write a supply
chain pipeline, use ClusterConfigTemplate by the name of config-template in your pipeline. To

Tanzu Application Platform v1.4

VMware by Broadcom 560



write a custom task, verify how the template is written to read parameters, interpret baseURL from
Knative Services, and construct APIDescriptor CRs.

In the Delivery pipeline, you must directly create an APIDescriptor custom resource. You must
grant permissions to create the CR from the delivery pipeline.

For information about APIDescriptors, see Key Concepts.

Using other GitOps processes or Manually

Using your GitOps process, or manually, you must stamp out an APIDescriptor CR and apply it in
the cluster you choose. Be sure specify all the required fields for an APIDescriptor CR to reconcile.

For information about APIDescriptors, see Key Concepts.

Additional configuration

Setting up CORS for OpenAPI specifications

The agent, usually a browser, uses the CORS protocol to verify whether the current origin uses an
API. To use the “Try it out” feature for OpenAPI specifications from the API Documentation plug-
in, you must configure CORS to allow successful requests.

Your API must be configured to allow CORS Requests from Tanzu Application Platform GUI. How
you accomplish this varies based on the programming language and framework you are using. If
you are using Spring, see CORS support in spring framework.

At a high level, the Tanzu Application Platform GUI domain must be accepted as valid cross-origin
by your API.

Verify the following:

Origins allowed header: Access-Control-Allow-Origin: A list of comma-separated values.
This list must include your Tanzu Application Platform GUI host.

Methods allowed header: Access-Control-Allow-Method: Must allow the method used by
your API. Also confirm that your API supports preflight requests, a valid response to the
OPTIONS HTTP method.

Headers allowed header: Access-Control-Allow-Headers: If the API requires any header,
you must include it in the API configuration or your authorization server.

Troubleshoot API Auto Registration

This topic contains ways that you can troubleshoot API Auto Registration.

Debug API Auto Registration

This topic includes commands for debugging or troubleshooting the APIDescriptor CR.

1. Get the details of APIDescriptor CR.

kubectl get apidescriptor <api-apidescriptor-name> -owide

2. Find the status of the APIDescriptor CR.

kubectl get apidescriptor <api-apidescriptor-name> -o jsonpath='{.status.condit

ions}'

3. Read logs from the api-auto-registration controller.

Tanzu Application Platform v1.4

VMware by Broadcom 561

https://fetch.spec.whatwg.org/#http-cors-protocol
https://spring.io/blog/2015/06/08/cors-support-in-spring-framework


kubectl -n api-auto-registration logs deployment.apps/api-auto-registration-con

troller

4. Patch an APIDescriptor that is stuck in Deleting mode.

This might happen if the controller package is uninstalled before you clean up the
APIDescriptor resources. You can reinstall the package and delete all the APIDescriptor
resources first, or run the following command for each stuck APIDescriptor resource.

kubectl patch apidescriptor <api-apidescriptor-name> -p '{"metadata":{"finalize

rs":null}}' --type=merge

APIDescriptor CRD shows message of connection refused but
service is up and running

In Tanzu Application Platform v1.4 and later, if your workloads use ClusterIssuer for the TLS
configuration or your API specifications location URL is secured using a custom CA, you might
encounter the following message.

Your APIDescription CRD shows a status and message similar to:

    Message:               Get "https://spring-petclinic.example.com/v3/api-docs": dia

l tcp 12.34.56.78:443: connect: connection refused

    Reason:                FailedToRetrieve

    Status:                False

    Type:                  APISpecResolved

    Last Transition Time:  2022-11-28T09:59:13Z

This might be due to your workloads using a custom Ingress issuer. To solve this issue, either:

Configure ca_cert_data following the instructions in Configure CA Cert Data.

Deactivate TLS by setting shared.ingress_issuer: "". VMware discourages this method.
Deactivating TLS reduces your ability to test plugin functionality and iterate quickly.

Configure CA Cert Data

1. Obtain the PEM Encoded crt file for your ClusterIssuer or TLS setup . You use this to
update the api-auto-registration package.

2. If you installed the API Auto Registration package through predefined profiles, you must
update the tap-values.yaml and update the Tanzu Application Platform installation. Place
the PEM encoded certificate into the shared.ca_cert_data key of the values file. See Install
your Tanzu Application Platform profile. Run the following command to update the package.

tanzu package installed update tap -p tap.tanzu.vmware.com -v <TAP_VERSION>  --

values-file tap-values.yaml -n tap-install

Where TAP-VERSION is the version of Tanzu Application Platform installed.

3. If you installed the API Auto Registration package as standalone, you must update the api-
auto-registration-values.yaml and then update the package. Place the PEM encoded

Note

If you manually remove the finalizers from the APIDescriptor resources, you
can have stale API entities within Tanzu Application Platform GUI that you
must manually deregister.

Tanzu Application Platform v1.4

VMware by Broadcom 562



certificate into the ca_cert_data key of the values file. Run to update the package.

tanzu package installed update api-auto-registration --version <API_AUTO_REGIST

RATION_VERSION> --namespace tap-install --values-file api-auto-registration-val

ues.yaml

You can find the available api-auto-registration versions by running:

tanzu package available list -n tap-install | grep 'API Auto Registration'

APIDescriptor CRD shows message of x509: certificate signed by
unknown authority but service is running

Your APIDescription CRD shows a status and message similar to:

    Message:               Put "https://tap-gui.tap.my-cluster.tapdemo.vmware.com/api/

catalog/immediate/entities": x509: certificate signed by unknown authority

    Reason:                Error

    Status:                False

    Type:                  Ready

    Last Transition Time:  2022-11-28T09:59:13Z

This is the same issue as connection refused described earlier.

Overview of API Validation and Scoring

API Validation and Scoring focuses on scanning and validating an OpenAPI specification. The API
specification is generated from the API Auto Registration. After an API is registered, the API
specification goes through static scan analysis and is validated. Based on the validation, a scoring is
provided to indicate the quality and health of the API specification as it relates to Documentation,
OpenAPI best practices, and Security. The Validation Analysis card on the API overview page
displays the summary of the scores. To learn more details about the scores, you can go to the
detailed view by clicking the MORE DETAILS link.

API Validation and Scoring helps you to ensure your APIs are secure and robust, by providing
feedback and recommendations early on in the software development life cycle. Based on the
feedback and recommendations, you can edit your API specifications, improve the scores and the
posture of your APIs and better understand how well the APIs are implemented.

Overview of API Validation and Scoring

API Validation and Scoring focuses on scanning and validating an OpenAPI specification. The API
specification is generated from the API Auto Registration. After an API is registered, the API
specification goes through static scan analysis and is validated. Based on the validation, a scoring is
provided to indicate the quality and health of the API specification as it relates to Documentation,
OpenAPI best practices, and Security. The Validation Analysis card on the API overview page
displays the summary of the scores. To learn more details about the scores, you can go to the
detailed view by clicking the MORE DETAILS link.

API Validation and Scoring helps you to ensure your APIs are secure and robust, by providing
feedback and recommendations early on in the software development life cycle. Based on the
feedback and recommendations, you can edit your API specifications, improve the scores and the
posture of your APIs and better understand how well the APIs are implemented.

Install API Validation and Scoring

Tanzu Application Platform v1.4

VMware by Broadcom 563



This topic tells you how to install API Validation and Scoring from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites

Before installing API Validation and Scoring, complete the following prerequisites:

1. Create a Tanzu Network account to download Tanzu Application Platform packages.

2. Provision Kubernetes cluster v1.22, v1.23 or v1.24 on Amazon Elastic Kubernetes Service.

3. Install Tanzu CLI.

4. Install kapp.

5. Install Kubernetes CLI. For more information, see Install Tools in the Kubernetes
documentation.

6. Deploy Cluster Essentials

Resource requirements

To deploy API Validation and Scoring package, your cluster must have at least:

5 nodes.

4 vCPUs available per node.

16 GB of RAM available per node.

100 GB of disk space available across all nodes.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. API Validation and Scoring depends on
VMware Tanzu Network for continued operation. If you don’t relocate the images, VMware Tanzu
Network offers no uptime guarantees. The option to skip relocation is documented for evaluation
and proof-of-concept only.

To relocate images from the VMware Tanzu Network registry to your registry:

1. Install Docker if it is not already installed.

2. Log in to your image registry by running:

docker login MY-REGISTRY

Where MY-REGISTRY is your own container registry.

3. Log in to the VMware Tanzu Network registry with your VMware Tanzu Network
credentials by running:

docker login registry.tanzu.vmware.com

4. Set up environment variables for installation use by running:

Note

The Installation of API scoring and validation package must be done on a
new cluster without any existing Tanzu Application Platform installations.

Tanzu Application Platform v1.4

VMware by Broadcom 564

https://network.tanzu.vmware.com/
https://carvel.dev/kapp/docs/v0.54.0/install/
https://kubernetes.io/docs/tasks/tools
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html


export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export APIX_VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER

MY-REGISTRY is your own container registry.

VERSION-NUMBER is your API Validation and Scoring package version. For example,
0.2.5

TARGET-REPOSITORY is your target repository, a folder/repository on MY-REGISTRY that
serves as the location for the installation files for API Validation and Scoring.

5. Install the Carvel tool imgpkg CLI.

To query for the available imgpkg CLI versions on VMWare Tanzu Network Registry, run:

imgpkg tag list -i registry.tanzu.vmware.com/tanzu-application-platform/apix | 

grep -v sha | sort -V

6. Relocate the images with the imgpkg CLI by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/apix:${APIX

_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/apix

Add the API Validation and Scoring package repository
Tanzu CLI packages are available on repositories. Adding the API Validation and Scoring package
repository makes the packages available for installation.

Relocate images to a registry is strongly recommended but not required for installation. If you skip
this step, you can use the following values to replace the corresponding variables:

INSTALL_REGISTRY_HOSTNAME is registry.tanzu.vmware.com

INSTALL_REPO is tanzu-application-platform

INSTALL_REGISTRY_USERNAME and INSTALL_REGISTRY_PASSWORD are the credentials to run
docker login registry.tanzu.vmware.com

APIX_VERSION is your API Validation and Scoring package version. For example, 0.2.5

To add the API Validation and Scoring package repository to your cluster:

1. Create a namespace called apix-install for deploying API Validation and Scoring package
by running:

kubectl create ns apix-install

This namespace keeps the objects grouped together logically.

2. Create a secret for adding the API Validation and Scoring package repository:

tanzu secret registry add tap-registry --username ${INSTALL_REGISTRY_USERNAME} 

--password ${INSTALL_REGISTRY_PASSWORD} --server ${INSTALL_REGISTRY_HOSTNAME} -

-export-to-all-namespaces --yes --namespace apix-install

3. Add the API Validation and Scoring package repository to the cluster by running:

Tanzu Application Platform v1.4

VMware by Broadcom 565

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path


tanzu package repository add apix-repository \

--url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/apix:${APIX_VERSION} \

--namespace apix-install

4. Verify the package installation by running:

tanzu package available list -n apix-install

If the package installed, expect to see the output that resembles the following:

NAME                         DISPLAY-NAME     SHORT_DESCRIPTION               L

ATEST-VERSION

apix.apps.tanzu.vmware.com   apix             apix.apps.tanzu.vmware.com      

0.2.5

5. Get the status of the API Validation and Scoring package repository by running:

tanzu package repository get apix-repository --namespace apix-install

For example:

~ %    tanzu package repository get apix-repository --namespace apix-install

NAME:          apix-repository

VERSION:       796582

REPOSITORY:    projects.registry.vmware.com/mazinger/apix

TAG:           0.2.5

STATUS:        Reconcile succeeded

REASON:

Verify the STATUS is Reconcile succeeded

Install

Follow these steps to install the API Validation and Scoring package:

1. To overwrite the default values when installing the package, create the apix-values.yaml
file:

apix:

 host: "HOST"

 backstage:

  host: "BACKSTAGE-HOST"

  port: "BACKSTAGE-PORT"

Where:

HOST is the hostname of the API Validation and Scoring GUI. It can be left empty ""
to use the default value.

BACKSTAGE-HOST is the Tanzu Application Platform GUI or Backstage host that you
want to point to. For example, https://tap-gui.view-cluster.com

BACKSTAGE-PORT is the Tanzu Application Platform GUI or Backstage port that you
want to point to. For example, 443

2. Install the API Validation and Scoring package using the Tanzu CLI by running:

tanzu package install apix -n apix-install -p apix.apps.tanzu.vmware.com -v ${A

PIX_VERSION} -f apix-values.yaml

3. Verify that STATUS is Reconcile succeeded by running:

Tanzu Application Platform v1.4

VMware by Broadcom 566



tanzu package installed get apix -n apix-install

If your package successfully reconciled, expect to see the output that resembles the
following::

NAME:                    apix

PACKAGE-NAME:            apix.apps.tanzu.vmware.com

PACKAGE-VERSION:         0.2.5

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Uninstall

Uninstall the API Validation and Scoring package by running:

tanzu package installed delete apix -n apix-install

For example:

% tanzu package installed delete apix -n apix-install

Deleting installed package 'apix' in namespace 'apix-install'. Are you sure? [y/N]: y

Uninstalling package 'apix' from namespace 'apix-install'

Getting package install for 'apix'

Deleting package install 'apix' from namespace 'apix-install'

'PackageInstall' resource deletion status: Deleting

Deleting admin role 'apix-apix-install-cluster-role'

Deleting role binding 'apix-apix-install-cluster-rolebinding'

Deleting secret 'apix-apix-install-values'

Deleting service account 'apix-apix-install-sa'

Uninstalled package 'apix' from namespace 'apix-install'

Use API Validation and Scoring to score your auto-
registered API

Use API Validation and Scoring to score your auto-
registered API
This topic tells you how an Auto Registered API is scored:

See Use API Auto Registration to deploy the workload.

Navigate to the Tanzu Application Platform GUI to view the API .

The Overview tab of your API in Tanzu Application Platform GUI shows the API scores.

To view more details about the Validation Analysis and the required improvements for your
API, click MORE DETAILS.

Tanzu Application Platform v1.4

VMware by Broadcom 567



Overview of API portal for VMware Tanzu

You can use API portal for VMware Tanzu to find APIs you can use in your own applications. You
can view detailed API documentation and try out an API to meet your needs. API portal assembles
its dashboard and detailed API documentation views by ingesting OpenAPI documentation from
the source URLs. An API portal operator can add any number of OpenAPI source URLs in a single
instance.

Getting started

To install the package without the predefined profiles of Tanzu Application Platform, see Install API
portal.

For information about API portal for VMware Tanzu, see API portal for VMware Tanzu.

For information about configuring the package, see Configuring API portal for VMware Tanzu on
Kubernetes.

API portal for VMware Tanzu supports:

Authentication through Single Sign-On (SSO)

API keys configuration and management

Secure communication using TLS

Overview of API portal for VMware Tanzu

Tanzu Application Platform v1.4

VMware by Broadcom 568

https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/1.3/api-portal/GUID-configuring-k8s.html


You can use API portal for VMware Tanzu to find APIs you can use in your own applications. You
can view detailed API documentation and try out an API to meet your needs. API portal assembles
its dashboard and detailed API documentation views by ingesting OpenAPI documentation from
the source URLs. An API portal operator can add any number of OpenAPI source URLs in a single
instance.

Getting started

To install the package without the predefined profiles of Tanzu Application Platform, see Install API
portal.

For information about API portal for VMware Tanzu, see API portal for VMware Tanzu.

For information about configuring the package, see Configuring API portal for VMware Tanzu on
Kubernetes.

API portal for VMware Tanzu supports:

Authentication through Single Sign-On (SSO)

API keys configuration and management

Secure communication using TLS

Install API portal for VMware Tanzu

This topic tells you how to install and update Tanzu API portal for VMware Tanzu from the Tanzu
Application Platform (commonly known as TAP) package repository.

Prerequisites

Before installing API portal:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install

To install the API portal package:

1. Confirm what versions of API portal are available to install by running:

tanzu package available list -n tap-install api-portal.tanzu.vmware.com

For example:

$ tanzu package available list api-portal.tanzu.vmware.com --namespace tap-inst

all

- Retrieving package versions for api-portal.tanzu.vmware.com...

  NAME                         VERSION  RELEASED-AT

  api-portal.tanzu.vmware.com  1.0.3    2021-10-13T00:00:00Z

2. (Optional) Gather values schema.

Note

Follow the steps in this topic if you do not want to use a profile to install API portal.
For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 569

https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/1.3/api-portal/GUID-configuring-k8s.html


tanzu package available get api-portal.tanzu.vmware.com/VERSION-NUMBER --values

-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed earlier.

For example:

$ tanzu package available get api-portal.tanzu.vmware.com/1.0.3 --values-schema 

--namespace tap-install

Retrieving package details for api-portal.tanzu.vmware.com/1.0.3...

3. (Optional) VMware recommends creating api-portal-values.yaml.

To overwrite the default values when installing the package, create a api-portal-
values.yaml file following the values schema.

4. Install API portal by running:

tanzu package install api-portal -n tap-install -p api-portal.tanzu.vmware.com 

-v $VERSION --values-file api-portal-values.yaml

For example:

$ tanzu package install api-portal -n tap-install -p api-portal.tanzu.vmware.co

m -v 1.0.3 --values-file api-portal-values.yaml

/ Installing package 'api-portal.tanzu.vmware.com'

| Getting namespace 'api-portal'

| Getting package metadata for 'api-portal.tanzu.vmware.com'

| Creating service account 'api-portal-api-portal-sa'

| Creating cluster admin role 'api-portal-api-portal-cluster-role'

| Creating cluster role binding 'api-portal-api-portal-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

Added installed package 'api-portal' in namespace 'tap-install'

5. Verify the package installation by running:

tanzu package installed get api-portal -n tap-install

Verify that STATUS is Reconcile succeeded:

kubectl get pods -n api-portal

Update the installation values for the api-portal package

To update the installation values for the api-portal package:

1. To overwrite the default values, create new values, or update the existing values, you need
an api-portal-values.yaml file. If you do not already have an existing values file, you can
extract the existing values by running:

tanzu package installed get api-portal -n tap-install -f api-portal-values.yaml

For reference, you can view the schema of the package:

Tanzu Application Platform v1.4

VMware by Broadcom 570



tanzu package available get apis.apps.tanzu.vmware.com/VERSION-NUMBER --values-

schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in the earlier step.

For example:

tanzu package available get api-portal.tanzu.vmware.com/1.2.5 --values-schema -

-namespace tap-install

2. Now, update the package using the Tanzu CLI:

tanzu package installed update api-auto-registration

--package-name apis.apps.tanzu.vmware.com

--namespace tap-install

--version $VERSION

--values-file api-portal-values.yaml

3. If you installed the API portal package as part of Tanzu Application Platform, you must
update the tap-values.yaml and update the installation of Tanzu Application Platform. See
Install your Tanzu Application Platform profile.

4. If you installed the API portal package as part of Tanzu Application Platform, you must
update the tap-values.yaml and update the TAP installation. See Install your Tanzu
Application Platform profile.

Overview of Application Accelerator

This topic tells you about the Application Accelerator component and architecture in Tanzu
Application Platform (commonly known as TAP).

Overview

Application Accelerator for VMware Tanzu helps you bootstrap developing your applications and
deploying them in a discoverable and repeatable way.

Enterprise Architects author and publish accelerator projects that provide developers and operators
in their organization ready-made, conforming code and configurations.

Published accelerator projects are maintained in Git repositories. You can then use Application
Accelerator to create new projects based on those accelerator projects.

The Application Accelerator user interface(UI) enables you to discover available accelerators,
configure them, and generate new projects to download.

Architecture

The following diagram of Accelerator components illustrates the Application Accelerator
architecture.

Note

You can update API portal as part of upgrading Tanzu Application Platform. See
Upgrading Tanzu Application Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 571



How does Application Accelerator work?

Application Accelerator allows you to generate new projects from files in Git repositories. An
accelerator.yaml file in the repository declares input options for the accelerator. This file also
contains instructions for processing the files when you generate a new project.

Accelerator custom resources (CRs) control which repositories appear in both the Tanzu Application
Platform Application Accelerator UI and in the Application Accelerator extension for VS Code. You
can maintain CRs by using Kubernetes tools such as kubectl or by using the Tanzu CLI accelerator
commands. The Accelerator controller reconciles the CRs with a Flux2 Source Controller to fetch
files from GitHub or GitLab.

The Application Accelerator web UI gives you a searchable list of accelerators to choose from. After
you select an accelerator, the UI presents text boxes for the options that are defined within the
accelerator.yaml of the selected accelerator.

Application Accelerator sends the input values to the Accelerator Engine for processing. (Optional)
The user can choose to have a new Git repository created as part of the project creation process.
The Engine then returns the project in a ZIP file. If the project was generated using the Application
Accelerator extension for VS Code, the project automatically be extracted to the directory location
of your choice on your local machine. You can then open the project in your favorite integrated
development environment (IDE) to develop further.

Next steps

Learn more about:

Creating Accelerators

Overview of Application Accelerator

This topic tells you about the Application Accelerator component and architecture in Tanzu
Application Platform (commonly known as TAP).

Overview

Tanzu Application Platform v1.4

VMware by Broadcom 572



Application Accelerator for VMware Tanzu helps you bootstrap developing your applications and
deploying them in a discoverable and repeatable way.

Enterprise Architects author and publish accelerator projects that provide developers and operators
in their organization ready-made, conforming code and configurations.

Published accelerator projects are maintained in Git repositories. You can then use Application
Accelerator to create new projects based on those accelerator projects.

The Application Accelerator user interface(UI) enables you to discover available accelerators,
configure them, and generate new projects to download.

Architecture

The following diagram of Accelerator components illustrates the Application Accelerator
architecture.

How does Application Accelerator work?

Application Accelerator allows you to generate new projects from files in Git repositories. An
accelerator.yaml file in the repository declares input options for the accelerator. This file also
contains instructions for processing the files when you generate a new project.

Accelerator custom resources (CRs) control which repositories appear in both the Tanzu Application
Platform Application Accelerator UI and in the Application Accelerator extension for VS Code. You
can maintain CRs by using Kubernetes tools such as kubectl or by using the Tanzu CLI accelerator
commands. The Accelerator controller reconciles the CRs with a Flux2 Source Controller to fetch
files from GitHub or GitLab.

The Application Accelerator web UI gives you a searchable list of accelerators to choose from. After
you select an accelerator, the UI presents text boxes for the options that are defined within the
accelerator.yaml of the selected accelerator.

Application Accelerator sends the input values to the Accelerator Engine for processing. (Optional)
The user can choose to have a new Git repository created as part of the project creation process.
The Engine then returns the project in a ZIP file. If the project was generated using the Application
Accelerator extension for VS Code, the project automatically be extracted to the directory location
of your choice on your local machine. You can then open the project in your favorite integrated
development environment (IDE) to develop further.

Tanzu Application Platform v1.4

VMware by Broadcom 573



Next steps

Learn more about:

Creating Accelerators

Install Application Accelerator

This topic tells you how to install Application Accelerator from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites
Before installing Application Accelerator:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Flux SourceController on the cluster. See Install Flux CD Source Controller.

Install Source Controller on the cluster. See Install Source Controller.

Configure properties and resource use
When you install the Application Accelerator, you can configure the following optional properties
from within your .yaml configuration file:

Property Default Description

registry.secret_ref registry.tanzu<.vmware.com The secret used for accessing the registry where the App-
Accelerator images are located

server.service_type ClusterIP The service type for the acc-ui-server service including
LoadBalancer, NodePort, or ClusterIP

server.watched_namesp
ace

accelerator-system The namespace the server watches for accelerator
resources

server.engine_invocatio
n_url

http://acc-engine.accelerator-
system.svc.cluster.local/invoc
ations

The URL to use for invoking the accelerator engine

engine.service_type ClusterIP The service type for the acc-engine service including
LoadBalancer, NodePort, or ClusterIP

engine.max_direct_me
mory_size

32M The maximum size for the Java -XX:MaxDirectMemorySize
setting

samples.include True Option to include the bundled sample Accelerators in the
installation

ingress.include False Option to include the ingress configuration in the
installation

ingress.enable_tls False Option to include TLS for the ingress configuration

Note

Follow the steps in this topic if you do not want to use a profile to install Application
Accelerator. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 574



Property Default Description

domain tap.example.com Top-level domain to use for ingress configuration, default
is shared.ingress_domain

tls.secret_name tls The name of the secret

tls.namespace tanzu-system-ingress The namespace for the secret

telemetry.retain_invocat
ion_events_for_no_day
s

30 The number of days to retain recorded invocation events
resources

telemetry.record_invoca
tion_events

true The system records each engine invocation when
generating files for an accelerator?

git_credentials.secret_n
ame

git-credentials The name to use for the secret storing Git credentials for
accelerators

git_credentials.usernam
e

null The user name to use in secret storing Git credentials for
accelerators

git_credentials.passwor
d

null The password to use in secret storing Git credentials for
accelerators

git_credentials.ca_file null The CA certificate data to use in secret storing Git
credentials for accelerators

managed_resources.ena
ble

false Whether to enable the App used to control managed
accelerator resources

managed_resources.git.
url

none Required if managed_resources are enabled. Git
repository URL containing manifests for managed
accelerator resources

managed_resources.git.r
ef

origin/main Required if managed_resources are enabled. Git ref to use
for repository containing manifests for managed
accelerator resources

managed_resources.git.
sub_path

null Git subPath to use for repository containing manifests for
managed accelerator resources

managed_resources.git.
secret_ref

git-credentials Secret name to use for repository containing manifests for
managed accelerator resources

VMware recommends that you do not override the default setting for registry.secret_ref,
server.engine_invocation_url, or engine.service_type. These properties are only used to
configure non-standard installations.

The following table is the resource use configurations for the components of Application
Accelerator.

Component Resource requests Resource limits

acc-controller CPU: 100m
memory: 20Mi

CPU: 100m
memory: 30Mi

acc-server CPU: 100m
memory:20Mi

CPU: 100m
memory: 30Mi

acc-engine CPU: 500m
memory: 1Gi

CPU: 500m
memory: 2Gi

Install

To install Application Accelerator:

Tanzu Application Platform v1.4

VMware by Broadcom 575



1. List version information for the package by running:

tanzu package available list accelerator.apps.tanzu.vmware.com --namespace tap-

install

For example:

$ tanzu package available list accelerator.apps.tanzu.vmware.com --namespace ta

p-install

- Retrieving package versions for accelerator.apps.tanzu.vmware.com...

  NAME                               VERSION  RELEASED-AT

  accelerator.apps.tanzu.vmware.com  1.4.0    2022-12-08 12:00:00 -0500 EST

2. (Optional) To make changes to the default installation settings, run:

tanzu package available get "accelerator.apps.tanzu.vmware.com/${ACCELERATOR_VE

RSION_NUMBER}" --values-schema --namespace tap-install

Where ACCELERATOR-VERSION-NUMBER is the version of the Accelerator package that was
listed earlier.

For example:

tanzu package available get accelerator.apps.tanzu.vmware.com/1.4.0 --values-sc

hema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

3. Create an app-accelerator-values.yaml using the following example code:

server:

  service_type: "LoadBalancer"

  watched_namespace: "accelerator-system"

samples:

  include: true

Edit the values if needed or leave the default values.

4. (Optional) For clusters that do not support the LoadBalancer service type, override the
default value for server.service_type. For example:

server:

  service_type: "ClusterIP"

  watched_namespace: "accelerator-system"

samples:

  include: true

5. Install the package by running:

tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 

${ACCELERATOR_VERSION_NUMBER} -n tap-install -f app-accelerator-values.yaml

Where ACCELERATOR-VERSION-NUMBER is the version of the Application Accelerator package
included with the Tanzu Application Platform installation.

For example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 

1.4.0 -n tap-install -f app-accelerator-values.yaml

- Installing package 'accelerator.apps.tanzu.vmware.com'

| Getting package metadata for 'accelerator.apps.tanzu.vmware.com'

| Creating service account 'app-accelerator-tap-install-sa'

Tanzu Application Platform v1.4

VMware by Broadcom 576



| Creating cluster admin role 'app-accelerator-tap-install-cluster-role'

| Creating cluster role binding 'app-accelerator-tap-install-cluster-rolebindin

g'

| Creating secret 'app-accelerator-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'app-accelerator' in namespace 'tap-install'

6. Verify the package install by running:

tanzu package installed get app-accelerator -n tap-install

For example:

$ tanzu package installed get app-accelerator -n tap-install

| Retrieving installation details for cc...

NAME:                    app-accelerator

PACKAGE-NAME:            accelerator.apps.tanzu.vmware.com

PACKAGE-VERSION:         1.4.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

7. To see the IP address for the Application Accelerator API when the server.service_type is
set to LoadBalancer, run:

kubectl get service -n accelerator-system

This lists an external IP address for use with the --server-url Tanzu CLI flag for the
Accelerator plug-in generate & generate-from-local command.

Troubleshooting

Depending on the error output, there are some actions that you can take.

Verify installed packages

The package might be already installed. Verify this by running:

tanzu package installed list -n tap-install

Look for any package called accelerator.apps.tanzu.vmware.com.

Look at resource events

The error might be within the custom resources such as accelerator, Git repository, fragment, and
so on. These errors are checked by using Kubernetes command line interface tool (kubectl).

Here is an example using the custom resource accelerator:

kubectl get acc -n accelerator-system.

It displays the output:

NAME                       READY   REASON     AGE

appsso-starter-java        True    Ready      5h2m

where-for-dinner           True    Ready      5h2m

java-function              True    Ready      5h2m

java-rest-service          True    Ready      5h2m

java-server-side-ui        True    Ready      5h2m

Tanzu Application Platform v1.4

VMware by Broadcom 577



node-express               True    Ready      5h2m

node-function              False   Not-Ready  5h2m

python-function            True    Ready      5h2m

spring-cloud-serverless    True    Ready      5h2m

spring-smtp-gateway        True    Ready      5h2m

tanzu-java-web-app         True    Ready      5h2m

tap-initialize             True    Ready      5h2m

weatherforecast-csharp     True    Ready      5h2m

weatherforecast-steeltoe   True    Ready      5h2m

To verify the error event, run:

kubectl get acc node-function -n accelerator-system -o yaml

You can then look at the event section for more information about the error.

Configure Application Accelerator

This topic tells you about advanced configuration options available for Application Accelerator in
Tanzu Application Platform (commonly known as TAP). This includes configuring Git-Ops style
deployments of accelerators and configurations for use with non-public repositories and in air-
gapped environments.

Overview

Accelerators are created either using the Tanzu CLI or by applying a YAML manifest using kubectl.
Another option is Using a Git-Ops style configuration for deploying a set of managed accelerators.

Application Accelerator pulls content from accelerator source repositories using either the “Flux
SourceController” or the “Tanzu Application Platform Source Controller” components. If the
repository used is accessible anonymously from a public server, you do not have to configure
anything additional. Otherwise, provide authentication as explained in Using non-public
repositories. There are also options for making these configurations easier explained in Configuring
tap-values.yaml with Git credentials secret

Using a Git-Ops style configuration for deploying a set of
managed accelerators
To enable a Git-Ops style of managing resources used for deploying accelerators, there is a new set
of properties for the Application Accelerator configuration. The resources are managed using a
Carvel kapp-controller App in the accelerator-system namespace that watches a Git repository
containing the manifests for the accelerators. This means that you can make changes to the
manifests, or to the accelerators they point to, and the changes are reconciled and reflected in the
deployed resources.

You can specify the following accelerator configuration properties when installing the Application
Accelerator. The same properties are provided in the accelerator section of the tap-values.yaml
file:

accelerator:

  managed_resources:

    enable: true

    git:

      url: GIT-REPO-URL

      ref: origin/main

      sub_path: null

      secret_ref: git-credentials

Where:

Tanzu Application Platform v1.4

VMware by Broadcom 578



GIT-REPO-URL is the URL of a Git repository that contains manifest YAML files for the
accelerators that you want to have managed. The URL must start with https:// or git@.
You can specify a sub_path if necessary and also a secret_ref if the repository requires
authentication. If not needed, then leave these additional properties out.

For more information, see Configure tap-values.yaml with Git credentials secret and
Creating a manifest with multiple accelerators and fragments in this topic.

Functional and Organizational Considerations

Any accelerator manifest that is defined under the GIT-REPO-URL and optional sub_path is selected
by the kapp-controller app. If there are multiple manifests at the defined GIT-REPO-URL, they are all
watched for changes and displayed to the user as a merged catalog.

For example: if you have two manifests containing multiple accelerator or fragment definitions,
manifest-1.yaml, and manifest-2.yaml, on the same path in the organizational considerations. The
resulting catalog is (manifest-1.yaml + manifest-2.yaml).

Examples for creating accelerators

A minimal example for creating an accelerator

A minimal example might look like the following manifest:

spring-cloud-serverless.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: spring-cloud-serverless

spec:

  git:

    url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: spring-cloud-serverless

    ref:

      branch: main

This example creates an accelerator named spring-cloud-serverless. The displayName,
description, iconUrl, and tags text boxes are populated based on the content under the
accelerator key in the accelerator.yaml file found in the main branch of the Git repository at
Application Accelerator Samples under the sub-path spring-cloud-serverless. For example:

accelerator.yaml

accelerator:

  displayName: Spring Cloud Serverless

  description: A simple Spring Cloud Function serverless app

  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

  tags:

  - java

  - spring

  - cloud

  - function

  - serverless

  - tanzu

...

To create this accelerator with kubectl, run:

kubectl apply --namespace --accelerator-system --filename spring-cloud-serverless.yaml

Tanzu Application Platform v1.4

VMware by Broadcom 579

https://github.com/vmware-tanzu/application-accelerator-samples


Or, you can use the Tanzu CLI and run:

tanzu accelerator create spring-cloud-serverless --git-repo https://github.com/vmware-

tanzu/application-accelerator-samples.git --git-branch main --git-sub-path spring-clou

d-serverless

An example for creating an accelerator with customized properties

You can specify the displayName, description, iconUrl, and tags text boxes and this overrides any
values provided in the accelerator’s Git repository. The following example explicitly sets those text
boxes and the ignore text box:

my-spring-cloud-serverless.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: my-spring-cloud-serverless

spec:

  displayName: My Spring Cloud Serverless

  description: My own Spring Cloud Function serverless app

  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

  tags:

    - spring

    - cloud

    - function

    - serverless

  git:

    ignore: ".git/, bin/"

    url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: spring-cloud-serverless

    ref:

      branch: test

To create this accelerator with kubectl, run:

kubectl apply --namespace --accelerator-system --filename my-spring-cloud-serverless.y

aml

To use the Tanzu CLI, run:

tanzu accelerator create my-spring-cloud-serverless --git-repo https://github.com/vmwa

re-tanzu/application-accelerator-samples --git-branch main --git-sub-path spring-cloud

-serverless \

  --description "My own Spring Cloud Function serverless app" \

  --display-name "My Spring Cloud Serverless" \

  --icon-url https://raw.githubusercontent.com/simple-starters/icons/master/icon-clou

d.png \

  --tags "spring,cloud,function,serverless"

Creating a manifest with multiple accelerators and fragments

You might have a manifest that contains multiple accelerators or fragments. For example:

accelerator-collection.yaml

Note

It is not possible to provide the git.ignore option with the Tanzu CLI.

Tanzu Application Platform v1.4

VMware by Broadcom 580



---

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: spring-cloud-serverless

spec:

  git:

    url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: spring-cloud-serverless

    ref:

      branch: main

---

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: tanzu-java-web-app

spec:

  git:

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    subPath: tanzu-java-web-app

    ref:

      branch: main

For a larger example of this, see Sample Accelerators Main. Optionally, use this to create an initial
catalog of accelerators and fragments during a fresh Application Accelerator install.

Configure tap-values.yaml with Git credentials secret

When deploying accelerators using Git repositories that requires authentication or are installed with
custom CA certificates, you must provide some additional authentication values in a secret. The
examples in the next section provide more details. This section describes how to configure a Git
credentials secret that is used in later Git-based examples.

You can specify the following accelerator configuration properties when installing Application
Accelerator. The same properties are provided in the accelerator section of the tap-values.yaml
file:

accelerator:

  git_credentials:

    secret_name: git-credentials

    username: GIT-USER-NAME

    password: GIT-CREDENTIALS

    ca_file: CUSTOM-CA-CERT

Where:

GIT-USER-NAME is the user name for authenticating with the Git repository.

GIT-CREDENTIALS is the password or access token used for authenticating with the Git
repository. VMware recommends using an access token for this.

CUSTOM-CA-CERT is the certificate data needed when accessing the Git repository.

This is an example of this part of a tap-values.yaml configuration:

Note

For how to create a new OAuth Token for optional Git repository creation, see
Create an Application Accelerator Git repository during project creation.

Tanzu Application Platform v1.4

VMware by Broadcom 581

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/sample-accelerators-main.yaml


accelerator:

  git_credentials:

    secret_name: git-credentials

    username: testuser

    password: s3cret

    ca_file: |

      -----BEGIN CERTIFICATE-----

      .

      .

      .  < certificate data >

      .

      .

      -----END CERTIFICATE-----

You can specify the custom CA certificate data using the shared config value shared.ca_cert_data
and it propagates to all components that can make use of it, including the App Accelerator
configuration. The example earlier produces an output such as this using the shared value:

shared:

  ca_cert_data: |

    -----BEGIN CERTIFICATE-----

    .

    .

    .  < certificate data >

    .

    .

    -----END CERTIFICATE-----

accelerator:

  git_credentials:

    secret_name: git-credentials

    username: testuser

    password: s3cret

Using non-public repositories

For GitHub repositories that aren’t accessible anonymously, you must provide credentials in a
Secret.

For HTTPS repositories the secret must contain user name and password fields. The
password field can contain a personal access token instead of an actual password. For more
information, see Fluxcd/source-controller basic access authentication.

For HTTPS with self-signed certificates, you can add a .data.caFile value to the secret
created for HTTPS authentication. For more information, see fluxcd/source-controller
HTTPS Certificate Authority.

For SSH repositories, the secret must contain identity, identity.pub, and known_hosts text
boxes. For more information, see fluxcd/source-controller SSH authentication.

For Image repositories that aren’t publicly available, an image pull secret might be provided.
For more information, see Kubernetes documentation on using imagePullSecrets.

Examples for a private Git repository

Example using http credentials

To create an accelerator using a private Git repository, first create a secret with the HTTP
credentials.

Tanzu Application Platform v1.4

VMware by Broadcom 582

https://fluxcd.io/docs/components/source/gitrepositories/#basic-access-authentication
https://fluxcd.io/docs/components/source/gitrepositories/#https-certificate-authority
https://fluxcd.io/docs/components/source/gitrepositories/#ssh-authentication
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


kubectl create secret generic https-credentials \

    --namespace accelerator-system \

    --from-literal=username=<user> \

    --from-literal=password=<access-token>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system https-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

  name: https-credentials

  namespace: accelerator-system

type: Opaque

data:

  username: <BASE64>

  password: <BASE64>

After you created and verified the secret, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: private-acc

spec:

  displayName: private

  description: Accelerator using a private repository

  git:

    url: REPOSITORY-URL

    ref:

      branch: main

    secretRef:

      name: https-credentials

For https credentials, the REPOSITORY-URL must use https:// as the URL scheme.

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Example using http credentials with self-signed certificate

To create an accelerator using a private Git repository with a self-signed certificate, create a secret
with the HTTP credentials and the certificate.

Note

For better security, use an access token as the password.

Note

For better security, use an access token as the password.

Tanzu Application Platform v1.4

VMware by Broadcom 583



kubectl create secret generic https-ca-credentials \

    --namespace accelerator-system \

    --from-literal=username=<user> \

    --from-literal=password=<access-token> \

    --from-file=caFile=<path-to-CA-file>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system https-ca-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

  name: https-ca-credentials

  namespace: accelerator-system

type: Opaque

data:

  username: <BASE64>

  password: <BASE64>

  caFile: <BASE64>

After you have the secret created, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: private-acc

spec:

  displayName: private

  description: Accelerator using a private repository

  git:

    url: REPOSITORY-URL

    ref:

      branch: main

    secretRef:

      name: https-ca-credentials

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Example using SSH credentials

To create an accelerator using a private Git repository, create a secret with the SSH credentials
such as this example:

ssh-keygen -q -N "" -f ./identity

ssh-keyscan github.com > ./known_hosts

kubectl create secret generic ssh-credentials \

    --namespace accelerator-system \

    --from-file=./identity \

Important

For https credentials, the REPOSITORY-URL must use https:// as the URL scheme.

Tanzu Application Platform v1.4

VMware by Broadcom 584



    --from-file=./identity.pub \

    --from-file=./known_hosts

If you have a key file already created, skip the ssh-keygen and ssh-keyscan steps and replace the
values for the kubectl create secret command. Such as:

--from-file=identity=<path to your identity file>

--from-file=identity.pub=<path to your identity.pub file>

--from-file=known_hosts=<path to your know_hosts file>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system ssh-credentials -o yaml

The output is similar to :

apiVersion: v1

kind: Secret

metadata:

  name: ssh-credentials

  namespace: accelerator-system

type: Opaque

data:

  identity: <BASE64>

  identity.pub: <BASE64>

  known_hosts: <BASE64>

To use this secret when creating an accelerator, provide the secret name in the
spec.git.secretRef.name property:

private-acc-ssh.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: private-acc

spec:

  displayName: private

  description: Accelerator using a private repository

  git:

    url: REPOSITORY-URL

    ref:

      branch: main

    secretRef:

      name: ssh-credentials

When using SSH credentials, the REPOSITORY-URL must include the user name as part of the URL.
For example: ssh://user@example.com:22/repository.git. For more information, see Flux
documentation.

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Examples for a private source-image repository

If your registry uses a self-signed certificate then you must add the CA certificate data to the
configuration for the “Tanzu Application Platform Source Controller” component. Add it under
source_controller.ca_cert_data in your tap-values.yaml file that is used during installation.

tap-values.yaml

Tanzu Application Platform v1.4

VMware by Broadcom 585

https://fluxcd.io/flux/components/source/gitrepositories/#url


source_controller:

  ca_cert_data: |-

    -----BEGIN CERTIFICATE-----

    .

    .

    .  < certificate data >

    .

    .

    -----END CERTIFICATE-----

Example using image-pull credentials

To create an accelerator using a private source-image repository, create a secret with the image-
pull credentials:

create secret generic registry-credentials \

    --namespace accelerator-system \

    --from-literal=username=<user> \

    --from-literal=password=<password>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system registry-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

  name: registry-credentials

  namespace: accelerator-system

type: Opaque

data:

  username: <BASE64>

  password: <BASE64>

After you have the secret created, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: private-acc

spec:

  displayName: private

  description: Accelerator using a private repository

  source:

    image: "registry.example.com/test/private-acc-src:latest"

    imagePullSecrets:

    - name: registry-credentials

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Configure ingress timeouts when some accelerators take
longer to generate

Tanzu Application Platform v1.4

VMware by Broadcom 586



If Tanzu Application Platform is configured to use an ingress for Tanzu Application Platform GUI and
the Accelerator Server, then it might detect a timeout during accelerator generation. This can
happen if the accelerator takes a longer time to generate than the default timeout. When this
happens, Tanzu Application Platform GUI appears to continue to run for an indefinite period. In the
IDE extension, it shows a 504 error. To mitigate this, you can increase the timeout value for the
HTTPProxy resources used for the ingress by applying secrets with overlays to edit the HTTPProxy
resources.

Configure an ingress timeout overlay secret for each HTTPProxy

For Tanzu Application Platform GUI, create the following overlay secret in the tap-install
namespace:

apiVersion: v1

kind: Secret

metadata:

  name: patch-tap-gui-timeout

  namespace: tap-install

stringData:

  patch.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"kind": "HTTPProxy", "metadata": {"name": "tap-

gui"}})

    ---

    spec:

      routes:

        #@overlay/match by=overlay.subset({"services": [{"name": "server"}]})

        #@overlay/match-child-defaults missing_ok=True

        - timeoutPolicy:

            idle: 30s

            response: 30s

For Accelerator Server (used for IDE extension), create the following overlay secret in the tap-
install namespace:

apiVersion: v1

kind: Secret

metadata:

  name: patch-accelerator-timeout

  namespace: tap-install

stringData:

  patch.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"kind": "HTTPProxy", "metadata": {"name": "acce

lerator"}})

    ---

    spec:

      routes:

        #@overlay/match by=overlay.subset({"services": [{"name": "acc-server"}]})

        #@overlay/match-child-defaults missing_ok=True

        - timeoutPolicy:

            idle: 30s

            response: 30s

Apply the timeout overlay secrets in tap-values.yaml

Add the following package_overlays section to tap-values.yaml before installing or updating Tanzu
Application Platform:

package_overlays:

- name: tap-gui

Tanzu Application Platform v1.4

VMware by Broadcom 587



  secrets:

  - name: patch-tap-gui-timeout

- name: accelerator

  secrets:

  - name: patch-accelerator-timeout

Configuring skipping TLS verification for access to Source
Controller
You can configure the Flux or Tanzu Application Platform Source Controller to use Transport Layer
Security (TLS) and use custom certificates. In that case, configure the Accelerator System to skip
the TLS verification for calls to access the sources by providing the following property in the
accelerator section of the tap-values.yaml file:

sources:

  skip_tls_verify: true

Enabling TLS for Accelerator Server

To enable TLS for the Accelerator Server, the following properties must be provided in the
accelerator section of the tap-values.yaml file:

server:

  tls:

    enabled: true

    key: SERVER-PRIVATE-KEY

    crt: SERVER-CERTIFICATE

Where:

SERVER-PRIVATE-KEY is the pem encoded server private key.

SERVER-CERTIFICATE is the pem encoded server certificate.

Here is a sample tap-values.yaml configuration with TLS enabled for Accelerators Server:

server:

  tls:

    enabled: true

    key: |

      -----BEGIN PRIVATE KEY-----

      .

      .  < private key data >

      .

      -----END PRIVATE KEY-----

    crt: |

      -----BEGIN CERTIFICATE-----

      .

      .  < certificate data >

      .

      -----END CERTIFICATE-----

Configuring skipping TLS verification of Engine calls for
Accelerator Server

If you configure the Accelerator Engine to use TLS and use custom certificates, then you can
configure the Accelerator Server to skip the TLS verification for calls to the Engine by providing the
following property in the accelerator section of the tap-values.yaml file:

Tanzu Application Platform v1.4

VMware by Broadcom 588



server:

  engine_skip_tls_verify: true

Enabling TLS for Accelerator Engine

To enable TLS for the Accelerator Engine, the following properties are provided in the accelerator
section of the tap-values.yaml file:

engine:

  tls:

    enabled: true

    key: ENGINE-PRIVATE-KEY

    crt: ENGINE-CERTIFICATE

Where:

ENGINE-PRIVATE-KEY is the pem encoded acc-engine private key.

ENGINE-CERTIFICATE is the pem encoded acc-engine certificate.

Here is a sample tap-values.yaml configuration with TLS enabled for Accelerators Engine:

engine:

  tls:

    enabled: true

    key: |

      -----BEGIN PRIVATE KEY-----

      .

      .  < private key data >

      .

      -----END PRIVATE KEY-----

    crt: |

      -----BEGIN CERTIFICATE-----

      .

      .  < certificate data >

      .

      -----END CERTIFICATE-----

Next steps
Creating accelerators

Create accelerators
This topic tells you how to create an accelerator in Tanzu Application Platform GUI.

An accelerator contains your conforming code and configurations that developers can use to create
new projects that by default follow the standards defined in your accelerators.

Prerequisites
The following prerequisites are required to create an accelerator:

Application Accelerator is installed. For information about installing Application Accelerator,
see Installing Application Accelerator for VMware Tanzu.

You can access Tanzu Application Platform GUI from a browser or use the Application
Accelerator extension for VS Code.

For more information about Tanzu Application Platform GUI, see Overview of Tanzu
Application Platform GUI.

Tanzu Application Platform v1.4

VMware by Broadcom 589



For more information about Application Accelerator extension for VS Code, see
Application Accelerator Visual Studio Code extension.

kubectl is installed and authenticated with admin rights for your target cluster.

Getting started

You can use any Git repository to create an accelerator. You need the URL of the repository to
create an accelerator.

For this example, the Git repository is public and contains a README.md file. These are options
available when you create repositories on GitHub.

Use the following procedure to create an accelerator based on this Git repository:

1. Clone your Git repository.

2. Create a file named accelerator.yaml in the root directory of this Git repository.

3. Add the following content to the accelerator.yaml file:

accelerator:

  displayName: Simple Accelerator

  description: Contains just a README

  iconUrl: https://images.freecreatives.com/wp-content/uploads/2015/05/smiley-5

59124_640.jpg

  tags:

  - simple

  - getting-started

Feel free to use a different icon if it uses a reachable URL.

4. Add the new accelerator.yaml file, commit this change and push to your Git repository.

Publishing the new accelerator

1. To publish your new accelerator, run:

tanzu accelerator create simple --git-repository ${GIT_REPOSITORY_URL} --git-br

anch ${GIT_REPOSITORY_BRANCH}

Where:

GIT-REPOSITORY-URL is the URL for your Git repository where the accelerator is
located.

GIT-REPOSITORY-BRANCH is the name of the branch where you pushed the new
accelerator.yaml file.

2. Refresh Tanzu Application Platform GUI or the Application Accelerator extension in VS
Code to reveal the newly published accelerator. It might take a few seconds to refresh the
catalog and add an entry for your new accelerator.

Tanzu Application Platform v1.4

VMware by Broadcom 590



Alternatively, use the Tanzu CLI to create a separate manifest file and apply it to the cluster.

1. Create a simple-manifest.yaml file and add the following content, filling in with your Git
repository and branch values.

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: simple

  namespace: accelerator-system

spec:

  git:

    url: YOUR-GIT-REPOSITORY-URL

    ref:

      branch: YOUR-GIT-BRANCH

2. To apply the simple-manifest.yaml, run this command in your terminal in the directory
where you created this file:

tanzu accelerator apply -f simple-manifest.yaml

Using local-path for publishing accelerators

You can publish an accelerator directly from a local directory on your system. This helps when
authoring accelerators and allows you to avoid having to commit every small change to a remote
Git repository. You can also specify --interval so the accelerator is reconciled quicker when
VMware push new changes.

tanzu accelerator create simple --local-path ${ACCELERATOR_PATH} --source-image ${SOUR

CE_IMAGE_REPO} --interval 10s

Where:

ACCELERATOR-PATH is the path to the accelerator source. It is a fully qualified or a relative
path. If your current directory is already the directory where your source is, then use “.”.

SOURCE-IMAGE-REPO is the name of the OCI image repository where you want to push the
new accelerator source. If using Docker Hub, use something such as
docker.io/YOUR_DOCKER_ID/simple-accelerator-source.

After you have made any additional changes, you can push the latest to the same OCI image
repository using:

Tanzu Application Platform v1.4

VMware by Broadcom 591



tanzu accelerator push --local-path ${ACCELERATOR_PATH} --source-image ${SOURCE_IMAGE_

REPO}

The accelerator now reflects the new content after approximately a 10-second wait as specified in
the previous command.

Using accelerator fragments

Accelerator fragments are reusable accelerator components that can provide options, files, or
transforms. They can be imported from accelerators using an import entry and the transforms from
the fragment can be referenced in an InvokeFragment transform in the accelerator that is declaring
the import. For additional details see InvokeFragment transform.

The accelerator samples include three fragments - java-version, tap-initialize, and live-
update. See vmware-tanzu/application-accelerator-samples/fragments Git repository for the
content of these fragments.

To discover what fragments are available to use, run:

tanzu accelerator fragment list

Look a the java-version fragment as an example. It contains the following accelerator.yaml file:

accelerator:

  options:

  - name: javaVersion

    inputType: select

    label: Java version to use

    choices:

    - value: "1.8"

      text: Java 8

    - value: "11"

      text: Java 11

    - value: "17"

      text: Java 17

    defaultValue: "11"

    required: true

engine:

  merge:

    - include: [ "pom.xml" ]

      chain:

      - type: ReplaceText

        regex:

          pattern: "<java.version>.*<"

          with: "'<java.version>' + #javaVersion + '<'"

    - include: [ "build.gradle" ]

      chain:

      - type: ReplaceText

        regex:

          pattern: "sourceCompatibility = .*"

          with: "'sourceCompatibility = ''' + #javaVersion + ''''"

    - include: [ "config/workload.yaml" ]

      chain:

      - type: ReplaceText

        condition: "#javaVersion == '17'"

        substitutions:

          - text: "spec:"

            with: "'spec:\n  build:\n    env:\n    - name: BP_JVM_VERSION\n      valu

e: \"17\"'"

This fragment contributes the following to any accelerator that imports it:

Tanzu Application Platform v1.4

VMware by Broadcom 592

https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.3/fragments


1. An option named javaVersion with three choices Java 8, Java 11, and Java 17

2. Three ReplaceText transforms:

If the accelerator has a pom.xml file, then what is specified for <java.version> is
replaced with the chosen version.

If the accelerator has a build.gradle file, then what is specified for
sourceCompatibility is replaced with the chosen version.

If the accelerator has a config/workload.yaml file, and the user selected “Java 17”
then a build environment entry of BP_JVM_VERSION is inserted into the spec:
section.

Deploying accelerator fragments

To deploy new fragments to the accelerator system, use the new tanzu accelerator fragment
create CLI command or apply a custom resource manifest file with either kubectl apply or the
tanzu accelerator apply commands.

The resource manifest for the java-version fragment looks like this:

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Fragment

metadata:

  name: java-version

  namespace: accelerator-system

spec:

  displayName: Select Java Version

  git:

    ref:

      tag: GIT_TAG_VERSION

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    subPath: fragments/java-version

Where GIT-TAG-VERSION is the Git tag of the java-version fragment. For example, tap-1.4.0 is a
valid Git tag for the java-version fragment.

To create the fragment, save the above manifest in a java-version.yaml file) and run:

tanzu accelerator apply -f ./java-version.yaml

To avoid having to create a separate manifest file, run:

tanzu accelerator fragment create java-version \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples.git \

  --git-tag ${GIT_TAG_VERSION} \

  --git-sub-path fragments/java-version

Where GIT-TAG-VERSION is the Git tag of the java-version fragment. For example,tap-1.4.0 is a
valid Git tag for the java-version fragment.

Now you can use this java-version fragment in an accelerator:

Note

The accelerator apply command can be used to apply both Accelerator and
Fragment resources.

Tanzu Application Platform v1.4

VMware by Broadcom 593



accelerator:

  displayName: Hello Fragment

  description: A sample app

  tags:

  - java

  - spring

  - cloud

  - tanzu

  imports:

  - name: java-version

engine:

  merge:

    - include: ["**/*"]

    - type: InvokeFragment

      reference: java-version

The earlier accelerator imports the java-version which, as seen earlier, provides an option to
select the Java version to use for the project. It then instructs the engine to run the transforms
provided in the fragment that updates the Java version used in pom.xml or build.gradle files from
the accelerator.

For more detail on the use of fragments, see InvokeFragment transform.

Next steps

Learn how to:

Write an accelerator.yaml.

Configure accelerators with Accelerator Custom Resources.

Manipulate files using Transforms.

Use SpEL in the accelerator.yaml file.

Create accelerators

This topic tells you how to create an accelerator in Tanzu Application Platform GUI.

An accelerator contains your conforming code and configurations that developers can use to create
new projects that by default follow the standards defined in your accelerators.

Prerequisites

The following prerequisites are required to create an accelerator:

Application Accelerator is installed. For information about installing Application Accelerator,
see Installing Application Accelerator for VMware Tanzu.

You can access Tanzu Application Platform GUI from a browser or use the Application
Accelerator extension for VS Code.

For more information about Tanzu Application Platform GUI, see Overview of Tanzu
Application Platform GUI.

For more information about Application Accelerator extension for VS Code, see
Application Accelerator Visual Studio Code extension.

kubectl is installed and authenticated with admin rights for your target cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 594



Getting started

You can use any Git repository to create an accelerator. You need the URL of the repository to
create an accelerator.

For this example, the Git repository is public and contains a README.md file. These are options
available when you create repositories on GitHub.

Use the following procedure to create an accelerator based on this Git repository:

1. Clone your Git repository.

2. Create a file named accelerator.yaml in the root directory of this Git repository.

3. Add the following content to the accelerator.yaml file:

accelerator:

  displayName: Simple Accelerator

  description: Contains just a README

  iconUrl: https://images.freecreatives.com/wp-content/uploads/2015/05/smiley-5

59124_640.jpg

  tags:

  - simple

  - getting-started

Feel free to use a different icon if it uses a reachable URL.

4. Add the new accelerator.yaml file, commit this change and push to your Git repository.

Publishing the new accelerator
1. To publish your new accelerator, run:

tanzu accelerator create simple --git-repository ${GIT_REPOSITORY_URL} --git-br

anch ${GIT_REPOSITORY_BRANCH}

Where:

GIT-REPOSITORY-URL is the URL for your Git repository where the accelerator is
located.

GIT-REPOSITORY-BRANCH is the name of the branch where you pushed the new
accelerator.yaml file.

2. Refresh Tanzu Application Platform GUI or the Application Accelerator extension in VS
Code to reveal the newly published accelerator. It might take a few seconds to refresh the
catalog and add an entry for your new accelerator.

Tanzu Application Platform v1.4

VMware by Broadcom 595



Alternatively, use the Tanzu CLI to create a separate manifest file and apply it to the cluster.

1. Create a simple-manifest.yaml file and add the following content, filling in with your Git
repository and branch values.

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: simple

  namespace: accelerator-system

spec:

  git:

    url: YOUR-GIT-REPOSITORY-URL

    ref:

      branch: YOUR-GIT-BRANCH

2. To apply the simple-manifest.yaml, run this command in your terminal in the directory
where you created this file:

tanzu accelerator apply -f simple-manifest.yaml

Using local-path for publishing accelerators

You can publish an accelerator directly from a local directory on your system. This helps when
authoring accelerators and allows you to avoid having to commit every small change to a remote
Git repository. You can also specify --interval so the accelerator is reconciled quicker when
VMware push new changes.

tanzu accelerator create simple --local-path ${ACCELERATOR_PATH} --source-image ${SOUR

CE_IMAGE_REPO} --interval 10s

Where:

ACCELERATOR-PATH is the path to the accelerator source. It is a fully qualified or a relative
path. If your current directory is already the directory where your source is, then use “.”.

SOURCE-IMAGE-REPO is the name of the OCI image repository where you want to push the
new accelerator source. If using Docker Hub, use something such as
docker.io/YOUR_DOCKER_ID/simple-accelerator-source.

After you have made any additional changes, you can push the latest to the same OCI image
repository using:

Tanzu Application Platform v1.4

VMware by Broadcom 596



tanzu accelerator push --local-path ${ACCELERATOR_PATH} --source-image ${SOURCE_IMAGE_

REPO}

The accelerator now reflects the new content after approximately a 10-second wait as specified in
the previous command.

Using accelerator fragments

Accelerator fragments are reusable accelerator components that can provide options, files, or
transforms. They can be imported from accelerators using an import entry and the transforms from
the fragment can be referenced in an InvokeFragment transform in the accelerator that is declaring
the import. For additional details see InvokeFragment transform.

The accelerator samples include three fragments - java-version, tap-initialize, and live-
update. See vmware-tanzu/application-accelerator-samples/fragments Git repository for the
content of these fragments.

To discover what fragments are available to use, run:

tanzu accelerator fragment list

Look a the java-version fragment as an example. It contains the following accelerator.yaml file:

accelerator:

  options:

  - name: javaVersion

    inputType: select

    label: Java version to use

    choices:

    - value: "1.8"

      text: Java 8

    - value: "11"

      text: Java 11

    - value: "17"

      text: Java 17

    defaultValue: "11"

    required: true

engine:

  merge:

    - include: [ "pom.xml" ]

      chain:

      - type: ReplaceText

        regex:

          pattern: "<java.version>.*<"

          with: "'<java.version>' + #javaVersion + '<'"

    - include: [ "build.gradle" ]

      chain:

      - type: ReplaceText

        regex:

          pattern: "sourceCompatibility = .*"

          with: "'sourceCompatibility = ''' + #javaVersion + ''''"

    - include: [ "config/workload.yaml" ]

      chain:

      - type: ReplaceText

        condition: "#javaVersion == '17'"

        substitutions:

          - text: "spec:"

            with: "'spec:\n  build:\n    env:\n    - name: BP_JVM_VERSION\n      valu

e: \"17\"'"

This fragment contributes the following to any accelerator that imports it:

Tanzu Application Platform v1.4

VMware by Broadcom 597

https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.3/fragments


1. An option named javaVersion with three choices Java 8, Java 11, and Java 17

2. Three ReplaceText transforms:

If the accelerator has a pom.xml file, then what is specified for <java.version> is
replaced with the chosen version.

If the accelerator has a build.gradle file, then what is specified for
sourceCompatibility is replaced with the chosen version.

If the accelerator has a config/workload.yaml file, and the user selected “Java 17”
then a build environment entry of BP_JVM_VERSION is inserted into the spec:
section.

Deploying accelerator fragments

To deploy new fragments to the accelerator system, use the new tanzu accelerator fragment
create CLI command or apply a custom resource manifest file with either kubectl apply or the
tanzu accelerator apply commands.

The resource manifest for the java-version fragment looks like this:

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Fragment

metadata:

  name: java-version

  namespace: accelerator-system

spec:

  displayName: Select Java Version

  git:

    ref:

      tag: GIT_TAG_VERSION

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    subPath: fragments/java-version

Where GIT-TAG-VERSION is the Git tag of the java-version fragment. For example, tap-1.4.0 is a
valid Git tag for the java-version fragment.

To create the fragment, save the above manifest in a java-version.yaml file) and run:

tanzu accelerator apply -f ./java-version.yaml

To avoid having to create a separate manifest file, run:

tanzu accelerator fragment create java-version \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples.git \

  --git-tag ${GIT_TAG_VERSION} \

  --git-sub-path fragments/java-version

Where GIT-TAG-VERSION is the Git tag of the java-version fragment. For example,tap-1.4.0 is a
valid Git tag for the java-version fragment.

Now you can use this java-version fragment in an accelerator:

Note

The accelerator apply command can be used to apply both Accelerator and
Fragment resources.

Tanzu Application Platform v1.4

VMware by Broadcom 598



accelerator:

  displayName: Hello Fragment

  description: A sample app

  tags:

  - java

  - spring

  - cloud

  - tanzu

  imports:

  - name: java-version

engine:

  merge:

    - include: ["**/*"]

    - type: InvokeFragment

      reference: java-version

The earlier accelerator imports the java-version which, as seen earlier, provides an option to
select the Java version to use for the project. It then instructs the engine to run the transforms
provided in the fragment that updates the Java version used in pom.xml or build.gradle files from
the accelerator.

For more detail on the use of fragments, see InvokeFragment transform.

Next steps

Learn how to:

Write an accelerator.yaml.

Configure accelerators with Accelerator Custom Resources.

Manipulate files using Transforms.

Use SpEL in the accelerator.yaml file.

Create an accelerator.yaml file in Application Accelerator

This topic tells you how to use Application Accelerator to create an accelerator.yaml file in Tanzu
Appplication Platform (commonly known as TAP).

By including an accelerator.yaml file in your Accelerator repository, you can declare input options
that users fill in using a form in the UI. Those option values control processing by the template
engine before it returns the zipped output files. For more information, see the Sample accelerator.

When there is no accelerator.yaml, the repository still works as an accelerator but the files are
passed unmodified to users.

accelerator.yaml has two top-level sections: accelerator and engine.

Accelerator

This section documents how an accelerator is presented to users in the web UI. For example:

accelerator:

  displayName: Hello Fun

  description: A simple Spring Cloud Function serverless app

  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

  tags:

  - java

Tanzu Application Platform v1.4

VMware by Broadcom 599



  - spring

  options:

  - name: deploymentType

    inputType: select

    choices:

    - value: none

      text: Skip Kubernetes deployment

    - value: k8s-simple

      text: Kubernetes deployment and service

    - value: knative

      text: Knative service

    defaultValue: k8s-simple

    required: true

Accelerator metadata

These properties are in accelerator listings such as the web UI:

displayName: A human-readable name.

description: A more detailed description.

iconUrl: A URL pointing to an icon image.

tags: A list of tags used to filter accelerators.

Accelerator options

The list of options is passed to the UI to create input text boxes for each option.

The following option properties are used by both the UI and the engine.

name: Each option must have a unique, camelCase name. The option value entered by a
user is made available as a SPeL variable name. For example, #deploymentType.

dataType: Data types that work with the UI are:

string

boolean

number

Custom types defined in the accelerator types section

Arrays of these such as [string], [number], and so on.

Most input types return a string, which is the default. Use Boolean values with checkbox.

defaultValue: This literal value pre-populates the option. Ensure that it’s type matches the
dataType. For example, use ["text 1", "text 2"] for the dataType [string]. Options
without a defaultValue can trigger a processing error if the user doesn’t provide a value for
that option.

validationRegex: When present, a regex validates the string representation of the option
value when set. It doesn’t apply when the value is blank. As a consequence, don’t use the
regex to enforce prerequisites. See required for that purpose.

This regex is used in several layers in Application Accelerator, built using several
technologies, for example, JavaScript and Java. So refrain from using “exotic” regex
features. Also, the regex applies to portions of the value by default. That is, [a-z ]+
matches Hello world despite the capital H. To apply it to the whole value (or just start/end),
anchor it using ^ and $.

Tanzu Application Platform v1.4

VMware by Broadcom 600



Finally, backslashes in a YAML string using double quotes must be escaped, so to match a
number, write validationRegex: "\d+" or use another string style.

The following option properties are for UI purposes only.

label: A human-readable version of the name identifying the option.

description: A tooltip to accompany the input.

inputType:

text: The default input type.

textarea: Single text value with larger input allowing line breaks.

checkbox: Ideal for Boolean values or multi-value selection from choices.

select: Single-value selection from choices using a drop-down menu.

radio: Alternative single-value selection from choices using buttons.

choices: This is a list of predefined choices. Users can select from the list in the UI. Choices
are supported by checkbox, select, and radio. Each choice must have a text property for
the displayed text, and a value property for the value that the form returns for that choice.
The list is presented in the UI in the same order as it is declared in accelerator.yaml.

required: true forces users to enter a value in the UI.

dependsOn: This is a way to control visibility by specifying the name and optional value of
another input option. When the other option has a value exactly equal to value, or true if
no value is specified, then the option with dependsOn is visible. Otherwise, it is hidden.
Ensure that the value matches the dataType of the dependsOn option. For example, a multi-
value option (dataType = [string]) such as a checkbox uses [matched-value] to trigger
another option when matched-value (and only matched-value) is selected. See the following
section for more information about dependsOn.

DependsOn and multi-value dataType

dependsOn tests for strict equality, even for multi-valued options. This means that a multi-valued
option must not be used to trigger several other options unfolding, one for each value. Instead, use
several single-valued options:

Instead of

options:

  - name: toppings

    dataType: [string]

    inputType: checkbox

    choices:

      - value: vegetables

        text: Vegetables

      - value: meat

        text: Meat

        ...

  - name: vegType

    dependsOn:

      name: toppings

      value: [vegetables] # or vegetables, this won't do what you want either

  - name: meatType

    dependsOn:

      name: toppings

      value: [meat]

  ...

do this:

Tanzu Application Platform v1.4

VMware by Broadcom 601



options:

  - name: useVeggies

    dataType: boolean

    inputType: checkbox

    label: Vegetables

  - name: useMeat

    dataType: boolean

    inputType: checkbox

    label: Meat

  - name: vegType

    dependsOn:

      name: useVeggies

      value: true

  - name: meatType

    dependsOn:

      name: useMeat

      value: true

  ...

Examples

The later screenshot and accelerator.yaml file snippet that follows demonstrates each inputType.
You can also see the GitHub sample demo-input-types.

accelerator:

  displayName: Demo Input Types

  description: "Accelerator with options for each inputType"

  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

  tags: ["demo", "options"]

  options:

Tanzu Application Platform v1.4

VMware by Broadcom 602

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/demo-input-types


  - name: text

    display: true

    defaultValue: Text value

  - name: toggle

    display: true

    dataType: boolean

    defaultValue: true

  - name: dependsOnToggle

    label: 'depends on toggle'

    description: Visibility depends on the value of the toggle option being true.

    dependsOn:

      name: toggle

    defaultValue: text value

  - name: textarea

    inputType: textarea

    display: true

    defaultValue: |

      Text line 1

      Text line 2

  - name: checkbox

    inputType: checkbox

    display: true

    dataType: [string]

    defaultValue:

      - value-2

    choices:

      - text: Checkbox choice 1

        value: value-1

      - text: Checkbox choice 2

        value: value-2

      - text: Checkbox choice 3

        value: value-3

  - name: dependsOnCheckbox

    label: 'depends on checkbox'

    description: Visibility depends on the checkbox option containing exactly value va

lue-2.

    dependsOn:

      name: checkbox

      value: [value-2]

    defaultValue: text value

  - name: select

    inputType: select

    display: true

    defaultValue: value-2

    choices:

      - text: Select choice 1

        value: value-1

      - text: Select choice 2

        value: value-2

      - text: Select choice 3

        value: value-3

  - name: radio

    inputType: radio

    display: true

    defaultValue: value-2

    choices:

      - text: Radio choice 1

        value: value-1

      - text: Radio choice 2

Tanzu Application Platform v1.4

VMware by Broadcom 603



        value: value-2

      - text: Radio choice 3

        value: value-3

engine:

  type: YTT

Engine

The engine section describes how to take the files from the accelerator root directory and
transform them into the contents of a generated project file.

The YAML notation here defines what is called a transform. A transform is a function on a set of
files. It uses a set of files as input. It produces a modified set of files as output derived from this
input.

Different types of transforms do different tasks:

Filtering the set of files: that is, removing, or keeping files that match certain criteria.

Changing the contents of files. For example, replacing some strings in the files.

Renaming or moving files: that is, changing the paths of the files.

The notation also provides the composition operators merge and chain, which enable you to create
more complex transforms by composing simpler transforms together.

The following is an example of what is possible. To learn the notation, see Introduction to
transforms.

Engine example

engine:

  include:

    ["**/*.md", "**/*.xml", "**/*.gradle", "**/*.java"]

  exclude:

    ["**/secret/**"]

  let:

    - name: includePoms

      expression:

        "#buildType == 'Maven'"

    - name: includeGradle

      expression: "#buildType == 'Gradle'"

  merge:

    - condition:

        "#includeGradle"

      include: ["*.gradle"]

    - condition: "#includePoms"

      include: ["pom.xml"]

    - include: ["**/*.java", "README.md"]

      chain:

        - type: ReplaceText

          substitutions:

            - text: "Hello World!"

              with: "#greeting"

  chain:

    - type: RewritePath

      regex: (.*)simpleboot(.*)

      rewriteTo: "#g1 + #packageName + #g2"

    - type: ReplaceText

      substitutions:

        - text: simpleboot

          with: "#packageName"

Tanzu Application Platform v1.4

VMware by Broadcom 604



  onConflict:

    Fail

Engine notation descriptions

This section describes the notations in the preceding example.

engine is the global transformation node. It produces the final set of files to be zipped and returned
from the accelerator. As input, it receives all the files from the accelerator repository root. The
properties in this node dictate how this set of files is transformed into a final set of files zipped as
the accelerator result.

engine.include filters the set of files, retaining only those matching a list of path patterns. This
ensures that that the accelerator only detects files in the repository that match the list of patterns.

engine.exclude further restricts which files are detected. The example ensures files in any directory
called secret are never detected.

engine.let defines additional variables and assigns them values. These derived symbols function
such as options, but instead of being supplied from a UI widget, they are computed by the
accelerator itself.

engine.merge executes each of its children in parallel. Each child receives a copy of the current set
of input files. These are files remaining after applying the include and exclude filters. Each of the
children therefore produces a set of files. All the files from all the children are then combined, as if
overlaid on top of each other in the same directory. If more than one child produces a file with the
same path, the transform resolves the conflict by dropping the file contents from the earlier child
and keeping the contents from the later child.

engine.merge.chain specifies additional transformations to apply to the set of files produced by this
child. In the example, ReplaceText is only applied to Java files and README.md.

engine.chain applies transformation to all files globally. The chain has a list of child transformations.
These transformations are applied after everything else in the same node. This is the global node.
The children in a chain are applied sequentially.

engine.onConflict specifies how conflict is handled when an operation, such as merging, produces
multiple files at the same path: - Fail raises an error when there is a conflict. - UseFirst keeps the
contents of the first file. - UseLast keeps the contents of the last file. - Append keeps both by using
cat <first-file> <second-file>.

Advanced accelerator use

Additional advanced features can be leveraged when writing an accelerator.yaml. For more
information see, Creating dynamic parameters using custom types

Use transforms in Application Accelerator
This topic tells you about using transforms with Application Accelerator.

When the accelerator engine executes the accelerator, it produces a ZIP file containing a set of
files. The purpose of the engine section is to describe precisely how the contents of that ZIP file is
created.

accelerator:

  ...

engine:

  <transform-definition>

Tanzu Application Platform v1.4

VMware by Broadcom 605



Why transforms?

When you run an accelerator, the contents of the accelerator produce the result. It is made up of
subsets of the files taken from the accelerator <root> directory and its subdirectories. You can copy
the files as is, or transform them in a number of ways before adding them to the result.

As such, the YAML notation in the engine section defines a transformation that takes as input a set
of files (in the <root> directory of the accelerator) and produces as output another set of files,
which are put into the ZIP file.

Every transform has a type. Different types of transform have different behaviors and different
YAML properties that control precisely what they do.

In the following example, a transform of type Include is a filter. It takes as input a set of files and
produces as output a subset of those files, retaining only those files whose path matches any one of
a list of patterns.

If the accelerator has something like this:

engine:

  type: Include

  patterns: ['**/*.java']

This accelerator produces a ZIP file containing all the .java files from the accelerator <root> or its
subdirectories but nothing else.

Transforms can also operate on the contents of a file, instead of merely selecting it for inclusion.

For example:

type: ReplaceText

substitutions:

- text: hello-fun

  with: "#artifactId"

This transform looks for all instances of a string hello-fun in all its input files and replaces them with
an artifactId, which is the result of evaluating a SpEL expression.

Combining transforms

From the preceding examples, you can see that transforms such as ReplaceText and Include are
too “primitive” to be useful by themselves. They are meant to be the building blocks of more
complex accelerators.

To combine transforms, provide two operators called Chain and Merge. These operators are
recursive in the sense that they compose a number of child transforms to create a more complex
transform. This allows building arbitrarily deep and complex trees of nested transform definitions.

The following example shows what each of these two operators does and how they are used
together.

Chain

Because transforms are functions whose input and output are of the same type (a set of files), you
can take the output of one function and feed it as input to another. This is what Chain does. In
mathematical terms, Chain is function composition.

You might, for example, want to do this with the ReplaceText transform. Used by itself, it replaces
text strings in all the accelerator input files. What if you wanted to apply this replacement to only a

Tanzu Application Platform v1.4

VMware by Broadcom 606



subset of the files? You can use an Include filter to select only a subset of files of interest and chain
that subset into ReplaceText.

For example:

type: Chain

transformations:

- type: Include

  patterns: ['**/pom.xml']

- type: ReplaceText

  substitutions:

  - text: hello-fun

    with: "#artifactId"

Merge

Chaining Include into ReplaceText limits the scope of ReplaceText to a subset of the input files.
Unfortunately, it also eliminates all other files from the result.

For example:

engine:

  type: Chain

  transformations:

  - type: Include

    patterns: ['**/pom.xml']

  - type: ReplaceText

    substitutions:

    - text: hello-fun

      with: "#artifactId"

The preceding accelerator produces a ZIP file that only contains pom.xml files and nothing else.

What if you also wanted other files in that ZIP? Perhaps you want to include some Java files as well,
but don’t want to apply the same text replacement to them.

You might be tempted to write something such as:

engine:

  type: Chain

  transformations:

  - type: Include

    patterns: ['**/pom.xml']

  - type: ReplaceText

    ...

  - type: Include

    patterns: ['**/*.java']

However, that doesn’t work. If you chain non-overlapping includes together like this, the result is
an empty result set. The reason is that the first include retains only pom.xml files. These files are fed
to the next transform in the chain. The second include only retains .java files, but because there
are only pom.xml files left in the input, the result is an empty set.

This is where Merge comes in. A Merge takes the outputs of several transforms executed
independently on the same input sourceset and combines or merges them together into a single
sourceset.

For example:

engine:

  type: Merge

  sources:

  - type: Chain

Tanzu Application Platform v1.4

VMware by Broadcom 607



    - type: Include

      patterns: ['**/pom.xml']

    - type: ReplaceText

      ...

  - type: Include

    patterns: ['**/*.java']

The preceding accelerator produces a result that includes both:

The pom.xml files with some text replacements applied to them.

Verbatim copies of all the .java files.

Shortened notation

It becomes cumbersome and verbose to combine transforms such as Include, Exclude, and
ReplaceText with explicit Chain and Merge operators. Also, there is a common composition pattern
to using them. Specifically, select an interesting subset using includes/excludes, apply a chain of
additional transformations to the subset, and merge the result with the results of other transforms.

That is why there is a swiss army knife transform (known the Combo transform) that combines
Include, Exclude, Merge, and Chain.

For example:

type: Combo

include: ['**/*.txt', '**/*.md']

exclude: ['**/secret/*']

merge:

- <transform-definition>

- ...

chain:

- <transform-definition>

- ...

Each of the properties in this Combo transform is optional if you specify at least one.

Notice how each of the properties include, exclude, merge, and chain corresponds to the name of
a type of transform, only spelled with lowercase letters.

If you specify only one of the properties, the Combo transform behaves exactly as if you used that
type of transformation by itself.

For example:

merge: ...

Behaves the same as:

type: Merge

sources: ...

When you do specify multiple properties at the same time, the Combo transform composes them
together in a “logical way” combining Merge and Chain under the hood.

For example:

include: ['**/*.txt', '**.md']

chain:

- type: ReplaceText

  ...

Is the same as:

Tanzu Application Platform v1.4

VMware by Broadcom 608



type: Chain

transformations:

- type: Include

  patterns: ['**/*.txt', '**.md']

- type: Chain

  transformations:

  - type: ReplaceText

    ...

When you use all of the properties of Combo at once:

include: I

exclude: E

merge:

- S1

- S2

chain:

- T1

- T2

This is equivalent to:

type: Chain

transformations:

- type: Include

  patterns: I

- type: Exclude

  patterns: E

- type: Merge

  sources:

  - S1

  - S2

- T1

- T2

A Combo of one?

You can use the Combo as a convenient shorthand for a single type of annotation. However, though
you can use it to combine multiple types, and though that is its main purpose, that doesn’t mean
you have to.

For example:

include: ["**/*.java"]

This is a Combo transform (remember, type: Combo is optional), but rather than combining multiple
types of transforms, it only defines the include property. This makes it behaves exactly as an
Include transform:

type: Include

patterns: ["**/*.java"]

It is usually more convenient to use a Combo transform to denote a single Include, Exclude, Chain,
or Merge transform, because it is slightly shorter to write it as a Combo than writing it with an explicit
type: property.

A common pattern with merge transforms
It is a common and useful pattern to use merges with overlapping contents to apply a
transformation to a subset of files and then replace these changed files within a bigger context.

Tanzu Application Platform v1.4

VMware by Broadcom 609



For example:

engine:

  merge:

  - include: ["**/*"]

  - include: ["**/pom.xml"]

    chain:

    - type: ReplaceText

        subsitutions: ...

The preceding accelerator copies all files from accelerator <root> while applying some text
replacements only to pom.xml files. Other files are copied verbatim.

Here in more detail is how this works:

Transform A is applied to the files from accelerator <root>. It selects all files, including
pom.xml files.

Transform B is also applied to the files from accelerator <root>. Again, Merge passes the
same input independently to each of its child transforms. Transform B selects pom.xml files
and replaces some text in them.

So both Transform A and Transform B output pom.xml files. The fact that both result sets contain
the same file, and with different contents in them in this case, is a conflict that has to be resolved.
By default, Combo follows a simple rule to resolve such conflicts: take the contents from the last
child. Essentially, it behaves as if you overlaid both result sets one after another into the same
location. The contents of the latter overwrite any previous files placed there by the earlier.

In the preceding example, this means that while both Transform A and Transform B produce
contents for pom.xml, the contents from Transform B “wins.” So you get the version of the pom.xml
that has text replacements applied to it rather than the verbatim copy from Transform A.

Conditional transforms

Every <transform-definition> can have a condition attribute.

  - condition: "#k8sConfig == 'k8s-resource-simple'"

    include: [ "kubernetes/app/*.yaml" ]

    chain:

      - type: ReplaceText

        substitutions:

        - text: hello-fun

          with: "#artifactId"

When a transform’s condition is false, that transform is “deactivated.” This means it is replaced by
a transform that “does nothing.” However, doing nothing can have different meanings depending
on the context:

When in the context of a Merge, a deactivated transform behaves like something that
returns an empty set. A Merge adds things together using a kind of union; adding an empty
set to union essentially does nothing.

When in the context of a 'Chain however, a deactivated transform behaves like the
identity function instead (that is, lambda (x) => x). When you chain functions together, a
value is passed through all functions in succession. So each function in the chain has the
chance to “do something” by returning a different modified value. If you are a function in a
chain, to do nothing means to return the input you received unchanged as your output.

If this all sounds confusing, fortunately there is a basic guideline for understanding and predicting
the effect of a deactivated transform in the context of your accelerator definition. Namely, if a
transform’s condition evaluates to false, pretend it isn’t there. In other words, your accelerator

Tanzu Application Platform v1.4

VMware by Broadcom 610



behaves as if you deleted (or commented out) that transform’s YAML text from the accelerator
definition file.

The following examples illustrate both cases.

Conditional ‘Merge’ transform

This example, transform A, has a conditional transform in a Merge context:

merge:

  - condition: "#k8sConfig == 'k8s-resource-simple'"

    include: [ "kubernetes/app/*.yaml" ]

    chain:

      ...

  - include: [ "pom.xml" ]

    chain:

      ...

If the condition of transform A is false, it is replaced with an “empty set” because it is used in a
Merge context. This has the same effect as if the whole of transform A was deleted or commented
out:

merge:

  - include: [ "pom.xml" ]

    chain:

      ...

In this example, if the condition is false, only pom.xml file is in the result.

Conditional ‘Chain’ transform

In the following example, some conditional transforms are used in a Chain context:

merge:

- include: [ '**/*.json' ]

  chain:

  - type: ReplaceText

    condition: '#customizeJson'

    substitutions: ...

  - type: JsonPrettyPrint

    condition: '#prettyJson'

    indent: '#jsonIndent'

The JsonPrettyPrint transform type is purely hypothetical. There could be such a transform, but
VMware doesn’t currently provide it.

In the preceding example, both transform A and transform B are conditional and used in a Chain
context. Transform A is chained after the include transform. Whereas transform B is chained after
transform A. When either of these conditions is false, the corresponding transform behaves like
the identity function. Namely, whatever set of files it receives as input is exactly what it returns as
output.

This behavior accords with our guideline. For example, if transform A’s condtion is false, it
behaves as if transform A wasn’t there. Transform A is chained after include so it receives the
include’s result, returns it unchanged, and this is passed to transform B. In other words, the result
of the include is passed as is to transform B. This is precisely what would happen were transform
A not there.

A small gotcha with using conditionals in merge transforms

Tanzu Application Platform v1.4

VMware by Broadcom 611



As mentioned earlier, it is a useful pattern to use merges with overlapping contents. Yet you must
be careful using this in combination with conditional transforms.

For example:

engine:

  merge:

  - include: ["**/*"]

  - include: ["**/pom.xml"]

    chain:

    - type: ReplaceText

      subsitutions: ...

Now add a little twist. Say you only wanted to include pom files if the user selects a useMaven
option. You might be tempted to add a ‘condition’ to transform B to deactivate it when that
option isn’t selected:

engine:

  merge:

  - include: "**/*"

  - condition: '#useMaven'

    include: ["**/pom.xml"]

    chain:

    - type: ReplaceText

      subsitutions: ...

However, this doesn’t do what you might expect. The final result still contains pom.xml files. To
understand why, recall the guideline for deactivated transforms: If a transform is deactivated,
pretend it isn’t there. So when #useMaven is false, the example reduces to:

engine:

  merge:

  - include: ["**/*"]

This accelerator copies all files from accelerator <root>, including pom.xml.

There are several ways to avoid this pitfall. One is to ensure the pom.xml files are not included in
transform A by explicitly excluding them:

  ...

  - include: ["**/*"]

    exclude: ["**/pom.xml"]

  ...

Another way is to apply the exclusion of pom.xml conditionally in a Chain after the main transform:

engine:

  merge:

  - include: ["**/*"]

  - include: ["**/pom.xml"]

    chain:

    - type: ReplaceText

        subsitutions: ...

  chain:

  - condition: '!#useMaven'

    exclude: ['**/pom.xml']

Merge conflict
The representation of the set of files upon which transforms operate is “richer” than what you can
physically store on a file system. A key difference is that in this case, the set of files allows for

Tanzu Application Platform v1.4

VMware by Broadcom 612



multiple files with the same path to exist at the same time. When files are initially read from a
physical file system, or a ZIP file, this situation does not arise. However, as transforms are applied to
this input, it can produce results that have more than one file with the same path and yet different
contents.

Earlier examples illustrated this happening through a merge operation. Again, for example:

merge:

- include: ["**/*"]

- include: ["**/pom.xml"]

  chain:

  - type: ReplaceText

    subsitutions: ...

The result of the preceding merge is two files with path pom.xml, assuming there was a pom.xml file
in the input. Transform A produces a pom.xml that is a verbatim copy of the input file. Transform B
produces a modified copy with some text replaced in it.

It is impossible to have two files on a disk with the same path. Therefore, this conflict must be
resolved before you can write the result to disk or pack it into a ZIP file.

As the example shows, merges are likely to give rise to these conflicts, so you might call this a
“merge conflict.” However, such conflicts can also arise from other operations. For example,
RewritePath:

type: RewritePath

regex: '.*.md'

rewriteTo: "'docs/README.md'"

This example renames any .md file to docs/README.md. Assuming the input contains more than one
.md file, the output contains multiple files with path docs/README.md. Again, this is a conflict,
because there can only be one such file in a physical file system or ZIP file.

Resolving “merge” conflicts

By default, when a conflict arises, the engine doesn’t do anything with it. Our internal
representation for a set of files allows for multiple files with the same path. The engine carries on
manipulating the files as is. This isn’t a problem until the files must be written to disk or a ZIP file. If
a conflict is still present at that time, an error is raised.

If your accelerator produces such conflicts, they must be resolved before writing files to disk. To
this end, VMware provides the UniquePath transform. This transform allows you to specify what to
do when more than one file has the same path. For example:

chain:

- type: RewritePath

  regex: '.*.md'

  rewriteTo: "'docs/README.md'"

- type: UniquePath

  strategy: Append

The result of the above transform is that all .md files are gathered up and concatenated into a single
file at path docs/README.md. Another possible resolution strategy is to keep only the contents of
one of the files. See Conflict Resolution.

Combo transform also comes with some convenient built-in support for conflict resolution. It
automatically selects the UseLast strategy if none is explicitly supplied. So in practice, you rarely, if
ever, need to explicitly specify a conflict resolution strategy.

File ordering

Tanzu Application Platform v1.4

VMware by Broadcom 613



As mentioned earlier, our set of files representation is richer than the files on a typical file system in
that it allows for multiple files with the same path. Another way in which it is richer is that the files
in the set are “ordered.” That is, a FileSet is more like an ordered list than an unordered set.

In most situations, the order of files in a FileSet doesn’t matter. However, in conflict resolution it is
significant. If you look at the preceding RewritePath example again, you might wonder about the
order in which the various .md files are appended to each other. This ordering is determined by the
order of the files in the input set.

So what is that order? In general, when files are read from disk to create a FileSet, you cannot
assume a specific order. Yes, the files are read and processed in a sequential order, but the actual
order is not well defined. It depends on implementation details of the underlying file system. The
accelerator engine therefore does not ensure a specific order in this case. It only ensures that it
preserves whatever ordering it receives from the file system, and processes files in accord with that
order.

As an accelerator author, better to avoid relying on the file order produced from reading directly
from a file system. So it’s better to avoid doing something like the preceding RewritePath example,
unless you do not care about the ordering of the various sections of the produced README.md file.

If you do care and want to control the order explicitly, you use the fact that Merge processes its
children in order and reflects this order in the resulting output set of files. For example:

chain:

  - merge:

      - include: ['README.md']

      - include: ['DEPLOYMENT.md']

        chain:

          - type: RewritePath

            rewriteTo: "'README.md'"

  - type: UniquePath

    strategy: Append

In this example, README.md from the first child of merge definitely comes before DEPLOYMENT.md from
the second child of merge. So you can control the merge order directly by changing the order of the
merge children.

Next steps

This introduction focused on an intuitive understanding of the <transform-definition> notation.
This notation defines precisely how the accelerator engine generates new project content from the
files in the accelerator root.

To learn more, read the following more detailed documents:

An exhaustive Reference of all built-in transform types

A sample, commented accelerator.yaml to learn from a concrete example

Use custom types in Application Accelerator

This topic tells you how to declare new types in accelerator.yaml

Use these types for options declaration, in addition to the built-in types string, number, and
boolean.

In accelerator.yaml, use the types entry (inside the top-level accelerator section) to define
custom types.

The name must be an initial capital letter.

Tanzu Application Platform v1.4

VMware by Broadcom 614



In the following example, the struct type definition is syntactically equivalent to a sequence of
option definitions:

accelerator:

  options:

    ...

  types:

    - name: Task

      struct:

        - name: title

          dataType: string

          label: Title

          description: A sample title

        - name: details

          label: Task details

          description: Enter the task details

        - name: done

          dataType: boolean

          label: Done?

          defaultValue: false

This example creates a new type that is available for the dataType property of any option. For
example,

accelerator:

  options:

    - name: myTask

      dataType: Task

  types:

    ...

UIs render similar to the following:

and associate the entered values to the myTask top-level name, resulting in the following example
values submission (here represented using JSON notation):

{

  "myTask": { // Note the use of a nested object here

    "title": "Get job done!",

    "details": "Needs this asap",

    "done": false

  }

}

The type of the myTask value is object (in Javascript/JSON parlance) and Map<String, ?> when
seen from the Java engine side.

Tanzu Application Platform v1.4

VMware by Broadcom 615



The earlier example is technically possible with the custom types feature, but brings little benefit
over having three options named to achieve the same result, for example, myTaskTitle,
myTaskDetails, and myTaskDone. The value of custom types is when they are used in sequence
types, allowing you to enter an unbounded list of structured data:

accelerator:

  options:

    - name: myTasks

      dataType: [Task]

  types:

    ...

Which might result in the following example submission (JSON):

{

  "myTasks": [ // Note the use of JSON array

    {  // with elem 0 being an object

      "details": "something",

      "done": true,

      "title": "The Title"

    },

    {  // and elem 1 as well, etc

      "details": "something else",

      "done": false,

      "title": "The other Title"

    }

  ]

}

Limitations
A struct custom type declaration is made of an ordered series of option definitions. The support
and semantics for individual text boxes of option-definition-like elements when used in the type
declaration are stated in the following example.

When referencing a custom type in an option definition, some previously valid properties of an
option definition might become irrelevant or unsupported. This is stated in the following example:

accelerator:

  types:

    - name: MyType

      struct:

        - name: someField   # the "option name" will become a 'property' of the newly 

created type

          dataType: string  # is the type of this single property. Typically, will be 

a simple

                            # scalar type like string or number

          defaultValue: foo # supported and is the default if not overridden at usage 

point by the option's defaultValue

          description: something # will become the description for the field's widget

          choices:               # supported

            - value: v

              text:  t

          validationRegex:       # validates that single property

          label:                 # will become the "title" of the widget

          inputType:             # supported

          required:              # supported

          dependsOn:             # supported against other properties of THIS struct

    .. other fields

  options:

    - name: anOptionThatUsesACustomType

      dataType: MyType

Tanzu Application Platform v1.4

VMware by Broadcom 616



      defaultValue: # supported, should then be an object (or array thereof)

      description:  # supported, is the description of the whole option (as opposed to 

individual fields)

      label:        # supported, idem

      choices:      # NOT supported

        - value: v

          text:  t

      validationRegex: # NOT supported

      inputType:       # NOT supported

      required:        # technically supported, useless in practice

      dependsOn:       # OK to depend on another option

Interaction with SpEL

Everywhere that SpEL is used in the engine syntax, accelerator authors might use SpEL syntax for
accessing properties or array elements:

  #myTasks[2]['done']

Do not use array indexing either with a literal number or a variable, as the purpose of the list of the
custom types feature is that you don’t know the data length in advance. For more information
about idiomatic uses of repeated structured data, see Loop Transform.

Interaction with Composition

Using composition alongside custom types has the following advantages/disadvantages:

You might want to leverage types declared in an imported fragment

There might be a type name clash between a host accelerator/fragment and an imported
fragment, because the imported fragment author is unaware of how the fragment is to be
used.

For more information about the syntax to customize the imported types names, see Use fragments
in Application Accelerator.

Use fragments in Application Accelerator

This topic tells you how to use fragments in Application Accelerator.

Introduction

Despite their benefits, writing and maintaining, accelerators can become repetitive and verbose as
new accelerators are added. Some create a project different from the next with similar aspects,
requiring some form of copy-paste.

To alleviate this concern, Application Accelerators support a feature named Composition that allows
the re-use of parts of an accelerator, called fragments.

Introducing fragments

A fragment looks exactly the same as an accelerator:

It is made of a set of files.

It contains an accelerator.yaml descriptor with options, declarations, and a root transform.

There are differences however. Namely:

Tanzu Application Platform v1.4

VMware by Broadcom 617



Fragments are declared to the system differently. They are filed as fragment custom
resources.

They deal with files differently. Because fragments deal with their own files and files from
the accelerator using them, they use dedicated conflict resolution strategies (more on this
later).

Fragments may be thought of as “functions” in programming languages. After being defined and
referenced, they are “called” at various points in the main accelerator. The composition feature is
designed with ease of use and “common use first” in mind, so these “functions” are typically called
with as little noise as possible. You can also call them complex or different values.

Composition relies on two building blocks that play hand in hand:

The imports section at the top of an accelerator manifest.

The, InvokeFragment transform, to be used alongside any other transform.

| The imports section explained

To be usable in composition, a fragment MUST be imported into the dedicated section of an
accelerator manifest:

accelerator:

  name: my-awesome-accelerator

  options:

    - name: flavor

      dataType: string

      defaultValue: Strawberry

  imports:

    - name: my-first-fragment

    - name: another-fragment

engine:

  ...

The effect of importing a fragment this way is twofold:

It makes its files available to the engine (therefore importing a fragment is required).

It exposes all of its options as options of the accelerator as if they were defined by the
accelerator itself.

So in the earlier example, if the my-first-fragment fragment had the following accelerator.yaml
file:

accelerator

  name: my-first-fragment

  options:

    - name: optionFromFragment

      dataType: boolean

      description: this option comes from the fragment

...

Then it is as if the my-awesome-accelerator accelerator defined it:

accelerator:

  name: my-awesome-accelerator

  options:

    - name: flavor

      dataType: string

      defaultValue: Strawberry

    - name: optionFromFragment

      dataType: boolean

Tanzu Application Platform v1.4

VMware by Broadcom 618



      description: this option comes from the fragment

  imports:

    - name: my-first-fragment

    - name: another-fragment

engine:

  ...

All the metadata about options (type, default value, description, choices if applicable, etc.) come
along when imported.

Because of this, users are prompted for a value for those options that come from fragments, as if
they were options of the accelerator.

Using the InvokeFragment Transform

The second part at play in the composition is the InvokeFragment Transform.

As with any other transform, it may be used anywhere in the engine tree and receives files that are
“visible” at that point. Those files, alongside those that make up the fragment, are made available to
the fragment logic. If the fragment wants to choose between two versions of a file for a path, two
new conflict resolution strategies are available: FavorForeign and FavorOwn.

The behavior of the InvokeFragment transform is very straightforward: after having validated options
that the fragment expects (and maybe after having set default values for options that support one),
it executes the whole transform of the fragment as if it was written in place of InvokeFragment.

See the InvokeFragment reference page for more explanations, examples, and configuration
options. This topic now focuses on additional features of the imports section that are seldom used
but still available to cover more complex use cases.

Back to the imports section

The complete definition of the imports section is as follows, with features in increasing order of
“complexity”:

accelerator:

  name: ...

  options:

    - name: ...

    ...

  imports:

    - name: some-fragment

    - name: another-fragment

      expose:

        - name: "*"

      exposeTypes:

        - name: "*"

    - name: yet-another-fragment

      expose:

        - name: someOption

        - name: someOtherOption

          as: aDifferentName

      exposeType:

        - name: SomeType

        - name: SomeOtherType

          as: ADifferentName

Tanzu Application Platform v1.4

VMware by Broadcom 619



engine:

  ...

As shown earlier, the imports section calls a list of fragments to import. By default, all their options
and types become options/type of the accelerator. Those options appear after the options defined
by the accelerator, in the order the fragments are imported in.

It is even possible for a fragment to import another fragment, the semantics being the same as
when an accelerator imports a fragment. This is a way to break apart a fragment even further if
needed.

When importing a fragment, you can select which options of the fragment to make available as
options of the accelerator. This feature should only be used when a name clash arises in option
names.

The semantics of the expose block are as follows:

For every name/as pair, don’t use the original (name) of the option but instead, use the alias
(as). Other metadata about the option is left unchanged.

If the special name: "*" (which is NOT a legit option name usually) appears, all imported
option names that are not remapped (the index at which the * appears in the YAML list is
irrelevant) might be exposed with their original name.

The default value for expose is [{name: "*"}], that is, by default exposes all options with
their original name.

As soon as a single remap rule appears, the default is overridden. For example, to override
some names AND expose the others unchanged, the * must be explicitly re-added.

To explicitly un-expose ALL options from an imported fragment, an empty array may be
used and overrides the default: expose: [].

Similarly, you can also select which custom types of the fragment to make available as types of the
accelerator. This feature should only be used when a name clash arises in types names.

The semantics of the exposeTypes block are as follows:

For every name/as pair, don’t use the original (name) of the type but instead, use the alias
(as). Options that used the original name are automatically “rewritten” to use the new
name.

If the special name: "*" appears, which is NOT usually a legit type name, all imported other
type names that are not remapped are exposed with their original name. The index at
which the * appears in the YAML list is irrelevant.

The default value for exposeTypes is [{name: "*"}], that is, by default exposes all types with
their original name.

As soon as a single remap rule appears, the default is overridden. For example, to override
some names AND expose the others unchanged, the * must be explicitly re-added.

To explicitly un-expose ALL types from an imported fragment, an empty array may be used,
which overrides the default: exposeTypes: [].

Using dependsOn in the imports section

Lastly, as a convenience for the conditional use of fragments, you can make an exposed imported
option depend on another option, as in the following example:

  imports:

    - name: tap-initialize

      expose:

        - name: gitRepository

Tanzu Application Platform v1.4

VMware by Broadcom 620



          as: gitRepository

          dependsOn:

            name: deploymentType

            value: workload

        - name: gitBranch

          as: gitBranch

          dependsOn:

            name: deploymentType

            value: workload

This plays well with the use of condition, as in the following example:

...

engine:

  ...

    type: InvokeFragment

    condition: "#deploymentType == 'workload'"

    reference: tap-initialize```

Discovering fragments using Tanzu CLI accelerator plug-in

Using the accelerator plug-in for Tanzu CLI, you can view a list of available fragments. Run:

tanzu accelerator fragment list

To see a list of available accelerator fragments. For example:

NAME                                 READY   REPOSITORY

app-sso-client                       true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/app-sso-client@sha256:ed5cf5544477d52d4c7baf3a76f71a11298

7856e77558697112e46947ada9241

java-version                         true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/java-version@sha256:df99a5ace9513dc8d083fb5547e2a24770dfb

08ec111b6591e98497a329b969d

live-update                          true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/live-update@sha256:c2eda015b0f811b0eeaa587b6f2c5410ac87d4

0701906a357cca0decb3f226a4

spring-boot-app-sso-auth-code-flow   true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/spring-boot-app-sso-auth-code-flow@sha256:78604c96dd52697

ea0397d3933b42f5f5c3659cbcdc0616ff2f57be558650499

tap-initialize                       true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/tap-initialize@sha256:7a3ae8f9277ef633200622dbf9d0f5a07de

a25351ac3dbf803ea2fa759e3baac

tap-workload                         true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/tap-workload@sha256:8056ad9f05388883327d9bbe457e6a0122dc4

52709d179f683eceb6d848338d0

The tanzu accelerator fragment get <fragment-name> command shows all the options defined for
the fragment and also any accelerators or other fragments that import this fragment. Run:

tanzu accelerator fragment get java-version

The following output is displayed:

name: java-version

namespace: accelerator-system

displayName: Select Java Version

ready: true

options:

- choices:

  - text: Java 8

    value: "1.8"

Tanzu Application Platform v1.4

VMware by Broadcom 621



  - text: Java 11

    value: "11"

  - text: Java 17

    value: "17"

  defaultValue: "11"

  inputType: select

  label: Java version to use

  name: javaVersion

  required: true

artifact:

  message: Resolved revision: dev.registry.tanzu.vmware.com/app-accelerator/fragments/

java-version@sha256:df99a5ace9513dc8d083fb5547e2a24770dfb08ec111b6591e98497a329b969d

  ready: true

  url: http://source-controller-manager-artifact-service.source-system.svc.cluster.loc

al./imagerepository/accelerator-system/java-version-frag-97nwp/df99a5ace9513dc8d083fb5

547e2a24770dfb08ec111b6591e98497a329b969d.tar.gz

imports:

  None

importedBy:

  accelerator/java-rest-service

  accelerator/java-server-side-ui

  accelerator/spring-cloud-serverless

This shows the options and importedBy with a list of three accelerators that import this fragment.

Correspondingly, the tanzu accelerator get <accelerator-name> shows the fragments that an
accelerator imports. Run:

tanzu accelerator get java-rest-service

The following output is shown:

name: java-rest-service

namespace: accelerator-system

description: A Spring Boot Restful web application including OpenAPI v3 document gener

ation and database persistence, based on a three-layer architecture.

displayName: Tanzu Java Restful Web App

iconUrl: data:image/png;base64,...abbreviated...

source:

  image: dev.registry.tanzu.vmware.com/app-accelerator/samples/java-rest-service@sha25

6:c098bb38b50d8bbead0a1b1e9be5118c4fdce3e260758533c38487b39ae0922d

  secret-ref: [{reg-creds}]

tags:

- java

- spring

- web

- jpa

- postgresql

- tanzu

ready: true

options:

- defaultValue: customer-profile

  inputType: text

  label: Module artifact name

  name: artifactId

  required: true

- defaultValue: com.example

  inputType: text

  label: Module group name

  name: groupId

  required: true

- defaultValue: com.example.customerprofile

  inputType: text

  label: Module root package

  name: packageName

Tanzu Application Platform v1.4

VMware by Broadcom 622



  required: true

- defaultValue: customer-profile-database

  inputType: text

  label: Database Instance Name this Application will use (can be existing one in

    the cluster)

  name: databaseName

  required: true

- choices:

  - text: Maven (https://maven.apache.org/)

    value: maven

  - text: Gradle (https://gradle.org/)

    value: gradle

  defaultValue: maven

  inputType: select

  name: buildTool

  required: true

- choices:

  - text: Flyway (https://flywaydb.org/)

    value: flyway

  - text: Liquibase (https://docs.liquibase.com/)

    value: liquibase

  defaultValue: flyway

  inputType: select

  name: databaseMigrationTool

  required: true

- dataType: boolean

  defaultValue: false

  label: Expose OpenAPI endpoint?

  name: exposeOpenAPIEndpoint

- defaultValue: ""

  dependsOn:

    name: exposeOpenAPIEndpoint

  inputType: text

  label: System API Belongs To

  name: apiSystem

- defaultValue: ""

  dependsOn:

    name: exposeOpenAPIEndpoint

  inputType: text

  label: Owner of API

  name: apiOwner

- defaultValue: ""

  dependsOn:

    name: exposeOpenAPIEndpoint

  inputType: text

  label: API Description

  name: apiDescription

- choices:

  - text: Java 8

    value: "1.8"

  - text: Java 11

    value: "11"

  - text: Java 17

    value: "17"

  defaultValue: "11"

  inputType: select

  label: Java version to use

  name: javaVersion

  required: true

- dataType: boolean

  defaultValue: true

  dependsOn:

    name: buildTool

    value: maven

  inputType: checkbox

  label: Include TAP IDE Support for Java Workloads

Tanzu Application Platform v1.4

VMware by Broadcom 623



  name: liveUpdateIDESupport

- defaultValue: dev.local

  dependsOn:

    name: liveUpdateIDESupport

  description: The prefix for the source image repository where source can be stored

    during development

  inputType: text

  label: The source image repository prefix to use when pushing the source

  name: sourceRepositoryPrefix

artifact:

  message: Resolved revision: dev.registry.tanzu.vmware.com/app-accelerator/samples/ja

va-rest-service@sha256:c098bb38b50d8bbead0a1b1e9be5118c4fdce3e260758533c38487b39ae0922

d

  ready: true

  url: http://source-controller-manager-artifact-service.source-system.svc.cluster.loc

al./imagerepository/accelerator-system/java-rest-service-acc-wcn8x/c098bb38b50d8bbead0

a1b1e9be5118c4fdce3e260758533c38487b39ae0922d.tar.gz

imports:

  java-version

  live-update

  tap-workload

The imports section at the end shows the fragments that this accelerator imports. The options
section shows all options defined for this accelerator. This includes all options defined in the
imported fragments, for example, the options for the Java version imported from the java-version
fragment.

Transforms reference

This topic provides you with a list and brief description of the available Application Accelerator
transforms in Tanzu Application Platform (commonly known as TAP).

Available transforms

You can use:

Combo as a shortcut notation for many common operations. It combines the behaviors of
many of the other transforms.

Include to select files to operate on.

Exclude to select files to operate on.

Merge to work on subsets of inputs and to gather the results at the end.

Chain to apply several transforms in sequence using function composition.

Let to introduce new scoped variables to the model.

InvokeFragment allows re-using various fragments across accelerators.

ReplaceText to perform simple token replacement in text files.

RewritePath to move files around using regular expression (regex) rules.

OpenRewriteRecipe to apply Rewrite recipes, such as package rename.

YTT to run the ytt tool on its input files and gather the result.

UseEncoding to set the encoding to use when handling files as text.

UniquePath to decide what to do when several files end up on the same path.

Loop to iterate over a list and apply a transform for each element.

Tanzu Application Platform v1.4

VMware by Broadcom 624

https://docs.openrewrite.org/


See also

Conflict Resolution

Transforms reference

This topic provides you with a list and brief description of the available Application Accelerator
transforms in Tanzu Application Platform (commonly known as TAP).

Available transforms

You can use:

Combo as a shortcut notation for many common operations. It combines the behaviors of
many of the other transforms.

Include to select files to operate on.

Exclude to select files to operate on.

Merge to work on subsets of inputs and to gather the results at the end.

Chain to apply several transforms in sequence using function composition.

Let to introduce new scoped variables to the model.

InvokeFragment allows re-using various fragments across accelerators.

ReplaceText to perform simple token replacement in text files.

RewritePath to move files around using regular expression (regex) rules.

OpenRewriteRecipe to apply Rewrite recipes, such as package rename.

YTT to run the ytt tool on its input files and gather the result.

UseEncoding to set the encoding to use when handling files as text.

UniquePath to decide what to do when several files end up on the same path.

Loop to iterate over a list and apply a transform for each element.

See also

Conflict Resolution

Combo transform

This topic tells you about the Application Accelerator Combo transform in Tanzu Application Platform
(commonly known as TAP).

The Combo transform combines the behaviors of Include, Exclude, Merge, Chain, UniquePath, and
Let.

Syntax reference

Here is the full syntax of Combo:

type: Combo                  # This can be omitted, because Combo is the default trans

form type.

let:                        # See Let.

  - name: <string>

    expression: <SpEL expression>

Tanzu Application Platform v1.4

VMware by Broadcom 625

https://docs.openrewrite.org/


  - name: <string>

    expression: <SpEL expression>

condition: <SpEL expression>

include: [<ant pattern>]    # See Include.

exclude: [<ant pattern>]    # See Exclude.

merge:                      # See Merge.

  - <m1-transform>

  - <m2-transform>

  - ...

chain:                     # See Chain.

  - <c1-transform>

  - <c2-transform>

  - ...

applyTo: [<ant pattern>]   # See Chain

onConflict: <conflict resolution> # See UniquePath.

Behavior

The Combo transform properties have default values, are optional, and you must use at least one
property.

When you configure the Combo transform with all properties, it behaves as follows:

1. Applies the include as if it were the first element of a Chain. The default value is ['**']; if
not present, all files are retained.

2. Applies the exclude as if it were the second element of the chain. The default value is []; if
not present, no files are excluded. Only files that match the include, but are not excluded
by the exclude, remain.

3. Feeds all those files as input to all transforms declared in the merge property, exactly as
Merge does. The result of that Merge, which is the third transform in the big chain, is
another set of files. If there are no elements in merge, the previous result is directly fed to
the next step.

4. The result of the merge step is prone to generate duplicate entries for the same path. It’s
implicitly forwarded to a UniquePath check, configured with the onConflict strategy. The
default policy is to retain files appearing later. The results of the transforms that appear later
in the merge block “win” against results appearing earlier.

5. Passes that result as the input to the chain defined by the chain property. The combo chain
is prolonged with the elements defined in chain. If there are no elements in chain, it’s as if
the previous result was used directly. If the applyTo property is set, it applies to the sub-
chain (and that sub-chain only).

6. If the let property is defined in the Combo, the whole execution is wrapped inside a Let that
exposes its derived symbols.

To recap in pseudo code, a giant Combo behaves like this:

Let(symbols, in:

    Chain(

        include,

        exclude,

        Chain(Merge(<m1-transform>, <m2-transform>, ...), UniquePath(onConflict)),

        Chain(<applyTo>, <c1-transform>, <c2-transform>, ...)

    )

)

You rarely use at any one time all the features that Combo offers. Yet Combo is a good way to author
other common building blocks without having to write their type: x in full.

For example, this:

Tanzu Application Platform v1.4

VMware by Broadcom 626



include: ['**/*.txt']

is a perfectly valid way to achieve the same effect as this:

type: Include

patterns: ['**/*.txt']

Similarly, this:

chain:

  - type: T1

    ...

  - type: T2

    ...

is often preferred over the more verbose:

type: Chain

transformations:

  - type: T1

    ...

  - type: T2

    ...

As with other transforms, the order of declaration of properties has no impact. We’ve used a
convention that mimics the actual behavior for clarity, but the following applies T1 and T2 on all
.yaml files even though VMware has placed the include section after the merge section.

merge:

  - type: T1

  - type: T2

include: ["*.yaml"]

In other words, Combo applies include filters before merge irrespective of the physical order of the
keys in the YAML text. It’s a good practice to place the include key before the merge key. This
makes the accelerator definition more readable, but has no effect on its execution order.

Examples

The following are typical use cases for Combo.

To apply separate transformations to separate sets of files. For example, to all .yaml files and to all
.xml files:

merge:                   # This uses the Merge syntax in a first Combo.

  - include: ['*.yaml']      # This actually nests a second Combo inside the first.

    chain:

      - type: T1

      - type: T2

  - include: ['*.yaml']      # Here comes a third Combo, used as the 2nd child inside 

the first

    chain:

      - type: T3

      - type: T4

To apply T1 then T2 on all .yaml files that are not in any secret directory:

include: ['**/*.yaml']

exclude: ['**/secret/**']

chain:

Tanzu Application Platform v1.4

VMware by Broadcom 627



  - type: T1

    ..

  - type: T2

    ..

Include transform

This topic tells you about the Application Accelerator Include transform in Tanzu Application
Platform (commonly known as TAP).

The Include transform retains files based on their path, letting in only those files whose path
matches at least one of the configured patterns. The contents of files, and any of their other
characteristics, are unaffected.

Include is a basic building block seldom used as is, which makes sense if composed inside a Chain
or a Merge. It is often more convenient to leverage the shorthand notation offered by Combo.

Syntax reference

type: Include

patterns: [<ant pattern>]

condition: <SpEL expression>

Examples

type: Chain

transformations:

  - type: Include

    patterns: ["**/*.yaml"]

  - type: # At this point, only yaml files are affected

See also

Exclude

Combo

Exclude transform

This topic tells you about the Application Accelerator Exclude transform in Tanzu Application
Platform (commonly known as TAP).

The Exclude transform retains files based on their path, allowing all files except ones with a path
that matches at least one of the configured patterns. The contents of files, and any of their other
characteristics are unaffected.

Exclude is a basic building block seldom used as is, which makes sense if composed inside a Chain
or a Merge. It is often more convenient to leverage the shorthand notation offered by Combo.

Syntax reference

type: Exclude

patterns: [<ant pattern>]

condition: <SpEL expression>

Tanzu Application Platform v1.4

VMware by Broadcom 628



Examples

type: Chain

transformations:

  - type: Exclude

    patterns: ["**/secret/**"]

  - type: # At this point, no file matching **/secret/** is affected.

See also

Include

Combo

Merge transform

This topic tells you about the Application Accelerator Merge transform in Tanzu Application Platform
(commonly known as TAP).

The Merge transform feeds a copy of its input to several other transforms and merges the results
together using set union.

A Merge of T1, T2, and T3 applied to input I results in T1(I) ∪ T2(I) ∪ T3(I).

An empty merge produces nothing (∅).

Syntax reference

type: Merge

sources:

  - <transform>

  - <transform>

  - <transform>

  - ...

condition: <SpEL expression>

See also

Combo is often used to express a Merge and other transformations in a shorthand syntax.

Chain transform

This topic tells you about the Application Accelerator Chain transform in Tanzu Application Platform
(commonly known as TAP).

The Chain transform uses function composition to produce its final output.

Syntax reference

type: Chain

transformations:

  - <transform>

  - <transform>

  - <transform>

  - ...

applyTo: [<ant pattern>]

condition: <SpEL expression>

Tanzu Application Platform v1.4

VMware by Broadcom 629



Behavior

A chain of T1 then T2 then T3 first applies transform T1. It then applies T2 to the output of T1, and
finally applies T3 to the output of that. In other words, T3 to T2 to T1.

An empty chain acts as function identity.

If the optional applyTo property is set, then the chained transformations are only applied to files
with paths that match the applyTo patterns. Files with paths that don’t match are left untouched
and merged back with the other results to form the final result of the Chain transform.

Let transform

This topic tells you about the Application Accelerator Let transform in Tanzu Application Platform
(commonly known as TAP).

The Let transform wraps another transform, creating a new scope that extends the existing scope.

SpEL expressions inside the Let can access variables from both the existing scope and the new
scope.

Variables defined by the Let should not shadow existing variables. If they do, those existing
variables won’t be accessible.

Syntax reference

type: Let

symbols:

- name: <string>

  expression: <SpEL expression>

- ...

in: <transform> # <- new symbols are visible in here

Execution

The Let adds variables to the new scope by computation of SpEL expressions.

engine:

  let:

  - name: <string>

    expression: <SpEL expression>

  - ...

Both a name and an expression must define each symbol where:

name must be a camelCase string name. If a let symbol happens to have the same name as a
symbol already defined in the surrounding scope, then the local symbol shadows the symbol
from the surrounding scope. This makes the variable from the surrounding scope
inaccessible in the remainder of the Let but doesn’t alter its original value.

expression must be a valid SpEL expression expressed as a YAML string. Be careful when
using the # symbol for variable evaluation, because this is the comment marker in YAML. So
SpEL expressions in YAML must enclose strings in quotes or rely on block style. For more
information about block style, see Block Style Productions.

Symbols defined in the Let are evaluated in the new scope in the order they are defined. This
means that symbols lower in the list can make use of the variables defined higher in the list but not
the other way around.

Tanzu Application Platform v1.4

VMware by Broadcom 630

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions
https://yaml.org/spec/1.2.2/#chapter-8-block-style-productions


See also

Combo provides a way to declare a Let scope and other transforms in a short syntax.

Loop transform

This topic tells you about the Application Accelerator Loop transform in Tanzu Application Platform
(commonly known as TAP).

The Loop transform iterates over elements in a list and applies the provided transform for every
element in that list.

When doAsMerge is used, a copy of the Loop transform’s input is passed to each transform and the
outputs from each transform are merged using a set union.

When doAsChain is used, each transform is executed sequentially, receiving the previous
transform’s output as its input. The first transform is to receive the Loop transform’s input as its
input.

Syntax reference

type: Loop

on: <SpEL expression>

var: <string>

index: <string>

doAsChain: <transform>

doAsMerge: <transform>

on must be a SpEL expression that evaluates a list. This is the list of elements to be iterated
over.

var is the name of the variable to be assigned to the current element on each iteration.
(optional)

index is the variable’s name to be assigned to the index of the current element on each
iteration. (optional)

doAsMerge is the transform to be executed for every element in the list, on a copy of the
Loop transform’s input.

doAsChain is the transform to be executed for every element in the list, passing the output
of the transform as input to the next transform.

Both var and index are optional.

Only one of the doAsMerge or doAsChain variables is to be used in a Loop transform.

Behavior

Consider the following when choosing doAsMerge or doAsChain:

doAsMerge executes the transform on the same input files for every iteration and merges the
resulting outputs. It is best suited when a transform is executed multiple times on the same input
and does not have conflicts.

doAsChain executes the transform on the initial input files once and then passes the resulting
output to the second iteration and so on. It is best suited when a transform must detect any
changes that occurred in the previous iteration.

Examples

Tanzu Application Platform v1.4

VMware by Broadcom 631



Create a new directory for every module in modules (a list of strings) based on the contents of the
“template” directory.

type: Loop

on: "#modules"

var: m

doAsMerge:

  type: RewritePath

  regex: "template/(.*)"

  rewriteTo: "#m + '/' + #g1"

Add every artifactId in artifacts (a list of strings) as a Spring plug-in.

type: Loop

on: "#artifacts"

var: a

doAsChain:

  type: OpenRewriteRecipe

  recipe: org.openrewrite.maven.AddPlugin

  options:

    groupId: "'org.springframework'"

    artifactId: "#a"

    version: "'5.7.1'"

You can use Loop in combination with custom types, for example:

accelerator:

  types:

    - name: MavenPlugin

      struct:

        - name: groupId

        - name: artifactId

        - name: version

  options:

    - name: pluginsToAdd

      dataType: [MavenPlugin] # End users will be able to enter a collection of GAV tu

ples

engine:

  include: [pom.xml]

  chain:

    - type: Loop

      on: pluginsToAdd # Iterate on the pluginsToAdd collection

      var: p           # The variable "p" will contain each tuple in turn

      doAsChain:       # Will apply the second execution to the result of the first, a

nd so on...

        type: OpenRewriteRecipe

        recipe: org.openrewrite.maven.AddPlugin

        options:

          groupId:    "#p['groupId']"

          artifactId: "#p['artifactId']"

          version:    "#p['version']"

For more information, see Using Custom Types.

InvokeFragment transform

This topic tells you about the Application Accelerator InvokeFragment transform in Tanzu
Application Platform (commonly known as TAP).

The InvokeFragment performs transformations defined in an imported Fragment, allowing re-use
across accelerators.

Tanzu Application Platform v1.4

VMware by Broadcom 632



Syntax reference

type: InvokeFragment

reference: <imported-fragment>

let:  # See Let

  - name: <string>

    expression: <SpEL expression>

  ...

anchor: [<file path>]

Behavior

Assuming some fragment my-fragment has been imported in the accelerator (thus exposing the
options it defines as options of the current accelerator), the following construct invokes my-
fragment:

type: InvokeFragment

reference: my-fragment

This passes all input files (depending where this invocation sits in the “tree”) to the invoked
fragment, which can then manipulate them alongside its own files. The result of the invocation
becomes the result of this transform.

Variables

At the point of invocation, all currently defined variables are made visible to the invoked fragment.
Therefore, if it was import-ed in the most straightforward manner, a fragment defining an option
myOption is defining an option named myOption at the accelerator level, and the value provided by
the user is visible at the time of invocation.

To override a value, or if an imported option has been exposed under a different name, or not at all,
you can use a let construct when using InvokeFragment. This behaves as the Let transform: for the
duration of the fragment invocation, the variables defined by let now have their newly defined
values. Outside the scope of the invocation, the regular model applies.

</a/>Files

The set of files coming from the invoking accelerator and made visible to the fragment is the set of
files that “reach” the point of invocation. For example, in the following case:

include: ["somedir/**"]

chain:

  - type: InvokeFragment

    reference: my-fragment

All files that the fragment invocation “sees” are files in the somedir/ subdirectory. If the my-
fragment has not been written accordingly, this can be problematic. Chances are that this re-usable
fragment expects files to be present at the root of the project tree and work on them.

To better cope with this typical situation, the InvokeFragment transform exposes the optional
anchor configuration property. Continuing with the earlier example, by using anchor: somedir, then
all files coming from the current accelerator are exposed as if their path had the somedir/ prefix
removed. When it comes to gathering the result of the invocation though, all resulting files are re-
introduced with a prefix prepended to their path (this applies to all files produced by the fragment,
not just the ones originating from the accelerator).

The value of the anchor property must not start nor end with a slash (/) character.

Tanzu Application Platform v1.4

VMware by Broadcom 633



Examples

Let’s start with a full-featured example showcasing the interaction between the imports section
and InvokeFragment

accelerator:

  name: my-accelerator

  options:

    - name: someOption

      dataType: number

  imports:

    - name: my-fragment

engine:

  merge:

    - include: ["..."]

    - ...

    - chain:

        - include: ["**/pom.xml"]

        - type: InvokeFragment

          reference: my-fragment

Assuming my-fragment is defined like so

accelerator:

  name: my-fragment

  options:

    - name: indentationLevel

      dataType: number

      defaultValue: 2

transform:

  chain:

    - include: ["**/*.xml"]

    - type: SomeTransform

      ...

Then users will be presented with two options: someOption and indentationLevel, as if
indentationLevel was defined in the host accelerator.

Moreover, the behavior of the calling accelerator is exactly as if the body of the fragment transform
was inserted in-place of InvokeFragment:

accelerator:

  name: my-accelerator

  options:

    - name: someOption

      dataType: number

    - name: indentationLevel

      dataType: number

      defaultValue: 2

engine:

  merge:

    - include: ["..."]

    - ...

    - chain:

        - include: ["**/pom.xml"]

        - chain:

          - include: ["**/*.xml"]

          - type: SomeTransform

            ...

Tanzu Application Platform v1.4

VMware by Broadcom 634



Now you can imagine some scenarios to better clarify all configuration properties.

You can pretend, for some reason, that you don’t want to use the value entered in the
indentationLevel option for the fragment, but twice the value provided for someOption. The
InvokeFragment block can be rewritten such as this:

    type: InvokeFragment

    reference: my-fragment

    let:

      - name: indentationLevel

        value: '2 * #someOption'

Now for some other crazy example to better explain the interactions. If the invocation in the
accelerator looked like this:

engine:

  merge:

    - include: ["..."]

    - ...

    - chain:

        - include: ["**/README.md"]

        - type: InvokeFragment

          reference: my-fragment

Then there is absolutely zero visible effect, because this is forwarding only README.md files to the
fragment and the fragment is itself using a filter on *.xml files.

See also
Let

RewritePath

ReplaceText transform
This topic tells you about the Application Accelerator ReplaceText transform in Tanzu Application
Platform (commonly known as TAP).

The ReplaceText transform allows replacing one or several text tokens in files as they are being
copied to their destination. The replacement values are the result of dynamic evaluation of SpEL
expressions.

This transform is text-oriented and requires knowledge of how to interpret the stream of bytes that
make up the file contents into text. All files are assumed to use UTF-8 encoding by default, but you
can use the UseEncoding transform upfront to specify a different charset to use on some files.

You can use ReplaceText transform in one of two ways:

To replace several literal text tokens.

To define the replacement behavior using a single regular expression, in which case the
replacement SpEL expression can leverage the regex capturing group syntax.

Syntax reference
Syntax reference for replacing several literal text tokens:

type: ReplaceText

substitutions:

  - text: STRING

Tanzu Application Platform v1.4

VMware by Broadcom 635

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions


    with: SPEL-EXPRESSION

  - text: STRING

    with: SPEL-EXPRESSION

  - ..

condition: SPEL-EXPRESSION

Syntax reference for defining the replacement behavior using a single regular expression:

Regex is used to match the entire document. To match on a per line basis, enable multiline mode
by including (?m) in the regex.

type: ReplaceText

regex:

  pattern: REGULAR-EXPRESSION

  with: SPEL-EXPRESSION

condition: SPEL-EXPRESSION

In both cases, the SpEL expression can use the special #files helper object. This enables the
replacement string to consist of the contents of an accelerator file. See the following example.

Another set of helper objects are functions of the form xxx2Yyyy() where xxx and yyy can take the
value camel, kebab, pascal, or snake. For example, camel2Snake() enables changing from
camelCase to snake_case.

Examples

Replacing the hardcoded string "hello-world-app" with the value of variable #artifactId in all .md,
.xml, and .yaml files.

include: ['**/*.md', '**/*.xml', '**/*.yaml']

chain:

  - type: ReplaceText

    substitutions:

      - text: "hello-world-app"

        with: "#artifactId"

Doing the same in the README-fr.md and README-de.md files, which are encoded using the ISO-
8859-1 charset:

include: ['README-fr.md', 'README-de.md']

chain:

  - type: UseEncoding

    encoding: 'ISO-8859-1'

  - type: ReplaceText

    substitutions:

      - text: "hello-world-app"

        with: "#artifactId"

Similar to the preceding example, but making sure the value appears as kebab case, while the
entered #artifactId is using camel case:

include: ['**/*.md', '**/*.xml', '**/*.yaml']

chain:

  - type: ReplaceText

    substitutions:

      - text: "hello-world-app"

        with: "#camel2Kebab(#artifactId)"

Replacing the hardcoded string "REPLACE-ME" with the contents of file named after the value of the
#platform option in README.md:

Tanzu Application Platform v1.4

VMware by Broadcom 636



include: ['README.md']

chain:

  - type: ReplaceText

    substitutions:

      - text: "REPLACE-ME"

        with: "#files.contentsOf('snippets/install-' + #platform + '.md')"

See also

UseEncoding

RewritePath transform

This topic tells you about the Application Accelerator RewritePath transform in Tanzu Application
Platform (commonly known as TAP).

The RewritePath transform allows you to change the name and path of files without affecting their
content.

Syntax reference

type: RewritePath

regex: <string>

rewriteTo: <SpEL expression>

matchOrFail: <boolean>

For each input file, RewritePath attempts to match its path by using the regular expression (regex)
defined by the regex property. If the regex matches, RewritePath changes the path of the file to
the evaluation result of rewriteTo.

rewriteTo is an expression that has access to the overall engine model and to variables defined by
capturing groups of the regular expression. Both named capturing groups (?<example>[a-z]*) and
regular index-based capturing groups are supported. g0 contains the whole match, g1 contains the
first capturing group, and so on.

If the regex doesn’t match, the behavior depends on the matchOrFail property:

If set to false, which is the default, the file is left untouched.

If set to true, an error occurs. This prevents misconfiguration if you expect all files coming in
to match the regex. For more information about typical interactions between RewritePath
and Chain + Include, see the following section, Interaction with Chain and Include.

The default value for regex is the following regular expression, which provides convenient access to
some named capturing groups:

^(?<folder>.*/)?(?<filename>([^/]+?|)(?=(?<ext>\.[^/.]*)?)$)

Using some/deep/nested/file.xml as an example, the preceding regular expression captures:

folder: The full folder path the file is in. In this example, some/deep/nested/.

filename: The full name of the file, including extension if present. In this example, file.xml.

ext: The last dot and extension in the filename, if present. In this example, .xml.

The default value for rewriteTo is the expression #folder + #filename, which doesn’t rewrite
paths.

Examples

Tanzu Application Platform v1.4

VMware by Broadcom 637



The following moves all files from src/main/java to sub-module/src/main/java:

type: RewritePath

regex: src/main/java/(.*)

rewriteTo: "'sub-module/src/main/java' + #g1"   # 'sub-module/' + #g0 works too

The following flattens all files found inside the sub-path directory and its subdirectories, and puts
them into the flattened folder:

type: RewritePath

regex: sub-path/(.*/)*(?<filename>[^/]+)

rewriteTo: "'flattened' + #filename"   # 'flattened' + #g2 would work too

The following turns all paths into lowercase:

type: RewritePath

rewriteTo: "#g0.toLowerCase()" 

Interaction with Chain and Include

It’s common to define pipelines that perform a Chain of transformations on a subset of files, typically
selected by Include/Exclude:

- include: "**/*.java"

- chain:

    - # do something here

    - # and then here

If one of the transformations in the chain is a RewritePath operation, chances are you want the
rewrite to apply to all files matched by the Include. For those typical configurations, you can set
the matchOrFail guard to true to ensure the regex you provide indeed matches all files coming in.

See also

Use UniquePath to ensure rewritten paths don’t clash with other files, or to decide which
path to select if they do clash.

OpenRewriteRecipe transform

This topic tells you about the Application Accelerator OpenRewriteRecipe transform in Tanzu
Application Platform (commonly known as TAP).

The OpenRewriteRecipe transform allows you to apply any Open Rewrite Recipe to a set of files and
gather the results.

The following Open Rewrite Recipes are supported:

Java recipes

Maven recipes

XML recipes

YAML recipes

JSON recipes

Properties recipes

The engine leverages v7.30.1 of Open Rewrite and parses Java files using the grammar for Java 11.

Tanzu Application Platform v1.4

VMware by Broadcom 638

https://docs.openrewrite.org/
https://docs.openrewrite.org/reference/recipes/java
https://docs.openrewrite.org/reference/recipes/maven
https://docs.openrewrite.org/reference/recipes/xml
https://docs.openrewrite.org/reference/recipes/yaml
https://docs.openrewrite.org/reference/recipes/json
https://docs.openrewrite.org/reference/recipes/properties


Syntax reference

type: OpenRewriteRecipe

recipe: <string>                  # Full qualified classname of the recipe

options:

  <string>: <SpEL expression>      # Keys and values depend on the class of the recipe

  <string>: <SpEL expression>      # Refer to the documentation of said recipe

  ...

Example

The following example applies the ChangePackage Recipe to a set of Java files in the com.acme
package and moves them to the value of #companyPkg. This is more powerful than using
RewritePath and ReplaceText, as it reads the syntax of files and correctly deals with imports, fully
compared to non-fully qualified names, and so on.

chain:

  - include: ["**/*.java"]

  - type: OpenRewriteRecipe

    recipe: org.openrewrite.java.ChangePackage

    options:

      oldPackageName: "'com.acme'"

      newPackageName: "#companyPkg"

YTT transform
This topic tells you about the Application Accelerator YTT transform in Tanzu Application Platform
(commonly known as TAP).

The YTT transform starts the YTT template engine as an external process.

Syntax reference

type: YTT

extraArgs: # optional

  - <SPEL-EXPRESSION-1>

  - <SPEL-EXPRESSION-2>

  - ...

The YTT transform’s YAML notation does not require any parameters. When invoked without
parameters, which is the typical use case, the YTT transform’s input is determined entirely by two
things only:

1. The input files fed into the transform.

2. The current values for options and derived symbols.

Execution
YTT is invoked as an external process with the following command line:

ytt -f <input-folder> \

    --data-values-file <symbols.json> \

    --output-files <output-folder> \

    <extra-args>

The <input-folder> is a temporary directory into which the input files are “materialized.” That is,
the set of files passed to the YTT transform as input is written out into this directory to allow the

Tanzu Application Platform v1.4

VMware by Broadcom 639

https://docs.openrewrite.org/reference/recipes/java/changepackage
https://carvel.dev/ytt/


YTT process to read them.

The <symbols.json> file is a temporary JSON file, which the current option values and derived
symbols are materialized in the form of a JSON map. This allows YTT templates in the <input-
folder> to make use of these symbols during processing.

The <output-folder> is a fresh temporary directory that is empty at the time of invocation. In a
typical scenario, upon completion, the output directory contains files generated by YTT.

The <extra-args> are additional command line arguments obtained by evaluating the SPEL
expressions from the extraArgs attribute.

When the ytt process completes with a 0 exit code, this is considered a successful execution and
the contents of the output directory is taken to be the result of the YTT transform.

When the ytt process completes with a non 0 exit code, the execution of the YTT transform is
considered to have failed and an exception is raised.

Examples

Basic invocation

When you want to execute ytt on the contents of the entire accelerator repository, use the YTT
transform as your only transform in the engine declaration.

accelerator:

  ...

engine:

  type: YTT

To do anything beyond calling YTT, compose YTT into your accelerator flow using merge or chain
combinators. This is exactly the same as composing any other type of transform.

For example, when you want to define some derived symbols as well as merge the results from
YTT with results from other parts of your accelerator transform, you can reference this example:

engine:

  let: # Define derived symbols visible to all transforms (including YTT)

  - name: theAnswer

    expression: "41 + 1"

  merge:

  - include: ["deploy/**.yml"] # select some yaml files to process with YTT

    chain: # Chain selected yaml files to YTT

    - type: YTT

  - ... include/generate other stuff to be merged alongside yaml generated by YTT...

The preceding example uses a combination of Chain and Merge. You can use either Merge or Chain
or both to compose YTT into your accelerator flow. Which one you choose depends on how you
want to use YTT as part of your larger accelerator.

Using extraArgs

The extraArgs passes additional command line arguments to YTT. This adds file marks. See File
Marks in the Carvel documentation.

For example, the following runs YTT and renames the foo/demo.yml file in its output to
bar/demo.yml.

engine:

  type: YTT

  extraArgs: ["'--file-mark'",  "'foo/demo.yml:path=bar/demo.yml'"]

Tanzu Application Platform v1.4

VMware by Broadcom 640

https://carvel.dev/ytt/docs/latest/file-marks/#available-marks


The extraArgs attribute expects SPEL expressions. Take care to use proper escaping of literal
strings using double and single quotes (that is, `“‘LITERAL-STRING’”).

UseEncoding transform

This topic tells you about the Application Accelerator UseEncoding transform in Tanzu Application
Platform (commonly known as TAP).

When considering files in textual form, for example, when doing text replacement with the
ReplaceText transform, the engine must decide which encoding to use.

By default, UTF-8 is assumed. If any files must be handled differently, use the UseEncoding transform
to annotate them with an explicit encoding.

UseEncoding returns an error if you apply encoding to files that have already been explicitly
configured with a particular encoding.

Syntax reference

type: UseEncoding

encoding: <encoding>    # As recognized by the java java.nio.charset.Charset class

condition: <SpEL expression>

Supported encoding names include, for example, UTF-8, US-ASCII, and ISO-8859-1.

Example use

UseEncoding is typically used as an upfront transform to, for example, ReplaceText in a chain:

type: Chain   # Or using "Combo"

transformations:

  - type: UseEncoding

    encoding: ISO-8859-1

  - type: ReplaceText

    substitutions:

      - text: "hello"

        with: "#howToSayHello"

See also

ReplaceText

UniquePath transform

This topic tells you about the Application Accelerator UniquePath transform in Tanzu Application
Platform (commonly known as TAP).

You can use the UniquePath transform to ensure there are no path conflicts between files
transformed. You can often use this at the tail of a Chain.

Syntax reference

type: UniquePath

strategy: <conflict resolution>

condition: <SpEL expression>

Tanzu Application Platform v1.4

VMware by Broadcom 641

https://en.wikipedia.org/wiki/Character_encoding


Examples

The following example concatenates the file that was originally named DEPLOYMENT.md to the file
README.md:

chain:

  - merge:

      - include: ['README.md']

      - include: ['DEPLOYMENT.md']

        chain:

          - type: RewritePath

            rewriteTo: "'README.md'"

  - type: UniquePath

    strategy: Append

See also
UniquePath uses a Conflict Resolution strategy to decide what to do when several input files
use the same path.

Combo implicitly embeds a UniquePath after the Merge defined by its merge property.

Conflict resolution
This topic tells you how to resolve conflicts that Application Accelerator transforms in Tanzu
Application Platform (commonly known as TAP) might produce.

For example, if you’re using Merge (or Combo’s merge syntax) or RewritePath, a transform can
produce several files at the same path. The engine then must take an action: Should it keep the last
file? Report an error? Concatenate the files together?

Such conflicts can arise for a number of reasons. You can avoid or resolve them by configuring
transforms with a conflict resolution. For example:

Combo uses UseLast by default, but you can configure it to do otherwise.

You can explicitly end a transform Chain with a UniquePath, which by default uses Fail. This
is customizable.

Syntax reference

type: Combo      # often omitted

merge:

  - <transform>

chain:

  - <transform>

  - ...

onConflict: <conflict resolution>  # defaults to 'UseLast'

type: Chain      # or implicitly using Combo

transformations:

  - <transform>

  - <transform>

  - type: UniquePath

    strategy: <conflict resolution>  # defaults to 'Fail'

Available strategies

The following values and behaviors are available:

Tanzu Application Platform v1.4

VMware by Broadcom 642



Fail: Stop processing on the first file that exhibits path conflicts.

UseFirst: For each conflicting file, the file produced first (typically by a transform appearing
earlier in the YAML definition) is retained.

UseLast: For each conflicting file, the file produced last (typically by a transform appearing
later in the YAML definition) is retained.

Append: The conflicting versions of files are concatenated (as if using cat file1 file2 ...),
with files produced first appearing first.

FavorOwn: Only makes sense in the context of composition. Selects the version of the file
that comes from the current executing fragment if possible, falls back to the caller version
otherwise.

FavorForeign: Only makes sense in the context of composition. Selects the version of the
file that was provided by the caller if present, falls back to the file originating from this
fragment’s fileset otherwise.

See also

Combo

UniquePath

Use SpEL with Application Accelerator

This topic tells you about some common Spring Expression Language (SpEL) use cases for the
accelerator.yaml file in Application Accelerator.

For more information, see Spring Expression Language documentation.

Variables

You can reference all the values added as options in the accelerator section from the YAML file as
variables in the engine section. You can access the value using the syntax #<option name>:

options:

  - name: foo

    dataType: string

    inputType: text

...

engine:

  - include: ["some/file.txt"]

    chain:

    - type: ReplaceText

      substitutions:

      - text: bar

        with: "#foo"

This sample replaces every occurrence of the text bar in the file some/file.txt with the contents
of the foo option.

Implicit variables

Some variables are made available to the model by the engine, including:

artifactId is a built-in value derived from the projectName passed in from the UI with
spaces replaced by “_”. If that value is empty, it is set to app.

Tanzu Application Platform v1.4

VMware by Broadcom 643

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions


files is a helper object that currently exposes the contentsOf(<path>) method. For more
information, see ReplaceText.

camel2Kebab and other variations of the form xxx2Yyyy is a series of helper functions for
dealing with changing case of words. For more information, see ReplaceText.

Conditionals

You can use Boolean options for conditionals in your transformations.

options:

  - name: numbers

    inputType: select

    choices:

    - text: First Option

      value: first

    - text: Seconf Option

      value: second

    defaultValue: first

...

engine:

  - include: ["some/file.txt"]

    condition: "#numbers == 'first'"

    chain:

    - type: ReplaceText

      substitutions:

      - text: bar

        with: "#foo"

This replaces the text only if the selected option is the first one.

Rewrite path concatenation

options:

  - name: renameTo

    dataType: string

    inputType: text

...

engine:

  - include: ["some/file.txt"]

    chain:

    - type: RewritePath

      rewriteTo: "'somewhere/' + #renameTo + '.txt'"

Regular expressions

Regular expressions allow you to use patterns as a matcher for strings. Here is a small example of
what you can do with them:

options:

  - name: foo

    dataType: string

    inputType: text

    defaultValue: abcZ123

...

engine:

  - include: ["some/file.txt"]

    condition: "#foo.matches('[a-z]+Z\d+')"

    chain:

    - type: ReplaceText

      substitutions:

Tanzu Application Platform v1.4

VMware by Broadcom 644



      - text: bar

        with: "#foo"

This example uses RegEx to match a string of letters that ends with a capital Z and any number of
digits. If this condition is fulfilled, the text is replaced in the file, file.txt.

Dealing with string arrays

Options with a dataType of [string] come out as an array of strings.

"To use them and for example format the result as a bulleted list, you can use the Java static
String.join() method. For example:

accelerator:

  options:

    - name: meals

      dataType: [string]

      inputType: checkbox

      choices:

        - value: fish

        - value: chips

        - value: BLT

...

engine:

  type: ReplaceText

  substitutions:

  - text: recipe

    with: "' * ' + T(java.lang.String).join('\n * ', #meals)"

Accelerator custom resource definition

This topic tells you about the Application Accelerator custom resource definition.

The Accelerator custom resource definition (CRD) defines
any accelerator resources to be made

available to the Application Accelerator for VMware Tanzu system. It is a namespaced CRD,
meaning that any resources created belong to a namespace. For the resource to be available to
the Application Accelerator system, it must be created in the namespace that the Application
Accelerator UI server is configured to watch.

The Fragment custom resource definition (CRD) defines any accelerator fragment resources to be
made available to the Application Accelerator for VMware Tanzu system. It is a namespaced CRD,
meaning that any resources created belong to a namespace. For the resource to be available to
the Application Accelerator system, it must be created in the namespace that the Application
Accelerator UI server is configured to watch.

API definitions

The Accelerator CRD is defined with the following properties:

Property Value

Name Accelerator

Group accelerator.apps.tanzu.vmware.com

Version v1alpha1

Tanzu Application Platform v1.4

VMware by Broadcom 645



Property Value

ShortName acc

Accelerator CRD Spec

The Accelerator CRD spec defined in the AcceleratorSpec type has the following fields:

Field Description Required/Optional

displayNa
me

A short descriptive name used for an Accelerator. Optional (*)

description A longer description of an Accelerator. Optional (*)

iconUrl A URL for an image to represent the Accelerator in a UI. Optional (*)

tags An array of strings defining attributes of the Accelerator that can be used in a
search.

Optional (*)

git Defines the accelerator source Git repository. Optional (***)

git.url The repository URL, can be a HTTP/S or SSH address. Optional (***)

git.gitImpl
ementation

Determines which git client library to use. The default setting is to go-git. Valid
values are (‘go-git’, ‘libgit2’).

Optional (**)

git.ignore Overrides the set of excluded patterns in the .sourceignore format (which is the
same as .gitignore). If not provided, a default of .git/ is used.

Optional (**)

git.interval The interval at which to inquire for repository updates. If not provided the default
setting is 10 minuets. There is an additional refresh interval (currently 10s) involved
before accelerators can appear in the UI. There might be a 10s delay before changes
are reflected in the UI.*

Optional (**)

git.ref Git reference to checkout and monitor for changes, the default is main branch. Optional (**)

git.ref.bran
ch

The Git branch to checkout, the default is main. Optional (**)

git.ref.com
mit

The Git commit SHA to checkout, if specified tag filters are ignored. Optional (**)

git.ref.sem
ver

The Git tag semver expression, takes precedence over tag. Optional (**)

git.ref.tag The Git tag to checkout, takes precedence over branch. Optional (**)

git.secretR
ef

The secret name containing the Git credentials. For HTTPS repositories, the secret
must contain user name and password fields. For SSH repositories, the secret must
contain identity, identity.pub, and known_hosts fields.

Optional (**)

git.subPath SubPath is the folder inside the git repository to consider as the root of the
accelerator or fragment. Defaults at the root of the repository.

Optional

source Defines the source image repository. Optional (***)

source.ima
ge

Image is a reference to an image in a remote registry. Optional (***)

source.ima
gePullSecr
ets

ImagePullSecrets contains the names of the Kubernetes Secrets containing registry
login information to resolve image metadata

Optional

source.inte
rval

The interval at which to check for repository updates. Optional

Tanzu Application Platform v1.4

VMware by Broadcom 646



Field Description Required/Optional

source.serv
iceAccount
Name

ServiceAccountName is the name of the Kubernetes ServiceAccount used to
authenticate the image pull if the service account has attached pull secrets

Optional

The Fragment CRD is defined with the following properties:

Property Value

Name Fragment

Group accelerator.apps.tanzu.vmware.com

Version v1alpha1

ShortName frag

Fragment CRD Spec

The Fragment CRD spec defined in the FragmentSpec type has the following fields:

Field Description Required/Optional

display
Name

DisplayName is a short descriptive name used for a Fragment. Optional

git Defines the fragment source Git repository. Required

git.url The repository URL, can be a HTTP/S or SSH address. Required

git.igno
re

Overrides the set of excluded patterns in the .sourceignore format (which is the same
as .gitignore). If not provided, a default of .git/ is used.

Optional (**)

git.inter
val

The interval at which to inquire for repository updates. If not provided the default is 10
min.

Optional (**)

git.ref Git reference to checkout and monitor for changes, the default is main branch. Optional (**)

git.ref.b
ranch

The Git branch to checkout, defaults to main. Optional (**)

git.ref.c
ommit

The Git commit SHA to checkout, if specified tag filters are ignored. Optional (**)

git.ref.s
emver

The Git tag semver expression, takes precedence over tag. Optional (**)

git.ref.ta
g

The Git tag to checkout, takes precedence over branch. Optional (**)

git.secr
etRef

The secret name containing the Git credentials. For HTTPS repositories, the secret
must contain user name and password fields. For SSH repositories, the secret must
contain identity, identity.pub, and known_hosts fields.

Optional (**)

git.subP
ath

SubPath is the directory inside the Git repository to consider as the root of the
accelerator or fragment. Defaults at the root of the repository.

Optional

* Any optional text boxes marked with an asterisk (*) are populated from a text box of the same
name in the accelerator definition in the accelerator.yaml file if that is present in the Git
repository for the accelerator.

** Any fields marked with a double asterisk (**) are part of the Flux GitRepository CRD that is
documented in the Flux Source Controller Git Repositories documentation.

*** Any fields marked with a triple asterisk (***) are optional but either git or source is required to
specify the repository to use. If git is specified, the git.url is required, and if source is specified,

Tanzu Application Platform v1.4

VMware by Broadcom 647

https://fluxcd.io/docs/components/source/gitrepositories/


source.image is required.

Excluding files

The git.ignore field defaults to .git/, which is different from the defaults provided by the Flux
Source Controller GitRepository implementation. You can override this, and provide your own
exclusions. For more information, see fluxcd/source-controller Excluding files.

Test accelerators in Application Accelerator

This topic tells you how to test an updated accelerator, or fragment that is not registered in your
Tanzu Application Platform (commonly known as TAP) cluster.

Generating a project from local sources

When you are authoring your accelerator, you can test it before committing any changes.

With the tanzu accelerator generate-from-local command, you can run your accelerator (or
fragment), including any changes you have locally, specify a set of options and view the generated
project.

You can run the accelerator using the components on your Tanzu Application Platform cluster,
without impacting the state of the Tanzu Application Platform cluster.

To do so, ensure that you have the following prerequisites:

The Tanzu CLI is installed, with the Application Accelerator plug-in. For details about
installing the Tanzu CLI and plug-ins, see Tanzu CLI.

The server URL is pointing to the Tanzu Application Platform cluster you want to test with.
For details about setting the server URL, see Application Accelerator CLI plug-in overview.

For example, to use the accelerator that is located at the path workspace/java-rest:

tanzu accelerator generate-from-local --accelerator-path java-rest=workspace/java-rest 

--fragment-names tap-workload,java-version --options '{"projectName":"test"}' --output

-dir generated-project

This generates the project in the local directory generated-project, using the accelerator located
at workspace/java-rest, the fragments tap-workload and java-version which are assumed to be
already registered in the Tanzu Application Platform cluster and the option projectName set to test.

For example, to use the fragment named java-version that is located at the path
workspace/version:

tanzu accelerator generate-from-local --accelerator-name java-rest --fragment-paths ja

va-version=workspace/version --fragment-names tap-workload --options '{"projectNam

e":"test"}' --output-dir generated-project

This generates the project in the local directory generated-project, using the accelerator java-
rest and the fragment tap-workload which are assumed to be already registered in the Tanzu
Application Platform cluster, the fragment named java-version located at workspace/version, and
the option projectName set to test.

For the full documentation for the generate-from-local command, see reference Tanzu
accelerator generate-from-local.

No changes are made to the Tanzu Application Platform cluster that is provided with the server
URL. No new accelerators/fragments are registered or modified. A Tanzu Application Platform
cluster is required to ensure that there is consistency between the version that is used for testing

Tanzu Application Platform v1.4

VMware by Broadcom 648

https://fluxcd.io/docs/components/source/gitrepositories/#excluding-files


and the version that is used when the accelerator is registered. Furthermore, it allows using
registered fragments and accelerators as dependencies for the local accelerator/fragment.

CI/CD Pipeline

As you iterate on an accelerator, you can have some automated assertions run before any changes
to the accelerator are accepted.

The process for generating a project from the committed source files is the same as described
earlier.

When the generated project is available, you can run various assertions on it:

cd generated-project

test -f build.gradle

./gradlew test

If you have multiple assertions, you might choose to run a predefined script:

cd generated-project

../assertions/validate-generate-project.sh

You might choose to generate multiple projects from the same accelerator, providing different
options for each and running different assertions on each generated project.

(Optional) Getting the Tanzu CLI in a CI/CD pipeline

If the Tanzu CLI is already available in your CI/CD pipeline you can skip this section.

VMware provides an example script that is agnostic to the CI/CD system it is running on. The script
requires a variable named TANZU_REFRESH_TOKEN which holds a personal VMware Tanzu Network
refresh token. To generate such a token see How to Authenticate. The script also uses curl and
jq.

The script downloads artifacts compatible with Tanzu Application Platform version v1.4 and a Linux
operating system. Update the script to suit the Tanzu Application Platform version and OS that you
are using.

#!/bin/bash

# Get access token using personal Tanzu Network refresh token

# See https://network.tanzu.vmware.com/docs/api#how-to-authenticate

ACCESS_TOKEN=$(curl -X POST https://network.tanzu.vmware.com/api/v2/authentication/acc

ess_tokens -d '{"refresh_token":"'"$TANZU_REFRESH_TOKEN"'"}' | jq -r ".access_token")

# Download bundle

# See https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.4/tap/GUID-instal

l-tanzu-cli.html#cli-plugin-install

# Update url to download desired version

mkdir -p $HOME/tanzu

curl -L -X GET https://network.tanzu.vmware.com/api/v2/products/tanzu-application-plat

form/releases/1205491/product_files/1352407/download -H "Authorization: Bearer $ACCESS

_TOKEN" --output bundle.tar

# Unpack bundle

export TANZU_CLI_NO_INIT=true

export VERSION=v0.25.0 # Update to desired version

tar -xvf bundle.tar -C $HOME/tanzu

cd $HOME/tanzu

# Install CLI

# Update to use desired OS

Tanzu Application Platform v1.4

VMware by Broadcom 649

https://network.tanzu.vmware.com/docs/api#how-to-authenticate


sudo install cli/core/$VERSION/tanzu-core-linux_amd64 /usr/local/bin/tanzu

# Install plugins

tanzu plugin install accelerator

Use the Application Accelerator Visual Studio Code
extension
This topic describes how to use the Application Accelerator Visual Studio Code extension to
explore and generate projects from the defined accelerators in Tanzu Application Platform
(commonly known as TAP) using VS Code.

The Application Accelerator Visual Studio Code extension lets you explore and generate projects
from the defined accelerators in Tanzu Application Platform using VS Code.

Dependencies
To use the VS Code extension, the extension must access the Tanzu Application Platform
GUI URL. For information about how to retrieve the Tanzu Application Platform GUI URL,
see Retrieving the URL for the Tanzu Application Platform GUI.

(Optionally) To use Git repository provisioning during project creation in the VS Code
extension, you must enable GitHub repository creation in the Application Accelerator plug-
in. For more information, see Create an Application Accelerator Git repository during
project creation.

Installation
Use the following steps to install the Application Accelerator Visual Studio extension:

1. Sign in to VMware Tanzu Network and download the “Tanzu App Accelerator Extension for
Visual Studio Code” file from the product page for VMware Tanzu Application Platform.

2. Open VS Code.

Option 1:

1. From the Command Palette (cmd + shift + P), run “Extensions: Install from VSIX…”.

2. Select the extension file tanzu-app-accelerator-<EXTENSION_VERSION>.vsix.

Option 2:

1. Select the Extensions tab: 

2. Select Install from VSIX… from the overflow menu.

Tanzu Application Platform v1.4

VMware by Broadcom 650

https://network.tanzu.vmware.com/products/tanzu-application-platform


Configure the extension
Before using the extension, you need follow the next steps:

1. Go to VS Code settings - click Code > Preferences > Settings > Extensions > Tanzu App
Accelerator.

2. Look for the setting Tap Gui Url.

3. Add the Tanzu Application Platform GUI URL.

An example URL: https://tap-gui.myclusterdomain.myorg.com. If you have access to the
Tanzu Application Platform cluster that is running the Tanzu Application Platform GUI, you
can run the following command to determine the fully-qualified domain name:

kubectl get httpproxy tap-gui -n tap-gui

Using the extension
After adding the Tap Gui Url you can explore the defined accelerators accessing the Application
Accelerator extension icon:

Tanzu Application Platform v1.4

VMware by Broadcom 651



Choose any of the defined accelerators, fill the options and click the generate project

Retrieving the URL for the Tanzu Application Platform GUI

Tanzu Application Platform v1.4

VMware by Broadcom 652



If you have access to the Tanzu Application Platform cluster that is running the Tanzu Application
Platform GUI, you can run the following command to determine the fully-qualified domain name:

kubectl get httpproxy tap-gui -n tap-gui

With an expected response of something similar to:

NAME      FQDN                                      TLS SECRET     STATUS   STATUS DES

CRIPTION

tap-gui   tap-gui.tap.tapdemo.myorg.com             tap-gui-cert   valid    Valid HTTP

Proxy

Known Issues
In v0.1.5 of the Application Accelerator extension for VS Code, if an accelerator with custom types
is used and the custom type form contains checkboxes, re-prioritizing the custom types entries
cause the data to not properly reorder. This is a known issue and is resolved in an upcoming
release.

Application Accelerator best practices
The following topics tells you about best practices for authoring accelerators and fragments.

Best practices for using Accelerators

A collection of best practices for authoring accelerators.

Best practices for using Fragments

A collection of best practices for authoring fragments.

Best practices for using accelerators
This topic tells you about the benefits, and design considerations for accelerators.

Benefits of using an accelerator
There are several good reasons to develop accelerators:

If you’re repeatedly using the same application architecture for new applications.

To enforce standardization of technology stacks and application setups throughout your
organization.

To share best practices around application architecture, application, and test setup.

Design considerations
Each accelerator must have only one base technology stack, combined with related tooling, and
one target architecture. For example, if you use both Spring Boot and C# .NET Core applications in
your target environment, you must set up two separate accelerators. Mixing multiple technology
stacks and multiple target architectures makes both the directory structure and acceleratory.YAML
unreadable.

The scope of your accelerator must align with your different types of deployments. For example,
back-end API, front-end UI, business service, and so on.

Choose OpenRewrite-based transformation over ReplaceText-based transformation when possible.
OpenRewrite-based transformations understand the semantics of the files they work on, for

Tanzu Application Platform v1.4

VMware by Broadcom 653



example, Maven pom.xml or Java source files. OpenRewrite-based transformations also provide
more accurate and robust modifications. As a last resort, ReplaceText supports a regex mode.
When used with capturing groups in the replacement string, ReplaceText allows most
modifications.

Housekeeping rules

VMware has found that the following rules keep the set of accelerators clear and findable for end
users:

Use an intuitive name and short description that reflects the accelerators purpose. The
word ‘accelerator’ must not be in the name.

Use an appropriate and intuitive icon.

Use tags that reflect language, framework, and type of service. For example, database,
messaging, and so on. This helps when searching for an accelerator by tags. Tag names
must use lowercase letters, consist of [a-z0-9+#] separated by [-], and not exceed 63
characters.

Accelerators must expose options to allow configuring an accelerator for different use cases
instead of creating multiple similar accelerators.

Options must be straightforward, the description of each clearly stating the role it plays in
the accelerator. Options must have default values when appropriate.

Options must be short so that they are easy to navigate. Make options conditional on other
options as appropriate.

Free text options that have limitations on their values must ensure these limitations are met
by a regular expression-based validation. This validation ensures early feedback on invalid
user input.

Generated application skeletons must have a detailed README file that describes the
function and structure of a generated application. It must provide detailed information
about how developers can build and deploy a generated application of the accelerator and
how to use it.

Tests

Application skeleton

An accelerator that generates an application skeleton without a good test suite for the different
layers of the application promotes bad behavior. It could result in code running in production
without testing.

Tests you could use for the application skeleton:

An overall application test that bootstraps the application to see if it comes online.

A test per layer of the application. For example, presentation layer, business layer, and data
layer. These tests can be unit tests that leverage stubbing or mocking frameworks.

An integration test per layer of the application, especially the presentation and data layer.
For example, you can provide an integration test with some database interaction by using
test containers.

Best practices for using fragments
This topic tells you about the benefits, and design considerations for fragments.

Tanzu Application Platform v1.4

VMware by Broadcom 654

https://www.testcontainers.org/


Benefits of using Fragment

A fragment is a partial accelerator. It can do the same transformations as an accelerator, but it
cannot run on its own. It’s always part of the calling (host) accelerator.

Developing a fragment is useful in the following situations:

When you must update a version of an element of a technology stack in multiple locations.
For example, when the Java Development Kit (JDK) version must be updated in the build
tool configuration, the buildpack configuration, and in the deployment options.

To add a consistent cross-cutting concern to a set of accelerators. For example, logging,
monitoring, or support for a certain type of deployment or framework.

To add integration with some technology to a generated application skeleton. For example,
certain database support, support for a messaging middleware, or integration with an email
provider.

Design considerations

Developing and maintaining a fragment is complex. The following is a list of design considerations:

The fragment you develop must work with all possible syntax and format variations. For
example, dependency in a Gradle build.gradle.kts can have the following forms:

implementation(‘org.springframework.boot:spring-boot-starter’)

implementation("org.springframework.boot:spring-boot-starter")

implementation(group = "org.springframework.boot”, name= “spring-boot-

starter")

implementation(group = ‘org.springframework.boot’, name= ‘spring-boot-

starter’)

implementation(name= “spring-boot-starter", group =

"org.springframework.boot”)

The fragment can be used in multiple accelerator contexts and its behavior must result in a
compilable and deployable application skeleton.

Testing a fragment in isolation is more difficult than testing an accelerator. Testing takes
more time because all the combinations must be tested from an accelerator perspective.

When flexibly reusing fragments in different combinations, each fragment must cover a
small, cohesive function. Fragments must follow these two UNIX principles:

Small is beautiful.

Each fragment does one thing well.

Keep the files the fragment changes to a minimum. Only change the files that are related to
the same technology stack for the same purpose.

The design of both the accelerator and fragment is limited by the technology stack and the
target deployment technology chosen for the accelerator. For example, to create a
fragment for standardizing logging, you must create one fragment per base technology
stack.

Housekeeping rules

Fragments are used by accelerator authors. VMware has found that the following guidelines keep
fragments understandable and reusable.

Tanzu Application Platform v1.4

VMware by Broadcom 655



Give fragments an intuitive name and short description that reflects their purpose. Do not
include “fragment” in the name.

Fragments must expose options to allow configuring the output of execution.

Each fragment must contain a README file explaining the additional functions the fragment
adds to a generated application skeleton. List any options expected by this fragment. Also
describe how this fragment can be included in a host accelerator. Be sure to state any
known limitations or use cases not covered. For example, if the fragment supports Maven
and Gradle as build tools but only Groovy DSL of Gradle is supported, the README file
must include this information.

If a fragment must provide additional documentation to end users, it can either be added to
a README-X file of the generated application skeleton or append a section to the host’s
README.

Troubleshoot Application Accelerator

This topic provides troubleshooting steps for development, accelerator authorship, and operations
issues in Application Accelerator.

Development issues

Failure to generate a new project

URI is not absolute error

The generate command fails with the following error:

% tanzu accelerator generate test --server-url https://accelerator.example.com

Error: there was an error generating the accelerator, the server response was: "URI is 

not absolute"

Use:

  tanzu accelerator generate [flags]

Examples:

  tanzu accelerator generate <accelerator-name> --options '{"projectName":"test"}'

Flags:

  -h, --help                  help for generate

      --options string        options JSON string

      --options-file string   path to file containing options JSON string

      --output-dir string     directory that the zip file will be written to

      --server-url string     the URL for the Application Accelerator server

Global Flags:

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

there was an error generating the accelerator, the server response was: "URI is not ab

solute"

Error: exit status 1

✖  exit status 1

This indicates that the accelerator resource requested is not in a READY state. Review the
instructions in the When Accelerator ready column is false section or contact your system admin.

Tanzu Application Platform v1.4

VMware by Broadcom 656



Accelerator authorship issues

General tips

Speed up the reconciliation of the accelerator

Set the git.interval to make the accelerator reconcile sooner. The default interval is 10 minutes,
which is too long when developing an accelerator.

You can set this when using the YAML manifest:

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: test-accelerator

spec:

  git:

    url: https://github.com/trisberg/test-accelerator

    ref:

      branch: main

    interval: 10s

You can also set this when creating the accelerator resource. To do so from the Tanzu CLI, run:

tanzu accelerator create test-accelerator --git-repo https://github.com/trisberg/test-

accelerator --git-branch main --interval 10s

Use a source image with local accelerator source directory

You don’t have to use a Git repository when developing an accelerator. You can create an
accelerator based on content in a local directory using --local-path when creating the accelerator
resource.

Push the local path content to an OCI image by running:

tanzu accelerator create test-accelerator --local-path . --source-image REPO-PREFIX/te

st-accelerator --interval 10s

Where REPO-PREFIX is your own repository prefix. Use a repository that the deployed Application
Accelerator system can access.

The interval is 10s so that you can push changes to the source-image repository and get faster
reconcile time for the accelerator resource. When you have made changes to your accelerator
source, push those changes by running:

tanzu accelerator push --local-path . --source-image REPO-PREFIX/test-accelerator

Where REPO-PREFIX is your own repository prefix. Use a repository that is accessible to the
deployed Application Accelerator system.

Expression evaluation errors

Expression evaluation errors include:

Expression evaluated to null, such as:

Could not read response from accelerator: java.lang.IllegalArgumentException: E

xpression '#mytestexp' evaluated to null

Tanzu Application Platform v1.4

VMware by Broadcom 657



In most cases, a typo in the variable name causes this error. Compare the expression with
the defined options or any variables declared with let.

could not parse SpEL expression, such as:

Could not read response from accelerator: Error reading manifest:could not pars

e SpEL expression at [Source: (InputStreamReader); line: 65, column: 1] (throug

h reference chain: com.vmware.tanzu.accelerator.engine.manifest.Manifest["engin

e"]->com.vmware.tanzu.accelerator.engine.transform.transforms.Combo["let"]->jav

a.util.ArrayList[0]->com.vmware.tanzu.accelerator.engine.transform.transforms.L

et$DerivedSymbol["expression"])

In most cases, an error in a let expression causes this error. Review the error message and,
for more information, see SpEL samples.

SpelEvaluationException, such as:

Could not read response from accelerator: org.springframework.expression.spel.S

pelEvaluationException: EL1007E: Property or field 'test' cannot be found on nu

ll

In most cases, an error in a transform expression causes this error. Review the error
message and, for more information, see SpEL samples.

Operations issues

Check status of accelerator resources

Verify the status of accelerator resources by using kubectl or the Tanzu CLI:

From kubectl, run:

kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-syste

m

From the Tanzu CLI, run:

tanzu accelerator list

Verify that the READY status is true for all accelerators.

When Accelerator ready column is blank

1. View the status of accelerator-system by running:

kubectl get deployment -n accelerator-system

Example output:

NAME                             READY   UP-TO-DATE   AVAILABLE   AGE

acc-engine                       1/1     1            1           3d5h

acc-server                       1/1     1            1           2d1h

accelerator-controller-manager   0/1     1            0           3d5h

2. View the logs for any component with no Pods available by running:

kubectl logs deployment/COMPONENT-NAME/ -n accelerator-system -p

Where COMPONENT-NAME is the component with no pods you retrieved in the previous step.

If the log has the following error then the Flux CD source-controller is not installed:

Tanzu Application Platform v1.4

VMware by Broadcom 658



2021-11-18T20:55:18.963Z ERROR setup problem running manager {"error": "f

ailed to wait for accelerator caches to sync: no matches for kind \"GitRe

pository\" in version \"source.toolkit.fluxcd.io/v1beta1\""}

If the log has the following error, the Tanzu Application Platform source-controller is
not installed:

2021-11-18T20:50:10.557Z ERROR setup problem running manager {"error": "f

ailed to wait for accelerator caches to sync: no matches for kind \"Image

Repository\" in version \"source.apps.tanzu.vmware.com/v1alpha1\""}

When Accelerator ready column is false

View the REASON column for non-ready accelerators. Run:

kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-system

REASON: GitRepositoryResolutionFailed

For example:

$ kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-system

NAME        READY   REASON                             AGE

more-fun    False   GitRepositoryResolutionFailed      28s

1. View the resource status. Run:

kubectl get -oyaml accelerators.accelerator.apps.tanzu.vmware.com -n accelerato

r-system hello-fun

2. Read status.conditions.message near the end of the output to learn the likely cause of
failure. For example:

status:

  address:

    url: http://accelerator-engine.accelerator-system.svc.cluster.local/invocat

ions

  artifact:

    message: 'unable to clone ''https://github.com/vmware-tanzu/application-acc

elerator-samples'',

      error: couldn''t find remote ref "refs/heads/test"'

    ready: false

    url: ""

  conditions:

  - lastTransitionTime: "2021-11-18T21:05:47Z"

    message: |-

      failed to resolve GitRepository

      unable to clone 'https://github.com/vmware-tanzu/application-accelerator-

samples', error: couldn't find remote ref "refs/heads/test"

    reason: GitRepositoryResolutionFailed

    status: "False"

    type: Ready

  description: Test-git

  observedGeneration: 1

In this example, couldn't find remote ref "refs/heads/test" reveals that the branch or
tag specified doesn’t exist.

Another common problem is that the Git repository doesn’t exist. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 659



status:

  address:

    url: http://accelerator-engine.accelerator-system.svc.cluster.local/invocat

ions

  artifact:

    message: 'unable to clone ''https://github.com/vmware-tanzu/application-acc

elerator-sampl'',

      error: authentication required'

    ready: false

    url: ""

  conditions:

  - lastTransitionTime: "2021-11-18T21:09:52Z"

    message: |-

      failed to resolve GitRepository

      unable to clone 'https://github.com/vmware-tanzu/application-accelerator-

sampl', error: authentication required

    reason: GitRepositoryResolutionFailed

    status: "False"

    type: Ready

  description: Test-git

  observedGeneration: 1

An error message about failed authentication might display because the Git repository
doesn’t exist. For example:

unable to clone 'https://github.com/vmware-tanzu/application-accelerator-samp

l', error: authentication required

REASON: GitRepositoryResolutionPending

For example:

$ kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-system

NAME        READY   REASON                             AGE

more-fun    False   GitRepositoryResolutionPending     28s

1. See the resource status. Run:

kubectl get -oyaml accelerators.accelerator.apps.tanzu.vmware.com -n accelerato

r-system hello-fun

2. Locate status.conditions at the end of the output. For example:

status:

  address:

    url: http://accelerator-engine.accelerator-system.svc.cluster.local/invocat

ions

  artifact:

    message: ""

    ready: false

    url: ""

  conditions:

  - lastTransitionTime: "2021-11-18T20:17:38Z"

    message: GitRepository not yet resolved

    reason: GitRepositoryResolutionPending

    status: "False"

    type: Ready

  description: Test-git

  observedGeneration: 1

3. Verify that the Flux system is running and that the READY column has 1/1. Run:

Tanzu Application Platform v1.4

VMware by Broadcom 660



kubectl get -n flux-system deployment/source-controller

Example output:

NAME                READY   UP-TO-DATE   AVAILABLE   AGE

source-controller   1/1     0            0           5d4h

REASON: ImageRepositoryResolutionPending

For example:

$ kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-system

NAME        READY   REASON                             AGE

more-fun    False   ImageRepositoryResolutionPending   28s

1. See the resource status. Run:

kubectl get -oyaml accelerators.accelerator.apps.tanzu.vmware.com -n accelerato

r-system hello-fun

2. Locate status.conditions at the end of the output. For example:

$ kubectl get -oyaml accelerators.accelerator.apps.tanzu.vmware.com -n accelera

tor-system more-fun

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  annotations:

    kubectl.kubernetes.io/last-applied-configuration: |

      {"apiVersion":"accelerator.apps.tanzu.vmware.com/v1alpha1","kind":"Accele

rator","metadata":{"annotations":{},"name":"more-fun","namespace":"accelerator-

system"},"spec":{"description":"Test-image","source":{"image":"trisberg/more-fu

n-source"}}}

  creationTimestamp: "2021-11-18T20:32:36Z"

  generation: 1

  name: more-fun

  namespace: accelerator-system

  resourceVersion: "605401"

  uid: 407b565d-14aa-44fe-ad8d-c9b3c3a7e5ce

spec:

  description: Test-image

  source:

    image: trisberg/more-fun-source

status:

  address:

    url: http://accelerator-engine.accelerator-system.svc.cluster.local/invocat

ions

  artifact:

    message: ""

    ready: false

    url: ""

  conditions:

  - lastTransitionTime: "2021-11-18T20:32:36Z"

    message: ImageRepository not yet resolved

    reason: ImageRepositoryResolutionPending

    status: "False"

    type: Ready

  description: Test-image

  observedGeneration: 1

Tanzu Application Platform v1.4

VMware by Broadcom 661



3. Verify that Tanzu Application Platform source-controller system is running and the READY
column has 1/1. Run:

kubectl get -n source-system deployment/source-controller-manager

Expected output:

NAME                        READY   UP-TO-DATE   AVAILABLE   AGE

source-controller-manager   1/1     0            0           5d5h

Overview of Application Live View
Application Live View is a lightweight insights and troubleshooting tool for app developers and app
operators that helps you to look inside running applications. It is based on the concept of Spring
Boot Actuators.

The application provides information from inside the running processes using endpoints, in this
case, HTTP endpoints. Application Live View uses those endpoints to get and interact with the
data from apps.

Value proposition
Application Live View is a diagnostic tool for developers to manage and analyze runtime
characteristics of containerized apps. In addition, it provides a Kubernetes-native feel for
developers to manage their apps in a Kubernetes environment more effectively.

Intended audience
This documentation is intended for developers and operators to visualize the actuator information
of their running apps on Application Live View for VMware Tanzu. This documentation helps
developers to monitor and troubleshoot apps in development, staging, and production
environments. It is also intended to help app operators to deploy and administer containerized apps
in a Kubernetes environment.

Supported application platforms
You can extend Application Live View to support multiple app platforms, including, but not limited
to, Spring Boot, Spring Cloud Gateway, and Steeltoe.

Multicloud compatibility
Using Tanzu platform, you can integrate Application Live View to monitor apps running across on-
premises, public clouds, and edge. The platform provides a centralized view to manage apps across
cloud environments, which accelerates developer productivity and reduces time-to-market.

Deployment
Use a connector as the mode of deployment for registering apps with the Application Live View
running on a Kubernetes cluster. A connector is a component responsible for discovering multiple
apps running on a Kubernetes cluster and is installed as a DaemonSet by default.

Overview of Application Live View

Tanzu Application Platform v1.4

VMware by Broadcom 662



Application Live View is a lightweight insights and troubleshooting tool for app developers and app
operators that helps you to look inside running applications. It is based on the concept of Spring
Boot Actuators.

The application provides information from inside the running processes using endpoints, in this
case, HTTP endpoints. Application Live View uses those endpoints to get and interact with the
data from apps.

Value proposition

Application Live View is a diagnostic tool for developers to manage and analyze runtime
characteristics of containerized apps. In addition, it provides a Kubernetes-native feel for
developers to manage their apps in a Kubernetes environment more effectively.

Intended audience

This documentation is intended for developers and operators to visualize the actuator information
of their running apps on Application Live View for VMware Tanzu. This documentation helps
developers to monitor and troubleshoot apps in development, staging, and production
environments. It is also intended to help app operators to deploy and administer containerized apps
in a Kubernetes environment.

Supported application platforms

You can extend Application Live View to support multiple app platforms, including, but not limited
to, Spring Boot, Spring Cloud Gateway, and Steeltoe.

Multicloud compatibility

Using Tanzu platform, you can integrate Application Live View to monitor apps running across on-
premises, public clouds, and edge. The platform provides a centralized view to manage apps across
cloud environments, which accelerates developer productivity and reduces time-to-market.

Deployment

Use a connector as the mode of deployment for registering apps with the Application Live View
running on a Kubernetes cluster. A connector is a component responsible for discovering multiple
apps running on a Kubernetes cluster and is installed as a DaemonSet by default.

Install Application Live View

This topic tells you how to install Application Live View from the Tanzu Application Platform
(commonly known as TAP) package repository.

Overview

Application Live View includes four packages you must install. The following table lists these
packages and shows the Tanzu Application Platform profiles each package is included in.

Package Profiles Details

Application Live View back end
(backend.appliveview.tanzu.vmware
.com)

Full, View Installed with Tanzu Application Platform GUI in the app-
live-view namespace

Tanzu Application Platform v1.4

VMware by Broadcom 663



Package Profiles Details

Application Live View connector
(connector.appliveview.tanzu.vmwa
re.com)

Full, Iterate,
Run

Installed as a DaemonSet in the app-live-view-connector
namespace

Application Live View conventions
(conventions.appliveview.tanzu.vm
ware.com)

Full, Iterate,
Build

Installed in the app-live-view-conventions namespace

For more information about these packages, see Application Live View internal architecture.

Prerequisites

Before installing Application Live View, complete all prerequisites to install Tanzu Application
Platform. For more information, see Prerequisites.

In addition, install Cartographer Conventions, which is bundled with Supply Chain Choreographer as
of the v0.5.3 release. To install, see Installing Supply Chain Choreographer. For more information,
see Cartographer Conventions.

Install Application Live View

You can install Application Live View in single cluster or multicluster environment:

Single cluster: All Application Live View components are deployed in a single cluster. The
user can access Application Live View plug-in information of the applications across all the
namespaces in the Kubernetes cluster. This is the default mode of Application Live View.

Multicluster: In a multicluster environment, the Application Live View back end
component is installed only once in a single cluster and exposes a RSocket registration for
the other clusters using Tanzu shared ingress. Each cluster continues to install the
connector as a DaemonSet. The connectors are configured to connect to the central
instance of the Application Live View back end.

Install Application Live View back end

To install Application Live View back end:

1. List version information for the package by running:

tanzu package available list backend.appliveview.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list backend.appliveview.tanzu.vmware.com --namespace 

tap-install

- Retrieving package versions for backend.appliveview.tanzu.vmware.com...

  NAME                                  VERSION        RELEASED-AT

  backend.appliveview.tanzu.vmware.com  1.4.0          2022-12-08T00:00:00Z

Note

Follow the steps in this topic if you do not want to use a profile to install Application
Live View. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 664



2. (Optional) Change the default installation settings by running:

tanzu package available get backend.appliveview.tanzu.vmware.com/VERSION-NUMBER 

--values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.4.0.

For example:

$ tanzu package available get backend.appliveview.tanzu.vmware.com/1.4.0 --valu

es-schema --namespace tap-install

  KEY                      DEFAULT          TYPE        DESCRIPTION

  ingressDomain            tap.example.com  string      Domain to be used by th

e HTTPProxy ingress object. The "appliveview"

                                                        subdomain is prepended 

to the value provided. For example:

                                                        "example.com" becomes 

"appliveview.example.com".

  ingressEnabled           false            boolean     Flag for whether to cre

ate an HTTPProxy for ingress.

  kubernetes_distribution                   string      Kubernetes distribution 

that this package is installed on. Accepted

                                                        values: ['''',''openshi

ft''].

  kubernetes_version                        string      Optional: The Kubernete

s Version. Valid values are '1.24.*', or ''.

  server.tls.crt                            string      TLS cert file.

  server.tls.enabled       false            boolean     Flag to enable TLS on b

ack end.

  server.tls.key                            string      TLS key file.

  tls.namespace            <nil>            string      The targeted namespace 

for secret consumption by the HTTPProxy.

  tls.secretName           <nil>            string      The name of secret for 

consumption by the HTTPProxy.

For more information about values schema options, see the properties listed earlier.

3. Create app-live-view-backend-values.yaml with the following details:

For a SINGLE-CLUSTER environment, the Application Live View back end is exposed
through the Kubernetes cluster service. By default, ingress is disabled for back end.

ingressEnabled: false

For a multicluster environment, set the flag ingressEnabled to true for the Application Live
View back end to be exposed on the ingress domain.

backend:

   ingressEnabled: true

If you want to override the shared ingress for Application Live View in a multicluster
environment, use the following values:

Note

If it is a Tanzu Application Platform profile installation and top-level key
shared.ingress_domain is set in the tap-values.yml, the back end is
automatically exposed through the shared ingress.

Tanzu Application Platform v1.4

VMware by Broadcom 665



ingressEnabled: true

ingressDomain: ${INGRESS-DOMAIN}

Where INGRESS-DOMAIN is the top-level domain you use for the tanzu-shared-ingress
service’s external IP address. The appliveview subdomain is prepended to the value
provided.

To configure TLS certificate delegation information for the domain, add the following values
to app-live-view-backend-values.yaml:

tls:

    namespace: "NAMESPACE"

    secretName: "SECRET NAME"

Where:

NAMESPACE is the targeted namespace of TLS secret for the domain.

SECRET NAME is the name of TLS secret for the domain.

You can edit the values to suit your project needs or leave the default values as is.

The app-live-view namespace and the TLS secret for the domain should be created before
installing the Tanzu Application Platform packages in the cluster so that the HTTPProxy is
updated with the TLS secret. To create a TLS secret, run:

kubectl create -n app-live-view secret tls alv-cert --cert=<.crt file> --key=<.

key file>

To verify the HTTPProxy object with the TLS secret, run:

kubectl get httpproxy -A

NAMESPACE            NAME                                                              

FQDN                                                             TLS SECRET               

STATUS   STATUS DESCRIPTION

app-live-view        appliveview                                                       

appliveview.192.168.42.55.nip.io                                 app-live-view/

alv-cert   valid    Valid HTTPProxy

4. Install the Application Live View back end package by running:

tanzu package install appliveview -p backend.appliveview.tanzu.vmware.com -v VE

RSION-NUMBER -n tap-install -f app-live-view-backend-values.yaml

Where VERSION-NUMBER is the version of the package listed.

For example:

$ tanzu package install appliveview -p backend.appliveview.tanzu.vmware.com -v 

1.4.0 -n tap-install -f app-live-view-backend-values.yaml

- Installing package 'backend.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'backend.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-tap-install-sa'

| Creating cluster admin role 'appliveview-tap-install-cluster-role'

| Creating cluster role binding 'appliveview-tap-install-cluster-rolebinding'

| Creating package resource

| Package install status: Reconciling

Added installed package 'appliveview' in namespace 'tap-install'

The Application Live View back end component is deployed in app-live-view namespace
by default.

Tanzu Application Platform v1.4

VMware by Broadcom 666



5. Verify the Application Live View back end package installation by running:

tanzu package installed get appliveview -n tap-install

For example:

tanzu package installed get appliveview -n tap-install

\ Retrieving installation details for appliveview...

NAME:                    appliveview

PACKAGE-NAME:            backend.appliveview.tanzu.vmware.com

PACKAGE-VERSION:         1.4.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Install Application Live View connector
To install Application Live View connector:

1. List version information for the package by running:

tanzu package available list connector.appliveview.tanzu.vmware.com --namespace 

tap-install

For example:

$ tanzu package available list connector.appliveview.tanzu.vmware.com --namespa

ce tap-install

- Retrieving package versions for connector.appliveview.tanzu.vmware.com...

  NAME                                    VERSION        RELEASED-AT

  connector.appliveview.tanzu.vmware.com  1.4.0          2022-12-08T00:00:00Z

2. (Optional) Change the default installation settings by running:

tanzu package available get connector.appliveview.tanzu.vmware.com/VERSION-NUMB

ER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.4.0.

For example:

$ tanzu package available get connector.appliveview.tanzu.vmware.com/1.4.0 --va

lues-schema --namespace tap-install

  KEY                                   DEFAULT             TYPE        DESCRIP

TION

  kubernetes_version                                        string      Optiona

l: The Kubernetes Version. Valid values are '1.24.*', or ''.

  backend.sslDeactivated                   false               boolean     Flag 

for whether to disable SSL.

  backend.caCertData                    cert-in-pem-format  string      CA Cert 

Data for ingress domain.

  backend.host                          <nil>               string      Domain 

to be used to reach the Application Live View back end. Prepend

                                                                        "appliv

eview" subdomain to the value if you are using shared ingress. For

                                                                        exampl

e: "example.com" becomes "appliveview.example.com".

  backend.ingressEnabled                false               boolean     Flag fo

r the connector to connect to ingress on back end.

Tanzu Application Platform v1.4

VMware by Broadcom 667



  backend.port                          <nil>               number      Port to 

reach the Application Live View back end.

  connector.namespace_scoped.enabled    false               boolean     Flag fo

r the connector to run in namespace scope.

  connector.namespace_scoped.namespace  default             string      Namespa

ce to deploy connector.

  kubernetes_distribution                                   string      Kuberne

tes distribution that this package is being installed on. Accepted

                                                                        values: 

['''',''openshift''].

For more information about values schema options, see the properties listed earlier.

3. Create app-live-view-connector-values.yaml with the following details:

For SINGLE-CLUSTER environment, the Application Live View connector connects to the
cluster-local Application Live View back end to register the applications.

By default, ingress is disabled for connector.

For a multicluster environment, set the flag ingressEnabled to true for the Application Live
View connector to connect to the Application Live View back end by using the ingress
domain.

backend:

   ingressEnabled: true

If it is a Tanzu Application Platform profile installation and top-level key
shared.ingress_domain is set in the tap-values.yml, the Application Live View connector
and Application Live View back end are configured to communicate through ingress. Then
the Application Live View connector uses the shared.ingress_domain to reach the back
end.

If you want to override the shared ingress for Application Live View in a multicluster
environment, use the following values:

backend:

    host: appliveview.INGRESS-DOMAIN

Where INGRESS-DOMAIN is the top level domain the Application Live View back end exposes
by using tanzu-shared-ingress for the connectors in other clusters to reach the Application
Live View back end. Prepend the appliveview subdomain to the provided value.

The backend.sslDeactivated is set to false by default. The CA Cert for the ingress domain
can be set in the backend.caCertData key for ssl validation. Below is a sample yaml:

backend:

  caCertData: |-

    -----BEGIN CERTIFICATE-----

    MIIGMzCCBBugAwIBAgIJALHHzQjxM6wMMA0GCSqGSIb3DQEBDQUAMGcxCzAJBgNV

    BAgMAk1OMRQwEgYDVQQHDAtNaW5uZWFwb2xpczEPMA0GA1UECgwGVk13YXJlMRMw

    -----END CERTIFICATE-----

If TLS is not enabled for the INGRESS-DOMAIN in the Application Live View back end, set the
backend.sslDeactivated to true.

backend:

   sslDeactivated: true

Note

Tanzu Application Platform v1.4

VMware by Broadcom 668



You can edit the values to suit your project needs or leave the default values as is.

Using the HTTP proxy either on 80 or 443 based on SSL config exposes the back-end
service running on port 7000. The connector connects to the back end on port 80/443 by
default. Therefore, you are not required to explicitly configure the port field.

4. Install the Application Live View connector package by running:

tanzu package install appliveview-connector -p connector.appliveview.tanzu.vmwa

re.com -v VERSION-NUMBER -n tap-install -f app-live-view-connector-values.yaml

Where VERSION-NUMBER is the version of the package listed. For example, 1.4.0.

For example:

$ tanzu package install appliveview-connector -p connector.appliveview.tanzu.vm

ware.com -v 1.4.0 -n tap-install -f app-live-view-connector-values.yaml

| Installing package 'connector.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'connector.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-connector-tap-install-sa'

| Creating cluster admin role 'appliveview-connector-tap-install-cluster-role'

| Creating cluster role binding 'appliveview-connector-tap-install-cluster-role

binding'

- Creating package resource

/ Package install status: Reconciling

Added installed package 'appliveview-connector' in namespace 'tap-install'

Each cluster installs the connector as a DaemonSet. The connector is configured to connect
to the central instance of the back end. The Application Live View connector component is
deployed in app-live-view-connector namespace by default.

5. Verify the Application Live View connector package installation by running:

tanzu package installed get appliveview-connector -n tap-install

For example:

tanzu package installed get appliveview-connector -n tap-install                                           

5s

| Retrieving installation details for appliveview-connector...

NAME:                    appliveview-connector

PACKAGE-NAME:            connector.appliveview.tanzu.vmware.com

PACKAGE-VERSION:         1.4.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Install Application Live View conventions

To install Application Live View conventions:

1. List version information for the package by running:

The sslDisabled key is deprecated and has been renamed to
sslDeactivated.

Tanzu Application Platform v1.4

VMware by Broadcom 669



tanzu package available list conventions.appliveview.tanzu.vmware.com --namespa

ce tap-install

For example:

$ tanzu package available list conventions.appliveview.tanzu.vmware.com --names

pace tap-install

- Retrieving package versions for conventions.appliveview.tanzu.vmware.com...

  NAME                                      VERSION        RELEASED-AT

  conventions.appliveview.tanzu.vmware.com  1.4.0          2022-12-08T00:00:00Z

2. (Optional) Change the default installation settings by running:

tanzu package available get conventions.appliveview.tanzu.vmware.com/VERSION-NU

MBER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.4.0.

For example:

$ tanzu package available get conventions.appliveview.tanzu.vmware.com/1.4.0 --

values-schema --namespace tap-install

  KEY                               DEFAULT             TYPE     DESCRIPTION

  kubernetes_distribution                               string  Kubernetes dist

ribution that this package is installed on. Accepted values: ['''',''openshif

t''].

  kubernetes_version                                    string  Optional: The K

ubernetes Version. Valid values are '1.24.*', or ''.

For more information about values schema options, see the properties listed earlier.

3. Install the Application Live View conventions package by running:

tanzu package install appliveview-conventions -p conventions.appliveview.tanzu.

vmware.com -v VERSION-NUMBER -n tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.4.0.

For example:

$ tanzu package install appliveview-conventions -p conventions.appliveview.tanz

u.vmware.com -v 1.4.0 -n tap-install

- Installing package 'conventions.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'conventions.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-conventions-tap-install-sa'

| Creating cluster admin role 'appliveview-conventions-tap-install-cluster-rol

e'

| Creating cluster role binding 'appliveview-conventions-tap-install-cluster-ro

lebinding'

- Creating package resource

\ Package install status: Reconciling

Added installed package 'appliveview-conventions' in namespace 'tap-install'

4. Verify the package install for Application Live View conventions package by running:

tanzu package installed get appliveview-conventions -n tap-install

For example:

tanzu package installed get appliveview-conventions -n tap-install

| Retrieving installation details for appliveview-conventions...

Tanzu Application Platform v1.4

VMware by Broadcom 670



NAME:                    appliveview-conventions

PACKAGE-NAME:            conventions.appliveview.tanzu.vmware.com

PACKAGE-VERSION:         1.4.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To access the
Application Live View UI, see Application Live View in Tanzu Application Platform GUI.

Deprecate the sslDisabled key

The appliveview_connector.backend.sslDisabled key is deprecated and has been renamed to
appliveview_connector.backend.sslDeactivated. The
appliveview_connector.backend.sslDisabled key is marked for removal in Tanzu Application
Platform 1.7.0.

Enabling Spring Boot apps for Application Live View

This topic for developers tells you how to configure a Spring Boot app for observation by
Application Live View within Tanzu Application Platform (commonly known as TAP).

Enable Spring Boot apps

For Application Live View to interact with a Spring Boot app within Tanzu Application Platform, add
the spring-boot-starter-actuator module dependency.

Add the maven dependency in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

To enable Application Live View for Spring Boot apps, Spring Boot conventions automatically sets
the Application Live View labels onto the PodSpec. For more information on the labels
automatically set by Spring Boot conventions, see Enable Application Live View for Spring Boot
applications.

Enable Spring Cloud Gateway apps

For Application Live View to interact with a Spring Cloud Gateway app within Tanzu Application
Platform, add the spring-boot-starter-actuator and spring-cloud-starter-gateway module
dependency.

Add the maven dependencies in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

<dependency>

  <groupId>org.springframework.cloud</groupId>

  <artifactId>spring-cloud-starter-gateway</artifactId>

</dependency>

Tanzu Application Platform v1.4

VMware by Broadcom 671



To enable Application Live View on the Spring Cloud Gateway Tanzu Application Platform
workload, Spring Boot conventions automatically applies labels on the workload, such as
tanzu.app.live.view.application.flavours: spring-boot_spring-cloud-gateway and
tanzu.app.live.view: true, based on the Spring Cloud Gateway image metadata.

Here is an example of creating a workload for a Spring Cloud Gateway Application:

tanzu apps workload create tanzu-scg-web-app --git-repo https://github.com/ksankaranar

a-vmw/gs-gateway.git --git-branch main --type web --label app.kubernetes.io/part-of=ta

nzu-scg-web-app --yes --annotation autoscaling.knative.dev/min-scale=1

Workload image NOT built with Tanzu Build Service

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Spring Boot Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create boot-app --type web --app boot-app --image <IMAGE NAME> --a

nnotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=true -

-label tanzu.app.live.view.application.name=boot-app --label tanzu.app.live.view.appli

cation.flavours=spring-boot

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Spring Cloud Gateway Tanzu Application Platform workload, use the following command. For
example:

tanzu apps workload create scg-app --type web --app scg-app --image <IMAGE NAME> --ann

otation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=true --l

abel tanzu.app.live.view.application.name=scg-app --label tanzu.app.live.view.applicat

ion.flavours=spring-boot_spring-cloud-gateway

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Steeltoe Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create steeltoe-app --type web --app steeltoe-app --image <IMAGE N

AME> --annotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.vie

w=true --label tanzu.app.live.view.application.name=steeltoe-app --label tanzu.app.liv

e.view.application.flavours=steeltoe

Enabling Spring Boot apps for Application Live View

This topic for developers tells you how to configure a Spring Boot app for observation by
Application Live View within Tanzu Application Platform (commonly known as TAP).

Enable Spring Boot apps

For Application Live View to interact with a Spring Boot app within Tanzu Application Platform, add
the spring-boot-starter-actuator module dependency.

Add the maven dependency in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

To enable Application Live View for Spring Boot apps, Spring Boot conventions automatically sets
the Application Live View labels onto the PodSpec. For more information on the labels

Tanzu Application Platform v1.4

VMware by Broadcom 672



automatically set by Spring Boot conventions, see Enable Application Live View for Spring Boot
applications.

Enable Spring Cloud Gateway apps

For Application Live View to interact with a Spring Cloud Gateway app within Tanzu Application
Platform, add the spring-boot-starter-actuator and spring-cloud-starter-gateway module
dependency.

Add the maven dependencies in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

<dependency>

  <groupId>org.springframework.cloud</groupId>

  <artifactId>spring-cloud-starter-gateway</artifactId>

</dependency>

To enable Application Live View on the Spring Cloud Gateway Tanzu Application Platform
workload, Spring Boot conventions automatically applies labels on the workload, such as
tanzu.app.live.view.application.flavours: spring-boot_spring-cloud-gateway and
tanzu.app.live.view: true, based on the Spring Cloud Gateway image metadata.

Here is an example of creating a workload for a Spring Cloud Gateway Application:

tanzu apps workload create tanzu-scg-web-app --git-repo https://github.com/ksankaranar

a-vmw/gs-gateway.git --git-branch main --type web --label app.kubernetes.io/part-of=ta

nzu-scg-web-app --yes --annotation autoscaling.knative.dev/min-scale=1

Workload image NOT built with Tanzu Build Service
If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Spring Boot Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create boot-app --type web --app boot-app --image <IMAGE NAME> --a

nnotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=true -

-label tanzu.app.live.view.application.name=boot-app --label tanzu.app.live.view.appli

cation.flavours=spring-boot

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Spring Cloud Gateway Tanzu Application Platform workload, use the following command. For
example:

tanzu apps workload create scg-app --type web --app scg-app --image <IMAGE NAME> --ann

otation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=true --l

abel tanzu.app.live.view.application.name=scg-app --label tanzu.app.live.view.applicat

ion.flavours=spring-boot_spring-cloud-gateway

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Steeltoe Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create steeltoe-app --type web --app steeltoe-app --image <IMAGE N

AME> --annotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.vie

w=true --label tanzu.app.live.view.application.name=steeltoe-app --label tanzu.app.liv

e.view.application.flavours=steeltoe

Tanzu Application Platform v1.4

VMware by Broadcom 673



Enable Steeltoe apps for Application Live View

This topic for developers tells you how to extend .NET Core Apps to Steeltoe apps and enable
Application Live View on Steeltoe workloads within Tanzu Application Platform (commonly known
as TAP).

Application Live View supports Steeltoe .NET apps with .NET core runtime version v6.0.8.

Extend .NET Core Apps to Steeltoe Apps

A .NET Core application can be extended to a Steeltoe application by adding independent NuGet
packages.

To enable the Actuators on a .NET Core App:

1. Add a PackageReference to your .csproj file:

<PackageReference Include="Steeltoe.Management.EndpointCore" Version="$(Steelto

eVersion)" />

2. Call the extension AddAllActuators in your Program.cs file:

builder.WebHost.AddAllActuators();

3. (Optional) You can add app-specific configurations, such as the following.

To expose all management actuator endpoints except env endpoint, add the following
configuration to your appsettings.json file:

{

  "Management": {

    "Endpoints": {

      "Actuator":{

        "Exposure": {

          "Include": [ "*" ],

          "Exclude": [ "env" ]

        }

      }

    }

  }

}

To enable logging, add the following configuration to your appsettings.json file:

{

  "Logging": {

    "LogLevel": {

      "Default": "Information",

      "Microsoft": "Warning",

      "Steeltoe": "Warning",

      "Sample": "Information"

    }

  }

}

Note

The PackageReference is expected to change to
Steeltoe.Management.Endpoint from version Steeltoe 4.0 onwards.

Tanzu Application Platform v1.4

VMware by Broadcom 674



To enable heapdump, add the following configuration to your appsettings.json file:

{

  "Management": {

    "Endpoints": {

      "HeapDump": {

        "HeapDumpType": "Normal"

      }

    }

  }

}

Enable Application Live View on Steeltoe Tanzu Application
Platform workload

You can enable Application Live View to interact with a Steeltoe app within Tanzu Application
Platform.

To enable Application Live View on the Steeltoe Tanzu Application Platform workload, the
Application Live View convention service automatically applies labels on the workload, such as
tanzu.app.live.view.application.flavours: steeltoe and tanzu.app.live.view: true, based on
the Steeltoe image metadata.

Here’s an example of creating a workload for a Steeltoe Application:

tanzu apps workload create steeltoe-app --type web --git-repo https://github.com/vmwar

e-tanzu/application-accelerator-samples --sub-path weatherforecast-steeltoe --git-bran

ch main --annotation autoscaling.knative.dev/min-scale=1 --yes --label app.kubernetes.

io/part-of=sample-app

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Steeltoe Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create steeltoe-app --type web --app steeltoe-app --image IMAGE-NA

ME --annotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=

true --label tanzu.app.live.view.application.name=steeltoe-app --label tanzu.app.live.

view.application.flavours=steeltoe

Where IMAGE-NAME is the name of your application image.

<PropertyGroup>

    <SteeltoeVersion>3.2.*</SteeltoeVersion>

</PropertyGroup>

Application Live View convention server
This topic provides information about Application Live View convention, which provides a Webhook
handler for Convention Service for VMware Tanzu.

Role of Application Live View convention

Note

Thread metrics is available in SteeltoeVersion 3.2.*. To enable the Threads page in
the Application Live View UI, add the following configuration to your .csproj file:

Tanzu Application Platform v1.4

VMware by Broadcom 675



Application Live View conventions works in conjunction with core Convention Service. It enhances
Tanzu PodIntents with metadata such as labels, annotations, or app properties. This metadata
allows Application Live View, specifically the connector, to discover app instances so that
Application Live View can access the actuator data from those workloads.

To run Application Live View with Steeltoe apps, the Spring Boot convention recognizes
PodIntents and adds the following metadata labels:

tanzu.app.live.view: "true": Enables the connector to observe application pod.

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View.

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View.

tanzu.app.live.view.application.flavours: steeltoe: Exposes the framework flavor of
the app.

These metadata labels allow Application Live View to identify pods that are enabled for Application
Live View. The metadata labels also tell the Application Live View connector what kind of app it is,
and on which port the actuators are accessible for Application Live View.

Description of metadata labels

If a workload resource explicitly defines a label under metadata.labels in the workload.yaml, then
Convention Service detects the presence of that label and respects its value. When deploying a
workload using Tanzu Application Platform, you can override the labels listed in the following table
using the Workload YAML.

Metadata Default Type Description

tanzu.app.live.vi

ew

true Labe
l

When deploying a workload in Tanzu Application Platform, this label is set
to true as default across the supply chain.

tanzu.app.live.vi

ew.application.na

me

steeltoe

-app

Labe
l

When deploying a workload in Tanzu Application Platform, this label is set
to steeltoe-app if the container image metadata does not contain the app
name. Otherwise, the label is set to the app name from container image
metadata.

tanzu.app.live.vi

ew.application.fl

avours

steeltoe Labe
l

When deploying a Spring Boot workload in Tanzu Application Platform, this
label is set to steeltoe as default across the supply chain.

Verify the applied labels and annotations

You can verify the applied labels and annotations by running:

kubectl get podintents.conventions.carto.run WORKLOAD-NAME -o yaml

Where WORKLOAD-NAME is the name of the deployed workload, for example steetoe-app.

Note

Application Live View conventions now supports only Steeltoe applications. Spring
Boot conventions supports both Spring Boot and Spring Cloud Gateway
applications. For more information about Spring Boot conventions, see Enable
Application Live View with Spring Boot apps

Tanzu Application Platform v1.4

VMware by Broadcom 676



Expected output for Steeltoe workload:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  creationTimestamp: "2022-11-14T09:56:53Z"

  generation: 1

  labels:

    app.kubernetes.io/component: intent

    app.kubernetes.io/part-of: sample-app

    apps.tanzu.vmware.com/workload-type: web

    carto.run/cluster-template-name: convention-template

    carto.run/resource-name: config-provider

    carto.run/supply-chain-name: source-to-url

    carto.run/template-kind: ClusterConfigTemplate

    carto.run/workload-name: steeltoe-app

    carto.run/workload-namespace: default

  name: steeltoe-app

  namespace: default

  ownerReferences:

  - apiVersion: carto.run/v1alpha1

    blockOwnerDeletion: true

    controller: true

    kind: Workload

    name: steeltoe-app

    uid: 97897399-807a-4815-9693-fb06bb4bc1ed

  resourceVersion: "428904"

  uid: 0c74e045-075c-4af3-beef-b092b951be7f

spec:

  serviceAccountName: default

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: sample-app

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: steeltoe-app

    spec:

      containers:

      - image: dev.registry.tanzu.vmware.com/app-live-view/test/steeltoe-app-default@s

ha256:c8ea14d8714ec31ad978085ebff43d15679613a0c12df37812adf22cb47b5232

        name: workload

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

status:

  conditions:

  - lastTransitionTime: "2022-11-14T09:56:57Z"

    message: ""

    reason: Applied

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2022-11-14T09:56:57Z"

    message: ""

    reason: ConventionsApplied

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

Tanzu Application Platform v1.4

VMware by Broadcom 677



        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/auto-configure-actuators-check

          spring-boot-convention/app-live-view-appflavour-check

          appliveview-sample/app-live-view-appflavour-check

          appliveview-sample/app-live-view-connector-steeltoe

          appliveview-sample/app-live-view-appflavours-steeltoe

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: sample-app

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: steeltoe-app

        tanzu.app.live.view: "true"

        tanzu.app.live.view.application.flavours: steeltoe

        tanzu.app.live.view.application.name: steeltoe-app

    spec:

      containers:

      - image: dev.registry.tanzu.vmware.com/app-live-view/test/steeltoe-app-default@s

ha256:c8ea14d8714ec31ad978085ebff43d15679613a0c12df37812adf22cb47b5232

        name: workload

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

In your output:

status.template.metadata.labels shows the list of applied labels by Application Live View
convention server.

status.template.metadata.annotations shows the list of applied annotations by Application
Live View convention server.

Custom configuration for the connector

This topic for developers tells you how to custom configure an app or workload for Application Live
View.

The connector component is responsible for discovering the app and registering it with Application
Live View. Labels from the app PodSpec are used to discover the app and configure the connector
to access the actuator data of the app.

Usually, Application Live View conventions applies the necessary configuration automatically. To
deactivate the convention and configure the app and the workload manually, the list of labels in the
following table gives you an overview of the options:

Label Name Mandatory Type Default Significance

tanzu.app.live.view true Boolean None Toggle to activate or
deactivate pod discovery

tanzu.app.live.view.applica

tion.name

true String None Application name

tanzu.app.live.view.applica

tion.port

false Integer 8080 Application port

tanzu.app.live.view.applica

tion.path

false String / Application context path

tanzu.app.live.view.applica

tion.actuator.port

false Integer 8080 Application actuator port

tanzu.app.live.view.applica

tion.actuator.path

false String /actuator Actuator context path

Tanzu Application Platform v1.4

VMware by Broadcom 678



Label Name Mandatory Type Default Significance

tanzu.app.live.view.applica

tion.protocol

false http / https http Protocol scheme

tanzu.app.live.view.applica

tion.actuator.health.port

false Integer 8080 Health endpoint port

tanzu.app.live.view.applica

tion.flavours

false Comma
separated
string

spring-

boot,spring-cloud-

gateway

Application flavors

You can add connector labels in the app Workload or override labels that the convention applies,
such as tanzu.app.live.view and tanzu.app.live.view.application.name. If you do not want
Application Live View to observe your app, you can override the existing label
tanzu.app.live.view: "false".

Configure the developer workload in Tanzu Application
Platform
The following YAML is an example of a Spring PetClinic workload that overrides the connector label
to tanzu.app.live.view: "false":

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: spring-petclinic

  namespace: default

  labels:

    tanzu.app.live.view: "false"

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

  annotations:

    autoscaling.knative.dev/minScale: "1"

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/kdvolder/spring-petclinic

Deploy the workload

To deploy the workload, run:

kapp -y deploy -n default -a workloads -f workloads.yaml

Verify the label has propagated through the Supply Chain

To verify the label:

1. Verify that the workload build is successful by ensuring that SUCCEEDED is set to True:

kubectl get builds

NAME                         IMAGE                                                                         

SUCCEEDED

spring-petclinic-build-1     dev.registry.tanzu.vmware.com/app-live-view/test/s

pring-petclinic-default@sha256:9db2a8a8e77e9215239431fd8afe3f2ecdf09cce8afac565

dad7b5f0c5ac0cdf     True

Tanzu Application Platform v1.4

VMware by Broadcom 679



2. Verify the PodIntent of your workload by ensuring status.template.metadata.labels
shows the newly added label has propagated through the Supply Chain:

kubectl get podintents.conventions.carto.run spring-petclinic -oyaml

status:

  conditions:

  - lastTransitionTime: "2021-12-03T15:14:33Z"

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2021-12-03T15:14:33Z"

    status: "True"

    type: Ready

  observedGeneration: 3

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/minScale: "1"

        boot.spring.io/actuator: http://:8080/actuator

        boot.spring.io/version: 2.5.6

        conventions.carto.run/applied-conventions: |-

          appliveview-sample/app-live-view-connector-boot

          appliveview-sample/app-live-view-appflavours-boot

          appliveview-sample/app-live-view-systemproperties

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-graceful-shutdown

          spring-boot-convention/spring-boot-web

          spring-boot-convention/spring-boot-actuator

          spring-boot-convention/service-intent-mysql

        developer.conventions/target-containers: workload

        kapp.k14s.io/identity: v1;default/carto.run/Workload/spring-petclinic;c

arto.run/v1alpha1

        kapp.k14s.io/original: '{"apiVersion":"carto.run/v1alpha1","kind":"Work

load","metadata":{"annotations":{"autoscaling.knative.dev/minScale":"2"},"label

s":{"app.kubernetes.io/part-of":"tanzu-java-web-app","apps.tanzu.vmware.com/wor

kload-type":"web","kapp.k14s.io/app":"1638455805474051000","kapp.k14s.io/associ

ation":"v1.5a9384bd7b93ca74ef494c4dec2caa4b","tanzu.app.live.view":"false"},"na

me":"spring-petclinic","namespace":"default"},"spec":{"source":{"git":{"ref":

{"branch":"main"},"url":"https://github.com/ksankaranara-vmw/spring-petclini

c"}}}}'

        kapp.k14s.io/original-diff-md5: 58e0494c51d30eb3494f7c9198986bb9

        services.conventions.carto.run/mysql: mysql-connector-java/8.0.27

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-java-web-app

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: spring-petclinic

        conventions.carto.run/framework: spring-boot

        kapp.k14s.io/app: "1638455805474051000"

        kapp.k14s.io/association: v1.5a9384bd7b93ca74ef494c4dec2caa4b

        services.conventions.carto.run/mysql: workload

        tanzu.app.live.view: "false"

        tanzu.app.live.view.application.flavours: spring-boot

        tanzu.app.live.view.application.name: petclinic

3. Verify the ConfigMap was created for the app by ensuring metadata.labels shows the
newly added label has propagated through the Supply Chain:

kubectl describe configmap spring-petclinic

Name:         spring-petclinic

Namespace:    default

Labels:       carto.run/cluster-supply-chain-name=source-to-url

              carto.run/cluster-template-name=config-template

              carto.run/resource-name=app-config

              carto.run/template-kind=ClusterConfigTemplate

Tanzu Application Platform v1.4

VMware by Broadcom 680



              carto.run/workload-name=spring-petclinic

              carto.run/workload-namespace=default

Annotations:  <none>

Data

====

delivery.yml:

----

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

  name: spring-petclinic

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

    kapp.k14s.io/app: "1638455805474051000"

    kapp.k14s.io/association: v1.5a9384bd7b93ca74ef494c4dec2caa4b

    tanzu.app.live.view: "false"

    app.kubernetes.io/component: run

    carto.run/workload-name: spring-petclinic

4. Verify the running Knative application pod by ensuring labels shows the newly added label
on the Knative application pod:

kubectl get pods -o yaml spring-petclinic-00002-deployment-77dbb85c65-cf7rn | g

rep labels

    kapp.k14s.io/original: '{"apiVersion":"carto.run/v1alpha1","kind":"Workloa

d","metadata":{"annotations":{"autoscaling.knative.dev/minScale":"1"},"labels":

{"app.kubernetes.io/part-of":"tanzu-java-web-app","apps.tanzu.vmware.com/worklo

ad-type":"web","kapp.k14s.io/app":"1638455805474051000","kapp.k14s.io/associati

on":"v1.5a9384bd7b93ca74ef494c4dec2caa4b","tanzu.app.live.view":"false"},"nam

e":"spring-petclinic","namespace":"default"},"spec":{"source":{"git":{"ref":{"b

ranch":"main"},"url":"https://github.com/ksankaranara-vmw/spring-petclini

c"}}}}'

You can add or override the connector in the Workload of your Knative app.

Custom configuration for application actuator endpoints

This topic for developers tells you how to configure the Application Live View connector
component to access actuator endpoints for custom settings, such as a different base path. By
default, the actuator endpoint for an application is exposed on /actuator.

The following table describes the actuator configuration scenarios and the associated labels to use,
assuming that the app runs on port 8080:

management.server.base-
path

management.server.port
management.endpoints.web.base-
path

server.servlet.context.path Comments
Connector
Configuration

None None None None Actuators
endpoints
available
at
localhost

:8080/act

uator

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ac

tuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

Tanzu Application Platform v1.4

VMware by Broadcom 681



management.server.base-
path

management.server.port
management.endpoints.web.base-
path

server.servlet.context.path Comments
Connector
Configuration

/path 8082 / None Actuator
endpoints
available
at
localhost

:8082/pat

h

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

/path 8082 /manage/actuator None Actuator
endpoints
available
at
localhost

:8082/pat

h/manage/

actuator

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th/manage/ac

tuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

None None / None Actuators
are
deactivate
d to avoid
conflicts

None

None None /manage None Actuator
endpoints
available
at /manage

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ma

nage,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

/path 8082 None None Actuator
endpoints
available
at
localhost

:8082/pat

h/actuato

r

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th/actuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

/ 8082 None None Actuator
endpoints
available
at
localhost

:8082/act

uator

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ac

tuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

Tanzu Application Platform v1.4

VMware by Broadcom 682



management.server.base-
path

management.server.port
management.endpoints.web.base-
path

server.servlet.context.path Comments
Connector
Configuration

None None None /api Actuator
endpoints
available
at
localhost

:8080/api

/actuator

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ap

i/actuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

/path 8082 None /api Actuator
endpoints
available
at
localhost

:8082/pat

h/actuato

r

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th/actuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

/path 8082 /manage /api Actuator
endpoints
available
at
localhost

:8082/pat

h/manage

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th/manage,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

/path None /manage /api Actuator
endpoints
available
at
localhost

:8080/api

/manage

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ap

i/manage,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

/path None / /api Actuators
are
deactivate
d to avoid
conflicts

None

/path 8082 / /api Actuator
endpoints
available
at
localhost

:8082/pat

h

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

Tanzu Application Platform v1.4

VMware by Broadcom 683



management.server.base-
path

management.server.port
management.endpoints.web.base-
path

server.servlet.context.path Comments
Connector
Configuration

None None /manage /api Actuator
endpoints
available
at
localhost

:8080/api

/manage

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ap

i/manage,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

Scaling Knative apps in Tanzu Application Platform

This topic tells you how to use Application Live View when scaling Knative apps or developer
workloads in Tanzu Application Platform (commonly known as TAP).

Application Live View is focused on monitoring apps for a live window and does not apply to any
of the apps that are scaled down to zero. The intended behavior for Knative apps is to keep track of
revisions to allow you to rollback easily, but also scale all of the unused revision instances down to
zero to keep resource consumption low.

You can configure Knative apps to set autoscaling.knative.dev/minScale to 1 so that Application
Live View can still observe app instance. This ensures that there is at least one instance of the
latest revision, while still scaling down the older instances.

You can configure any app in Tanzu Application Platform using the Workload resource. To scale a
Knative app, add the annotation autoscaling.knative.dev/minScale in the Workload and set it to
the value you want. For Application Live View to observe an app and have at least one instance of
the latest revision, set autoscaling.knative.dev/minScale = "1".

The annotations or labels in the Workload get propagated through the Tanzu Application Platform
supply chain as follows:

Workload > PodIntent > ConfigMap > Push Config > to repository/registry > git-
repository/imagerepository picks the Config from repository/registry > kapp-ctrl deploys and
knative runs the config > final pod running on the Kubernetes cluster.

Configure the developer workload in Tanzu Application
Platform
The following YAML is an example Workload that adds the annotation
autoscaling.knative.dev/minScale = "1" to set the minimum scale for the spring-petclinic app:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: spring-petclinic

  namespace: default

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

  annotations:

    autoscaling.knative.dev/minScale: "1"

spec:

  source:

    git:

      ref:

Tanzu Application Platform v1.4

VMware by Broadcom 684



        branch: main

      url: https://github.com/kdvolder/spring-petclinic

Deploy the workload

To deploy the workload, run:

kapp -y deploy -n default -a workloads -f workloads.yaml

Verify the annotation has propagated through the Supply
Chain

To verify the annotation:

1. Verify that the workload build is successful by ensuring that SUCCEEDED is set to True:

kubectl get builds

NAME                         IMAGE                                                                         

SUCCEEDED

spring-petclinic-build-1     dev.registry.tanzu.vmware.com/app-live-view/test/s

pring-petclinic-default@sha256:9db2a8a8e77e9215239431fd8afe3f2ecdf09cce8afac565

dad7b5f0c5ac0cdf     True

2. Verify the PodIntent of your workload by ensuring status.template.metadata.annotations
shows the newly added annotation has propagated through the Supply Chain:

kubectl get podintents.conventions.carto.run spring-petclinic -oyaml  

status:

  conditions:

  - lastTransitionTime: "2021-12-03T15:14:33Z"

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2021-12-03T15:14:33Z"

    status: "True"

    type: Ready

  observedGeneration: 3

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/minScale: "1"

3. Verify the ConfigMap was created for the app by ensuring
spec.template.metadata.annotations shows the newly added annotation has propagated
through the Supply Chain:

kubectl describe configmap spring-petclinic

Name:         spring-petclinic

Namespace:    default

Labels:       carto.run/cluster-supply-chain-name=source-to-url

              carto.run/cluster-template-name=config-template

              carto.run/resource-name=app-config

              carto.run/template-kind=ClusterConfigTemplate

              carto.run/workload-name=spring-petclinic

              carto.run/workload-namespace=default

Annotations:  <none>

Data

====

delivery.yml:

Tanzu Application Platform v1.4

VMware by Broadcom 685



----

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

  name: spring-petclinic

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

    kapp.k14s.io/app: "1638455805474051000"

    kapp.k14s.io/association: v1.5a9384bd7b93ca74ef494c4dec2caa4b

    tanzu.app.live.view: "false"

    app.kubernetes.io/component: run

    carto.run/workload-name: spring-petclinic

spec:

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/minScale: "1"

4. Verify the running Knative application pod by ensuring annotations shows the newly added
annotation on the Knative application pod:

kubectl get pods -o yaml spring-petclinic-00002-deployment-77dbb85c65-cf7rn | g

rep annotations

  annotations:

    kapp.k14s.io/original: '{"apiVersion":"carto.run/v1alpha1","kind":"Workloa

d","metadata":{"annotations":{"autoscaling.knative.dev/minScale":"1"},"labels":

{"app.kubernetes.io/part-of":"tanzu-java-web-app","apps.tanzu.vmware.com/worklo

ad-type":"web","kapp.k14s.io/app":"1638455805474051000","kapp.k14s.io/associati

on":"v1.5a9384bd7b93ca74ef494c4dec2caa4b","tanzu.app.live.view":"false"},"nam

e":"spring-petclinic","namespace":"default"},"spec":{"source":{"git":{"ref":{"b

ranch":"main"},"url":"https://github.com/ksankaranara-vmw/spring-petclini

c"}}}}'

Your Knative app is now set to a minimum scale of one so that Application Live View can observe
the instance of the app.

Application Live View on OpenShift

Application Live View must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards on Openshift. Tanzu Application
Platform configures the following SCC for Application Live View back end, Application Live View
connector, and Application Live View convention service when you configure the
kubernetes_distribution: openshift key in the tap-values.yaml file.

The following is a SecurityContextConstraints specification for Application Live View connector:

---

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

  name: appliveview-connector-restricted-with-seccomp

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities: null

defaultAddCapabilities: null

fsGroup:

  type: MustRunAs

Tanzu Application Platform v1.4

VMware by Broadcom 686



priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

  - ALL

runAsUser:

  type: MustRunAsNonRoot

seLinuxContext:

  type: MustRunAs

supplementalGroups:

  type: RunAsAny

volumes:

  - configMap

  - downwardAPI

  - emptyDir

  - persistentVolumeClaim

  - projected

  - secret

seccompProfiles:

  - runtime/default

The preceding SecurityContextConstraints specification is applicable to Application Live View
back end and Application Live View convention service as well.

Support for polyglot apps with Application Live View

Application Live View currently supports Spring Boot, Spring Cloud Gateway, and Steeltoe apps.

To enable Application Live View on Spring Boot and Spring Cloud Gateway apps, see
Enable Application Live View for Spring Boot apps.

To enable Application Live View on Steeltoe apps, see Enable Application Live View for
Steeltoe apps.

Application Live View internal architecture

This topic describes the architecture of Application Live View and its components. You can deploy
this system on a Kubernetes stack and use it to monitor containerized apps on hosted cloud
platforms or on-premises.

Component overview

Application Live View includes the following components as shown in the architecture diagram:

Tanzu Application Platform v1.4

VMware by Broadcom 687



Application Live View back end

Application Live View back end is the central server component that contains a list of
registered apps. It is responsible for proxying the request to fetch the actuator information
related to the app.

Application Live View connector

Application Live View connector is the component responsible for discovering the app pods
running on the Kubernetes cluster and registering the instances to the Application Live
View back end for it to be observed. The Application Live View connector is also
responsible for proxying the actuator queries to the app pods running in the Kubernetes
cluster.

You can deploy Application Live View connector in two modes:

Cluster access: Deploy as a Kubernetes DaemonSet to discover apps across all the
namespaces running in a worker node of a Kubernetes cluster. This is the default
mode of Application Live View connector.

Namespace scoped: Deploy as a Kubernetes Deployment to discover apps running
within a namespace across worker nodes of Kubernetes cluster.

Application Live View convention server

This component provides a webhook handler for the Tanzu convention controller. The
webhook handler is registered with Tanzu convention controller. The webhook handler
detects supply-chain workloads running a Spring Boot. Such workloads are annotated
automatically to enable Application Live View to monitor them. Download and install the
Application Live View conventions Webhook component with Tanzu Application Platform.

Design flow

As illustrated in the diagram, the applications run by the user are registered with Application Live
View back end by using Application Live View connector. After the application is registered, the
Application Live View back end offers the ability to serve actuator data from that registered
application through its REST API. Application Live View back end proxies the call to the connector
for querying actuator endpoint information.

Application Live View connector, which is a lean model, uses specific labels to discover apps across
cluster or namespace. Application Live View connector serves as the connection between running
applications and Application Live View back end. Application Live View connector communicates
with the Kubernetes API server requesting events for pod creation and termination, and then filters
out the events to find the pod of interest by using labels. Then Application Live View connector
registers the filtered app instances with Application Live View back end.

Application Live View back end and Application Live View connector communicate through a
bidirectional RSocket channel. Application Live View connector is implemented as a Java/Spring
Boot application and runs as a native executable file (Spring Native using GraalVM). Application Live
View connector runs as a DaemonSet by default on every node in the cluster.

Application Live View conventions identifies PodIntents for pods that can serve actuator data and
annotates the PodSpec with application-specific labels. Those labels are used by the Application
Live View connector to identify running pods that can serve actuator data. Application Live View
conventions reads the image metadata to determine the application-specific labels applied on the
PodSpec.

Troubleshoot Application Live View

Tanzu Application Platform v1.4

VMware by Broadcom 688

https://network.tanzu.vmware.com/products/tanzu-application-platform/


This topic provides information to help you troubleshoot Application Live View.

App is not visible in Application Live View UI

Symptom

Your app is not visible in the Application Live View UI.

Solution

The connector component is responsible for discovering the app and registering it with Application
Live View.

To troubleshoot, confirm the following:

1. The app must be a Spring Boot Application.

2. Confirm that an instance of a connector is located in the same namespace as your app.

kubectl get pods -n NAMESPACE | grep connector

Where NAMESPACE is the name of the namespace that your app is located in.

3. Confirm that the actuator endpoints are enabled for your app as follows:

management.endpoints.web.exposure.include: "*"

4. Confirm that you have included the following labels within your app deployment YAML file:

tanzu.app.live.view="true"

tanzu.app.live.view.application.name="APP-NAME"

Where APP-NAME is the name of your app.

5. Confirm that the Convention Service workload YAML file does not contain property
management.endpoints.web.exposure.include overrides.

See also:

App is not visible in Application Live View UI with actuator endpoints enabled

The UI does not show any information for an app with actuator endpoints exposed at root

App is not visible in Application Live View UI with actuator
endpoints enabled
Symptom

Your app is not visible in Application Live View UI, but the actuator endpoints are enabled.

Solution

To troubleshoot:

1. Check the port on which actuator endpoints are configured. By default, they are enabled on
the application port. If they are configured on a port different from the application port, set
the labels in your app deployment YAML file as follows:

tanzu.app.live.view.application.port: "APPLICATION-PORT"

tanzu.app.live.view.application.actuator.port: "ACTUATOR-PORT"

Where:

APPLICATION-PORT is the application port.

Tanzu Application Platform v1.4

VMware by Broadcom 689



ACTUATOR-PORT is the actuator port.

2. Check the path on which the app and actuator endpoints are configured. If they are
configured on a different paths, set the labels in your app deployment YAML file as follows:

tanzu.app.live.view.application.path: "APPLICATION-PATH"

tanzu.app.live.view.application.actuator.path: "ACTUATOR-PATH"

Where:

APPLICATION-PATH is the application port.

ACTUATOR-PATH is the actuator port.

The UI does not show any information for an app with
actuator endpoints exposed at root

Symptom

Your app has actuator endpoints exposed at root and the UI does not show any information.

Cause

Application Live View cannot display the app details when the app is exposing the actuator
endpoint on root (/) . This is due to conflict in the actuator context path and app default context
path.

No information shown on the Health page

Symptom

The app shows up in Application Live View UI, but the Health page does not show details of
health.

Solution

The information exposed by the health endpoint depends on the
management.endpoint.health.show-details property. This must be set to always as as follows:

management.endpoint.health.show-details: "always"

Stale information in Application Live View

Symptom

You can find your app in the UI, but it is an old instance that no longer exists while the new
instance doesn’t show up yet.

Solution

To troubleshoot:

1. View the Application Live View connector pod logs to see if the connector is sending
updates to the back end.

2. Delete the connector pod to recreate it by running:

kubectl -n app-live-view-connector delete pods -l=name=application-live-view-co

nnector

Tanzu Application Platform v1.4

VMware by Broadcom 690



Unable to find CertificateRequests in Application Live View
convention

Symptom

The certificate request is missing for certificate app-live-view-conventions/appliveview-webhook-
cert.

Solution

To troubleshoot:

1. Run kubectl get certificaterequest -A to see if the certificate request is missing for
Application Live View convention.

2. Delete the secret appliveview-webhook-cert that corresponds to the certificate in the app-
live-view-conventions namespace by running:

kubectl delete secret appliveview-webhook-cert -n app-live-view-conventions

This recreates the certificate request and updates the corresponding certificate.

No live information for pod with ID

Symptom

In Tanzu Application Platform GUI, you receive the error No live information for pod with id.

Cause

This might happen because of stale information in Application Live View because it is an old
instance that no longer exists while the new instance doesn’t show up yet.

Solution

The workaround is to delete the connector pod so it is re-created by running:

kubectl -n app-live-view-connector delete pods -l=name=application-live-view-connector

Cannot override the actuator path in the labels
Symptom

You are unable to override the actuator path in the labels as part of the workload deployment.

Cause

The changes to add or override the labels or annotations in the Workload are in progress. The
changes from the Workload must be propagated up through the supply chain for the PodIntent to
see the new changes.

Cannot configure SSL in appliveview-connector
Symptom

This might be because sslDeactivated flag in the values YAML file does not accept values without
quotes.

Cause

The sslDeactivated Boolean flag is treated as a string in the Kubernetes YAML file.

Solution

Tanzu Application Platform v1.4

VMware by Broadcom 691



You must specify the value within double quotation marks for the configuration to be picked up.

Verify the labels in your workload YAML file

To verify that the labels in your workload YAML file are working:

1. Verify the app live view convention webhook is running properly by running:

kubectl get pods -n app-live-view | grep webhook

2. Verify the conventions controller is running properly by running:

kubectl get pods -n conventions-system

3. Verify that the conventions are applied properly to the PodSpec by running:

kubectl get podintents.conventions.carto.run WORKLOAD-NAME -oyaml

Where WORKLOAD-NAME is the name of your workload.

If everything works correctly, the status will contain a transformed template that includes
the labels added as part of your workload YAML file. For example:

status:

conditions:

- lastTransitionTime: "2021-10-26T11:26:35Z"

  status: "True"

  type: ConventionsApplied

- lastTransitionTime: "2021-10-26T11:26:35Z"

  status: "True"

  type: Ready

observedGeneration: 1

template:

  metadata:

    annotations:

      conventions.carto.run/applied-conventions: |-

        appliveview-sample/app-live-view-connector

        appliveview-sample/app-live-view-appflavours

        appliveview-sample/app-live-view-systemproperties

    labels:

      tanzu.app.live.view: "true"

      tanzu.app.live.view.application.flavours: spring-boot

      tanzu.app.live.view.application.name: petclinic

  spec:

    containers:

    - env:

      - name: JAVA_TOOL_OPTIONS

        value: -Dmanagement.endpoint.health.show-details=always -Dmanagement.en

dpoints.web.exposure.include=*

    image: index.docker.io/kdvolder/alv-spring-petclinic:latest@sha256:1aa7bd22

8137471ea38ce36cbf5ffcd629eabeb8ce047f5533b7b9176ff51f98

    name: workload

    resources: {}

Override labels set by the Application Live View convention
service

It is not possible to override the labels set by the Application Live View convention service for the
workload deployment in Tanzu Application Platform. The labels tanzu.app.live.view,

Tanzu Application Platform v1.4

VMware by Broadcom 692



tanzu.app.live.view.application.flavours and tanzu.app.live.view.application.name cannot
be overridden. The default values set by the Application Live View convention server are used.

However, if you want to override management.endpoints.web.exposure.include or
management.endpoint.health.show-details, you can override these environment properties in
application.properties or application.yml in the Spring Boot Application before deploying the
workload in Tanzu Application Platform. Environment properties updated in your app take
precedence over the default values set by Application Live View convention server.

Configure labels when management.endpoints.web.base-
path and management.server.port are set
If the custom actuator context path is configured as follows:

management.endpoints.web.base-path=/manage

management.server.port=8085

Configure the connector as follows:

tanzu.app.live.view.application.actuator.path=/manage   (manage is the custom actuator 

path set on the application)

tanzu.app.live.view.application.actuator.port=8085   (8085 is the custom management se

rver port set on the application)

Uninstall Application Live View

This topic tells you how to uninstall Application Live View from Tanzu Application Platform
(commonly known as TAP).

To uninstall the Application Live View back end, Application Live View connector, and Application
Live View convention server, run:

tanzu package installed delete appliveview -n tap-install

tanzu package installed delete appliveview-connector -n tap-install

tanzu package installed delete appliveview-conventions -n tap-install

Overview of Application Single Sign-On for VMware Tanzu®
3.0.0

Application Single Sign-On for VMware Tanzu® (AppSSO) provides APIs for curating and
consuming a “Single Sign-On as a service” offering on Tanzu Application Platform.

To get started with AppSSO, see Get started with Application Single Sign-On.

With AppSSO, Service Operators can configure and deploy authorization servers. Application
Operators can then configure their Workloads with these authorization servers to provide Single
Sign-On to their end-users.

AppSSO allows integrating authentication and authorization decisions early in the software
development and release life cycle. It provides a seamless transition for workloads from
development to production when including Single Sign-On solutions in your software.

It’s easy to get started with AppSSO, deploy an authorization server with static test users, and
eventually progress to multiple authorization servers of production-grade scale with token key
rotation, multiple upstream identity providers, configured secure storage, and client restrictions.

AppSSO’s authorization server is based off of Spring Authorization Server project. For more
information, see Spring documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 693

https://spring.io/projects/spring-authorization-server


Overview of Application Single Sign-On for VMware Tanzu®
3.0.0

Application Single Sign-On for VMware Tanzu® (AppSSO) provides APIs for curating and
consuming a “Single Sign-On as a service” offering on Tanzu Application Platform.

To get started with AppSSO, see Get started with Application Single Sign-On.

With AppSSO, Service Operators can configure and deploy authorization servers. Application
Operators can then configure their Workloads with these authorization servers to provide Single
Sign-On to their end-users.

AppSSO allows integrating authentication and authorization decisions early in the software
development and release life cycle. It provides a seamless transition for workloads from
development to production when including Single Sign-On solutions in your software.

It’s easy to get started with AppSSO, deploy an authorization server with static test users, and
eventually progress to multiple authorization servers of production-grade scale with token key
rotation, multiple upstream identity providers, configured secure storage, and client restrictions.

AppSSO’s authorization server is based off of Spring Authorization Server project. For more
information, see Spring documentation.

Get started with Application Single Sign-On

This topic tells you about concepts important to getting started with Application Single Sign-On
(commonly called AppSSO).

Use this topic to learn how to:

1. Set up your first authorization server.

2. Provision a ClientRegistration.

3. Deploy an application that uses the provisioned ClientRegistration to enable SSO.

After completing these steps, you can proceed with securing a Workload.

Prerequisites

You must install AppSSO on your Tanzu Application Platform cluster. For more information, see
Install AppSSO.

Key concepts

At the core of AppSSO is the concept of an Authorization Server, outlined by the AuthServer
custom resource. Service Operators create those resources to provision running Authorization
Servers, which are OpenID Connect Providers. They issue ID Tokens to Client applications, which
contain identity information about the end user such as email, first name, last name and so on.

Tanzu Application Platform v1.4

VMware by Broadcom 694

https://spring.io/projects/spring-authorization-server
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#IDToken


When a Client application uses an AuthServer to authenticate an End-User, the typical steps are:

1. The End-User visits the Client application

2. The Client application redirects the End-User to the AuthServer, with an OAuth2 request

3. The End-User logs in with the AuthServer, usually using an external Identity Provider (e.g.
Google, Azure AD)

1. Identity Providers are set up by Service Operators

2. AuthServers may use various protocols to obtain identity information about the
user, such as OpenID Connect, SAML or LDAP, which may involve additional
redirects

4. The AuthServer redirects the End-User to the Client application with an authorization code

5. The Client application exchanges with the AuthServer for an id_token

1. The Client application does not know how the identity information was obtained by
the AuthServer, it only gets identity information in the form of an ID Token.

ID Tokens are JSON Web Tokens containing standard Claims about the identity of the user (e.g.
name, email, etc) and about the token itself (e.g. “expires at”, “audience”, etc.). Here is an example
of an id_token as issued by an Authorization Server:

{

  "iss": "https://appsso.example.com",

  "sub": "213435498y",

  "aud": "my-client",

  "nonce": "fkg0-90_mg",

  "exp": 1656929172,

  "iat": 1656928872,

  "name": "Jane Doe",

  "given_name": "Jane",

  "family_name": "Doe",

  "email": "jane.doe@example.com"

}

ID Tokens are signed by the AuthServer, using Token Signature Keys. Client applications may verify
their validity using the AuthServer’s public keys.

Next steps

Provision an AuthServer

Get started with Application Single Sign-On

This topic tells you about concepts important to getting started with Application Single Sign-On
(commonly called AppSSO).

Tanzu Application Platform v1.4

VMware by Broadcom 695

https://openid.net/specs/openid-connect-core-1_0.html#IDToken


Use this topic to learn how to:

1. Set up your first authorization server.

2. Provision a ClientRegistration.

3. Deploy an application that uses the provisioned ClientRegistration to enable SSO.

After completing these steps, you can proceed with securing a Workload.

Prerequisites

You must install AppSSO on your Tanzu Application Platform cluster. For more information, see
Install AppSSO.

Key concepts

At the core of AppSSO is the concept of an Authorization Server, outlined by the AuthServer
custom resource. Service Operators create those resources to provision running Authorization
Servers, which are OpenID Connect Providers. They issue ID Tokens to Client applications, which
contain identity information about the end user such as email, first name, last name and so on.

When a Client application uses an AuthServer to authenticate an End-User, the typical steps are:

1. The End-User visits the Client application

2. The Client application redirects the End-User to the AuthServer, with an OAuth2 request

3. The End-User logs in with the AuthServer, usually using an external Identity Provider (e.g.
Google, Azure AD)

1. Identity Providers are set up by Service Operators

2. AuthServers may use various protocols to obtain identity information about the
user, such as OpenID Connect, SAML or LDAP, which may involve additional
redirects

4. The AuthServer redirects the End-User to the Client application with an authorization code

5. The Client application exchanges with the AuthServer for an id_token

1. The Client application does not know how the identity information was obtained by
the AuthServer, it only gets identity information in the form of an ID Token.

ID Tokens are JSON Web Tokens containing standard Claims about the identity of the user (e.g.
name, email, etc) and about the token itself (e.g. “expires at”, “audience”, etc.). Here is an example
of an id_token as issued by an Authorization Server:

{

  "iss": "https://appsso.example.com",

  "sub": "213435498y",

Tanzu Application Platform v1.4

VMware by Broadcom 696

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html#IDToken


  "aud": "my-client",

  "nonce": "fkg0-90_mg",

  "exp": 1656929172,

  "iat": 1656928872,

  "name": "Jane Doe",

  "given_name": "Jane",

  "family_name": "Doe",

  "email": "jane.doe@example.com"

}

ID Tokens are signed by the AuthServer, using Token Signature Keys. Client applications may verify
their validity using the AuthServer’s public keys.

Next steps

Provision an AuthServer

Provision an AuthServer

This topic tells you how to provision an AuthServer for Application Single Sign-On (commonly called
AppSSO). Use this topic to learn how to:

1. Set up your first authorization server in the default namespace.

2. Ensure it is running so that users can log in.

Prerequisites

You must install AppSSO on your Tanzu Application Platform cluster and ensure that your Tanzu
Application Platform installation is correctly configured.

AppSSO is installed with the run, iterate, and full profiles, no extra steps required.

To verify AppSSO is installed on your cluster, run:

tanzu package installed list -A | grep "sso.apps.tanzu.vmware.com"

For more information about the Tanzu Application Platform installation, see Install Tanzu
Application Platform.

For more information about the AppSSO installation, see Install AppSSO.

Provision an AuthServer
Deploy your first Authorization Server along with an RSAKey key for signing tokens.

Caution

Tanzu Application Platform v1.4

VMware by Broadcom 697



---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: my-authserver-example

  namespace: default

  labels:

    name: my-first-auth-server

    env: tutorial

  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "default"

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

spec:

  replicas: 1

  tls:

    deactivated: true

  identityProviders:

    - name: "internal"

      internalUnsafe:

        users:

          - username: "user"

            password: "password"

            email: "user@example.com"

            emailVerified: true

            roles:

              - "user"

  tokenSignature:

    signAndVerifyKeyRef:

      name: "authserver-signing-key"

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: authserver-signing-key

  namespace: default

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

You can wait for the AuthServer to become ready with:

kubectl wait --for=condition=Ready authserver my-authserver-example

Alternatively, you can inspect your AuthServer like any other resource:

kubectl get authservers.sso.apps.tanzu.vmware.com --all-namespaces

and you should see:

NAMESPACE NAME                  REPLICAS ISSUER URI                                         

CLIENTS STATUS

default   my-authserver-example 1        http://my-authserver-example.default.<your do

main> 0       Ready

This AuthServer example uses an unsafe testing-only identity provider. Never use it
in production environments. For more information about identity providers, see
Identity providers.

Tanzu Application Platform v1.4

VMware by Broadcom 698



As you can see your AuthServer gets an issuer URI templated. This is its entrypoint. You can find an
AuthServer’s issuer URI in its status:

kubectl get authservers.sso.apps.tanzu.vmware.com my-authserver-example -o jsonpath

='{.status.issuerURI}'

Open your AuthServer’s issuer URI in your browser. You should see a login page. Log in using
username = user and password = password.

You can review the standard OpenID information of your AuthServer by visiting http://my-
authserver-example.default.<your domain>/.well-known/openid-configuration.

The AuthServer spec in detail
Here is a detailed explanation of the AuthServer you have applied in the above section. This is
intended to give you an overview of the different configuration values that were passed in. It is not
intended to describe all the ins-and-outs, but there are links to related docs in each section.

Feel free to skip ahead.

Metadata

metadata:

  labels:

    name: my-first-auth-server

    env: tutorial

  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "default"

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

The metadata.labels uniquely identify the AuthServer. They are used as selectors by
ClientRegistrations, to declare from which authorization server a specific client obtains tokens
from.

The sso.apps.tanzu.vmware.com/allow-client-namespaces annotation restricts the namespaces in
which you can create a ClientRegistrations targeting this authorization server. In this case, the
authorization server will only pick up client registrations in the default namespace.

The sso.apps.tanzu.vmware.com/allow-unsafe-... annotations enable “development mode”
features, useful for testing. Those should not be used for production-grade authorization servers.

For more information about annotations and labels in AuthServer resource, see Annotation and
labels.

TLS & issuer URI

spec:

  tls:

Important

If the issuer URIs domain is not yours, the AppSSO package installation must be
updated. For more information, see Install Application Single Sign-On.

If you are using TKGm or TKGs, which have customizable in-cluster communication
CIDR ranges, there is a known issue regarding AppSSO making requests to external
identity providers with http rather than https.

Tanzu Application Platform v1.4

VMware by Broadcom 699



    deactivated: true

The tls field configures whether and how to obtain a certificate for an AuthServer to secure its
issuer URI. If you deactivate tls, the issuer URI uses plain HTTP.

Token Signature

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

# ...

spec:

  tokenSignature:

    signAndVerifyKeyRef:

      name: "authserver-signing-key"

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: authserver-signing-key

  namespace: default

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

The token signing key is the private RSA key used to sign ID Tokens, using JSON Web Signatures,
and clients use the public key to verify the provenance and integrity of the ID tokens. The public
keys used for validating messages are published as JSON Web Keys at
{.status.issuerURI}/oauth2/jwks.

The spec.tokenSignature.signAndVerifyKeyRef.name references a secret containing PEM-encoded
RSA keys, both key.pem and pub.pem. In this specific example, we are using Secretgen-Controller, a
TAP dependency, to generate the key for us.

Learn more about Token Signatures.

Identity providers

spec:

  identityProviders:

    - name: "internal"

      internalUnsafe:

        users:

          - username: "user"

            password: "password"

            email: "user@example.com"

            roles:

              - "user"

AppSSO’s authorization server delegates login and user management to external identity providers
(IDP), such as Google, Azure Active Directory, Okta and so on. See diagram at the top of this topic

Caution

Plain HTTP access is for development purposes only and must never be used in
production. For more information about the production readiness with TLS, see
Issuer URI & TLS.

Tanzu Application Platform v1.4

VMware by Broadcom 700

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
https://github.com/vmware-tanzu/carvel-secretgen-controller


for more information.

In this example, we use an internalUnsafe identity provider. As the name implies, it is not an
external IDP, but rather a list of hardcoded user/passwords. As the name also implies, this is not
considered safe for production. Here, we declared a user with username = user, and password =
password. For production setups, consider using OpenID Connect IDPs instead.

The email and roles fields are optional for internal users. However, they will be useful when we
want to use SSO with a client application later in this guide.

Configuring storage

An AuthServer issues a Redis instance by default. It can be used for testing, prototyping and other
non-production purposes. No additional configuration is required.

To configure your own storage that is ready for production, see Storage.

Provision a client registration
This topic tells you how to provision a client registration for Application Single Sign-On (commonly
called AppSSO). Use this topic to learn how to:

1. Obtain credentials for the Authorization Server that you provisioned in Provision your first
AuthServer.

2. Verify that the credentials are valid using client-credentials flow.

Prerequisites

Complete the steps described in Get started with Application Single Sign-On.

Creating the ClientRegistration

Assuming you have deployed the AuthServer as described previously, you can create and apply the
following client registration:

Caution

VMware discourages using the internalUnsafe identity provider in production
environments.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 701



apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

   name: my-client-registration

   namespace: default

spec:

   authServerSelector:

      matchLabels:

         name: my-first-auth-server

         env: tutorial

   redirectURIs:

      - "http://test-app.example.com/oauth2/callback"

   requireUserConsent: false

   clientAuthenticationMethod: basic

   authorizationGrantTypes:

      - "client_credentials"

      - "authorization_code"

   scopes:

      - name: "openid"

      - name: "email"

      - name: "profile"

      - name: "roles"

      - name: "message.read"

The AuthServer should now have this ClientRegistration registered. You can verify the status
either by looking at the ClientRegistrations .status field, or looking at the AuthServer itself.

# Check the client registration

kubectl get clientregistration my-client-registration -n default -o yaml

# Check the authserver

kubectl get authservers

# NAME                    REPLICAS   ISSUER URI                     CLIENTS   TOKEN KE

YS

# my-authserver-example   1          http://authserver.example.com  1         1 

#                                                                   ^

#                                 the AuthServer now has one client ^

AppSSO will create a secret containing the credentials that client applications will use, named after
the client registration. The type of the secret is servicebinding.io/oauth2. You can obtain the
values in the secret by running:

kubectl get secret my-client-registration -n default  -o json | jq ".data | map_values

(@base64d)"

# {

#   "authorization-grant-types": "client_credentials,authorization_code",

#   "client-authentication-method": "basic",

#   "client-id": "default_my-client-registration",

#   "client-secret": "PLACEHOLDER",

#   "issuer-uri": "http://authserver.example.com",

#   "provider": "appsso",

#   "scope": "openid,email,profile,roles,message.read",

#   "type": "oauth2"

# }

Validating that the credentials are working

AppSSO uses test-app.example.com for
ClientRegistration.spec.redirectURIs[0]. You must customize the URL to match
the domain of your Tanzu Application Platform cluster. This is the URL to expose
your test application in the next section.

Tanzu Application Platform v1.4

VMware by Broadcom 702



Before you deploy an app and make use of SSO, you can try the credentials from your machine to
try and obtain an access_token using the client_credentials grant. You need the client_id and
client_secret that were created as part of the client registration.

CLIENT_ID=$(kubectl get secret my-client-registration -n default -o jsonpath="{.data.c

lient-id}" | base64 -d)

CLIENT_SECRET=$(kubectl get secret my-client-registration -n default -o jsonpath="{.da

ta.client-secret}" | base64 -d)

ISSUER_URI=$(kubectl get secret my-client-registration -n default -o jsonpath="{.data.

issuer-uri}" | base64 -d)

curl -XPOST "$ISSUER_URI/oauth2/token?grant_type=client_credentials&scope=message.rea

d" -u "$CLIENT_ID:$CLIENT_SECRET"

You can decode the access_token using an online service, such as JWT.io.

To learn more about grant types, see Grant Types

Deploy an application with Application Single Sign-On

This topic tells you how to deploy a minimal Kubernetes application that is protected by Application
Single Sign-On (commonly called AppSSO) by using the credentials that ClientRegistration creates.

For more information about how a Client application uses an AuthServer to authenticate an end
user, see AppSSO Overview.

Prerequisites
You must complete the steps described in Get started with Application Single Sign-On. If not, see
Provision a client registration.

Deploy a minimal application
You are going to deploy a two-container pod, as a test application.

---

apiVersion: apps/v1

kind: Deployment

Important

AppSSO uses test-app.example.com for HTTPProxy.spec.virtualhost.fqdn. You
must customize the URL to match the domain of your Tanzu Application Platform
cluster. This URL must match what was set up in
ClientRegistration.spec.redirectURIs[0] in Provision a client registration

Tanzu Application Platform v1.4

VMware by Broadcom 703

https://jwt.io/


metadata:

  name: test-application

  namespace: default

spec:

  replicas: 1

  selector:

    matchLabels:

      name: test-application

  template:

    metadata:

      labels:

        name: test-application

    spec:

      containers:

        - image: bitnami/oauth2-proxy:7.3.0

          name: proxy

          ports:

            - containerPort: 4180

              name: proxy-port

              protocol: TCP

          env:

            - name: ISSUER_URI

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: issuer-uri

            - name: CLIENT_ID

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: client-id

            - name: CLIENT_SECRET

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: client-secret

          command: [ "oauth2-proxy" ]

          args:

            - --oidc-issuer-url=$(ISSUER_URI)

            - --client-id=$(CLIENT_ID)

            - --insecure-oidc-skip-issuer-verification=true

            - --client-secret=$(CLIENT_SECRET)

            - --cookie-secret=0000000000000000

            - --cookie-secure=false

            - --http-address=http://:4180

            - --provider=oidc

            - --scope=openid email profile roles

            - --email-domain=*

            - --insecure-oidc-allow-unverified-email=true

            - --oidc-groups-claim=roles

            - --upstream=http://127.0.0.1:8000

            - --redirect-url=http://test-app.example.com/oauth2/callback

            - --skip-provider-button=true

            - --pass-authorization-header=true

            - --prefer-email-to-user=true

        - image: python:3.9

          name: application

          resources:

            limits:

              cpu: 100m

              memory: 100Mi

          command: [ "python" ]

          args:

            - -c

            - |

              from http.server import HTTPServer, BaseHTTPRequestHandler

Tanzu Application Platform v1.4

VMware by Broadcom 704



              import base64

              import json

              class Handler(BaseHTTPRequestHandler):

                  def do_GET(self):

                      if self.path == "/token":

                          self.token()

                          return

                      else:

                          self.greet()

                          return

                  def greet(self):

                      username = self.headers.get("x-forwarded-user")

                      self.send_response(200)

                      self.send_header("Content-type", "text/html")

                      self.end_headers()

                      page = f"""

                      <h1>It Works!</h1>

                      <p>You are logged in as <b>{username}</b></p>

                      """

                      self.wfile.write(page.encode("utf-8"))

                  def token(self):

                      token = self.headers.get("Authorization").split("Bearer ")[-1]

                      payload = token.split(".")[1]

                      decoded = base64.b64decode(bytes(payload, "utf-8") + b'==').deco

de("utf-8")

                      self.send_response(200)

                      self.send_header("Content-type", "application/json")

                      self.end_headers()

                      self.wfile.write(decoded.encode("utf-8"))

              server_address = ('', 8000)

              httpd = HTTPServer(server_address, Handler)

              httpd.serve_forever()

---

apiVersion: v1

kind: Service

metadata:

  name: test-application

  namespace: default

spec:

  ports:

    - port: 80

      targetPort: 4180

  selector:

    name: test-application

---

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

  name: test-application

  namespace: default

spec:

  virtualhost:

    fqdn: test-app.example.com

  routes:

    - conditions:

        - prefix: /

      services:

        - name: test-application

          port: 80

Tanzu Application Platform v1.4

VMware by Broadcom 705



Now you can navigate to http://test-app.example.com/. It may ask you to log into the AuthServer
you haven’t already. You can also navigate to http://test-app.example.com/token if you wish to
see the contents of the ID token.

Deployment manifest

The application was deployed as a two-container pod: one for the app, and one for handling login.

The main container is called application, and runs a bare-bones Python HTTP server, that
reads from the Authorization header from incoming requests and returns the decoded
id_token.

The second container, called proxy, is a sidecar container, an “Ambassador”. It receives
traffic for the Pod, performs OpenID authentication using OAuth2 Proxy, and proxies
requests to the application with some added headers containing identity information.

Along with this deployment, there is a Service + HTTPProxy, to expose the application to the
outside world.

OAuth2-Proxy

The setup of the above OAuth2 Proxy is minimal, and is not considered suitable for production use.
To configure it for production, please refer to the official documentation.

Note that OAuth2 Proxy requires some claims to be present in the id_token, notably the email
claim and the non-standard groups claim. The groups claim maps to AppSSO’s roles claim.
Therefore, for this proxy to work with AppSSO, users MUST have an e-mail defined, and at least
one entry in roles. If the proxy container logs an error stating Error redeeming code during
OAuth2 callback: could not get claim "groups" [...], make sure that the user has roles
provided in the identityProvider.

Application Single Sign-On for Platform Operators

This topic tells you how to manage the Application Single Sign-On (commonly called AppSSO)
package installation and what it installs. Use this topic to learn:

Install Application Single Sign-On

Configure Application Single Sign-On

RBAC for Application Single Sign-On

Application Single Sign-On for OpenShift clusters

Upgrade Application Single Sign-On

Uninstall Application Single Sign-On

Application Single Sign-On for Platform Operators

This topic tells you how to manage the Application Single Sign-On (commonly called AppSSO)
package installation and what it installs. Use this topic to learn:

Install Application Single Sign-On

Configure Application Single Sign-On

RBAC for Application Single Sign-On

Application Single Sign-On for OpenShift clusters

Upgrade Application Single Sign-On

Tanzu Application Platform v1.4

VMware by Broadcom 706

https://oauth2-proxy.github.io/oauth2-proxy/
https://oauth2-proxy.github.io/oauth2-proxy/


Uninstall Application Single Sign-On

Install Application Single Sign-On

This topic tells you how to install Application Single Sign-On (commonly called AppSSO) from the
Tanzu Application Platform (commonly called TAP) package repository.

What’s inside

The AppSSO package will install the following resources:

The appsso Namespace with a Deployment of the AppSSO controller and Services for
Webhooks

A ServiceAccount with RBAC outlined in detail here

AuthServer and ClientRegistration CRDs

Prerequisites

Before installing AppSSO, please ensure you have Tanzu Application Platform installed on your
Kubernetes cluster.

Installation

1. Learn more about the AppSSO package:

tanzu package available get sso.apps.tanzu.vmware.com --namespace tap-install

2. Install the AppSSO package:

tanzu package install appsso \

 --namespace tap-install \

 --package-name sso.apps.tanzu.vmware.com \

 --version 3.0.0

3. Confirm the package has reconciled successfully:

tanzu package installed get appsso --namespace tap-install

Configure Application Single Sign-On

This topic tells you how to configure Application Single Sign-On (commonly called AppSSO).

TAP values

Most commonly, the AppSSO package installation is configured through TAP’s meta package
installation. The TAP package has a shared top-level configuration key for sharing common
configuration between the packages it installs.

Note

Follow the steps in this topic if you do not want to use a profile to install Application
Single Sign-On. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 707



AppSSO inherits the shared.{ingress_domain, ingress_issuer, ca_cert_data,
kubernetes_distribution} configuration values from Tanzu Application Platform. You can configure
the AppSSO-specific parameters under appsso. AppSSO-specific configuration has precedence
over the shared values of Tanzu Application Platform.

For example:

#! my-tap-values.yaml

shared:

# Shared configuration goes here.

appsso:

# AppSSO-specific configuration goes here.

domain_name

The AppSSO package has one required configuration value, its domain_name. It is used for
templating the issuer URI for AuthServer. domain_name must be the shared ingress domain of your
TAP package installation. If your TAP installation is configured with shared.ingress_domain, then
AppSSO will inherit the correct configuration.

domain_template
You can customize how AppSSO template’s issuerURIs with the domain_template configuration.
This is a Golang text/template. The default is "{{.Name}}.{{.Namespace}}.{{.Domain}}".

The domain template will be applied with the given domain_name and the AuthServer’s name and
namespace:

{{.Domain}} will evaluate to the configured domain_name

{{.Name}} will evaluate to AuthServer.metadata.name

{{.Namespace}} will evaluate to AuthServer.metadata.namespace

To be able to use a wild-card certificate, consider "{{.Name}}-{{.Namespace}}.{{.Domain}}".

It is strongly recommended to keep the name and namespace part of the template to avoid domain
name collisions.

default_authserver_clusterissuer
You can denote a cert-manager.io/v1/ClusterIssuer as a default issuer for
AuthServer.spec.tls.issuerRef and omit AuthServer.spec.tls. When the value of
AuthServer.spec.tls.issuerRef is the empty string "", no default issuer is assumed and
AuthServer.spec.tls is required.

If you configured shared.ingress_issuer and omitted default_authserver_clusterissuer while
installing Tanzu Application Platform, AppSSO uses the ingress issuer of Tanzu Application Platform
and sets default_authserver_clusterissuer to shared.ingress_issuer.

ca_cert_data

Note

If omitted, domain_name is set to shared.ingress_domain.

Tanzu Application Platform v1.4

VMware by Broadcom 708

https://pkg.go.dev/text/template


You can configure trust for custom CAs by providing their certificates as a PEM bundle to
ca_cert_data. As a result, all AuthServers trust your custom CAs.

This is useful if you have identity providers serving certificates from a custom CA and configuring
AuthServer storage.

Alternatively, you can configure trust for a single AuthServer.

kubernetes_distribution

This setting toggles behavior specific to Kubernetes distribution. Currently, the only supported
values are "" and openshift.

AppSSO installs OpenShift-specific RBAC and resources.

Configuration schema
The entire available configuration schema for AppSSO is:

#@schema/desc "Optional: Kubernetes platform distribution that this package is being i

nstalled on. Accepted values: ['','openshift']"

kubernetes_distribution: ""

#@schema/desc "Domain name for AuthServers"

domain_name: "example.com"

#@schema/desc "Optional: Golang template/text string for constructing AuthServer FQDN

s"

domain_template: "{{.Name}}.{{.Namespace}}.{{.Domain}}"

#@schema/desc "Optional: PEM-encoded certificate data for AuthServers to trust TLS con

nections with a custom CA"

ca_cert_data: ""

#@schema/desc "Optional: Interval at which the controller will re-synchronize applied 

resources"

resync_period: "2h"

#@schema/desc "Optional: Number of controller replicas to deploy"

replicas: 1

#@schema/desc "Optional: Resource requirements the controller deployment"

resources:

  requests:

    #@schema/desc "CPU request of the controller"

    cpu: "20m"

    #@schema/desc "Memory request of the controller"

    memory: "100Mi"

  limits:

    #@schema/desc "CPU limit of the controller"

Note

AppSSO-specific ca_cert_data is concatenated with shared.ca_cert_data. The
resulting PEM bundle contains both.

Note

If omitted, kubernetes_distribution is set to shared.kubernetes_distribution.

Tanzu Application Platform v1.4

VMware by Broadcom 709



    cpu: "500m"

    #@schema/desc "Memory limit of the controller"

    memory: "500Mi"

#@schema/desc "Optional: Schema-free extension point for internal, package-private con

figuration (Unsupported! Use at your own risk.)"

#@schema/type any=True

internal: { }

RBAC for Application Single Sign-On

The AppSSO package aggregates the following permissions into TAP’s well-known roles:

app-operator

- apiGroups:

  - sso.apps.tanzu.vmware.com

resources:

  - clientregistrations

verbs:

  - "*"

app-editor

- apiGroups:

  - sso.apps.tanzu.vmware.com

resources:

  - clientregistrations

verbs:

  - get

  - list

  - watch

app-viewer

- apiGroups:

  - sso.apps.tanzu.vmware.com

resources:

  - clientregistrations

verbs:

  - get

  - list

  - watch

service-operator

- apiGroups:

  - sso.apps.tanzu.vmware.com

resources:

  - authserver

verbs:

  - "*"

To manage the life cycle of AppSSO’s APIs, the AppSSO controller’s ServiceAccount has a
ClusterRole with the following permissions:

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - authservers

  verbs:

    - get

Tanzu Application Platform v1.4

VMware by Broadcom 710



    - list

    - watch

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - authservers/status

  verbs:

    - patch

    - update

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - authservers/finalizers

  verbs:

    - "*"

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - clientregistrations

  verbs:

    - get

    - list

    - watch

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - clientregistrations/status

  verbs:

    - patch

    - update

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - clientregistrations/finalizers

  verbs:

    - "*"

- apiGroups:

    - ""

  resources:

    - secrets

    - configmaps

    - services

    - serviceaccounts

  verbs:

    - "*"

- apiGroups:

    - apps

  resources:

    - deployments

  verbs:

    - "*"

- apiGroups:

    - rbac.authorization.k8s.io

  resources:

    - roles

    - rolebindings

  verbs:

    - "*"

- apiGroups:

    - cert-manager.io

  resources:

    - certificates

    - issuers

  verbs:

    - "*"

- apiGroups:

Tanzu Application Platform v1.4

VMware by Broadcom 711



    - cert-manager.io

  resources:

    - clusterissuers

  verbs:

    - get

    - list

    - watch

    - apiGroups:

        - networking.k8s.io

      resources:

        - ingresses

      verbs:

        - "*"

- apiGroups:

    - ""

  resources:

    - events

  verbs:

    - create

    - update

    - patch

- apiGroups:

    - coordination.k8s.io

  resources:

    - leases

  verbs:

    - create

    - get

    - update

AppSSO installs OpenShift-specific RBAC and resources.

Application Single Sign-On for OpenShift clusters

On OpenShift clusters, AppSSO must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards. Tanzu Application Platform
configures the following SCC for AppSSO controller and its AuthServer managed resources when
you configure the kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

---

kind: SecurityContextConstraints

apiVersion: security.openshift.io/v1

metadata:

  name: appsso-scc

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities: null

defaultAddCapabilities: null

fsGroup:

  type: MustRunAs

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

  - KILL

  - MKNOD

  - SETUID

  - SETGID

Tanzu Application Platform v1.4

VMware by Broadcom 712



runAsUser:

  type: MustRunAsNonRoot

seLinuxContext:

  type: MustRunAs

volumes:

  - configMap

  - downwardAPI

  - emptyDir

  - persistentVolumeClaim

  - projected

  - secret

seccompProfiles:

  - 'runtime/default'

AppSSO controller’s ServiceAccount is given the following additional permissions, including a use
permission for AppSSO SCC, so AuthServer can use the custom SCC:

- apiGroups:

    - security.openshift.io

  resources:

    - securitycontextconstraints

  verbs:

    - "get"

    - "list"

    - "watch"

- apiGroups:

    - security.openshift.io

  resourceNames:

    - appsso-scc

  resources:

    - securitycontextconstraints

  verbs:

    - "use"

Upgrade Application Single Sign-On
This topic tells you how to upgrade Application Single Sign-On (commonly called AppSSO) outside
of a Tanzu Application Platform profile installation. If you installed Tanzu Application Platform
through a profile, see Upgrade Tanzu Application Platform instead.

For help on migrating your resources in between versions, see the migration guides.

If you installed the AppSSO package on its own, and not as part of TAP, you can upgrade it
individually by running:

tanzu package installed update PACKAGE_INSTALLATION_NAME -p sso.apps.tanzu.vmware.com 

-v 3.0.0 --values-file PATH_TO_YOUR_VALUES_YAML -n YOUR_INSTALL_NAMESPACE

Migration guides

v2.0.0 to v3.0.0

Note

You can also upgrade AppSSO as part of upgrading Tanzu Application Platform as a
whole. See Upgrading Tanzu Application Platform for more information.

Tanzu Application Platform v1.4

VMware by Broadcom 713



VMware recommends that you recreate your AuthServers after upgrading your AppSSO to v3.0.0
with the following changes:

Migrate field .spec.tls.disabled to .spec.tls.deactivated.

v1.0.0 to v2.0.0

VMware recommends that you recreate your AuthServers after upgrading your AppSSO to v2.0.0
with the following changes:

Migrate from .spec.issuerURI to .spec.tls:

1. Configure one of .spec.tls.{issuerRef, certificateRef, secretRef}. See Issuer
URI & TLS for more information.

2. (Optional) Disable TLS with .spec.tls.disabled.

3. Remove .spec.issuerURI.

4. Delete your AuthServer-specific Service and ingress resources.

5. Apply your AuthServer. You can find its issuer URI in .status.issuerURI.

6. Update the redirect URIs in your upstream identity providers.

If you use the internalUnsafe identity provider to migrate existing users by replacing the
bcrypt hash through the plain-text equivalent. You can still use existing bcrypt passwords
by prefixing them with {bcrypt}:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  # ...

spec:

  identityProviders:

    - name: internal

      internalUnsafe:

        users:

          # v1.0

          - username: test-user-1

            password: $2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNtS8

jWK # bcrypt-encoded "password"

            # ...

          # v2.0

          - username: "test-user-1"

            password: "{bcrypt}$2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyR

QH6CNNtS8jWK" # same bcrypt hash, with {bcrypt} prefix

          - username: "test-user-2"

            password: "password" # plain text

  # ...

Note

AppSSO templates your issuer URI and enables TLS. When using the newer
.spec.tls, a custom Service and an ingress resource are no longer
required.

It is not recommended to continue using .spec.issuerURI in AppSSO
v2.0.0. To use .spec.issuerURI in AppSSO v2.0.0, you must provide a
Service and an ingress resource as in AppSSO v1.0.0.

Tanzu Application Platform v1.4

VMware by Broadcom 714



Uninstall Application Single Sign-On

This topic tells you how to uninstall Application Single Sign-On (commonly called AppSSO).

Delete the AppSSO package by running:

tanzu package installed delete appsso --namespace tap-install

To permanently delete and exclude AppSSO package from your Tanzu Application Platform install,
edit your Tanzu Application Platform values file by including the following configuration:

excluded_packages:

  - sso.apps.tanzu.vmware.com

For more information, navigate to Exclude packages from a Tanzu Application Platform profile.

Application Single Sign-On for Service Operators

The following topics tell you how to configure a fully operational authorization server for Application
Single Sign-On (commonly called AppSSO):

Annotations and labels

Issuer URI and TLS

TLS scenario guides

CA certificates

Configure Workloads to trust a custom CA

Identity providers

Token signatures

Storage

AuthServer readiness

Scale AuthServer

AuthServer audit logs

AuthServer represents the request for an OIDC authorization server. It results in the deployment of
an authorization server backed by Redis over mutual TLS if no external storage is explicitly
configured.

You can configure the labels with which clients can select an AuthServer, the namespaces it allows
clients from, its issuer URI, its token signature keys, identity providers and further details for its
deployment.

For the full available configuration, spec and status see the API reference.

Application Single Sign-On for Service Operators

The following topics tell you how to configure a fully operational authorization server for Application
Single Sign-On (commonly called AppSSO):

Annotations and labels

Issuer URI and TLS

TLS scenario guides

CA certificates

Tanzu Application Platform v1.4

VMware by Broadcom 715



Configure Workloads to trust a custom CA

Identity providers

Token signatures

Storage

AuthServer readiness

Scale AuthServer

AuthServer audit logs

AuthServer represents the request for an OIDC authorization server. It results in the deployment of
an authorization server backed by Redis over mutual TLS if no external storage is explicitly
configured.

You can configure the labels with which clients can select an AuthServer, the namespaces it allows
clients from, its issuer URI, its token signature keys, identity providers and further details for its
deployment.

For the full available configuration, spec and status see the API reference.

Annotations and labels for AppSSO

This topic tells you how to configure annotations and labels for Application Single Sign-On
(commonly called AppSSO).

An AuthServer is selectable by ClientRegistration through labels. The namespace an AuthServer
allows ClientRegistrations from is controlled with an annotation.

Labels

ClientRegistrations select an AuthServer with spec.authServerSelector. Therefore, an
AuthServer must have a set of labels that uniquely identifies it amongst all AuthServer. A
ClientRegistration must match only one AuthServer. Registration fails if multiple or no AuthServer
resources are matched.

For example:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  labels:

    env: dev

    ldap: True

    saml: True

# ...

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  labels:

    env: prod

    saml: True

# ...

Allowing client namespaces

AuthServer controls which namespace it allows ClientRegistrations with the annotation:

Tanzu Application Platform v1.4

VMware by Broadcom 716



---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

To allow ClientRegistrations from all or a restricted set of namespaces this annotation must be
set. Its value is a comma-separated list of allowed Namespaces, e.g. "app-team-red,app-team-
green", or "*" if it should allow clients from all namespaces.

Unsafe configuration

AuthServer is designed to enforce secure and production-ready configuration. However,
sometimes it is necessary to opt-out of those constraints, e.g. when deploying AuthServer on an
iterate cluster.

Unsafe identity provider

The InternalUnsafe identity provider cannot be used unless explicitly allowed by including the
annotation sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider as follows:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

spec:

  identityProviders:

    - name: static-users

      internalUnsafe:

      # ...

If the annotation is not present and an InternalUnsafe identity provider is configured the
AuthServer will not apply.

Unsafe issuer URI

It’s not possible to use a plain HTTP issuer URI, unless it’s explicitly allowed by including the
annotation sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri as follows:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

Caution

If the annotation is missing, no clients are allowed.

Caution

Allowing unsafe is not recommended for production.

Tanzu Application Platform v1.4

VMware by Broadcom 717



spec:

  issuerURI: http://this.is.unsafe

If the annotation is not present and a plain HTTP issuer URI is configured, the AuthServer does not
apply.

Issuer URI and TLS for AppSSO

This topic tells you how to configure the issuer URI and TLS for Application Single Sign-On
(commonly called AppSSO).

Overview

An AuthServer entry point for its clients and their end-users is called issuer URI. AppSSO will
template the issuer URI and create a TLS-enabled Ingress for it. For this purpose, your platform
operator configures the domain name and template. Once you created and AuthServer you can
find the actual URL in .status.issuerURI.

You can configure whether and how to obtain a TLS certificate for the issuer URI by using
.spec.tls. Unless TLS is deactivated, HTTPS is enforced. For example, requests for http:// are
redirected to https://. You can observe the TLS configuration in .status.tls.

If AppSSO is installed with a default issuer, you can omit AuthServer.spec.tls and a TLS certificate
is obtained automatically. This is the recommended approach for TLS.

For example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

# ...

status:

  issuerURI: https://login.services.example.com

  tls:

    issuerRef:

      name: my-default-issuer

      kind: ClusterIssuer

      group: cert-manager.io

  # ...

This AuthServer is reachable at its templated issuer URI https://login.services.example.com and
serves a TLS certificate obtained from my-default-issuer.

Learn how to configure TLS for your AuthServer:

Configure TLS by using a (Cluster)Issuer

Configure TLS by using a Certificate

Configure TLS by using a Secret

Deactivate TLS

There are many use-cases that pertain to TLS use. To find out which scenario applies to you and
how to configure it, see TLS scenario guides.

If your AuthServer obtains a certificate from a custom CA, you can enable App Operators to trust it.
See Allow Workloads to trust a custom CA AuthServer for more information.

Tanzu Application Platform v1.4

VMware by Broadcom 718



Configure TLS by using a (Cluster)Issuer

You can obtain a TLS certificate for your AuthServer by referencing a cert-manager.io/v1/Issuer
or cert-manager.io/v1/ClusterIssuer. This enables AppSSO to retrieve a cert-
manager.io/v1/Certificate from the issuer and apply it to the Ingress configuration.

The composition of an AuthServer and a self-signed Issuer looks as follows:

---

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

  name: my-selfsigned-issuer

  namespace: services

spec:

  selfSigned: { }

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  tls:

    issuerRef:

      name: my-selfsigned-issuer

      # 'kind: Issuer' can be omitted. It is the default. 

The composition of an AuthServer and a self-signed ClusterIssuer for looks as follows:

---

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: my-selfsigned-cluster-issuer

spec:

  selfSigned: { }

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  tls:

    issuerRef:

      name: my-selfsigned-cluster-issuer

      kind: ClusterIssuer

Confirm that your AuthServer serves a TLS certificate from the specified issuer by visiting its
{.status.issuerURI}.

For more information about cert-manager and its APIs. see cert-manager documentation.

Configure TLS by using a Certificate

In order to configure TLS for your AuthServer using a cert-manager.io/v1/Certificate you must
know what its templated issuer URI will be. You can infer it from the AppSSO package’s domain
template.

Tanzu Application Platform v1.4

VMware by Broadcom 719

https://cert-manager.io/


The composition of an AuthServer and a Certificate looks as follows:

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: login

  namespace: services

spec:

  dnsNames:

    - login.services.example.com

  issuerRef:

    name: my-cluster-issuer

    kind: ClusterIssuer

  secretName: login-cert

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  tls:

    certificateRef:

      name: login

Confirm that your AuthServer serves the specified Certificate by visiting its {.status.issuerURI}.

For more information about cert-manager and its APIs. see cert-manager documentation.

Configure TLS by using a Secret

If you don’t want to use cert-manager.io’s APIs or you have a raw TLS certificate in a TLS Secret,
you can compose it with your AuthServer by referencing it. The certificate must be for the issuer
URI that will be templated for the AuthServer. You can infer it from the AppSSO package’s domain
template.

The composition of an AuthServer and TLS Secret looks as follows:

apiVersion: v1

kind: Secret

metadata:

  name: my-tls-cert

  namespace: services

type: kubernetes.io/tls

data:

  tls.key: # ...

  tls.crt: # ...

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  tls:

    secretRef:

      name: my-tls-cert

Tanzu Application Platform v1.4

VMware by Broadcom 720

https://cert-manager.io/


Deactivate TLS (unsafe)

If you deactivate TLS autoconfiguration, AuthServer only works over plain HTTP. You must
deactivate TLS with the sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: "" annotation.

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

  # ...

spec:

  tls:

    deactivated: true

Allow Workloads to trust a custom CA AuthServer

If your AuthServer obtains a certificate from a custom CA, its consumers do not trust it by default.
You can enable App Operators’ Workloads to trust your AuthServer by exporting a ca-certificates
service binding Secret to their Namespace.

A composition of SecretTemplate and SecretExport are a way to achieve this. If your custom CA’s
TLS Secret is present in the namespace my-certs, then you can provide a ca-certificates service
binding Secret like so:

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretTemplate

metadata:

  name: ca-cert

  namespace: my-certs

spec:

  inputResources:

    - name: my-custom-ca

      ref:

        apiVersion: v1

        kind: Secret

        name: my-custom-ca

  template:

    data:

      ca.crt: $(.my-custom-ca.data.tls\.crt)

    stringData:

      type: ca-certificates

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: ca-cert

  namespace: my-certs

spec:

  toNamespace: "*"

Caution

Deactivating TLS is unsafe and not recommended for production.

Tanzu Application Platform v1.4

VMware by Broadcom 721



This templates a ca-certificates service binding Secret which Workload can claim to trust the
custom CA. It does not contain the CA’s private key and is generally safe to share.

However, be careful, this example exports to all namespace on the cluster. If this does not comply
with your policies, then adjust the target namespaces if required.

For more information about secretgen-controller and its APIs, see secretgen-controller
documentation in GitHub.

TLS scenario guides for AppSSO

This topic tells you how to obtain a TLS certificate in different scenarios for Application Single Sign-
On (commonly called AppSSO).

Overview

AuthServer is a piece of security infrastructure. It is imperative to configure TLS for it, so that its
issuer URI’s scheme is https://.

AuthServer.spec.tls accommodates different scenarios for obtaining a TLS certificate. Select the
scenario that matches your case.

The recommended path is to install AppSSO with a default issuer. In that case, you can omit
AuthServer.spec.tls and a TLS certificate is obtained automatically.

Prerequisites

Each of the scenarios requires that the AppSSO package is installed and configured. In particular,
its domain_name must match the ingress domain of your cluster. The presented YAML resources
assume my-tap.example.com as the ingress domain. Therefore, the AppSSO configuration values
look as follows:

#! AppSSO values

domain_name: "my-tap.example.com"

The default domain_template: "{{.Name}}.{{.Namespace}}.{{.Domain}}" works for most scenarios.
If a scenario requires a bespoke domain_template, it contains the relevant instructions.

After applying each scenario, wait for your AuthServer to become ready and then test it by running:

kubectl wait --namespace login authserver/sso --for condition=Ready=True --timeout 500

s

curl --location "$(kubectl get --namespace login authserver sso --output=jsonpath='{.s

tatus.issuerURI}')/.well-known/openid-configuration"

Alternatively, visit the AuthServer with your browser. You can obtain its issuer URI by running:

kubectl get --namespace login authserver sso --output=jsonpath='{.status.issuerURI}'

Using a default issuer

Caution

Before applying each scenario, you must configure your AppSSO correctly, and
make sure that all certificates and DNS names comply with your setup.

Tanzu Application Platform v1.4

VMware by Broadcom 722

https://github.com/vmware-tanzu/carvel-secretgen-controller


VMware recommend using a default issuer,
because this approach separates the responsibilities of platform operators and service operators. In
this case, the Authserver.spec.tls field is not required.

To verify whether AppSSO was installed with a default issuer, run:

kctrl package installed get --namespace tap-install --package-install tap --values-fil

e-output tap-values.yaml

If a shared.ingress_issuer appears in your tap-values.yaml file, you have a default issuer.

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

    sso.apps.tanzu.vmware.com/documentation: Uses the default issuer for TLS

spec:

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using a ClusterIssuer

A ClusterIssuer is a cluster-scoped API provided by cert-manager from which certificates can be
obtained programmatically.

This scenario puts all resources into a single YAML file and uses Let’s Encrypt’s production API.
You might get the ClusterIssuer from your platform operators.

Important

Ensure kctrl is installed.

Tanzu Application Platform v1.4

VMware by Broadcom 723

https://cert-manager.io/
https://letsencrypt.org/
https://carvel.dev/blog/kctrl-release-blog/


For more information, see cert-manager documentation.

---

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-production

spec:

  acme:

    privateKeySecretRef:

      name: letsencrypt-production

    server: https://acme-v02.api.letsencrypt.org/directory

    solvers:

      - http01:

          ingress:

            class: contour

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    issuerRef:

      name: letsencrypt-production

      kind: ClusterIssuer

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

Caution

Let’s Encrypt’s production API rate limits apply.

Tanzu Application Platform v1.4

VMware by Broadcom 724

https://cert-manager.io/docs/configuration/acme/
https://letsencrypt.org/
https://letsencrypt.org/docs/rate-limits/


      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using an Issuer

This scenario is identical to Using a ClusterIssuer, except that the Issuer is scoped to a namespace
and must be located in the same namespace as the AuthServer.

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

  name: letsencrypt-production

  namespace: login

spec:

  acme:

    privateKeySecretRef:

      name: letsencrypt-production

    server: https://acme-v02.api.letsencrypt.org/directory

    solvers:

      - http01:

          ingress:

            class: contour

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    issuerRef:

      name: letsencrypt-production

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

Tanzu Application Platform v1.4

VMware by Broadcom 725



    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using an existing Certificate

A Certificate is an API provided by cert-manager that is scoped to a namespace and represents a
TLS certificate obtained from a (Cluster)Issuer. To create a Certificate, you must know the
name and kind of your issuer.

These scenarios use Let’s Encrypt’s production API and require that a ClusterIssuer by the name
letsencrypt-production exists. See Using a ClusterIssuer for how to set up the issuer.

When using Certificate, its .spec.dnsNames must contain the FQDN of the templated issuer URI.
The domain_name and domain_template of your AppSSO package installation must comply with your
DNS name.

If you have an existing Certificate in the same Namespace where the AuthServer is installed, use
the following AppSSO configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: sso

  namespace: login

spec:

  dnsNames:

    - "sso.login.my-tap.example.com"

  issuerRef:

    name: letsencrypt-production

    kind: ClusterIssuer

  secretName: sso-cert

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    certificateRef:

      name: sso

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

Tanzu Application Platform v1.4

VMware by Broadcom 726

https://cert-manager.io/
https://letsencrypt.org/


---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

secretgen-controller allows you to export and import Secrets across namespaces. When your
Certificate is located in another namespace, for example, it’s controlled by another team, you can
import its Secret to other namespaces. If you have an existing Certificate in another Namespace,
use the following AppSSO configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: tls

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: sso

  namespace: tls

spec:

  dnsNames:

    - "sso.login.my-tap.example.com"

  issuerRef:

    name: letsencrypt-production

    kind: ClusterIssuer

  secretName: sso-cert

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: sso-cert

  namespace: tls

spec:

  toNamespace: login

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretImport

metadata:

  name: sso-cert

  namespace: login

spec:

  fromNamespace: tls

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

Tanzu Application Platform v1.4

VMware by Broadcom 727

https://github.com/vmware-tanzu/carvel-secretgen-controller


kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    secretRef:

      name: sso-cert

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using an existing TLS certificate

If you have an existing TLS certificate and private key, for example, if your TLS certificate was
created outside the cluster, you can apply it directly.

If you don’t have a TLS certificate, there are numerous ways to obtain TLS certificates. One of the
simplest methods is to use a tool such as mkcert, step or openssl in GitHub.

If you have an existing TLS certificate in the same Namespace where the AuthServer is installed, use
the following AppSSO configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

Caution

Be cautious when using SecretExport and SecretImport to facilitate the transfer
across namespaces.

Tanzu Application Platform v1.4

VMware by Broadcom 728

https://github.com/FiloSottile/mkcert
https://smallstep.com/docs/step-cli
https://www.openssl.org/


metadata:

  name: my-cert

  namespace: login

stringData:

  #! --- ReplaceMe - certificate and private key for "sso.login.my-tap.example.com ---

  tls.crt: |

    -----BEGIN CERTIFICATE-----

    # redacted

    -----END CERTIFICATE-----

  tls.key: |

    -----BEGIN PRIVATE KEY-----

    # redacted

    -----END PRIVATE KEY-----

  #! ------------------------------------------------------------------------

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    secretRef:

      name: my-cert

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

If you have an existing TLS certificate in another Namespace, use the following AppSSO
configuration values:

Important

The TLS certificate tls.crt and its corresponding private key tls.key must be
stored in a secret with these keys.

Tanzu Application Platform v1.4

VMware by Broadcom 729



---

apiVersion: v1

kind: Namespace

metadata:

  name: tls

---

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

  name: my-cert

  namespace: tls

stringData:

  #! --- ReplaceMe - certificate and private key for "sso.login.my-tap.example.com ---

  tls.crt: |

    -----BEGIN CERTIFICATE-----

    # redacted

    -----END CERTIFICATE-----

  tls.key: |

    -----BEGIN PRIVATE KEY-----

    # redacted

    -----END PRIVATE KEY-----

  #! ------------------------------------------------------------------------

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: my-cert

  namespace: tls

spec:

  toNamespace: login

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretImport

metadata:

  name: my-cert

  namespace: login

spec:

  fromNamespace: tls

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    secretRef:

      name: my-cert

  #! -----------

  identityProviders:

    - name: test-users

Tanzu Application Platform v1.4

VMware by Broadcom 730



      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using an existing wildcard TLS certificate

To use wildcard certificates for DNS names such as *.my-tap.example.com, you must edit the
AppSSO’s domain_template so that the templated issuer URIs for AuthServer match the wildcard.
For example:

sso.login.my-tap.example.com does not match the wildcard.

sso-login.my-tap.example.com matches the wildcard.

The following AppSSO configuration values accommodates a wildcard certificate for *.my-
tap.example.com:

#! AppSSO values

domain_name: "my-tap.example.com"

domain_template: "{{.Name}}-{{.Namespace}}.{{.Domain}}"

#!                         ^ note the dash

The following scenarios require TLS Secrets, but the same concept applies to Certificate.

If you have an existing wildcard TLS certificate in the same Namespace where the AuthServer is
installed, use the following AppSSO configuration values:

---

apiVersion: v1

Important

The TLS certificate tls.crt and its corresponding private key tls.key must be
stored in a secret with these keys.

Be cautious when using SecretExport and SecretImport to facilitate the transfer
across namespaces.

Important

When using a (Cluster)Issuer for Let’s Encrypt, you cannot request wildcard
certificates when it uses the http01 challenge solver.

Tanzu Application Platform v1.4

VMware by Broadcom 731

https://letsencrypt.org/
https://cert-manager.io/docs/reference/api-docs/#acme.cert-manager.io/v1.ACMEChallengeSolver


kind: Namespace

metadata:

  name: login

---

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

  name: my-wildcard-cert

  namespace: login

stringData:

  #! --- ReplaceMe - certificate and private key for "*.my-tap.example.com ---

  tls.crt: |

    -----BEGIN CERTIFICATE-----

    # redacted

    -----END CERTIFICATE-----

  tls.key: |

    -----BEGIN PRIVATE KEY-----

    # redacted

    -----END PRIVATE KEY-----

  #! ------------------------------------------------------------------------

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    secretRef:

      name: my-wildcard-cert

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Note

Tanzu Application Platform v1.4

VMware by Broadcom 732



If you have an existing wildcard TLS certificate in another Namespace, use the following AppSSO
configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: tls

---

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

  name: my-wildcard-cert

  namespace: login

stringData:

  #! --- Certificate and private key for "*.my-tap.example.com ---

  tls.crt: |

    -----BEGIN CERTIFICATE-----

    # redacted

    -----END CERTIFICATE-----

  tls.key: |

    -----BEGIN PRIVATE KEY-----

    # redacted

    -----END PRIVATE KEY-----

  #! -------------------------------------------------------------

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: my-cert

  namespace: tls

spec:

  toNamespace: login

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretImport

metadata:

  name: my-cert

  namespace: login

spec:

  fromNamespace: tls

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

This scenario is similar to using an existing TLS certificate in the same namespace,
except that the certificate is a wildcard.

Tanzu Application Platform v1.4

VMware by Broadcom 733



spec:

  #! --- TLS ---

  tls:

    secretRef:

      name: my-wildcard-cert

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

CA certificates for AppSSO

This topic tells you how to configure CA certificates for AuthServer in Application Single Sign-On
(commonly called AppSSO).

An AuthServer can trust custom CAs. You can establish either for all AuthServers or for a single
AuthServer. This is useful when either your identity provider or storage serves certificates from a
custom CA.

In most cases, CA certificates are PEM-encoded and located in a Secret referred from
.spec.caCerts[].secretRef.name. The controller considers all Secret entries matching *.(crt|ca-
bundle). That means you can include multiple CA certificates in a single Secret or spread them
across multiple Secrets.

After being created, an AuthServer reports the trusted, total custom CA certificates in its
.status.caCerts together with the location where it sources them from. This includes the CA
certificates that are trusted by all AuthServers.

For example:

---

apiVersion: v1

kind: Secret

metadata:

  name: my-ca

  namespace: services

Note

This scenario is similar to using an existing TLS certificate in another namespace,
except that the certificate is a wildcard.

Tanzu Application Platform v1.4

VMware by Broadcom 734



stringData:

  my.ca-bundle: |

    This is My Company's custom CA. It's common name is "My CA".

    -----BEGIN CERTIFICATE-----

    ...

    -----END CERTIFICATE-----

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  caCerts:

    - secretRef:

        name: my-ca

  # ...

status:

  caCerts:

    - cert:

        subject: CN=My CA,O=My Company,C=Happyland

      source:

        secretEntry: service/my-ca[my.ca-bundle]

    - cert:

        subject: CN=My other CA,O=My Company,C=Happyland

      source:

        secretEntry: appsso/appsso-controller[controller.yaml]

  # ...

CA certificates configured for all AuthServers by using the package installation’s ca_cert_data are
sourced from secretEntry: appsso/appsso-controller[controller.yaml]. This denotes the
AppSSO controller’s configuration Secret.

Configure workloads to trust a custom CA

This topic tells you how to configure workloads to trust a custom Certificate Authority (commonly
called CA) for Application Single Sign-On (commonly called AppSSO).

Overview

If your ClientRegistration selects an AuthServer that serves a certificate from a custom CA, your
Workload does not trust it by default. This is because the certificate is not issued by a trusted
certificate authority from the Workload’s perspective.

To establish trust between a Workload and an AuthServer:

Step Task Link

1. Service Operator exports the custom CA certificate Secret resource from
the namespace in which it is issued.

Exporting custom CA certificate
Secret

2. Service Operator imports the custom CA certificate Secret to the
namespace in which the Workload is created.

Importing custom CA certificate
Secret

3. Append the deployed Workload as a service resource claim, denoting the
custom CA certificate Secret in the workload namespace.

Appending custom CA certificate
Secret reference to Workload

Important

Tanzu Application Platform v1.4

VMware by Broadcom 735



Exporting custom CA certificate Secret

A ca-certificates service binding Secret allows to configure trust for custom CAs.

For more information about exporting CA certificate Secrets, see Allow Workloads to trust a
custom CA AuthServer.

Example: Create a ca-certificates-type ServiceBinding Secret from template and offer Tanzu
Application Platform’s default self-signed CA certificate Secret to workloads namespace.

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretTemplate

metadata:

  name: tap-ca-cert

  namespace: cert-manager                     # The namespace in which your custom CA 

Secret resides.

spec:

  inputResources:

    - name: tap-ingress-selfsigned-root-ca

      ref:

        apiVersion: v1                        # The custom CA certificate Secret.

        kind: Secret                          # ^^

        name: tap-ingress-selfsigned-root-ca  # ^^

  template:

    data:

      ca.crt: $(.tap-ingress-selfsigned-root-ca.data.tls\.crt)

    stringData:

      type: ca-certificates

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: tap-ca-cert           # The name of the SecretTemplate that created the "ca-ce

rtificates" Secret.

  namespace: cert-manager     # The namespace in which Tanzu Application Platform's se

lf-signed ClusterIssuer stores its CA cert Secret.

spec:

  toNamespace: my-apps        # The namespace in which Workloads are deployed.

Importing custom CA certificate Secret

After the custom CA certificate Secret is exported from its original namespace, you can import it
into the workloads’ namespace.

Example: Accept Tanzu Application Platform’s default self-signed CA certificate Secret offer.

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretImport

metadata:

  name: tap-ca-cert

  namespace: my-apps            # The namespace in which Workloads are deployed.

spec:

  fromNamespace: cert-manager   # The namespace in which your custom CA certificate Se

cret resides.

These steps are mandatory if Tanzu Application Platform is installed with the default
self-signed ClusterIssuer resource, in which the CA is custom.

Tanzu Application Platform v1.4

VMware by Broadcom 736



Appending custom CA certificate Secret reference to
Workload

With custom CA certificate available in the workloads’ namespace, you can append it to the
Workload as a service resource claim:

Example: Appending custom CA certificate Secret as a resource claim.

---

apiVersion: carto.run/v1alpha1

kind: Workload

# ...

spec:

  serviceClaims:

    - name: ca-cert

      ref:

        apiVersion: v1    # The custom CA Secret template that is imported into the wo

rkloads' namespace.

        kind: Secret      # ^^

        name: tap-ca-cert # ^^

    # ...

Alternatively, you can provide the workload with a --service-ref parameter for the same effect:

--service-ref "ca-cert=v1:Secret:tap-ca-cert"

For more information about secretgen-controller and its APIs, see secretgen-controller
documentation in GitHub.

Identity providers for AppSSO
This topic tells you how to configure Application Single Sign-On (commonly called AppSSO) to use
external identity providers (commonly called IdPs).

Users can log in by using external identity providers. OpenID Connect and LDAP providers are
supported. SAML providers have limited experimental support. An AuthServer does not manage
users internally. Developers can get started quickly without needing to connect to an IdP by using
static hard-coded users, which is for development purposes only.

Identity providers are configured under spec.identityProviders, learn more from the API
reference.

End-users will be able to log in with these providers when they go to {spec.issuerURI} in their
browser.

Learn how to configure identity providers for an AuthServer:

OpenID Connect providers

LDAP

SAML (experimental)

Internal, static user

Caution

Changes to spec.identityProviders does not take effect immediately because the
operator will roll out a new deployment of the authorization server.

Tanzu Application Platform v1.4

VMware by Broadcom 737

https://github.com/vmware-tanzu/carvel-secretgen-controller


Restrictions

OpenID Connect providers

To set up an OpenID Connect provider, provide the following information for your AuthServer:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: my-oidc-provider

      openID:

        issuerURI: https://openid.example.com

        clientID: my-client-abcdef

        clientSecretRef:

          name: my-openid-client-secret

        scopes:

          - "openid"

          - "other-scope"

        authorizationUri: https://example.com/oauth2/authorize

        tokenUri: https://example.com/oauth2/token

        jwksUri: https://example.com/oauth2/jwks

        claimMappings:

          roles: my-oidc-provider-groups

  # ...

---

apiVersion: v1

kind: Secret

metadata:

  name: my-openid-client-secret

  # ...

stringData:

  clientSecret: very-secr3t

Where:

openID is the issuer identifier. You can define as many OpenID providers as you like. If the
provider supports OpenID Connect Discovery, the value of openID is used to auto-configure
the provider by using information from https://openid.example.com/.well-known/openid-
configuration.

The value of issuerURI must not contain .well-known/openid-configuration and must
match the value of the issuer field. See OpenID Connect documentation at
https://openid.example.com/.well-known/openid-configuration for more information.

scopes is used in the authorization request. Its value must contain "openid". Other common
OpenID values include "profile" and "email". You can also run curl -s
"https://openid.example.com/.well-known/openid-configuration" | jq -r ".issuer" to
retrieve the correct issuerURI value.

The value of clientSecretRef must be a Secret with the entry clientSecret.

authorizationUri (optional) is the URI for performing an authorization request and
obtaining an authorization_code.

Note

You can retrieve the values of issuerURI and clientID when registering a
client with the provider, which in most cases, is by using a web UI.

Tanzu Application Platform v1.4

VMware by Broadcom 738



tokenUri (optional) is the URI for performing a token request and obtaining a token.

jwksUri (optional) is the JSON Web Key Set (JWKS) endpoint for obtaining the JSON Web
Keys to verify token signatures.

claimMappings (optional) selects which claim in the id_token contains the roles of the user.
roles is a non-standard OpenID Connect claim. When ClientRegistrations has a roles
scope, it is used to populate the roles claim in the id_token issued by the AuthServer.

my-oidc-provider-groups claim from the ID token issued by my-oidc-provider is mapped
into the roles claim in tokens issued by AppSSO.

Verify the configuration by visiting the AuthServer’s issuer URI in your browser and select my-oidc-
provider.

Note for registering a client with the identity provider

The AuthServer will set up redirect URIs based on the provider name in the configuration. For
example, for a provider with name: my-provider, the redirect URI will be
{spec.issuerURI}/login/oauth2/code/my-provider. The externally accessible user URI for the
AuthServer, including scheme and port is spec.issuerURI. If the AuthServer is accessible on
https://appsso.company.example.com:1234/, the redirect URI registered with the identity provider
should be https://appsso.company.example.com:1234/login/oauth2/code/my-provider.

Supported token signing algorithms

AppSSO only supports the RS256 algorithm for token signature. For more information, see OpenID
Connect documentation.

You can find out the signing algorithms your OpenID provider supports by referring to the
id_token_signing_alg_values_supported response parameter in the OpenID Connect
documentation at .well-known/openid-configuration.

For example, you can run:

curl -s "ISSUER-URI/.well-known/openid-configuration" | jq ".id_token_signing_alg_valu

es_supported"

LDAP

For example:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        url: "ldaps://example.com:636"

        bind:

          dn: uid=binduser,ou=Users,dc=example,dc=com

          passwordRef:

Important

You can not configure more than one ldap identity provider.

Tanzu Application Platform v1.4

VMware by Broadcom 739

https://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig


            name: ldap-password

        user:

          searchBase: ou=Users,dc=example,dc=com

          searchFilter: cn={0}

        group:

          search:

            filter: member={0}

            base: ou=Users,dc=example,dc=com

            searchSubTree: true

            depth: 10

          roleAttribute: description

  # ...

---

apiVersion: v1

kind: Secret

metadata:

  name: ldap-password

  namespace: default

stringData:

  password: confidential-password-value

Where:

url is the URL of the LDAP server. It must be ldaps and must contain a port.

bind.dn is the DN to perform the bind.

bind.passwordRef must be a secret with the entry password. That entry is the password to
perform the bind.

user.searchBase is the branch of tree where the users are located at. Search is performed
in nested entries.

user.seachFilter is the filter for LDAP search. It must contain the string {0}, which is
replaced by the dn of the user when performing a search. For example, when logging in
with the username marie, the filter for LDAP search is cn=marie.

group (optional) defaults to unset. It configures how LDAP groups are mapped to user roles
in the id_token claims. If not set, the user has no roles.

group.roleAttriubte selects which attribute of the group entry are mapped to a
user role. If an attribute has multiple values, the first value is selected.

group.search (optional) toggles “Active Directory” search and uses recursive search
to find groups for a given user.

Verify the configuration by visiting the AuthServer’s issuer URI in your browser and log in with the
username and password from LDAP.

ActiveDirectory group search

In ActiveDirectory groups, user entries have a multi-value memberOf attribute, which contains the
DNs pointing to the groups of a particular user. To enable this search mode, make sure
group.roleAttribute is set and group.search is not set.

For example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

Tanzu Application Platform v1.4

VMware by Broadcom 740



        user:

          searchBase: OU=Cloud,DC=ad,DC=example,DC=com

          searchFilter: cn={0}

        group:

          roleAttribute: sAMAccountName

The LDIF definition is as follows:

dn: CN=appsso-user,OU=Cloud,DC=ad,DC=example,DC=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: user

cn: appsso user

sn: user

givenName: appsso

distinguishedName: CN=appsso user,OU=Cloud,DC=ad,DC=example,DC=com

displayName: appsso user

memberOf: CN=ssogroup,OU=Cloud,DC=ad,DC=example,DC=com

memberOf: CN=developers,OU=Cloud,DC=ad,DC=example,DC=com

sAMAccountName: appssouser

userPrincipalName: appssouser@ad.example.com

objectCategory: CN=Person,CN=Schema,CN=Configuration,DC=ad,DC=example,DC=com

# ...

# Groups

dn: CN=ssogroup,OU=Cloud,DC=ad,DC=example,DC=com

objectClass: top

objectClass: group

cn: ssogroup

member: CN=appsso-user,OU=Cloud,DC=ad,DC=example,DC=com

sAMAccountName: SSO Group

# ...

dn: CN=developers,OU=Cloud,DC=ad,DC=example,DC=com

objectClass: top

objectClass: group

cn: developers

sAMAccountName: Developers

# ...

The user appsso-user has two values for memberOf, pointing to two groups. Given the configuration
earlier, sAMAccountName is used for the role, so the user has SSO Group and Developers as roles. The
group is not required to have member attribute point to the user for the role to be mapped.

“Classic” group search

In non-ActiveDirectory LDAP, users generally do not have a memberOf attribute. Group search is
performed by looking up groups in a base branch and filtering based on the groups member
attribute.

An AuthServer can optionally perform:

group search in sub-branches.

nested group search, that is, find a hierarchy of groups, in which a group is a member of
another group.

The complete configuration is as follows:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 741



# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

        group:

          search:

            base: ou=Users,dc=example,dc=com

            filter: member={0}

            depth: 10

            searchSubTree: true

          roleAttribute: description

  # ...

Where:

search.base is the base for running an LDAP search for groups.

search.filter is the filter for running an LDAP search for groups. It must contain the string
{0}, which is replaced by the dn of the user when performing group search. For example,
member=cn=marie,ou=Users,dc=example,dc=org.

search.depth (optional) is the depth at which to perform nested group search. It defaults to
unset if left empty.

search.searchSubTree (optional) controls whether to look for groups in sub-trees of the
search.base. It defaults to unset if left empty.

Direct group search only

Given the following minimal configuration:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

        user:

          searchBase: ou=Users,dc=example,dc=com

          searchFilter: uid={0}

        group:

          search:

            base: ou=Users,dc=example,dc=com

            filter: member={0}

          roleAttribute: description

  # ...

The LDIF definition is as follows:

######################

## Users

######################

## User Marie Curie

## Marie Salomea Skłodowska Curie ; https://en.wikipedia.org/wiki/Marie_Curie

dn: cn=marie,ou=Users,dc=example,dc=org

cn: Marie

sn: Skłodowska Curie

objectClass: inetOrgPerson

Tanzu Application Platform v1.4

VMware by Broadcom 742



objectClass: posixAccount

objectClass: shadowAccount

uid: marie

######################

## Groups

######################

dn: cn=nobels,ou=Users,dc=example,dc=org

objectClass: groupOfNames

description: Nobel Prizes

member: cn=marie,ou=Users,dc=example,dc=org

User marie has roles Nobel Prizes.

Groups in sub-trees

AppSSO can perform group search in sub-trees of the base for group search. This is enabled when
group.search.searchSubTree is explicitly set to true. For example:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

        group:

          search:

            base: ou=Users,dc=example,dc=com

            filter: member={0}

            searchSubTree: true

          roleAttribute: description

  # ...

The LDIF definition is as follows:

######################

## Users

######################

## User Corazon

## Maria Corazon Sumulong Cojuangco Aquino; https://en.wikipedia.org/wiki/Corazon_Aqui

no

dn: cn=corazon,ou=Users,dc=example,dc=com

cn: Maria Corazon

sn: Sumulong Cojuangco Aquino

objectClass: inetOrgPerson

objectClass: posixAccount

objectClass: shadowAccount

uid: corazon

######################

## Groups

######################

dn: cn=presidents,ou=Users,dc=example,dc=com

objectClass: groupOfNames

description: Presidents

member: cn=corazon,ou=Users,dc=example,dc=com

dn: cn=chief-commanders,ou=LegionHonor,ou=Users,dc=example,dc=com

objectClass: groupOfNames

Tanzu Application Platform v1.4

VMware by Broadcom 743



description: Chief Commanders

member: cn=corazon,ou=Users,dc=example,dc=com

User corazon has roles Presidents and Chief Commanders, which are retrieved from
ou=LegionHonor,ou=Users,dc=example,dc=com, a subtree of the search base.

Nested group search

AppSSO can perform nested group search by going up a chain where a user is a member of a
group, which is itself a member of a group, and so on. This is enabled by setting
group.search.depth to greater than 1. group.search.depth controls the number of “levels” that
AppSSO fetches to get the groups of a user. For example:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

        user:

          searchBase: ou=Users,dc=example,dc=com

          searchFilter: uid={0}

        group:

          search:

            base: ou=Users,dc=example,dc=com

            filter: member={0}

            depth: 2

          roleAttribute: description

  # ...

The LDIF definition is as follows:

######################

## Users

######################

## User Corazon

## Maria Corazon Sumulong Cojuangco Aquino; https://en.wikipedia.org/wiki/Corazon_Aqui

no

dn: cn=corazon,ou=Users,dc=example,dc=com

cn: Maria Corazon

sn: Sumulong Cojuangco Aquino

objectClass: inetOrgPerson

objectClass: posixAccount

objectClass: shadowAccount

uid: corazon

######################

## Groups

######################

# Citizen > Politicians > Presidents > corazon (depth = 3)

dn: cn=citizens,ou=Users,dc=example,dc=com

objectClass: groupOfNames

description: Citizens

member: cn=politicians,ou=Users,dc=example,dc=com

# Politicians > Presidents > corazon (depth = 2)

dn: cn=politicians,ou=Users,dc=example,dc=com

objectClass: groupOfNames

Tanzu Application Platform v1.4

VMware by Broadcom 744



description: Politicians

member: cn=presidents,ou=Users,dc=example,dc=com

# Presidents > corazon (depth = 1, direct group)

dn: cn=presidents,ou=Users,dc=example,dc=com

objectClass: groupOfNames

description: Presidents

member: cn=corazon,ou=Users,dc=example,dc=com

User corazon has roles Presidents and Politicians. However, the search stops at depth 2, so they
do not have the role Citizens, which requires a depth greater or equal to 3.

SAML (experimental)

For SAML providers only autoconfiguration through metadataURI is supported.

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  - name: my-saml-provider

    saml:

      metadataURI: https://saml.example.com/sso/saml/metadata # required

      claimMappings: # optional

        # Map SAML attributes into claims in id_tokens issued by AppSSO. The key

        # on the left represents the claim, the value on the right the attribute.

        # For example:

        # The "saml-groups" attribute from the assertion issued by "my-saml-provider"

        # will be mapped into the "roles" claim in id_tokens issued by AppSSO

        roles: saml-groups

        givenName: FirstName

        familyName: LastName

        emailAddress: email

Note for registering a client with the identity provider

The AuthServer will set up SSO and metadata URLs based on the provider name in the
configuration. For example, for a SAML provider with name: my-provider, the SSO URL will be
{spec.issuerURI}/login/saml2/sso/my-provider. The metadata URL will be
{spec.issuerURI}/saml2/service-provider-metadata/my-provider. spec.issuerURI is the
externally accessible issuer URI for an AuthServer, including scheme and port. If the AuthServer is
accessible on https://appsso.company.example.com:1234/, the SSO URL registered with the
identity provider should be https://appsso.company.example.com:1234/login/saml2/sso/my-
provider.

Internal users

Caution

Support for SAML providers is experimental.

Caution

InternalUnsafe is unsafe and not recommended for production.

Tanzu Application Platform v1.4

VMware by Broadcom 745



During development, static users can be useful for testing purposes. You can not configure more
than one internalUnsafe identity provider.

For example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

  # ...

spec:

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: ernie

            password: "password" # plain text

            roles:

              - "silly"

          - username: bert

            password: "{bcrypt}$2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNt

S8jWK" # bcrypt-hashed "password"

            roles:

              - "grumpy"

  # ...

InternalUnsafe needs to be explicitly allowed by setting the annotation
sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: "".

The passwords can be plain text or bcrypt-hashed. When bcrypt-hashing passwords they have to
be prefixed with {bcrypt} . Learn how to bcrypt-hash string below.

Verify the configuration by visiting the AuthServer’s issuer URI in your browser and logging in as
ernie/password or bert/password.

Generating a bcrypt hash from a plain-text password

There are multiple options for generating bcrypt hashes:

1. Use an online bcrypt generator

2. On Unix platforms, use htpasswd. Note, you may need to install it, for example on Ubuntu
by running apt install apache2-utils

htpasswd -bnBC 12 "" your-password-here | tr -d ':\n'

Restrictions

Each identity provider has a declared name. The following conditions apply:

the names must be unique

the names must not be blank

the names must follow Kubernetes’ DNS Subdomain Names guidelines

contain no more than 253 characters

contain only lowercase alphanumeric characters, ‘-’ or ‘.’

start with an alphanumeric character

end with an alphanumeric character

Tanzu Application Platform v1.4

VMware by Broadcom 746

https://bcrypt-generator.com/
https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#dns-subdomain-names


the names may not start with client or unknown

There can be at most one of each internalUnsafe and ldap.

Token signatures for AppSSO

This topic tells you how to configure token signatures keys for Application Single Sign-On
(commonly called AppSSO).

Overview

An AuthServer must have token signature keys configured to be able to mint tokens.

Learn about token signatures and how to manage keys of an AuthServer:

Token signature 101

Token signature in AppSSO

Creating keys

Rotating keys

Revoking keys

“Token signature key” or just “key” is AppSSO’s wording for a public/private key pair that is tasked
with signing and verifying JSON Web Tokens (JWTs). For more information, please refer to the
following resources:

JSON Web Signature (JWS) spec

JSON Web Algorithms (JWA) spec

JSON Web Token (JWT) spec

Token signature 101

Token signature keys are used by an AuthServer to sign JSON Web Tokens (JWTs), produce a JWS
Signature and attach it to the JOSE Header of a JWT. The client application can then verify the
JWT signature.

A private key signs a JWT. A public key verifies the signature of a signed JWT.

The sign-and-verify mechanism serves multiple security purposes:

Authenticity: signature verification ensures that the issuer of the JWT is from a source that
is advertised.

Integrity: signature verification ensures that the JWT has not been altered in transit or
during its issued lifetime. Integrity is a foundational pillar of the CIA triad concept in
Information Security.

Non-repudiation: signature verification ensures that the authorization server that signed
the JWT cannot deny that they have signed it after its issuance (granted that the signing
key that signed the JWT is available).

AppSSO only supports the RS256 algorithm for signing tokens. For more information, see JSON
Web Algorithms (JWA) documentation.

Token signature of an AuthServer

You must configure token signatures for AuthServer. An AuthServer receives its keys under
spec.tokenSignature. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 747

https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7515#section-4
https://www.nccoe.nist.gov/publication/1800-25/VolA/index.html
https://www.rfc-editor.org/rfc/rfc7518#section-3


spec:

  tokenSignature:

    signAndVerifyKeyRef:

      name: sample-token-signing-key

    extraVerifyKeyRefs:

      - name: sample-token-verification-key-1

      - name: sample-token-verification-key-2

There can only be one token signing key spec.tokenSignature.signAngVerifyKeyRef at any given
time, and arbitrarily many token verification keys spec.tokenSignature.extraVerifyKeyRefs. The
token signing key is used to sign and verify actively issued JWTs in circulation, whereas token
verification keys are used to verify issued JWTs signatures. Token verification keys are thought to
be previous token signing keys but have been rotated into verify only mode as a rotation
mechanism measure, and can potentially be slated for eviction at a predetermined time.

The AuthServer serves its public keys at {spec.issuerURI}/oauth2/jwks. For example:

❯ curl -s authserver-sample.default/oauth2/jwks | jq

{

  "keys": [

    {

      "kty": "RSA",

      "e": "AQAB",

      "kid": "sample-token-signing-key",

      "n": "0iCinir7sWKZE_3QXq4eTub_GU-lvdAKFI9dzDlwX7XZwwSERuzzQQ_Fs7i9djMl5bpv2ma_3Z

B-j2W9pR9ZIa3nqBI29AHqx2zmVQ8w-GxPDGRMkBdMOWNwyDQGIRlQnJFpXRoSQ5_viM9gYA56WthkDghrupGU

iB_zqGFYlgnz7sd4lC-thgEkDi9vY68DLIFdsXOQIXFqakyEIo43n_0vg6JRGQW1LU_32Ok6OgA3r6bYcE8VQh

JW3sE1qOSFcP0JrPA3YgmTNuDV6GoCLZeMxDdMDKdDcH5UgERLQe1qMMKwlMCeKamOWgo9eBvcFnWNR0I_MJV6

F14U1WbIcQ"

    },

    {

      "kty": "RSA",

      "e": "AQAB",

      "kid": "sample-token-verification-key-1",

      "n": "wc7uOACU62Yu_zKT9YrI4v-_X3L47nbVlcByi4UTVhg8o001OkiYAPAEoDCEHnDg_54gTWxe3h

DRcOJrd72PkTAaxH8aFdikoyakRVG9NvAPbcfzvI8R8plepUbs1U7TPPDEDARm_fZX6QdVyz0CTSafrz-yktTA

DxJhYPgvFLeHq7g7RouB1szTWDCM1haoxKa4960_x9meghNn87z0uF3cAd7TM_k3capYnxNOUT5g1vjJ05Vk14

JUl4R294OpMXPCGcFuvu9auXeBqXyKxxTAnLkDdNrgtT0FJHwnh4RGnrNqjYZOwlRvGbzwQ7du97aU2-qgbKkJ

rWYZWcw2bQ"

    },

    {

      "kty": "RSA",

      "e": "AQAB",

      "kid": "sample-token-verification-key-2",

      "n": "qELrLiaD-IVp_nthVn2EsLuShtU9ovyVIPkLVf47AqKogPV2frE_6Sv8k7Zim-SgDXfjLEg-UG

lQrb4KFm_WkaK2Uf6PCapiBnMi1Q5P8qC0WC5LT6XyPY1exCQbMrEsyd89oS0sKxgoc3Qv0XV24jGYiWQyJ7I0

Rub_QEldGM_dSlfbI-1Qt_U6Ll22OEc1D6P1A3MdDrgbur6N7ZemxlKI26-OAdlbNi0u-lFNj3Ss-pfTVi_fD2

hAajRRmc4tmHejQjH36M4F1NSW_gTbb6VX5EerVuDwSCCK0EuGvhcb1hg6kYEoO-qws54AQ0PywBXT5qksCMBm

mzjP6qO4Ow"

    }

  ]

}

Caution Changes to spec.tokenSignature.signAngVerifyKeyRef have immediate effects.

As a service operator, you have control over which keys are used for certain purposes. Navigate to
the next few sections for more information.

Creating keys

You can deploy an AuthServer without spec.tokenSignature but it won’t be able to mint tokens.
Therefore, keys must be configured to make it fully operational. The following describe how to

Tanzu Application Platform v1.4

VMware by Broadcom 748



create and apply a keys for an AuthServer.

An RSA key can be created multiple ways. Below are two recommended approaches – choose
one.

Using secretgen-controller

An RSAKey CR allows for expedited creation of a Secret resource containing PEM-encoded public
and private keys required by an AuthServer.

1. Create an AuthServer with RSAKeys as follows:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

   signAndVerifyKeyRef:

     name: my-token-signing-key

   extraVerifyKeyRefs:

     - name: my-token-verification-key

 # ...

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

 name: my-token-signing-key

 namespace: default

spec:

 secretTemplate:

   type: Opaque

   stringData:

     key.pem: $(privateKey)

     pub.pem: $(publicKey)

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

 name: my-token-verification-key

 namespace: default

spec:

 secretTemplate:

   type: Opaque

   stringData:

     key.pem: $(privateKey)

     pub.pem: $(publicKey)

2. Observe the creation of an underlying Secrets. The name of the each Secret is the same as
the RSAKey names:

# Verify Secret exists

kubectl get secret my-token-signing-key

Important

This section assumes you have Tanzu Application Platform running on your cluster
with secretgen-controller installed.

Tanzu Application Platform v1.4

VMware by Broadcom 749

https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/rsa_key.md


# View the base64-encoded keys 

kubectl get secret my-token-signing-key -o jsonpath='{.data}'

You should be able to see two fields within the Secret resource: key.pem (private key) and
pub.pem (public key).

3. Verify that the AuthServer serves its keys

curl -s authserver-sample.default/oauth2/jwks | jq

If you encounter any issues with this approach, see Carvel Secretgen Controller documentation.

Using OpenSSL

You can generate an RSA key yourself using OpenSSL. Here are the steps:

1. Generate a PEM-encoded RSA key pair

This guide references the freely published OpenSSL Cookbook and the approaches
mentioned therein around generating a public and private key pair.

# Generate an 4096-bit RSA key

openssl genpkey -out privatekey.pem -algorithm RSA -pkeyopt rsa_keygen_bits:409

6

# -> privatekey.pem

# The resulting private key output is in the PKCS#8 format

# Next, extract the public key

openssl pkey -in privatekey.pem -pubout -out publickey.pem

# -> publickey.pem

# The resulting public key output is in the PKCS#8 format

# To view details of the private key

openssl pkey -in privatekey.pem -text -noout

For OpenSSL key generation examples, see the OpenSSL documentation.

2. Create a secret resource by using the key generated earlier in this procedure:

kubectl create secret generic my-key \

--from-file=key.pem=privatekey.pem \

--from-file=pub.pem=publickey.pem \

--namespace default

3. Apply your AuthServer:

  apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

  kind: AuthServer

  metadata:

    name: authserver-sample

    namespace: default

  spec:

    tokenSignature:

      signAndVerifyKeyRef:

        name: my-key

    # ...

Important

The minimum key size for an Authserver is 2048.

Tanzu Application Platform v1.4

VMware by Broadcom 750

https://github.com/vmware-tanzu/carvel-secretgen-controller
https://www.feistyduck.com/library/openssl-cookbook/online/ch-openssl.html#openssl-key-generation
https://www.openssl.org/docs/man1.1.1/man1/openssl-genpkey.html


4. Verify that the AuthServer serves its keys

curl -s authserver-sample.default/oauth2/jwks | jq

Rotating keys

This section describes how to “rotate” token signature keys for an AuthServer.

The action of “rotating” means moving the active token signing key into the set of token
verification keys, generating a new cryptographic key, and assigning it to be the designated token
signing key.

Assuming that you have an AuthServer with token signature keys configured, rotate keys as
follows:

1. Generate a new token signing key first. See creating keys. Verify that the new Secret exists
before proceeding to the next step.

2. Edit AuthServer.spec.tokenSignature, append the existing
spec.tokenSignature.signAndVerifyKeyRef to spec.tokenSignature.extraVerifyKeys and
set your new key as spec.tokenSignature.signAndVerifyKeyRef.

For example:

# Before

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

   signAndVerifyKeyRef:

     name: old-key

   extraVerifyKeys: []

 # ...

# After

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

   signAndVerifyKeyRef:

     name: new-key

   extraVerifyKeys:

     - name: old-key

 # ...

Once you apply your changes, key rotation is effective immediately.

Moving the active token signing key to be a token verification key is an optional step – check out
the Revoking keys section for more.

Revoking keys

This section describes how to “revoke” token signature keys for an AuthServer.

Tanzu Application Platform v1.4

VMware by Broadcom 751



The action of “revoking” a key means to entirely remove the key from circulation by an AuthServer,
whether it be a token signing key or a token verification key. This action might be needed if your
organization requires a complete key refresh where older keys are never retained. Another
scenario might be in the case of an emergency in which a key or a session has been compromised
and a complete revocation is warranted.

To revoke an existing key or keys, you may remove any references to the keys in the
spec.tokenSignature resource. By removing the reference to the key, the system shall no longer
acknowledge that the key is used for signing or verifying JWTs.

For example, if you have a token signing key and a few verification keys:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: authserver-sample

  namespace: default

spec:

  tokenSignature:

    signAndVerifyKeyRef:

      name: key-3

    extraVerifyKeys:

      - name: key-2

      - name: key-1

  # ...

To revoke an existing verification key, remove it from the extraVerifyKeys list. In the example
above, you can remove “key-2” and “key-1” from the list; JWTs signed with those keys will no
longer be verifiable.

To revoke an existing token signing key, remove it from signAndVerifyKeyRef field. However, if you
remove an existing token signing key without a replacement key, the AuthServer will not be able to
issue access tokens until a valid token signing key is provided. In the example above, “key-3” would
be removed; the system will not be able to sign or verify JWTs.

References and further reading

JSON Web Signature (JWS) - rfc7515 (ietf.org)

JSON Web Algorithms (JWA) spec

JSON Web Token (JWT) - rfc7519 (ietf.org)

Token settings for Application Single Sign-On

This topic tells you how to configure token expiry settings for Application Single Sign-On
(commonly called AppSSO).

Token expiry

AppSSO allows you to optionally configure the token expiry settings in your AuthServer resource.

The default token expiry settings are as follows:

Token type Lifetime

Access token 12 hours

Identity token 12 hours

Tanzu Application Platform v1.4

VMware by Broadcom 752

https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7519


Token type Lifetime

Refresh token 720 hours or 30 days

VMware recommends setting a shorter lifetime for access tokens, typically measured in hours, and
a longer lifetime for refresh tokens, typically measured in days. Refresh tokens acquire new access
tokens, so they have a longer lifespan.

To override the token expiry settings, configure the following in your AuthServer resource:

kind: AuthServer

# ...

spec:

  token:

    accessToken:

      expiry: "12h"

    idToken:

      expiry: "12h"

    refreshToken:

      expiry: "720h"

expiry field examples:

Type Example Definition

Seconds 10s 10 seconds

Minutes 10m 10 minutes

Hours 10h 10 hours

Constraints

The token expiry constraints are as follows:

The duration of the expiry field cannot be negative or zero.

The refresh token’s expiration time cannot be the same as or shorter than that of the
access token.

Verify token settings

After you set up an Application Single Sign-On AuthServer, you can verify that the token received
by applications looks as expected. For this purpose, you can create a simple application consuming
your AuthServer. The following YAML file creates such an application. When you access its URL, it
enables you to log in by using your AuthServer and displays the token it receives.

Note

The expiry field adheres to the duration constraints of the Go standard time library
and does not support durations in units beyond hours, such as days or weeks. For
more information, see the Go documentation.

Caution

The simple application is not intended for production use. It only serves a
tool to help you verify your setup.

The following YAML file pulls an unvetted public image bitnami/oauth2-
proxy:7.3.0

Tanzu Application Platform v1.4

VMware by Broadcom 753

https://pkg.go.dev/time#Duration


If you stored the following YAML in a file named token-viewer.yaml, you can apply it to your
cluster by running the following command:

  ytt -f token-viewer.yaml --data-value ingress_domain=YOUR-INGRESS-DOMAIN --data-valu

e-yaml 'authserver_selector=YOUR-AUTHSERVER-SELECTOR' | kubectl apply -f-

Where YOUR-AUTHSERVER-SELECTOR is the label name and its value. For example: {"name": "ci"}.

A full example is as follows:

#!

#! Token viewer

#!

#! usage:

#!

#! ytt -f token-viewer.yaml --data-value ingress_domain=example.com --data-value-yaml 

'authserver_selector={"name": "ci"}'

#!

#! Then navigate to http://token-viewer.<INGRESS_DOMAIN>

#!

#@ load("@ytt:data", "data")

#@ fqdn = "token-viewer." + data.values.ingress_domain

#@ redirect_uri = "http://" + fqdn + "/oauth2/callback"

#@ namespace = data.values.namespace if "namespace" in data.values else "default"

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: my-client-registration

  namespace: #@ namespace

spec:

  authServerSelector:

    matchLabels: #@ data.values.authserver_selector

  redirectURIs:

    - #@ redirect_uri

  requireUserConsent: false

  clientAuthenticationMethod: client_secret_basic

  authorizationGrantTypes:

    - "authorization_code"

  scopes:

    - name: "openid"

    - name: "email"

    - name: "profile"

    - name: "roles"

---

apiVersion: apps/v1

kind: Deployment

metadata:

  name: token-viewer

  namespace: #@ namespace

spec:

  replicas: 1

  selector:

    matchLabels:

      name: token-viewer

  template:

    metadata:

      labels:

        name: token-viewer

This section does not apply to an air-gapped environment.

Tanzu Application Platform v1.4

VMware by Broadcom 754



    spec:

      securityContext:

        runAsNonRoot: true

        seccompProfile:

          type: RuntimeDefault

      containers:

        - image: bitnami/oauth2-proxy:7.3.0

          name: proxy

          securityContext:

            runAsNonRoot: true

            seccompProfile:

              type: RuntimeDefault

            allowPrivilegeEscalation: false

            capabilities:

              drop:

                - ALL

          ports:

            - containerPort: 4180

              name: proxy-port

              protocol: TCP

          env:

            - name: ISSUER_URI

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: issuer-uri

            - name: CLIENT_ID

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: client-id

            - name: CLIENT_SECRET

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: client-secret

          command: [ "oauth2-proxy" ]

          args:

            - --oidc-issuer-url=$(ISSUER_URI)

            - --client-id=$(CLIENT_ID)

            - --insecure-oidc-skip-issuer-verification=true

            - --client-secret=$(CLIENT_SECRET)

            - --cookie-secret=0000000000000000

            - --cookie-secure=false

            - --http-address=http://:4180

            - --provider=oidc

            - --scope=openid email profile roles

            - --email-domain=*

            - --insecure-oidc-allow-unverified-email=true

            - --oidc-groups-claim=roles

            - --upstream=http://127.0.0.1:8000

            - #@ "--redirect-url=" + redirect_uri

            - --ssl-upstream-insecure-skip-verify=true

            - --ssl-insecure-skip-verify=true

            - --skip-provider-button=true

            - --pass-authorization-header=true

            - --prefer-email-to-user=true

        - image: python:3.9

          name: application

          securityContext:

            runAsNonRoot: true

            runAsUser: 1001

            seccompProfile:

              type: RuntimeDefault

            allowPrivilegeEscalation: false

            capabilities:

Tanzu Application Platform v1.4

VMware by Broadcom 755



              drop:

                - ALL

          resources:

            limits:

              cpu: 100m

              memory: 100Mi

          command: [ "python" ]

          args:

            - -c

            - |

              from http.server import HTTPServer, BaseHTTPRequestHandler

              import base64

              import json

              class Handler(BaseHTTPRequestHandler):

                  def do_GET(self):

                      if self.path == "/token":

                          self.token()

                      elif self.path == "/jwt":

                          self.jwt()

                      else:

                          self.greet()

                  def greet(self):

                      username = self.headers.get("x-forwarded-user")

                      self.send_response(200)

                      self.send_header("Content-type", "text/html")

                      self.end_headers()

                      page = f"""

                      <h1>It Works!</h1>

                      <p>You are logged in as <b>{username}</b></p>

                      <p><a href="/jwt">Show me my id_token (JWT format)</a></p>

                      <p><a href="/token">Show me my id_token (JSON format)</a></p>

                      """

                      self.wfile.write(page.encode("utf-8"))

                  def token(self):

                      token = self.headers.get("Authorization").split("Bearer ")[-1]

                      payload = token.split(".")[1].replace("-","+").replace("_","/")

                      decoded = base64.b64decode(bytes(payload, "utf-8") + b'==').deco

de("utf-8")

                      self.send_response(200)

                      self.send_header("Content-type", "application/json")

                      self.end_headers()

                      self.wfile.write(decoded.encode("utf-8"))

                  def jwt(self):

                      token = self.headers.get("Authorization").split("Bearer ")[-1]

                      self.send_response(200)

                      self.send_header("Content-type", "text/plain")

                      self.end_headers()

                      self.wfile.write(token.encode("utf-8"))

              server_address = ('', 8000)

              httpd = HTTPServer(server_address, Handler)

              httpd.serve_forever()

---

apiVersion: v1

kind: Service

metadata:

  name: token-viewer

  namespace: #@ namespace

spec:

  ports:

    - port: 80

Tanzu Application Platform v1.4

VMware by Broadcom 756



      targetPort: proxy-port

      name: proxy-svc-port

  selector:

    name: token-viewer

---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: token-viewer

  namespace: #@ namespace

spec:

  rules:

    - host: #@ fqdn

      http:

        paths:

          - path: "/"

            pathType: Prefix

            backend:

              service:

                name: token-viewer

                port:

                  name: proxy-svc-port

Storage for AppSSO

This topic tells you how to configure the storage for Application Single Sign-On (commonly called
AppSSO).

Overview

AppSSOs AuthServer handles data pertaining to user’s session, identity, access tokens and
approved or rejected consents. For production environments, it is critical to provide your own
storage source to enable enterprise functions such as data backup and recovery, auditing and long-
term persistence according to your organization’s data and security policies.

AppSSO currently only supports Redis v6.0 or above as a storage solution. v6.0 introduced TLS
support to ensure encrypted client-server communication - AppSSO enforces TLS by default.

Storage provided by default refers to an AuthServer resource where .spec.storage is not set.

Although data in motion is encrypted by using TLS, data at rest is not encrypted by default through
AuthServer. Each storage provider is responsible for encrypting their own data. See data types for
more information about storage.

Securing Data at rest

To be compliant with HIPAA, FISMA, PCI and GDPR, you must encrypt data at rest. Securing the
underlying infrastructure that Redis uses is crucial to protect against a potential attack. The National
Institute for Standards and Technology – Federal Information Processing Standards (NIST-FIPS)
sets the standard for best practice when it comes to data security in the US. Symmetric
cryptography can be used to protect data at rest. This means that the same key encrypts and
decrypts the data, so there is no need for a different private and public key. The Advanced
Encryption Standard (AES) encryption algorithm is an industry standard for securing data at rest.
For the highest level security, VMware recommends using a 256-bit key.

Configuring Redis

Tanzu Application Platform v1.4

VMware by Broadcom 757

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf


To configure Redis as authorization server storage, you must have the following information of your
Redis server:

Server CA certificate (optional): the Certificate Authority (CA) certificate to verify Redis
TLS connections. It is not required if Redis Server certificate is signed by a public CA.

host (required): the domain name, IP address, or host name of your Redis server.

port (optional): the port number of your Redis server. It default to 6379 and must be a
string.

username (optional): the username to authenticate against your Redis server.

password (optional): the password to authenticate against your Redis server.

AppSSO takes the secure-by-default approach and does not establish non-encrypted
communication channels. The AuthServer resource enters an error state if a non-encrypted
connection is attempted.

mTLS is not supported, however Vanilla Redis uses mTLS by default. It can be turned off by setting
tls-auth-clients no. For more information, see Redis documentation.

The following steps introduce the path to configuring Redis with AppSSO:

1. Configuring Redis Server CA certificate

2. Configuring a Redis Secret

3. Attaching storage to an AuthServer

Configuring Redis Server CA certificate

If your Redis includes a custom or non-public Server CA certificate, you must instruct AppSSO to
trust the CA certificate. This is required for the authorization server to communicate with your
Redis over TLS. See CA certificates for more information about configuring a CA certificate with
AppSSO.

Configuring a Redis Secret

To provide coordinates (the location details) of your Redis server, you must create a Secret
resource that follows well-known Secret entries conventions. For more information, see Service
Bindings 1.0.0 specification.

Example of a properly formatted Secret resource:

apiVersion: v1

kind: Secret

metadata:

  name: redis-credentials

  namespace: my-authserver

type: servicebinding.io/redis        # required

stringData:

  type: "redis"                      # required, must equal 'redis'

  ssl: "true"                        # required, must equal 'true'

  host: "redis01.prod.example.com"   # required

  port: "6379"                       # optional, must be a string, defaults to "6379" 

if left empty

Important

The Secret must be created in the same namespace as your AuthServer.

Tanzu Application Platform v1.4

VMware by Broadcom 758

https://redis.io/docs/management/security/encryption/#client-certificate-authentication
https://github.com/servicebinding/spec#well-known-secret-entries


  password: "!!veryStrongPassword!!" # optional

  username: "redis01-user"           # optional

Attaching storage to an AuthServer

After a Redis Secret resource is applied, you can reference the Secret in .spec.storage. An
example of an AuthServer with a reference to a Redis Secret is as follows:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: my-authserver-example

  namespace: my-authserver

spec:

  # ...

  storage:

    redis:

      serviceRef:

        apiVersion: "v1"

        kind: "Secret"

        name: redis-credentials

After AuthServer is applied, ensure its Status is Ready.

Inspecting storage of an AuthServer

You can inspect the status of an AuthServer’s storage as follows:

kubectl get authserver <authserver-name> \

  --namespace <authserver-namespace> \

  --output jsonpath="{.status.storage.redis}" | jq

Expect to see the following output with the actual Redis host and port:

{

  "redis": {

    "host": "ci-redis.authservers.svc.cluster.local",

    "port": "6379"

  }

}

Storage provided by default
If no storage is defined, an AuthServer provides its own short-lived ephemeral storage solution,
Redis. The provided Redis is configured to never flush any data to any volume that might be
attached to the pods that operate the authorization server.

To view details for Redis of an AuthServer:

# Get the Redis image

kubectl get authserver <authserver-name> \

  --namespace <authserver-namespace> \

  --output jsonpath="{.status.deployments.redis}" | jq

Caution

The default storage configuration is desisged for prototyping or testing
environments and must not be used in production environments.

Tanzu Application Platform v1.4

VMware by Broadcom 759



# Get the Redis host and port

kubectl get authserver <authserver-name> \

  --namespace <authserver-namespace> \

  --output jsonpath="{.status.storage.redis}" | jq

Data types

The following data is stored in Redis:

Client information

Authorization grant type

Client id

User session

Session token

Refresh token

Identity and access tokens

Authentication token includeing the principal

Personally identifying information such as email and name

Approved or rejected consents

A client identifier

A reference to the user

A list of the Authorities that the user has granted to this client

Known limitations of storage providers

Redis Cluster

When your storage is provided by Redis Cluster, additional settings might be required.

The nodes and the maximum number of redirects must be set in your Service Bindings’ Secret. For
example, in addition to the entries in Configuring a Redis Secret, you must provide cluster settings
as follows:

apiVersion: v1

kind: Secret

metadata:

  name: redis-cluster-credentials

  namespace: authservers

type: servicebinding.io/redis

stringData:

  #...

  cluster.max-redirects: 5

  cluster.nodes: 100.90.1.10:6379,100.90.1.11:6379,100.90.1.12:6379

Note

This is the data that carries the highest level risk.

Important

Tanzu Application Platform v1.4

VMware by Broadcom 760



AuthServer readiness for AppSSO

This topic tells you how to use AuthServer.status as a reliable source to verify an AuthServer’s
readiness for Application Single Sign-On (commonly called AppSSO).

You can verify your AuthServer by ensuring:

there is at least one token signing key configured.

curl -X GET {spec.issuerURI}/oauth2/jwks

The response body should yield at least one key in the list. If there are no keys, please apply
a token signing key

OpenID discovery endpoint is available.

curl -X GET {spec.issuerURI}/.well-known/openid-configuration

The response body should yield a valid JSON body containing information about the
AuthServer.

Client registration check
It is helpful to verify an AuthServer by running a test run with a test ClientRegistration. It ensures
that app developers can register clients with the AuthServer successfully.

Follow the steps below to ensure that your installation can:

1. Add a test client.

2. Get an access token.

3. Invalidate/remove the test client.

Prerequisites

Ensure that you have successfully applied a token signing key to your AuthServer before
proceeding.

Define and apply a test client

Apply a ClientRegistration to your cluster in a Namespace that the AuthServer should allow
clients from:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: test-client

  namespace: default

spec:

  authServerSelector:

    matchLabels:

    # appropriate labels for your `AuthServer`

  authorizationGrantTypes:

    - client_credentials

  clientAuthenticationMethod: basic

cluster.nodes must be a comma-separated list of <ip>:<port>.

Tanzu Application Platform v1.4

VMware by Broadcom 761



See the ClientRegistration API reference for more field definitions.

This defines a test ClientRegistration with the client_credentials OAuth grant type.

Apply the ClientRegistration:

kubectl apply -f appsso-test-client.yaml

Once the ClientRegistration is applied, inspects its status and verify it’s ready.

Get an access token

You should be able to get a token with the client credentials grant for example:

# Get client id (`base64` command has to be available on the command line)

export APPSSO_TEST_CLIENT_ID=$(kubectl get secret test-client -n default -o jsonpath="

{.data['client-id']}" | base64 --decode)

# Get client secret (`base64` command has to be available on the command line)

export APPSSO_TEST_CLIENT_SECRET=$(kubectl get secret test-client -n default -o jsonpa

th="{.data['client-secret']}" | base64 --decode)

# Attempt to fetch access token

curl \

 --request POST \

 --location "{spec.issuerURI}/oauth2/token" \

 --header "Content-Type: application/x-www-form-urlencoded" \

 --header "Accept: application/json" \

 --data "grant_type=client_credentials" \

 --basic \

 --user $APPSSO_TEST_CLIENT_ID:$APPSSO_TEST_CLIENT_SECRET

You should see a response JSON containing populated field access_token. If so, the system is
working as expected, and client registration check is successful.

Make sure to delete the test ClientRegistration once you are done.

Scale AuthServer for AppSSO

This topic tells you how to scale AuthServer for Application Single Sign-On (commonly called
AppSSO).

The number of authorization server replicas for an AuthServer can be specified under
spec.replicas.

Furthermore, AuthServer implements the scale subresource. That means you can scale an
AuthServer with the existing tooling. For example:

kubectl scale authserver authserver-sample --replicas=3

The resource of the authorization server and Redis Deployments can be configured under
spec.resources and spec.redisResources respectively. See the API reference for details.

AuthServer audit logs for AppSSO

This topic tells you how to use AuthServer audit logs in Application Single Sign-On (commonly
called AppSSO).

Overview

AuthServers perform the following tasks:

Tanzu Application Platform v1.4

VMware by Broadcom 762



Handle user authentication

Issue id_token and access_token

Each audit event contains the following information:

ts - date/time of the event

remoteIpAddress - the IP of the user-authentication or if not attainable, the IP of the last
proxy

Authentication

AuthServer produce the following authentication events:

AUTHENTICATION_SUCCESS

Trigger successful authentication

Data recorded Username, Provider ID, Provider Type (INTERNAL, OPENID, …)

AUTHENTICATION_LOGOUT

Trigger successful logout

Data recorded Username, Provider ID, Provider Type (INTERNAL, OPENID, …)

AUTHENTICATION_FAILURE

Trigger failed authentication using either internalUnsafe or ldap identity provider

Data recorded Username, Provider ID, Provider Type (INTERNAL or LDAP)

INVALID_IDENTITY_PROVIDER_CONFIGURATION

Trigger some cases of failed authentication with an openId or saml identity provider

Data recorded Provider ID, Provider Type, error

Note usually followed by a human-readable help message, with "logger":
"appsso.help"

Token flows

AuthServer produce the following authorization_code and token events:

AUTHORIZATION_CODE_ISSUED

Trigger authorization_code grant type, successful call to /oauth2/authorize

Data recorded Username, Provider ID, Provider Type, Client ID, Scopes requested,
Redirect URI

AUTHORIZATION_CODE_REQUEST_REJECTED

Trigger authorization_code grant type, unsuccessful call to /oauth2/authorize, for
example invalid Client ID, invalid Redirect URI, …

Data recorded Error, Error Code (ex: invalid_scope), Client ID, Scopes requested
Redirect URI, Username (may be anonymousUser), Provider ID and Provider Type if
available

TOKEN_ISSUED

Trigger successful call to /oauth2/token

Data recorded Scopes, Client ID, Grant Type (authorization_code or
client_credentials), Username

TOKEN_REQUEST_REJECTED

Trigger unsuccessful call to /oauth2/token, for example invalid Client Secret

Tanzu Application Platform v1.4

VMware by Broadcom 763



Data recorded Client ID, Scopes requested, Error

Application Single Sign-On for App Operators

This topic tells you how to secure a sample app with Application Single Sign-On (commonly called
AppSSO).

To secure a Workload with AppSSO you need a ClientRegistration with these ingredients:

A unique label selector for the AuthServer you want to register a client for

Remaining configuration of your OAuth2 client

Talk to your Service Operator to learn which AuthServers they are running and which labels you
should use. Once you have those labels, you can create a ClientRegistration as follows:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: my-client

  namespace: my-team

spec:

  authServerSelector:

    matchLabels: # for example

      env: staging

      ldap: True

      team: my-team

Continue with learning how to customize your ClientRegistration by securing a Workload with
SSO.

Learn more about grant types and find help for common issues

Application Single Sign-On for App Operators

This topic tells you how to secure a sample app with Application Single Sign-On (commonly called
AppSSO).

To secure a Workload with AppSSO you need a ClientRegistration with these ingredients:

A unique label selector for the AuthServer you want to register a client for

Remaining configuration of your OAuth2 client

Talk to your Service Operator to learn which AuthServers they are running and which labels you
should use. Once you have those labels, you can create a ClientRegistration as follows:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: my-client

  namespace: my-team

spec:

  authServerSelector:

    matchLabels: # for example

      env: staging

      ldap: True

      team: my-team

Continue with learning how to customize your ClientRegistration by securing a Workload with
SSO.

Tanzu Application Platform v1.4

VMware by Broadcom 764



Learn more about grant types and find help for common issues

Register a workload

Topics

Client registration

Workloads

Client registration

Applications or Clients must register with AppSSO to allow users to sign in with single sign on
within a Kubernetes cluster. This registration results in the creation of a Kubernetes secret.

To do this, apply a ClientRegistration to the appropriate Kubernetes cluster.

To confirm that the ClientRegistration was successfully processed, check the status:

kubectl describe clientregistrations.sso.apps.tanzu.vmware.com <client-name>

It is also possible, but not recommended, to register clients statically while deploying AppSSO.

VMware recommends registering clients dynamically after deploying AppSSO. When registering a
client statically, properties cannot be changed without triggering a rollout of AppSSO.

Grant Types

Workloads
This guide will walk you through steps necessary to secure your deployed Workload with AppSSO.

Prerequisites

Before attempting to integrate your workload with AppSSO, please ensure that the following items
are addressed:

Tanzu Application Platform (TAP) v1.4.13 or above is available on your cluster.

AppSSO package v3.0.0 or above is available on your cluster.

Configuring a Workload with AppSSO

AppSSO and your Workload need to establish a bidirectional relationship: AppSSO is aware of your
Workload and your Workload is aware of AppSSO. How does that work?

To make AppSSO aware of your Workload (i.e. that AppSSO should be responsible for
authentication and authorization duties), you have to create and apply a ClientRegistration
resource .

To make your Workload aware of AppSSO (i.e. that your application shall now rely on
AppSSO for authentication and authorization requests), you must specify a service resource
claim which produces the necessary credentials for your Workload to consume.

(Optional) Ensure Workload trusts AuthServer. For more information, see Configure
Workloads to trust a custom Certificate Authority (CA).

Important

Tanzu Application Platform v1.4

VMware by Broadcom 765



The following sections elaborate on both of the concepts in detail.

Create and apply a ClientRegistration resource

Define a ClientRegistration resource for your Workload. Here is an example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: my-workload-client-registration

  namespace: my-workload-namespace

spec:

  authServerSelector:

    matchLabels:

    # ask your Service Operator for labels to target an `AuthServer`

  authorizationGrantTypes:

    - client_credentials

    - authorization_code

    - refresh_token

  clientAuthenticationMethod: basic

  requireUserConsent: true

  redirectURIs:

    - "<MY_WORKLOAD_HOSTNAME>/redirect-back-uri"

  scopes:

    - name: openid

Once applied successfully, this resource will create the appropriate credentials for your Workload to
consume. More on this in the next section.

Please refer to the ClientRegistration custom resource documentation page for additional details on
schema and specification of the resource.

Add a service resource claim to your Workload

Once a ClientRegistration resource has been defined, you can now create a service resource claim
by using Tanzu CLI:

tanzu service resource-claim create my-client-claim \

  --namespace my-workload-namespace \

  --resource-api-version sso.apps.tanzu.vmware.com/v1alpha1 \

  --resource-kind ClientRegistration \

  --resource-name my-workload-client-registration \

  --resource-namespace my-workload-namespace

Alternatively, you may create the claim as ResourceClaim custom resource:

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaim

metadata:

  name: my-client-claim

  namespace: my-workload-namespace

spec:

  ref:

    apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

    kind: ClientRegistration

    name: my-workload-client-registration

    namespace: my-workload-namespace

You must ensure Workload trusts AuthServer if you use the default self-
signed certificate ClusterIssuer while installing Tanzu Application Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 766



Observe the status of the service resource claim by running tanzu service resource-claim list -
n my-workload-namespace -o wide:

NAMESPACE              NAME             READY  REASON  CLAIM REF

my-workload-namespace  my-client-claim  True           services.apps.tanzu.vmware.com/

v1alpha1:ResourceClaim:my-client-claim

The created service resource claim is now referable within a Workload:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: my-workload

  namespace: my-workload-namespace

spec:

  source:

    git:

      ref:

        branch: main

      url: ssh://git@github.com/my-company/my-workload.git

  serviceClaims:

    - name: my-client-claim

      ref:

        apiVersion: services.apps.tanzu.vmware.com/v1alpha1

        kind: ResourceClaim

        name: my-client-claim

Alternatively, you can refer to your ClientRegistration when deploying your workload with the
tanzu CLI. Like so

tanzu apps workload create my-workload \

  --service-ref "my-client-claim=services.apps.tanzu.vmware.com/v1alpha1:ResourceClai

m:my-client-claim" \

  # ...

What this service claim reference binding does under the hood is ensures that your Workload’s Pod
is mounted with a volume containing the necessary credentials required by your application to
become aware of AppSSO.

The credentials provided by the service claim are:

Client ID - the identifier of your Workload that AppSSO is registered with. This is a unique
identifier.

Client Secret - secret string value used by AppSSO to verify your client during its
interactions. Keep this value secret.

Issuer URI - web address of AppSSO, and the primary location that your Workload will go
to when interacting with AppSSO.

Authorization Grant Types - list of desired OAuth 2 grant types that your wants to
support.

Client Authentication Method - method in which the client application requests an identity
or access token

Scopes - list of desired scopes that your application’s users will have access to.

The above credentials are mounted onto your Workload’s Pod(s) as individual files at the following
locations:

Tanzu Application Platform v1.4

VMware by Broadcom 767



/bindings

  /<name-of-service-claim>

    /client-id

    /client-secret

    /issuer-uri

    /authorization-grant-types

    /client-authentication-method

    /scope

Taking our example from above, the location of credentials can be found at:

/bindings/my-client-claim/{client-id,client-secret,issuer-uri,authorization-grant-type

s,client-authentication-method,scope}

Given these auto-generated values, your Workload is now able to load them at runtime and bind to
AppSSO at start-up time. Reading the values from the file system is left to the implementor as to
the approach taken.

Configure grant types

This topic tells you how to configure grant types for Application Single Sign-On (commonly called
AppSSO).

Apps use grant types or flows to get an access token on behalf of a user. If not included, the
default grant type is ['client_credentials']. You must include these grant types in the
authorizationGrantTypes property list in the Client Registration.

To register a client/application, apply the yaml with your specifications to your cluster kubectl
apply -f <path-to-your-yaml>.

Topics

Client Credentials Grant

Authorization Code Grant

Client Credentials Grant Type

This grant type allows an application to get an access token for resources about the client itself,
rather than a user.

Dynamic Client Registration (via ClientRegistration custom resource):

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: <your client name>

spec:

  authorizationGrantTypes:

    - client_credentials

  # ...

1. Apply your ClientRegistration

Note

Ensure that you are able to retrieve a token through your setup

Tanzu Application Platform v1.4

VMware by Broadcom 768



kubectl apply -f <path-to-the-clientregistration-yaml>

2. Verify your ClientRegistration was created

kubectl get clientregistrations

–> you should see a ClientRegistration with the name you provided

3. Verify your Secret was created

kubectl get secrets

–> you should see a Secret with that same name you provided for the ClientRegistration

4. Get the client secret and decode it

kubectl get secret <your-client-registration-name> -o jsonpath="{.data.client-s

ecret}" | base64 -d

5. Get the client id (or get it from your configuration)

kubectl get secret <your-client-registration-name> -o jsonpath="{.data.client-i

d}" | base64 -d

6. Request token

curl -X POST <AUTH-DOMAIN>/oauth2/token?grant_type=client_credentials -v -u "YO

UR_CLIENT_ID:DECODED_CLIENT_SECRET"

Authorization Code Grant Type

This grant type allows clients to exchange this code for access tokens.

Dynamic Client Registration (via ClientRegistration custom resource):

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: <your client name>

spec:

  authorizationGrantTypes:

    - authorization_code

  scopes:

     - openid

  # ...

Ensure there is an Identity Provider configured

1. Get your authserver’s label name

kubectl get authserver sso4k8s -o jsonpath="{.metadata.labels.name}"

2. Apply this sample ClientRegistration (read more about ClientRegistrations

Note

Ensure that you are able to retrieve a token through your setup

Tanzu Application Platform v1.4

VMware by Broadcom 769



The following is an example ClientRegistration that will work in this setup. The required
scopes are openid, email, profile, roles. The redirect URI here has been set to match
that of oauth2-proxy.

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

 name: oauth2-proxy-client

 namespace: <your-namespace>

spec:

 authServerSelector:

 matchLabels:

   name: <your-authserver-label-name>

 authorizationGrantTypes:

   - client_credentials

   - authorization_code

 requireUserConsent: false

 redirectURIs:

   - http://127.0.0.1:4180/oauth2/callback

 scopes:

   - name: openid

   - name: email

   - name: profile

   - name: roles

kubectl apply -f <path-to-the-clientregistration-yaml>

3. Verify your ClientRegistration was created

kubectl get clientregistrations

–> you should see a ClientRegistration with the name you provided

4. Verify your Secret was created

kubectl get secrets

–> you should see a Secret with that same name you provided for the ClientRegistration

5. Get the client secret and decode it

CLIENT_SECRET=$(kubectl get secret <your-client-registration-name> -o jsonpath

="{.data.client-secret}" | base64 -d)

6. Get the client id (or get it from your configuration)

CLIENT_ID=$(kubectl get secret <your-client-registration-name> -o jsonpath="{.d

ata.client-id}" | base64 -d)

7. Get the issuer uri

ISSUER_URI=$(kubectl get secret <your-client-registration-name> -o jsonpath="{.

data.issuer-uri}" | base64 -d)

8. Use the oauth2-proxy to spin up a quick trial run of the configured Authserver and run it
with docker.

docker run -p 4180:4180 --name oauth2-proxy bitnami/oauth2-proxy:latest \

--oidc-issuer-url "$ISSUER_URI" \

--client-id "$CLIENT_ID" \

--insecure-oidc-skip-issuer-verification true \

Tanzu Application Platform v1.4

VMware by Broadcom 770

https://oauth2-proxy.github.io/oauth2-proxy/


--client-secret "$CLIENT_SECRET" \

--cookie-secret "0000000000000000" \

--http-address "http://:4180" \

--provider oidc \

--scope "openid email profile roles" \

--email-domain='*' \

--insecure-oidc-allow-unverified-email true \

--upstream "static://202" \

--oidc-groups-claim "roles" \

--oidc-email-claim "sub" \

--redirect-url "http://127.0.0.1:4180/oauth2/callback"

9. Check your browser at 127.0.0.1:4180 to see if your configuration allows you to sign in.

You should see a message that says “Authenticated”.

Secure a workload

This tutorial will walk you through the steps to add an authentication mechanism to a sample Spring
Boot application using AppSSO service, running on Tanzu Application Platform (TAP).

Prerequisites

Before starting the tutorial, please ensure that the following items are addressed:

RECOMMENDED Familiarity with Workloads and AppSSO

Tanzu Application Platform (TAP) v1.2.0 or above is available and fully reconciled in your
cluster.

Please ensure that you are using one of the following TAP Profiles: run, iterate, or
full.

AppSSO package is available and reconciled successfully on your cluster.

AppSSO has at least one identity provider configured.

Access to AppSSO Starter Java accelerator used in this tutorial.

Getting started

Understanding the sample application

In this tutorial, you will be working with a sample Servlet-based Spring Boot application that uses
Spring Security OAuth2 Client library.

You can find the source code for the application here. To follow along, be sure to Git clone the
repository onto your local environment.

The application, once launched, has two pages:

Note

Ensure that your issuer URL does not resolve to 127.0.0.1.

Note

See Deploying the sample application as a Workload for step-by-step instructions if
you are already familiar with the accelerator described in this tutorial.

Tanzu Application Platform v1.4

VMware by Broadcom 771

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/appsso-starter-java
https://docs.spring.io/spring-security/reference/servlet/oauth2/client/index.html
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/appsso-starter-java


a publicly-accessible home page (/home), available to everyone.

a user home page (/authenticated/home), for signed-in users only.

The security configuration for the above is located at
com.vmware.tanzu.apps.sso.sampleworkload.config.WebSecurityConfig.

For more information about how apps are configured with Spring Security OAuth2 Client library,
see Spring Boot and OAuth2 documentation.

By default, there is no application properties file in our sample application and this is by design:
even the simplest application can be deployed with AppSSO, you can even go to start.spring.io and
download a Spring Boot app with Spring Security OAuth2 Client library, and you are good to go!
There is yet another reason for the absence of any properties files: a demonstration of Spring Cloud
Bindings in action, which removes the need for any OAuth related properties. Spring Cloud
Bindings will be introduced later in this tutorial.

The sample application’s ClientRegistration

A critical piece of integration with AppSSO is to create a ClientRegistration custom resource
definition. A ClientRegistration is a way for AppSSO to learn about the sample application. In the
sample application, you can find the definition file named client.yaml, at the root of the source
directory.

The ClientRegistration resource definition contains a few critical pieces in its specification:

authorizationGrantTypes is set to a list of one: authorization_code. Authorization Code
grant type is required for OpenID Connect authentication which we will be using in this
tutorial.

redirectURIs is set to a list of two URIs: a remote URI and a local URI (i.e. 127.0.0.1). The
remote URI will be the full URL to which AppSSO will redirect the user back upon
successful authentication. The local URI is only meant for debugging purposes and can be
ignored unless desired. The suffix of both URIs is important for Spring Security - it adheres
to the default redirect URI template .

scopes is set to a list of one scope, the openid scope. The openid scope is required by
OpenID Connect specification in order to issue identity tokens which designate a user as
‘signed in’.

For more information about ClientRegistration custom resource, see ClientRegistration CRD.

The client.yaml file is using ytt templating conventions. If you have the Tanzu Cluster Essentials
installed, you should already have ytt available on your command line. Later in the tutorial, we will
generate a final output ClientRegistration declaration that will look similar to the below:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: appsso-starter-java

  namespace: workloads

spec:

  authServerSelector:

    matchLabels:

    # ask your Service Operator for labels to target an `AuthServer`

  clientAuthenticationMethod: basic

  authorizationGrantTypes:

    - authorization_code

  redirectURIs:

    - http://<app-url>/login/oauth2/code/<claim-name>

  scopes:

    - name: openid

Tanzu Application Platform v1.4

VMware by Broadcom 772

https://spring.io/guides/tutorials/spring-boot-oauth2/
https://start.spring.io/
https://github.com/spring-cloud/spring-cloud-bindings
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://docs.spring.io/spring-security/reference/servlet/oauth2/login/core.html#oauth2login-sample-redirect-uri
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://carvel.dev/ytt/
https://network.tanzu.vmware.com/products/tanzu-cluster-essentials/


Understanding Workloads

To deploy the sample application onto a TAP cluster, we must first craft it as a Workload resource (
a Cartographer CRD). A Workload resource can be thought of as a manifest for a process you want
to execute on the cluster, and in this context, the type of workload is web - a web application. TAP
clusters provide the capability to apply Workload resources out of the box within the proper profiles,
as described in the prerequisites section.

To deploy a workload, it is best to work in a separate workload-specific namespace. Once created,
there are required TAP configurations that need to be applied before a Workload in a specific
namespace can be deployed properly.

Deploying the sample application as a Workload

To tie it all together and deploy the sample application, the following are the steps involved.

Create workload namespace

Create a workload namespace called workloads:

kubectl create namespace workloads

Apply required TAP workload configurations

Within the workloads namespace, apply TAP required developer namespaces as described.

Apply the ClientRegistration

Apply the client.yaml definition file (described above)

ytt \

  --file client.yaml \

  --data-value namespace=workloads \

  --data-value workload_name=appsso-starter-java \

  --data-value domain=127.0.0.1.nip.io \

  --data-value auth_server_name="" \

  --data-value claim_name=appsso-starter-java | \

   kubectl apply -f-

A bit more detail on the above YTT data values:

namespace - the namespace in which the workload will run.

workload_name - the distinct name of the instance of the accelerator being deployed.

domain - the domain name under which the workload will be deployed. The workload
instance will use a subdomain to distinguish itself from other workloads. If working locally,
127.0.0.1.nip.io is the easiest approach to get a working DNS route on a local cluster.

auth_server_name - the value of the label “name” on the AuthServer resource that you
installed and want to use with your workload. This may differ from the name of the
AuthServer custom resource.

Caution

Make sure to set auth_server_name field to the value of the label name on the
AuthServer custom resource. This might differ from the name of the AuthServer
custom resource.

Tanzu Application Platform v1.4

VMware by Broadcom 773

https://cartographer.sh/


claim_name - the service resource claim name being assigned for this workload, this is the
binding between the workload and AppSSO. You may choose any reasonably descriptive
name for this, it will be used in the next step.

This command has generated a ClientRegistration definition and applied it to the cluster. To
check the status of the client registration, run:

kubectl get clientregistration appsso-starter-java --namespace workloads

You should see the ClientRegistration entry listed.

Create a ClientRegistration service resource claim for the workload

Using Tanzu Services plugin CLI, create a service resource claim for the workload:

tanzu service claim create appsso-starter-java \

    --namespace workloads \

    --resource-namespace workloads \

    --resource-name appsso-starter-java \

    --resource-kind ClientRegistration \

    --resource-api-version "sso.apps.tanzu.vmware.com/v1alpha1"

Once applied, you may check the status of the claim like so:

tanzu service claim list --namespace workloads

You should see appsso-starter-java claim with Ready status as True.

(Optional) Ensure Workload trusts AuthServer

You must ensure Workload trusts AuthServer if you use the default self-signed certificate
ClusterIssuer while installing Tanzu Application Platform.

For more information, see Configure Workloads to trust a custom Certificate Authority (CA).

Deploy the workload

The Tanzu CLI command to create a workload for the sample application should look like the
following:

tanzu apps workload create appsso-starter-java \

    --namespace workloads \

    --type web \

    --label app.kubernetes.io/part-of=appsso-starter-java \

    --service-ref "appsso-starter-java=services.apps.tanzu.vmware.com/v1alpha1:Resourc

eClaim:appsso-starter-java" \

    --git-repo "https://github.com/vmware-tanzu/application-accelerator-samples" \

    --sub-path "appsso-starter-java" \

    --git-branch main \

    --live-update \

    --yes

Caution

Name of the claim must be the same as the value of claim_name from the previous
step.

Resource name must be the same name as the workload name.

Tanzu Application Platform v1.4

VMware by Broadcom 774



The above command creates a web Workload named ‘appsso-starter-java’ in the workloads
namespace. The sample applications’ source code repository is defined in the git-repo and git-
branch parameters. The original client yaml definition contains the reference to a service claim
which enables the Workload’s Pods to have the necessary AppSSO-generated credentials available
as a Service Binding. Learn more about how this works here.

It takes some minutes for the workload to become available as a URL.

To query the latest status of the Workload, run:

tanzu apps workload get appsso-starter-java --namespace workloads

Follow the Workload logs:

tanzu apps workload tail appsso-starter-java --namespace workloads

After the status of the workload reaches the Ready state, you can navigate to the URL provided,
which looks similar to:

http://appsso-starter-java.workloads.127.0.0.1.nip.io

Navigate to the URL in your favorite browser, and observe a large login button tailored for logging
with AppSSO.

Once you have explored the accelerator and its operation, head on to the next section for uninstall
instructions.

Cleaning up

You may delete the running accelerator by running the following:

Delete the sample application workload

tanzu apps workload delete appsso-starter-java --namespace workloads

Delete the service resource claim for the ClientRegistration

tanzu service claim delete appsso-starter-java --namespace workloads

Disconnect the accelerator from AppSSO

kubectl delete clientregistration appsso-starter-java --namespace workloads

ClientRegistration API for AppSSO

Caution

You may see the status of the workload at first:

message: waiting to read value [.status.latestImage] from resource
[image.kpack.io/appsso-starter-java] in namespace [workloads]

reason: MissingValueAtPath

status: Unknown

This is not an error, this is normal operation of a pending workload. Watch the
status for changes.

Tanzu Application Platform v1.4

VMware by Broadcom 775



In Application Single Sign-On (commonly called AppSSO), ClientRegistration is the request for
client credentials for an AuthServer.

It implements the Service Bindings’ ProvisionedService. The credentials are returned as a Service
Bindings Secret.

A ClientRegistration needs to uniquely identify an AuthServer via spec.authServerSelector. If it
matches none, too many or a disallowed AuthServer it won’t get credentials. The other fields are
for the configuration of the client on the AuthServer.

Spec

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: ""

  namespace: ""

spec:

  authServerSelector: # required

    matchLabels: { }

  redirectURIs: # required

    - ""

  scopes: # optional

    - name: ""

      description: ""

  authorizationGrantTypes: # optional

    - client_credentials

    - authorization_code

    - refresh_token

  clientAuthenticationMethod: basic # or "post", optional

  requireUserConsent: false # optional

status:

  authServerRef:

    apiVersion: ""

    issuerURI: ""

    kind: ""

    name: ""

    namespace: ""

  binding:

    name: ""

  clientID: ""

  clientSecretHelp: ""

  conditions:

    - lastTransitionTime: ""

      message: ""

      reason: ""

      status: "True" # or "False"

      type: ""

  observedGeneration: 0

Alternatively, you can interactively discover the spec with:

kubectl explain clientregistrations.sso.apps.tanzu.vmware.com

Status & conditions

The .status subresource helps you to learn about your client credentials, the matched AuthServer
and to troubleshoot issues.

.status.authServerRef identifies the successfully matched AuthServer and its issuer URI.

Tanzu Application Platform v1.4

VMware by Broadcom 776

https://servicebinding.io/spec/core/1.0.0/
https://servicebinding.io/spec/core/1.0.0/


.status.binding.name is the name of the Service Bindings Secret which contains the client
credentials.

.status.conditions documents each step in the reconciliation:

Valid: Is the spec valid?

AuthServerResolved: Has the targeted AuthServer been resolved?

ClientSecretResolved: Has the client secret been resolved?

ServiceBindingSecretApplied: Has the Service Bindings Secret with the client credentials
been applied?

AuthServerConfigured: Has the resolved AuthServer been configured with the client?

Ready: whether all the previous conditions are “True”

The super condition Ready denotes a fully successful reconciliation of a given ClientRegistration.

If everything goes well you will see something like this:

status:

  authServerRef:

    apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

    issuerURI: http://authserver-sample.default

    kind: AuthServer

    name: authserver-sample

    namespace: default

  binding:

    name: clientregistration-sample

  clientID: default_clientregistration-sample

  clientSecretHelp: 'Find your clientSecret: ''kubectl get secret clientregistration-s

ample --namespace default'''

  conditions:

    - lastTransitionTime: "2022-05-13T07:56:41Z"

      message: ""

      reason: Updated

      status: "True"

      type: AuthServerConfigured

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: Resolved

      status: "True"

      type: AuthServerResolved

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: ResolvedFromBindingSecret

      status: "True"

      type: ClientSecretResolved

    - lastTransitionTime: "2022-05-13T07:56:41Z"

      message: ""

      reason: Ready

      status: "True"

      type: Ready

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: Applied

      status: "True"

      type: ServiceBindingSecretApplied

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: Valid

      status: "True"

      type: Valid

  observedGeneration: 1

Tanzu Application Platform v1.4

VMware by Broadcom 777



Example

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: my-client-registration

  namespace: app-team

spec:

  authServerSelector:

    matchLabels:

      for: app-team

      ldap: "true"

  redirectURIs:

    - "https://127.0.0.1:8080/authorized"

    - "https://my-application.com/authorized"

  requireUserConsent: false

  clientAuthenticationMethod: basic

  authorizationGrantTypes:

    - "client_credentials"

    - "refresh_token"

  scopes:

    - name: "openid"

      description: "To indicate that the application intends to use OIDC to verify the 

user's identity"

    - name: "email"

      description: "The user's email"

    - name: "profile"

      description: "The user's profile information"

The client is being registered with the authorization server with the given specs. The resulting
client credentials are available in a Secret that’s owned by the ClientRegistration.

apiVersion: v1

kind: Secret

type: servicebinding.io/oauth2

metadata:

  name: my-client-registration

  namespace: app-team

data: # fields below are base64-decoded for display purposes only

  type: oauth2

  provider: appsso

  client-id: default_my-client-registration

  client-secret: c2VjcmV0 # auto-generated

  issuer-uri: https://appsso.example.com

  client-authentication-method: basic

  scope: openid,email,profile

  authorization-grant-types: client_credentials,refresh_token

Configuring public clients
A public client is a client application that does not require credentials to obtain tokens, such as
single-page apps (SPAs). Public clients rely on PKCE (Proof Key for Code Exchange) Authorization
Code flow extension.

When configuring a ClientRegistration for a public client, ensure that you set your Client
Authentication Method to none and that your public client supports Authorization Code with PKCE.
With PKCE, the client does not authenticate (Client Authentication Method is none), but rather
presents a code challenge, and subsequent code verifier in order to establish trust with the
authorization server.

Tanzu Application Platform v1.4

VMware by Broadcom 778



To set Client Authentication Method to none, ensure your ClientRegistration resource defines the
following:

.spec.clientAuthenticationMethod: none

Public clients that support Authorization Code with PKCE flow ensure that:

On every OAuth authorize request, parameters code_challenge and
code_challenge_method (default: S256) are provided.

On every OAuth token request, parameter code_verifier is provided. Public clients do not
provide a Client Secret as they are not tailored to retain any secrets in public view.

ClientRegistration API for AppSSO

In Application Single Sign-On (commonly called AppSSO), ClientRegistration is the request for
client credentials for an AuthServer.

It implements the Service Bindings’ ProvisionedService. The credentials are returned as a Service
Bindings Secret.

A ClientRegistration needs to uniquely identify an AuthServer via spec.authServerSelector. If it
matches none, too many or a disallowed AuthServer it won’t get credentials. The other fields are
for the configuration of the client on the AuthServer.

Spec

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: ""

  namespace: ""

spec:

  authServerSelector: # required

    matchLabels: { }

  redirectURIs: # required

    - ""

  scopes: # optional

    - name: ""

      description: ""

  authorizationGrantTypes: # optional

    - client_credentials

    - authorization_code

    - refresh_token

  clientAuthenticationMethod: basic # or "post", optional

  requireUserConsent: false # optional

status:

  authServerRef:

    apiVersion: ""

    issuerURI: ""

    kind: ""

    name: ""

    namespace: ""

  binding:

    name: ""

  clientID: ""

  clientSecretHelp: ""

  conditions:

    - lastTransitionTime: ""

      message: ""

      reason: ""

      status: "True" # or "False"

Tanzu Application Platform v1.4

VMware by Broadcom 779

https://servicebinding.io/spec/core/1.0.0/
https://servicebinding.io/spec/core/1.0.0/


      type: ""

  observedGeneration: 0

Alternatively, you can interactively discover the spec with:

kubectl explain clientregistrations.sso.apps.tanzu.vmware.com

Status & conditions

The .status subresource helps you to learn about your client credentials, the matched AuthServer
and to troubleshoot issues.

.status.authServerRef identifies the successfully matched AuthServer and its issuer URI.

.status.binding.name is the name of the Service Bindings Secret which contains the client
credentials.

.status.conditions documents each step in the reconciliation:

Valid: Is the spec valid?

AuthServerResolved: Has the targeted AuthServer been resolved?

ClientSecretResolved: Has the client secret been resolved?

ServiceBindingSecretApplied: Has the Service Bindings Secret with the client credentials
been applied?

AuthServerConfigured: Has the resolved AuthServer been configured with the client?

Ready: whether all the previous conditions are “True”

The super condition Ready denotes a fully successful reconciliation of a given ClientRegistration.

If everything goes well you will see something like this:

status:

  authServerRef:

    apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

    issuerURI: http://authserver-sample.default

    kind: AuthServer

    name: authserver-sample

    namespace: default

  binding:

    name: clientregistration-sample

  clientID: default_clientregistration-sample

  clientSecretHelp: 'Find your clientSecret: ''kubectl get secret clientregistration-s

ample --namespace default'''

  conditions:

    - lastTransitionTime: "2022-05-13T07:56:41Z"

      message: ""

      reason: Updated

      status: "True"

      type: AuthServerConfigured

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: Resolved

      status: "True"

      type: AuthServerResolved

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: ResolvedFromBindingSecret

      status: "True"

      type: ClientSecretResolved

    - lastTransitionTime: "2022-05-13T07:56:41Z"

      message: ""

Tanzu Application Platform v1.4

VMware by Broadcom 780



      reason: Ready

      status: "True"

      type: Ready

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: Applied

      status: "True"

      type: ServiceBindingSecretApplied

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: Valid

      status: "True"

      type: Valid

  observedGeneration: 1

Example

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: my-client-registration

  namespace: app-team

spec:

  authServerSelector:

    matchLabels:

      for: app-team

      ldap: "true"

  redirectURIs:

    - "https://127.0.0.1:8080/authorized"

    - "https://my-application.com/authorized"

  requireUserConsent: false

  clientAuthenticationMethod: basic

  authorizationGrantTypes:

    - "client_credentials"

    - "refresh_token"

  scopes:

    - name: "openid"

      description: "To indicate that the application intends to use OIDC to verify the 

user's identity"

    - name: "email"

      description: "The user's email"

    - name: "profile"

      description: "The user's profile information"

The client is being registered with the authorization server with the given specs. The resulting
client credentials are available in a Secret that’s owned by the ClientRegistration.

apiVersion: v1

kind: Secret

type: servicebinding.io/oauth2

metadata:

  name: my-client-registration

  namespace: app-team

data: # fields below are base64-decoded for display purposes only

  type: oauth2

  provider: appsso

  client-id: default_my-client-registration

  client-secret: c2VjcmV0 # auto-generated

  issuer-uri: https://appsso.example.com

  client-authentication-method: basic

  scope: openid,email,profile

  authorization-grant-types: client_credentials,refresh_token

Tanzu Application Platform v1.4

VMware by Broadcom 781



Configuring public clients

A public client is a client application that does not require credentials to obtain tokens, such as
single-page apps (SPAs). Public clients rely on PKCE (Proof Key for Code Exchange) Authorization
Code flow extension.

When configuring a ClientRegistration for a public client, ensure that you set your Client
Authentication Method to none and that your public client supports Authorization Code with PKCE.
With PKCE, the client does not authenticate (Client Authentication Method is none), but rather
presents a code challenge, and subsequent code verifier in order to establish trust with the
authorization server.

To set Client Authentication Method to none, ensure your ClientRegistration resource defines the
following:

.spec.clientAuthenticationMethod: none

Public clients that support Authorization Code with PKCE flow ensure that:

On every OAuth authorize request, parameters code_challenge and
code_challenge_method (default: S256) are provided.

On every OAuth token request, parameter code_verifier is provided. Public clients do not
provide a Client Secret as they are not tailored to retain any secrets in public view.

AuthServer API for AppSSO

In Application Single Sign-On (commonly called AppSSO), AuthServer represents the request for an
OIDC authorization server. It causes the deployment of an authorization server backed by Redis
over mutual TLS if no storage is defined.

An AuthServer should have labels which allow to uniquely match it amongst others.
ClientRegistration selects an AuthServer by label selector and needs a unique match to be
successful.

To allow ClientRegistrations from all or a restricted set of Namespaces, the annotation
sso.apps.tanzu.vmware.com/allow-client-namespaces must be set. Its value is a comma-separated
list of allowed Namespaces, e.g. "app-team-red,app-team-green", or "*" if it should allow clients
from all namespaces. If the annotation is missing, no clients are allowed.

The issuer URI, which is the point of entry for clients and end-users, is constructed through the
package’s domain_template. You can view the issuer URI by running kubectl get authserver -n
authservers.

See Issuer URI & TLS for more information.

Token signature keys are configured by using spec.tokenSignature. This is a required field. See
Token signatures for more context.

Identity providers are configured under spec.identityProviders. If there are none, end-users
won’t be able to log in.

The deployment can be further customized by configuring replicas, resources, http server and
logging properties.

An AuthServer reconciles into the following resources in its namespace:

AuthServer/my-authserver

├─Certificate/my-authserver-redis-client                   # if no storage is defined

├─Certificate/my-authserver-redis-server                   # if no storage is defined

├─Certificate/my-authserver-root

Tanzu Application Platform v1.4

VMware by Broadcom 782



├─ConfigMap/my-authserver-ca-cert

├─Deployment/my-authserver-auth-server

├─Deployment/my-authserver-redis                           # if no storage is defined

├─Issuer/my-authserver-bootstrap

├─Issuer/my-authserver-root

├─Role/my-authserver-auth-server

├─RoleBinding/my-authserver-auth-server

├─Secret/my-authserver-auth-server-clients

├─Secret/my-authserver-auth-server-keys

├─Secret/my-authserver-auth-server-properties

├─Secret/my-authserver-redis-service-binding               # if no storage is defined

├─Secret/my-authserver-redis-client-cert-keystore-password # if no storage is defined

├─Secret/my-authserver-registry-credentials

├─Service/my-authserver-redis                              # if no storage is defined

└─ServiceAccount/my-authserver-auth-server

Spec

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: ""

  namespace: ""

  labels: { } # required, must uniquely identify this AuthServer

  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "" # required, must be "*" or a 

comma-separated list of allowed client namespaces

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: "" # optional

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: "" # optional

spec:

  # .tls is optional if a default issuer is set

  tls:

    # must be one and only one of issuerRef, certificateRef or secretRef, unless deact

ivated

    issuerRef:

      name: ""

      kind: ""

      group: cert-manager.io

    certificateRef:

      name: ""

    secretRef:

      name: ""

    deactivated: false # If true, requires annotation `sso.apps.tanzu.vmware.com/allow

-unsafe-issuer-uri: ""`.

    disabled: false # Deprecated, use 'deactivated' instead. If true, requires annotat

ion `sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""`.

  tokenSignature: # required

    signAndVerifyKeyRef:

      name: "" # Must be a secret that contains an RSA private key with a minimum leng

th of 2048 bits.

    extraVerifyKeyRefs:

      - name: "" # Must be a secret that contains an RSA private key with a minimum le

ngth of 2048 bits.

  storage: # optional

    redis: # required if 'storage' is defined

      serviceRef: # Reference to a provisioned service within the same namespace as th

is AuthServer. Only supports Secret reference.

        apiVersion: "v1"

        kind: "Secret"

        name: ""

  caCerts: # optional

    - secretRef: # Reference to Secret resource within the same namespace as this Auth

Server.

        name: ""

Tanzu Application Platform v1.4

VMware by Broadcom 783



  identityProviders: # optional

    # each must be one and only one of internalUnsafe, ldap, openID or saml

    - name: "" # must be unique

      internalUnsafe: # requires annotation `sso.apps.tanzu.vmware.com/allow-unsafe-id

entity-provider: ""`

        users:

          - username: ""

            password: ""

            givenName: ""

            familyName: ""

            email: ""

            emailVerified: false

            roles:

              - ""

    - name: "" # must be unique

      ldap:

        server:

          scheme: ""

          host: ""

          port: 0

          base: ""

        bind:

          dn: ""

          passwordRef:

            name: ldap-password

        user:

          searchFilter: ""

          searchBase: ""

        group:

          searchFilter: ""

          searchBase: ""

          searchSubTree: false

          searchDepth: 0

          roleAttribute: ""

    - name: "" # must be unique

      openID:

        issuerURI: ""

        clientID: ""

        clientSecretRef:

          name: ""

        scopes:

          - ""

    - name: "" # must be unique

      saml:

        metadataURI: ""

        claimMappings: { }

  replicas: 1 # optional, default 2

  logging: "" # optional, must be valid YAML

  server: "" # optional, must be valid YAML

  resources: # optional, default {requests: {cpu: "256m", memory: "300Mi"}, limits: {c

pu: "2", memory: "768Mi"}}

    requests:

      cpu: ""

      mem: ""

    limits:

      cpu: ""

      mem: ""

  redisResources: # optional, default {requests: {cpu: "50m", memory: "100Mi"}, limit

s: {cpu: "100m", memory: "256Mi"}}

    requests:

      cpu: ""

      mem: ""

    limits:

      cpu: ""

      mem: ""

status:

Tanzu Application Platform v1.4

VMware by Broadcom 784



  observedGeneration: 0

  issuerURI: ""

  clientRegistrationCount: 1

  tokenSignatureKeyCount: 0

  deployments:

    authServer:

      configHash: ""

      image: ""

      replicas: 0

    redis: # leave empty if storage is configured by the service operator

      image: ""

  storage:

    redis:

      host: "" # the hostname of the configured Redis

      port: "" # the port of the configured Redis

  tls:

    deactivated: false

    issuerRef:

      name: ""

      kind: ""

      group: cert-manager.io

  conditions:

    - lastTransitionTime:

      message: ""

      reason: ""

      status: "True" # or "False"

      type: ""

Alternatively, you can interactively discover the spec with:

kubectl explain authservers.sso.apps.tanzu.vmware.com

Status & conditions

The .status subresource helps you to learn the AuthServer’s readiness, resulting deployments,
attached clients and to troubleshoot issues.

.status.issuerURI is the templated issuer URI. This is the entry point for any traffic.

.status.tls is the actual TLS configuration.

.status.tokenSignatureKeyCount is the number of currently configured token signature keys.

.status.clientRegistrationCount is the number of currently registered clients.

.status.deployments.authServer describes the current authorization server deployment by listing
the running image, its replicas, the hash of the current configuration and the generation which has
last resulted in a restart.

.status.deployments.redis describes the current provided Redis deployment by listing its running
image. This field is nil if storage is defined explicitly by using .spec.storage.

.status.storage.redis describes the configured Redis storage such as host name and port
number.

.status.conditions documents each step in the reconciliation:

Valid: Is the spec valid?

ImagePullSecretApplied: Has the image pull secret been applied?

SignAndVerifyKeyResolved: Has the single sign-and-verify key been resolved?

ExtraVerifyKeysResolved: Have the single extra verify keys been resolved?

IdentityProvidersResolved: Has all identity provider configuration been resolved?

Tanzu Application Platform v1.4

VMware by Broadcom 785



ConfigResolved: Has the complete configuration for the authorization server been resolved?

AuthServerConfigured: Has the complete configuration for the authorization server been
applied?

IssuerURIReady: Is the authorization server yet responding to {.status.issuerURI}/.well-
known/openid-configuration?

Ready: whether all the previous conditions are “True”

The super condition Ready denotes a fully successful reconciliation of a given ClientRegistration.

If everything goes well you will see something like this:

issuerURI: "https://..."

observedGeneration: 1

tokenSignatureKeyCount: 0

clientRegistrationCount: 0

caCerts:

  - cert:

      subject: ""

    source:

      secretEntry: ""

deployments:

  authServer:

    LastParentGenerationWithRestart: 1

    configHash: "11216479096262796218"

    image: "..."

    replicas: 1

  redis: # leave empty if external storage is defined

    image: "..."

storage:

  redis:

   host: "" # the host name of the configured Redis

   port: "" # the port of the configured Redis

tls:

  deactivated: false

  # One of issuerRef, certificateRef or secretRef is set if TLS is enabled 

  issuerRef:

    name: ""

    kind: ""

    group: ""

  certificateRef:

    name: ""

  secretRef:

    name: ""

conditions:

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: KeysConfigSecretUpdated

    status: "True"

    type: AuthServerConfigured

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: Resolved

    status: "True"

    type: ConfigResolved

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: ExtraVerifyKeysResolved

    status: "True"

    type: ExtraVerifyKeysResolved

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: Resolved

    status: "True"

Tanzu Application Platform v1.4

VMware by Broadcom 786



    type: IdentityProvidersResolved

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: ImagePullSecretApplied

    status: "True"

    type: ImagePullSecretApplied

  - lastTransitionTime: "2022-08-24T09:58:28Z"

    message: ""

    reason: Ready

    status: "True"

    type: IssuerURIReady

  - lastTransitionTime: "2022-08-24T09:58:28Z"

    message: ""

    reason: Ready

    status: "True"

    type: Ready

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: SignAndVerifyKeyResolved

    status: "True"

    type: SignAndVerifyKeyResolved

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: Valid

    status: "True"

    type: Valid

RBAC

The ServiceAccount of the authorization server has a Role with the following permissions:

- apiGroups:

    - ""

  resources:

    - secrets

  verbs:

    - get

    - list

    - watch

  resourceNames:

    - { name }-auth-server-keys

    - { name }-auth-server-clients

Example

This example requests an authorization server with two token signature keys and two identity
providers.

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: authserver-sample

  namespace: default

  labels:

Note

The label used for matching to ClientRegistrations must be unique across
namespaces.

Tanzu Application Platform v1.4

VMware by Broadcom 787



    identifier: authserver-identifier

    sample: "true"

  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

spec:

  replicas: 1

  tls:

    issuerRef:

      name: my-cluster-issuer

      kind: ClusterIssuer

  tokenSignature:

    signAndVerifyKeyRef:

      name: sample-token-signing-key

    extraVerifyKeyRefs:

      - name: sample-token-verification-key

  identityProviders:

    - name: internal

      internalUnsafe:

        users:

          - username: user

            password: password

            roles:

              - message.write

    - name: okta

      openID:

        issuerURI: https://dev-xxxxxx.okta.com

        clientID: xxxxxxxxxxxxx

        clientSecretRef:

          name: okta-client-secret

        authorizationUri: https://dev-xxxxxx.okta.com/oauth2/v1/authorize

        tokenUri: https://dev-xxxxxx.okta.com/oauth2/v1/token

        jwksUri: https://dev-xxxxxx.okta.com/oauth2/v1/keys

        scopes:

          - openid

        claimMappings:

          roles: my_custom_okta_roles_claim

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: sample-token-signing-key

  namespace: default

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: sample-token-verification-key

  namespace: default

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

---

apiVersion: v1

Tanzu Application Platform v1.4

VMware by Broadcom 788



kind: Secret

metadata:

  name: okta-client-secret

  namespace: default

stringData:

  clientSecret: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Troubleshoot Application Single Sign-on

This topic tells you how to troubleshoot Application Single Sign-On (commonly called AppSSO).

Why is my AuthServer not working?

Generally, AuthServer.status is designed to provide you with helpful feedback to debug a faulty
AuthServer.

Find all AuthServer-related Kubernetes resources

Identify all AuthServer components with Kubernetes common labels. For more information, see
Kubernetes documentation.

Query all related AuthServer subresources by using app.kubernetes.io/part-of label. For example:

kubectl get all,ingress,service -A -l app.kubernetes.io/part-of=<authserver-name>

Logs of all AuthServers

With stern you can tail the logs of all AppSSO managed Pods inside your cluster with:

stern --all-namespaces --selector=app.kubernetes.io/managed-by=sso.apps.tanzu.vmware.c

om

Change propagation
When applying changes to an AuthServer, keep in mind that changes to issuer URI, IDP, server and
logging configuration take a moment to be effective as the operator will roll out the authorization
server Deployment.

My Service is not selecting the authorization server’s
Deployment

If you are deploying your Service with kapp make sure to set the annotation
kapp.k14s.io/disable-default-label-scoping-rules: "" to avoid that kapp amends
Service.spec.selector.

Redirect URIs are redirecting to http instead of https with a
non-internal identity provider

Follow this workaround, adding IP ranges for the AuthServer to trust.

Misconfigured clientSecret

Problem:

Tanzu Application Platform v1.4

VMware by Broadcom 789

https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/#labels
https://github.com/stern/stern
https://carvel.dev/kapp/docs/latest/


When attempting to sign in, you see This commonly happens due to an incorrect
[client_secret]. It might be because the client secret of an identity provider is misconfigured.

Solution:

Validate the spec.OpenId.clientSecretRef.

Misconfigured redirect URI

Problem:

You see Error: [invalid_request] OAuth 2.0 Parameter: redirect_uri when signing in.

Solution:

The redirectUri of this ClientRegistration must refer to the URI of the registered Workload. It
does not refer to the URI of the AuthServer.

Unsupported id_token_signed_response_alg with openid
identityProviders

Problem:

When trying to log in with an OpenID Connect identityProvider, you are unable to sign in and you
see the following error in the logs:

[invalid_id_token] An error occurred while attempting to decode the Jwt: Signed JWT re

jected: Another algorithm expected, or no matching key(s) found.

Solution:

Verify the identityProvider’s discovery endpoint at ISSUER-URI/.well-known/openid-
configuration where ISSUER-URI is the value set at spec.identityProviders.openid.issuerURI.

The value of id_token_signing_alg_values_supported must include RS256. If it is not in the list,
your identity configuration might not support AppSSO.

If RS256 is present, expect to see a jwks_uri key in the discovery endpoint. If you visit the URL
stored in this key, it must return at least one RSA key. Otherwise, your identity provider might be
misconfigured.

Refer to your identity provider’s documentation to enable RS256 token signing.

Misconfigured identity provider clientSecret

Problem:

When attempting to sign in, you see client.samples.localhost.identity.team redirected
you too many times. It might be because the client secret of an identity provider is
misconfigured.

If you have access to the authserver logs, verify if there is an entry with the text "error":"
[invalid_client] Client authentication failed: client_secret".

Solution:

Tanzu Application Platform v1.4

VMware by Broadcom 790



Validate the secret referenced by the clientSecretRef for this particular identity provider in
your authserver.spec.

Missing scopes

Problem:

When attempting to fetch data after signing in to your application by using AppSSO, you see
[invalid_scope] OAuth 2.0 Parameter: scope.

Solution:

Add the required scopes into your ClientRegistration yaml under spec.scopes.

Changes to the secret do not propagate to the ClientRegistration. If you recreated the Secret
that contains the clientSecret, you must re-deploy the ClientRegistration.

Misconfigured sub claim

Problem:

The sub claims in id_tokens and access_tokens follow the <providerId>_<userId> pattern. The
previous <providerId>/<userId> pattern might cause bugs in URLs without proper URL-encoding
in client applications.

Solution:

If your client application stores sub claims, you must update the sub claims to match the new
pattern <providerId>_<userId>.

Known Issues

Application Single Sign-On (commonly called AppSSO) has the following known issues.

Unregistration by deletion

You can only deregister an existing, ready ClientRegistration from its selected AuthServer by
deleting it. Breaking the match between the two resources by updating either the labels of the
AuthServer or the label selector on the ClientRegistration does not deregister the client from the
authorization server.

Limited number of ClientRegistrations per AuthServer

The number of ClientRegistration for an AuthServer is limited at ~2,000. This is a soft limitation,
and if you are attempting to apply more ClientRegistration resources than the limit, we cannot
guarantee those clients applied past the limit to be in working order. This is subject to change in
future product versions.

LetsEncrypt: domain name for Issuer URI limited to 64
characters maximum

If using LetsEncrypt to issue TLS certificates for an AuthServer, the domain name for the Issuer URI
(excluding the http{s} prefix) cannot exceed 64 characters in length. If exceeded, you may receive

Tanzu Application Platform v1.4

VMware by Broadcom 791



a LetsEncrypt-specific error during Certificate issuance process. This limitation may be observed
when your base domain and subdomain joined together exceed the maximum limit.

Workaround - if your default Issuer URI is too long, utilize the domain_template field in AppSSO
values yaml to potentially shorten the domain.

For example, you may forgo the namespace in the Issuer URI like so:

domain_template: "{{.Name}}.{{.Domain}}"

Redirect URIs change to http instead of https
Description

AppSSO makes requests to external identity providers with http rather than https.

The external identity provider (IDP) informs the user that there is an issue with the redirect_uri
upon a redirect from the AppSSO auth server to the IDP. The payload of the request to the IDP
has a redirect_uri of AppSSO Issuer URI that has http protocol prefix, while the configuration on
the external IDP side has it registered as https protocol prefixed.

The underlying issue is that the default Classless Inter-Domain Routing (CIDR) for pod-to-pod traffic
is not a default internal network trusted by AppSSO.

Solution

Add these CIDR ranges to the AuthServer.spec (this is a sample range):

 server: |

   tomcat:

     remoteip:

       internal-proxies: "100\.9[6-9]\.\d{1,3}\.\d{1,3}|\

         100\.1[01]\d\.\d{1,3}\.\d{1,3}|\

         100\.12[0-7]\.\d{1,3}\.\d{1,3}"

AuthServer only supports response_type=code

For public clients, the AuthServer only supports the Authorization Code Flow: response_type=code,
because public clients such as single page apps cannot safely store sensitive information such as
client secrets.

Overview of Convention Service for VMware Tanzu

The Cartographer Conventions component must be installed to add conventions to your pod. The
v0.7.x version of the convention controller is a passive system that translates the CRDs to the new
group.

Caution

By leaving out the namespace in your domain template, application routes might
conflict if there are multiple AuthServers with the same name but in different
namespaces.

Caution

This component is deprecated in favor of Cartographer Conventions.

Tanzu Application Platform v1.4

VMware by Broadcom 792



Sample conventions

There are several out-of-the-box conventions provided with a full profile installation of Tanzu
Application Platform or individual component installation of the following packages.

  ❯ kubectl get pkgi -n tap-install | grep conventions

    appliveview-conventions    conventions.appliveview.tanzu.vmware.com       1.3.0-bu

ild.1       Reconcile succeeded   2m5s

    developer-conventions      developer-conventions.tanzu.vmware.com         0.7.0               

Reconcile succeeded   2m5s

    spring-boot-conventions    spring-boot-conventions.tanzu.vmware.com       0.4.1               

Reconcile succeeded   2m5s

  ❯ kubectl get clusterpodconventions

    Warning: conventions.apps.tanzu.vmware.com/v1alpha1 ClusterPodConvention is deprec

ated; use conventions.carto.run/v1alpha1 ClusterPodConvention instead

    NAME                     READY   REASON   AGE

    appliveview-sample       True    InSync   4m51s

    developer-conventions    True    InSync   4m50s

    spring-boot-convention   True    InSync   4m51s

The webhook configuration for each convention is as follows:

Conventions for AppLiveView

...

# webhook configuration

apiVersion: conventions.apps.tanzu.vmware.com/v1alpha1

kind: ClusterPodConvention

...

spec:

priority: Late

webhook:

  clientConfig:

    service:

      name: appliveview-webhook

      namespace: app-live-view-conventions

❯ kubectl get deployment.apps/appliveview-webhook -n app-live-view-conventions                             

⏎

NAME                  READY   UP-TO-DATE   AVAILABLE   AGE

appliveview-webhook   1/1     1            1           8m45s

Developer conventions

...

# webhook configuration

spec:

webhook:

  clientConfig:

    service:

      name: webhook

      namespace: developer-conventions

❯ kubectl get deployment.apps/webhook -n developer-conventions                                             

⏎

NAME      READY   UP-TO-DATE   AVAILABLE   AGE

webhook   1/1     1            1           10m

Spring boot conventions

Tanzu Application Platform v1.4

VMware by Broadcom 793



...

# webhook configuration

spec:

  webhook:

    clientConfig:

      service:

        name: spring-boot-webhook

        namespace: spring-boot-convention

❯ kubectl get deployment.apps/spring-boot-webhook -n spring-boot-convention

  NAME                  READY   UP-TO-DATE   AVAILABLE   AGE

  spring-boot-webhook   1/1     1            1           12m

Overview of Cartographer Conventions

This topic describes an overview of Cartographer Conventions and how you can use it with Tanzu
Application Platform.

Overview

Cartographer Conventions provides a means for operators to express their knowledge about how
applications should run on Kubernetes as a convention. Cartographer Conventions applies these
opinions to fleets of developer workloads as they are deployed to the platform, saving operator and
developer time.

The service is composed of two components:

The convention controller: The convention controller provides the metadata to the
convention server and executes the updates to Pod Template Spec as per the convention
server’s requests.

The convention server: The convention server receives and evaluates metadata associated
with a workload and requests updates to the Pod Template Spec associated with that
workload. You can have one or more convention servers for a single convention controller
instance. Cartographer Conventions supports defining and applying conventions for Pods.

About applying conventions
The convention server uses criteria defined in the convention to discover whether the
configuration of a workload must change. The server receives the OCI metadata from the
convention controller. If the metadata meets the criteria defined by the convention server, the
conventions are applied. It is possible for a convention to apply to all workloads regardless of
metadata.

Applying conventions by using image metadata

You can define conventions to target workloads by using properties of their OCI metadata.

Conventions can use this information to only apply changes to the configuration of workloads when
they match specific criteria. Such as, Spring Boot or .Net apps, or Spring Boot v2.3+. Targeted
conventions can ensure uniformity across specific workload types deployed on the cluster.

Note

This component is replacing the convention controller.

Tanzu Application Platform v1.4

VMware by Broadcom 794



You can use all the metadata details of an image when evaluating workloads. To see the metadata
details, use the Docker CLI command docker image inspect IMAGE.

Applying conventions without using image metadata

Conventions can be defined to apply to workloads without targeting build service metadata.
Examples of possible uses of this type of convention include appending a logging or metrics sidecar,
adding environment variables, or adding cached volumes. Such conventions are a great way to
ensure infrastructure uniformity across workloads deployed on the cluster while reducing developer
toil.

Overview of Cartographer Conventions

This topic describes an overview of Cartographer Conventions and how you can use it with Tanzu
Application Platform.

Overview

Cartographer Conventions provides a means for operators to express their knowledge about how
applications should run on Kubernetes as a convention. Cartographer Conventions applies these
opinions to fleets of developer workloads as they are deployed to the platform, saving operator and
developer time.

The service is composed of two components:

The convention controller: The convention controller provides the metadata to the
convention server and executes the updates to Pod Template Spec as per the convention
server’s requests.

The convention server: The convention server receives and evaluates metadata associated
with a workload and requests updates to the Pod Template Spec associated with that
workload. You can have one or more convention servers for a single convention controller
instance. Cartographer Conventions supports defining and applying conventions for Pods.

Note

Depending on how the image was built, metadata might not be available to reliably
identify the image type and match the criteria for a convention server. Images built
with Cloud Native Buildpacks reliably include rich descriptive metadata. Images built
by some other process can not include the same metadata.

Important

Adding a sidecar alone does not make the log or metrics collection work. This
requires having collector agents deployed and accessible from the Kubernetes
cluster, and configuring required access by using role-based access control (RBAC)
policy.

Note

This component is replacing the convention controller.

Tanzu Application Platform v1.4

VMware by Broadcom 795



About applying conventions

The convention server uses criteria defined in the convention to discover whether the
configuration of a workload must change. The server receives the OCI metadata from the
convention controller. If the metadata meets the criteria defined by the convention server, the
conventions are applied. It is possible for a convention to apply to all workloads regardless of
metadata.

Applying conventions by using image metadata

You can define conventions to target workloads by using properties of their OCI metadata.

Conventions can use this information to only apply changes to the configuration of workloads when
they match specific criteria. Such as, Spring Boot or .Net apps, or Spring Boot v2.3+. Targeted
conventions can ensure uniformity across specific workload types deployed on the cluster.

You can use all the metadata details of an image when evaluating workloads. To see the metadata
details, use the Docker CLI command docker image inspect IMAGE.

Applying conventions without using image metadata

Conventions can be defined to apply to workloads without targeting build service metadata.
Examples of possible uses of this type of convention include appending a logging or metrics sidecar,
adding environment variables, or adding cached volumes. Such conventions are a great way to
ensure infrastructure uniformity across workloads deployed on the cluster while reducing developer
toil.

Install Cartographer Conventions
Cartographer Conventions is bundled with Supply Chain Choreographer as of the v0.4.0 release.
See Installing Supply Chain Choreographer.

Create conventions with Cartographer Conventions
This topic describes how you can create and deploy custom conventions to the Tanzu Application
Platform by using Cartographer Conventions.

Introduction

Note

Depending on how the image was built, metadata might not be available to reliably
identify the image type and match the criteria for a convention server. Images built
with Cloud Native Buildpacks reliably include rich descriptive metadata. Images built
by some other process can not include the same metadata.

Important

Adding a sidecar alone does not make the log or metrics collection work. This
requires having collector agents deployed and accessible from the Kubernetes
cluster, and configuring required access by using role-based access control (RBAC)
policy.

Tanzu Application Platform v1.4

VMware by Broadcom 796



Tanzu Application Platform helps developers transform their code into containerized workloads with
a URL. The Supply Chain Choreographer for Tanzu manages this transformation. For more
information, see Supply Chain Choreographer.

Cartographer Conventions is a key component of the supply chain compositions the choreographer
calls into action. Cartographer Conventions enables people in operational roles to efficiently apply
their expertise. They can specify the runtime best practices, policies, and conventions of their
organization to workloads as they are created on the platform. The power of this component
becomes evident when the conventions of an organization are applied consistently, at scale, and
without hindering the velocity of application developers.

Opinions and policies vary from organization to organization. Cartographer Convention supports the
creation of custom conventions to meet the unique operational needs and requirements of an
organization.

Before jumping into the details of creating a custom convention, you can view two distinct
components of Cartographer Conventions:

Convention controller

Convention server

Convention server

The convention server is the component that applies a convention already defined on the server.
For a golang example of creating a convention server to add springboot conventions, see spring-
convention-server in Github. The resource that facilitates structuring the request body of the
request and response from the server is the PodConventionContext.

The PodConventionContext is a webhooks.conventions.carto.run/v1alpha1 type that defines the
structure used to communicate internally by the webhook convention server. It does not exist on
the Kubernetes API Server.

PodConventionContext is a wrapper for two types:

PodConventionContextSpec which acts as a wrapper for a PodTemplateSpec and a list of
ImageConfigs provided in the request body of the server.

PodConventionContextStatus which is a status type used to represent the current status of
the context retrieved by the request.

For information about an example PodConventionContext, see PodConventionContext in GitHub.
For information about a Convention server and the structure of these types, see OpenAPI Spec in
GitHub.

How the convention server works

Each convention server can host one or more conventions. The application of each convention by a
convention server are controlled conditionally. The conditional criteria governing the application of
a convention is customizable and are based on the evaluation of a custom Kubernetes resource
called PodIntent. PodIntent is the vehicle by which Cartographer Conventions as a whole delivers
its value.

A PodIntent is created, or updated if already existing, when a workload is run by using a Tanzu
Application Platform supply chain. The custom resource includes both the PodTemplateSpec and
the OCI image metadata associated with a workload. See the Kubernetes documentation. The
conditional criteria for a convention are based on any property or value found in the
PodTemplateSpec or the Open Containers Initiative (OCI) image metadata available in the
PodIntent.

Tanzu Application Platform v1.4

VMware by Broadcom 797

https://github.com/vmware-tanzu/cartographer-conventions/tree/main/samples/spring-convention-server
https://github.com/vmware-tanzu/cartographer-conventions/blob/main/webhook/api/v1alpha1/podconventioncontext_types.go
https://github.com/vmware-tanzu/cartographer-conventions/blob/main/docs/podconventioncontext-sample.yaml
https://github.com/vmware-tanzu/cartographer-conventions/blob/main/api/openapi-spec/conventions-server.yaml
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


If a convention’s criteria are met, the convention server enriches the PodTemplateSpec in the
PodIntent. The convention server also updates the status section of the PodIntent with the name
of the convention that’s been applied. So if needed, you can figure out after the fact which
conventions were applied to the workload.

To provide flexibility in how conventions are organized, you can deploy multiple convention servers.
Each server can contain a convention or set of conventions focused on a specific class of runtime
modifications, on a specific language framework, and so on. How the conventions are organized,
grouped, and deployed is up to you and the needs of your organization.

Convention servers deployed to the cluster does not take action unless triggered to do so by the
second component of Cartographer Conventions, the Convention controller.

Convention controller

The convention controller is the orchestrator of one or many convention servers deployed to the
cluster. There are resources available on the conventions.carto.run/v1aplha1 API that allow the
controller to carry out its functions. These resources include:

ClusterPodConvention

ClusterPodConvention is a resource type that allows the conventions author to
register a webhook server with the controller using it’s spec.webhook field.

...

spec:

  selectorTarget: PodTemplateSpec # optional field with options, defaults 

to PodTemplateSpec

  selectors: # optional, defaults to match all workloads

  - <metav1.LabelSelector>

  webhook:

    certificate:

      name: sample-cert

      namespace: sample-conventions

    clientConfig:

      <admissionregistrationv1.WebhookClientConfig>

PodIntent

The PodIntent is a conventions.carto.run/v1alpha1 resource type that is
continuously reconciled and applies decorations to a workload PodTemplateSpec
exposing the enriched PodTemplateSpec on its status. Whenever the status of the
PodIntent is updated, no side effects are caused on the cluster.

As key types defined on the conventions.carto.run API, the ClusterPodConvention and PodIntent
resources are both present on the Kubernetes API Server and are queried using
clusterpodconventions.conventions.carto.run for the former and
podintents.conventions.carto.run for the later.

How the convention controller works

When the Supply Chain Choreographer creates or updates a PodIntent for a workload, the
convention controller retrieves the OCI image metadata from the repository containing the
workload’s images and sets it in the PodIntent.

The convention controller then uses a webhook architecture to pass the PodIntent to each
convention server deployed to the cluster. The controller orchestrates the processing of the
PodIntent by the convention servers sequentially, based on the priority value that’s set on the
convention server. For more information, see ClusterPodConvention.

Tanzu Application Platform v1.4

VMware by Broadcom 798



After all convention servers are finished processing a PodIntent for a workload, the convention
controller updates the PodIntent with the latest version of the PodTemplateSpec and sets
PodIntent.status.conditions[].status=True where PodIntent.status.conditions[].type=Ready.
This status change signals the Supply Chain Choreographer that Cartographer Conventions is
finished with its work. The status change also executes whatever steps are waiting in the supply
chain.

Getting started

With this high-level understanding of Cartographer Conventions components, you can create and
deploy a custom convention.

Prerequisites

The following prerequisites must be met before a convention is developed and deployed:

The Kubernetes command line interface tool (kubectl) CLI is installed. For more information,
see the Kubernetes documentation.

Tanzu Application Platform prerequisites are installed. For more information, see
Prerequisites

Tanzu Application Platform components are installed. For more information, see the
Installing the Tanzu CLI.

The default supply chain is installed. Download Supply Chain Security Tools for VMware
Tanzu from Tanzu Network.

Your kubeconfig context is set to the Tanzu Application Platform-enabled cluster:

kubectl config use-context CONTEXT_NAME

You use Github to install the ko CLI. See the google/ko GitHub repository. These
instructions use ko to build an image. If there is an existing image or build process, ko is
optional.)

Define convention criteria

The server.go file contains the configuration for the server and the logic the server applies when a
workload matches the defined criteria. For example, adding a Prometheus sidecar to web
applications, or adding a workload-type=spring-boot label to any workload that has metadata,
indicating it is a Spring Boot app.

1. The example server.go configures the ConventionHandler to ingest the webhook requests
from the convention controller. See PodConventionContext. Here the handler must only
deal with the existing PodTemplateSpec and ImageConfig.

Note

This topic covers developing conventions using GOLANG, but this is done using
other languages by following the specifications.

Important

For this example, the package model defines resource types.

Tanzu Application Platform v1.4

VMware by Broadcom 799

https://kubernetes.io/docs/tasks/tools/
https://network.tanzu.vmware.com/products/supply-chain-security-tools/
https://github.com/google/ko
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://golang.org/


...

import (

  corev1 "k8s.io/api/core/v1"

)

...

func ConventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

   // Create custom conventions

}

...

Where:

template is the predefined PodTemplateSpec that the convention edits. For more
information about PodTemplateSpec, see the Kubernetes documentation.

images are the ImageConfig used as reference to make decisions in the
conventions. In this example, the type was created within the model package.

2. The example server.go also configures the convention server to listen for requests:

...

import (

    "context"

    "fmt"

    "log"

    "net/http"

    "os"

    ...

)

...

func main() {

    ctx := context.Background()

    port := os.Getenv("PORT")

    if port == "" {

        port = "9000"

    }

    http.HandleFunc("/", webhook.ServerHandler(convention.ConventionHandler))

    log.Fatal(webhook.NewConventionServer(ctx, fmt.Sprintf(":%s", port)))

}

...

Where:

PORT is a possible environment variable, for this example, defined in the
Deployment.

ServerHandler is the handler function called when any request comes to the server.

NewConventionServer is the function in charge of configuring and creating the http
webhook server.

port is the calculated port of the server to listen for requests. It must match the
Deployment if the PORT variable is not defined in it.

The path or pattern (default to /) is the convention server’s default path. If it is
changed, it must be changed in the ClusterPodConvention.

Note

The Server Handler, func ConventionHandler(...), and the configure or start web
server, func NewConventionServer(...), is defined in the convention controller in
the webhook package, but you can use a custom one.

Tanzu Application Platform v1.4

VMware by Broadcom 800

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


1. Creating the Server Handler, which handles the request from the convention controller with
the PodConventionContext serialized to JSON.

package webhook

...

func ServerHandler(conventionHandler func(template *corev1.PodTemplateSpec, ima

ges []model.ImageConfig) ([]string, error)) http.HandlerFunc {

    return func(w http.ResponseWriter, r *http.Request) {

        ...

        // Check request method

        ...

        // Decode the PodConventionContext

        podConventionContext := &model.PodConventionContext{}

        err = json.Unmarshal(body, &podConventionContext)

        if err != nil {

            w.WriteHeader(http.StatusBadRequest)

            return

        }

        // Validate the PodTemplateSpec and ImageConfig

        ...

        // Apply the conventions

        pts := podConventionContext.Spec.Template.DeepCopy()

        appliedConventions, err := conventionHandler(pts, podConventionContext.

Spec.Images)

        if err != nil {

            w.WriteHeader(http.StatusInternalServerError)

            return

        }

        // Update the applied conventions and status with the new PodTemplateSp

ec

        podConventionContext.Status.AppliedConventions = appliedConventions

        podConventionContext.Status.Template = *pts

        // Return the updated PodConventionContext

        w.Header().Set("Content-Type", "application/json")

        w.WriteHeader(http.StatusOK)

        json.NewEncoder(w).Encode(podConventionContext)

    }

}

...

2. Configure and start the web server by defining the NewConventionServer function, which
starts the server with the defined port and current context. The server uses the .crt and
.key files to handle TLS traffic.

package webhook

...

// Watch handles the security by certificates.

type certWatcher struct {

    CrtFile string

    KeyFile string

    m       sync.Mutex

    keyPair *tls.Certificate

}

func (w *certWatcher) Load() error {

    // Creates a X509KeyPair from PEM encoded client certificate and private ke

y.

    ...

}

func (w *certWatcher) GetCertificate() *tls.Certificate {

    w.m.Lock()

    defer w.m.Unlock()

    return w.keyPair

Tanzu Application Platform v1.4

VMware by Broadcom 801



}

...

func NewConventionServer(ctx context.Context, addr string) error {

    // Define a health check endpoint to readiness and liveness probes.

    http.HandleFunc("/healthz", func(w http.ResponseWriter, r *http.Request) {

        w.WriteHeader(http.StatusOK)

    })

    if err := watcher.Load(); err != nil {

        return err

    }

    // Defines the server with the TLS configuration.

    server := &http.Server{

        Addr: addr,

        TLSConfig: &tls.Config{

            GetCertificate: func(_ *tls.ClientHelloInfo) (*tls.Certificate, err

or) {

                cert := watcher.GetCertificate()

                return cert, nil

            },

            PreferServerCipherSuites: true,

            MinVersion:               tls.VersionTLS13,

        },

        BaseContext: func(_ net.Listener) context.Context {

            return ctx

        },

    }

    go func() {

        <-ctx.Done()

        server.Close()

    }()

    return server.ListenAndServeTLS("", "")

}

Define the convention behavior

Any property or value within the PodTemplateSpec or OCI image metadata associated with a
workload defines the criteria for applying conventions. See PodTemplateSpec in the Kubernetes
documentation. The following are a few examples.

Matching criteria by labels or annotations

The conventions.carto.run/v1alpha1 API allows convention authors to use the selectorTarget
field which complements the ClusterPodConvention matchers to specify whether to consider labels
on either one of the following available options:

PodTemplateSpec

  ...

  template:

    metadata:

      labels:

        awesome-label: awesome-value

      annotations:

        awesome-annotation: awesome-value

  ...

PodIntent

    ...

    kind: PodIntent

    metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 802

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


      name: test-pod

      labels:

        environment: production

        ...

The selectorTarget field is configured on the ClusterPodConvention as follows:

...

spec:

  selectorTarget: PodIntent # optional, defaults to PodTemplateSpec

  selectors: # optional, defaults to match all workloads

  - <metav1.LabelSelector>

  webhook:

    certificate:

      name: sample-cert

      namespace: sample-conventions

    clientConfig:

      <admissionregistrationv1.WebhookClientConfig>

If you do not provide a value for this optional field while using the conventions.carto.run/v1alpha1
API, the default value is set to PodTemplateSpec without the conventions author explicitly doing so.
The selectorTarget field is not available in the conventions.apps.tanzu.vmware.com/v1alpha1 API
and labels specified in the PodTemplateSpec are considered if a matcher is defined in a
ClusterPodConvention while referencing this deprecated API.

Matching criteria by environment variables

When using environment variables to define whether the convention is applicable, it must be
present in the PodTemplateSpec, spec, containers, and env to validate the value.

PodTemplateSpec

...

template:

  spec:

    containers:

      - name: awesome-container

        env:

...

Handler

package convention

...

func conventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

    if len(template.Spec.Containers[0].Env) == 0 {

        template.Spec.Containers[0].Env = append(template.Spec.Containers[0].En

v, corev1.EnvVar{

            Name: "MY_AWESOME_VAR",

            Value: "MY_AWESOME_VALUE",

        })

        return []string{"awesome-envs-convention"}, nil

    }

    return []string{}, nil

    ...

}

Matching criteria by image metadata

For each image contained within the PodTemplateSpec, the convention controller fetches the OCI
image metadata and known bill of materials (BOMs), providing it to the convention server as

Tanzu Application Platform v1.4

VMware by Broadcom 803

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#PodSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#Container
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#environment-variables


ImageConfig. This metadata is introspected to make decisions about how to configure the
PodTemplateSpec.

Configure and install the convention server

The server.yaml defines the Kubernetes components that enable the convention server in the
cluster. The next definitions are within the file.

1. A namespace is created for the convention server components and has the required objects
to run the server. It’s used in the ClusterPodConvention section to indicate to the controller
where the server is.

...

---

apiVersion: v1

kind: Namespace

metadata:

  name: awesome-convention

---

...

2. (Optional) A certificate manager Issuer is created to issue the certificate needed for TLS
communication.

...

---

# The following manifests contain a self-signed issuer CR and a certificate CR.

# More document can be found at https://docs.cert-manager.io

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

  name: awesome-selfsigned-issuer

  namespace: awesome-convention

spec:

  selfSigned: {}

---

...

3. (Optional) A self-signed Certificate is created.

...

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: awesome-webhook-cert

  namespace: awesome-convention

spec:

  subject:

    organizations:

    - vmware

    organizationalUnits:

    - tanzu

  commonName: awesome-webhook.awesome-convention.svc

  dnsNames:

  - awesome-webhook.awesome-convention.svc

  - awesome-webhook.awesome-convention.svc.cluster.local

  issuerRef:

    kind: Issuer

    name: awesome-selfsigned-issuer

  secretName: awesome-webhook-cert

  revisionHistoryLimit: 10

Tanzu Application Platform v1.4

VMware by Broadcom 804



---

...

4. A Kubernetes Deployment is created to run the webhook from. The Service uses the
container port defined by the Deployment to expose the server.

...

---

apiVersion: apps/v1

kind: Deployment

metadata:

  name: awesome-webhook

  namespace: awesome-convention

spec:

  replicas: 1

  selector:

    matchLabels:

    app: awesome-webhook

  template:

    metadata:

      labels:

        app: awesome-webhook

    spec:

      containers:

      - name: webhook

        # Set the prebuilt image of the convention or use ko to build an image 

from code.

        # see https://github.com/google/ko

        image: ko://awesome-repo/awesome-user/awesome-convention

      env:

      - name: PORT

        value: "8443"

      ports:

      - containerPort: 8443

        name: webhook

      livenessProbe:

        httpGet:

          scheme: HTTPS

          port: webhook

          path: /healthz

      readinessProbe:

        httpGet:

          scheme: HTTPS

          port: webhook

          path: /healthz

      volumeMounts:

      - name: certs

        mountPath: /config/certs

        readOnly: true

    volumes:

    - name: certs

      secret:

        defaultMode: 420

        secretName: awesome-webhook-cert

---

...

5. A Kubernetes Service to expose the convention deployment is created. For this example,
the exposed port is the default 443. If you change the port, the ClusterPodConvention must
be updated.

...

---

apiVersion: v1

Tanzu Application Platform v1.4

VMware by Broadcom 805



kind: Service

metadata:

  name: awesome-webhook

  namespace: awesome-convention

  labels:

    app: awesome-webhook

spec:

  selector:

    app: awesome-webhook

  ports:

    - protocol: TCP

      port: 443

      targetPort: webhook

---

...

6. The ClusterPodConvention adds the convention to the cluster to make it available for the
convention controller:

...

---

apiVersion: conventions.carto.run/v1alpha1

kind: ClusterPodConvention

metadata:

  name: awesome-convention

  annotations:

    conventions.carto.run/inject-ca-from: "awesome-convention/awesome-webhook-c

ert"

spec:

  webhook:

    clientConfig:

      service:

        name: awesome-webhook

        namespace: awesome-convention

        # path: "/" # default

        # port: 443 # default

Deploy a convention server

To deploy a convention server:

1. Build and install the convention.

To build and deploy the convention, use the ko tool on GitHub. It compiles your Go
code into a Docker image and pushes it to the registry KO_DOCKER_REGISTRY.

ko apply -f dist/server.yaml

If a different tool builds the image, the configuration is also applied by using either
kubectl or kapp, setting the correct image in the Deployment descriptor.

kubectl

kubectl apply -f server.yaml

Important

The annotations block is only needed if you use a self-signed certificate.
See the cert-manager documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 806

https://github.com/google/ko
https://cert-manager.io/docs/


kapp

kapp deploy -y -a awesome-convention -f server.yaml

2. Verify the convention server. To verify the status of the convention server, confirm the
running convention pods:

If the server is running, kubectl get all -n awesome-convention returns output
such as:

NAME                                       READY   STATUS    RESTARTS   A

GE

pod/awesome-webhook-1234567890-12345       1/1     Running   0          8

h

NAME                          TYPE        CLUSTER-IP    EXTERNAL-IP   POR

T(S)   AGE

service/awesome-webhook       ClusterIP   10.56.12.49   <none>        44

3/TCP   28h

NAME                                  READY   UP-TO-DATE   AVAILABLE   AG

E

deployment.apps/awesome-webhook       1/1     1            1           28

h

NAME                                             DESIRED   CURRENT   READ

Y   AGE

replicaset.apps/awesome-webhook-1234563213       0         0         0       

23h

replicaset.apps/awesome-webhook-5b79d5cb59       0         0         0       

28h

replicaset.apps/awesome-webhook-5bf557c9f8       1         1         1       

20h

replicaset.apps/awesome-webhook-77c647c987       0         0         0       

23h

replicaset.apps/awesome-webhook-79d9c6f74c       0         0         0       

23h

replicaset.apps/awesome-webhook-7d9d667b8d       0         0         0       

9h

replicaset.apps/awesome-webhook-8668664d75       0         0         0       

23h

replicaset.apps/awesome-webhook-9b6957476        0         0         0       

24h

To verify that the conventions are applied, ensure that the PodIntent of a workload
that matches the convention criteria:

kubectl -o yaml get podintents.conventions.apps.tanzu.vmware.co awesome-a

pp

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  creationTimestamp: "2021-10-07T13:30:00Z"

  generation: 1

  labels:

    app.kubernetes.io/component: intent

    carto.run/cluster-supply-chain-name: awesome-supply-chain

    carto.run/cluster-template-name: convention-template

    carto.run/component-name: config-provider

    carto.run/template-kind: ClusterConfigTemplate

    carto.run/workload-name: awesome-app

    carto.run/workload-namespace: default

Tanzu Application Platform v1.4

VMware by Broadcom 807



  name: awesome-app

  namespace: default

ownerReferences:

- apiVersion: carto.run/v1alpha1

  blockOwnerDeletion: true

  controller: true

  kind: Workload

  name: awesome-app

  uid: "********"

resourceVersion: "********"

uid: "********"

spec:

imagePullSecrets:

  - name: registry-credentials

    serviceAccountName: default

    template:

      metadata:

        annotations:

          developer.conventions/target-containers: workload

        labels:

          app.kubernetes.io/component: run

          app.kubernetes.io/part-of: awesome-app

          carto.run/workload-name: awesome-app

      spec:

        containers:

        - image: awesome-repo.com/awesome-project/awesome-app@sha256:****

****

          name: workload

          resources: {}

          securityContext:

          runAsUser: 1000

status:

  conditions:

  - lastTransitionTime: "2021-10-07T13:30:00Z"

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2021-10-07T13:30:00Z"

    status: "True"

    type: Ready

observedGeneration: 1

template:

  metadata:

    annotations:

      awesome-annotation: awesome-value

      conventions.carto.run/applied-conventions: |-

        awesome-label-convention

        awesome-annotation-convention

        awesome-envs-convention

        awesome-image-convention

        developer.conventions/target-containers: workload

    labels:

      awesome-label: awesome-value

      app.kubernetes.io/component: run

      app.kubernetes.io/part-of: awesome-app

      carto.run/workload-name: awesome-app

      conventions.carto.run/framework: go

  spec:

    containers:

    - env:

      - name: MY_AWESOME_VAR

        value: "MY_AWESOME_VALUE"

      image: awesome-repo.com/awesome-project/awesome-app@sha256:********

      name: workload

      ports:

        - containerPort: 8080

          protocol: TCP

Tanzu Application Platform v1.4

VMware by Broadcom 808



      resources: {}

      securityContext:

        runAsUser: 1000

Next Steps

Keep Exploring:

Try to use different matching criteria for the conventions or enhance the supply chain with
multiple conventions.

Troubleshoot Cartographer Conventions

This topic describes how you can troubleshoot Cartographer Conventions.

No server in the cluster

Symptoms

When a PodIntent is submitted, no convention is applied.

Cause

When there are no convention servers (ClusterPodConvention) deployed in the cluster or none of
the existing convention servers applied any conventions, the PodIntent is not being mutated.

Solution

Deploy a convention server (ClusterPodConvention) in the cluster.

Server with wrong certificates configured

Symptoms

When a PodIntent is submitted, the conventions are not applied.

The convention-controller logs reports an error failed to get CABundle as follows:

{

"level": "error",

"ts": 1638222343.6839523,

"logger": "controllers.PodIntent.PodIntent.ResolveConventions",

"msg": "failed to get CABundle",

"ClusterPodConvention": "base-convention",

"error": "unable to find valid certificaterequests for certificate \"convention

-template/webhook-certificate\"",

"stacktrace": "reflect.Value.Call\n\treflect/value.go:339\ngithub.com/vmware-la

bs/reconciler-runtime/reconcilers.(*SyncReconciler).sync\n\tgithub.com/vmware-l

abs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:287\ngithub.com/vmware

-labs/reconciler-runtime/reconcilers.(*SyncReconciler).Reconcile\n\tgithub.com/

vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:276\ngithub.co

m/vmware-labs/reconciler-runtime/reconcilers.Sequence.Reconcile\n\tgithub.com/v

mware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:815\ngithub.co

m/vmware-labs/reconciler-runtime/reconcilers.(*ParentReconciler).reconcile\n\tg

ithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:146

\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*ParentReconciler).Rec

oncile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcil

ers.go:120\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controlle

r).Reconcile\n\tsigs.k8s.io/controller-runtime@v0.10.3/pkg/internal/controller/

controller.go:114\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Con

Tanzu Application Platform v1.4

VMware by Broadcom 809



troller).reconcileHandler\n\tsigs.k8s.io/controller-runtime@v0.10.3/pkg/interna

l/controller/controller.go:311\nsigs.k8s.io/controller-runtime/pkg/internal/con

troller.(*Controller).processNextWorkItem\n\tsigs.k8s.io/controller-runtime@v0.

10.3/pkg/internal/controller/controller.go:266\nsigs.k8s.io/controller-runtime/

pkg/internal/controller.(*Controller).Start.func2.2\n\tsigs.k8s.io/controller-r

untime@v0.10.3/pkg/internal/controller/controller.go:227"

Cause

convention server (ClusterPodConvention) is configured with wrong certificates. The convention-
controller cannot figure out the CA Bundle to perform the request to the server.

Solution

Ensure that the convention server (ClusterPodConvention) is configured with the correct
certificates. To do so, verify the value of annotation conventions.carto.run/inject-ca-from which
must be set to the used Certificate.

Server fails when processing a request

Symptoms

When a PodIntent is submitted, the convention is not applied.

The convention-controller logs reports failed to apply convention error like this.

{"level":"error","ts":1638205387.8813763,"logger":"controllers.PodIntent.PodInt

ent.ApplyConventions","msg":"failed to apply convention","Convention":{"Nam

e":"base-convention","Selectors":null,"Priority":"Normal","ClientConfig":{"serv

ice":{"namespace":"convention-template","name":"webhook","port":443},"caBundl

e":"..."}},"error":"Post \"https://webhook.convention-template.svc:443/?timeout

=30s\": EOF","stacktrace":"reflect.Value.call\n\treflect/value.go:543\nreflect.

Value.Call\n\treflect/value.go:339\ngithub.com/vmware-labs/reconciler-runtime/r

econcilers.(*SyncReconciler).sync\n\tgithub.com/vmware-labs/reconciler-runtime@

v0.3.0/reconcilers/reconcilers.go:287\ngithub.com/vmware-labs/reconciler-runtim

e/reconcilers.(*SyncReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-

runtime@v0.3.0/reconcilers/reconcilers.go:276\ngithub.com/vmware-labs/reconcile

r-runtime/reconcilers.Sequence.Reconcile\n\tgithub.com/vmware-labs/reconciler-r

untime@v0.3.0/reconcilers/reconcilers.go:815\ngithub.com/vmware-labs/reconciler

-runtime/reconcilers.(*ParentReconciler).reconcile\n\tgithub.com/vmware-labs/re

conciler-runtime@v0.3.0/reconcilers/reconcilers.go:146\ngithub.com/vmware-labs/

reconciler-runtime/reconcilers.(*ParentReconciler).Reconcile\n\tgithub.com/vmwa

re-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:120\nsigs.k8s.io/c

ontroller-runtime/pkg/internal/controller.(*Controller).Reconcile\n\tsigs.k8s.i

o/controller-runtime@v0.10.0/pkg/internal/controller/controller.go:114\nsigs.k8

s.io/controller-runtime/pkg/internal/controller.(*Controller).reconcileHandler

\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.g

o:311\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).pro

cessNextWorkItem\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/control

ler/controller.go:266\nsigs.k8s.io/controller-runtime/pkg/internal/controller.

(*Controller).Start.func2.2\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/inter

nal/controller/controller.go:227"}

When a PodIntent status message is updated with failed to apply convention from
source base-convention: Post "https://webhook.convention-template.svc:443/?

Important

Do not set annotation conventions.carto.run/inject-ca-from if no certificate is
used.

Tanzu Application Platform v1.4

VMware by Broadcom 810



timeout=30s": EOF.

Cause

An unmanaged error occurs in the convention server when processing a request.

Solution

1. Check the convention server logs to identify the cause of the error:

1. Use the following command to retrieve the convention server logs:

kubectl -n convention-template logs deployment/webhook

Where:

The convention server was deployed as a Deployment

webhook is the name of the convention server Deployment.

convention-template is the namespace where the convention server is
deployed.

2. Identify the error and deploy a fixed version of convention server.

Be aware that the new deployment is not applied to the existing PodIntents. It is
only applied to the new PodIntents.

To apply new deployment to exiting PodIntent, you must update the PodIntent, so
the reconciler applies if it matches the criteria.

Connection refused due to unsecured connection

Symptoms

When a PodIntent is submitted, the convention is not applied.

The convention-controller logs reports a connection refused error as follows:

{"level":"error","ts":1638202791.5734537,"logger":"controllers.PodIntent.PodInt

ent.ApplyConventions","msg":"failed to apply convention","Convention":{"Nam

e":"base-convention","Selectors":null,"Priority":"Normal","ClientConfig":{"serv

ice":{"namespace":"convention-template","name":"webhook","port":443},"caBundl

e":"..."}},"error":"Post \"https://webhook.convention-template.svc:443/?timeout

=30s\": dial tcp 10.56.13.206:443: connect: connection refused","stacktrace":"r

eflect.Value.call\n\treflect/value.go:543\nreflect.Value.Call\n\treflect/value.

go:339\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*SyncReconcile

r).sync\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconci

lers.go:287\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*SyncReconc

iler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconciler

s/reconcilers.go:276\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.Seq

uence.Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconciler

s/reconcilers.go:815\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*P

arentReconciler).reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/

reconcilers/reconcilers.go:146\ngithub.com/vmware-labs/reconciler-runtime/recon

cilers.(*ParentReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runti

me@v0.3.0/reconcilers/reconcilers.go:120\nsigs.k8s.io/controller-runtime/pkg/in

ternal/controller.(*Controller).Reconcile\n\tsigs.k8s.io/controller-runtime@v0.

10.0/pkg/internal/controller/controller.go:114\nsigs.k8s.io/controller-runtime/

pkg/internal/controller.(*Controller).reconcileHandler\n\tsigs.k8s.io/controlle

r-runtime@v0.10.0/pkg/internal/controller/controller.go:311\nsigs.k8s.io/contro

ller-runtime/pkg/internal/controller.(*Controller).processNextWorkItem\n\tsigs.

k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.go:266\nsi

gs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).Start.func2.

Tanzu Application Platform v1.4

VMware by Broadcom 811



2\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.

go:227"}

The convention server fails to start due to server gave HTTP response to HTTPS client:

When checking the convention server events by running the following command:

kubectl -n convention-template describe pod webhook-594d75d69b-4w4s8

Where:

The convention server was deployed as a Deployment

webhook-594d75d69b-4w4s8 is the name of the convention server Pod.

convention-template is the namespace where the convention server is deployed.

For example:

Name:         webhook-594d75d69b-4w4s8

Namespace:    convention-template

...

Containers:

  webhook:

...

Events:

Type     Reason     Age                   From               Message

----     ------     ----                  ----               -------

Normal   Scheduled  14m                   default-scheduler  Successfully assig

ned convention-template/webhook-594d75d69b-4w4s8 to pool

Normal   Pulling    14m                   kubelet            Pulling image "awe

some-repo/awesome-user/awesome-convention-..."

Normal   Pulled     14m                   kubelet            Successfully pulle

d image "awesome-repo/awesome-user/awesome-convention..." in 1.06032653s

Normal   Created    13m (x2 over 14m)     kubelet            Created container 

webhook

Normal   Started    13m (x2 over 14m)     kubelet            Started container 

webhook

Warning  Unhealthy  13m (x9 over 14m)     kubelet            Readiness probe fa

iled: Get "https://10.52.2.74:8443/healthz": http: server gave HTTP response to 

HTTPS client

Warning  Unhealthy  13m (x6 over 14m)     kubelet            Liveness probe fai

led: Get "https://10.52.2.74:8443/healthz": http: server gave HTTP response to 

HTTPS client

Normal   Pulled     9m13s (x6 over 13m)   kubelet            Container image "a

wesome-repo/awesome-user/awesome-convention" already present on machine

Warning  BackOff    4m22s (x32 over 11m)  kubelet            Back-off restartin

g failed container

Cause

When a convention server is provided without using Transport Layer Security (TLS) but the
Deployment is configured to use TLS, Kubernetes fails to deploy the Pod because of the liveness
probe.

Solution

1. Deploy a convention server with TLS enabled.

2. Create ClusterPodConvention resource for the convention server with annotation
conventions.carto.run/inject-ca-from as a pointer to the deployed Certificate resource.

Tanzu Application Platform v1.4

VMware by Broadcom 812



Self-signed certificate authority (CA) not propagated to the
Convention Service

Symptoms

The self-signed certificate authority (CA) for a registry is not propagated to the Convention Service.

Cause

When you provide the self-signed certificate authority (CA) for a registry through convention-
controller.ca_cert_data, it cannot be propagated to the Convention Service.

Solution

Define the CA by using the available .shared.ca_cert_data top-level key to supply the CA to the
Convention Service.

No imagePullSecrets configured

Symptoms

When a PodIntent is submitted:

No convention is applied.

You see an unauthorized to access repository or fetching metadata for Images failed
error when you inspect the workload.

Cause

The errors are seen when a workload is created in a developer namespace where
imagePullSecrets are not defined on the default serviceAccount or on the preferred
serviceAccount.

Solution

Add the imagePullSecrets name to the default serviceAccount or the preferred serviceAccount.

For example:

kind: ServiceAccount

metadata:

  name: default

  namespace: my-workload-namespace

imagePullSecrets:

  - name: registry-credentials # ensure this secret is defined

secrets:

- name: registry-credentials

Convention Service Resources for Cartographer
Conventions

This reference topic describes the convention service resources you can use with Cartographer
Conventions.

Overview

Tanzu Application Platform v1.4

VMware by Broadcom 813



There are several resources involved in the application of conventions to workloads.

API Structure

The PodConventionContext API object in the webhooks.conventions.carto.run API group is the
structure used for both request and response from the convention server.

Template Status

The enriched PodTemplateSpec is reflected at .status.template. For more information about
PodTemplateSpec, see the Kubernetes documentation.

Chaining Multiple Conventions
You can define multiple ClusterPodConventions and apply them to different types of workloads.
You can also apply multiple conventions to a single workload.

The PodIntent reconciler lists all ClusterPodConvention resources and applies them serially. To
ensure the consistency of enriched PodTemplateSpec, the list of ClusterPodConventionsis sorted
alphabetically by name before applying conventions. You can use strategic naming to control the
order in which the conventions are applied.

After the conventions are applied, the Ready status condition on the PodIntent resource is used to
indicate whether it is applied successfully. A list of all applied conventions is stored under the
annotation conventions.carto.run/applied-conventions.

Collecting Logs from the Controller
The convention controller is a Kubernetes operator and can be deployed in a cluster with other
components. If you have trouble, you can retrieve and examine the logs from the controller to help
identify issues.

To retrieve Pod logs from the conventions-controller-manager running in the conventions-system
namespace:

kubectl -n conventions-system logs -l control-plane=controller-manager

For example:

...

{"level":"info","ts":1637073467.3334172,"logger":"controllers.PodIntent.PodIntent.Appl

yConventions","msg":"applied convention","diff":"  interface{}(\n- \ts\"&PodTemplateSp

ec{ObjectMeta:{      0 0001-01-01 00:00:00 +0000 UTC <nil> <nil> map[app.kubernetes.i

o/component:run app.kubernetes.io/part-of:spring-petclinic-app-db carto.run/workload-n

ame:spring-petclinic-app-db] map[developer.conventions/target-container\"...,\n+ \tv1.

PodTemplateSpec{\n+ \t\tObjectMeta: v1.ObjectMeta{\n+ \t\t\tLabels: map[string]string

{\n+ \t\t\t\t\"app.kubernetes.io/component\": \"run\",\n+ \t\t\t\t\"app.kubernetes.io/

part-of\":   \"spring-petclinic-app-db\",\n+ \t\t\t\t\"carto.run/workload-name\":     

\"spring-petclinic-app-db\",\n+ \t\t\t\t\"tanzu.app.live.view\":         \"true\",\n+ 

\t\t\t\t...\n+ \t\t\t},\n+ \t\t\tAnnotations: map[string]string{\"developer.convention

s/target-containers\": \"workload\"},\n+ \t\t},\n+ \t\tSpec: v1.PodSpec{Containers: []

v1.Container{{...}}, ServiceAccountName: \"default\"},\n+ \t},\n  )\n","convention":"a

ppliveview-sample"}

...

References

ImageConfig

Tanzu Application Platform v1.4

VMware by Broadcom 814

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


PodConventionContextSpec

PodConventionContextStatus

PodConventionContext

ClusterPodConvention

PodIntent

BOM

Convention Service Resources for Cartographer
Conventions
This reference topic describes the convention service resources you can use with Cartographer
Conventions.

Overview
There are several resources involved in the application of conventions to workloads.

API Structure

The PodConventionContext API object in the webhooks.conventions.carto.run API group is the
structure used for both request and response from the convention server.

Template Status

The enriched PodTemplateSpec is reflected at .status.template. For more information about
PodTemplateSpec, see the Kubernetes documentation.

Chaining Multiple Conventions

You can define multiple ClusterPodConventions and apply them to different types of workloads.
You can also apply multiple conventions to a single workload.

The PodIntent reconciler lists all ClusterPodConvention resources and applies them serially. To
ensure the consistency of enriched PodTemplateSpec, the list of ClusterPodConventionsis sorted
alphabetically by name before applying conventions. You can use strategic naming to control the
order in which the conventions are applied.

After the conventions are applied, the Ready status condition on the PodIntent resource is used to
indicate whether it is applied successfully. A list of all applied conventions is stored under the
annotation conventions.carto.run/applied-conventions.

Collecting Logs from the Controller

The convention controller is a Kubernetes operator and can be deployed in a cluster with other
components. If you have trouble, you can retrieve and examine the logs from the controller to help
identify issues.

To retrieve Pod logs from the conventions-controller-manager running in the conventions-system
namespace:

kubectl -n conventions-system logs -l control-plane=controller-manager

For example:

Tanzu Application Platform v1.4

VMware by Broadcom 815

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


...

{"level":"info","ts":1637073467.3334172,"logger":"controllers.PodIntent.PodIntent.Appl

yConventions","msg":"applied convention","diff":"  interface{}(\n- \ts\"&PodTemplateSp

ec{ObjectMeta:{      0 0001-01-01 00:00:00 +0000 UTC <nil> <nil> map[app.kubernetes.i

o/component:run app.kubernetes.io/part-of:spring-petclinic-app-db carto.run/workload-n

ame:spring-petclinic-app-db] map[developer.conventions/target-container\"...,\n+ \tv1.

PodTemplateSpec{\n+ \t\tObjectMeta: v1.ObjectMeta{\n+ \t\t\tLabels: map[string]string

{\n+ \t\t\t\t\"app.kubernetes.io/component\": \"run\",\n+ \t\t\t\t\"app.kubernetes.io/

part-of\":   \"spring-petclinic-app-db\",\n+ \t\t\t\t\"carto.run/workload-name\":     

\"spring-petclinic-app-db\",\n+ \t\t\t\t\"tanzu.app.live.view\":         \"true\",\n+ 

\t\t\t\t...\n+ \t\t\t},\n+ \t\t\tAnnotations: map[string]string{\"developer.convention

s/target-containers\": \"workload\"},\n+ \t\t},\n+ \t\tSpec: v1.PodSpec{Containers: []

v1.Container{{...}}, ServiceAccountName: \"default\"},\n+ \t},\n  )\n","convention":"a

ppliveview-sample"}

...

References

ImageConfig

PodConventionContextSpec

PodConventionContextStatus

PodConventionContext

ClusterPodConvention

PodIntent

BOM

ImageConfig for Cartographer Conventions

This reference topic describes the ImageConfig object you can use with Cartographer Conventions.

Overview

The image configuration object holds the name of the image, the BOM, and the OCI image
configuration with image metadata from the repository.

OCI image configuration contains the metadata from the image repository.

The BOM represents the content of the image and may be zero or more per image.

{

  "name": "oci-image-name",

  "boms": [{

      "name": "bom-name",

      "raw": "`a byte array`"

  }],

  "config": {

      {

        "created": "2015-10-31T22:22:56.015925234Z",

        "author": "Alyssa P. Hacker <alyspdev@example.com>",

        "architecture": "amd64",

        "os": "linux",

        "config": {

            "User": "alice",

            "ExposedPorts": {

                "8080/tcp": {}

            },

            "Env": [

Tanzu Application Platform v1.4

VMware by Broadcom 816

https://github.com/opencontainers/image-spec/blob/main/config.md
https://github.com/opencontainers/image-spec/blob/main/config.md


                "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",

                "FOO=oci_is_a",

                "BAR=well_written_spec"

            ],

            "Entrypoint": [

                "/bin/my-app-binary"

            ],

            "Cmd": [

                "--foreground",

                "--config",

                "/etc/my-app.d/default.cfg"

            ],

            "Volumes": {

                "/var/job-result-data": {},

                "/var/log/my-app-logs": {}

            },

            "WorkingDir": "/home/alice",

            "Labels": {

                "com.example.project.git.url": "https://example.com/project.git",

                "com.example.project.git.commit": "45a939b2999782a3f005621a8d0f29aa387

e1d6b"

            }

        },

        "rootfs": {

        "diff_ids": [

            "sha256:c6f988f4874bb0add23a778f753c65efe992244e148a1d2ec2a8b664fb66bbd1",

            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"

        ],

        "type": "layers"

        },

        "history": [

        {

            "created": "2015-10-31T22:22:54.690851953Z",

            "created_by": "/bin/sh -c #(nop) ADD file:a3bc1e842b69636f9df5256c49c5374f

b4eef1e281fe3f282c65fb853ee171c5 in /"

        },

        {

            "created": "2015-10-31T22:22:55.613815829Z",

            "created_by": "/bin/sh -c #(nop) CMD [\"sh\"]",

            "empty_layer": true

        },

        {

            "created": "2015-10-31T22:22:56.329850019Z",

            "created_by": "/bin/sh -c apk add curl"

        }

        ]

    }

  }

}

PodConventionContextSpec for Cartographer Conventions

This reference topic describes the PodConventionContextSpec you can use with Cartographer
Conventions.

Overview

The Pod convention context specification is a wrapper of the PodTemplateSpec and the
ImageConfig provided in the request body of the server. It represents the original PodTemplateSpec.
For more information on PodTemplateSpec, see the Kubernetes documentation.

{

"template": {

Tanzu Application Platform v1.4

VMware by Broadcom 817

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


    "metadata": {

        ...

    },

    "spec": {

        ...

    }

},

"imageConfig": {

    ...

  "name": "oci-image-name",

  "config": {

        ...

    }

  }

}

PodConventionContextStatus for Cartographer
Conventions
This reference topic describes the PodConventionContextStatus status type that you can use with
Cartographer Conventions.

Overview
The Pod convention context status type is used to represent the current status of the context
retrieved by the request. It holds the applied conventions by the server and the modified version of
the PodTemplateSpec. For more information about PodTemplateSpec, see the Kubernetes
documentation.

The field .template is populated with the enriched PodTemplateSpec. The field
.appliedConventions is populated with the names of any applied conventions.

{

    "template": {

        "metadata": {

            ...

        },

        "spec": {

            ...

        }

    },

    "appliedConventions": [

        "convention-1",

        "convention-2",

        "convention-4"

    ]

}

yaml version:

---

apiVersion: webhooks.conventions.carto.run/v1alpha1

kind: PodConventionContext

metadata:

  name: sample # the name of the ClusterPodConvention

spec: # the request

  imageConfig:

  template:

    <corev1.PodTemplateSpec>

status: # the response

  appliedConventions: # list of names of conventions applied

Tanzu Application Platform v1.4

VMware by Broadcom 818

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


  - my-convention

  template:

  spec:

      containers:

      - name : workload

        image: helloworld-go-mod

PodConventionContext for Cartographer Conventions

This reference topic describes the PodConventionContext that you can use with Cartographer
Conventions.

Overview

The Pod convention context is the body of the webhook request and response. The specification is
provided by the convention controller and the status is set by the convention server.

The context is a wrapper of the individual object description in an API (TypeMeta), the persistent
metadata of a resource (ObjectMeta), the PodConventionContextSpec and the
PodConventionContextStatus.

PodConventionContext Objects

In the PodConventionContext API resource:

Object path .spec.template field defines the PodTemplateSpec to be enriched by
conventions. For more information about PodTemplateSpec, see the Kubernetes
documentation.

Object path .spec.imageConfig[] field defines ImageConfig. Each entry of it is populated
with the name of the image (.spec.imageConfig[].image) and its OCI metadata
(.spec.imageConfig[].config). These entries are generated for each image referenced in
PodTemplateSpec (.spec.template).

The following is an example of a PodConventionContext resource request received by the
convention server. This resource is generated for a Go language-based application image in GitHub.
It is built with Cloud Native Paketo Buildpacks that use Go mod for dependency management.

---

apiVersion: webhooks.conventions.carto.run/v1alpha1

kind: PodConventionContext

metadata:

  name: sample # the name of the ClusterPodConvention

spec: # the request

  imageConfig: # one entry per image referenced by the PodTemplateSpec

  - image: sample/go-based-image

    boms:

    - name: cnb-app:.../sbom.cdx.json

      raw: ...

    config:

      entrypoint:

      - "/cnb/process/web"

      domainname: ""

      architecture: "amd64"

      image: "sha256:05b698a4949db54fdb36ea431477867abf51054abd0cbfcfd1bb81cda1842288"

      labels:

        "io.buildpacks.stack.distro.version": "18.04"

        "io.buildpacks.stack.homepage": "https://github.com/paketo-buildpacks/stacks"

        "io.buildpacks.stack.id": "io.buildpacks.stacks.bionic"

        "io.buildpacks.stack.maintainer": "Paketo Buildpacks"

        "io.buildpacks.stack.distro.name": "Ubuntu"

Tanzu Application Platform v1.4

VMware by Broadcom 819

https://kubernetes.io/docs/reference/kubernetes-api/common-definitions/object-meta/#ObjectMeta
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://github.com/paketo-buildpacks/samples/tree/main/go/mod


        "io.buildpacks.stack.metadata": `{"app":[{"sha":"sha256:ea4ec23266a3af1204fd64

3de0f3572dd8dbb5697a5ef15bdae844777c19bf8f"}],

        "buildpacks":[{"key":"paketo-buildpac`...,

        "io.buildpacks.build.metadata": `{"bom":[{"name":"go","metadata":{"licenses":

[],"name":"Go","sha256":"7fef8ba6a0786143efcce66b0bbfbfbab02afeef522b4e09833c5b550d7

`...

  template:

    spec:

      containers:

      - name : workload

        image: helloworld-go-mod

PodConventionContext Structure

This section introduces more information about the image configuration in PodConventionContext.
The convention-controller passes this information for each image in good faith. The controller is not
the source of the metadata, and there is no guarantee that the information is correct.

The config field in the image configuration passes through the OCI Image metadata in GitHub
loaded from the registry for the image.

The boms field in the image configuration passes through the BOMs of the image. Conventions
might parse the BOMs they want to inspect. There is no guarantee that an image contains a BOM
or that the BOM is in a certain format.

ClusterPodConvention for Cartographer Conventions

This reference topic describes the ClusterPodConvention that you can use with Cartographer
Conventions.

Overview

ClusterPodConvention defines a way to connect to convention servers. It provides a way to apply a
set of conventions to a PodTemplateSpec and the artifact metadata. A convention will typically focus
on a particular application framework, but may be cross cutting. Applied conventions must be pure
functions.

Define conventions

Webhook servers are the only way to define conventions.

apiVersion: conventions.carto.run/v1alpha1

kind: ClusterPodConvention

metadata:

  name: base-convention

  annotations:

    conventions.carto.run/inject-ca-from: "convention-template/webhook-cert"

spec:

  selectorTarget: PodTemplateSpec # optional, defaults to PodTemplateSpec; field optio

ns include PodTemplateSpec|PodIntent  

  webhook:

    clientConfig:

      service:

        name: webhook

        namespace: convention-template

PodIntent for Cartographer Conventions

Tanzu Application Platform v1.4

VMware by Broadcom 820

https://github.com/opencontainers/image-spec/blob/main/config.md


This reference topic describes PodIntent that you can use with Cartographer Conventions.

Overview

The conditional criteria governing the application of a convention is customizable and is based on
the evaluation of a custom Kubernetes resource called PodIntent.

PodIntent applies conventions to a workload. A PodIntent is created, or updated, when a workload
is run by using a Tanzu Application Platform supply chain.

The .spec.template’s PodTemplateSpec is enriched by the conventions and exposed as the
.status.templates PodTemplateSpec. A log of which sources and conventions are applied is
captured with the conventions.carto.run/applied-conventions annotation on the
PodTemplateSpec.

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  name: sample

spec:

  template:

    spec:

      containers:

      - name: workload

        image: ubuntu

BOM for Cartographer Conventions

This reference topic describes the BOM structure you can use with Cartographer Conventions.

Overview

The BOM is a type/structure wrapping a Software Bill of Materials (SBOM) describing the software
components and their dependencies.

Structure

The structure of the BOM is defined as follows:

{

  "name": "BOM-NAME",

  "raw": "BYTE-ARRAY"

}

Where:

BOM-NAME is the prefix cnb-sbom:, followed by the location of the BOM definition in the layer
for a cloud native buildpack (CNB) SBOM. For example: cnb-
sbom:/layers/sbom/launch/paketo-buildpacks_executable-jar/sbom.cdx.json. For a non-
CNB SBOM, the value of name might change.

BYTE-ARRAY: The content of the BOM. The content may be in any format or encoding.
Consult the name to infer how the content is structured.

The convention controller forwards BOMs to the convention servers that it can discover from
known sources, including:

CNB-SBOM

Tanzu Application Platform v1.4

VMware by Broadcom 821

https://github.com/buildpacks/rfcs/blob/main/text/0095-sbom.md


Overview of cert-manager

cert-manager adds certificates and certificate issuers as resource types to Kubernetes clusters. It
also helps you to obtain, renew, and use those certificates. For more information about cert-
manager, see cert-manager documentation.

The cert-manager package allows you to, optionally, configure a number of ClusterIssuer. When
you install Tanzu Application Platform by using profiles, a self-signed ClusterIssuer is included by
default.

As of cert-manager.tanzu.vmware.com/2.0.0, versioning departs from the upstream, open-source
project’s version. The contained cert-manager version is reflected in
Package.spec.includedSoftware. You can identify the version of cert-manager as follows:

kubectl get package -n tap-install cert-manager.tanzu.vmware.com.2.0.0 -ojsonpath='{.s

pec.includedSoftware}' | jq

[

 {

   "description": "X.509 certificate management for Kubernetes and OpenShift",

   "displayName": "cert-manager",

   "version": "1.9.1"

 }

]

Overview of cert-manager
cert-manager adds certificates and certificate issuers as resource types to Kubernetes clusters. It
also helps you to obtain, renew, and use those certificates. For more information about cert-
manager, see cert-manager documentation.

The cert-manager package allows you to, optionally, configure a number of ClusterIssuer. When
you install Tanzu Application Platform by using profiles, a self-signed ClusterIssuer is included by
default.

As of cert-manager.tanzu.vmware.com/2.0.0, versioning departs from the upstream, open-source
project’s version. The contained cert-manager version is reflected in
Package.spec.includedSoftware. You can identify the version of cert-manager as follows:

kubectl get package -n tap-install cert-manager.tanzu.vmware.com.2.0.0 -ojsonpath='{.s

pec.includedSoftware}' | jq

[

 {

   "description": "X.509 certificate management for Kubernetes and OpenShift",

   "displayName": "cert-manager",

   "version": "1.9.1"

 }

]

Install cert-manager

This topic tells you how to install cert-manager from the Tanzu Application Platform (commonly
known as TAP) package repository.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 822

https://cert-manager.io/docs
https://cert-manager.io/docs


The cert-manager package installs cert-manager and, optionally, a number of ClusterIssuer.

To install cert-manager with a self-signed ClusterIssuer from the Tanzu Application Platform
package repository:

1. List version information for the package by running:

tanzu package available list cert-manager.tanzu.vmware.com -n tap-install

For example:

$ tanzu package available list cert-manager.tanzu.vmware.com -n tap-install

/ Retrieving package versions for cert-manager.tanzu.vmware.com...

  NAME                           VERSION           RELEASED-AT

  cert-manager.tanzu.vmware.com  2.0.0             ...

2. Discover available configuration for the package by running:

tanzu package available get cert-manager.tanzu.vmware.com/2.0.0 --namespace tap

-install --values-schema

For example:

$ tanzu package available get cert-manager.tanzu.vmware.com/2.0.0 --namespace t

ap-install --values-schema

KEY                   DEFAULT  TYPE    DESCRIPTION

certManager.pspNames  []       array   PodSecurityPolicy names which cert-manag

er is allowed to use

issuers               []       array   The ClusterIssuers to install - default: 

[]

namespace                      string  Cert-manager's namespace - also used as 

its cluster resource namespace

https://cert-manager.io/v1.9-docs/faq/cluster-resource/

3. Create a file named cert-manager-rbac.yaml by using the following sample:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: cert-manager-tap-install-cluster-admin-role

rules:

- apiGroups:

  - '*'

  resources:

  - '*'

  verbs:

  - '*'

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: cert-manager-tap-install-cluster-admin-role-binding

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: cert-manager-tap-install-cluster-admin-role

subjects:

Follow the steps in this topic if you do not want to use a profile to install cert-
manager. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 823



- kind: ServiceAccount

  name: cert-manager-tap-install-sa

  namespace: tap-install

---

apiVersion: v1

kind: ServiceAccount

metadata:

  name: cert-manager-tap-install-sa

  namespace: tap-install

Apply the configuration:

kubectl apply -f cert-manager-rbac.yaml

4. Create a file named cert-manager-install.yaml by using the following sample:

---

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

  name: cert-manager

  namespace: tap-install

spec:

  serviceAccountName: cert-manager-tap-install-sa

  packageRef:

    refName: cert-manager.tanzu.vmware.com

    versionSelection:

      constraints: "VERSION-NUMBER"

      prereleases: {}

  values:

    - secretRef:

        name: cert-manager-values

---

apiVersion: v1

kind: Secret

metadata:

  name: cert-manager-values

  namespace: tap-install

stringData:

  values.yaml: |

    issuers:

      - name: tap-ingress-selfsigned

        self_signed: {}

Where:

VERSION-NUMBER is the version of the package listed earlier.

Secret cert-manager-values contains your configuration of the cert-manager
package.

Apply the configuration:

kubectl apply -f cert-manager-install.yaml

5. Verify the package installation:

tanzu package installed get cert-manager -n tap-install

For example:

$ tanzu package installed get cert-manager -n tap-install

/ Retrieving installation details for cert-manager...

Tanzu Application Platform v1.4

VMware by Broadcom 824



NAME:                    cert-manager

PACKAGE-NAME:            cert-manager.tanzu.vmware.com

PACKAGE-VERSION:         2.0.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True}]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

6. Verify that cert-manager is up and running:

kubectl get deployment -n cert-manager

For example:

$ kubectl get deployment -n cert-manager

NAME                      READY   UP-TO-DATE   AVAILABLE   AGE

cert-manager              1/1     1            1           5m

cert-manager-cainjector   1/1     1            1           5m

cert-manager-webhook      1/1     1            1           5m

7. Verify that the self-signed ClusterIssuer is present:

kubectl get clusterissuer

For example:

$ kubectl get clusterissuer

NAME                               READY   AGE

tap-ingress-selfsigned             True    5m

tap-ingress-selfsigned-bootstrap   True    5m

...

Overview of Cloud Native Runtimes

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is based on
Knative and runs on a single Kubernetes cluster.

To learn more about Cloud Native Runtimes, see Cloud Native Runtimes for VMware Tanzu.

Overview of Cloud Native Runtimes

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is based on
Knative and runs on a single Kubernetes cluster.

To learn more about Cloud Native Runtimes, see Cloud Native Runtimes for VMware Tanzu.

Install Cloud Native Runtimes

This topic describes how you can install Cloud Native Runtimes from the Tanzu Application Platform
package repository.

Note

Follow the steps in this topic if you do not want to use a profile to install Cloud
Native Runtimes. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 825

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/index.html


Prerequisites

Before installing Cloud Native Runtimes:

Complete all prerequisites to install Tanzu Application Platform. See Prerequisites.

Ensure that Contour v1.22.0 or later is installed. Tanzu Application Platform includes a
correctly versioned package of Contour if you do not have it installed already.

Install

To install Cloud Native Runtimes:

1. List version information for the package by running:

tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

- Retrieving package versions for cnrs.tanzu.vmware.com...

  NAME                   VERSION  RELEASED-AT

  cnrs.tanzu.vmware.com  2.1.0    2022-12-08 16:00:00 -0800 PST

2. (Optional) Make changes to the default installation settings:

1. Gather values schema.

tanzu package available get cnrs.tanzu.vmware.com/2.1.0 --values-schema -

n tap-install

For example:

$ tanzu package available get cnrs.tanzu.vmware.com/2.1.0 --values-schema 

-n tap-install

| Retrieving package details for cnrs.tanzu.vmware.com/2.1.0...

  KEY                         DEFAULT                               TYPE     

DESCRIPTION

  https_redirection           true                                  boole

an  CNRs ingress will send a 301 redirect for all http connections, askin

g the clients to use HTTPS

  ingress.internal.namespace  tanzu-system-ingress                  strin

g   Required. Specify a namespace where an existing Contour is installed 

on your cluster. CNR will use this Contour instance for internal service

s.

  ingress.external.namespace  tanzu-system-ingress                  strin

g   Required. Specify a namespace where an existing Contour is installed 

on your cluster. CNR will use this Contour instance for external service

s.

  ingress_issuer                                                    strin

g   Cluster issuer to be used in CNRs. To use this property the domain_na

me or domain_config must be set. Under the hood, when this property is se

t auto-tls is Enabled.

  namespace_selector                                                strin

g   Specifies a LabelSelector which determines which namespaces should ha

ve a wildcard certificate provisioned. Set this property only if the Clus

ter issuer is type DNS-01 challenge.

  domain_config               <nil>                                 <nil>    

Optional. Overrides the Knative Serving "config-domain" ConfigMap, allowi

ng you to map Knative Services to specific domains. Must be valid YAML an

d conform to the "config-domain" specification.

  domain_template             {{.Name}}.{{.Namespace}}.{{.Domain}}  strin

g   Optional. Specifies the golang text template string to use when const

Tanzu Application Platform v1.4

VMware by Broadcom 826



ructing the DNS name for a Knative Service.

  lite.enable                 false                                 <nil>    

Optional. Set to "true" to enable lite mode. Reduces CPU and Memory resou

rce requests for all cnrs Deployments, Daemonsets, and StatefulSets by ha

lf. Not recommended for production.

  pdb.enable                  true                                  <nil>    

Optional. Set to true to enable a PodDisruptionBudget for the Knative Ser

ving activator and webhook deployments.

  default_tls_secret                                                strin

g   Optional. Specify a fallback TLS Certificate for use by Knative Servi

ces if autoTLS is disabled. Will set default exterenal scheme for Knative 

Service URLs to "https". Requires either "domain_name" or "domain_config" 

to be set.

  kubernetes_version          0.0.0                                 <nil>    

Optional. Version of K8s infrastructure being used. Supported Values: val

id Kubernetes major.minor.patch versions

  ca_cert_data                                                      strin

g   Optional. PEM Encoded certificate data to trust TLS connections with 

a private CA.

  provider                    <nil>                                 <nil>    

Deprecated. Instead, use "lite.enable" and "pdb.enable" options combined. 

Supported Values: local

  domain_name                                                       strin

g   Optional. Default domain name for Knative Services.

  kubernetes_distribution     <nil>                                 <nil>    

Optional. Type of K8s infrastructure being used. Supported Values: opensh

ift

2. Create a cnr-values.yaml by using the following sample as a guide:

---

domain_name: example.com

ingress:

external:

    namespace: tanzu-system-ingress

internal:

    namespace: tanzu-system-ingress

If you are running on a single-node cluster, such as kind or minikube, set the
lite.enable: true option. This option reduces resources requests for Cloud Native
Runtimes deployments.

Cloud Native Runtimes uses the existing Contour installation in the tanzu-system-
ingress namespace by default for external and internal access.

If your environment has Contour installed already, and it is not the Tanzu Application
Platform provided Contour, you can configure Cloud Native Runtimes to use it. See
Installing Cloud Native Runtimes for Tanzu with an Existing Contour Installation in
the Cloud Native Runtimes documentation.

3. Install the package by running:

tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 2.1.0 -

n tap-install -f cnr-values.yaml --poll-timeout 30m

For example:

Note

For most installations, you can leave the cnr-values.yaml empty,
and use the default values.

Tanzu Application Platform v1.4

VMware by Broadcom 827

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/2.1/tanzu-cloud-native-runtimes/contour.html


$ tanzu package install cloud-native-runtimes -p cnrs.tanzu.vmware.com -v 2.1.0 

-n tap-install -f cnr-values.yaml --poll-timeout 30m

- Installing package 'cnrs.tanzu.vmware.com'

| Getting package metadata for 'cnrs.tanzu.vmware.com'

| Creating service account 'cloud-native-runtimes-tap-install-sa'

| Creating cluster admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Creating cluster role binding 'cloud-native-runtimes-tap-install-cluster-role

binding'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'cloud-native-runtimes' in namespace 'tap-install'

Use an empty file for cnr-values.yaml if you want the default installation configuration.
Otherwise, see the earlier step to learn more about setting installation configuration values.

4. Verify the package install by running:

tanzu package installed get cloud-native-runtimes -n tap-install

For example:

tanzu package installed get cloud-native-runtimes -n tap-install

| Retrieving installation details for cc...

NAME:                    cloud-native-runtimes

PACKAGE-NAME:            cnrs.tanzu.vmware.com

PACKAGE-VERSION:         2.1.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

5. Configure a namespace to use Cloud Native Runtimes:

Service accounts that run workloads using Cloud Native Runtimes need access to the image
pull secrets for the Tanzu package. This includes the default service account in a
namespace, which is created automatically but not associated with any image pull secrets.
Without these credentials, attempts to start a service fail with a timeout and the pods
report that they are unable to pull the queue-proxy image.

1. Create an image pull secret in the current namespace and fill it from the tap-
registry secret mentioned in Add the Tanzu Application Platform package
repository. Run these commands to create an empty secret and annotate it as a
target of the secretgen controller:

kubectl create secret generic pull-secret --from-literal=.dockerconfigjso

n={} --type=kubernetes.io/dockerconfigjson

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secre

t=""

Important

This step covers configuring a namespace to run Knative services. If you rely
on a SupplyChain to deploy Knative services into your cluster, skip this step
because namespace configuration is covered in Set up developer
namespaces to use your installed packages. Otherwise, you must follow
these steps for each namespace where you create Knative services.

Tanzu Application Platform v1.4

VMware by Broadcom 828



2. After you create a pull-secret secret in the same namespace as the service
account, run the following command to add the secret to the service account:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": 

"pull-secret"}]}'

3. Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default

For example:

kubectl describe sa default

Name:                default

Namespace:           default

Labels:              <none>

Annotations:         <none>

Image pull secrets:  pull-secret

Mountable secrets:   default-token-xh6p4

Tokens:              default-token-xh6p4

Events:              <none>

Overview of Contour

Contour is an ingress controller for Kubernetes that supports dynamic configuration updates and
multi-team ingress delegation. It provides the control plane for the Envoy edge and service proxy.
For more information about Contour, see Contour documentation.

Overview of Contour

Contour is an ingress controller for Kubernetes that supports dynamic configuration updates and
multi-team ingress delegation. It provides the control plane for the Envoy edge and service proxy.
For more information about Contour, see Contour documentation.

Install Contour

This topic tells you how to install Contour from the Tanzu Application Platform (commonly known as
TAP) package repository.

To install Contour from the Tanzu Application Platform package repository without a profile:

1. Install cert-manager.

2. List version information for the package by running:

Note

The service account has access to the pull-secret image pull
secret.

Note

Follow the steps in this topic if you do not want to use a profile to install Contour.
For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 829

https://projectcontour.io/docs/v1.22.0/
https://projectcontour.io/docs/v1.22.0/


tanzu package available list contour.tanzu.vmware.com -n tap-install

For example:

$  tanzu package available list contour.tanzu.vmware.com -n tap-install

- Retrieving package versions for contour.tanzu.vmware.com...

  NAME                      VERSION       RELEASED-AT

  contour.tanzu.vmware.com  1.22.0+tap.8  2022-12-05 19:00:00 -0500 EST

3. Create a file named contour-rbac.yaml by using the following sample and apply the
configuration:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: contour-tap-install-cluster-admin-role

rules:

- apiGroups:

  - '*'

  resources:

  - '*'

  verbs:

  - '*'

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: contour-tap-install-cluster-admin-role-binding

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: contour-tap-install-cluster-admin-role

subjects:

- kind: ServiceAccount

  name: contour-tap-install-sa

  namespace: tap-install

---

apiVersion: v1

kind: ServiceAccount

metadata:

  name: contour-tap-install-sa

  namespace: tap-install

4. Apply the configuration by running:

kubectl apply -f contour-rbac.yaml

5. Create a file named contour-install.yaml by using the following sample and apply the
configuration:

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

  name: contour

Note

The following configuration installs the Contour package with default
options. To make changes to the default installation settings, go to the next
step.

Tanzu Application Platform v1.4

VMware by Broadcom 830



  namespace: tap-install

spec:

  serviceAccountName: contour-tap-install-sa

  packageRef:

    refName: contour.tanzu.vmware.com

    versionSelection:

      constraints: "VERSION-NUMBER"

      prereleases: {}

Where VERSION-NUMBER is the version of the package listed earlier.

6. (Optional) Make changes to the default installation settings:

1. Gather values schema by running:

tanzu package available get contour.tanzu.vmware.com/1.22.0+tap.8 --value

s-schema -n tap-install

For example:

$ tanzu package available get contour.tanzu.vmware.com/1.22.0+tap.8 --val

ues-schema -n tap-install

  KEY                                  DEFAULT               TYPE     DES

CRIPTION

  kubernetes_version                   0.0.0                 string   Opt

ional. Version of K8s infrastructure being used. Supported Values: valid 

Kubernetes major.minor.patch versions

  namespace                            tanzu-system-ingress  string   The 

namespace in which to deploy Contour and Envoy.

  certificates.duration                8760h                 string   If 

using cert-manager, how long the certificates should be valid for. If use

CertManager is false, this field is ignored.

  certificates.renewBefore             360h                  string   If 

using cert-manager, how long before expiration the certificates should be 

renewed. If useCertManager is false, this field is ignored.

  contour.configFileContents           <nil>                 <nil>    The 

YAML contents of the Contour config file. See https://projectcontour.io/d

ocs/v1.22.0/configuration/#configuration-file for more information.

  contour.logLevel                     info                  string   The 

Contour log level. Valid options are 'info' and 'debug'.

  contour.replicas                     2                     integer  How 

many Contour pod replicas to have.

  contour.useProxyProtocol             false                 boolean  Whe

ther to enable PROXY protocol for all Envoy listeners.

  envoy.terminationGracePeriodSeconds  300                   integer  The 

termination grace period, in seconds, for the Envoy pods.

  envoy.workload.replicas              2                     integer  The 

number of Envoy replicas to deploy when 'type' is set to 'Deployment'. If 

not specified, it will default to '2'.

  envoy.workload.type                  DaemonSet             string   The 

type of Kubernetes workload Envoy is deployed as. Options are 'Deploymen

t' or 'DaemonSet'. If not specified, will default to 'DaemonSet'.

  envoy.hostNetwork                    false                 boolean  Whe

ther to enable host networking for the Envoy pods.

  envoy.hostPorts.enable               true                  boolean  Whe

ther to enable host ports. If false, http & https are ignored.

  envoy.hostPorts.http                 80                    integer  If 

enable == true, the host port number to expose Envoy's HTTP listener on.

  envoy.hostPorts.https                443                   integer  If 

enable == true, the host port number to expose Envoy's HTTPS listener on.

  envoy.logLevel                       info                  string   The 

Envoy log level.

  envoy.service.nodePorts.https        0                     integer  The 

node port number to expose Envoy's HTTPS listener on. If not specified, a 

node port will be auto-assigned by Kubernetes.

Tanzu Application Platform v1.4

VMware by Broadcom 831



  envoy.service.nodePorts.http         0                     integer  The 

node port number to expose Envoy's HTTP listener on. If not specified, a 

node port will be auto-assigned by Kubernetes.

  envoy.service.type                                         string   The 

type of Kubernetes service to provision for Envoy. If not specified, will 

default to 'NodePort' for docker and vsphere and 'LoadBalancer' for other

s.

  envoy.service.annotations            <nil>                 <nil>    Ann

otations to set on the Envoy service.

  envoy.service.aws.LBType             classic               string   AWS 

loadbalancer type.

  envoy.service.externalTrafficPolicy                        string   The 

external traffic policy for the Envoy service. If type is 'ClusterIP', th

is field is ignored. Otherwise, defaults to 'Cluster' for vsphere and 'Lo

cal' for others.

  envoy.service.loadBalancerIP                               string   The 

desired load balancer IP. If type is not 'LoadBalancer', this field is ig

nored. It is up to the cloud provider whether to honor this request. If n

ot specified, then load balancer IP will be assigned by the cloud provide

r.

  infrastructure_provider              vsphere               string   The 

underlying infrastructure provider. Valid values are `vsphere`, `aws` and 

`azure`.

  kubernetes_distribution                                    string   Kub

ernetes distribution that this package is being installed on. Supported v

alues: ['','openshift']

2. Create a contour-install.yaml file by using the following sample as a guide:

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

  name: contour

  namespace: tap-install

spec:

  serviceAccountName: contour-tap-install-sa

  packageRef:

    refName: contour.tanzu.vmware.com

    versionSelection:

      constraints: 1.22.0+tap.8

      prereleases: {}

  values:

  - secretRef:

      name: contour-values

---

apiVersion: v1

kind: Secret

metadata:

  name: contour-values

  namespace: tap-install

stringData:

  values.yaml: |

    envoy:

      service:

        type: LoadBalancer

    infrastructure_provider: aws

Note

This sample is for installation in an AWS public cloud with
LoadBalancer services.

Tanzu Application Platform v1.4

VMware by Broadcom 832



The LoadBalancer type is appropriate for most installations, but local clusters such as
kind or minikube can fail to complete the package install if LoadBalancer services
are not supported.

For local clusters, you can configure contour.evnoy.service.type to be NodePort. If
your local cluster is set up with extra port mappings on the nodes, you might also
need configure envoy.service.nodePorts.http and envoy.service.nodePorts.https
to match the port mappings from your local machine into one of the nodes of your
local cluster. This pattern is seen when using the Learning Center on Kind.

Contour provides an Ingress implementation by default. If you have another Ingress
implementation in your cluster, you must explicitly specify an IngressClass to select
a particular implementation.

Cloud Native Runtimes programs Contour HTTPRoutes are based on the installed
namespace. The default installation of CNR uses a single Contour to provide
internet-visible services. You can install a second Contour instance with service type
ClusterIP if you want to expose some services to only the local cluster. The second
instance must be installed in a separate namespace. You must set the CNR value
ingress.internal.namespace to point to this namespace.

7. Install the package by running:

kubectl apply -f contour-install.yaml

8. Verify the package install by running:

tanzu package installed get contour -n tap-install

For example:

$ tanzu package installed get contour -n tap-install

/ Retrieving installation details for contour...

NAME:                    contour

PACKAGE-NAME:            contour.tanzu.vmware.com

PACKAGE-VERSION:         1.22.0+tap.8

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

9. Verify the installation by running:

kubectl get po -n tanzu-system-ingress

For example:

$  kubectl get po -n tanzu-system-ingress

NAME                       READY   STATUS    RESTARTS   AGE

contour-857d46c845-4r6c5   1/1     Running   1          18d

contour-857d46c845-p6bbq   1/1     Running   1          18d

envoy-mxkjk                2/2     Running   2          18d

envoy-qlg8l                2/2     Running   2          18d

Ensure that all pods are Running with all containers ready.

Configure Cipher Suites and TLS version in Contour

Tanzu Application Platform v1.4

VMware by Broadcom 833

https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-class


This topic tells you how to configure TLS options for Contour in Tanzu Application Platform
(commonly known as TAP).

Contour provides configuration options for TLS version and Cipher Suites. Rather than directly
exposed through a top level key in the pacakge, they fall into the category of advanced Contour
configurations by using the contour.configFileContents key. For more information about these
configuration options, see Contour documentation.

To configure TLS options for Contour in Tanzu Application Platform, edit the contour section of
your TAP values file as follows:

contour:

  # ... there maybe some configuration already here

  contour:

    configFileContents:

      tls:

        minimum-protocol-version: "1.2"

        cipher-suites:

        - '[ECDHE-ECDSA-AES128-GCM-SHA256|ECDHE-ECDSA-CHACHA20-POLY1305]'

        - '[ECDHE-RSA-AES128-GCM-SHA256|ECDHE-RSA-CHACHA20-POLY1305]'

        - 'ECDHE-ECDSA-AES256-GCM-SHA384'

        - 'ECDHE-RSA-AES256-GCM-SHA384'

Expect to see the following Cipher Suites and TLS version data in the Contour configmap:

$ kubectl -n tanzu-system-ingress get configmap contour -oyaml

apiVersion: v1

data:

  contour.yaml: |

    tls:

      minimum-protocol-version: "1.2"

      cipher-suites:

      - '[ECDHE-ECDSA-AES128-GCM-SHA256|ECDHE-ECDSA-CHACHA20-POLY1305]'

      - '[ECDHE-RSA-AES128-GCM-SHA256|ECDHE-RSA-CHACHA20-POLY1305]'

      - ECDHE-ECDSA-AES256-GCM-SHA384

      - ECDHE-RSA-AES256-GCM-SHA384

kind: ConfigMap

metadata:

...

Configure Contour

This topic tells you how to configure Contour to best suit your cluster.

By default, Contour installs with the Controllers as a Deployment and the Envoys as a DaemonSet. In
most cases, this is sufficient. However, VMware recommends running Envoy as a Deployment in the
following scenarios:

Smaller Clusters

Larger Clusters

Smaller Clusters

Important

To update the configmap, you must configure it through Tanzu Application Platform
values file. If you change it directly in the configmap, kapp-controller reverts all the
changes you made.

Tanzu Application Platform v1.4

VMware by Broadcom 834

https://projectcontour.io/docs/v1.23.1/configuration/


On most clusters, a DaemonSet works without any issues. However, if you limit resources per node
and the nodes are heavily used, deploying Envoy as a DaemonSet might consume unnecessary
resources on every node. In this case, VMware recommends using Deployment with a fixed number
of replicas.

Larger Clusters

On larger clusters, running Envoy as a DaemonSet might be inefficient. The more Envoys in the
cluster, the more resources the Contour controller needs to keep them updated. If the Contour
controllers use lots of resources, VMware recommends running Envoy as a Deployment.

Configuring Envoy as a Deployment

To configure Envoy as a Deployment, update your Contour values file as follows:

envoy:

  workload:

    type: Deployment

    replicas: N

If you use a Tanzu Application Platform values file, you can add the these configurations to the
contour section.

Overview of Eventing

Eventing in Tanzu Application Platform (commonly known as TAP) is a collection of APIs based on
Knative Eventing that allows the use of an event-driven architecture with your applications.

Overview of Eventing

Eventing in Tanzu Application Platform (commonly known as TAP) is a collection of APIs based on
Knative Eventing that allows the use of an event-driven architecture with your applications.

Install Eventing

This topic tells you how to install the Eventing package from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites
Before installing Eventing:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install
To install Eventing:

Note

Follow the steps in this topic if you do not want to use a profile to install Eventing.
For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 835

https://knative.dev/docs/eventing/
https://knative.dev/docs/eventing/


1. List version information for the package by running:

tanzu package available list eventing.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list eventing.tanzu.vmware.com --namespace tap-instal

l

- Retrieving package versions for eventing.tanzu.vmware.com...

  NAME                   VERSION  RELEASED-AT

  eventing.tanzu.vmware.com  2.0.1    2022-10-11T00:00:00Z

2. (Optional) Make changes to the default installation settings:

1. Gather values schema.

tanzu package available get eventing.tanzu.vmware.com/2.0.1 --values-sche

ma -n tap-install

For example:

$ tanzu package available get eventing.tanzu.vmware.com/2.0.1 --values-sc

hema -n tap-install

| Retrieving package details for eventing.tanzu.vmware.com/2.0.1...

  KEY           DEFAULT  TYPE     DESCRIPTION

  lite.enable   false    boolean  Optional: Not recommended for productio

n. Set to "true" to reduce CPU and Memory resource requests for all Event

ing Deployments, Daemonsets, and Statefulsets by half. On by default when 

"provider" is set to "local".

  pdb.enable    true     boolean  Optional: Set to true to enable Pod Dis

ruption Budget. If provider local is set to "local", the PDB will be disa

bled automatically.

  provider      <nil>    string   Optional: Kubernetes cluster provider. 

To be specified if deploying Eventing on a local Kubernetes cluster provi

der.

2. Create a eventing-values.yaml by using the following sample eventing-
values.yaml as a guide:

---

lite:

  enable: true

If you run on a single-node cluster, such as kind or minikube, set the lite.enable:
property to true. This option reduces resources requests for Eventing deployments.

3. Install the package by running:

tanzu package install eventing -p eventing.tanzu.vmware.com -v 2.0.1 -n tap-ins

tall -f eventing-values.yaml --poll-timeout 30m

For example:

$ tanzu package install eventing -p eventing.tanzu.vmware.com -v 2.0.1 -n tap-i

nstall -f eventing-values.yaml --poll-timeout 30m

Note

For most installations, you can leave the eventing-values.yaml
empty, and use the default values.

Tanzu Application Platform v1.4

VMware by Broadcom 836



- Installing package 'eventing.tanzu.vmware.com'

| Getting package metadata for 'eventing.tanzu.vmware.com'

| Creating service account 'eventing-tap-install-sa'

| Creating cluster admin role 'eventing-tap-install-cluster-role'

| Creating cluster role binding 'eventing-tap-install-cluster-rolebinding'

| Creating secret 'eventing-tap-install-values'

| Creating package resource

| Waiting for 'PackageInstall' reconciliation for 'eventing'

| 'PackageInstall' resource install status: Reconciling

Added installed package 'eventing'

Use an empty file for eventing-values.yaml to enable default installation configuration.
Otherwise, see the previous step to set installation configuration values.

4. Verify the package install by running:

tanzu package installed get eventing -n tap-install

For example:

tanzu package installed get eventing -n tap-install

| Retrieving installation details for eventing...

NAME:                    eventing

PACKAGE-NAME:            eventing.tanzu.vmware.com

PACKAGE-VERSION:         2.0.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Namespace Provisioner
Namespace Provisioner provides a secure, automated way for you to provision namespaces with
the resources and namespace-level privileges required for your workloads to function as intended
in TAnzu Application Platform (commonly known as TAP).

Description
Namespace Provisioner enables platform operators to add additional customized namespace-
scoped resources using GitOps to meet their organization’s requirements and provides continuous
reconciliation using the kapp-controller to maintain the desired state of the namespace-scoped
resources.

Namespace Provisioner enables operators that are new to Kubernetes to automate the
provisioning of multiple developer namespaces in a shared cluster. For organizations that have
already adopted Kubernetes, Namespace Provisioner is also compatible with existing Kubernetes
tooling.

Component Overview
The following diagram shows the components that are installed as part of the Namespace
Provisioner package and how they work together to automate resource creation in developer
namespaces:

Tanzu Application Platform v1.4

VMware by Broadcom 837



Provisioner Carvel Application

Namespace Provisioner consists of a Carvel application named provisioner that is installed in the
tap-namespace-provisioning namespace. The provisioner application uses ytt to templatize a set of
resources into installations in multiple namespaces. The provisioner application references a
ConfigMap and a secret.

Desired Namespaces ConfigMap

Tanzu Application Platform v1.4

VMware by Broadcom 838

https://carvel.dev/kapp-controller/docs/latest/app-overview/


The desired-namespaces ConfigMap in the tap-namespace-provisioning namespace provides a
declarative way to indicate which namespaces should be populated with resources. The ConfigMap
consists of a list of namespace objects, with a required name parameter, and optional additional
parameters which are used as data.values for customizing defined resources. Manage the
ConfigMap directly with GitOps, or the Namespace Provisioner Controller.

Example

---

apiVersion: v1

kind: ConfigMap

metadata:

  name: desired-namespaces

  namespace: tap-namespace-provisioning

  annotations:

    kapp.k14s.io/create-strategy: fallback-on-update

    namespace-provisioner.apps.tanzu.vmware.com/no-overwrite: "" #! This annotation te

lls the provisioner app to not override this configMap as this is your desired state.

data:

  namespaces.yaml: |

    #@data/values

    ---

    namespaces:

    - name: dev-ns1

      # additional parameters about dev-ns1 in the object...

    - name: dev-ns2

      # additional parameters about dev-ns2 in the object...

Namespace Provisioner Controller

If you prefer to have the desired-namespaces ConfigMap automatically managed by a controller on
the cluster, use the Namespace Provisioner controller. It is installed as part of Namespace
Provisioner. It watches namespaces in the cluster and updates the desired-namespaces ConfigMap
in the tap-namespace-provisioning namespace with a list of namespaces that match the
namespace_selector label selector in tap-values.yaml. The default label selector is configurable in
tap-values.yaml.

Default Resources Secret

The default-resources secret is templated by tap-values.yaml to contain the appropriate
resources for the given profile, set of supply chains installed, and other similar values. For the full

Tanzu Application Platform v1.4

VMware by Broadcom 839



list of resources that are created for different profiles, see Default resources mapping.

Expansion Template ConfigMap

The expansion-template ConfigMap contains the ytt logic to expand the resources defined in the
following locations into each of the namespaces listed in the desired-namespaces ConfigMap:

Default-resources secret

additional_sources in the namespace-provisioner config in the tap-values.yaml file

Install Namespace Provisioner

This topic tells you how to install Namespace Provisioner using a profile, and how to customize a
standard installation Namespace Provisioner in Tanzu Application Manager (commonly known as
TAP).

Namespace Provisioner is packaged and distributed using the Carvel set of tools. The Namespace
Provisioner Carvel package is published to the Tanzu Application Platform package repository and
two installation approaches are supported:

Install Namespace Provisioner

Install using a Profile

Customized Installation

Install using a Profile
To install Namespace Provisioner as part of a wider Tanzu Application Platform profile based
installation, see Installing Tanzu Application Platform.

The Namespace Provisioner package is installed as part of the standard installation profiles. The
default set of resources provisioned in a namespace is based on a combination of the Tanzu
Application Platform installation profile employed and the supply chain that is installed on the
cluster.

For a list of what resources are created for different profile and supply chain combinations, see
default resource mapping table.

Customized Installation
Run:

tanzu package available get namespace-provisioner.apps.tanzu.vmware.com/0.1.2 --values

-schema -n tap-install

The following values are configurable:

controller: Whether to install the controller that is part of the package. - Set to true (Default) to
manage the desired-namespaces ConfigMap automatically using a controller on the cluster. - Set to
false to populate the desired-namespaces ConfigMap using an external mechanism such as
GitOps, see Control the desired-namespaces ConfigMap via GitOps.

aws_iam_role_arn: If the installation is on AWS with EKS, use the selected IAM Role for
Kubernetes Service Accounts.

additional_sources: Add additional sources which contain Platform Operator templated resources
to be set on the provisioned namespaces using GitOps in addition to the default-resources that are
shipped with Tanzu Application Platform. - See the fetch section of the kapp App specification

Tanzu Application Platform v1.4

VMware by Broadcom 840

https://carvel.dev/kapp-controller/docs/v0.43.2/app-spec/


section for the format. Only the Git type fetch is supported. - See Extending the default
provisioned resources

namespace_selector: The label selector used by the controller to determine which
namespaces should be added to the desired-namespaces ConfigMap. See label selector in
the Kubernetes documentation.

Example snippet of tap-values.yaml:

...

namespace_provisioner:

  controller: true

  namespace_selector:

    matchExpressions:

    - key: apps.tanzu.vmware.com/tap-ns

      operator: Exists

  aws_iam_role_arn: "arn:aws:iam::123456789012:role/EKSIAMRole"

  additional_sources:

  # Patches the OOTB scan policy with a different rego data

  - git:

      ref: tap-1.4-np

      subPath: namespace-provisioner-gitops-examples/default-resources-overrides/overl

ays

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/customize

  # Add a custom workload service account and a bunch of git secrets

  - git:

      ref: tap-1.4-np

      subPath: namespace-provisioner-gitops-examples/custom-resources/workload-sa

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/workload-sa

...

Provision namespace resources

This topic tells you how to use Namespace Provisioner to provision namespace-scoped resources in
Tanzu Application Platform (commonly known as TAP).

There are two approaches to provisioning namespace-scoped resources supported:

Using Namespace Provisioner Controller is recommended for Tanzu Application Platform clusters
that:

include Out of the Box Supply Chain Basic

require only the default namespace-scoped resources to be provisioned

Using GitOps is required for Tanzu Application Platform clusters that meet any of the following:

include Out of the Box Supply Chain - Testing and Scanning

require customization or extension of the default namespace-scoped resources that are
provisioned

prefer to control which namespaces get provisioned with GitOps

Using Namespace Provisioner Controller

Ensure that the following prerequisites are met before provisioning namespace-scoped resources
using Namespace Provisioner Controller.

Prerequisites

Tanzu Application Platform v1.4

VMware by Broadcom 841

https://carvel.dev/kapp-controller/docs/v0.43.2/app-spec/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors


The Namespace Provisioner package is installed and reconciled.

The controller tap value key is set to true (Default is true).

The registry-credentials secret referenced by the Tanzu Build Service is added to tap-
install and exported to all namespaces. If you don’t want to export this secret to all
namespaces for any reason, you must complete an additional step to create this secret in
each namespace you want to provision.

Example secret creation, exported to all namespaces

tanzu secret registry add tbs-registry-credentials --server REGISTRY-SERVER --u

sername REGISTRY-USERNAME --password REGISTRY-PASSWORD --export-to-all-namespac

es --yes --namespace tap-install

Example secret creation for a specific namespace

tanzu secret registry add tbs-registry-credentials --server REGISTRY-SERVER --u

sername REGISTRY-USERNAME --password REGISTRY-PASSWORD --yes --namespace YOUR-N

EW-DEVELOPER-NAMESPACE

Provision a new developer namespace

Complete the following steps to provision a new developer namespace:

1. Create a namespace using kubectl or any other means

kubectl create namespace YOUR-NEW-DEVELOPER-NAMESPACE

2. Label your new developer namespace with the label selector apps.tanzu.vmware.com/tap-
ns=""

kubectl label namespaces YOUR-NEW-DEVELOPER-NAMESPACE apps.tanzu.vmware.com/tap

-ns=""

This label tells the controller to add this namespace to the desired-namespaces
ConfigMap.

The label’s value can be anything, including "".

If required, you can change the default label selector by configuring the
namespace_selector property/value in tap-values for namespace provisioner.

3. (Optional) This step is only required if the registry-credentials secret that was created
during Tanzu Application Platform Installation was not exported to all namespaces (see the
Prerequisites section above for details).

Add the registry-credentials secret referenced by the Tanzu Build Service to the
new namespace and patch the service account that will be used by the workload to
refer to this new secret.

tanzu secret registry add registry-credentials --server REGISTRY-SERVER -

-username REGISTRY-USERNAME --password REGISTRY-PASSWORD --yes --namespac

e YOUR-NEW-DEVELOPER-NAMESPACE

4. Run the following command to verify the correct resources were created in the namespace:

kubectl get secrets,serviceaccount,rolebinding,pods,workload,configmap -n YOUR-

NEW-DEVELOPER-NAMESPACE

Tanzu Application Platform v1.4

VMware by Broadcom 842



To see the list of resources that are provisioned in your namespace based on the
installation profile and supply chain values configured in your tap-values.yaml file,
see Default resources mapping.

Using GitOps

This section describes how to use GitOps to manage the list of namespaces in the desired-
namespaces ConfigMap instead of the built-in controller.

WARNING If there is a namespace in your GitOps repository desired-namespaces ConfigMap list
that does not exist on the cluster, the provisioner application fails to reconcile and cannot create
resources. Creation of the namespaces is out of the scope for the Namespace Provisioner package.

Prerequisites

The prerequisites for using GitOps are the same as those specified in the controller prerequisites
above except for the controller tap value key’s value as follows:

The controller tap value key is set to false (Default is true)

For more information about provisioning namespaces with GitOps, see Control the desired-
namespaces ConfigMap with GitOps.

Customize Namespace Provisioner

This topic describes advanced use cases associated with Namespace Provisioner in Tanzu
Application Platform (commonly known as TAP).

Data values templating guide

Customize your custom resources with data values from:

1. The tap-values.yaml file

2. The desired-namespaces ConfigMap.

Namespace Provisioner inherits all of the configuration in both the desired-namespaces ConfigMap
and the tap config under the key tap_values making it available to use as ytt data.values when
extending the resources via GitOps.

For example, if the desired-namespaces ConfigMap has a namespace dev-ns1 with an additional
language: java parameter, the data.values config that is available for templating custom resources
is as follows:

# data.values map that can be used for templating custom resources

tap_values:

  ...

  supply_chain: testing_scanning

  profile: full

  ootb_delivery_basic:

    service_account: default

  ootb_supply_chain_basic:

    service_account: default

  ootb_supply_chain_testing_scanning:

    scanning:

      image:

        policy: image-scan-policy

      source:

        policy: scan-policy

    service_account: default

Tanzu Application Platform v1.4

VMware by Broadcom 843



  ootb_supply_chain_testing:

    service_account: default

# Everything below this comes from desired-namespaces ConfigMap

name: dev-ns1

# additional parameters about dev-ns1 from desired-namespaces ConfigMap

language: java

You can use this config while creating custom resources to extend the default provisioned
resources.

Here’s a sample of a templated Tekton pipeline.

GitOps Customizations

Extending the default provisioned resources

To customize and extend the default configuration for the Namespace Provisioner that is templated
in the default-resources Secret, add additional sources in the tap-values.yaml configuration file.
For example, to adjust quota allocation or to create other namespace resources. For details of the
list of resources that are templated in the default-resources Secret, see Default Resource
Mapping.

This following are examples of additional sources:

This additional source points to an example of a workload service account yaml file. After
importing this source, Namespace Provisioner creates the following resources in all
namespaces listed in the desired-namespaces ConfigMap.

This additional source points to examples of ytt templated testing and scanpolicy. After
importing this source, Namespace Provisioner creates a scan-policy and a developer-
defined-tekton-pipeline-java in all namespaces in the desired-namespaces ConfigMap
with the default setup in Install OOTB Supply Chain with Testing and Scanning
documentation.

This additional source points to an example of a ytt templated scanpolicy yaml file. After
importing this source, Namespace Provisioner creates a snyk-scan-policy in all
namespaces in the desired-namespaces ConfigMap that has an additional parameter
scanpolicy: snyk.

This additional source points to examples of ytt templated tekton pipelines. After importing
this source, Namespace Provisioner creates a developer-defined-tekton-pipeline-python*

Tanzu Application Platform v1.4

VMware by Broadcom 844

https://github.com/vmware-tanzu/application-accelerator-samples/blob/tap-1.4-np/namespace-provisioner-gitops-examples/custom-resources/tekton-pipelines/python-test.yaml
https://github.com/vmware-tanzu/application-accelerator-samples/blob/tap-1.4-np/namespace-provisioner-gitops-examples/custom-resources/workload-sa/workload-sa-with-secrets.yaml
https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.4-np/namespace-provisioner-gitops-examples/custom-resources/testing-scanning-supplychain
https://github.com/vmware-tanzu/application-accelerator-samples/blob/tap-1.4-np/namespace-provisioner-gitops-examples/custom-resources/scanpolicies/snyk-scanpolicies.yaml
https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.4-np/namespace-provisioner-gitops-examples/custom-resources/tekton-pipelines


and developer-defined-tekton-pipeline-angular for namespaces in the desired-
namespaces ConfigMap that has an additional parameter language: python and language:
angular respectively.

The following example provides a snippet from tap-values.yaml with custom configuration for
additional_sources. Each of the user-generated
namespace_provisioner.additional_sources[].path values must be unique, and each path must
begin with “_ytt_lib/” to be identified as a ytt library.

namespace_provisioner:

  additional_sources:

  # Add a custom workload service account and some secrets

  - git:

      ref: tap-1.4-np

      subPath: namespace-provisioner-gitops-examples/custom-resources/workload-sa

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/workload-sa

  # Add templated Grype scan policy and java Tekton pipeline

  - git:

      ref: tap-1.4-np

      subPath: namespace-provisioner-gitops-examples/custom-resources/testing-scanning

-supplychain

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testingscanning

  # Add templated snyk scan policy

  - git:

      ref: tap-1.4-np

      subPath: namespace-provisioner-gitops-examples/custom-resources/scanpolicies

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/scanpolicies

  # Add templated tekton pipelines for angular, colang and python based on data.values

  - git:

      ref: tap-1.4-np

      subPath: namespace-provisioner-gitops-examples/custom-resources/tekton-pipelines

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/tektonpipelines

Add the resources required by the Out of the Box Testing and
Scanning Supply Chain

Follow these instructions to install the Java scan policy and Tekton pipeline resources required by
the OOTB Testing and Scanning Supply Chain.

1. Add or update tap-values.yaml with the following
namespace_provisioner.additional_resources configuration
(The ytt templated testing and scanpolicy files that are mounted are here).

namespace_provisioner:

 additional_sources:

 # Add templated java scan policy and tekton pipeline

 - git:

     ref: tap-1.4-np

     subPath: namespace-provisioner-gitops-examples/custom-resources/testing-sc

anning-supplychain

     url: https://github.com/vmware-tanzu/application-accelerator-samples.git

   path: _ytt_lib/testingscanning   # this user-generated path must always begi

n with "_ytt_lib/"

2. Apply your updated tap-values.yaml to the target cluster

Tanzu Application Platform v1.4

VMware by Broadcom 845

https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.4-np/namespace-provisioner-gitops-examples/custom-resources/tekton-pipelines
https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.4-np/namespace-provisioner-gitops-examples/custom-resources/testing-scanning-supplychain


tanzu package installed update tap -f tap-values.yaml --namespace tap-install

After the tap-values changes are applied and the
namespace_provisioner.additional_resources are imported, Namespace
Provisioner creates the defined scan-policy and developer-defined-tekton-
pipeline-java in all namespaces defined in the desired-namespaces ConfigMap.

Customizing the default resources that get provisioned

Customize the Out-Of-The-box default-resources using GitOps with some specific characteristics:

Use the ytt overlay feature for GitOps customization, set in the tap-values.yaml under
additional_sources.

Mount additional Git resource in the path _ytt_lib/customize, otherwise the customization
is not applied. Namespace Provisioner mounts all the additional sources as a ytt library so it
can expand the manifests in the additional sources for all managed namespaces using the
logic in the expansion template.

The GitOps repository directory must have a file with an extension lib.yaml to be recognized
as a ytt library with members to be exported.

The library file in the GitOps repository directory must have a function called customize with
the overlays to be applied to the resources, it can contain one or more overlays.

The sample file sa-secrets.lib.yaml shows how to completely override the secrets and
imagePullSecrets sections of the default ServiceAccount to add custom created secrets by using
other additional resources.

Sample tap-values change to pull this ytt customization overlay:

namespace_provisioner:

  additional_sources:

  # Patches the OOTB default service account to add different secrets

  - git:

      ref: tap-1.4-np

      subPath: namespace-provisioner-gitops-examples/default-resources-overrides/overl

ays

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/customize   # this path must always be exactly "_ytt_lib/customize"

  # Adds the secrets referenced in the overlay

  - git:

      ref: tap-1.4-np

      subPath: namespace-provisioner-gitops-examples/custom-resources/workload-sa

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/workload-sa   # this user-generated path must always begin with "_y

tt_lib/"

Sample customization (.lib.yaml) file for overriding the secrets and imagePullSecrets of the
default ServiceAccount - Link to the Sample file

#@ load("@ytt:overlay", "overlay")

#@ def customize():

#@overlay/match by=overlay.subset({"apiVersion": "v1", "kind": "ServiceAccount","metad

ata":{"name":"default"}}), expects="0+"

---

secrets:

  - name: gitlab-workload-token

  - name: github-workload-token

  - name: registries-credentials

imagePullSecrets:

  - name: gitlab-workload-token

Tanzu Application Platform v1.4

VMware by Broadcom 846

https://carvel.dev/ytt/docs/latest/lang-ref-ytt-overlay/
https://carvel.dev/ytt/docs/v0.44.0/lang-ref-ytt-library/#what-is-a-library
https://carvel.dev/ytt/docs/latest/lang-ref-ytt-library/#instanceexport
https://github.com/vmware-tanzu/application-accelerator-samples/blob/tap-1.4-np/namespace-provisioner-gitops-examples/default-resources-overrides/overlays/sa-secrets.lib.yaml
https://github.com/vmware-tanzu/application-accelerator-samples/blob/tap-1.4-np/namespace-provisioner-gitops-examples/default-resources-overrides/overlays/sa-secrets.lib.yaml


  - name: github-workload-token

  - name: registries-credentials

#@  end

Control the Namespace Provisioner reconcile behavior for specific
resources

There are certain OOTB default-resources like the ServiceAccount that are annotated with a
special annotation namespace-provisioner.apps.tanzu.vmware.com/no-overwrite.

Any changes to the resources that have the ...no-overwrite annotation are not overwritten by
the provisioner application that controls resource provision. To restore the default state of those
resources, you can delete them and the provisioner application re-creates them in their initial
default state.

The provisioner application has a synchronization interval of 10 minutes. To manually force the
reconciliation of the resources, for example, to delete a resource so that it can be re-created into
its default initial state, use the Carvel kctrl CLI to “kick” the provisioner application reconciliation.

Run the following command to initiate the “kick”:

kctrl app kick --app provisioner -n tap-namespace-provisioning -y

Control the desired-namespaces ConfigMap with GitOps

You can maintain the desired-namespaces ConfigMap in your Git repository instead of using the
controller. You can use the GitOps tool of your choice to override the desired-namespaces
ConfigMap in the tap-namespace-provisioning namespace.

Prerequisites

Ensure that the following prerequisites are met:

The Namespace Provisioner package is installed.

controller must be set to “false”. If the controller is set to “true”, it overwrites the
declarative desired state configured in your GitOps repository.

The registry-credentials secret referred by the Tanzu Build Service is added to tap-
install.yaml and exported to all namespaces. If you don’t want to export this secret to all
namespaces for any reason, you must complete an additional step to create this secret in
the namespace.

Use the following snippet as a reference for the desired-namespaces ConfigMap that you can put
on your Git repository. Desired-namespaces.yaml (Link to sample repo file)

---

apiVersion: v1

kind: ConfigMap

metadata:

  name: desired-namespaces

  namespace: tap-namespace-provisioning

  annotations:

    kapp.k14s.io/create-strategy: fallback-on-update

    namespace-provisioner.apps.tanzu.vmware.com/no-overwrite: "" #! This annotation te

lls the provisioner app to not override this configMap as this is your desired state.

data:

  namespaces.yaml: |

    #@data/values

    ---

    namespaces:

Tanzu Application Platform v1.4

VMware by Broadcom 847

https://carvel.dev/blog/kctrl-release-blog/
https://github.com/vmware-tanzu/application-accelerator-samples/blob/tap-1.4-np/namespace-provisioner-gitops-examples/desired-namespaces/gitops-managed-desired-namespaces.yaml


    - name: python-backend-app

      language: python

      scanpolicy: snyk

    - name: angular-fe-app

      language: angular

    - name: golang-opts

      language: golang

The recommended approach is to maintain a list of namespace objects in your GitOps repository
and use the GitOps tool of your choice to create namespaces in the cluster and the provisioner
application populates it with the appropriate resources.

The following command uses Kubectl to override this desired-namespaces ConfigMap manually.
The ConfigMap can be overridden with your tool of choice.

kubectl apply -f https://raw.githubusercontent.com/vmware-tanzu/application-accelerato

r-samples/tap-1.4-np/namespace-provisioner-gitops-examples/desired-namespaces/gitops-m

anaged-desired-namespaces.yaml

When this change is applied, the provisioner application starts the reconcile process and provisions
the resources on the given namespaces.

WARNING: If there is a namespace in your GitOps repository desired-namespaces ConfigMap list
that does not exist on the cluster, the provisioner application fails to reconcile and cannot create
resources. Creating namespaces is out of scope for the Namespace Provisioner package.

Troubleshoot Namespace Provisioner

This topic provides information to help troubleshoot Namespace Provisioner.

Controller logs

To get the logs when using the controller to manage the desired-namespaces ConfigMap

kubectl -n tap-namespace-provisioning logs deployments/controller-manager

Use -f to follow the log output

Provisioner application error
After the Namespace Provisioner is installed in the Tanzu Application Platform cluster, the main
resource to check is the provisioner application in the tap-namespace-provisioning namespace.

kubectl -n tap-namespace-provisioning get app/provisioner --template={{.status.usefulE

rrorMessage}}

For information about why certain resources are not reconciled automatically, and as a result, might
need some manual configuration, see Control the Namespace Provisioner reconcile behavior for
specific resources.

Note

Any error with the provisioner application is reported in the Carvel Package Install
as a high level message.

Tanzu Application Platform v1.4

VMware by Broadcom 848



kubectl -n tap-install get packageinstalls.packaging.carvel.dev/namespace-provisioner 

--template={{.status.usefulErrorMessage}}

Common errors

You might encounter one of the following errors:

Namespace selector malformed

When using the controller to manage the desired-namespaces ConfigMap and customizing the
namespace_selector from tap_values.yaml, the match expression must be compliant with the
Kubernetes label selector. If it is not compliant when labeling a namespace, the Namespace
Provisioner doesn’t create any object in the desired-namespaces ConfigMap and the controller
outputs a log message.

For example, if the configured namespace_selector is

namespace_provisioner:

  namespace_selector:

    matchExpressions:

    - key: apps.tanzu.vmware.com/tap-ns

      operator: exists

This is not compliant as the operator must be Exist instead of exists, then when labeling the
namespace ns2 with apps.tanzu.vmware.com/tap-ns, the controller produces an error message
similar to the following, (followed by some reconciliation messages)

{"level":"error","ts":"2022-12-14T15:41:44.639402794Z","logger":".0.1.NamespaceSelecto

rReconciler","msg":"unable to sync","controller":"namespace","controllerGroup":"","con

trollerKind":"Namespace","Namespace":{"name":"ns2"},"namespace":"","name":"ns2","recon

cileID":"26395d34-418b-446d-9b5e-a4a73cc657ed","resourceType":"/v1, Kind=Namespace","e

rror":"\"exists\" is not a valid pod selector operator","stacktrace":"..."}

Carvel-YTT error in additional_sources

When working with ytt, it is easy to mistakenly miswrite the template, as a result, the Namespace
Provisioner fails when the additional_sources is provided with errors. To check the problem in the
provisioner application, see Provisioner application error.

For example, the following file is used as additional_sources

#@ load("@ytt:data", "data")

---

apiVersion: v1

kind: Secret

metadata:

  name: gitlab-workload-token

  annotations:

    tekton.dev/git-0: https://git.company.com

type: kubernetes.io/basic-auth

stringData:

  #! data.values does not have any key of gl-secret-user nor gl-secret-pass

  username: #@ data.values.gl-secret-user

Note

The provisioner application won’t show an error as the controller cannot update the
desired-namespaces ConfigMap.

Tanzu Application Platform v1.4

VMware by Broadcom 849

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors


  password: #@ data.values.gl-secret-pass

---

apiVersion: v1

kind: Secret

metadata:

  name: github-workload-token

  annotations:

    tekton.dev/git-0: https://github.aetna.com

type: kubernetes.io/basic-auth

stringData:

  #! data.values does not have any key of gh-secret-user nor gh-secret-pass

  username: #@ data.values.gh-secret-user

  password: #@ data.values.gh-secret-pass

---

Where the used data.values does not exist, and after adding it as an additional_source in the
witherror library, the provisioner application shows an error as follows:

$ kubectl -n tap-namespace-provisioning get app/provisioner --template={{.status.usefu

lErrorMessage}}

ytt: Error:

- library.eval: Evaluating library 'witherror':

    in <toplevel>

      template.yaml:155 | #@          instances = overlay.apply(instance.eval(), custo

mize())

    reason:

     - struct has no .gl_secret_user field or method

         in <toplevel>

           _ytt_lib/witherror/secrets.yaml:12 |   username: #@ data.values.gl_secret_u

ser

This shows any error coming from the Carvel-YTT template resolution.

Another common error is defining resources several times (like adding a resource that is created by
default instead of overlaying it), this is reported in the provisioner application also.

Unable to delete namespace

When a namespaces is provisioned and listed in the desired-namespaces ConfigMap (with
controller or GitOps), delete it using the kubectl delete namespace command.

It must be cleared of workload before being deleted. When the provisioned namespace is deleted
and there is a workload already created in the namespace, the namespace will likely remain in the
Terminating state because some resources can not be deleted.

One of the causes of this behavior is that the workload creates a Carvel Kapp App that references
the ServiceAccount in the namespace. Kubectl does not adhere to Carvel kapp-controller delete
order and the ServiceAccount is deleted before the workload Carvel App. As a result, the Carvel
App blocks the namespace termination while waiting for the ServiceAccount to exist with a
finalizer (finalizers.kapp-ctrl.k14s.io/delete) message.

Solution: Remove the Kapp App finalizer in the Kapp App

Another possible cause is when you use the controller to manage the desired-namespaces
ConfigMap and it fails to remove the custom finalizer added to the namespace
(namespace-provisioner.apps.tanzu.vmware.com/finalizer)

Solution: Remove the finalizer in the namespace

Namespace Provisioner Reference Guide

Tanzu Application Platform v1.4

VMware by Broadcom 850



This topic tells you about the known limitations and default resource mapping for the Namespace
Provisioner component in Tanzu Application Platform (commonly known as TAP).

Known Limitations

If there is a namespace in your GitOp’s repository desired-namespaces ConfigMap that does
not exist on the cluster, the provisioner application fails to reconcile and cannot create
resources.

The creation of the namespaces is out of scope for Namespace Provisioner.

Removing the Namespace Provisioner package removes all the components created by it.

Before uninstalling the Namespace Provisioner, you must:

If you are using the controller to manage desired-namespaces ConfigMap, un-label
all the namespaces provisioned by Namespace Provisioner

If you are using GitOps to manage desired-namespaces ConfigMap, set the list of
namespaces to an empty list.

The namespace selector label to provision resources cannot be applied to the developer
namespace which is configured at deployment time under the Grype package values as it
causes the provisioner application to fail due to ownership issues.

Default resources mapping

Namespace Provisioner is installed as part of the standard installation profiles. The default set of
resources provisioned in a namespace is based on a combination of the installation profile and the
supply chain that is installed on the cluster. The following table shows the list of resources that are
templated in the default-resources Secret for an installation profile and supply chain value
combination:

Namespace Kind Name supply_chain Install Profile Reconcile

tap-install PackageI
nstall

grype-scanner-{ns} testing_scanni
ng

full, build Yes

tap-install Secret grype-scanner-{ns} testing_scanni
ng

full, build Yes

Developer
Namespace

Secret registries-credentials n/a full, iterate,
build, run

Yes

Developer
Namespace

ServiceA
ccount

From:
ootb_supply_chain_{supply_chain}.ser
vice_account (default: “default”)

n/a full, iterate,
build, run

No

Developer
Namespace

ServiceA
ccount

From:
ootb_delivery_basic.service_account
(default: “default”)

n/a full, iterate,
run

No

Developer
Namespace

RoleBindi
ng

default-permit-deliverable n/a full, iterate,
run

Yes

Developer
Namespace

RoleBindi
ng

default-permit-workload n/a full, iterate,
build

Yes

Note

For Install OOTB Supply Chain with Testing and Scanning, see Extending the
default provisioned resources.

Tanzu Application Platform v1.4

VMware by Broadcom 851



Overview of Spring Boot conventions

This topic tells you about the Spring Boot convention server.

The Spring Boot convention server is a bundle of small conventions applied to any Spring Boot
application that is submitted to the supply chain in which the convention controller is configured.

Run the docker inspect command to make the Spring Boot convention server look inside the
image. Example command:

$ docker inspect springio/petclinic

Example output:

[

    {

        "Id": "sha256:...",

        "RepoTags": [

            "springio/petclinic:latest"

        ],

        "RepoDigests": [

            "springio/petclinic@sha256:..."

        ],

        "Parent": "",

        "Container": "",

        ...

        "ContainerConfig": {

            "Hostname": "",

            "Domainname": "",

            "User": "",

            ...

            "Labels": null

        },

        "DockerVersion": "",

        "Author": "",

        "Config": {

...

]

The convention server searches inside the image for Config -> Labels ->
io.buildpacks.build.metadata to find the bom file. It looks inside the bom file for metadata to
evaluate whether the convention is to be applied.

For the list of conventions, see Conventions.

Overview of Spring Boot conventions

This topic tells you about the Spring Boot convention server.

The Spring Boot convention server is a bundle of small conventions applied to any Spring Boot
application that is submitted to the supply chain in which the convention controller is configured.

Run the docker inspect command to make the Spring Boot convention server look inside the
image. Example command:

$ docker inspect springio/petclinic

Example output:

[

    {

        "Id": "sha256:...",

Tanzu Application Platform v1.4

VMware by Broadcom 852



        "RepoTags": [

            "springio/petclinic:latest"

        ],

        "RepoDigests": [

            "springio/petclinic@sha256:..."

        ],

        "Parent": "",

        "Container": "",

        ...

        "ContainerConfig": {

            "Hostname": "",

            "Domainname": "",

            "User": "",

            ...

            "Labels": null

        },

        "DockerVersion": "",

        "Author": "",

        "Config": {

...

]

The convention server searches inside the image for Config -> Labels ->
io.buildpacks.build.metadata to find the bom file. It looks inside the bom file for metadata to
evaluate whether the convention is to be applied.

For the list of conventions, see Conventions.

Install Spring Boot conventions

This topic tells you how to install Spring Boot conventions from the Tanzu Application Platform
package repository.

Prerequisites

Before installing Spring Boot conventions:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Supply Chain Choreographer.

Install Spring Boot conventions

To install Spring Boot conventions:

1. Get the exact name and version information for the Spring Boot conventions package to
install by running:

tanzu package available list spring-boot-conventions.tanzu.vmware.com --namespa

ce tap-install

For example:

Note

Follow the steps in this topic if you do not want to use a profile to install Spring
Boot conventions. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 853



$ tanzu package available list spring-boot-conventions.tanzu.vmware.com --names

pace tap-install

/ Retrieving package versions for spring-boot-conventions.tanzu.vmware.com...

NAME                                       VERSION           RELEASED-AT

...

spring-boot-conventions.tanzu.vmware.com   1.4.0             2022-12-08T00:00:0

0Z

...

2. (Optional) Change the default installation settings by running:

tanzu package available get spring-boot-conventions.tanzu.vmware.com/VERSION-NU

MBER \

--values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed. For example: 1.4.13.

For example:

$ tanzu package available get spring-boot-conventions.tanzu.vmware.com/1.4.0 --

values-schema --namespace tap-install

  KEY                               DEFAULT             TYPE     DESCRIPTION

    autoConfigureActuators          false               boolean  Enable or disa

ble the automatic configuration of actuators on the TAP platform level

    kubernetes_distribution                             string   Kubernetes dis

tribution that this package is being installed on. Accepted

                                                                 values: 

['''',''openshift'']

    kubernetes_version                                  string   Optional: The 

Kubernetes Version. Valid values are '1.24.*', or ''

3. Install the package by running:

tanzu package install spring-boot-conventions \

--package-name spring-boot-conventions.tanzu.vmware.com \

--version 1.4.13 \

--namespace tap-install

4. Verify you installed the package by running:

tanzu package installed get spring-boot-conventions --namespace tap-install

For example:

tanzu package installed get spring-boot-conventions -n tap-install

| Retrieving installation details for spring-boot-conventions...

NAME:                    spring-boot-conventions

PACKAGE-NAME:            spring-boot-conventions.tanzu.vmware.com

PACKAGE-VERSION:         1.4.13

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Configure and access Spring Boot actuators in Tanzu
Application Platform

This topic tells you how the Spring Boot conventions in Tanzu Application Platform configure Spring
Boot actuators automatically. With this feature, users can activate or deactivate the automatic
configuration of actuators on Tanzu Application Platform and on individual workloads.

Tanzu Application Platform v1.4

VMware by Broadcom 854



Workload-level configuration

Developers can add a label to their workloads to activate or deactivate the automatic configuration
of actuators. By default, all existing and future accelerator projects are configured to activate
automatic configuration on the workload level.

To activate or deactivate the automatic configuration of actuators at the workload level, follow
these steps:

1. To activate automatic configuration of actuators, set the following label to true in your
workload YAML:

apps.tanzu.vmware.com/auto-configure-actuators: "true"

If the preceding label is set to true, the Spring Boot actuator convention sets the following
actuator configuration:

The JAVA_TOOL_OPTIONS property is set as -Dmanagement.server.port="8081".

The JAVA_TOOL_OPTIONS property is set as -Dmanagement.endpoints.web.base-
path="/actuator".

Annotation on the PodIntent is set as boot.spring.io/actuator:
http://:8081/actuator.

In addition to these settings, Application Live View is activated with the following actuator
configuration:

Label on the PodIntent is set as tanzu.app.live.view.application.actuator:
actuator.

Label on the PodIntent is set as tanzu.app.live.view.application.actuator.port:
8081.

2. To deactivate automatic configuration of actuators, set the following label to false in your
workload YAML:

apps.tanzu.vmware.com/auto-configure-actuators: "false"

If the preceding label is set to false, the Spring Boot actuator convention does not set any
JAVA_TOOL_OPTIONS and does not set the annotation boot.spring.io/actuator.

Application Live View is activated and configured with default values for Spring Boot web
applications, assuming that some actuators are activated on the default port. On activating
Application Live View, the following actuator settings are set:

The JAVA_TOOL_OPTIONS property is set as -Dserver.port="8080".

Label on the PodIntent is set as tanzu.app.live.view.application.actuator:
actuator.

Label on the PodIntent is set as tanzu.app.live.view.application.actuator.port:
8080.

The Application Live View GUI renders the pages with accessible information based on whether
the actuator endpoints are accessible for an application.

By default, as an additional security measure, Spring Boot conventions does not expose all the
actuator data over HTTP by exposing all the actuator endpoints. In addition, the information
exposed by the health endpoint is not set to always by default.

If the automatic configuration of actuators is set to true either at the workload level or platform
level, the Spring Boot convention then sets the runtime environment properties
management.endpoints.web.exposure.include="*" and management.endpoint.health.show-
details=true on to the PodSpec to expose all the actuator endpoints and detailed health

Tanzu Application Platform v1.4

VMware by Broadcom 855



information. You do not need to add these properties manually in application.properties or
application.yml.

Platform-level configuration

In contrast to activating or deactivating the automatic configuration of actuators on the level of
individual workloads, you can set a global setting for the platform instead. This setting is taken into
account ONLY when there is no specific auto-configure-actuators setting on the individual
workload.

To activate or deactivate the automatic configuration of actuators at a global level, follow these
steps:

1. When you install Spring Boot conventions, you can provide an entry in the values.yaml file
to activate automatic configuration. For example:

springboot_conventions:

  autoConfigureActuators: true

2. To deactivate the automatic configuration, you can provide the following entry:

springboot_conventions:

  autoConfigureActuators: false

To run Application Live View with Spring Boot apps, the Spring Boot convention recognizes
PodIntents and adds the following metadata labels:

tanzu.app.live.view: "true": Activates the connector to observe application pod

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View

tanzu.app.live.view.application.flavours: spring-boot: Exposes the framework flavor
of the app

To run Application Live View with Spring Cloud Gateway apps, Spring Boot conventions recognizes
PodIntents and adds the following metadata labels:

tanzu.app.live.view: "true": Activates the connector to observe application pod

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View

tanzu.app.live.view.application.flavours: spring-boot,spring-cloud-gateway:
Exposes the framework flavors of the app

Enable Application Live View for Spring Boot applications

Note

The default values for both platform level and workload level configuration is false.

Tanzu Application Platform v1.4

VMware by Broadcom 856



To run Application Live View for Spring Boot apps, Spring Boot conventions recognizes PodIntents
and automatically adds the following metadata labels:

tanzu.app.live.view: "true": Enables the connector to observe application pod

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View

tanzu.app.live.view.application.flavours: spring-boot: Exposes the framework flavor
of the app

To run Application Live View for Spring Cloud Gateway apps, Spring Boot conventions recognizes
PodIntents and adds the following metadata labels:

tanzu.app.live.view: "true": Enables the connector to observe application pod

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View

tanzu.app.live.view.application.flavours: spring-boot,spring-cloud-gateway:
Exposes the framework flavors of the app

These metadata labels allow Application Live View to identify pods that are enabled for Application
Live View. The metadata labels also tell the Application Live View connector what kind of app it is
and on which port the actuators are accessible for Application Live View. For more information, see
Configuring and accessing Spring Boot actuators in Tanzu Application Platform.

Verify the applied labels and annotations

To verify the applied labels and annotations, run:

kubectl get podintents.conventions.carto.run WORKLOAD-NAME -o yaml

Where WORKLOAD-NAME is the name of the deployed workload. For example: tanzu-java-web-app.

Expected output of Spring Boot workload:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  creationTimestamp: "2022-11-14T10:07:55Z"

  generation: 1

  labels:

    app.kubernetes.io/component: intent

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/auto-configure-actuators: "true"

    apps.tanzu.vmware.com/workload-type: web

    carto.run/cluster-template-name: convention-template

    carto.run/resource-name: config-provider

    carto.run/supply-chain-name: source-to-url

    carto.run/template-kind: ClusterConfigTemplate

    carto.run/workload-name: tanzu-java-web-app

    carto.run/workload-namespace: default

  name: tanzu-java-web-app

  namespace: default

  ownerReferences:

  - apiVersion: carto.run/v1alpha1

    blockOwnerDeletion: true

Tanzu Application Platform v1.4

VMware by Broadcom 857



    controller: true

    kind: Workload

    name: tanzu-java-web-app

    uid: dfd3c0c2-9d1f-4231-9390-3e16f23bb62d

  resourceVersion: "444497"

  uid: 224de2aa-307a-48e3-a826-2c474c435bb2

spec:

  serviceAccountName: default

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-java-web-app

        apps.tanzu.vmware.com/auto-configure-actuators: "true"

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: tanzu-java-web-app

    spec:

      containers:

      - image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-java-web-app-def

ault@sha256:444686bb8bfbaba5552676140619b00f43c8f85b6823b87676c0ccdcdead65ac

        name: workload

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

status:

  conditions:

  - lastTransitionTime: "2022-11-14T10:07:59Z"

    message: ""

    reason: Applied

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2022-11-14T10:07:59Z"

    message: ""

    reason: ConventionsApplied

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        boot.spring.io/actuator: http://:8081/actuator

        boot.spring.io/version: 2.7.3

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/auto-configure-actuators-check

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-graceful-shutdown

          spring-boot-convention/spring-boot-web

          spring-boot-convention/spring-boot-actuator

          spring-boot-convention/spring-boot-actuator-probes

          spring-boot-convention/app-live-view-appflavour-check

          spring-boot-convention/app-live-view-connector-boot

          spring-boot-convention/app-live-view-appflavours-boot

          appliveview-sample/app-live-view-appflavour-check

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-java-web-app

        apps.tanzu.vmware.com/auto-configure-actuators: "true"

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: tanzu-java-web-app

        conventions.carto.run/framework: spring-boot

Tanzu Application Platform v1.4

VMware by Broadcom 858



        tanzu.app.live.view: "true"

        tanzu.app.live.view.application.actuator.path: actuator

        tanzu.app.live.view.application.actuator.port: "8081"

        tanzu.app.live.view.application.flavours: spring-boot

        tanzu.app.live.view.application.name: tanzu-java-web-app

    spec:

      containers:

      - env:

        - name: JAVA_TOOL_OPTIONS

          value: -Dmanagement.endpoint.health.probes.add-additional-paths="true" -Dman

agement.endpoint.health.show-details="always"

            -Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.endpoints.we

b.exposure.include="*"

            -Dmanagement.health.probes.enabled="true" -Dmanagement.server.port="8081"

            -Dserver.port="8080" -Dserver.shutdown.grace-period="24s"

        image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-java-web-app-def

ault@sha256:444686bb8bfbaba5552676140619b00f43c8f85b6823b87676c0ccdcdead65ac

        livenessProbe:

          httpGet:

            path: /livez

            port: 8080

            scheme: HTTP

        name: workload

        ports:

        - containerPort: 8080

          protocol: TCP

        readinessProbe:

          httpGet:

            path: /readyz

            port: 8080

            scheme: HTTP

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

Expected output of Spring Cloud Gateway workload:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  creationTimestamp: "2022-11-14T10:29:51Z"

  generation: 1

  labels:

    app.kubernetes.io/component: intent

    app.kubernetes.io/part-of: tanzu-scg-web-app

    apps.tanzu.vmware.com/auto-configure-actuators: "true"

    apps.tanzu.vmware.com/workload-type: web

    carto.run/cluster-template-name: convention-template

    carto.run/resource-name: config-provider

    carto.run/supply-chain-name: source-to-url

    carto.run/template-kind: ClusterConfigTemplate

    carto.run/workload-name: tanzu-scg-web-app

    carto.run/workload-namespace: default

  name: tanzu-scg-web-app

  namespace: default

  ownerReferences:

  - apiVersion: carto.run/v1alpha1

    blockOwnerDeletion: true

    controller: true

    kind: Workload

    name: tanzu-scg-web-app

    uid: 5d8cdc5b-0236-471d-8c1e-335e659f1ae6

  resourceVersion: "475756"

  uid: d086f02c-6ff0-47f8-8dee-4da8748d8adc

spec:

Tanzu Application Platform v1.4

VMware by Broadcom 859



  serviceAccountName: default

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-scg-web-app

        apps.tanzu.vmware.com/auto-configure-actuators: "true"

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: tanzu-scg-web-app

    spec:

      containers:

      - image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-scg-web-app-defa

ult@sha256:7656f4ca56b7d0d6376b374643d6ac09c8cdcdbcc13d065f9224651b12724d0b

        name: workload

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

status:

  conditions:

  - lastTransitionTime: "2022-11-14T10:29:58Z"

    message: ""

    reason: Applied

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2022-11-14T10:29:58Z"

    message: ""

    reason: ConventionsApplied

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        boot.spring.io/actuator: http://:8081/actuator

        boot.spring.io/version: 2.6.3

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/auto-configure-actuators-check

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-web

          spring-boot-convention/spring-boot-actuator

          spring-boot-convention/spring-boot-actuator-probes

          spring-boot-convention/app-live-view-appflavour-check

          spring-boot-convention/app-live-view-connector-boot

          spring-boot-convention/app-live-view-appflavours-boot

          spring-boot-convention/app-live-view-connector-scg

          spring-boot-convention/app-live-view-appflavours-scg

          appliveview-sample/app-live-view-appflavour-check

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-scg-web-app

        apps.tanzu.vmware.com/auto-configure-actuators: "true"

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: tanzu-scg-web-app

        conventions.carto.run/framework: spring-boot

        tanzu.app.live.view: "true"

        tanzu.app.live.view.application.actuator.path: actuator

        tanzu.app.live.view.application.actuator.port: "8081"

        tanzu.app.live.view.application.flavours: spring-boot_spring-cloud-gateway

        tanzu.app.live.view.application.name: tanzu-scg-web-app

    spec:

Tanzu Application Platform v1.4

VMware by Broadcom 860



      containers:

      - env:

        - name: JAVA_TOOL_OPTIONS

          value: -Dmanagement.endpoint.health.probes.add-additional-paths="true" -Dman

agement.endpoint.health.show-details="always"

            -Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.endpoints.we

b.exposure.include="*"

            -Dmanagement.health.probes.enabled="true" -Dmanagement.server.port="8081"

            -Dserver.port="8080"

        image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-scg-web-app-defa

ult@sha256:7656f4ca56b7d0d6376b374643d6ac09c8cdcdbcc13d065f9224651b12724d0b

        livenessProbe:

          httpGet:

            path: /livez

            port: 8080

            scheme: HTTP

        name: workload

        ports:

        - containerPort: 8080

          protocol: TCP

        readinessProbe:

          httpGet:

            path: /readyz

            port: 8080

            scheme: HTTP

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

List of Spring Boot conventions

This topic tells you about what the conventions do and how to apply them.

When submitting the following pod Pod Intent on each convention, the output can change
depending on the applied convention.

Before any Spring Boot conventions are applied, the pod intent looks similar to this YAML:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  name: spring-sample

spec:

  template:

    spec:

      containers:

      - name: workload

        image: springio/petclinic

Most of the Spring Boot conventions either edit or add properties to the environment variable
JAVA_TOOL_OPTIONS. You can override those conventions by providing the JAVA_TOOL_OPTIONS value
you want through the Tanzu CLI or workload.yaml.

When a JAVA_TOOL_OPTIONS property already exists for a workload, the convention uses the existing
value rather than the value that the convention applies by default. The property value that you
provide is used for the pod specification mutation.

Set a JAVA_TOOL_OPTIONS property for a workload

Do one of the following actions to set JAVA_TOOL_OPTIONS property and values:

Tanzu Application Platform v1.4

VMware by Broadcom 861



Use the Tanzu CLI apps plug-in
When creating or updating a workload, set a JAVA_TOOL_OPTIONS property using the --env flag by
running:

tanzu apps workload create APP-NAME --env JAVA_TOOL_OPTIONS="-DPROPERTY-NAME=VALUE"

For example, to set the management port to 8080 rather than the spring-boot-actuator-
convention default port 8081, run:

tanzu apps workload create APP-NAME --env JAVA_TOOL_OPTIONS="-Dmanagement.server.por

t=8080"

Use workload.yaml
Follow these steps:

1. Provide one or more values for the JAVA_TOOL_OPTIONS property in the workload.yaml.
For example:

apiVersion: carto.run/v1alpha1

kind: Workload

...

spec:

env:

- name: JAVA_TOOL_OPTIONS

  value: -Dmanagement.server.port=8082

source:

...

2. Apply the workload.yaml file by running the command:

tanzu apps workload create -f workload.yaml

Spring Boot convention

If the spring-boot dependency is in the metadata within the SBOM file under dependencies, the
Spring Boot convention is applied to the PodTemplateSpec object.

The Spring Boot convention adds a label (conventions.carto.run/framework: spring-boot) to the
PodTemplateSpec that describes the framework associated with the workload, and adds an
annotation (boot.spring.io/version: VERSION-NO) that describes the Spring Boot version of the
dependency.

The label and annotation are added for informational purposes only.

Example of PodIntent after applying the convention:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

 annotations:

   kubectl.kubernetes.io/last-applied-configuration: |

     {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"an

notations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

 conditions:

Tanzu Application Platform v1.4

VMware by Broadcom 862



 - lastTransitionTime: "..." # This status indicates that all worked as expected

   status: "True"

   type: ConventionsApplied

 - lastTransitionTime: "..."

   status: "True"

   type: Ready

 observedGeneration: 1

 template:

   metadata:

     annotations:

       boot.spring.io/version: 2.3.3.RELEASE

       conventions.carto.run/applied-conventions: |-

         spring-boot-convention/spring-boot

     labels:

       conventions.carto.run/framework: spring-boot

   spec:

     containers:

     - image: index.docker.io/springio/petclinic@sha256:...

       name: workload

       resources: {}

Spring boot graceful shut down convention

If any of the following dependencies are in the metadata within the SBOM file under dependencies,
the Spring Boot graceful shut down convention is applied to the PodTemplateSpec object:

spring-boot-starter-tomcat

spring-boot-starter-jetty

spring-boot-starter-reactor-netty

spring-boot-starter-undertow

tomcat-embed-core

The Graceful Shutdown convention spring-boot-graceful-shutdown adds a property in the
environment variable JAVA_TOOL_OPTIONS with the key server.shutdown.grace-period. The key
value is calculated to be 80% of the value set in .target.Spec.TerminationGracePeriodSeconds.
The default value for .target.Spec.TerminationGracePeriodSeconds is 30 seconds.

Example of PodIntent after applying the convention:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  annotations:

    kubectl.kubernetes.io/last-applied-configuration: |

      {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"a

nnotations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

  conditions:

  - lastTransitionTime: "..." # This status indicates that all worked as expected

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "..."

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 863



      annotations:

        boot.spring.io/version: 2.3.3.RELEASE

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-graceful-shutdown

      labels:

        conventions.carto.run/framework: spring-boot

    spec:

      containers:

      - env:

        - name: JAVA_TOOL_OPTIONS

          value: -Dserver.shutdown.grace-period="24s"

        image: index.docker.io/springio/petclinic@sha256:...

        name: workload

        resources: {}

Spring Boot web convention

If any of the following dependencies are in the metadata within the SBOM file under dependencies,
the Spring Boot web convention is applied to the PodTemplateSpec object:

spring-boot

spring-boot-web

The web convention spring-boot-web obtains the server.port property from the
JAVA_TOOL_OPTIONS environment variable and sets it as a port in the PodTemplateSpec. If
JAVA_TOOL_OPTIONS environment variable does not contain a server.port property or value, the
convention adds the property and sets the value to 8080, which is the Spring Boot default.

Example of PodIntent after applying the convention:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  annotations:

    kubectl.kubernetes.io/last-applied-configuration: |

      {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"a

nnotations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

  conditions:

  - lastTransitionTime: "..." # This status indicates that all worked as expected

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "..."

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        boot.spring.io/version: 2.3.3.RELEASE

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-web

      labels:

        conventions.carto.run/framework: spring-boot

    spec:

      containers:

      - env:

Tanzu Application Platform v1.4

VMware by Broadcom 864



        - name: JAVA_TOOL_OPTIONS

          value: -Dserver.port="8080"

        image: index.docker.io/springio/petclinic@sha256:...

        name: workload

        ports:

        - containerPort: 8080

          protocol: TCP

        resources: {}

Spring Boot Actuator convention

If the spring-boot-actuator dependency is in the metadata within the SBOM file under
dependencies, the Spring Boot actuator convention is applied to the PodTemplateSpec object.

The Spring Boot Actuator convention does the following actions:

If the workload-level or platform-level automatic configuration of actuators is enabled:

1. Sets the management port in the JAVA_TOOL_OPTIONS environment variable to 8081.

2. Sets the base path in the JAVA_TOOL_OPTIONS environment variable to /actuator.

3. Adds an annotation, boot.spring.io/actuator, to where the actuator is accessed.

The management port is set to port 8081 for security reasons. Although you can prevent public
access to the actuator endpoints that are exposed on the management port when it is set to the
default 8080, the threat of exposure through internal access remains. The best practice for security
is to set the management port to something other than 8080.

However, if a management port number value is provided using the -Dmanagement.server.port
property in JAVA_TOOL_OPTIONS, the Spring Boot actuator convention uses that value rather than its
default 8081 as the management port.

You can access the management context of a Spring Boot application by creating a service pointing
to port 8081 and base path /actuator.

If the workload-level or platform-level automatic configuration of actuators is deactivated, the
Spring Boot actuator convention does not set any JAVA_TOOLS_OPTIONS and does not set the
annotation boot.spring.io/actuator.

Example of PodIntent after applying the convention:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

 annotations:

   kubectl.kubernetes.io/last-applied-configuration: |

     {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"an

notations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

Important

To override the management port setting applied by this convention, see How to
set a JAVA_TOOL_OPTIONS property for a workload earlier in this topic. Any
alternative methods for setting the management port are overwritten. For example,
if you configure the management port using application.properties/yml or config
server, the Spring Boot Actuator convention overrides your configuration.

Tanzu Application Platform v1.4

VMware by Broadcom 865



status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

   status: "True"

   type: ConventionsApplied

 - lastTransitionTime: "..."

   status: "True"

   type: Ready

 observedGeneration: 1

 template:

   metadata:

     annotations:

       boot.spring.io/actuator: http://:8081/actuator

       boot.spring.io/version: 2.3.3.RELEASE

       conventions.carto.run/applied-conventions: |-

         spring-boot-convention/spring-boot

         spring-boot-convention/spring-boot-web

         spring-boot-convention/spring-boot-actuator

     labels:

       conventions.carto.run/framework: spring-boot

   spec:

     containers:

     - env:

       - name: JAVA_TOOL_OPTIONS

         value: Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.server.po

rt="8081" -Dserver.port="8080"

       image: index.docker.io/springio/petclinic@sha256:...

       name: workload

       ports:

       - containerPort: 8080

         protocol: TCP

       resources: {}

Spring Boot Actuator Probes convention

The Spring Boot Actuator Probes convention is applied only if all of the following conditions are
met:

The spring-boot-actuator dependency exists and is >= 2.6

The JAVA_TOOL_OPTIONS environment variable does not include the following properties or, if
either of the properties is included, it is set to a value of true:

-Dmanagement.health.probes.enabled

-Dmanagement.endpoint.health.probes.add-additional-paths

The Spring Boot Actuator Probes convention does the following actions:

1. Uses the main server port, which is the server.port value on JAVA_TOOL_OPTIONS, to set the
liveness and readiness probes. For more information see the Kubernetes documentation

2. Adds the following properties and values to the JAVA_TOOL_OPTIONS environment variable:

-Dmanagement.health.probes.enabled="true"

-Dmanagement.endpoint.health.probes.add-additional-paths="true"

When this convention is applied, the probes are exposed as follows:

Liveness probe: /livez

Readiness probe: /readyz

Example of PodIntent after applying the convention:

Tanzu Application Platform v1.4

VMware by Broadcom 866

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/


apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  annotations:

    kubectl.kubernetes.io/last-applied-configuration: |

      {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"a

nnotations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

  conditions:

  - lastTransitionTime: "..." # This status indicates that all worked as expected

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "..."

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        boot.spring.io/actuator: http://:8080/actuator

        boot.spring.io/version: 2.6.0

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-web

          spring-boot-convention/spring-boot-actuator

      labels:

        conventions.carto.run/framework: spring-boot

    spec:

      containers:

      - env:

        - name: JAVA_TOOL_OPTIONS

          value: -Dmanagement.endpoint.health.probes.add-additional-paths="true" -Dman

agement.endpoints.web.base-path="/actuator" -Dmanagement.health.probes.enabled="true" 

-Dmanagement.server.port="8081" -Dserver.port="8080"

        image: index.docker.io/springio/petclinic@sha256:...

        name: workload

        livenessProbe:

          httpGet:

            path: /livez

            port: 8080

            scheme: HTTP

        ports:

        - containerPort: 8080

          protocol: TCP

        readinessProbe:

          httpGet:

            path: /readyz

            port: 8080

            scheme: HTTP

        resources: {}

Service intent conventions

The Service intent conventions do not change the behavior of the final deployment, but you can
use them as added information to process in the supply chain. For example, when an app requires
to be bound to database service. This convention adds an annotation and a label to the
PodTemplateSpec for each detected dependency. It also adds an annotation and a label to the
conventions.carto.run/applied-conventions.

Tanzu Application Platform v1.4

VMware by Broadcom 867



The list of the supported intents are:

MySQL

Name: service-intent-mysql

Label: services.conventions.apps.tanzu.vmware.com/mysql

Dependencies: mysql-connector-java, r2dbc-mysql

PostgreSQL

Name: service-intent-postgres

Label: services.conventions.apps.tanzu.vmware.com/postgres

Dependencies: postgresql, r2dbc-postgresql

MongoDB

Name: service-intent-mongodb

Label: services.conventions.apps.tanzu.vmware.com/mongodb

Dependencies: mongodb-driver-core

RabbitMQ

Name: service-intent-rabbitmq

Label: services.conventions.apps.tanzu.vmware.com/rabbitmq

Dependencies: amqp-client

Redis

Name: service-intent-redis

Label: services.conventions.apps.tanzu.vmware.com/redis

Dependencies: jedis

Kafka

Name: service-intent-kafka

Label: services.conventions.apps.tanzu.vmware.com/kafka

Dependencies: kafka-clients

Kafka-streams

Name: service-intent-kafka-streams

Label: services.conventions.apps.tanzu.vmware.com/kafka-streams

Dependencies: kafka-streams

Example

When you apply the Pod Intent and the image contains a dependency, for example, of MySQL,
then the output of the convention is:

  apiVersion: conventions.carto.run/v1alpha1

  kind: PodIntent

  metadata:

    annotations:

      kubectl.kubernetes.io/last-applied-configuration: |

        {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":

{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"s

pec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

    creationTimestamp: "..."

Tanzu Application Platform v1.4

VMware by Broadcom 868



    generation: 1

    name: spring-sample

    namespace: default

    resourceVersion: "..."

    uid: ...

  spec:

    serviceAccountName: default

    template:

      metadata: {}

      spec:

        containers:

        - image: springio/petclinic

          name: workload

          resources: {}

  status:

    conditions:

    - lastTransitionTime: "..." # This status indicates that all worked as expected

      status: "True"

      type: ConventionsApplied

    - lastTransitionTime: "..."

      status: "True"

      type: Ready

    observedGeneration: 1

    template:

      metadata:

        annotations:

          boot.spring.io/actuator: http://:8080/actuator

          boot.spring.io/version: 2.3.3.RELEASE

          conventions.carto.run/applied-conventions: |-

            spring-boot-convention/spring-boot

            spring-boot-convention/spring-boot-web

            spring-boot-convention/spring-boot-actuator

            spring-boot-convention/service-intent-mysql

          services.conventions.apps.tanzu.vmware.com/mysql: mysql-connector-java/8.0.2

1

        labels:

          conventions.apps.tanzu.vmware.com/framework: spring-boot

          services.conventions.apps.tanzu.vmware.com/mysql: workload

      spec:

        containers:

        - env:

          - name: JAVA_TOOL_OPTIONS

            value: Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.serve

r.port="8081" -Dserver.port="8080"

          image: index.docker.io/springio/petclinic@sha256:...

          name: workload

          ports:

          - containerPort: 8080

            protocol: TCP

          resources: {}

Troubleshoot Spring Boot conventions

This topic tells you how to troubleshoot Spring Boot conventions.

Collect logs

If you have trouble, you can retrieve and examine logs from the Spring Boot convention server as
follows:

1. The Spring Boot convention server creates a namespace to contain all of the associated
resources. By default the namespace is spring-boot-convention. To inspect the logs, run:

Tanzu Application Platform v1.4

VMware by Broadcom 869



kubectl logs -l app=spring-boot-webhook -n spring-boot-convention

For example:

$ kubectl logs -l app=spring-boot-webhook -n spring-boot-convention

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot","c

omponent":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-gra

ceful-shutdown","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-we

b","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-act

uator","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: service-intent-

mysql","component":"spring-boot-conventions"}

2. For all of the conventions that were applied successfully, a log entry is added. If an error
occurs, a log entry is added with a description.

Overview of Service Bindings

This topic tells you about using Service Bindings in Tanzu Application Platform (commonly know as
TAP).

Supported service binding specifications

Service Bindings for Kubernetes is an open-source product. For more information, see the Service
Binding for Kubernetes readme and the Service Binding for Kubernetes community website.

This implementation provides support for:

Provisioned Service

Workload Projection

Service Binding

Direct Secret Reference

Role-Based Access Control (RBAC)

The following are not supported:

Workload Resource Mapping

Extensions including:

Binding Secret Generation Strategies

Overview of Service Bindings
This topic tells you about using Service Bindings in Tanzu Application Platform (commonly know as
TAP).

Supported service binding specifications

Tanzu Application Platform v1.4

VMware by Broadcom 870

https://github.com/servicebinding/spec
https://servicebinding.io/
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#provisioned-service
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-projection
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#service-binding
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#direct-secret-reference
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#role-based-access-control-rbac
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-resource-mapping
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#binding-secret-generation-strategies


Service Bindings for Kubernetes is an open-source product. For more information, see the Service
Binding for Kubernetes readme and the Service Binding for Kubernetes community website.

This implementation provides support for:

Provisioned Service

Workload Projection

Service Binding

Direct Secret Reference

Role-Based Access Control (RBAC)

The following are not supported:

Workload Resource Mapping

Extensions including:

Binding Secret Generation Strategies

Install Service Bindings

This topic tells you how to install Service Bindings from the Tanzu Application Platform (commonly
known as TAP) package repository.

Prerequisites
Before installing Service Bindings:

Complete all prerequisites to install Tanzu Application Platform (commonly knows as TAP).
For more information, see Prerequisites.

Install Service Bindings
Use the following procedure to install Service Bindings:

1. List version information for the package by running:

tanzu package available list service-bindings.labs.vmware.com --namespace tap-i

nstall

For example:

$ tanzu package available list service-bindings.labs.vmware.com --namespace tap

-install

- Retrieving package versions for service-bindings.labs.vmware.com...

  NAME                              VERSION  RELEASED-AT

  service-bindings.labs.vmware.com  0.5.0    2021-09-15T00:00:00Z

2. Install the package by running:

tanzu package install service-bindings -p service-bindings.labs.vmware.com -v 

Note

Follow the steps in this topic if you do not want to use a profile to install Service
Bindings. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 871

https://github.com/servicebinding/spec
https://servicebinding.io/
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#provisioned-service
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-projection
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#service-binding
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#direct-secret-reference
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#role-based-access-control-rbac
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-resource-mapping
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#binding-secret-generation-strategies


0.5.0 -n tap-install

Example output:

/ Installing package 'service-bindings.labs.vmware.com'

| Getting namespace 'tap-install'

- Getting package metadata for 'service-bindings.labs.vmware.com'

| Creating service account 'service-bindings-tap-install-sa'

| Creating cluster admin role 'service-bindings-tap-install-cluster-role'

| Creating cluster role binding 'service-bindings-tap-install-cluster-rolebindi

ng'

\ Creating package resource

| Package install status: Reconciling

 Added installed package 'service-bindings' in namespace 'tap-install'

3. Verify the package install by running:

tanzu package installed get service-bindings -n tap-install

Example output:

- Retrieving installation details for service-bindings...

NAME:                    service-bindings

PACKAGE-NAME:            service-bindings.labs.vmware.com

PACKAGE-VERSION:         0.5.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

4. Run the following command:

kubectl get pods -n service-bindings

For example:

$ kubectl get pods -n service-bindings

NAME                       READY   STATUS    RESTARTS   AGE

manager-6d85fffbcd-j4gvs   1/1     Running   0          22s

Verify that STATUS is Running

Troubleshoot Service Bindings
This topic tells you how to troubleshoot Service Bindings in Tanzu Application Platform (commonly
known as TAP).

Collect logs
To help identify issues when troubleshooting, you can retrieve and examine logs from the service
binding manager.

To retrieve pod logs from the manager running in the service-bindings namespace, run:

kubectl -n service-bindings logs -l role=manager

For example:

$ kubectl -n service-bindings logs -l role=manager

Tanzu Application Platform v1.4

VMware by Broadcom 872



2021/11/05 15:25:28 Registering 3 clients

2021/11/05 15:25:28 Registering 3 informer factories

2021/11/05 15:25:28 Registering 7 informers

2021/11/05 15:25:28 Registering 8 controllers

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.483823208Z","caller":"logging/nfi

g.go:116","message":"Successfully created the logger."}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.48392361Z","caller":"logging/confi

g.go:117","message":"Logging level set to: info"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.483999911Z","caller":"logging/conf

ig.go:79","message":"Fetch GitHub commit ID from kodata failed","error":"open /var/ru

n/ko/HEAD: no such file or directory"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.484035711Z","logger":"webhook","ca

ller":"profiling/server.go:64","message":"Profiling enabled: false"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.522884909Z","logger":"webhook","ca

ller":"leaderelection/context.go:46","message":"Running with Standard leader electio

n"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.523358615Z","logger":"webhook","ca

ller":"provisionedservice/controller.go:31","message":"Setting up event handlers."}

...

{"severity":"ERROR","timestamp":"2021-11-17T12:30:24.557178813Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"276.504µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T12:47:04.558217679Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"249.103µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:03:44.558683121Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"177.403µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:20:24.559192644Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"223.203µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:37:04.559648412Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"173.003µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:53:44.56010516Z","logger":"webhook","ca

ller":"controller/controller.go:548","message":"Reconcile error","duration":"182.402µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

Tanzu Application Platform v1.4

VMware by Broadcom 873



065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:10:24.560536033Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"155.603µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:27:04.560960243Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"171.002µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:43:44.56142548Z","logger":"webhook","ca

ller":"controller/controller.go:548","message":"Reconcile error","duration":"179.203µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T15:00:24.561881861Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"167.902µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

Service Bindings resource specification

This topic tells you about the Service Bindings resource specification in Tanzu Application Platform
(commonly known as TAP).

The ServiceBinding resource shape and behavior is defined by the following specification:

apiVersion: servicebinding.io/v1alpha3

kind: ServiceBinding

metadata:

  name: account-db

spec:

  service:

    apiVersion: mysql.example/v1alpha1

    kind: MySQL

    name: account-db

  workload:

    apiVersion: apps/v1

    kind: Deployment

    name: account-service

Overview of Services Toolkit

Services Toolkit comprises the following Kubernetes-native components, which support the
management, lifecycle, discoverability, and connectivity of service resources on Kubernetes, such
as databases, message queues, DNS records, and more:

Service offering

Tanzu Application Platform v1.4

VMware by Broadcom 874



Service API projection

Service resource replication

Service resource claims

To learn more about Services Toolkit, see the Services Toolkit documentation

Overview of Services Toolkit

Services Toolkit comprises the following Kubernetes-native components, which support the
management, lifecycle, discoverability, and connectivity of service resources on Kubernetes, such
as databases, message queues, DNS records, and more:

Service offering

Service API projection

Service resource replication

Service resource claims

To learn more about Services Toolkit, see the Services Toolkit documentation

Install Services Toolkit

This document describes how to install Services Toolkit from the Tanzu Application Platform
package repository.

Prerequisites

Before installing Services Toolkit:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cert-manager. For more information, see Install cert-manager.

Install Services Toolkit

To install Services Toolkit:

1. See what versions of Services Toolkit are available to install by running:

tanzu package available list -n tap-install services-toolkit.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install services-toolkit.tanzu.vmware.com

- Retrieving package versions for services-toolkit.tanzu.vmware.com...

  NAME                               VERSION           RELEASED-AT

  services-toolkit.tanzu.vmware.com  0.9.0             2022-09-08T00:00:00Z

2. Install Services Toolkit by running:

Note

Follow the steps in this topic if you do not want to use a profile to install Services
Toolkit. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 875

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/overview.html
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/overview.html


tanzu package install services-toolkit -n tap-install -p services-toolkit.tanz

u.vmware.com -v VERSION-NUMBER

Where VERSION-NUMBER is the Services Toolkit version you want to install. For example,
0.9.0.

3. Verify that the package installed by running:

tanzu package installed get services-toolkit -n tap-install

and checking that the STATUS value is Reconcile succeeded

For example:

$ tanzu package installed get services-toolkit -n tap-install

| Retrieving installation details for services-toolkit...

NAME:                    services-toolkit

PACKAGE-NAME:            services-toolkit.tanzu.vmware.com

PACKAGE-VERSION:         0.9.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Overview of Flux CD Source Controller
Flux CD Source Controller provides you with APIs for acquiring resources such as Git, Helm
repositories and S3 buckets on the cluster. For more information, see Flux CD Source Controller
documentation.

The source-controller implements the source.toolkit.fluxcd.io API in GitHub and is a core
component of the GitOps toolkit.

Overview of Flux CD Source Controller
Flux CD Source Controller provides you with APIs for acquiring resources such as Git, Helm
repositories and S3 buckets on the cluster. For more information, see Flux CD Source Controller
documentation.

The source-controller implements the source.toolkit.fluxcd.io API in GitHub and is a core
component of the GitOps toolkit.

Install Flux CD Source Controller
This topic tells you how to install Flux CD Source Controller from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites

Before installing Flux CD Source Controller:

Note

Follow the steps in this topic if you do not want to use a profile to install Flux CD
Source Controller. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 876

https://fluxcd.io/flux/components/source/
https://github.com/fluxcd/source-controller/tree/main/docs/spec/v1beta1
https://toolkit.fluxcd.io/
https://fluxcd.io/flux/components/source/
https://github.com/fluxcd/source-controller/tree/main/docs/spec/v1beta1
https://toolkit.fluxcd.io/


Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cert-manager on the cluster. For more information, see Install cert-manager.

Configuration

The Flux CD Source Controller package has no configuration values.

Installation

To install Flux CD Source Controller from the Tanzu Application Platform package repository:

1. List version information for the package by running:

tanzu package available list fluxcd.source.controller.tanzu.vmware.com -n tap-i

nstall

For example:

$ tanzu package available list fluxcd.source.controller.tanzu.vmware.com -n tap

-install

    \ Retrieving package versions for fluxcd.source.controller.tanzu.vmware.co

m...

      NAME                                       VERSION  RELEASED-AT

      fluxcd.source.controller.tanzu.vmware.com  0.16.0   2021-10-27 19:00:00 -

0500 -05

2. Install the package by running:

tanzu package install fluxcd-source-controller -p fluxcd.source.controller.tanz

u.vmware.com -v VERSION-NUMBER -n tap-install

Where:

VERSION-NUMBER is the version of the package listed in step 1.

For example:

tanzu package install fluxcd-source-controller -p fluxcd.source.controller.tanz

u.vmware.com -v 0.16.0 -n tap-install

\ Installing package 'fluxcd.source.controller.tanzu.vmware.com'

| Getting package metadata for 'fluxcd.source.controller.tanzu.vmware.com'

| Creating service account 'fluxcd-source-controller-tap-install-sa'

| Creating cluster admin role 'fluxcd-source-controller-tap-install-cluster-rol

e'

| Creating cluster role binding 'fluxcd-source-controller-tap-install-cluster-r

olebinding'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'fluxcd-source-controller'

| 'PackageInstall' resource install status: Reconciling

  Added installed package 'fluxcd-source-controller'

This package creates a new namespace called flux-system. This namespace hosts all the
elements of fluxcd.

3. Verify the package install by running:

tanzu package installed get fluxcd-source-controller -n tap-install

For example:

Tanzu Application Platform v1.4

VMware by Broadcom 877



tanzu package installed get fluxcd-source-controller -n tap-install

\ Retrieving installation details for fluxcd-source-controller...

NAME:                    fluxcd-source-controller

PACKAGE-NAME:            fluxcd.source.controller.tanzu.vmware.com

PACKAGE-VERSION:         0.16.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

kubectl get pods -n flux-system

For example:

$ kubectl get pods -n flux-system

NAME                                 READY   STATUS    RESTARTS   AGE

source-controller-69859f545d-ll8fj   1/1     Running   0          3m38s

Verify that STATUS is Running.

Try fluxcd-source-controller
1. Verify the main components of fluxcd-source-controller were installed by running:

kubectl get all -n flux-system

Expect to see the following outputs or similar:

NAME                                     READY   STATUS    RESTARTS   AGE

pod/source-controller-7684c85659-2zfxb   1/1     Running   0          40m

NAME                        TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   

AGE

service/source-controller   ClusterIP   10.108.138.74   <none>        80/TCP    

40m

NAME                                READY   UP-TO-DATE   AVAILABLE   AGE

deployment.apps/source-controller   1/1     1            1           40m

NAME                                           DESIRED   CURRENT   READY   AGE

replicaset.apps/source-controller-7684c85659   1         1         1       40m

2. Verify all the CRD were installedby running:

kubectl get crds -n flux-system | grep ".fluxcd.io"

buckets.source.toolkit.fluxcd.io                         2022-03-07T19:20:14Z

gitrepositories.source.toolkit.fluxcd.io                 2022-03-07T19:20:14Z

helmcharts.source.toolkit.fluxcd.io                      2022-03-07T19:20:14Z

helmrepositories.source.toolkit.fluxcd.io                2022-03-07T19:20:14Z

3. Follow these steps to consume a GitRepository object:

1. Create the following gitrepository-sample.yaml file:

Note

You will communicate with fluxcd-source-controller through its CRDs.

Tanzu Application Platform v1.4

VMware by Broadcom 878



apiVersion: source.toolkit.fluxcd.io/v1beta1

kind: GitRepository

metadata:

  name: gitrepository-sample

spec:

  interval: 1m

  url: https://github.com/vmware-tanzu/application-accelerator-samples

  ref:

    branch: main

2. Apply the created conf:

kubectl apply -f gitrepository-sample.yaml

gitrepository.source.toolkit.fluxcd.io/gitrepository-sample created

3. Verify the git-repository was fetched correctly:

kubectl get GitRepository

NAME                   URL                                                               

READY   STATUS                                                              

AGE

gitrepository-sample   https://github.com/vmware-tanzu/application-accele

rator-samples   True    Fetched revision: main/132f4e719209eb10b9485302f8

593fc0e680f4fc   4s

For more examples, see the samples directory on fluxcd/source-controller/samples in
GitHub.

Documentation
For documentation specific to fluxcd-source-controller, see the main repository fluxcd/source-
controller in GitHub.

Overview of Source Controller
Tanzu Source Controller provides a standard interface for artifact acquisition and extends the
function of Flux CD Source Controller.

Tanzu Source Controller supports the following two resource types:

ImageRepository

MavenArtifact

An ImageRepository resource can resolve the source from the contents of an image in an image
registry. This enables app developers to create and update workloads from local source code or a
code repository.

A MavenArtifact resource can resolve a binary artifact from a Maven repository. This functionality
enables the supply chain to support artifacts produced externally.

Note

Fetching RELEASE version from GitHub packages is not currently supported. The
metadata.xml in GitHub packages does not have the release tag that contains the
released version number. For more information, see Maven-metadata.xml is
corrupted on upload to registry on GitHub.

Tanzu Application Platform v1.4

VMware by Broadcom 879

https://github.com/fluxcd/source-controller/tree/main/config/samples
https://github.com/fluxcd/source-controller
https://github.community/t/maven-metadata-xml-is-corrupted-on-upload-to-registry/177725


Overview of Source Controller

Tanzu Source Controller provides a standard interface for artifact acquisition and extends the
function of Flux CD Source Controller.

Tanzu Source Controller supports the following two resource types:

ImageRepository

MavenArtifact

An ImageRepository resource can resolve the source from the contents of an image in an image
registry. This enables app developers to create and update workloads from local source code or a
code repository.

A MavenArtifact resource can resolve a binary artifact from a Maven repository. This functionality
enables the supply chain to support artifacts produced externally.

Install Source Controller
This topic tells you how to install Source Controller from the Tanzu Application Platform (commonly
known as TAP) package repository.

Prerequisites

Before installing Source Controller:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cert-manager on the cluster. For more information, see Install cert-manager.

Install

To install Source Controller:

1. List version information for the package by running:

tanzu package available list controller.source.apps.tanzu.vmware.com --namespac

e tap-install

For example:

Note

Fetching RELEASE version from GitHub packages is not currently supported. The
metadata.xml in GitHub packages does not have the release tag that contains the
released version number. For more information, see Maven-metadata.xml is
corrupted on upload to registry on GitHub.

Note

Follow the steps in this topic if you do not want to use a profile to install Source
Controller. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 880

https://github.community/t/maven-metadata-xml-is-corrupted-on-upload-to-registry/177725


$ tanzu package available list controller.source.apps.tanzu.vmware.com --namesp

ace tap-install

- Retrieving package versions for controller.source.apps.tanzu.vmware.com...

  NAME                                     VERSION  RELEASED-AT

  controller.source.apps.tanzu.vmware.com  0.3.1    2022-01-23 19:00:00 -0500 -

05

  controller.source.apps.tanzu.vmware.com  0.3.2    2022-02-21 19:00:00 -0500 -

05

  controller.source.apps.tanzu.vmware.com  0.3.3    2022-03-03 19:00:00 -0500 -

05

  controller.source.apps.tanzu.vmware.com  0.4.1    2022-06-09 19:00:00 -0500 -

05

2. (Optional) Gather the values schema:

tanzu package available get controller.source.apps.tanzu.vmware.com/VERSION-NUM

BER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

tanzu package available get controller.source.apps.tanzu.vmware.com/0.4.1 --val

ues-schema --namespace tap-install

Retrieving package details for controller.source.apps.tanzu.vmware.com/0.4.1...

KEY               DEFAULT  TYPE    DESCRIPTION

aws_iam_role_arn           string  Optional: The AWS IAM Role ARN to attach to 

the Source Controller service account

ca_cert_data               string  Optional: PEM Encoded certificate data for i

mage registries with private CA.

3. (Optional) Create a file named source-controller-values.yaml to override the default
installation settings. You can configure the following fields:

ca_cert_data: Enables Source Controller to connect to image registries that use
self-signed or private certificate authorities. If a certificate error x509: certificate
signed by unknown authority occurs, use this option to trust additional certificate
authorities.

To provide a custom certificate, add the PEM-encoded CA certificate data to
source-controller-values.yaml. For example:

ca_cert_data: |

    -----BEGIN CERTIFICATE-----

    MIICpTCCAYUCBgkqhkiG9w0BBQ0wMzAbBgkqhkiG9w0BBQwwDgQIYg9x6gkCAggA

    ...

    9TlA7A4FFpQqbhAuAVH6KQ8WMZIrVxJSQ03c9lKVkI62wQ==

    -----END CERTIFICATE-----

aws_iam_role_arn: Annotates the Source Controller service with an AWS Identity
and Access Management (IAM) role. This allows Source Controller to pull images
from Amazon Elastic Container Registry (ECR).

To add the AWS IAM role Amazon Resource Name (ARN) to the Source Controller
service, add the ARN to source-controller-values.yaml. For example:

aws_iam_role_arn: "eks.amazonaws.com/role-arn: arn:aws:iam::112233445566:

role/source-controller-manager"

4. Install the package by running:

Tanzu Application Platform v1.4

VMware by Broadcom 881



tanzu package install source-controller -p controller.source.apps.tanzu.vmware.

com -v VERSION-NUMBER -n tap-install -f VALUES-FILE

Where:

VERSION-NUMBER is the version of the package listed in step 1 above.

VALUES-FILE is the path to the file created in step 3.

For example:

tanzu package install source-controller -p controller.source.apps.tanzu.vmware.

com -v 0.4.1  -n tap-install -f source-controller-values.yaml

\ Installing package 'controller.source.apps.tanzu.vmware.com'

| Getting package metadata for 'controller.source.apps.tanzu.vmware.com'

| Creating service account 'source-controller-default-sa'

| Creating cluster admin role 'source-controller-default-cluster-role'

| Creating cluster role binding 'source-controller-default-cluster-rolebinding'

| Creating secret 'source-controller-default-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'source-controller'

- 'PackageInstall' resource install status: Reconciling

 Added installed package 'source-controller'

5. Verify the package installation by running:

tanzu package installed get source-controller -n tap-install

For example:

tanzu package installed get source-controller -n tap-install

- Retrieving installation details for source-controller...

NAME:                    source-controller

PACKAGE-NAME:            controller.source.apps.tanzu.vmware.com

PACKAGE-VERSION:         0.4.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded:

kubectl get pods -n source-system

For example:

$ kubectl get pods -n source-system

NAME                                        READY   STATUS    RESTARTS   AGE

source-controller-manager-f68dc7bb6-4lrn6   1/1     Running   0          100s

Verify that STATUS is Running.

Troubleshoot Source Controller
This topic gives you guidance about how to troubleshoot issues with Source Controller.

Collecting Logs from Source Controller Manager
To retrieve Pod logs from the controller-manager, run the following command in the source-
system namespace:

Tanzu Application Platform v1.4

VMware by Broadcom 882



kubectl logs -n source-system -l control-plane=controller-manager

For example:

kubectl logs -n source-system -l control-plane=controller-manager

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.metarepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.metarepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.metarepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.metarepository Starting Contr

oller {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository"}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Contr

oller {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository"}

2021-11-18T17:59:43.389Z INFO controller.metarepository Starting worke

rs {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "worker count": 1}

2021-11-18T17:59:43.391Z INFO controller.imagerepository Starting worke

rs {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "worker count": 1}

Source Controller reference

This topic provides reference documentation for Source Controller.

ImageRepository

---

apiVersion: source.apps.tanzu.vmware.com/v1alpha1

kind: ImageRepository

spec:

  image: registry.example/image/repository:tag

  # optional fields

  interval: 5m

  imagePullSecrets: []

  serviceAccountName: default

ImageRepository resolves source code defined in an Open Container Initiative (OCI) image
repository, exposing the resulting source artifact at a URL defined by .status.artifact.url.

The interval determines how often to check tagged images for changes. Setting this value too high
will result in delays in discovering new sources, while setting it too low may trigger a registry’s rate
limits.

Repository credentials can be defined as image pull secrets. You can reference them either directly
from the resources at .spec.imagePullSecrets or attach them to a service account referenced at

Tanzu Application Platform v1.4

VMware by Broadcom 883



.spec.serviceAccountName. The default service account name "default" is used if not otherwise
specified. The default credential helpers for the registry are also used, for example, pulling from
Google Container Registry (GCR) on a Google Kubernetes Engine (GKE) cluster.

MavenArtifact

---

apiVersion: source.apps.tanzu.vmware.com/v1alpha1

kind: MavenArtifact

metadata:

  name: mavenartifact-sample

spec:

  artifact:

    groupId: org.springframework.boot

    artifactId: spring-boot

    version: "2.7.0"

  repository:

    url: https://repo1.maven.org/maven2

  interval: 5m0s

  timeout: 1m0s

MavenArtifact resolves artifact from a Maven repository, exposing the resulting artifact at a URL
defined by .status.artifact.url.

The interval determines how often to check artifact for changes. Setting this value too high
results in delays in discovering new sources, while setting it too low may trigger a repository’s rate
limits.

Repository credentials may be defined as secrets referenced from the resources at
.spec.repository.secretRef. Secrets referenced by spec.repository.secretRef is parsed as
follows:

---

apiVersion: v1

kind: Secret

metadata:

  name: auth-secret

type: Opaque

data:

  username: <BASE64>

  password: <BASE64>

  caFile:   <BASE64>   // PEM Encoded certificate data for Custom CA

  certFile: <BASE64>   // PEM-encoded client certificate

  keyFile:  <BASE64>   // Private Key

Maven supports a broad set of version syntax. Source Controller supports a strict subset of
Maven’s version syntax in order to ensure compatibility and avoid user confusion. The subset of
supported syntax may grow over time, but will never expand past the syntax defined directly by
Maven. This behavior means that we can use mvn as a reference implementation for artifact
resolution.

Version support implemented in the following order:

1. Pinned version - an exact match of a version in2 maven-metadata.xml
(versioning/versions/version).

2. RELEASE - metaversion defined in maven-metadata.xml (versioning/release).

3. *-SNAPSHOT - the newest artifact for a snapshot version.

4. LATEST - metaversion defined in maven-metadata.xml (versioning/latest).

Tanzu Application Platform v1.4

VMware by Broadcom 884



5. Version ranges - https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html.
Support is planned for a future release.

Overview of Developer Conventions

Developer Conventions is a set of conventions that enable your workloads to support live-update
and debug operations in Tanzu Application Platform (commonly known as TAP).

Prerequisites

Tanzu CLI Apps plug-in

Tanzu Dev Tools for VSCode IDE extension.

Features

Enabling Live Updates

Developer Conventions modifies your workload to enable live updates in either of the following
situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --live-
update=true. For more information about how to deploy a workload with the CLI, see Tanzu
apps workload apply.

You deploy a workload by using the Tanzu: Live Update Start option through the Tanzu
Developer Tools for VS Code extension. For more information about live updating with the
extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

1. Looks for the apps.tanzu.vmware.com/live-update=true annotation on a PodTemplateSpec
associated with a workload.

2. Verifies that the image to which conventions are applied contains a process that can be live
updated.

3. Adds annotations to the PodTemplateSpec to modify the Knative properties minScale &
maxScale such that the minimum and maximum number of pods is 1. This ensures the
eventual running pod is not scaled down to 0 during a live update session.

After these changes are made, you can use the Tanzu Dev Tools extension or the Tilt CLI to make
live update changes to source code directly on the cluster.

Enabling debugging

Developer Conventions modifies your workload to enable debugging in either of the following
situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --
debug=true. For more information about how to deploy a workload with the CLI, see Tanzu
apps workload apply.

Note

Pinned versions should be immutable, all other versions are dynamic and can
change at any time. The .spec.interval defines how frequently to check for
updated artifacts.

Tanzu Application Platform v1.4

VMware by Broadcom 885

https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html


You deploy a workload by using the Tanzu Java Debug Start option through the Tanzu
Developer Tools for VS Code extension. For more information about debugging with the
extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

1. It looks for the apps.tanzu.vmware.com/debug=true annotation on a PodTemplateSpec
associated with a workload.

2. It checks for the debug-8 or debug-9 labels on the image configuration’s bill of materials
(BOM).

3. It sets the TimeoutSeconds of the Liveness, Readiness, and Startup probes to 600 if
currently set to a lower number.

4. It adds annotations to the PodTemplateSpec to modify the Knative properties minScale &
maxScale such that the minimum and maximum number of pods is 1. This ensures the
eventual running pod won’t be scaled down to 0 during a debug session.

After these changes are made, you can use the Tanzu Dev Tools extension or other CLI-based
debuggers to debug your workload directly on the cluster.

Next steps

Install Developer Conventions

Overview of Developer Conventions

Developer Conventions is a set of conventions that enable your workloads to support live-update
and debug operations in Tanzu Application Platform (commonly known as TAP).

Prerequisites

Tanzu CLI Apps plug-in

Tanzu Dev Tools for VSCode IDE extension.

Features

Enabling Live Updates

Developer Conventions modifies your workload to enable live updates in either of the following
situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --live-
update=true. For more information about how to deploy a workload with the CLI, see Tanzu
apps workload apply.

You deploy a workload by using the Tanzu: Live Update Start option through the Tanzu
Developer Tools for VS Code extension. For more information about live updating with the
extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

Note

Currently, Developer Conventions only supports debug operations for Java
applications.

Tanzu Application Platform v1.4

VMware by Broadcom 886



1. Looks for the apps.tanzu.vmware.com/live-update=true annotation on a PodTemplateSpec
associated with a workload.

2. Verifies that the image to which conventions are applied contains a process that can be live
updated.

3. Adds annotations to the PodTemplateSpec to modify the Knative properties minScale &
maxScale such that the minimum and maximum number of pods is 1. This ensures the
eventual running pod is not scaled down to 0 during a live update session.

After these changes are made, you can use the Tanzu Dev Tools extension or the Tilt CLI to make
live update changes to source code directly on the cluster.

Enabling debugging

Developer Conventions modifies your workload to enable debugging in either of the following
situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --
debug=true. For more information about how to deploy a workload with the CLI, see Tanzu
apps workload apply.

You deploy a workload by using the Tanzu Java Debug Start option through the Tanzu
Developer Tools for VS Code extension. For more information about debugging with the
extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

1. It looks for the apps.tanzu.vmware.com/debug=true annotation on a PodTemplateSpec
associated with a workload.

2. It checks for the debug-8 or debug-9 labels on the image configuration’s bill of materials
(BOM).

3. It sets the TimeoutSeconds of the Liveness, Readiness, and Startup probes to 600 if
currently set to a lower number.

4. It adds annotations to the PodTemplateSpec to modify the Knative properties minScale &
maxScale such that the minimum and maximum number of pods is 1. This ensures the
eventual running pod won’t be scaled down to 0 during a debug session.

After these changes are made, you can use the Tanzu Dev Tools extension or other CLI-based
debuggers to debug your workload directly on the cluster.

Next steps
Install Developer Conventions

Install Developer Conventions
This document tells you how to install Developer Conventions from the Tanzu Application Platform
(commonly known as TAP) package repository.

Note

Currently, Developer Conventions only supports debug operations for Java
applications.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 887



Prerequisites

Before installing Developer Conventions:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Supply Chain Choreographer.

Install

To install Developer Conventions:

1. Get the exact name and version information for the Developer Conventions package to be
installed by running:

tanzu package available list developer-conventions.tanzu.vmware.com --namespace 

tap-install

For example:

$ tanzu package available list developer-conventions.tanzu.vmware.com --namespa

ce tap-install

- Retrieving package versions for developer-conventions.tanzu.vmware.com

  NAME                                    VERSION        RELEASED-AT

  developer-conventions.tanzu.vmware.com  0.3.0          2021-10-19T00:00:00Z

2. Install the package by running:

tanzu package install developer-conventions \

  --package-name developer-conventions.tanzu.vmware.com \

  --version 0.3.0 \

  --namespace tap-install

3. Verify the package install by running:

tanzu package installed get developer-conventions --namespace tap-install

For example:

tanzu package installed get developer-conventions -n tap-install

| Retrieving installation details for developer-conventions...

NAME:                    developer-conventions

PACKAGE-NAME:            developer-conventions.tanzu.vmware.com

PACKAGE-VERSION:         0.3.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Resource limits
The following resource limits are set on the Developer Conventions service:

Follow the steps in this topic if you do not want to use a profile to install Developer
Conventions. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 888



resources:

  limits:

  cpu: 100m

  memory: 256Mi

  requests:

  cpu: 100m

  memory: 20Mi

Uninstall

To uninstall Developer Conventions, follow the guide for Uninstall Tanzu Application Platform
packages. The package name for developer conventions is developer-conventions.

Run Developer Conventions on an OpenShift cluster

This topic tells you about considerations for running Developer Conventions on OpenShift.

On OpenShift clusters, Developer Conventions must run with a custom SecurityContextConstraint
(SCC) to enable compliance with restricted Kubernetes pod security standards. Tanzu Application
Platform configures the following SCC for the Developer Convention’s webhook when you
configure the kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

---

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

  name: developer-conventions-scc

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

defaultAddCapabilities: null

fsGroup:

  type: RunAsAny

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities: null

runAsUser:

  type: MustRunAsNonRoot

seLinuxContext:

  type: MustRunAs

supplementalGroups:

  type: RunAsAny

volumes:

  - secret

seccompProfiles: []

groups:

  - system:serviceaccounts:developer-conventions

Overview of Learning Center for Tanzu Application
Platform

Learning Center provides a platform for creating and self-hosting workshops. It allows you to create
workshops from markdown files that are displayed to the learner in a terminal shell environment
with an instructional wizard UI.

Tanzu Application Platform v1.4

VMware by Broadcom 889



The UI can embed slide content, an integrated development environment (IDE), a web console for
accessing the Kubernetes cluster, and other custom web applications.

Although Learning Center requires Kubernetes to run, and is used to teach users about
Kubernetes, you can use it to host training for other purposes as well. For example, you can use it
to help train users in web-based applications, use of databases, or programming languages, where
the user has no interest or need for Kubernetes.

Use cases

Use case scenarios that Learning Center supports include:

Supervised workshops. For example, a workshop run at a conference, at a customer site, or
online. The workshop has a set time period and you know the maximum number of users to
expect. After the training is complete, the Kubernetes cluster created for the workshop is
destroyed.

Temporary learning portal. This is for when you must provide access to a small set of
workshops for a short duration for hands on demos at a conference vendor booth. Users
select which topic they want to learn about and do that workshop. The workshop instance
is created on demand. When they have finished the workshop, that workshop instance is
destroyed to free up resources. After the conference has finished, the Kubernetes cluster is
destroyed.

Permanent learning portal. Similar to the temporary learning portal, but runs on an
extended basis as a public website where anyone can come and learn at any time.

Personal training or demos. This is where anyone who wants to run a workshop on their
own Kubernetes cluster to learn that topic, or where a product demo was packaged up as a
workshop and they want to use it to demonstrate the product to a customer. You can
destroy the workshop environment when complete, but there is no need for the cluster to
be destroyed.

When running workshops, wherever possible a shared Kubernetes cluster reduces the amount of
setup required. This works for developer-focused workshops, becauses it is usually not necessary to
provide elevated access to the Kubernetes cluster, and you can use role-based access controls
(RBAC) to prevent users from interfering with each other. You can also set quotas so users are
restricted as to how much resources they can use.

When you run workshops that deal with cluster operations, for which users need cluster admin
access, create a separate cluster for each user. Learning Center doesn’t deal with provisioning
clusters, only with deploying a workshop environment in a cluster after it exists.

Use case requirements

In implementing to the preceding scenarios, the primary requirements related to creation of
workshop content, and what you can do at runtime, are as follows:

You must store everything for the workshop in a Git repository, with no dependency on
using a special web application or service to create a workshop.

Use GitHub as a means to distribute workshop content. Alternatively, you can distribute the
workshop as a container image. The latter is necessary if special tools must be installed for
use in a workshop.

Provide instructions to the user to complete the workshop as Markdown or AsciiDoc files.

You can annotate instructions as executable commands so that when clicked in the
workshop dashboard, they execute for the user in the appropriate terminal to avoid

Tanzu Application Platform v1.4

VMware by Broadcom 890



mistakes when commands are entered manually.

You can annotate text as copyable so when clicked in the workshop dashboard, it is copied
into the browser paste buffer ready for pasting into the terminal or other web application.

Provide each user access to one or more namespaces in the Kubernetes cluster unique to
their session. For Kubernetes based workshops, this is where applications are deployed as
part of the workshop.

You can create additional Kubernetes resources specific to a workshop session in advance
of the session. This enables the deployment of applications for each user session.

You can deploy additional Kubernetes resources common to all workshop sessions when
the workshop environment is first created. This enables deployment of applications shared
by all users.

Apply resource quotas on each workshop session to control how much resources users can
consume.

Apply role-based access control (RBAC) on each workshop session to control what users
can do.

Provide access to an editor (IDE) in the workshop dashboard in the web browser for users
to edit files during the workshop.

Provide access to a web-based console for accessing the Kubernetes cluster. Use of the
Kubernetes dashboard or Octant is supported.

Ability to integrate additional web-based applications into the workshop dashboard specific
to the topic of the workshop.

Ability for the workshop dashboard to display slides used by an instructor in support of the
workshop.

Platform architectural overview

The Learning Center relies on a Kubernetes Operator to perform the bulk of the work. The actions
of the operator are controlled by using a set of custom resources specific to the Learning Center.

There are multiple ways of using the custom resources to deploy workshops. The primary way is to
create a training portal, which in turn then triggers the setup of one or more workshop
environments, one for each distinct workshop. When users access the training portal and select the
workshop they want to do, the training portal allocates to that user a workshop session (creating
one if necessary) against the appropriate workshop environment, and the user is redirected to that
workshop session instance.

Tanzu Application Platform v1.4

VMware by Broadcom 891



You can associate each workshop session with one or more Kubernetes namespaces specifically for
use during that session. Role based access control (RBAC) applied to the unique Kubernetes
service account for that session ensures that the user can only access the namespaces and other
resources that they are allowed to for that workshop.

In this scenario, the custom resource types that come into play are:

Workshop - Provides the definition of a workshop. Preloaded by an admin into the cluster, it
defines where the workshop content is hosted, or the location of a container image which
bundles the workshop content and any additional tools required for the workshop. The
definition also lists additional resources that must be created which are to be shared
between all workshop sessions, or for each session, with details of resources quotas and
access roles required by the workshop.

TrainingPortal - Created by an admin in the cluster to trigger the deployment of a training
portal. The training portal can provide access to one or more distinct workshops defined by
a Workshop resource. The training portal provides a web based interface for registering for
workshops and accessing them. It also provides a REST API for requesting access to
workshops, allowing custom front ends to be created which integrate with separate identity
providers and which provide an alternate means for browsing and accessing workshops.

WorkshopEnvironment - Used by the training portal to trigger the creation of a workshop
environment for a workshop. This causes the operator to set up a namespace for the
workshop into which shared resources are deployed, and where the workshop sessions are
run.

WorkshopSession - Used by the training portal to trigger the creation of a workshop session
against a specific workshop environment. This causes the operator to set up any
namespaces specific to the workshop session and pre-create additional resources required
for a workshop session. Workshop sessions can either be created up front in reserve, to be
handed out when requested, or created on demand.

Next steps
Learn more about:

Workshops

Get started with Learning Center

Tanzu Application Platform v1.4

VMware by Broadcom 892



Installing Learning Center

Local install guides

Air-gapped environment requirements

Overview of Learning Center for Tanzu Application
Platform
Learning Center provides a platform for creating and self-hosting workshops. It allows you to create
workshops from markdown files that are displayed to the learner in a terminal shell environment
with an instructional wizard UI.

The UI can embed slide content, an integrated development environment (IDE), a web console for
accessing the Kubernetes cluster, and other custom web applications.

Although Learning Center requires Kubernetes to run, and is used to teach users about
Kubernetes, you can use it to host training for other purposes as well. For example, you can use it
to help train users in web-based applications, use of databases, or programming languages, where
the user has no interest or need for Kubernetes.

Use cases
Use case scenarios that Learning Center supports include:

Supervised workshops. For example, a workshop run at a conference, at a customer site, or
online. The workshop has a set time period and you know the maximum number of users to
expect. After the training is complete, the Kubernetes cluster created for the workshop is
destroyed.

Temporary learning portal. This is for when you must provide access to a small set of
workshops for a short duration for hands on demos at a conference vendor booth. Users
select which topic they want to learn about and do that workshop. The workshop instance
is created on demand. When they have finished the workshop, that workshop instance is
destroyed to free up resources. After the conference has finished, the Kubernetes cluster is
destroyed.

Permanent learning portal. Similar to the temporary learning portal, but runs on an
extended basis as a public website where anyone can come and learn at any time.

Personal training or demos. This is where anyone who wants to run a workshop on their
own Kubernetes cluster to learn that topic, or where a product demo was packaged up as a
workshop and they want to use it to demonstrate the product to a customer. You can
destroy the workshop environment when complete, but there is no need for the cluster to
be destroyed.

When running workshops, wherever possible a shared Kubernetes cluster reduces the amount of
setup required. This works for developer-focused workshops, becauses it is usually not necessary to
provide elevated access to the Kubernetes cluster, and you can use role-based access controls
(RBAC) to prevent users from interfering with each other. You can also set quotas so users are
restricted as to how much resources they can use.

When you run workshops that deal with cluster operations, for which users need cluster admin
access, create a separate cluster for each user. Learning Center doesn’t deal with provisioning
clusters, only with deploying a workshop environment in a cluster after it exists.

Use case requirements

Tanzu Application Platform v1.4

VMware by Broadcom 893



In implementing to the preceding scenarios, the primary requirements related to creation of
workshop content, and what you can do at runtime, are as follows:

You must store everything for the workshop in a Git repository, with no dependency on
using a special web application or service to create a workshop.

Use GitHub as a means to distribute workshop content. Alternatively, you can distribute the
workshop as a container image. The latter is necessary if special tools must be installed for
use in a workshop.

Provide instructions to the user to complete the workshop as Markdown or AsciiDoc files.

You can annotate instructions as executable commands so that when clicked in the
workshop dashboard, they execute for the user in the appropriate terminal to avoid
mistakes when commands are entered manually.

You can annotate text as copyable so when clicked in the workshop dashboard, it is copied
into the browser paste buffer ready for pasting into the terminal or other web application.

Provide each user access to one or more namespaces in the Kubernetes cluster unique to
their session. For Kubernetes based workshops, this is where applications are deployed as
part of the workshop.

You can create additional Kubernetes resources specific to a workshop session in advance
of the session. This enables the deployment of applications for each user session.

You can deploy additional Kubernetes resources common to all workshop sessions when
the workshop environment is first created. This enables deployment of applications shared
by all users.

Apply resource quotas on each workshop session to control how much resources users can
consume.

Apply role-based access control (RBAC) on each workshop session to control what users
can do.

Provide access to an editor (IDE) in the workshop dashboard in the web browser for users
to edit files during the workshop.

Provide access to a web-based console for accessing the Kubernetes cluster. Use of the
Kubernetes dashboard or Octant is supported.

Ability to integrate additional web-based applications into the workshop dashboard specific
to the topic of the workshop.

Ability for the workshop dashboard to display slides used by an instructor in support of the
workshop.

Platform architectural overview

The Learning Center relies on a Kubernetes Operator to perform the bulk of the work. The actions
of the operator are controlled by using a set of custom resources specific to the Learning Center.

There are multiple ways of using the custom resources to deploy workshops. The primary way is to
create a training portal, which in turn then triggers the setup of one or more workshop
environments, one for each distinct workshop. When users access the training portal and select the
workshop they want to do, the training portal allocates to that user a workshop session (creating
one if necessary) against the appropriate workshop environment, and the user is redirected to that
workshop session instance.

Tanzu Application Platform v1.4

VMware by Broadcom 894



You can associate each workshop session with one or more Kubernetes namespaces specifically for
use during that session. Role based access control (RBAC) applied to the unique Kubernetes
service account for that session ensures that the user can only access the namespaces and other
resources that they are allowed to for that workshop.

In this scenario, the custom resource types that come into play are:

Workshop - Provides the definition of a workshop. Preloaded by an admin into the cluster, it
defines where the workshop content is hosted, or the location of a container image which
bundles the workshop content and any additional tools required for the workshop. The
definition also lists additional resources that must be created which are to be shared
between all workshop sessions, or for each session, with details of resources quotas and
access roles required by the workshop.

TrainingPortal - Created by an admin in the cluster to trigger the deployment of a training
portal. The training portal can provide access to one or more distinct workshops defined by
a Workshop resource. The training portal provides a web based interface for registering for
workshops and accessing them. It also provides a REST API for requesting access to
workshops, allowing custom front ends to be created which integrate with separate identity
providers and which provide an alternate means for browsing and accessing workshops.

WorkshopEnvironment - Used by the training portal to trigger the creation of a workshop
environment for a workshop. This causes the operator to set up a namespace for the
workshop into which shared resources are deployed, and where the workshop sessions are
run.

WorkshopSession - Used by the training portal to trigger the creation of a workshop session
against a specific workshop environment. This causes the operator to set up any
namespaces specific to the workshop session and pre-create additional resources required
for a workshop session. Workshop sessions can either be created up front in reserve, to be
handed out when requested, or created on demand.

Next steps
Learn more about:

Workshops

Get started with Learning Center

Tanzu Application Platform v1.4

VMware by Broadcom 895



Installing Learning Center

Local install guides

Air-gapped environment requirements

Install Learning Center

This topic describes how to install Learning Center from the Tanzu Application Platform (commonly
known as TAP) package repository.

To install Tanzu Learning Center, see the following sections.

For general information about Learning Center, see Learning Center. For information about
deploying Learning Center operator, see Install and configure the Learning Center operator.

Prerequisites

Before installing Learning Center:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

The cluster must have an ingress router configured. If you have installed Learning Center
through a profile, it already deploys a Contour ingress controller.

The operator, when deploying instances of the workshop environments, must be able to
expose them through an external URL for access. For the custom domain you are using,
DNS must have been configured with a wildcard domain to forward all requests for sub-
domains of the custom domain to the ingress router of the Kubernetes cluster.

By default, the workshop portal and workshop sessions are accessible over HTTP
connections. If you wish to use secure HTTPS connections, you must have access to a
wildcard SSL certificate for the domain under which you want to host the workshops. You
cannot use a self-signed certificate.

Any ingress routes created use the default ingress class if you have multiple ingress class
types available and you must override which is used.

Install Learning Center

To install Learning Center:

1. List version information for the package by running:

tanzu package available list learningcenter.tanzu.vmware.com --namespace tap-in

stall

Example output:

 NAME                             VERSION        RELEASED-AT

 learningcenter.tanzu.vmware.com  0.1.0          2021-12-01 08:18:48 -0500 EDT

Note

Follow the steps in this topic if you do not want to use a profile to install Learning
Center. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 896



2. (Optional) See all the configurable parameters on this package by running:

Remember to change the 0.x.x version

tanzu package available get learningcenter.tanzu.vmware.com/0.x.x --values-sche

ma --namespace tap-install

3. Create a config file named learning-center-config.yaml.

4. To override the shared.ingress_domain in the values file of Tanzu Application Platform, add
the parameter ingressDomain to learning-center-config.yaml. For example:

ingressDomain: YOUR-INGRESS-DOMAIN

Where YOUR-INGRESS-DOMAIN is the domain name for your Kubernetes cluster.

When deploying workshop environment instances, the operator must be able to expose the
instances through an external URL. You need this access to discover the domain name that
can be used as a suffix to host names for instances.

For the custom domain you are using, DNS must have been configured with a wildcard
domain to forward all requests for sub-domains of the custom domain to the ingress router
of the Kubernetes cluster.

If you are running Kubernetes on your local machine using a system such as minikube and
you don’t have a custom domain name that maps to the IP address for the cluster, you can
use a nip.io address. For example, if minikube ip returns 192.168.64.1, you can use the
192.168.64.1.nip.io domain. You cannot use an address of form 127.0.0.1.nip.io or
subdomain.localhost. This causes a failure. Internal services needing to connect to each
other connect to themselves instead, because the address resolves to the host loopback
address of 127.0.0.1.

5. Add the ingressSecret to learning-center-config.yaml, as in this example:

  ingressSecret:

  certificate: |

    -----BEGIN CERTIFICATE-----

    MIIFLTCCBBWgAwIBAgaSAys/V2NCTG9uXa9aAiYt7WJ3MA0GCSqGaIb3DQEBCwUA

                                    ...

    dHa6Ly9yMy5vamxlbmNyLm9yZzAiBggrBgEFBQawAoYWaHR0cDoaL3IzLmkubGVu

    -----END CERTIFICATE-----

  privateKey: |

    -----BEGIN PRIVATE KEY-----

    MIIEvQIBADAaBgkqhkiG9waBAQEFAASCBKcwggSjAgEAAoIBAaCx4nyc2xwaVOzf

                                    ...

    IY/9SatMcJZivH3F1a7SXL98PawPIOSR7986P7rLFHzNjaQQ0DWTaXBRt+oUDxpN

    -----END PRIVATE KEY-----

If you already have a TLS secret, follow these steps before deploying any workshop: -
Create the learningcenter namespace manually or the one you defined - Copy the TLS
secret to the learningcenter namespace or the one you defined and use the secretName
property as in this example:

ingressSecret:

 secretName: workshops.example.com-tls

By default, the workshop portal and workshop sessions are accessible over HTTP
connections.

To use secure HTTPS connections, you must have access to a wildcard SSL certificate for
the domain under which you want to host the workshops. You cannot use a self-signed

Tanzu Application Platform v1.4

VMware by Broadcom 897



certificate.

You can create wildcard certificates by using letsencrypt https://letsencrypt.org/_. After
you have the certificate, you can define the certificate and privateKey properties under
the ingressSecret property to specify the certificate on the configuration YAML.

6. Any ingress routes created use the default ingress class. If you have multiple ingress class
types available, and you need to override which is used, define the ingressClass property
in learning-center-config.yaml before deploying any workshop:

ingressClass: contour

7. Install Learning Center operator by running:

Remember to change the 0.x.x version

tanzu package install learning-center --package-name learningcenter.tanzu.vmwar

e.com --version 0.x.x -f learning-center-config.yaml

The preceding command creates a default namespace in your Kubernetes cluster called
learningcenter, and the operator, and any required namespaced resources, are created in
it. A set of custom resource definitions and a global cluster role binding are also created.

You can confirm that the operator deployed successfully by running:

kubectl get all -n learningcenter

The pod for the operator should be marked as running.

Install the Self-Guided Tour Training Portal and Workshop

To install the Self-Guided Tour Training Portal and Workshop:

1. Confirm you have the workshop package installed by running:

tanzu package available list workshops.learningcenter.tanzu.vmware.com --namesp

ace tap-install

2. Install the Learning Center Training Portal with the Self-Guided Tour Workshop by running:

Remember to change the 0.x.x version

tanzu package install learning-center-workshop --package-name workshops.learnin

gcenter.tanzu.vmware.com --version 0.x.x -n tap-install

3. Check for the Training Portals available in your environment by running:

kubectl get trainingportals

Example output:

NAME                       URL                                           ADMINU

SERNAME         ADMINPASSWORD                      STATUS

    learningcenter-tutorials   http://learningcenter-tutorials.example.com   le

arningcenter        QGBaM4CF01toPiZLW5NrXTcIYSpw2UJK   Running

Supported Learning Center Values Configuration

Admins are provided the following sample learning-center-config.yaml file to see the possible
configurations supported by Learning Center. These configurations are additional ones that admins

Tanzu Application Platform v1.4

VMware by Broadcom 898

https://letsencrypt.org/


can provide to the operator resource but are by no means necessary for Learning Center to work.
It is enough to follow the previous instructions on this page for Learning Center to run.

It is important to note that Learning Center has default values in place for the learning-center-
config.yaml file. Admins only need to provide the values they want to override. As in the example
above, overriding the ingressDomain property is enough to get Learning Center to work.

#! The namespace in which to deploy Learning Center. For now this must be "learningcen

ter" as

namespace: learningcenter

#! DNS parent subdomain used for training portal and workshop ingresses.

ingressDomain: workshops.example.com

#! Ingress class for where multiple ingress controllers exist and need to

#! use that which is not marked as the default.

ingressClass: null

#! SSL certificate for secure ingress. This must be a wildcard certificate for

#! children of DNS parent ingress subdomain.

ingressSecret:

  certificate: null

  privateKey: null

  secretName: null

#! Configuration for persistent volumes. The default storage class specified

#! by the cluster is used if not defined. You might need to set storage group

#! where a cluster has pod security policies enabled, usually

#! to one. Set storage user and storage group in exceptional cases

#! where storage class uses maps to NFS storage and storage server requires

#! that a specific user and group always be used.

storageClass: null

storageUser: null

storageGroup: null

#! Credentials for accessing training portal instances. If not specified,

#! random passwords are generated that you can obtain from the custom resource

#! for the training portal.

portalCredentials:

  systemAdmin:

    username: learningcenter

    password: null

  clientAccess:

    username: robot@learningcenter

    password: null

#! Container image versions for various components of Learning Center. The Learning Ce

nter

#! operator needs to be modified to read names of images for the registry

#! and docker-in-docker from config map to enable disconnected install.

#! Prepull images to nodes in cluster. Should be an empty list if no images

#! should be prepulled. Normally you would only want to prepull workshop

#! images. This is done to reduce start-up times for sessions.

prepullImages: ["base-environment"]

#! Docker daemon settings when building docker images in a workshop is

#! enabled. Proxy cache provides a way of partially getting around image

#! pull limits for Docker Hub image registry, with the remote URL being

#! set to "https://registry-1.docker.io".

dockerDaemon:

  networkMTU: 1500

  proxyCache:

    remoteURL: null

    username: null

    password: null

#! Used to restrict access to IP addresses or IP subnets. This must be a CIDR block ra

nge corresponding to the subnet or a portion of a

#! subnet you want to block. A Kubernetes `NetworkPolicy` is used to enforce the restr

iction. So the

#! Kubernetes cluster must use a network layer supporting network policies, and the ne

cessary Kubernetes

#! controllers supporting network policies must be enabled when the cluster is install

Tanzu Application Platform v1.4

VMware by Broadcom 899



ed.

network:

  blockCIDRs:

  - 169.254.169.254/32

  - fd00:ec2::254/128

#! clusterSecurity and policyEngine settings are used to change the security policy en

gine used by Learning Center. Possible values are:  

#! "pod-security-policies" - kubernetes <= 1.24

#! "pod-security-standards" - kubernetes >= 1.22

#! "security-context-constraints" - Openshift <= 4.10

#! "security-context-constraints-v2" - Openshift >= 4.11

#! "none" - Disable security - Not recommended 

clusterSecurity:

  policyEngine: "pod-security-policies"  #! default value

See Restricting Network Access for more information on blocking CIDRs.

About Learning Center workshops

This topic gives you an overview of Learning Center workshops.

The Learning Center workshop dashboard comprises a set of workshop instructions on the left-
hand side and a series of tabbed views on the right-hand side. For workshops that require users to
run commands, one or more terminal shells are provided. For more information about workshops
including creating your own, see Create workshops.

The terminals provide access to the editors vi and nano. To provide a UI based editor, you can
enable the embedded editor view and use the embedded IDE based on VS Code.

Tanzu Application Platform v1.4

VMware by Broadcom 900



To complement the workshop instructions, or to be available for use by the instructor, you can
include slides with a workshop. For slides you can use HTML based slide presentation tools such as
reveal.js, or you can embed a PDF file.

If the workshop involves working with Kubernetes, you can enable a web console for accessing the
Kubernetes cluster. The default web console uses the Kubernetes dashboard.

Tanzu Application Platform v1.4

VMware by Broadcom 901



Alternatively, you can enable Octant as the web console.

Get started with Learning Center

This topic describes how you can get started with Learning Center for Tanzu Application Platform.
For information about Learning Center and its use cases, see Learning Center for Tanzu Application
Platform.

Installing Learning Center

Before deploying workshops, you must install a Kubernetes operator for Learning Center. The
operator manages the setup of the environment for each workshop and deploys instances of a
workshop for each person.

For basic information about installing the Learning Center operator, see Install Learning Center.

Tanzu Application Platform v1.4

VMware by Broadcom 902



Get started

See the following useful information about getting started with Learning Center:

Install and configure the Learning Center operator

Get started with workshops

Get started with training portals

Delete an operator

Get started with Learning Center

This topic describes how you can get started with Learning Center for Tanzu Application Platform.
For information about Learning Center and its use cases, see Learning Center for Tanzu Application
Platform.

Installing Learning Center

Before deploying workshops, you must install a Kubernetes operator for Learning Center. The
operator manages the setup of the environment for each workshop and deploys instances of a
workshop for each person.

For basic information about installing the Learning Center operator, see Install Learning Center.

Get started

See the following useful information about getting started with Learning Center:

Install and configure the Learning Center operator

Get started with workshops

Get started with training portals

Delete an operator

Install and configure the Learning Center operator

This topic gives you information about installing and configuring the Learning Center operator.

Before deploying workshops, you must install a Kubernetes operator for Learning Center. The
operator manages the setup of the environment for each workshop and deploys instances of a
workshop for each person.

For basic information about installing the operator, see Install Learning Center.

Installing and setting up Learning Center operator

You can deploy the Learning Center operator to any Kubernetes cluster supporting custom
resource definitions and the concept of operators. The cluster must have an ingress router
configured, though only a basic deployment of the ingress controller is usually required. You do not
need to configure the ingress controller to handle cluster wide edge termination of secure HTTP
connections. Learning Center creates Kubernetes Ingress resources and supplies any secret for use
with secure HTTP connections for each ingress.

For the ingress controller, VMware recommends the use of Contour over alternatives such as
nginx. An nginx-based ingress controller has a less than optimal design. Every time a new ingress is
created or deleted, the nginx config is reloaded. This causes websocket connections to terminate

Tanzu Application Platform v1.4

VMware by Broadcom 903



after a period of time. Learning Center terminals reconnect automatically in the case of the
websocket connection being lost. However, not all applications you might use with specific
workshops can handle loss of websocket connections so gracefully, and they might be impacted
due to the use of an nginx ingress controller. This problem is not specific to Learning Center. It can
impact any application when an nginx ingress controller is used frequently and ingresses are
created or deleted frequently.

You can use a hosted Kubernetes solution from an IaaS provider such as Google, AWS, or Azure. If
you do, as needed increase any HTTP request timeout specified on the inbound load balancer for
the ingress controller so that you can use long-lived websocket connections. In some cases, load
balancers of hosted Kubernetes solutions only have a 30-second timeout. If possible, configure the
timeout applying to websockets to be 1 hour.

If you deploy the web-based training portal, the cluster must have available persistent volumes of
type ReadWriteOnce (RWO). A default storage class must be defined so that persistent volume claims
do not need to specify a storage class. For some Kubernetes distributions, including from IBM, you
must configure Learning Center as to what user and group must be used for persistent volumes. If
no default storage class is specified, or a specified storage class is required, you can configure
Learning Center with the name of the storage class.

To install the Learning Center operator, you must have cluster admin access.

Cluster pod security policies

The Learning Center operator defines pod security policies to limit what users can do from
workshops when deploying workloads to the cluster. The default policy prohibits running of images
as the root user or using a privileged pod. Specified workshops can relax these restrictions and
apply a policy that enables additional privileges required by the workshop.

To enforce a security policy around what a user can do, different mechanisms have been provided
with standard Kubernetes distributions and derivatives such as OpenShift. These are:

Pod security policies (Kubernetes <= 1.25)

Pod security standards (Kubernetes >= 1.22)

Security context constraints (OpenShift)

For pod security policies and pod security standards, these both must be enabled in the
Kubernetes cluster at the time the cluster is created. They cannot be enabled afterwards. For
some Kubernetes distributions, such as Tanzu Community Edition, it is not possible to enable pod
security policies. Because pod security standards are new, they might also not be supported.

VMware recommends that the pod security policy admission controller be enabled for the cluster
to ensure that the pod security policies are applied. If the admission controller is not enabled, users
can deploy workloads that run as the root user in a container, or run privileged pods.

If you are unable to enable the pod security policy admission controller, you should only provide
access to workshops deployed using the Learning Center operator to users you trust.

Whether the absence of the pod security policy admission controller causes issues with access to
persistent volumes depends on the cluster. Although minikube does not enable the pod security
policy admission controller, it works as persistent volumes when mounted to give write permissions
to all users.

No matter whether pod security policies are enabled, individual workshops must be reviewed as to
what added privileges they grant before allowing their use in a cluster.

Specifying the ingress domain

Tanzu Application Platform v1.4

VMware by Broadcom 904



When deploying instances of workshop environments, the operator must expose the instances by
using an external URL for access to define the domain name that is used as a suffix to host names
for instances.

VMware recommends that you avoid using a .dev or .app domain name, because such domain
names require browsers to use HTTPS and not HTTP. Although you can provide a certificate for
secure connections under the domain name for use by Learning Center, this doesn’t extend to
what a workshop may do. If workshop instructions require that you create ingresses in Kubernetes
using HTTP only, a .dev or .app domain name cannot work in the browser.

If needed, you can override the shared.ingress_domain in the values file of Tanzu Application
Platform with the ingressDomain parameter of learning center:

ingressDomain: learningcenter.my-domain.com

Set the environment variable manually

Set the INGRESS_DOMAIN environment variable on the operator deployment. To set the
INGRESS_DOMAIN environment variable, run:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=te

st

Where test is the domain name for your Kubernetes cluster.

Or if using a nip.io address:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=19

2.168.64.1.nip.io

Use of environment variables to configure the operator is a shortcut for a simple use. VMware
recommends using Tanzu CLI, or for more complicated scenarios, you can use the SystemProfile
custom resource.

Enforcing secure connections

Note

For the custom domain you are using, configure your DNS with a wildcard domain
to forward all requests for subdomains of the custom domain to the ingress router
of the Kubernetes cluster.

Note

If you are running Kubernetes on your local machine using a system such as
minikube and you don’t have a custom domain name that maps to the IP address
for the cluster, you can use a nip.io address. For example, if minikube ip returned
192.168.64.1, you can use the 192.168.64.1.nip.io domain. You cannot use an
address of form 127.0.0.1.nip.io or subdomain.localhost. This causes a failure as
internal services needing to connect to each other end up connecting to
themselves instead, because the address resolves to the host loopback address of
127.0.0.1.

Tanzu Application Platform v1.4

VMware by Broadcom 905



By default, the workshop portal and workshop sessions are accessible over HTTP connections. To
use secure HTTPS connections, you must have access to a wildcard SSL certificate for the domain
under which you want to host the workshops. You cannot use a self-signed certificate.

You can create wildcard certificates by using letsencrypt <https://letsencrypt.org/>. After you
have the certificate, you can define it as follows.

Configuration YAML

The easiest way to define the certificate is with the configuration passed to Tanzu CLI. So define
the certificate and privateKey properties under the ingressSecret property to specify the
certificate on the configuration YAML passed to Tanzu CLI:

ingressSecret:

  certificate: |

    -----BEGIN CERTIFICATE-----

    MIIFLTCCBBWgAwIBAgaSAys/V2NCTG9uXa9aAiYt7WJ3MA0GCSqGaIb3DQEBCwUA

                                    ...

    dHa6Ly9yMy5vamxlbmNyLm9yZzAiBggrBgEFBQawAoYWaHR0cDoaL3IzLmkubGVu

    -----END CERTIFICATE-----

  privateKey: |

    -----BEGIN PRIVATE KEY-----

    MIIEvQIBADAaBgkqhkiG9waBAQEFAASCBKcwggSjAgEAAoIBAaCx4nyc2xwaVOzf

                                    ...

    IY/9SatMcJZivH3F1a7SXL98PawPIOSR7986P7rLFHzNjaQQ0DWTaXBRt+oUDxpN

    -----END PRIVATE KEY-----

If you already have a TLS secret, follow these steps before deploying any workshops:

1. Create the learningcenter namespace manually or the one you defined.

2. Copy the TLS secret to the learningcenter namespace or to the one you defined, and use
the secretName property as in this example:

ingressSecret:

  secretName: workshops.example.com-tls

Create the TLS secret manually

To add the certificate as a secret in the learningcenter namespace or in the one you defined, the
secret must be of type tls. You can create it using the kubectl create secret tls command:

kubectl create secret tls -n learningcenter workshops.example.com-tls --cert=workshop

s.example.com/fullchain.pem --key=workshops.example.com/privkey.pem

Having created the secret, if it is the secret corresponding to the default ingress domain you
specified earlier, set the INGRESS_SECRET environment variable. This way you do not use the
configuration passed to Tanzu CLI on the operator deployment. This ensures the secret is applied
automatically to any ingress created:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_SECRET=wo

rkshops.example.com-tls

If the certificate isn’t that of the default ingress domain, you can supply the domain name and name
of the secret when creating a workshop environment or training portal. In either case, you must
create secrets for the wildcard certificates in the learningcenter namespace or the one that you
defined.

Specifying the ingress class

Tanzu Application Platform v1.4

VMware by Broadcom 906



Any ingress routes created use the default ingress class. If you have multiple ingress class types
available, and you must override which is used, you can define the ingressClass property on the
configuration YAML as follows.

Configuration YAML

Define the ingressClass property on the configuration YAML passed to Tanzu CLI:

ingressClass: contour

Set the environment variable manually

Set the INGRESS_CLASS environment variable for the learningcenter operator:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_CLASS=con

tour

This applies only to the ingress created for the training portal and workshop sessions. It does not
apply to any ingress created from a workshop as part of the workshop instructions.

This can be necessary when a specific ingress provider is not reliable in maintaining websocket
connections. For example, in the case of the nginx ingress controller when there are frequent
creation or deletions of ingresses occurring in the cluster. See the earlier section, Installing and
setting up Learning Center operator.

Trusting unsecured registries

One of the options available for workshops is to automatically deploy a container image registry
each workshop session. When the Learning Center operator is configured to use a secure ingress
with a valid wildcard certificate, the image registry works out of the box.

If the Learning Center operator is not set up to use secure ingress, the image registry is accessed
over HTTP and is regarded as not secure.

When using the optional support for building container images using docker, the docker daemon
deployed for the workshop session is configured for the image registry being not secure yet
pushing images to the image registry still works.

In this case of an image registry that is not secure, deploying images from the image registry to the
Kubernetes cluster does not work unless the Kubernetes cluster is configured to trust the registry
that is not secure.

How you configure a Kubernetes cluster to trust an unsecured registry varies based on how the
Kubernetes cluster is deployed and what container runtime it uses.

If you are using minikube with dockerd, to ensure that the registry is trusted, you must set up the
trust the first time you create the minikube instance.

To do this, first determine which IP subnet minikube uses for the inbound ingress router of the
cluster. If you already have a minikube instance running, you can determine this by running
minikube ip. If, for example, this reported 192.168.64.1, the subnet used is 129.168.64.0/24.

With this information, when you create a fresh minikube instance, you must supply the --insecure-
registry option with the subnet:

minikube start --insecure-registry="129.168.64.0/24"

This option tells dockerd to regard as not secure any image registry deployed in the Kubernetes
cluster and accessed through a URL exposed using an ingress route of the cluster itself.

Tanzu Application Platform v1.4

VMware by Broadcom 907



Currently, there is no way to configure containerd to treat as not secure image registries that
match a wildcard subdomain or reside in a subnet. It is therefore not possible to run workshops that
must deploy images from the per session image registry when using containerd as the underlying
Kubernetes cluster container runtime. This is a limitation of containerd, and there are no known
plans for containerd to support this ability. This limits your ability to use Kubernetes clusters
deployed with a tool such as kind, which relies on using containerd.

Get started with Learning Center workshops

This topic helps you to get started working with Learning Center workshops. Workshops are where
you create your content. You can create a workshop for individual use or group multiple workshops
together with a Training Portal.

For more detailed instructions, go to Working with Learning Center Workshops

Creating the workshop environment

With the definition of a workshop already in existence, the first step to deploying a workshop is to
create the workshop environment.

To create the workshop environment run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop-envi

ronment.yaml

This results in a custom resource being created called WorkshopEnvironment:

workshopenvironment.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

The custom resource created is cluster-scoped, and the command needs to be run as a cluster
admin or other appropriate user with permission to create the resource.

The Learning Center Operator reacts to the creation of this custom resource and initializes the
workshop environment.

For each distinct workshop environment, a separate namespace is created. This namespace is used
to hold the workshop instances. The namespace may also be used to provision any shared
application services the workshop definition describes which would be used across all workshop
instances. Such shared application services are automatically provisioned by the Learning Center
Operator when the workshop environment is created.

You can list the workshop environments which have been created by running:

kubectl get workshopenvironments

This results in the output:

NAME                   NAMESPACE              WORKSHOP               IMAGE                                        

URL

lab-k8s-fundamentals   lab-k8s-fundamentals   lab-k8s-fundamentals   {YOUR-REGISTRY-UR

L}/lab-k8s-fundamentals:main   {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals

Additional fields give the name of the workshop environment, the namespace created for the
workshop environment, and the name of the workshop the environment was created from.

Requesting a workshop instance

To request a workshop instance, a custom resource of type WorkshopRequest needs to be created.

Tanzu Application Platform v1.4

VMware by Broadcom 908



This is a namespaced resource allowing who can create them to be delegated using role-based
access controls. Further, in order to be able to request an instance of a specific workshop, you
need to know the secret token specified in the description of the workshop environment. If
necessary, raising requests against a specific workshop environment can also be constrained to a
specific set of namespaces on top of any defined role-based access control (RBAC) rules.

In the context of an appropriate namespace, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop-requ

est.yaml

This should result in the output:

workshoprequest.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

You can list the workshop requests in a namespace by running:

kubectl get workshoprequests

This displays output similar to:

NAME                   URL                                      USERNAME   PASSWORD

lab-k8s-fundamentals   http://lab-k8s-fundamentals-cvh51.test   learningcenter     buQ

OgZvfHM7m

The additional fields provide the URL where the workshop instance can be accessed and the
username and password for you to provide when prompted by your web browser.

The user name and password only come into play when you use the lower-level resources to set
up workshops. If you use the TrainingPortal custom resource, you will see that these fields are
empty. This is because, for that case, the workshop instances are deployed so that they rely on
user registration and access mediated by the web-based training portal. Visiting the URL for a
workshop instance directly when using TrainingPortal, redirects you back to the web portal in
order to log in if necessary.

You can monitor the progress of this workshop deployment by listing the deployments in the
namespace created for the workshop environment:

kubectl get all -n lab-k8s-fundamentals

For each workshop instance a separate namespace is created for the session. This is linked to the
workshop instance, and is where any applications are deployed as part of the workshop. If the
definition of the workshop includes a set of resources that should be automatically created for each
session namespace, they are created by the Learning Center Operator. It is therefore possible to
pre-deploy applications for each session.

In this case, we used WorkshopRequest; whereas when using TrainingPortal, we created a
WorkshopSession. The workshop request does result in creating a WorkshopSession, but
TrainingPortal skips the workshop request and directly creates a WorkshopSession.

The purpose of having WorkshopRequest as a separate custom resource is to allow RBAC and other
controls to be used to allow non-cluster administrators to create workshop instances.

Deleting the workshop instance
When you have finished with the workshop instance, you can delete it by deleting the custom
resource for the workshop request:

Tanzu Application Platform v1.4

VMware by Broadcom 909



kubectl delete workshoprequest/lab-k8s-fundamentals

Deleting the workshop environment

If you want to delete the whole workshop environment, it is recommended to first delete all
workshop instances. Once this has been done, you can then delete the custom resource for the
workshop environment:

kubectl delete workshopenvironment/lab-k8s-fundamentals

If you don’t delete the custom resources for the workshop requests, the workshop instances are
still cleaned up and removed when the workshop environment is removed. The custom resources
for the workshop requests still remain, however, and need to be deleted separately.

Get started with Learning Center training portals

This topic describes how you configure and use a TrainingPortal, which deploys a set of
workshops for attendees.

Working with multiple workshops

The quickest way to deploy a set of workshops to use in a training session is to deploy a
TrainingPortal. This deploys a set of workshops with one instance of each workshop for each
attendee. A web-based portal is provided for registering attendees and allocating them to
workshops.

The TrainingPortal custom resource provides a high-level mechanism for creating a set of
workshop environments and populating it with workshop instances. When the Learning Center
operator processes this custom resource, it creates other custom resources to trigger the creation
of the workshop environment and the workshop instances. If you want more control, you can use
these latter custom resources directly instead.

Loading the workshop definition

A custom resource of type Workshop describes each workshop. Before you can create a workshop
environment, you must load the definition of the workshop.

Here is an example Workshop custom resource:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-k8s-fundamentals

spec:

  title: Kubernetes Fundamentals

  description: Workshop on getting started with Kubernetes

  url: {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals

  vendor: learningcenter.io

  authors:

  - Graham Dumpleton

  difficulty: intermediate

  duration: 1h

  tags:

  - kubernetes

  content:

    image: projects.registry.vmware.com/learningcenter/lab-k8s-fundamentals:latest

  session:

Tanzu Application Platform v1.4

VMware by Broadcom 910



    namespaces:

      budget: medium

    applications:

      terminal:

        enabled: true

        layout: split

      console:

        enabled: true

      editor:

        enabled: true

To load the definition of the workshop, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop.yaml

The custom resource created is cluster-scoped. The command must be run as a cluster admin or
other appropriate user with permission to create the resource.

If successfully loaded, the command outputs:

workshop.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

To list the workshop definitions that have been loaded and that can be deployed, run:

kubectl get workshops

For this workshop, this outputs:

NAME                  IMAGE                                            FILES  URL

lab-k8s-fundamentals  {YOUR-REGISTRY-URL}/lab-k8s-fundamentals:main         {YOUR-GIT-

REPO-URL}/lab-k8s-fundamentals

The added fields in this case give:

The name of the custom workshop container image deployed for the workshop.

A URL for more information about the workshop.

The definition of a workshop is loaded as a step of its own, rather than referring to a remotely
hosted definition. This allows a cluster admin to audit the workshop definition to ensure it isn’t
doing something the cluster admin doesn’t want to allow. After the cluster admin approves the
workshop definition, it can be used to create instances of the workshop.

Creating the workshop training portal

To deploy a workshop for one or more users, use the TrainingPortal custom resource. This
custom resource specifies a set of workshops to be deployed and the number of people taking the
workshops.

The TrainingPortal custom resource we use in this example is:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-k8s-fundamentals

spec:

  workshops:

  - name: lab-k8s-fundamentals

    capacity: 3

    reserved: 1

    expires: 1h

    orphaned: 5m

Tanzu Application Platform v1.4

VMware by Broadcom 911



To create the custom resource, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/training-port

al.yaml

The custom resource created is cluster-scoped. The command must be run as a cluster admin or
other appropriate user with permission to create the resource.

This results in the output:

trainingportal.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

There is actually much more going on than this. To see all the resources created, run:

kubectl get learningcenter-training -o name

You should see:

workshop.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals

trainingportal.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals

workshopenvironment.learningcenter.tanzu.vmware.comlab-k8s-fundamentals-w01

workshopsession.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals-w01-s001

In addition to the original Workshop custom resource providing the definition of the workshop, and
the TrainingPortal custom resource you just created, you’ve also created the
WorkshopEnvironment and WorkshopSession custom resources.

The WorkshopEnvironment custom resource sets up the environment for a workshop, including
deploying any application services that must exist and are shared by all workshop instances.

The WorkshopSession custom resource results in the creation of a single workshop instance.

To see a list of the workshop instances created and their details, run:

kubectl get workshopsessions

This yields output similar to:

NAME                            URL                                         USERNAME   

PASSWORD

lab-k8s-fundamentals-w01-s001   http://lab-k8s-fundamentals-w01-s001.test

Only one workshop instance is created. Though the maximum capacity is set to three, the reserved
number of instances (hot spares) is defined as one. Additional workshops instances are only created
as workshop sessions are allocated to users. One reserved instance is always maintained until
capacity is reached.

If you need a different number of workshop instances, set the portal.capacity field of the
TrainingPortal custom resource YAML input file before creating the resource. Changing the
values after the resource is created has no effect.

In this case, only one workshop is listed to be hosted by the training portal. You can deploy more
than one workshop at the same time by adding the names of other workshops to workshops.

The first time you deploy the workshop, it can take a few moments to pull down the workshop
image and start.

To access the workshops, attendees of a training session need to visit the web-based portal for the
training session. Find the URL for the web portal by running:

kubectl get trainingportals

Tanzu Application Platform v1.4

VMware by Broadcom 912



This should yield output similar to:

NAME                  URL                                   ADMINUSERNAME  ADMINPASSWO

RD

lab-k8s-fundamentals  https://lab-k8s-fundamentals-ui.test  learningcenter         mGI

2C1TkHEBoFgKiZetxMnwAldRU80aN

Attendees should only be given the URL. The password listed is only for use by the instructor of
the training session if required.

Accessing workshops via the web portal

Attendees can access workshops through the web portal by following two steps:

1. The attendee visits the web-based portal for the training session and is presented with a
login page. However, before logging in, the attendee must register for an account. The
attendee clicks the link to the registration page and fills it in.

Registration is required so if the attendee’s web browser exits or the attendee needs to
switch web browsers, the attendee can log in again and access the same workshop
instance.

2. Upon registering, the attendee is presented with a list of workshops available for the
training session.

An orange dot beside a workshop means that no instance for that workshop has
been allocated to the user as yet, but that some are available.

A red dot indicates there are no more workshop instances available.

A green dot indicates a workshop instance has already been reserved by the
attendee.

The attendee clicks the “Start workshop” button. This allocates a workshop instance if one
hasn’t yet been reserved and redirects the attendee to that workshop instance.

Tanzu Application Platform v1.4

VMware by Broadcom 913



Deleting the workshop training portal

The workshop training portal is intended for running workshops with a fixed time period where all
workshop instances are deleted when complete.

To delete all workshop instances and the web-based portal, run:

kubectl delete trainingportal/lab-k8s-fundamentals

Delete Learning Center

This topic describes how you can delete Learning Center.

1. Delete all current workshop environments by running:

kubectl delete workshops,trainingportals,workshoprequests,workshopsessions,work

shopenvironments --all

Ensure the Learning Center operator is still running when running this command.

2. Verify you have deleted all current workshop environments by running:

kubectl get workshops,trainingportals,workshoprequests,workshopsessions,worksho

penvironments --all-namespaces

This command does not delete the workshops in the
workshops.learningcenter.tanzu.vmware.com package.

3. Uninstall the Learning Center package by running:

tanzu package installed delete {NAME_OF_THE_PACKAGE} -n tap-install

This command also removes the added custom resource definitions and the learningcenter
namespace.

Tanzu Application Platform v1.4

VMware by Broadcom 914



4. To remove the Learning Center package, add the following lines to your tap-values file.

excluded_packages:

- learningcenter.tanzu.vmware.com

- workshops.learningcenter.tanzu.vmware.com

Local install guides

The following topics describe how you install Learning Center on your local environment:

Install on Kind

Install on Minikube

Local install guides

The following topics describe how you install Learning Center on your local environment:

Install on Kind

Install on Minikube

Install Learning Center on Kind

This topic describes how you install Learning Center on your local machine with Kind.

Kind was developed as a means to support development and testing of Kubernetes. Though it
exists primarily for that purpose, Kind clusters are often used for local development of user
applications as well. For Learning Center, you can use a local Kind cluster to develop workshop
content or self-learning when deploying other people’s workshops.

Because you are deploying to a local machine, you are unlikely to have access to your own custom
domain name and certificate you can use with the cluster. If you don’t, you can be restricted as to
the sorts of workshops you can develop or run using the Learning Center in Kind. Kind uses
containerd, which lacks certain features that allow you to trust any image registries hosted within a
subnet. This means you cannot readily run workshops that use a local container image registry for
each workshop session. If you must run workshops on your local computer that uses an image
registry for each session, VMware recommends you use minikube with dockerd instead. For more
information, see Install on Minikube.

Also, since Kind has limited memory resources available, you may be prohibited from running
workshops that have large memory requirements. Workshops that demonstrate the use of third-
party applications requiring a multinode cluster also do not work unless the Kind cluster is
specifically configured to be multinode rather than single node.

Requirements and setup instructions specific to Kind are detailed in this document. Otherwise,
follow normal installation instructions for the Learning Center operator.

Prerequisites

You must complete the following installation prerequisites as a user prior to installation:

Note

If you have installed the Tanzu Application Platform package, Learning
Center will be recreated.

Tanzu Application Platform v1.4

VMware by Broadcom 915



Create a VMware Tanzu Network account and have access to your Tanzu Network
credentials.

Install Kind on your local machine.

Install Tanzu CLI on your local machine.

Install Kubernetes command-line tool (kubectl) on your local machine.

Kind cluster creation

When initially creating the Kind cluster, you must configure it so that the ingress controller is
exposed. The Kind documentation provides the following command to do this, but check the
documentation in case the details have changed.

cat <<EOF | kind create cluster --config=-

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

  kubeadmConfigPatches:

  - |

    kind: InitConfiguration

    nodeRegistration:

      kubeletExtraArgs:

        node-labels: "ingress-ready=true"

  extraPortMappings:

  - containerPort: 80

    hostPort: 80

    protocol: TCP

  - containerPort: 443

    hostPort: 443

    protocol: TCP

EOF

Once you have the Kind cluster up and running, you must install an ingress controller.

Ingress controller with DNS

The Kind documentation provides instructions for installing Ambassador, Contour, and Nginx-based
ingress controllers.

VMware recommends that you use Contour rather than Nginx, because Nginx drops websocket
connections whenever new ingresses are created. The Learning Center workshop environments do
include a workaround to re-establish websocket connections for the workshop terminals without
losing terminal state, but other applications used with workshops might not, such as terminals
available through Visual Studio Code.

Avoid using the Ambassador ingress controller, because it requires all ingresses created to be
annotated explicitly with an ingress class of “ambassador.” The Learning Center operator can be
configured to do this automatically for ingresses created for the training portal and workshop
sessions. However, any workshops that create ingresses as part of the workshop instructions do not
work unless they are written to have the user manually add the ingress class when required due to
the use of Ambassador.

If you have created a contour ingress controller, verify all pods have a running status. Run:

kubectl get pods -n projectcontour -o wide

For information about installing Contour, which comes with Tanzu Application Platform, see Install
cert-manager, Contour.

Tanzu Application Platform v1.4

VMware by Broadcom 916

https://kind.sigs.k8s.io/docs/user/ingress#create-cluster
https://kind.sigs.k8s.io/docs/user/ingress#contour


Install carvel tools

You must install the kapp controller and secret-gen controller carvel tools in order to properly
install VMware tanzu packages.

To install kapp controller, run:

kapp deploy -a kc -f https://github.com/vmware-tanzu/carvel-kapp-controller/releases/l

atest/download/release.yml

To install secret-gen controller, run:

kapp deploy -a sg -f https://github.com/vmware-tanzu/carvel-secretgen-controller/relea

ses/latest/download/release.yml

Install Tanzu package repository

Follow these steps to install the Tanzu package repository:

1. To create a namespace, run:

kubectl create ns tap-install

2. Create a registry secret:

tanzu secret registry add tap-registry \

--username "TANZU-NET-USER" --password "TANZU-NET-PASSWORD" \

--server registry.tanzu.vmware.com \

--export-to-all-namespaces --yes --namespace tap-install

Where:

TANZU-NET-USER and TANZU-NET-PASSWORD are your credentials for Tanzu Network.

3. Add a vpackage repository to your cluster:

tanzu package repository add tanzu-tap-repository \

--url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:VERSION

-NUMBER \

--namespace tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13.

4. To check the package repository install status, run:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Note

Type “y” and enter to continue when prompted during installation of both kapp and
secret-gen controllers.

Note

We are currently on build 7. If this changes, we need to update the
command with the correct build version after the –url flag.

Tanzu Application Platform v1.4

VMware by Broadcom 917



Wait for a reconciled successful status before attempting to install any other packages.

Create a configuration YAML file for Learning Center
package
To create a configuration YAML file:

See Supported yaml file configurations to see a list of configurations you can provide to Learning
Center.

1. Create a file called learningcenter-value.yaml in your current directory with the following
data:

ingressDomain: workshops.example.com

Where:

ingressDomain is <your-local-ip>.nip.io if you are using a nip.io DNS address. Details
about this are provided in the following section.

workshops.example.com with is <your-local-ip>.nip.io.

Using a nip.io DNS address

Before you can start deploying workshops, you must configure the operator to tell it what domain
name can be used to access anything deployed by the operator.

Being a local cluster that isn’t exposed to the Internet with its own custom domain name, you can
use a nip.io. address.

To calculate the nip.io address to use, first work out the IP address for the ingress controller
exposed by Kind. This is usually the IP address of the local machine itself, even when you use
Docker for Mac.

How you get the IP address for your local machine depends on the operating system you are using.

For example on a Mac, you can find your IP address by searching for network using spotlight and
selecting the network option under system preferences. Here you can see your IP address under
status.

After you have the IP address, add this as a prefix to the domain name nip.io. For example, if the
address was 192.168.1.1, use the domain name of 192.168.1.1.nip.io.

To configure the Learning Center operator with this cluster domain, run:

kubectl set env deployment/learningcenter-operator -n eduk8s INGRESS_DOMAIN=192.168.1.

1.nip.io

This causes the Learning Center operator to redeploy with the new configuration. You can now
deploy workshops.

Note

Some home Internet gateways implement what is called rebind protection. These
gateways do not allow DNS names from the public Internet bind to local IP address
ranges inside the home network. If your home Internet gateway has such a feature
and it is enabled, it blocks nip.io addresses from working. In this case, you must
configure your home Internet gateway to allow *.nip.io names to be bound to
local addresses. Also, you cannot use an address of form 127.0.0.1.nip.io or
subdomain.localhost. This causes a failure, because when internal services need to

Tanzu Application Platform v1.4

VMware by Broadcom 918

https://nip.io/


Install Learning Center package onto a Kubernetes cluster

To install Learning Center on a Kubernetes cluster:

tanzu package install learningcenter --package-name learningcenter.tanzu.vmware.com --

version 0.1.0 -f ./learningcenter-value.yaml --namespace tap-install

This package installation uses the installed Package repository with a configuration learningcenter-
value.yaml to install our Learning Center package.

Install workshop tutorial package onto a Kubernetes cluster

To install a workshop tutorial on a Kubernetes cluster:

tanzu package install learningcenter-tutorials --package-name workshops.learningcente

r.tanzu.vmware.com --version 0.1.0 --namespace tap-install

Make sure you install the workshop package after the Learning Center package has reconciled and
successfully installed onto your cluster. In case of new versioning, to obtain package version
numbers, run:

kubectl get packages -n tap-install

Run the workshop

To get the training portal URL, run:

kubectl get trainingportals

You get a URL that you can paste into your browser.

Congratulations, you are now running our tutorial workshop using the Learning Center operator.

Trusting insecure registries

Workshops can optionally deploy a container image registry for a workshop session. This image
registry is secured with a password specific to the workshop session and is exposed through a
Kubernetes ingress so it can be accessed from the workshop session.

In a typical scenario, Kind uses insecure ingress routes. Even were you to generate a self-signed
certificate to use for ingress, it is not trusted by containerd that runs within Kind. You must tell
Kind to trust any insecure registry running inside of Kind.

You must configure Kind to trust insecure registries when you first create the cluster. Kind,
however, is that it uses containerd and not dockerd. The containerd runtime doesn’t provide a way
to trust any insecure registry hosted within the IP subnet used by the Kubernetes cluster. Instead,
containerd requires that you enumerate every single host name or IP address on which an
insecure registry is hosted. Because each workshop session created by the Learning Center for a
workshop uses a different host name, this becomes cumbersome.

If you must used Kind, find out the image registry host name for a workshop deployment and
configure containerd to trust a set of host names corresponding to low-numbered sessions for that
workshop. This allows Kind to work, but once the host names for sessions go beyond the range of

connect to each other, they connect to themselves instead. This happens because
the address resolves to the host loopback address of 127.0.0.1.

Tanzu Application Platform v1.4

VMware by Broadcom 919



host names you set up, you need to delete the training portal and recreate it, so you can use the
same host names again.

For example, if the host name for the image registry were of the form:

lab-docker-testing-wMM-sNNN-registry.192.168.1.1.nip.io

where NNN changes per session, you must use a command to create the Kind cluster. For example:

cat <<EOF | kind create cluster --config=-

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

  kubeadmConfigPatches:

  - |

    kind: InitConfiguration

    nodeRegistration:

      kubeletExtraArgs:

        node-labels: "ingress-ready=true"

  extraPortMappings:

  - containerPort: 80

    hostPort: 80

    protocol: TCP

  - containerPort: 443

    hostPort: 443

    protocol: TCP

containerdConfigPatches:

- |

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s001-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s001-registry.192.168.1.1.nip.io"]

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s002-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s002-registry.192.168.1.1.nip.io"]

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s003-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s003-registry.192.168.1.1.nip.io"]

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s004-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s004-registry.192.168.1.1.nip.io"]

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s005-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s005-registry.192.168.1.1.nip.io"]

EOF

This allows you to run five workshop sessions before you have to delete the training portal and
recreate it.

If you use this, you can use the feature of the training portal to automatically update when a
workshop definition is changed. This is because the wMM value identifying the workshop
environment changes any time you update the workshop definition.

There is no other known workaround for this limitation of containerd. As such, VMware
recommends you use minikube with dockerd instead. For more information, see Install on
Minikube.

Install Learning Center on Minikube
This topic describes how you install Learning Center on your local machine with Minikube.

Minikube enables local deployment of Kubernetes for developing workshop content or for self-
learning when deploying other people’s workshops.

Tanzu Application Platform v1.4

VMware by Broadcom 920



Because you are deploying to a local machine, you are unlikely to have access to your own custom
domain name and certificate you can use with the cluster. You must take extra steps over a
standard install of Minikube to ensure you can run certain types of workshops.

Also, because Minikube generally has limited memory resources available and is only a single-node
cluster, you might be restricted from running workshops that have large memory requirements or
that demonstrate the use of third-party applications requiring a multinode cluster.

Requirements and setup instructions specific to Minikube are detailed in this document. Otherwise,
you can follow normal installation instructions for the Learning Center operator.

Trusting insecure registries

Workshops can optionally deploy a container image registry for a workshop session. This image
registry is secured with a password specific to the workshop session and is exposed through a
Kubernetes ingress so it can be accessed from the workshop session.

In a typical scenario, Minikube uses insecure ingress routes. Even were you to generate a self-
signed certificate to use for ingress, it is not trusted by dockerd that runs within Minikube. You must
tell Minikube to trust any insecure registry running inside of Minikube.

You must configure Minikube to trust insecure registries the first time you start a new cluster with
it. That is, you must supply the details to minikube start, which means you must know the IP
subnet Minikube uses.

If you already have a cluster running using Minikube, run minikube ip to discover the IP address it
uses. From that you can discover the trusted subnet. For example, if minikube ip returned
192.168.64.1, the trusted subnet is 192.168.64.0/24.

With this information, when you start a new cluster with Minikube, run:

minikube start --insecure-registry=192.168.64.0/24

If you already have a cluster started with Minikube, you cannot stop it and then provide this option
when it is restarted. You can only use this option for a completely new cluster.

You must also use dockerd, not containerd, in the Minikube cluster. containerd does not accept an
IP subnet when defining insecure registries to be trusted. It allows only specific hosts or IP
addresses. Because you don’t know what IP address Minikube will use in advance, you can’t
provide the IP address on the command line when starting Minikube to create the cluster.

Prerequisites

You must complete the following installation prerequisites as a user prior to installation:

Create a tanzunet account and have access to your tanzunet credentials.

Install miniKube on your local machine.

Install tanzuCLI on your local machine.

Install kubectlCLI on your local machine.

Ingress controller with DNS

After the Minikube cluster is running, you must enable the ingress and ingress-dns add-ons for
Minikube. These deploy the nginx ingress controller along with support for integrating into DNS.

To enable these after the cluster has been created, run:

Tanzu Application Platform v1.4

VMware by Broadcom 921



minikube addons enable ingress

minikube addons enable ingress-dns

You are now ready to install the Learning Center package.

Install carvel tools

You must install the kapp controller and secret-gen controller carvel tools in order to properly
install VMware tanzu packages.

To install kapp controller, run:

kapp deploy -a kc -f https://github.com/vmware-tanzu/carvel-kapp-controller/releases/l

atest/download/release.yml

To install secret-gen controller, run:

kapp deploy -a sg -f https://github.com/vmware-tanzu/carvel-secretgen-controller/relea

ses/latest/download/release.yml

Type “y” and enter to continue when prompted during installation of both kapp and secret-gen
controllers.

Install Tanzu package repository

Follow these steps to install the Tanzu package repository:

1. To create a namespace, run:

kubectl create ns tap-install

2. Create a registry secret:

tanzu secret registry add tap-registry \

  --username "TANZU-NET-USER" --password "TANZU-NET-PASSWORD" \

  --server registry.tanzu.vmware.com \

  --export-to-all-namespaces --yes --namespace tap-install

Where:

TANZU-NET-USER and TANZU-NET-PASSWORD are your credentials for Tanzu Network.

3. Add a package repository to your cluster:

tanzu package repository add tanzu-tap-repository \

  --url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:VERSI

ON-NUMBER \

  --namespace tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13.

Note

The ingress add-ons for Minikube do not work when using Minikube on top of
Docker for Mac or Docker for Windows. On macOS you must use the Hyperkit VM
driver. On Windows you must use the Hyper-V VM driver.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 922



4. To check the package repository install status, run:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Wait for a reconciled sucessful status before attempting to install any other packages.

Create a configuration YAML file for the Learning Center
package

Create a file called learningcenter-value.yaml in your current directory with the following data:

See Supported yaml file configurations to see a list of configurations you can provide to Learning
Center.

ingressDomain: workshops.example.com

Where:

ingressDomain is <your-local-ip>.nip.io if you are using a nip.io DNS address. Details
about this are provided in the following section.

workshops.example.com is <your-local-ip>.nip.io

Using a nip.io DNS address

After the Learning Center operator is installed, before you can start deploying workshops, you must
configure the operator to tell it what domain name can be used to access anything deployed by the
operator.

Being a local cluster that isn’t exposed to the Internet with its own custom domain name, you can
use a nip.io. address.

To calculate the nip.io address to use, first work out the IP address of the cluster created by
Minikube by running minikube ip. Add this as a prefix to the domain name nip.io. For example, if
minikube ip returns 192.168.64.1, use the domain name of 192.168.64.1.nip.io.

To configure the Learning Center operator with this cluster domain, run:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=19

2.168.64.1.nip.io

This causes the Learning Center operator to redeploy with the new configuration. You should now
be able to start deploying workshops.

We are currently on build 7; if this changes, we need to update the
command with the correct build version after the –url flag.

Note

Some home Internet gateways implement what is called rebind protection. These
gateways do not let DNS names from the public Internet bind to local IP address
ranges inside the home network. If your home Internet gateway has such a feature
and it is enabled, it blocks nip.io addresses from working. In this case, you must
configure your home Internet gateway to allow *.nip.io names to be bound to
local addresses.

Tanzu Application Platform v1.4

VMware by Broadcom 923

https://nip.io/


Install Learning Center package onto a minikube cluster

To install the Learning Center package onto a minikube cluster, run:

tanzu package install learningcenter --package-name learningcenter.tanzu.vmware.com --

version 0.1.0 -f ./learningcenter-value.yaml --namespace tap-install

This package installation uses the installed Package repository with a configuration learningcenter-
value.yaml to install the Learning Center package.

Install workshop tutorial package onto a minikube cluster
To install the workshop tutorial package onto a minikube cluster, run:

tanzu package install learningcenter-tutorials --package-name workshops.learningcente

r.tanzu.vmware.com --version 0.1.0 --namespace tap-install

Make sure you install the workshop package after the Learning Center package has reconciled and
successfully installed onto your cluster. In case of new versioning, to obtain package version
numbers, run:

kubectl get packages -n tap-install

Run the workshop

To get the training portal URL, run:

kubectl get trainingportals

You get a URL that you can paste into your browser.

Congratulations, you are now running the tutorial workshop using the Learning Center operator.

Working with large images
If you create or run workshops that work with the image registry created for a workshop session,
and you push images to that image registry that have large layers, you must configure the version
of nginx deployed for the ingress controller and increase the allowed size of request data for a
HTTP request.

To do this, run:

kubectl edit configmap nginx-load-balancer-conf -n kube-system

To the config map resource, add the following property under data:

proxy-body-size: 1g

If you don’t increase this, docker push fails when trying to push container images with large layers.

Limited resource availability

When deploying a cluster, by default Minikube only configures support for 2Gi of memory. This
usually isn’t adequate.

To view how much memory is available when a custom amount has been set as a default, run:

Tanzu Application Platform v1.4

VMware by Broadcom 924



minikube config get memory

VMware recommends you configure Minikube to use 4Gi or more. This must be specified when the
cluster is first created. Do this by using the --memory option to minikube start or by specifying a
default memory value beforehand by using minikube config set memory.

In addition to increasing the memory available, you can increase the disk size, because fat container
images can quickly use disk space within the cluster.

Storage provisioner issue

v1.12.3 of Minikube introduced a bug in the storage provisioner that causes potential corruption of
data in persistent volumes where the same persistent volume claim name is used in two different
namespaces. This affects Learning Center when:

You deploy multiple training portals at the same time.

You run multiple workshops at the same time that have docker or image registry support
enabled.

The workshop session itself is backed by persistent storage and multiple sessions run at the
same time.

This issue is supposed to be fixed in Minikube v1.13.0; however, you can still encounter issues when
deleting a training portal instance and recreating it immediately with the same name. This occurs
because reclaiming of the persistent volume by the Minikube storage provisioner can be slow, and
the new instance can grab the same original directory on disk with old data in it. After deleting a
training portal instance, wait before recreating one with the same name to allow the storage
provisioner to delete the old persistent volume.

Create workshops for Learning Center

This section provides information about how you create Learning Center workshops.

Workshop configuration

Workshop images

Workshop content

Build an image

Workshop instructions

Workshop runtime

Workshop slides

Air-gapped environment requirements

Create workshops for Learning Center

This section provides information about how you create Learning Center workshops.

Workshop configuration

Workshop images

Workshop content

Build an image

Workshop instructions

Tanzu Application Platform v1.4

VMware by Broadcom 925

https://github.com/kubernetes/minikube/issues/8987


Workshop runtime

Workshop slides

Air-gapped environment requirements

Configure your Learning Center workshop

This topic describes the two main steps required to configure your Learning Center workshop. The
first specifies the structure of the workshop content and the second defines the runtime
requirements for deploying the workshop.

Specifying structure of the content

There are multiple ways you can configure a workshop to specify the structure of the content. The
sample workshops use YAML files.

The workshop/modules.yaml file provides details about the list of available modules that make up
your workshop and data variables for use in content.

The list of available modules represents all of the modules available to you. You might not use all of
them. You might want to run variations of your workshop, such as for different programming
languages. As such, which modules are active and are used for a specific workshop are listed in the
separate workshop/workshop.yaml file. The active modules are listed with the name to be given to
that workshop.

By default the workshop.yaml file specifies what modules are used. When you want to deliver
different variations of the workshop content, you can provide multiple workshop files with different
names. For example, you can name the workshop files workshop-java.yaml and workshop-
python.yaml.

Where you have multiple workshop files and don’t have the default workshop.yaml file, you can
specify the default workshop file by setting the WORKSHOP_FILE environment variable in the runtime
configuration.

The format for listing the available modules in the workshop/modules.yaml file is:

modules:

  workshop-overview:

    name: Workshop Overview

    exit_sign: Setup Environment

  setup-environment:

    name: Setup Environment

    exit_sign: Start Workshop

  exercises/01-sample-content:

    name: Sample Content

  workshop-summary:

    name: Workshop Summary

    exit_sign: Finish Workshop

Each available module is listed under modules, where the name used corresponds to the path to
the file containing the content for that module. Any extension identifying the content type is left
off.

For each module, set the name field to the page title to be displayed for that module. If no fields are
provided and name is not set, the title for the module is derived from the name of the module file.

The corresponding workshop/workshop.yaml file, where all available modules are used, would have
the format:

Tanzu Application Platform v1.4

VMware by Broadcom 926



name: Markdown Sample

modules:

  activate:

    - workshop-overview

    - setup-environment

    - exercises/01-sample-content

    - workshop-summary

The top-level name field in this file is the name of this variation of the workshop content.

The modules.activate field is a list of modules to be used for the workshop. The names in this list
must match the names as they appear in the modules file.

The order in which modules are listed under the modules.activate field in the workshop
configuration file dictates the order pages are traversed. The order in which modules appear in the
modules configuration file is not relevant.

At the bottom of each page, a Continue button is displayed to allow the user to go to the next
page in sequence. You can customize the label on this button by setting the exit_sign field in the
entry for the module in the modules configuration file.

In the last module in the workshop, a button is displayed, but where the user goes after clicking it
varies. If you want the user to go to a different website upon completion, you can set the
exit_link field of the final module to an external URL. Alternatively, you can set the RESTART_URL
environment variable in a workshop environment to control where the user goes. If a destination
for the final page is not provided, the user is redirected back to the starting page of the workshop.

When the user uses the training portal, the training portal overrides this environment variable so, at
the completion of a workshop, the user returns to the training portal.

VMware recommends that for the last page, the exit_sign be set to “Finish Workshop” and
exit_link not be specified. This enables the destination to be controlled from the workshop
environment or training portal.

Specifying the runtime configuration

You can deploy workshop images directly to a container runtime. The Learning Center Operator is
provided to manage deployments into a Kubernetes cluster. You define the configuration for the
Learning Center Operator with a Workshop CRD in the resources/workshop.yaml file:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  vendor: learningcenter.tanzu.vmware.com

  title: Markdown Sample

  description: A sample workshop using Markdown

  url: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  duration: 15m

  session:

    namespaces:

      budget: small

    applications:

      console:

        enabled: true

      editor:

        enabled: true

Where:

Tanzu Application Platform v1.4

VMware by Broadcom 927



YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

In this sample, a custom workshop image bundles the workshop content into its own container
image. The content.image setting specifies this. To instead download workshop content from a
GitHub repository at runtime, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  vendor: learningcenter.tanzu.vmware.com

  title: Markdown Sample

  description: A sample workshop using Markdown

  url: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

  content:

    files: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

  duration: 15m

  session:

    namespaces:

      budget: small

    applications:

      console:

        enabled: true

      editor:

        enabled: true

Where:

YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

The difference is the use of the content.files setting. Here, the workshop content is overlaid on
top of the standard workshop base image. To use an alternate base image with additional
applications or packages installed, specify the alternate image against the content.image setting at
the same time you set content.files.

Next steps

Learn about configuration options for the workshop.yaml custom resource definitions (CRD)
in Workshop resource.

Create the image for your Learning Center workshop

The workshop environment for the Learning Center is packaged as a container image. This topic
describes how you create the Learning Center workshop image.

You can execute the image with remote content pulled down from GitHub or a web server.
Alternatively, you can bundle your workshop content, including any extra tools required, in a new
container image derived from the workshop environment base image.

Templates for creating a workshop

To get you started with your own workshop content, VMware provides a number of sample
workshops. Different templates in Markdown or AsciiDoc are available to use depending on the
syntax you use to create the workshop. These templates are available in a zip file called LEARNING-
CENTER-WORKSHOP-SAMPLES.ZIP on the Tanzu Network TAP Product Page. The zip file contains the
following projects that you can upload to your own Git repository:

Tanzu Application Platform v1.4

VMware by Broadcom 928

https://network.tanzu.vmware.com/products/tanzu-application-platform


lab-markdown-sample

lab-asciidoc-sample

When creating your own workshops, a suggested convention is to prefix the directory name with
the Git repository name where it is hosted. For example, you can make the prefix lab-. This way it
stands out as a workshop or lab when you have a number of Git repositories on the same Git
hosting service account or organization.

Workshop content directory layout

After creating a copy of the sample workshop content, you can see a number of files located in the
top-level directory and a number of subdirectories forming a hierarchy. The files in the top-level
directory are:

README.md - A file stating what the workshop in your Git repository is about and how to
deploy it. Replace the current content provided in the sample workshop with your own.

LICENSE - A license file so people are clear about how they can use your workshop content.
Replace this with what license you want to apply to your workshop content.

Dockerfile - Steps to build your workshop into an image ready for deployment. Leave this
as is, unless you want to customize it to install additional system packages or tools.

kustomization.yaml - A kustomize resource file for loading the workshop definition. The
Learning Center operator must be deployed before using this file.

.dockerignore - List of files to ignore when building the workshop content into an image.

.eduk8signore - List of files to ignore when downloading workshop content into the
workshop environment at runtime.

Key subdirectories and the files contained within them are:

workshop - Directory under which your workshop files reside.

workshop/modules.yaml - Configuration file with details of available modules that make up
your workshop and data variables for use in content.

workshop/workshop.yaml - Configuration file that gives the name of the workshop, the list of
active modules for the workshop, and any overrides for data variables.

workshop/content - Directory under which your workshop content resides, including images
to be displayed in the content.

resources - Directory under which Kubernetes custom resources are stored for deploying
the workshop using the Learning Center.

resources/workshop.yaml - The custom resources for the Learning Center, which describe
your workshop and requirements for deployment.

Note

Do not make the name you use for a workshop too long. The DNS host name used
for applications deployed from the workshop, when using certain methods of
deployment, might exceed the 63 character limit. This is because the workshop
deployment name is used as part of the namespace for each workshop session. This
is in turn used in the DNS host names generated for the ingress host name.
VMware suggests keeping the workshop name, and so your repository name, to 25
characters or less.

Tanzu Application Platform v1.4

VMware by Broadcom 929



resources/training-portal.yaml - A sample custom resource for the Learning Center for
creating a training portal for the workshop, encompassing the workshop environment and a
workshop instance.

A workshop can include other configuration files and directories with other types of content, but
this is the minimal set of files to get you started.

Directory for workshop exercises

The number of files and directories can quickly add up at the top level of your repository. The same
is true of the home directory for the user when running the workshop environment. To help with
this proliferation of files, you can push files required for exercises during the workshop into the
exercises subdirectory under the root of the repository.

With an exercises subdirectory, the initial working directory for the embedded terminal when
created is set to $HOME/exercises instead of $HOME. If the embedded editor is enabled, the
subdirectory is opened as the workspace for the editor. Only directories and files in that
subdirectory are visible through the default view of the editor.

However, the exercises directory isn’t set as the home directory of the user. This means if a user
inadvertently runs cd with no arguments from the terminal, they go back to the home directory.

To avoid confusion and help a user return to where they must be, VMware recommends that when
you instruct users to change directories, provide a full path relative to the home directory. For
example, use a path of the form ~/exercises/example-1 rather than example-1 for the cd command
when changing directories. By using a full path, users can execute the command and be assured of
going to the required location.

Working on your Learning Center workshop content

This topic tells you about the best practices for speeding up the iterative loop of editing and testing
a Learning Center workshop when developing the content.

Workshop content is either embedded in a custom workshop image or downloaded from a Git
repository or web server when the workshop session is created.

Deactivating reserved sessions

Deactivate the reserved sessions by setting the reserved field to 0 in your training portal instance:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-sample-workshop

spec:

  portal:

    sessions:

      maximum: 1

  workshops:

  - name: lab-sample-workshop

    reserved: 0

    expires: 120m

    orphaned: 15m

If you do not deactivate reserved sessions, a new session is always created ready for the next
workshop session when there is available capacity to do so. If you modify workshop content while
testing the current workshop session, terminate the session and start a new one, the workshop
picks up the reserved session. The reserved session has a copy of the old content.

Tanzu Application Platform v1.4

VMware by Broadcom 930



By deactivating reserved sessions, a new workshop session is always created on demand. This
ensures the latest workshop content is used.

Because you might have to wait to create a new workshop, shut down the existing workshop
session first. The new workshop session might also take some time to start if an updated version of
the workshop image also has to be pulled down.

Live updates to the content

If you download workshop content from a Git repository or web server, and you are only doing
simple updates to workshop instructions, scripts, or files bundled with the workshop, you can
update the content in place without needing to restart the workshop session. To perform an
update, download the workshop content after you have pushed back any changes to the hosted
Git repository or updated the content available through the web server. From the workshop
session terminal, run:

update-workshop

This command downloads any workshop content from the Git repository or web server, unpacks it
into the live workshop session, and re-runs any script files found in the workshop/setup.d directory.

Find the location where the workshop content is downloading by viewing the file:

cat ~/.eduk8s/workshop-files.txt

You can change the location saved in this file if, for example, it references a specific version of the
workshop content and you want to test with a different version.

Once the workshop content has been updated, reload the current page of the workshop
instructions by clicking the reload icon on the dashboard while holding down the shift key.

If additional pages are added to the workshop instructions or pages are renamed, you must restart
the workshop renderer process by running:

restart-workshop

If you didn’t rename the current pager or if the name changed, you can trigger a reload of the
current page. Click the home icon or refresh the webpage if the name of the first page didn’t
change.

If action blocks within the workshop instructions are broken, to change and test the workshop
instructions within the live workshop session, you can edit the appropriate page under
/opt/workshop/content. Navigate to the modified page or reload it to verify the change.

To change set up scripts that create files specific to a workshop session, edit the script under
/opt/workshop/setup.d directory.

To trigger running of any setup scripts, run:

rebuild-workshop

If local changes to the workshop session take effect, you can restore the file in the original Git
repository.

Updating workshop content in a live session in this way does not undo any deployments or changes
you make in the Kubernetes cluster for that session. To retest parts of the workshop instructions,
you might have to manually undo the changes in the cluster to replay them. This depends on your
specific workshop content.

Tanzu Application Platform v1.4

VMware by Broadcom 931



Custom workshop image changes

If your workshop uses a custom workshop image to provide additional tools and you have included
the workshop instructions as part of the workshop image, you must use an image tag of main,
develop, or latest during the development of workshop content. Do not use a version image
reference.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-sample-workshop

spec:

  title: Sample Workshop

  description: A sample workshop

  content:

    image: {YOUR-GIT-REPO-URL}/lab-sample-workshop:main

When you use an image tag of main, develop, or latest, the image pull policy is set to Always to
ensure that the custom workshop image is pulled down again for a new workshop session if the
remote image changes. If the image tag is for a specific version, you must change the workshop
definition every time when the workshop image changes.

Custom workshop image overlay
For a custom workshop image, you can set up the workshop definition to pull down the workshop
content from the hosted Git repository or web server as the follows:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-sample-workshop

spec:

  title: Sample Workshop

  description: A sample workshop

  content:

    image: {YOUR-REGISTRY-URL}/lab-sample-workshop:main

    files: {YOUR-GIT-REPO-URL}/lab-sample-workshop

By pulling down the workshop content as an overlay of the custom workshop image when the
workshop session starts, you only need to rebuild the custom workshop image when you need to
make changes such as to include additional tools or to ensure the latest workshop instructions are
included in the final custom workshop image.

Because the location of the workshop files is known, you can live update the workshop content in
the session by following Live updates to the content.

If the additional set of tools required for a workshop is not specific to a workshop, VMware
recommends that you create a standalone workshop base image where you can add the tools. You
can always pull down content for a specific workshop from a Git repository or web server when the
workshop session starts.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-sample-workshop

spec:

  title: Sample Workshop

  description: A sample workshop

Tanzu Application Platform v1.4

VMware by Broadcom 932



  content:

    image: {YOUR-REGISTRY-URL}/custom-environment:main

    files: {YOUR-GIT-REPO-URL}/lab-sample-workshop

This separates generic tooling from specific workshops and so you can use the custom workshop
base image for multiple workshops on different, but related topics that require the same tooling.

Changes to workshop definition

By default, to modify the definition for a workshop, you need to delete the training portal instance,
update the workshop definition in the cluster, and recreate the training portal.

During the workshop content development, to change resource allocations, role access, or to
specify what resource objects to be automatically created for the workshop environment or a
specific workshop session, you can enable automatic updates in the training portal definition by
setting updates.workshop field as true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-sample-workshop

spec:

  portal:

    sessions:

      maximum: 1

    updates:

      workshop: true

  workshops:

  - name: lab-sample-workshop

    expires: 120m

    orphaned: 15m

With automatic updates enabled, if the workshop definition in the cluster is modified, the existing
workshop environment managed by the training portal for that workshop is shut down and replaced
with a new workshop environment by using the updated workshop definition.

When an active workshop session is running, the actual deletion of the old workshop environment
is delayed until that workshop session is terminated.

Local build of workshop image

If you do not package a workshop into a custom workshop image, VMware recommends to build a
custom workshop image locally on your own machine by using docker to avoid keeping pushing
changes to a hosted Git repository and using a Kubernetes cluster for local workshop content
development.

Furthermore, to avoid pushing the image to a public image registry on the Internet, you must
deploy an image registry to your local Kubernetes cluster where you run the Learning Center. In
most cases, a basic deployment of an image registry in a local cluster access is not secure. As a
result, you have to configure the Kubernetes cluster to trust the registry that is not secure. This
can be difficult to do depending on the Kubernetes cluster you use, but it can enable quicker
turnaround because you do not have to push or pull the custom workshop image across the public
Internet.

After pushing the custom workshop image built locally to the local image registry, you can set the
image reference in the workshop definition to pull the custom workshop from the local registry in
the same cluster. To ensure that the custom workshop image is always pulled for a new workshop
session after update, use the latest tag when tagging and pushing the image to the local registry.

Tanzu Application Platform v1.4

VMware by Broadcom 933



Build an image for your Learning Center workshop

This topic describes how you include an extra system, third-party tool, or configuration in your
image by bundling workshop content from the Learning Center workshop base image.

The following sample workshop template provides a Dockerfile.

Structure of the Dockerfile

The structure of the Dockerfile in the sample workshop template is:

FROM registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:xxxxxxxx

xxxxxxxxxxxxxxx

COPY --chown=1001:0 . /home/eduk8s/

RUN mv /home/eduk8s/workshop /opt/workshop

RUN fix-permissions /home/eduk8s

The default Dockerfile action is to:

Copy all files from a registry to the /home/eduk8s directory.

You must build the custom workshop images on the base environment image
according to the version of Tanzu Application Platform. To get the image ID, run:

kubectl get ds -n learningcenter learningcenter-prepull -o=jsonpath="{.sp

ec.template.spec.initContainers[0].image}"

Example image ID:

registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:

a8870aa60b45495d298df5b65c69b3d7972608da4367bd6e69d6e392ac969dd4

You can build the workshop images directly on the base environment image, or you
can create an intermediate base image to install extra packages required by a
number of different workshops.

The --chown=1001:0 option ensures that files are owned by the appropriate user and
group.

The workshop subdirectory is moved to /opt/workshop so that it is not visible to the user.
This subdirectory is in an area searchable for workshop content, in addition to
/home/eduk8s/workshop.

To customize your Dockerfile:

You can ignore other files or directories from the repository, by listing them in the
.dockerignore file.

You can include RUN statements in the Dockerfile to run custom-build steps, but the USER
inherited from the base image has user ID 1001 and is not the root user.

Custom workshop base images

The base-environment workshop images include language run times for Node.js and Python. If you
need a different language runtime or a different version of a language runtime, you must create a
custom workshop base image which includes the environment you need. This custom workshop
image is derived from base-environment but includes extra runtime components.

Tanzu Application Platform v1.4

VMware by Broadcom 934



The following Dockerfile example creates a Java JDK11-customized image:

ARG IMAGE_REPOSITORY=dev.registry.tanzu.vmware.com/learning-center

FROM ${IMAGE_REPOSITORY}/pkgs-java-tools as java-tools

FROM registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:xxxxxxxx

xxxxxxxxxx

COPY --from=java-tools --chown=1001:0 /opt/jdk11 /opt/java

COPY --from=java-tools --chown=1001:0 /opt/gradle /opt/gradle

COPY --from=java-tools --chown=1001:0 /opt/maven /opt/maven

COPY --from=java-tools --chown=1001:0 /opt/code-server/extensions/.  /opt/code-server/

extensions/

COPY --from=java-tools --chown=1001:0 /home/eduk8s/. /home/eduk8s/

COPY --from=java-tools --chown=1001:0 /opt/eduk8s/. /opt/eduk8s/

ENV PATH=/opt/java/bin:/opt/gradle/bin:/opt/maven/bin:$PATH \

    JAVA_HOME=/opt/java \

    M2_HOME=/opt/maven

Installing extra system packages

Installing extra system packages requires that you run the installation as root. You must switch the
user commands before running the command, and then switch the user back to user ID of 1001.

USER root

RUN ... commands to install system packages

USER 1001

VMware recommends that you only use the root user to install extra system packages. Don’t use
the root user when adding anything under /home/eduk8s. Otherwise, you must ensure the user ID
and group for directories and files are set to 1001:0 and then run the fix-permissions command if
necessary.

When you run any command as root, you must temporarily override the value of the HOME
environment variable and set it to /root.

If you don’t do this the root user drops configuration files in /home/eduk8s, thinking it is the root
home directory, because the HOME environment variable is by default set to /home/eduk8s. This can
cause commands run later during the workshop to fail if they try to update the configuration files as
they have wrong permissions.

Fixing the file and group ownership and running fix-permissions can help with this problem, but
not in every case, because of permissions the root user may apply and how container image layers
work. VMware recommends that you use the following:

USER root

RUN HOME=/root && \

    ... commands to install system packages

USER 1001

Installing third-party packages

If you are not using system packaging tools to install extra packages, but are manually downloading
packages and optionally compiling them to binaries, it is better to do this as the default user and
not root.

If compiling packages, VMware recommends working in a temporary directory under /tmp and
removing the directory as part of the same RUN statement when done.

Tanzu Application Platform v1.4

VMware by Broadcom 935



If you are installing a binary, you can install it in /home/eduk8s/bin. This directory is in the
application search path defined by the PATH environment variable for the image.

To install a directory hierarchy of files, create a separate directory under /opt to install everything.
You can override the PATH environment variable in the Dockerfile to add an extra directory for
application binaries and scripts. You can override the LD_LIBRARY_PATH environment variable for the
location of shared libraries.

If installing any files from a RUN instruction into /home/eduk8s, VMware recommends that you run
fix-permissions as part of the same instruction to avoid copies of files being made into a new
layer, which applies to the case where fix-permissions is only run in a later RUN instruction. You
can still leave the final RUN instruction for fix-permissions as it is smart enough not to apply
changes if the file permissions are already set correctly and so it does not trigger a copy of a file
when run more than once.

Writing instructions for your Learning Center workshop

This topic describes how you write and format the instructions for a Learning Center workshop.
You can use either Markdown with file extension .md or AsciiDoc with file extension .adoc as the
markup format for the individual module files that comprise the workshop instructions.

Annotation of executable commands

In conjunction with the standard Markdown and AsciiDoc, you can apply additional annotations to
code blocks. The annotations indicate that a user can click the code block and have it copied to the
terminal and executed.

If using Markdown, to annotate a code block so it is copied to the terminal and executed, use:

```execute

echo "Execute command."

```

When the user clicks the code block, the command is executed in the first terminal of the
workshop dashboard.

If using AsciiDoc, you can instead use the role annotation in an existing code block:

[source,bash,role=execute]

----

echo "Execute command."

----

When the workshop dashboard is configured to display multiple terminals, you can qualify which
terminal the command must be executed in by adding a suffix to the execute annotation. For the
first terminal, use execute-1, for the second terminal execute-2, and so on:

```execute-1

echo "Execute command."

```

```execute-2

echo "Execute command."

```

To execute a command in all terminal sessions on the terminals tab of the dashboard, you can use
execute-all:

Tanzu Application Platform v1.4

VMware by Broadcom 936

https://github.github.com/gfm/
http://asciidoc.org/


```execute-all

clear

```

In most cases, a command the user executes completes immediately. To run a command that
never returns, with the user needing to interrupt it to stop it, you can use the special string
<ctrl+c> in a subsequent code block.

```execute

<ctrl+c>

```

When the user clicks on this code block, the command running in the corresponding terminal is
interrupted.

Annotation of text to be copied
To copy the content of the code block into the paste buffer instead of running the command, you
can use:

```copy

echo "Text to copy."

```

After the user clicks this code block, they can then paste the content into another window.

If you have a situation where the text being copied must be modified before use, you can denote
this special case by using copy-and-edit instead of copy. The text is still copied to the paste buffer,
but is displayed in the browser in a way to highlight that it must be changed before use.

```copy-and-edit

echo "Text to copy and edit."

```

For AsciiDoc, similar to execute, you can add the role of copy or copy-and-edit:

[source,bash,role=copy]

----

echo "Text to copy."

----

[source,bash,role=copy-and-edit]

----

echo "Text to copy and edit."

----

For copy only, to mark an inline code section within a paragraph of text as copyable when clicked,
you can append the special data variable reference {{copy}} immediately after the inline code
block:

Text to `copy`{{copy}}.

Note

Using the special string <ctrl+c> is deprecated, and you must use the
terminal:interrupt clickable action instead.

Tanzu Application Platform v1.4

VMware by Broadcom 937



Extensible clickable actions

The preceding means to annotate code blocks were the original methods used to indicate code
blocks to be executed or copied when clicked. To support a growing number of clickable actions
with different customizable purposes, annotation names are now name-spaced. The preceding
annotations are still supported, but the following are now recommended, with additional options
available to customize the way the actions are presented.

For code execution, instead of:

```execute

echo "Execute command."

```

you can use:

```terminal:execute

command: echo "Execute command."

```

The contents of the code block is YAML. The executable command must be set as the command
property. By default when the user clicks the command, it is executed in terminal session 1. To
select a different terminal session, you can set the session property.

```terminal:execute

command: echo "Execute command."

session: 1

```

To define a command the user clicks that executes in all terminal sessions on the terminals tab of
the dashboard, you can also use:

```terminal:execute-all

command: echo "Execute command."

```

For terminal:execute or terminal:execute-all, to clear the terminal before the command is
executed, set the clear property to true:

```terminal:execute

command: echo "Execute command."

clear: true

```

This clears the full terminal buffer and not just the displayed portion of the buffer.

With the new clickable actions, to indicate that a running command in a terminal session must be
interrupted, use:

```terminal:interrupt

session: 1

```

(Optional) Set the session property within the code block to indicate an alternate terminal session
to session 1.

To allow the user to send an interrupt to all terminals sessions on the terminals tab of the
dashboard, use:

Tanzu Application Platform v1.4

VMware by Broadcom 938



```terminal:interrupt-all

```

Where you want the user to enter input into a terminal rather than a command, such as when a
running command prompts for a password, use:

```terminal:input

text: password

```

To allow the user to run commands or interrupt a command, set the session property to indicate a
specific terminal to send it to if you don’t want to send it to terminal session 1:

```terminal:input

text: password

session: 1

```

When providing terminal input in this way, the text by default still has a newline appended to the
end, making it behave the same as using terminal:execute. If you do not want a newline
appended, set the endl property to false.

```terminal:input

text: input

endl: false

```

To allow the user to clear all terminal sessions on the terminals tab of the dashboard, use:

```terminal:clear-all

```

This clears the full terminal buffer and not just the displayed portion of the terminal buffer. It does
not have any effect when an application is running in the terminal using visual mode. To clear only
the displayed portion of the terminal buffer when a command dialog box is displayed, use
terminal:execute and run the clear command.

To allow the user to copy content to the paste buffer, use:

```workshop:copy

text: echo "Text to copy."

```

or:

```workshop:copy-and-edit

text: echo "Text to copy and edit."

```

A benefit of using these over the original methods is that by using the appropriate YAML syntax,
you can control whether:

A multiline string value is concatenated into one line.

Line breaks are preserved.

Initial or terminating new lines are included.

In the original methods, the string was always trimmed before use. By using the different forms as
appropriate, you can annotate the displayed code block with a different message letting the user
know what will happen.

Tanzu Application Platform v1.4

VMware by Broadcom 939



The method for using AsciiDoc is similar, using the role for the name of the annotation and YAML
as the content:

[source,bash,role=terminal:execute]

----

command: echo "Execute command."

----

Supported workshop editor

Learning Center currently only supports the code-server v4.4.0 of VS Code as an editor in
workshops.

Clickable actions for the dashboard

In addition to the clickable actions related to the terminal and copying of text to the paste buffer,
other actions are available for controlling the dashboard and opening URL links.

To allow the user to click in the workshop content to open a URL in a new browser, use:

```dashboard:open-url

url: https://www.example.com/

```

To allow the user to click in the workshop content to display a specific dashboard tab if hidden, use:

```dashboard:open-dashboard

name: Terminal

```

To allow the user to click in the workshop content to display the console tab, use:

```dashboard:open-dashboard

name: Console

```

To allow the user to click in the workshop content to display a specific view within the Kubernetes
web console by using a clickable action block, rather than requiring the user to find the correct
view, use:

```dashboard:reload-dashboard

name: Console

prefix: Console

title: List pods in namespace {{session_namespace}}

url: {{ingress_protocol}}://{{session_namespace}}-console.{{ingress_domain}}/#/pod?nam

espace={{session_namespace}}

description: ""

```

To allow the user to create a new dashboard tab with a specific URL, use:

```dashboard:create-dashboard

name: Example

url: https://www.example.com/

```

To allow the user to create a new dashboard tab with a new terminal session, use:

Tanzu Application Platform v1.4

VMware by Broadcom 940



```dashboard:create-dashboard

name: Example

url: terminal:example

```

The value must be of the form terminal:<session>, where <session> is replaced with the name
you want to give the terminal session. The terminal session name must be restricted to lowercase
letters, numbers, and ‘-‘. You must avoid using numeric terminal session names such as “1”, “2”,
and “3”, because these are used for the default terminal sessions.

To allow the user to reload an existing dashboard, using the URL it is currently targeting, use:

```dashboard:reload-dashboard

name: Example

```

If the dashboard is for a terminal session, there is no effect unless the terminal session was
disconnected, in which case it is reconnected.

To allow the user to change the URL target of an existing dashboard by entering the new URL
when reloading a dashboard, use:

```dashboard:reload-dashboard

name: Example

url: https://www.example.com/

```

The user cannot change the target of a dashboard that includes a terminal session.

To allow the user to delete a dashboard, use:

```dashboard:delete-dashboard

name: Example

```

The user cannot delete dashboards corresponding to builtin applications provided by the workshop
environment, such as the default terminals, console, editor, or slides.

Deleting a custom dashboard including a terminal session does not destroy the underlying terminal
session, and the user can reconnect it by creating a new custom dashboard for the same terminal
session name.

Clickable actions for the editor

If the embedded editor is enabled, special actions are available that control the editor.

To allow the user to open an existing file you can use:

```editor:open-file

file: ~/exercises/sample.txt

```

You can use ~/ prefix to indicate the path relative to the home directory of the session. When the
user opens the file, if you want the insertion point left on a specific line, provide the line property.
Lines numbers start at 1.

```editor:open-file

file: ~/exercises/sample.txt

line: 1

```

Tanzu Application Platform v1.4

VMware by Broadcom 941



To allow the user to highlight certain lines of a file based on an exact string match, use:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "int main()"

```

The region of the match is highlighted by default. To allow the user to highlight any number of lines
before or after the line with the match, you can set the before and after properties:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "int main()"

before: 1

after: 1

```

Setting both before and after to 0 causes the complete line that matched to be highlighted
instead of a region within the line.

To match based on a regular expression, rather than an exact match, set isRegex to true:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

```

When a regular expression is used, and subgroups are specified within the pattern, you can indicate
which subgroup is selected:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

group: 1

```

Where there are multiple possible matches in a file, and the one you want to match is not the first,
you can set a range of lines to search:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

start: 8

stop: 12

```

Absence of start means start at the beginning of the file. Absence of stop means stop at the end
of the file. The line number given by stop is not included in the search.

For both an exact match and regular expression, the text to be matched must all be on one line. It
is not possible to match text that spans across lines.

To allow the user to replace text within the file, first match it exactly or use a regular expression so
it is marked as selected, then use:

```editor:replace-text-selection

file: ~/exercises/sample.txt

Tanzu Application Platform v1.4

VMware by Broadcom 942

text: nginx:latest

```

To allow the user to append lines to the end of a file, use:

```editor:append-lines-to-file

file: ~/exercises/sample.txt

text: |

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

 do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

If the user runs the action editor:append-lines-to-file and the file doesn’t exist, it is created.
You can use this to create new files for the user.

To allow the user to insert lines before a specified line in the file, use:

```editor:insert-lines-before-line

file: ~/exercises/sample.txt

line: 8

text: |

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

 do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

To allow the user to insert lines after matching a line containing a specified string, use:

```editor:append-lines-after-match

file: ~/exercises/sample.txt

match: Lorem ipsum

text: |

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

 do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

Where the file contains YAML, to allow the user to insert a new YAML value into an existing
structure, use:

```editor:insert-value-into-yaml

file: ~/exercises/deployment.yaml

path: spec.template.spec.containers

value:

- name: nginx

 image: nginx:latest

```

To allow the user to execute a registered VS code command, use:

```editor:execute-command

command: spring.initializr.maven-project

args:

- language: Java

 dependencies: ["actuator", "webflux"]

 artifactId: demo

 groupId: com.example

```

Clickable actions for file download
If file downloads are enabled for the workshop, you can use the files:download-file clickable
action:

Tanzu Application Platform v1.4

VMware by Broadcom 943



```files:download-file

path: .kube/config

```

The action triggers saving the file to the user’s local computer, and the file is not displayed in the
user’s web browser.

Clickable actions for the examiner

If the test examiner is enabled, special actions are available to run verification checks to verify
whether a workshop user has performed a required step. You can trigger these verification checks
by clicking on the action, or you can configure them to start running when the page loads.

For a single verification check that the user must click to run, use:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists.

args:

- one

```

The title field is displayed as the title of the clickable action and must describe the nature of the
test. If required, you can provide a description field for a longer explanation of the test. This is
displayed in the body of the clickable action but is shown as preformatted text.

There must be an executable program (script or compiled application) in the
workshop/examiner/tests directory with name matching the value of the name field.

The list of program arguments against the args field is passed to the test program.

The executable program for the test must exit with a status of 0 if the test is successful and
nonzero if the test is a failure. The test should aim to return as quickly as possible and should not be
a persistent program.

#!/bin/bash

kubectl get pods --field-selector=status.phase=Running -o name | egrep -e "^pod/$1$"

if [ "$?" != "0" ]; then

    exit 1

fi

exit 0

By default, the program for a test is stopped after a timeout of 15 seconds, and the test is deemed
to have failed. To adjust the timeout, you can set the timeout value, which is in seconds. A value of
0 causes the default 15 seconds timeout to be applied. It is not possible to deactivate stopping the
test program after running for the default or a specified timeout value.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

```

To apply the test multiple times, you can enable the retry when a failure occurs. For this you must
set the number of times to retry and the delay between retries. The value for the delay is in

Tanzu Application Platform v1.4

VMware by Broadcom 944



seconds.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: 10

delay: 1

```

When you use retries, the testing stops as soon as the test program returns that it was successful.

To have retries continue for as long as the page of the workshop instructions displays, set retries
to the special YAML value of .INF:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

```

Rather than require a workshop user to click the action to run the test, you can have the test start
as soon as the page is loaded, or when a section the page is contained in is expanded. Do this by
setting autostart to true:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

autostart: true

```

When a test succeeds, to immediately start the next test in the same page, set cascade to true.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

autostart: true

cascade: true

```

```examiner:execute-test

name: test-that-pod-does-not-exist

title: Verify that pod named "one" does not exist

args:

- one

retries: .INF

Tanzu Application Platform v1.4

VMware by Broadcom 945

delay: 1

```

Clickable actions for sections

For optional instructions, or instructions you want to hide until the workshop user is ready for them,
you can designate sections to be hidden. When the user clicks the appropriate action, the section
expands to show its content. You can use this for examples that initially hide a set of questions or a
test at the end of each workshop page.

In order to designate a section of content as hidden, you must use two separate action code blocks
marking the beginning and end of the section:

```section:begin

title: Questions

```

To show you understand ...

```section:end

```

The title must be set to the text you want to include in the banner for the clickable action.

A clickable action is only shown for the beginning of the section, and the action for the end is
always hidden. Clicking the action for the beginning expands the section. The user can collapse the
section again by clicking the action.

To create nested sections, you must name the action blocks for the beginning and end so they are
correctly matched:

```section:begin

name: questions

title: Questions

```

To show you understand ...

```section:begin

name: question-1

prefix: Question

title: 1

```

...

```section:end

name: question-1

```

```section:end

name: questions

```

The prefix attribute allows you to override the default Section prefix used on the title for the
action.

If a collapsible section includes an examiner action block set to automatically run, it only starts when
the user expands the collapsible section.

In case you want a section header showing in the same style as other clickable actions, you can
use:

Tanzu Application Platform v1.4

VMware by Broadcom 946



```section:heading

title: Questions

```

When the user clicks on this, the action is still marked as completed, but it does not trigger any
other action.

Overriding title and description

Clickable action blocks default to use a title with the prefix dictated by what the action block does.
The body of the action block also defaults to use a value commensurate with the action.

Especially for complicated scenarios involving editing of files, the defaults might not be the most
appropriate and be confusing, so you can override them. To override these defaults, set the prefix,
title, and description fields of a clickable action block:

```action:name

prefix: Prefix

title: Title

description: Description

```

The banner of the action block in this example displays “Prefix: Title”, with the body showing
“Description”.

Escaping of code block content
Because the Liquid template engine is applied to workshop content, you must escape content in
code blocks that conflict with the syntactic elements of the Liquid template engine. To escape such
elements, you can suspend processing by the template engine for that section of workshop
content to ensure it is rendered correctly. Do this by using a Liquid {% raw %}...{% endraw %}
block.

{% raw %}

```execute

echo "Execute command."

```

{% endraw %}

This has the side effect of preventing interpolation of data variables, so restrict it to only the
required scope.

Interpolation of data variables

When creating page content, you can reference a number of predefined data variables. The values
of the data variables are substituted into the page when rendered in the user’s browser.

The workshop environment provides the following built-in data variables:

workshop_name: The name of the workshop.

workshop_namespace: The name of the namespace used for the workshop environment.

Note

The description is always displayed as pre-formatted text within the rendered page.

Tanzu Application Platform v1.4

VMware by Broadcom 947

https://www.npmjs.com/package/liquidjs


session_namespace: The name of the namespace the workshop instance is linked to and
into which any deployed applications run.

training_portal: The name of the training portal the workshop is hosted by.

ingress_domain: The host domain must be used in the any generated host name of ingress
routes for exposing applications.

ingress_protocol: The protocol (http/https) used for ingress routes created for workshops.

To use a data variable within the page content, surround it by matching pairs of brackets:

{{ session_namespace }}

Do this inside of code blocks, including clickable actions, as well as in URLs:

http://myapp-{{ session_namespace }}.{{ ingress_domain }}

When the workshop environment is hosted in Kubernetes and provides access to the underlying
cluster, the following data variables are also available.

kubernetes_token: The Kubernetes access token of the service account the workshop
session is running as.

kubernetes_ca_crt: The contents of the public certificate required when accessing the
Kubernetes API URL.

kubernetes_api_url: The URL for accessing the Kubernetes API. This is only valid when
used from the workshop terminal.

Adding custom data variables

You can introduce your own data variables by listing them in the workshop/modules.yaml file. A data
variable is defined as having a default value, but the value is overridden if an environment variable
of the same name is defined.

The field under which the data variables must be specified is config.vars:

config:

    vars:

    - name: LANGUAGE

      value: undefined

To use a name for a data variable that is different from the environment variable name, add a list of
aliases:

config:

    vars:

    - name: LANGUAGE

      value: undefined

      aliases:

      - PROGRAMMING_LANGUAGE

Note

An older version of the rendering engine required that data variables be surrounded
on each side with the character %. This is still supported for backwards compatibility,
but VMware recommends you use matched pairs of brackets instead.

Tanzu Application Platform v1.4

VMware by Broadcom 948



The environment variables with names in the list of aliases are checked first, then the environment
variable with the same name as the data variable. If no environment variables with those names are
set, the default value is used.

You can override the default value for a data variable for a specific workshop by setting it in the
corresponding workshop file. For example, workshop/workshop-python.yaml might contain:

vars:

  LANGUAGE: python

For more control over setting the values of data variables, you can provide the file
workshop/config.js. The form of this file is:

function initialize(workshop) {

    workshop.load_workshop();

    if (process.env['WORKSHOP_FILE'] == 'workshop-python.yaml') {

        workshop.data_variable('LANGUAGE', 'python');

    }

}

exports.default = initialize;

module.exports = exports.default;

This JavaScript code is loaded and the initialize() function called to set up the workshop
configuration. You can then use the workshop.data_variable() function to set up any data
variables.

Because it is JavaScript, you can write any code to query process environment variables and set
data variables based on those. This might include creating composite values constructed from
multiple environment variables. You can even download data variables from a remote host.

Passing environment variables
You can pass environment variables, including remapping of variable names, by setting your own
custom data variables. If you don’t need to set default values or remap the name of an environment
variable, you can instead reference the name of the environment variable directly. You must prefix
the name with ENV_ when using it.

For example, to display the value of the KUBECTL_VERSION environment variable in the workshop
content, use ENV_KUBECTL_VERSION, as in:

{{ ENV_KUBECTL_VERSION }}

Handling embedded URL links

You can include URLs in workshop content. This can be the literal URL, or the Markdown or
AsciiDoc syntax for including and labelling a URL. What happens when a user clicks on a URL
depends on the specific URL.

In the case of the URL being an external website, when the URL is clicked, the URL opens in a new
browser tab or window. When the URL is a relative page referring to another page that is part of
the workshop content, the page replaces the current workshop page.

You can define a URL where components of the URL are provided by data variables. Data variables
useful for this are session_namespace and ingress_domain, because they can be used to create a
URL to an application deployed from a workshop:

Tanzu Application Platform v1.4

VMware by Broadcom 949



https://myapp-{{ session_namespace }}.{{ ingress_domain }}

Conditional rendering of content

Rendering pages is in part handled by the Liquid template engine. So you can use any constructs
the template engine supports for conditional content:

{% if LANGUAGE == 'java' %}

....

{% endif %}

{% if LANGUAGE == 'python' %}

....

{% endif %}

Embedding custom HTML content

Custom HTML can be embedded in the workshop content by using the appropriate mechanism
provided by the content rendering engine used.

If using Markdown, HTML can be embedded directly without being marked as HTML:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

<div>

<table style="width:100%">

  <thead>

  <tr>

    <th>Firstname</th>

    <th>Lastname</th>

    <th>Age</th>

  </tr>

  </thead>

  <tbody>

  <tr>

    <td>Jill</td>

    <td>Smith</td>

    <td>50</td>

  </tr>

  <tr>

    <td>Eve</td>

    <td>Jackson</td>

    <td>94</td>

  </tr>

  </tbody>

</table>

</div>

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

If using AsciiDoc, HTML can be embedded by using a passthrough block:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

++++

<div>

<table style="width:100%">

  <thead>

  <tr>

    <th>Firstname</th>

    <th>Lastname</th>

    <th>Age</th>

Tanzu Application Platform v1.4

VMware by Broadcom 950

https://www.npmjs.com/package/liquidjs


  </tr>

  </thead>

  <tbody>

  <tr>

    <td>Jill</td>

    <td>Smith</td>

    <td>50</td>

  </tr>

  <tr>

    <td>Eve</td>

    <td>Jackson</td>

    <td>94</td>

  </tr>

  </tbody>

</table>

</div>

++++

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

In both cases, VMware recommends that the HTML consist of only a single HTML element. If you
have more than one, include them all in a div element. The latter is necessary if any of the HTML
elements are marked as hidden and the embedded HTML is a part of a collapsible section. If you
don’t ensure the hidden HTML element is placed under the single top-level div element, the
hidden HTML element is visible when the collapsible section is expanded.

In addition to visual HTML elements, you can also include elements for embedded scripts or style
sheets.

If you have HTML markup that must be added to multiple pages, extract it into a separate file and
use the include file mechanism of the Liquid template engine. You can also use the partial render
mechanism of Liquid as a macro mechanism for expanding HTML content with supplied values.

Automate your Learning Center workshop runtime

Your workshop content can script the steps a user must run for a workshop. This topic tells you
how to set this up.

In some cases, you must parameterize that content with information from the runtime
environment. Data variables in workshop content allow this to a degree, but you can automate this
by using scripts executed in the workshop container to set up configuration files.

Do this by supplying setup scripts that run when the container is started. You can also run
persistent background processes in the container that perform extra work for you while a workshop
is being run.

Predefined environment variables

When you create the workshop content, you can use data variables to automatically insert values
corresponding to the specific workshop session or environment. For example: the name of the
namespace used for the session and the ingress domain when creating an ingress route.

These data variables can display a YAML/JSON resource file in the workshop content with values
already filled out. You can have executable commands that have the data variables substituted with
values given as arguments to the commands.

For commands run in the shell environment, you can also reference a number of predefined
environment variables.

Key environment variables are:

WORKSHOP_NAMESPACE - The name of the namespace used for the workshop environment.

Tanzu Application Platform v1.4

VMware by Broadcom 951



SESSION_NAMESPACE - The name of the namespace the workshop instance is linked to and
into which any deployed applications run.

INGRESS_DOMAIN - The host domain that must be used in any generated host name of
ingress routes for exposing applications.

INGRESS_PROTOCOL - The protocol (http/https) used for ingress routes created for workshops.

Instead of having an executable command in the workshop content, use:

```execute

kubectl get all -n %session_namespace%

```

With the value of the session namespace filled out when the page is rendered, you can use:

```execute

kubectl get all -n $SESSION_NAMESPACE

```

The shell inserts the value of the environment variable.

Running steps on container start
To run a script that makes use of the earlier environment variables when the container is started,
and to perform tasks such as pre-create YAML/JSON resource definitions with values filled out,
you can add an executable shell script to the workshop/setup.d directory. The name of the
executable shell script must have a .sh suffix to be recognized and run.

If the container is restarted, the setup script runs again in the new container. If the shell script is
performing actions against the Kubernetes REST API using kubectl or by using another means, the
actions it performs must be tolerant of running more than once.

When using a setup script to fill out values in resource files, a useful utility is envsubst. You can use
this in a setup script as follows:

#!/bin/bash

envsubst < frontend/ingress.yaml.in > frontend/ingress.yaml

A reference of the form ${INGRESS_DOMAIN} in the input file is replaced with the value of the
INGRESS_DOMAIN environment variable.

Setup scripts have the /home/eduk8s directory as the current working directory.

If you are creating or updating files in the file system and using a custom workshop image, ensure
that the workshop image is created with correct file permissions to allow updates.

Running background applications

The setup scripts run once on container startup. You can use the script to start a background
application needed to run in the container for the life of the workshop, but if that application stops,
it does not restart.

If you must run a background application, you can integrate the management of the background
application with the supervisor daemon run within the container. To have the supervisor daemon
manage the application for you, add a configuration file snippet for the supervisor daemon in the
workshop/supervisor directory. This configuration file must have a .conf extension.

The form of the configuration file snippet must be:

Tanzu Application Platform v1.4

VMware by Broadcom 952



[program:myapplication]

process_name=myapplication

command=/opt/myapplication/sbin/start-myapplication

stdout_logfile=/proc/1/fd/1

stdout_logfile_maxbytes=0

redirect_stderr=true

The application must send any logging output to stdout or stderr, and the configuration snippet
must direct log output to /proc/1/fd/1 so it is captured in the container log file. If you must restart
or shut down the application within the workshop interactive terminal, you can use the
supervisorctl control script.

Terminal user shell environment

Neither the setup scripts that run when the container starts nor background applications affect the
user environment of the terminal shell. The shell environment makes use of bash and the
$HOME/.bash_profile script is read to perform added setup for the user environment. Because
some default setup is included in $HOME/.bash_profile, you must not replace it, because you can
loose that configuration.

To provide commands to initialize each shell environment, you can provide the file
workshop/profile. When this file exists, it is sourced at the end of the $HOME/.bash_profile file
when it is processed.

Overriding terminal shell command

The user starts each terminal session by using the bash terminal shell. A terminal prompt dialog box
displays, allowing the user to manually enter commands or perform clickable actions targetting the
terminal session.

To specify the command to run for a terminal session, you can supply an executable shell script file
in the workshop/terminal directory.

The name of the shell script file for a terminal session must be of the form <session>.sh, where
<session> is replaced with the name of the terminal session. The session names of the default
terminals configured to be displayed with the dashboard are 1, 2, and 3.

The shell script file might be used to run a terminal-based application such as k9s, or to create an
SSH session to a remote system.

#!/bin/bash

exec k9s

If the command that is run exits, the terminal session is marked as exited and you need to reload
that terminal session to start over again. Alternatively, you could write the shell script file as a loop
so it restarts the command you want to run if it ever exits.

#!/bin/bash

while true; do

    k9s

    sleep 1

done

If you want to run an interactive shell and output a banner at the start of the session with special
information for the user, use a script file to output the banner and then run the interactive shell:

Tanzu Application Platform v1.4

VMware by Broadcom 953



#!/bin/bash

echo

echo "Your session namespace is "$SESSION_NAMESPACE".

echo

exec bash

Add presenter slides to your Learning Center workshop

If your workshop includes a presentation, include slides by placing them in the workshop/slides
directory. Anything in this directory is served up as static files through a HTTP web server. The
default webpage must be provided as index.html.

Use reveal.js presentation tool

To support the use of reveal.js, static media assets for that package are already bundled and
available at the standard URL paths that the package expects. You can drop your slide presentation
using reveal.js into the workshop/slides directory and it will work with no additional setup.

If you are using reveal.js for the slides and you have history enabled or are using section IDs to
support named links, you can use an anchor to a specific slide and that slide will be opened when
clicked on:

%slides_url%#/questions

When using embedded links to the slides in workshop content, if the workshop content is displayed
as part of the dashboard, the slides open in the tab to the right rather than as a separate browser
window or tab.

Use a PDF file for presenter slides

For slides bundled as a PDF file, add the PDF file to workshop/slides and then add an index.html
which displays the PDF embedded in the page.

Requirements for Learning Center in an air-gapped
environment

This topic gives you the list of configurations required for Learning Center to properly function in an
air-gapped environment.

Learning Center can run in an air-gapped environment but workshops do not have this capability by
default. Users must therefore take the following steps to ensure Learning Center functions as
expected.

Workshop yaml changes

In an air-gapped environment a user has no Internet access, so workshop yamls should be modified
to use:

1. Private container registries.

2. Private Maven, NPM, Python, Go, or any other language repository.

For example, in NPM you can modify the npmrc file to use:

Tanzu Application Platform v1.4

VMware by Broadcom 954

https://revealjs.com/
https://stackoverflow.com/questions/291813/recommended-way-to-embed-pdf-in-html


// .npmrc

registry=https://myregistry-url

Self-signed certificates

Air-gapped environments normally use private Certificate Authorities (CA) that may require the use
of self-signed certificates. You can allow the injection of CAs by:

1. Setting the env variable NODE_EXTRA_CA_CERTS to the path of the file that contains
one or more trusted certificates in PEM format.

2. Add the following to your workshop definition:

spec:

  session:

    env:

    - name: NODE_EXTRA_CA_CERTS

      value: "$my-cert-pathway"

Internet dependencies

If the workshop requires the installation of any Internet dependency, such as a Linux Tool or any
other tool, it must be done in the workshop image. See Build an image

Define custom resources for Learning Center

This topic describes how you define custom resources for Learning Center workshops and training
portals.

You can deploy workshop images directly to a container runtime. The Learning Center Operator
enables managing the deployments into a Kubernetes cluster. A set of Kubernetes custom
resource definitions (CRDs) controls the operation of the Learning Center Operator.

Workshop definition resource
The Workshop custom resource defines a workshop. It specifies the title and description of the
workshop, the location of the workshop content or container image that you deploy, any resources
that you pre-create in the workshop environment or for each instance of the workshop.

You can also define environment variables for the workshop image, the amount of CPU and
memory resources for the workshop instance, any overall quota you will apply to the created
namespaces and what the workshop uses.

A minimal example of the Workshop custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

Note

The examples do not show all the possible fields of each custom resource type.
Later documentation may go in-depth on possible fields and their definitions.

Tanzu Application Platform v1.4

VMware by Broadcom 955



  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

  session:

    namespaces:

      budget: small

    applications:

      console:

        enabled: true

      editor:

        enabled: true

When you create an instance of the Workshop custom resource, the Learning Center Operator does
not take any immediate action. This custom resource exists only to define the workshop.

You create the Workshop custom resource at the cluster scope.

Workshop environment resource

You must create a workshop environment first to deploy the instances of a workshop. The
WorkshopEnvironment custom resource defines the configuration of the workshop environment and
the details of the workshop that you deploy.

A minimal example of the WorkshopEnvironment custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    token: lab-markdown-sample

  session:

    username: learningcenter

When you create an instance of the WorkshopEnvironment custom resource, the Learning Center
Operator responds by creating a namespace to host the workshop instances. The Workshop
resource defines the workshop instance and the spec.workshop.name field specifies the name of the
Workshop resource. The namespace you create uses the same name as that of the metadata.name
field in the WorkshopEnvironment resource.

The spec.request.token field defines a token with which you must supply a request to create an
instance of a workshop in this workshop environment. If necessary, you can also specify the
namespaces from which a request for a workshop instance to initiate.

The Workshop defines a set of common resources that must exist for the workshop. Learning Center
Operator creates these common resources after you created the namespace for the workshop
environment. If necessary, these resources can include creation of separate namespaces with
specific resources that you create in those namespaces instead.

You create the WorkshopEnvironment custom resource at the cluster scope.

Workshop request resource

To create an instance of the workshop under the workshop environment, the typical path is to
create an instance of the WorkshopRequest custom resource.

The WorkshopRequest custom resource is namespaced to allow who can create it. Role-based
access control (RBAC) controls the request to create a workshop instance. This means you can

Tanzu Application Platform v1.4

VMware by Broadcom 956



allow non-privileged users to create workshops, although the deployment of the workshop instance
might require elevated privileges.

A minimal example of the WorkshopRequest custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample

    token: lab-markdown-sample

Apart from appropriate access from RBAC, the user requesting a workshop instance must know the
name of the workshop environment and the secret token that permits workshop requests against
that specific workshop environment.

You do not need to create the WorkshopRequest resource when you use the TrainingPortal
resource to provide a web interface for accessing workshops. You only need to create the
WorkshopRequest resource when you create the WorkshopEnvironment resource manually and do
not use the training portal.

Workshop session resource

Although WorkshopRequest is the typical way to request workshop instances, the Learning Center
Operator itself creates an instance of a WorkshopSession custom resource when the request is
granted.

The WorkshopSession custom resource is the expanded definition of what the workshop instance is.
It combines details from Workshop and WorkshopEnvironment, and also links back to the
WorkshopRequest resource object that triggered the request. The Learning Center Operator reacts
to an instance of WorkshopSession and creates the workshop instance based on that definition.

You create the WorkshopSession custom resource at the cluster scope.

Training portal resource

The TrainingPortal custom resource provides a high-level mechanism for creating a set of
workshop environments and populating them with workshop instances.

A minimal example of the TrainingPortal custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 1

You can set the capacity of the training room, which dictates how many workshop instances are
created for each workshop.

You create the TrainingPortal custom resource at the cluster scope.

System profile resource

Tanzu Application Platform v1.4

VMware by Broadcom 957



The SystemProfile custom resource provides a mechanism for configuring the Learning Center
Operator. This provides additional features that use environment variables to configure the
operator.

A minimal example of the SystemProfile custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  ingress:

    domain: learningcenter.tanzu.vmware.com

    secret: learningcenter-tanzu-vmware-com-tls

    class: nginx

  environment:

    secrets:

      pull:

      - cluster-image-registry-pull

The operator, by default, looks for a default system profile called default-system-profile. Setting
the SYSTEM_PROFILE environment variable on the deployment for the operator or using the
system.profile setting on TrainingPortal, WorkshopEnvironment, or WorkshopSession custom
resources for specific deployments can override the default name globally.

As only a global deployment of the operator is supported, the SystemProfile custom resource is
created at cluster scope.

You can make changes to instances of the SystemProfile custom resource. The Learning Center
Operator uses these changes without needing to redeploy the custom resource.

You create the SystemProfile custom resource at the cluster scope.

Loading the workshop CRDs

The custom resource definitions for the custom resource described earlier are created in the
Kubernetes cluster when you deploy the Learning Center operator by using the Tanzu CLI.

This is because v1 versions of CRDs are only supported from Kubernetes v1.17. If you want to use
the v1 versions of the CRDs, you must create a copy of the Learning Center operator deployment
resources and override the configuration.

Define custom resources for Learning Center

This topic describes how you define custom resources for Learning Center workshops and training
portals.

You can deploy workshop images directly to a container runtime. The Learning Center Operator
enables managing the deployments into a Kubernetes cluster. A set of Kubernetes custom
resource definitions (CRDs) controls the operation of the Learning Center Operator.

Workshop definition resource

Note

The examples do not show all the possible fields of each custom resource type.
Later documentation may go in-depth on possible fields and their definitions.

Tanzu Application Platform v1.4

VMware by Broadcom 958



The Workshop custom resource defines a workshop. It specifies the title and description of the
workshop, the location of the workshop content or container image that you deploy, any resources
that you pre-create in the workshop environment or for each instance of the workshop.

You can also define environment variables for the workshop image, the amount of CPU and
memory resources for the workshop instance, any overall quota you will apply to the created
namespaces and what the workshop uses.

A minimal example of the Workshop custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

  session:

    namespaces:

      budget: small

    applications:

      console:

        enabled: true

      editor:

        enabled: true

When you create an instance of the Workshop custom resource, the Learning Center Operator does
not take any immediate action. This custom resource exists only to define the workshop.

You create the Workshop custom resource at the cluster scope.

Workshop environment resource

You must create a workshop environment first to deploy the instances of a workshop. The
WorkshopEnvironment custom resource defines the configuration of the workshop environment and
the details of the workshop that you deploy.

A minimal example of the WorkshopEnvironment custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    token: lab-markdown-sample

  session:

    username: learningcenter

When you create an instance of the WorkshopEnvironment custom resource, the Learning Center
Operator responds by creating a namespace to host the workshop instances. The Workshop
resource defines the workshop instance and the spec.workshop.name field specifies the name of the
Workshop resource. The namespace you create uses the same name as that of the metadata.name
field in the WorkshopEnvironment resource.

The spec.request.token field defines a token with which you must supply a request to create an
instance of a workshop in this workshop environment. If necessary, you can also specify the
namespaces from which a request for a workshop instance to initiate.

Tanzu Application Platform v1.4

VMware by Broadcom 959



The Workshop defines a set of common resources that must exist for the workshop. Learning Center
Operator creates these common resources after you created the namespace for the workshop
environment. If necessary, these resources can include creation of separate namespaces with
specific resources that you create in those namespaces instead.

You create the WorkshopEnvironment custom resource at the cluster scope.

Workshop request resource

To create an instance of the workshop under the workshop environment, the typical path is to
create an instance of the WorkshopRequest custom resource.

The WorkshopRequest custom resource is namespaced to allow who can create it. Role-based
access control (RBAC) controls the request to create a workshop instance. This means you can
allow non-privileged users to create workshops, although the deployment of the workshop instance
might require elevated privileges.

A minimal example of the WorkshopRequest custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample

    token: lab-markdown-sample

Apart from appropriate access from RBAC, the user requesting a workshop instance must know the
name of the workshop environment and the secret token that permits workshop requests against
that specific workshop environment.

You do not need to create the WorkshopRequest resource when you use the TrainingPortal
resource to provide a web interface for accessing workshops. You only need to create the
WorkshopRequest resource when you create the WorkshopEnvironment resource manually and do
not use the training portal.

Workshop session resource

Although WorkshopRequest is the typical way to request workshop instances, the Learning Center
Operator itself creates an instance of a WorkshopSession custom resource when the request is
granted.

The WorkshopSession custom resource is the expanded definition of what the workshop instance is.
It combines details from Workshop and WorkshopEnvironment, and also links back to the
WorkshopRequest resource object that triggered the request. The Learning Center Operator reacts
to an instance of WorkshopSession and creates the workshop instance based on that definition.

You create the WorkshopSession custom resource at the cluster scope.

Training portal resource

The TrainingPortal custom resource provides a high-level mechanism for creating a set of
workshop environments and populating them with workshop instances.

A minimal example of the TrainingPortal custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

Tanzu Application Platform v1.4

VMware by Broadcom 960



metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 1

You can set the capacity of the training room, which dictates how many workshop instances are
created for each workshop.

You create the TrainingPortal custom resource at the cluster scope.

System profile resource

The SystemProfile custom resource provides a mechanism for configuring the Learning Center
Operator. This provides additional features that use environment variables to configure the
operator.

A minimal example of the SystemProfile custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  ingress:

    domain: learningcenter.tanzu.vmware.com

    secret: learningcenter-tanzu-vmware-com-tls

    class: nginx

  environment:

    secrets:

      pull:

      - cluster-image-registry-pull

The operator, by default, looks for a default system profile called default-system-profile. Setting
the SYSTEM_PROFILE environment variable on the deployment for the operator or using the
system.profile setting on TrainingPortal, WorkshopEnvironment, or WorkshopSession custom
resources for specific deployments can override the default name globally.

As only a global deployment of the operator is supported, the SystemProfile custom resource is
created at cluster scope.

You can make changes to instances of the SystemProfile custom resource. The Learning Center
Operator uses these changes without needing to redeploy the custom resource.

You create the SystemProfile custom resource at the cluster scope.

Loading the workshop CRDs

The custom resource definitions for the custom resource described earlier are created in the
Kubernetes cluster when you deploy the Learning Center operator by using the Tanzu CLI.

This is because v1 versions of CRDs are only supported from Kubernetes v1.17. If you want to use
the v1 versions of the CRDs, you must create a copy of the Learning Center operator deployment
resources and override the configuration.

Configure the Workshop resource

This topic describes how you configure the Workshop custom resource, which defines a Learning
Center workshop.

Tanzu Application Platform v1.4

VMware by Broadcom 961



Workshop title and description

Each workshop must have the title and description fields. If you do not supply these fields, the
Workshop resource is rejected when you attempt to load it into the Kubernetes cluster.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

Where:

The title field has a single-line value specifying the subject of the workshop.

The description field has a longer description of the workshop.

You can also supply the following optional information for the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  url: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

  difficulty: beginner

  duration: 15m

  vendor: learningcenter.tanzu.vmware.com

  authors:

  - John Smith

  tags:

  - template

  logo: data:image/png;base64,....

  content:

    files: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where:

The url field is the Git repository URL for lab-markdown-sample. For example, {YOUR-GIT-
REPO-URL}/lab-markdown-sample. It must be a URL you can use to get more information
about the workshop.

The difficulty field indicates the target audiences of the workshop. The value can be
beginner, intermediate, advanced, or extreme.

The duration field gives the maximum amount of time the workshop takes to complete.
This field provides informational value and does not guarantee how long a workshop
instance lasts. The field format is an integer number with s, m, or h suffix.

The vendor field must be a value that identifies the company or organization with which the
authors are affiliated. This is a company or organization name or a DNS host name under
the control of whoever has created the workshop.

The authors field must list the people who create the workshop.

The tags field must list labels identifying what the workshop is about. This is used in a
searchable catalog of workshops.

Tanzu Application Platform v1.4

VMware by Broadcom 962



The logo field must be an image provided in embedded data URI format that depicts the
topic of the workshop. The image must be 400 by 400 pixels. You can use it in a
searchable catalog of workshops.

The files field is the Git repository URL for lab-markdown-sample. For example, {YOUR-GIT-
REPO-URL}/lab-markdown-sample.

When referring to a workshop definition after you load it into a Kubernetes cluster, use the value of
the name field given in the metadata. To experiment with different variations of a workshop, copy
the original workshop definition YAML file and change the value of name. Make your changes and
load it into the Kubernetes cluster.

Downloading workshop content

You can download workshop content when you create the workshop instance. If the amount of
content is moderate, the download doesn’t increase startup time for the workshop instance. The
alternative is to bundle the workshop content in a container image you build from the Learning
Center workshop base image.

To download workshop content at the time the workshop instance starts, set the content.files
field to the location of the workshop content:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

The location is a GitHub or GitLab repository, a URL to a tarball hosted on a HTTP server, or a
reference to an OCI image artifact on a registry.

For a GitHub or GitLab repository, do not prefix the location with https:// as it uses symbolic
reference and is not a URL.

The format of the reference to a GitHub or GitLab repository is similar to what you use with
Kustomize when referencing remote repositories. For example:

github.com/organisation/project?ref=develop or github.com/organisation/project?
ref=main: Use the workshop content you host at the root of the GitHub repository. Use the
develop or main branch. Be sure to specify the ref branch, because not specifying the
branch may lead to content download errors.

github.com/organisation/project/subdir?ref=develop: Use the workshop content you
host at subdir of the GitHub repository. Use the develop branch.

gitlab.com/organisation/project: Use the workshop content you host at the root of the
GitLab repository. Use the main branch.

gitlab.com/organisation/project/subdir?ref=develop: Use the workshop content you
host at subdir of the GitLab repository. Use the develop branch.

For a URL to a tarball hosted on a HTTP server, the URL is in the following formats:

https://example.com/workshop.tar - Use the workshop content from the top-level
directory of the unpacked tarball.

https://example.com/workshop.tar.gz - Use the workshop content from the top-level
directory of the unpacked tarball.

Tanzu Application Platform v1.4

VMware by Broadcom 963



https://example.com/workshop.tar?path=subdir - Use the workshop content from the
subdirectory path of the unpacked tarball.

https://example.com/workshop.tar.gz?path=subdir - Use the workshop content from the
subdirectory path of the unpacked tarball.

The tarball referenced by the URL is either uncompressed or compressed.

For GitHub, instead of referencing the Git repository containing the workshop content, use a URL
to refer directly to the downloadable tarball for a specific version of the Git repository:

https://github.com/organization/project/archive/develop.tar.gz?path=project-

develop

You must reference the .tar.gz download and cannot use the .zip file. The base name of the
tarball file is the branch or commit name. You must enter the path query string parameter where
the argument is the name of the project and branch or project and commit. You must supply the
path because the contents of the repository are not returned at the root of the archive.

GitLab also provides a means of downloading a package as a tarball:

https://gitlab.com/organization/project/-/archive/develop/project-develop.tar.gz?

path=project-develop

If the GitHub or GitLab repository is private, you can generate a personal access token providing
read-only access to the repository and include the credentials in the URL:

https://username@token:github.com/organization/project/archive/develop.tar.gz?

path=project-develop

With this method, you supply a full URL to request a tarball of the repository and it does not refer
to the repository itself. You can also reference private enterprise versions of GitHub or GitLab and
the repository doesn’t need to be on the public github.com or gitlab.com sites.

The last case is a reference to an OCI image artifact stored on a registry. This is not a full container
image with the operating system, but an image containing only the files making up the workshop
content. The URI formats for this are:

imgpkg+https://harbor.example.com/organisation/project:version - Use the workshop
content from the top-level directory of the unpacked OCI artifact. The registry in this case
must support https.

imgpkg+https://harbor.example.com/organisation/project:version?path=subdir - Use
the workshop content from the subdirectory path of the unpacked OCI artifact you specify.
The registry in this case must support https.

imgpkg+http://harbor.example.com/organisation/project:version - Use the workshop
content from the top-level directory of the unpacked OCI artifact. The registry in this case
can only support http.

imgpkg+http://harbor.example.com/organisation/project:version?path=subdir - Use the
workshop content from the subdirectory path of the unpacked OCI artifact you specify. The
registry in this case can only support http.

You can use imgpkg:// instead of the prefix imgpkg+https://. The registry in this case must still
support https.

For any of the formats, you can supply credentials as part of the URI:

imgpkg+https://username:password@harbor.example.com/organisation/project:version

Access to the registry using a secure connection of https must have a valid certificate.

You can create the OCI image artifact by using imgpkg from the Carvel tool set. For example, from
the top-level directory of the Git repository containing the workshop content, run:

Tanzu Application Platform v1.4

VMware by Broadcom 964



imgpkg push -i harbor.example.com/organisation/project:version -f .

In all cases for downloading workshop content, the workshop subdirectory holding the actual
workshop content is relocated to /opt/workshop so that it is not visible to a user. If you want to
ignore other files so the user can not see them, you can supply a .eduk8signore file in your
repository or tarball and list patterns for the files in it.

The contents of the .eduk8signore file are processed as a list of patterns and each is applied
recursively to subdirectories. To ensure that a file is only ignored if it resides in the root directory,
prefix it with ./:

./.dockerignore

./.gitignore

./Dockerfile

./LICENSE

./README.md

./kustomization.yaml

./resources

Container image for the workshop

When you bundle the workshop content into a container image, the content.image field must
specify the image reference identifying the location of the container image that you will deploy for
the workshop instance:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

Even though you can download workshop content when the workshop environment starts, you
might still want to override the workshop image that is used as a base. You can do this when you
have a custom workshop base image that includes added language runtimes or tools that the
specialized workshops require.

For example, if running a Java workshop, you can enter the jdk11-environment for the workshop
image. The workshop content is still downloaded from GitHub:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-spring-testing

spec:

  title: Spring Testing

  description: Playground for testing Spring development

  content:

    image: registry.tanzu.vmware.com/learning-center/jdk11-environment:latest

    files: {YOUR-GIT-REPO-URL}/lab-spring-testing

If you want to use the latest version of an image, always include the :latest tag. This is important
because the Learning Center Operator looks for version tags :main, :main, :develop and :latest.
When using these tags, the Operator sets the image pull policy to Always to ensure that a newer
version is always pulled if available. Otherwise, the image is cached on the Kubernetes nodes and
only pulled when it is initially absent. Any other version tags are always assumed to be unique and

Tanzu Application Platform v1.4

VMware by Broadcom 965



are never updated. Be aware of image registries that use a content delivery network (CDN) as front
end. When using these image tags, the CDN can still regard them as unique and not do pull
through requests to update an image even if it uses a tag of :latest.

When special custom workshop base images are available as part of the Learning Center project,
instead of specifying the full location for the image, including the image registry, you can specify a
short name. The Learning Center Operator then fills in the rest of the details:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-spring-testing

spec:

  title: Spring Testing

  description: Playground for testing Spring development

  content:

    image: jdk11-environment:latest

    files: github.com/eduk8s-tests/lab-spring-testing

The supported short versions of the names are:

base-environment:*: A tagged version of the base-environment workshop image matched
with the current version of the Learning Center Operator.

The * variants of the short names map to the most up-to-date version of the image available when
the version of the Learning Center Operator was released. That version is guaranteed to work with
that version of the Learning Center Operator. The latest version can be newer, with possible
incompatibilities.

If required, you can remap the short names in the SystemProfile configuration of the Learning
Center Operator. You can map additional short names to your own custom workshop base images
for your own deployment of the Learning Center Operator, and with any of your own workshops.

Setting environment variables

To set or override environment variables for the workshop instance, you can supply the
session.env field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

  session:

    env:

    - name: REPOSITORY-URL

      value: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where:

The session.env field is a list of dictionaries with the name and value fields.

The value field is the Git repository for lab-markdown-sample. For example, {YOUR-GIT-
REPO-URL}/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters.
The available parameters are:

session_id: A unique ID for the workshop instance within the workshop environment.

Tanzu Application Platform v1.4

VMware by Broadcom 966



session_namespace: The namespace you create for and bind to the workshop instance. This
is the namespace unique to the session. A workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where you create all deployments of the workshop instances. It is also the namespace
where the service account that the workshop instance runs.

service_account: The name of the service account that the workshop instance runs as. It
has access to the namespace you create for that workshop instance.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) you use for ingress routes and create for
workshops.

The syntax for referencing the parameters is $(parameter_name).

Use the session.env field to override environment variables only when they are required for the
workshop. To set or override an environment for a specific workshop environment, set
environment variables in the WorkshopEnvironment custom resource for the workshop environment
instead.

Overriding the memory available

By default the container the workshop environment runs in is allocated 512Mi. If the editor is
enabled, a total of 1Gi is allocated.

The memory allocation is sufficient for the workshop that is mainly aimed at deploying workloads
into the Kubernetes cluster. If you run workloads in the workshop environment container and need
more memory, you can override the default by setting memory under session.resources:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  session:

    resources:

      memory: 2Gi

Mounting a persistent volume

In circumstances where a workshop needs persistent storage to ensure no loss of work, you can
request a persistent volume be mounted into the workshop container after the workshop
environment container is stopped and restarted:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

Tanzu Application Platform v1.4

VMware by Broadcom 967



  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  session:

    resources:

      storage: 5Gi

The persistent volume is mounted on top of the /home/eduk8s directory. Because this hides any
workshop content bundled with the image, an init container is automatically configured and run,
which copies the contents of the home directory to the persistent volume before the persistent
volume is mounted on top of the home directory.

Resource budget for namespaces

In conjunction with each workshop instance, a namespace is created during the workshop. From
the terminal of the workshop, you can deploy dashboard applications into the namespace through
the Kubernetes REST API by using tools such as kubectl.

By default, this namespace has all the limit ranges and resource quotas the Kubernetes cluster can
enforce. In most cases, this means there are no limits or quotas.

To control how much resources you can use when you set no limit ranges and resource quotas, or
override any default limit ranges and resource quotas, you can set a resource budget for any
namespace of the workshop instance in the session.namespaces.budget field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  session:

    namespaces:

      budget: small

The resource budget sizings and quotas for CPU and memory are:

Budget CPU Memory

small 1000m 1Gi

medium 2000m 2Gi

large 4000m 4Gi

x-large 8000m 8Gi

xx-large 8000m 12Gi

xxx-large 8000m 16Gi

A value of 1000m is equivalent to 1 CPU.

Separate resource quotas for CPU and memory are applied for terminating and non-terminating
workloads.

Only the CPU and memory quotas are listed in the preceding table, but limits also apply to the
number of resource objects of certain types you can create, such as:

persistent volume claims

replication controllers

Tanzu Application Platform v1.4

VMware by Broadcom 968



services

secrets

For each budget type, a limit range is created with fixed defaults. The limit ranges for CPU usage
on a container are as follows:

Budget Minimum Maximum Request Limit

small 50m 1000m 50m 250m

medium 50m 2000m 50m 500m

large 50m 4000m 50m 500m

x-large 50m 8000m 50m 500m

xx-large 50m 8000m 50m 500m

xxx-large 50m 8000m 50m 500m

The limit ranges for memory are as follows:

Budget Minimum Maximum Request Limit

small 32Mi 1Gi 128Mi 256Mi

medium 32Mi 2Gi 128Mi 512Mi

large 32Mi 4Gi 128Mi 1Gi

x-large 32Mi 8Gi 128Mi 2Gi

xx-large 32Mi 12Gi 128Mi 2Gi

xxx-large 32Mi 16Gi 128Mi 2Gi

The request and limit values are the defaults of a container when there is no resources specification
in a pod specification.

You can supply overrides in session.namespaces.limits to override the limit ranges and defaults
for request and limit values when a budget sizing for CPU and memory is sufficient and there is no
resources specification in a pod specification:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  session:

    namespaces:

      budget: medium

      limits:

        min:

          cpu: 50m

          memory: 32Mi

        max:

          cpu: 1

          memory: 1Gi

        defaultRequest:

          cpu: 50m

          memory: 128Mi

        default:

Tanzu Application Platform v1.4

VMware by Broadcom 969



          cpu: 500m

          memory: 1Gi

Although all the configurable properties are listed in this example, you only need to supply the
property for the value that you want to override.

If you need more control over the limit ranges and resource quotas, you can set the resource
budget to custom. This removes any default limit ranges and resource quota that might be applied
to the namespace. You can enter your own LimitRange and ResourceQuota resources as part of the
list of resources created for each session.

Before disabling the quota and limit ranges or contemplating any switch to using a custom set of
LimitRange and ResourceQuota resources, consider if that is what is really required.

The default requests defined by these for memory and CPU are fallbacks only. In most cases,
instead of changing the defaults, you can enter the memory and CPU resources in the pod
template specification of your deployment resources used in the workshop to indicate what the
application requires. This allows you to control exactly what the application can use and so fit into
the minimum quota required for the task.

This budget setting and the memory values are distinct from the amount of memory the container
the workshop environment runs in. To change how much memory is available to the workshop
container, set the memory setting under session.resources.

Patching workshop deployment

In order to set or override environment variables, you can provide session.env. To make other
changes to the Pod template for the deployment used to create the workshop instance, provide an
overlay patch. You can use this patch to override the default CPU and memory limit applied to the
workshop instance or to mount a volume.

The patches are provided by setting session.patches. The patch is applied to the spec field of the
pod template:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-resource-testing

spec:

  title: Resource testing

  description: Play area for testing memory resources

  content:

    files: github.com/eduk8s-tests/lab-resource-testing

  session:

    patches:

      containers:

      - name: workshop

        resources:

          requests:

            memory: "1Gi"

          limits:

            memory: "1Gi"

In this example, the default memory limit of “512Mi” is increased to “1Gi”. Although memory is set
using a patch in this example, the session.resources.memory field is the preferred way to override
the memory allocated to the container the workshop environment is running in.

The patch works differently than overlay patches that you can find elsewhere in Kubernetes.
Specifically, when patching an array and the array contains a list of objects, a search is performed
on the destination array. If an object already exists with the same value for the name field, the item
in the source array is overlaid on top of the existing item in the destination array.

Tanzu Application Platform v1.4

VMware by Broadcom 970



If there is no matching item in the destination array, the item in the source array is added to the
end of the destination array.

This means an array doesn’t outright replace an existing array, but a more intelligent merge is
performed of elements in the array.

Creation of session resources

When a workshop instance is created, the deployment running the workshop dashboard is created
in the namespace for the workshop environment. When more than one workshop instance is
created under that workshop environment, all those deployments are in the same namespace.

For each workshop instance, a separate empty namespace is created with name corresponding to
the workshop session. The workshop instance is configured so that the service account that the
workshop instance runs under can access and create resources in the namespace created for that
workshop instance. Each separate workshop instance has its own corresponding namespace and
cannot see the namespace for another instance.

To pre-create additional resources within the namespace for a workshop instance, you can supply a
list of the resources against the session.objects field within the workshop definition. You might
use this to add additional custom roles to the service account for the workshop instance when
working in that namespace or to deploy a distinct instance of an application for just that workshop
instance, such as a private image registry:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-registry-testing

spec:

  title: Registry Testing

  description: Play area for testing image registry

  content:

    files: github.com/eduk8s-tests/lab-registry-testing

  session:

    objects:

    - apiVersion: apps/v1

      kind: Deployment

      metadata:

        name: registry

      spec:

        replicas: 1

        selector:

          matchLabels:

            deployment: registry

        strategy:

          type: Recreate

        template:

          metadata:

            labels:

              deployment: registry

          spec:

            containers:

            - name: registry

              image: registry.hub.docker.com/library/registry:2.6.1

              imagePullPolicy: IfNotPresent

              ports:

              - containerPort: 5000

                protocol: TCP

              env:

              - name: REGISTRY_STORAGE_DELETE_ENABLED

                value: "true"

    - apiVersion: v1

Tanzu Application Platform v1.4

VMware by Broadcom 971



      kind: Service

      metadata:

        name: registry

      spec:

        type: ClusterIP

        ports:

        - port: 80

          targetPort: 5000

        selector:

          deployment: registry

For namespaced resources, it is not necessary to enter the namespace field of the resource
metadata. When the namespace field is not present, the resource is created within the session
namespace for that workshop instance.

When resources are created, owner references are added, making the WorkshopSession custom
resource corresponding to the workshop instance the owner. This means that when the workshop
instance is deleted, any resources are deleted.

Values of fields in the list of resource objects can reference a number of predefined parameters.
The available parameters are:

session_id: A unique ID for the workshop instance within the workshop environment.

session_namespace: The namespace you create for and bound to the workshop instance.
This is the namespace unique to the session and where a workshop can create its own
resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where you create all deployments of the workshop instances. It is also the namespace
where the service account that the workshop instance runs.

service_account: The name of the service account the workshop instance runs as and
which has access to the namespace you create for that workshop instance.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) you use for ingress routes and create for
workshops.

The syntax for referencing the parameter is $(parameter_name).

For cluster-scoped resources, you must set the name of the created resource so that it embeds
the value of $(session_namespace). This way the resource name is unique to the workshop
instance, and you do not get a clash with a resource for a different workshop instance.

For examples of making use of the available parameters, see the following sections.

Overriding default role-based access control (RBAC) rules

By default the service account created for the workshop instance has admin role access to the
session namespace created for that workshop instance. This enables the service account to be
used to deploy applications to the session namespace and manage secrets and service accounts.

Where a workshop doesn’t require admin access for the namespace, you can reduce the level of
access it has to edit or view by setting the session.namespaces.role field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

Tanzu Application Platform v1.4

VMware by Broadcom 972



metadata:

  name: lab-role-testing

spec:

  title: Role Testing

  description: Play area for testing roles

  content:

    files: github.com/eduk8s-tests/lab-role-testing

  session:

    namespaces:

      role: view

To add additional roles to the service account, such as working with custom resource types added
to the cluster, you can add the appropriate Role and RoleBinding definitions to the
session.objects field described previously:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-kpack-testing

spec:

  title: Kpack Testing

  description: Play area for testing kpack

  content:

    files: github.com/eduk8s-tests/lab-kpack-testing

  session:

    objects:

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: Role

      metadata:

        name: kpack-user

      rules:

      - apiGroups:

        - kpack.io

        resources:

        - builds

        - builders

        - images

        - sourceresolvers

        verbs:

        - get

        - list

        - watch

        - create

        - delete

        - patch

        - update

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: RoleBinding

      metadata:

        name: kpack-user

      roleRef:

        apiGroup: rbac.authorization.k8s.io

        kind: Role

        name: kpack-user

      subjects:

      - kind: ServiceAccount

        namespace: $(workshop_namespace)

        name: $(service_account)

Because the subject of a RoleBinding must specify the service account name and namespace it is
contained within, both of which are unknown in advance, references to parameters for the
workshop namespace and service account for the workshop instance are used when defining the
subject.

Tanzu Application Platform v1.4

VMware by Broadcom 973



You can add additional resources with session.objects to grant cluster-level roles and the service
account cluster-admin role:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-admin-testing

spec:

  title: Admin Testing

  description: Play area for testing cluster admin

  content:

    files: github.com/eduk8s-tests/lab-admin-testing

  session:

    objects:

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: ClusterRoleBinding

      metadata:

        name: $(session_namespace)-cluster-admin

      roleRef:

        apiGroup: rbac.authorization.k8s.io

        kind: ClusterRole

        name: cluster-admin

      subjects:

      - kind: ServiceAccount

        namespace: $(workshop_namespace)

        name: $(service_account)

In this case, the name of the cluster role binding resource embeds $(session_namespace) so that its
name is unique to the workshop instance and doesn’t overlap with a binding for a different
workshop instance.

Running user containers as root

In addition to RBAC, which controls what resources a user can create and work with, Pod security
policies are applied to restrict what Pods/containers a user deploys can do.

By default the deployments that a workshop user can create are allowed only to run containers as a
non-root user. This means that many container images available on registries such as Docker Hub
cannot be used.

If you are creating a workshop where a user must run containers as the root user, you must
override the default nonroot security policy and select the anyuid security policy by using the
session.namespaces.security.policy setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-policy-testing

spec:

  title: Policy Testing

  description: Play area for testing security policies

  content:

    files: github.com/eduk8s-tests/lab-policy-testing

  session:

    namespaces:

      security:

        policy: anyuid

This setting applies to the primary session namespace and any secondary namespaces created.

Creating additional namespaces

Tanzu Application Platform v1.4

VMware by Broadcom 974



For each workshop instance, a primary session namespace is created. You can deploy or pre-
deploy applications into this namespace as part of the workshop.

If you need more than one namespace per workshop instance, you can create secondary
namespaces in a couple of ways.

If the secondary namespaces are to be created empty, you can list the details of the namespaces
under the property session.namespaces.secondary:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    namespaces:

      role: admin

      budget: medium

      secondary:

      - name: $(session_namespace)-apps

        role: edit

        budget: large

        limits:

          default:

            memory: 512mi

When secondary namespaces are created, by default, the role, resource quotas, and limit ranges
are set the same as the primary session namespace. Each namespace has a separate resource
budget and it is not shared.

If required, you can override what role, budget, and limits are applied within the entry for the
namespace.

Similarly, you can override the security policy for secondary namespaces on a case-by-case basis by
adding the security.policy setting under the entry for the secondary namespace.

To create resources in the namespaces you create, create the namespaces by adding an
appropriate Namespace resource to session.objects with the definitions of the resources you want
to create in the namespaces:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    objects:

    - apiVersion: v1

      kind: Namespace

      metadata:

        name: $(session_namespace)-apps

When listing any other resources to be created within the added namespace, such as deployments,
ensure that the namespace is set in the metadata of the resource. For example,
$(session_namespace)-apps.

Tanzu Application Platform v1.4

VMware by Broadcom 975



To override what role the service account for the workshop instance has in the added namespace,
you can set the learningcenter.tanzu.vmware.com/session.role annotation on the Namespace
resource:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    objects:

    - apiVersion: v1

      kind: Namespace

      metadata:

        name: $(session_namespace)-apps

        annotations:

          learningcenter.tanzu.vmware.com/session.role: view

To have a different resource budget set for the additional namespace, you can add the annotation
learningcenter.tanzu.vmware.com/session.budget in the Namespace resource metadata and set
the value to the required resource budget:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    objects:

    - apiVersion: v1

      kind: Namespace

      metadata:

        name: $(session_namespace)-apps

        annotations:

          learningcenter.tanzu.vmware.com/session.budget: large

To override the limit range values applied corresponding to the budget applied, you can add
annotations starting with learningcenter.tanzu.vmware.com/session.limits. for each entry:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    objects:

    - apiVersion: v1

      kind: Namespace

      metadata:

        name: $(session_namespace)-apps

        annotations:

Tanzu Application Platform v1.4

VMware by Broadcom 976



          learningcenter.tanzu.vmware.com/session.limits.min.cpu: 50m

          learningcenter.tanzu.vmware.com/session.limits.min.memory: 32Mi

          learningcenter.tanzu.vmware.com/session.limits.max.cpu: 1

          learningcenter.tanzu.vmware.com/session.limits.max.memory: 1Gi

          learningcenter.tanzu.vmware.com/session.limits.defaultrequest.cpu: 50m

          learningcenter.tanzu.vmware.com/session.limits.defaultrequest.memory: 128Mi

          learningcenter.tanzu.vmware.com/session.limits.request.cpu: 500m

          learningcenter.tanzu.vmware.com/session.limits.request.memory: 1Gi

You only must supply annotations for the values you want to override.

If you need more fine-grained control over the limit ranges and resource quotas, set the value of
the annotation for the budget to custom and add the LimitRange and ResourceQuota definitions to
session.objects.

In this case you must set the namespace for the LimitRange and ResourceQuota resource to the
name of the namespace, e.g., $(session_namespace)-apps so they are only applied to that
namespace.

To set the security policy for a specific namespace other than the primary session namespace, you
can add the annotation learningcenter.tanzu.vmware.com/session.security.policy in the
Namespace resource metadata and set the value to nonroot, anyuid, or custom as necessary.

Shared workshop resources

Adding a list of resources to session.objects causes the given resources to be created for each
workshop instance, whereas namespaced resources default to being created in the session
namespace for a workshop instance.

If instead you want to have one common shared set of resources created once for the whole
workshop environment, that is, used by all workshop instances, you can list them in the
environment.objects field.

This might, for example, be used to deploy a single container image registry used by all workshop
instances, with a Kubernetes job used to import a set of images into the container image registry,
which are then referenced by the workshop instances.

For namespaced resources, it is not necessary to enter the namespace field of the resource
metadata. When the namespace field is not present, the resource is created within the workshop
namespace for that workshop environment.

When resources are created, owner references are added, making the WorkshopEnvironment
custom resource correspond to the workshop environment of the owner. This means that when
the workshop environment is deleted, any resources are also deleted.

Values of fields in the list of resource objects can reference a number of predefined parameters.
The available parameters are:

workshop_name: The name of the workshop. This is the name of the Workshop definition the
workshop environment was created against.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

environment_token: The value of the token that must be used in workshop requests against
the workshop environment.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where all deployments of the workshop instances, and their service accounts, are created.
It is the same namespace that shared workshop resources are created.

Tanzu Application Platform v1.4

VMware by Broadcom 977



service_account: The name of a service account you can use when creating deployments
in the workshop namespace.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes created for workshops.

ingress_secret: The name of the ingress secret stored in the workshop namespace when
secure ingress is used.

To create additional namespaces associated with the workshop environment, embed a reference to
$(workshop_namespace) in the name of the additional namespaces with an appropriate suffix. Be
careful that the suffix doesn’t overlap with the range of session IDs for workshop instances.

When creating deployments in the workshop namespace, set the serviceAccountName of the
Deployment resource to $(service_account). This ensures the deployment makes use of a special
Pod security policy set up by the Learning Center. If this isn’t used and the cluster imposes a more
strict default Pod security policy, your deployment might not work, especially if any image runs as
root.

Workshop pod security policy

The pod for the workshop session is set up with a pod security policy that restricts what you can do
from containers in the pod. The nature of the applied pod security policy is adjusted when enabling
support for doing Docker builds. This in turn enables Docker builds inside the sidecar container
attached to the workshop container.

If you are customizing the workshop by patching the pod specification using session.patches to
add your own sidecar container, and that sidecar container must run as the root user or needs a
custom pod security policy, you must override the default security policy for the workshop
container.

To allow a sidecar container to run as the root user with no extra privileges required, you can
override the default nonroot security policy and set it to anyuid:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-policy-testing

spec:

  title: Policy Testing

  description: Play area for testing security policies

  content:

    files: github.com/eduk8s-tests/lab-policy-testing

  session:

    security:

      policy: anyuid

This is a different setting than described previously for changing the security policy for deployments
made by a workshop user to the session namespaces. This setting applies only to the workshop
container itself.

If you need more fine-grained control of the security policy, you must provide your own resources
for defining the Pod security policy and map it so it is used. The details of the pod security policy
must be in environment.objects and mapped by definitions added to session.objects. For this to
be used, you must deactivate the application of the inbuilt pod security policies. You can do this by
setting session.security.policy to custom:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

Tanzu Application Platform v1.4

VMware by Broadcom 978



metadata:

  name: lab-policy-testing

spec:

  title: Policy Testing

  description: Play area for testing policy override

  content:

    files: github.com/eduk8s-tests/lab-policy-testing

  session:

    security:

      policy: custom

    objects:

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: RoleBinding

      metadata:

        namespace: $(workshop_namespace)

        name: $(session_namespace)-podman

      roleRef:

        apiGroup: rbac.authorization.k8s.io

        kind: ClusterRole

        name: $(workshop_namespace)-podman

      subjects:

      - kind: ServiceAccount

        namespace: $(workshop_namespace)

        name: $(service_account)

  environment:

    objects:

    - apiVersion: policy/v1beta1

      kind: PodSecurityPolicy

      metadata:

        name: aa-$(workshop_namespace)-podman

      spec:

        privileged: true

        allowPrivilegeEscalation: true

        requiredDropCapabilities:

        - KILL

        - MKNOD

        hostIPC: false

        hostNetwork: false

        hostPID: false

        hostPorts: []

        runAsUser:

          rule: MustRunAsNonRoot

        seLinux:

          rule: RunAsAny

        fsGroup:

          rule: RunAsAny

        supplementalGroups:

          rule: RunAsAny

        volumes:

        - configMap

        - downwardAPI

        - emptyDir

        - persistentVolumeClaim

        - projected

        - secret

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: ClusterRole

      metadata:

        name: $(workshop_namespace)-podman

      rules:

      - apiGroups:

        - policy

        resources:

        - podsecuritypolicies

        verbs:

        - use

Tanzu Application Platform v1.4

VMware by Broadcom 979



        resourceNames:

        - aa-$(workshop_namespace)-podman

By overriding the pod security policy, you are responsible for limiting what you can do from the
workshop pod. In other words, add only the extra capabilities you need. The pod security policy is
applied only to the pod the workshop session runs in. It does not change any pod security policy
applied to service accounts that exist in the session namespace or other namespaces you have
created.

There is a better way to set the priority of applied Pod security policies when a default Pod security
policy is applied globally by mapping it to the system:authenticated group. This causes priority
falling back to the order of the names of the Pod security policies. VMware recommends you use
aa- as a prefix to the custom Pod security name you create. This ensures it takes precedence over
any global default Pod security policy such as restricted, pks-restricted or vmware-system-tmc-
restricted, no matter what the name of the global policy default.

Custom security policies for user containers

You can also set the value of the session.namespaces.security.policy setting as custom. This
gives you more fine-grained control of the security policy applied to the pods and containers that a
user deploys during a session. In this case you must provide your own resources that define and
map the pod security policy.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-policy-testing

spec:

  title: Policy Testing

  description: Play area for testing policy override

  content:

    files: github.com/eduk8s-tests/lab-policy-testing

  session:

    namespaes:

      security:

        policy: custom

    objects:

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: RoleBinding

      metadata:

        namespace: $(workshop_namespace)

        name: $(session_namespace)-security-policy

      roleRef:

        apiGroup: rbac.authorization.k8s.io

        kind: ClusterRole

        name: $(workshop_namespace)-security-policy

      subjects:

      - kind: Group

        namespace: $(workshop_namespace)

        name: system:serviceaccounts:$(workshop_namespace)

  environment:

    objects:

    - apiVersion: policy/v1beta1

      kind: PodSecurityPolicy

      metadata:

        name: aa-$(workshop_namespace)-security-policy

      spec:

        privileged: true

        allowPrivilegeEscalation: true

        requiredDropCapabilities:

Tanzu Application Platform v1.4

VMware by Broadcom 980



        - KILL

        - MKNOD

        hostIPC: false

        hostNetwork: false

        hostPID: false

        hostPorts: []

        runAsUser:

          rule: MustRunAsNonRoot

        seLinux:

          rule: RunAsAny

        fsGroup:

          rule: RunAsAny

        supplementalGroups:

          rule: RunAsAny

        volumes:

        - configMap

        - downwardAPI

        - emptyDir

        - persistentVolumeClaim

        - projected

        - secret

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: ClusterRole

      metadata:

        name: $(workshop_namespace)-security-policy

      rules:

      - apiGroups:

        - policy

        resources:

        - podsecuritypolicies

        verbs:

        - use

        resourceNames:

        - aa-$(workshop_namespace)-security-policy

You can also do this on secondary namespaces by either changing the
session.namespaces.secondary.security.policy setting to custom or using the
learningcenter.tanzu.vmware.com/session.security.policy: custom annotation.

Defining additional ingress points

If running additional background applications, by default they are only accessible to other processes
within the same container. For an application to be accessible to a user through their web browser,
an ingress must be created mapping to the port for the application.

You can do this by supplying a list of the ingress points and the internal container port they map to
by setting the session.ingresses field in the workshop definition:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      port: 8080

The form of the host name used in the URL to access the service is:

Tanzu Application Platform v1.4

VMware by Broadcom 981



$(session_namespace)-application.$(ingress_domain)

This name cannot be terminal, console, slides, editor, or the name of any built-in dashboard.
These values are reserved for the corresponding built-in capabilities providing those features.

In addition to specifying ingresses for proxying to internal ports within the same Pod, you can enter
a host, protocol and port corresponding to a separate service running in the Kubernetes cluster:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      protocol: http

      host: service.namespace.svc.cluster.local

      port: 8080

You can use variables providing information about the current session within the host property if
required:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      protocol: http

      host: service.$(session_namespace).svc.cluster.local

      port: 8080

Available variables are:

session_namespace: The namespace you create for and bind to the workshop instance. This
is the namespace unique to the session and where a workshop can create its own
resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where you create all deployments of the workshop instances and where the service
account that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

If the service uses standard http or https ports, you can leave out the port property, and the port
is set based on the value of protocol.

Tanzu Application Platform v1.4

VMware by Broadcom 982



When a request is proxied, you can specify additional request headers that must be passed to the
service:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      protocol: http

      host: service.$(session_namespace).svc.cluster.local

      port: 8080

      headers:

      - name: Authorization

        value: "Bearer $(kubernetes_token)"

The value of a header can reference the following variable:

kubernetes_token: The access token of the service account for the current workshop
session, used for accessing the Kubernetes REST API.

Access controls enforced by the workshop environment or training portal protect accessing any
service through the ingress. If you use the training portal, this must be transparent. Otherwise,
supply any login credentials for the workshop again when prompted by your web browser.

External workshop instructions

In place of using workshop instructions provided with the workshop content, you can use externally
hosted instructions instead. To do this set sessions.applications.workshop.url to the URL of an
external web site:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      workshop:

        url: https://www.example.com/instructions

The external web site must displayed in an HTML iframe, is shown as is and must provide its own
page navigation and table of contents if required.

The URL value can reference a number of predefined parameters. The available parameters are:

session_namespace: The namespace you create for and bind to the workshop instance. This
is the namespace unique to the session and where a workshop can create its own
resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

Tanzu Application Platform v1.4

VMware by Broadcom 983



workshop_namespace: The namespace for the workshop environment. This is the namespace
where you create all deployments of the workshop instances and where the service
account that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes that you create for
workshops.

These could be used, for example, to reference workshops instructions hosted as part of the
workshop environment:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      workshop:

        url: $(ingress_protocol)://$(workshop_namespace)-instructions.$(ingress_domai

n)

  environment:

    objects:

    - ...

In this case environment.objects of the workshop spec must include resources to deploy the
application hosting the instructions and expose it through an appropriate ingress.

Deactivating workshop instructions

The aim of the workshop environment is to provide instructions for a workshop that users can
follow. If you want instead to use the workshop environment as a development environment or as
an administration console that provides access to a Kubernetes cluster, you can deactivate the
display of workshop instructions provided with the workshop content. In this case, only the work
area with the terminals, console, and so on, is displayed. To deactivate display of workshop
instructions, add a session.applications.workshop section and set the enabled property to false:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      workshop:

        enabled: false

Enabling the Kubernetes console

Tanzu Application Platform v1.4

VMware by Broadcom 984



By default the Kubernetes console is not enabled. To enable it and make it available through the
web browser when accessing a workshop, add a session.applications.console section to the
workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      console:

        enabled: true

The Kubernetes dashboard provided by the Kubernetes project is used. To use Octant as the
console, you can set the vendor property to octant:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      console:

        enabled: true

        vendor: octant

When vendor is not set, kubernetes is assumed.

Enabling the integrated editor
By default the integrated web based editor is not enabled. To enable it and make it available
through the web browser when accessing a workshop, add a session.applications.editor section
to the workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      editor:

        enabled: true

The integrated editor used is based on Visual Studio Code. For more information about the editor,
see https://github.com/cdr/code-server in GitHub.

Tanzu Application Platform v1.4

VMware by Broadcom 985

https://github.com/cdr/code-server


To install additional VS Code extensions, do this from the editor. Alternatively, if building a custom
workshop, you can install them from your Dockerfile into your workshop image by running:

code-server --install-extension vendor.extension

Replace vendor.extension with the name of the extension, where the name identifies the
extension on the VS Code extensions marketplace used by the editor or provide a path name to a
local .vsix file.

This installs the extensions into $HOME/.config/code-server/extensions.

If downloading extensions yourself and unpacking them or extensions are part of your Git
repository, you can instead locate them in the workshop/code-server/extensions directory.

Enabling workshop downloads

You can provide a way for a workshop user to download files as part of the workshop content.
Enable this by adding the session.applications.files section to the workshop definition and
setting the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      files:

        enabled: true

The recommended way of providing access to files from workshop instructions is using the
files:download-file clickable action block. This action ensures any file is downloaded to the local
machine and is not displayed in the browser in place of the workshop instructions.

By default the user can access any files located under the home directory of the workshop user
account. To restrict where the user can download files from, set the directory setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      files:

        enabled: true

        directory: exercises

When the specified directory is a relative path, it is evaluated relative to the home directory of the
workshop user.

Enabling the test examiner

Tanzu Application Platform v1.4

VMware by Broadcom 986



The test examiner is a feature that allows a workshop to have verification checks that the workshop
instructions can trigger. The test examiner is deactivated by default. To enable it, add a
session.applications.examiner section to the workshop definition and set the enabled property to
true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      examiner:

        enabled: true

You must provide any executable test programs for verification checks in the
workshop/examiner/tests directory.

The test programs must return an exit status of 0 if the test is successful and nonzero if it fails. Test
programs must not be persistent programs that can run forever.

Clickable actions for the test examiner are used within the workshop instructions to trigger the
verification checks. You can configure them to start when the page of the workshop instructions is
loaded.

Enabling session image registry

Workshops using tools such as kpack or tekton and which need a place to push container images
when built can enable a container image registry. A separate registry is deployed for each
workshop session.

The container image registry is currently fully usable only if workshops are deployed under a
Learning Center Operator configuration that uses secure ingress. This is because a registry that is
not secure is not trusted by the Kubernetes cluster as the source of container images when doing
deployments.

To enable the deployment of a registry per workshop session, add a
session.applications.registry section to the workshop definition and set the enabled property to
true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      registry:

        enabled: true

The registry mounts a persistent volume for storing of images. By default the size of that persistent
volume is 5Gi. To override the size of the persistent volume, add the storage property under the
registry section:

Tanzu Application Platform v1.4

VMware by Broadcom 987



apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      registry:

        enabled: true

        storage: 20Gi

The amount of memory provided to the registry defaults to 768Mi. To increase this, add the memory
property under the registry section.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      registry:

        enabled: true

        memory: 1Gi

The registry is secured with a user name and password unique to the workshop session, and must
be accessed over a secure connection.

To allow access from the workshop session, the file $HOME/.docker/config.json containing the
registry credentials are injected into the workshop session. This is used by tools such as docker.

For deployments in Kubernetes, a secret of type kubernetes.io/dockerconfigjson is created in the
namespace and applied to the default service account in the namespace. This means deployments
made using the default service account can pull images from the registry without additional
configuration. If creating deployments using other service accounts, add configuration to the
service account or deployment to add the registry secret for pulling images.

If you need access to the raw registry host details and credentials, they are provided as
environment variables in the workshop session. The environment variables are:

REGISTRY_HOST: Contains the host name for the registry for the workshop session.

REGISTRY_AUTH_FILE: Contains the location of the docker configuration file. Must be the
equivalent of $HOME/.docker/config.json.

REGISTRY_USERNAME: Contains the user name for accessing the registry.

REGISTRY_PASSWORD: Contains the password for accessing the registry. This is different for
each workshop session.

REGISTRY_SECRET: Contains the name of a Kubernetes secret of type
kubernetes.io/dockerconfigjson added to the session namespace, which contains the
registry credentials.

The URL for accessing the registry adopts the HTTP protocol scheme inherited from the
environment variable INGRESS_PROTOCOL. This is the same HTTP protocol scheme the workshop

Tanzu Application Platform v1.4

VMware by Broadcom 988



sessions use.

To use any of the variables as data variables in workshop content, use the same variable name but
in lowercase: registry_host, registry_auth_file, registry_username, registry_password and
registry_secret.

Enabling ability to use Docker

To build container images in a workshop using docker, first enable it. Each workshop session is
provided with its own separate Docker daemon instance running in a container.

Enabling support for running docker requires the use of a privileged container for running the
Docker daemon. Because of the security implications of providing access to Docker with this
configuration, VMware recommends that if you don’t trust the people taking the workshop, any
workshops that require Docker only be hosted in a disposable Kubernetes cluster that is destroyed
at the completion of the workshop. You must not enable Docker for workshops hosted on a public
service that is always kept running and where arbitrary users can access the workshops.

To enable support for using docker add a session.applications.docker section to the workshop
definition and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      docker:

        enabled: true

The container that runs the Docker daemon mounts a persistent volume for storing of images
which are pulled down or built locally. By default the size of that persistent volume is 5Gi. To
override the size of the persistent volume, add the storage property under the docker section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      docker:

        enabled: true

        storage: 20Gi

The amount of memory provided to the container running the Docker daemon defaults to 768Mi.
To increase this, add the memory property under the registry section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

Tanzu Application Platform v1.4

VMware by Broadcom 989



spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      docker:

        enabled: true

        memory: 1Gi

Access to the Docker daemon from the workshop session uses a local UNIX socket shared with the
container running the Docker daemon. If it uses a local tool to access the socket connection for the
Docker daemon directly rather than by running docker, it must use the DOCKER_HOST environment
variable to set the location of the socket.

The Docker daemon is only available from within the workshop session and cannot be accessed
outside of the pod by any tools deployed separately to Kubernetes.

Enabling WebDAV access to files

You can access or update local files within the workshop session from the terminal command line or
editor of the workshop dashboard. The local files reside in the file system of the container the
workshop session is running in.

To access the files remotely, you can enable WebDAV support for the workshop session.

To enable support for accessing files over WebDAV, add a session.applications.webdav section to
the workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      webdav:

        enabled: true

This causes a WebDAV server running within the workshop session environment. A set of
credentials is also generated and are available as environment variables. The environment variables
are:

WEBDAV_USERNAME: Contains the user name that must be used when authenticating over
WebDAV.

WEBDAV_PASSWORD: Contains the password that must be used when authenticating over
WebDAV.

To use any of the environment variables related to the container image registry as data variables in
workshop content, declare this in the workshop/modules.yaml file in the config.vars section:

config:

  vars:

  - name: WEBDAV_USERNAME

  - name: WEBDAV_PASSWORD

Tanzu Application Platform v1.4

VMware by Broadcom 990



The URL endpoint for accessing the WebDAV server is the same as the workshop session, with
/webdav/ path added. This can be constructed from the terminal using:

$INGRESS_PROTOCOL://$SESSION_NAMESPACE.$INGRESS_DOMAIN/webdav/

In workshop content it can be constructed using:

{{ingress_protocol}}://{{session_namespace}}.{{ingress_domain}}/webdav/

You can use WebDAV client support provided by your operating system or by using a standalone
WebDAV client, such as CyberDuck.

Using WebDAV can make it easier to transfer files to or from the workshop session.

Customizing the terminal layout
By default a single terminal is provided in the web browser when accessing the workshop. If
required, you can enable alternate layouts which provide additional terminals. To set the layout,
add the session.applications.terminal section and include the layout property with the desired
layout:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      terminal:

        enabled: true

        layout: split

The options for the layout property are:

default: Single terminal.

split: Two terminals stacked above each other in ratio 60/40.

split/2: Three terminals stacked above each other in ratio 50/25/25.

lower: A single terminal is placed below any dashboard tabs, rather than being a tab of its
own. The ratio of dashboard tab to terminal is 70/30.

none: No terminal is displayed but can still be created from the drop down menu.

When adding the terminal section, you must include the enabled property and set it to true as it is
a required field when including the section.

If you don’t want a terminal displayed and also want to deactivate the ability to create terminals
from the drop-down menu, set enabled to false.

Adding custom dashboard tabs

Exposed applications, external sites and additional terminals, can be given their own custom
dashboard tab. This is done by specifying the list of dashboard panels and the target URL:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

Tanzu Application Platform v1.4

VMware by Broadcom 991

https://cyberduck.io/


metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      port: 8080

    dashboards:

    - name: Internal

      url: "$(ingress_protocol)://$(session_namespace)-application.$(ingress_domain)/"

    - name: External

      url: http://www.example.com

The URL values can reference a number of predefined parameters. The available parameters are:

session_namespace: The namespace you create for and bind to the workshop instance. This
is the namespace unique to the session and where a workshop can create its own
resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where all deployments of the workshop instances you create and where the service
account that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes that you create for
workshops.

The URL can reference an external web site, however, that web site must not prohibit being
embedded in an HTML iframe.

In the case of wanting to have a custom dashboard tab provide an additional terminal, the url
property must use the form terminal:<session>, where <session> is replaced with the name of the
terminal session. The name of the terminal session can be any name you choose, but must be
restricted to lowercase letters, numbers, and dashes. You should avoid using numeric terminal
session names such as “1”, “2”, and “3” as these are used for the default terminal sessions.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    dashboards:

    - name: Example

      url: terminal:example

Configure the WorkshopEnvironment resource

This topic describes how you configure the WorkshopEnvironment custom resource, which defines a
Learning Center workshop environment.

Tanzu Application Platform v1.4

VMware by Broadcom 992



Specifying the workshop definition

Creating a workshop environment is performed as a separate step to loading the workshop
definition. This allows multiple distinct workshop environments using the same workshop definition
to be created if necessary.

To specify which workshop definition is to be used for a workshop environment, set the
workshop.name field of the specification for the workshop environment.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

The workshop environment name specified in the workshop environment metadata does not need
to be the same. It has to be different if you create multiple workshop environments from the same
workshop definition.

When the workshop environment is created, the namespace created for the workshop
environment uses the name specified in the metadata. This name is also used in the unique names of
each workshop instance created under the workshop environment.

Overriding environment variables
A workshop definition can set a list of environment variables that must be set for all workshop
instances. To override an environment variable specified in the workshop definition. or one defined
in the container image, you can supply a list of environment variables as session.env.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    env:

    - name: REPOSITORY-URL

      value: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

You can use this to set the location of a back-end service, such as an image registry, used by the
workshop.

Values of fields in the list of resource objects can reference several predefined parameters. The
available parameters are:

session_ - A unique ID for the workshop instance within the workshop environment.

session_ - The namespace created for and bound to the workshop instance. This is the
namespace unique to the session and where a workshop can create its own resources.

environment_ - The name of the workshop environment. Currently, this is the same as the
name of the namespace for the workshop environment. It is suggested that you do not rely
on workshop environment name and namespace being the same, and use the most
appropriate to cope with any future change.

Tanzu Application Platform v1.4

VMware by Broadcom 993



workshop_ - The namespace for the workshop environment. This is the namespace where
all deployments of the workshop instances are created and where the workshop instance
runs the service account exists.

service_ - The workshop instance service account’s name and access to the namespace
created for that workshop instance.

ingress_ - The host domain under which host names are created when creating ingress
routes.

ingress_ - The protocol (http/https) used for ingress routes created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

Overriding the ingress domain

To access a workshop instance using a public URL, you must specify an ingress domain. If an
ingress domain is not specified, the default ingress domain that the Learning Center operator
configured with is used.

When setting a custom domain, DNS must be configured with a wildcard domain to forward all
requests for subdomains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, you can set the session.ingress.domain field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

By default, the workshop session is exposed using an HTTP connection if overriding the domain. If
you require a secure HTTPS connection, you must have access to a wildcard SSL certificate for the
domain. A secret of type tls must be created for the certificate in the learningcenter namespace
or the namespace where the Learning Center Operator is deployed. The name of that secret must
then be set in the session.ingress.secret field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      secret: training.learningcenter.tanzu.vmware.com-tls

If HTTPS connections are terminated using an external load balancer and not by specifying a secret
for ingresses managed by the Kubernetes ingress controller, then routing traffic into the
Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying
an ingress secret by setting the session.ingress.protocol field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 994



  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      protocol: https

To override or set the ingress class, which dictates which ingress router is used when more than
one option is available, you can add session.ingress.class.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      secret: training.learningcenter.tanzu.vmware.com-tls

      class: nginx

Controlling access to the workshop

By default, requesting a workshop using the WorkshopRequest custom resource is deactivated and
must be enabled for a workshop environment by setting request.enabled to true.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    enabled: true

With this enabled, anyone who can create a WorkshopRequest custom resource can request the
creation of a workshop instance for the workshop environment.

To further control who can request a workshop instance in the workshop environment, you can first
set an access token, which a user must know and supply with the workshop request. This is done
by setting the request.token field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    enabled: true

    token: lab-markdown-sample

The same name as the workshop environment is used in this example, which is probably not a good
practice. Use a random value instead. The token value may be multiline.

Tanzu Application Platform v1.4

VMware by Broadcom 995



As a second control measure, you can specify what namespaces the WorkshopRequest must be
created. This means a user must have the specific ability to create WorkshopRequest resources in
one of those namespaces.

You can specify the list of namespaces from which workshop requests for the workshop
environment by setting request.namespaces.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    enabled: true

    token: lab-markdown-sample

    namespaces:

    - default

To add the workshop namespace in the list, rather than list the literal name, you can reference a
predefined parameter specifying the workshop namespace by including $(workshop_namespace).

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    enabled: true

    token: lab-markdown-sample

    namespaces:

    - $(workshop_namespace)

Overriding the login credentials
When requesting a workshop using WorkshopRequest, a login dialog box is presented to the user
when accessing the workshop instance URL. By default, the user name is learningcenter. The
password is a random value the user must query from the WorkshopRequest status after creating the
custom resource.

To override the user name, you can set the session.username field. To set the same fixed password
for all workshop instances, you can set the session.password field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    username: workshop

    password: lab-markdown-sample

Additional workshop resources

Tanzu Application Platform v1.4

VMware by Broadcom 996



The workshop definition defined by the Workshop custom resource already declares a set of
resources to be created with the workshop environment. You can use this when you have shared
service applications the workshop needs, such as an container image registry or a Git repository
server.

To deploy additional applications related to a specific workshop environment, you can declare them
by adding them into the environment.objects field of the WorkshopEnvironment custom resource.
You might use this deploy a web application used by attendees of a workshop to access their
workshop instances.

For namespaced resources, it is not necessary to set the namespace field of the resource metadata.
When the namespace field is not present, the resource is created within the workshop namespace
for that workshop environment.

When resources are created, owner references are added, making the WorkshopEnvironment
custom resource correspond to the owner of the workshop environment. This means that any
resources are also deleted when the workshop environment is deleted.

Values of fields in the list of resource objects can reference several predefined parameters. The
available parameters are:

workshop_ - The name of the workshop. This is the name of the Workshop definition the
workshop environment was created against.

environment_ - The name of the workshop environment. Currently, this is the same as the
name of the namespace for the workshop environment. Do not rely on the name and the
workshop environment being the same, and use the most appropriate to cope with any
future change.

environment_ - The token value must be used against the workshop environment in
workshop requests.

workshop_ - The namespace for the workshop environment. This is the namespace where
all deployments of the workshop instances and their service accounts are created. It is the
same namespace that shared workshop resources are created.

service_ - The service account name is used when creating deployments in the workshop
namespace.

ingress_ - The host domain under which host names are created when creating ingress
routes.

ingress_ - The protocol (http/https) used for ingress routes created for workshops.

ingress_ - The name of the ingress secret stored in the workshop namespace when secure
ingress is being used.

To create additional namespaces associated with the workshop environment, embed a reference to
$(workshop_namespace) in the name of the additional namespaces, with an appropriate suffix. Be
mindful that the suffix doesn’t overlap with the range of session IDs for workshop instances.

When creating deployments in the workshop namespace, set the serviceAccountName of the
Deployment resource to $(service_account). This ensures the deployment uses a special Pod
security policy set up by the Learning Center. If this isn’t used and the cluster imposes a more strict
default Pod security policy, your deployment might not work, especially if any image expects to run
as root.

Creation of workshop instances

After a workshop environment is created, you can create the workshop instances. You can request
a workshop instance by using the WorkshopRequest custom resource. This can be a separate step,

Tanzu Application Platform v1.4

VMware by Broadcom 997



or you can add them as resources under environment.objects.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    token: lab-markdown-sample

    namespaces:

    - $(workshop_namespace)

  session:

    username: learningcenter

    password: lab-markdown-sample

  environment:

    objects:

    - apiVersion: learningcenter.tanzu.vmware.com/v1beta1

      kind: WorkshopRequest

      metadata:

        name: user1

      spec:

        environment:

          name: $(environment_name)

          token: $(environment_token)

    - apiVersion: learningcenter.tanzu.vmware.com/v1beta1

      kind: WorkshopRequest

      metadata:

        name: user2

      spec:

        environment:

          name: $(environment_name)

          token: $(environment_token)

Using this method, the workshop environment is populated with workshop instances. You can
query the workshop requests from the workshop namespace to discover the URLs for accessing
each and the password if you didn’t set one and a random password was assigned.

If you need more control over how the workshop instances were created using this method, you
can use the WorkshopSession custom resource instead.

Configure the WorkshopRequest resource

This topic describes how you configure the WorkshopRequest custom resource, which defines a
Learning Center workshop request.

Specifying workshop environment

The WorkshopRequest custom resource is used to request a workshop instance. It does not provide
details needed to perform the deployment of the workshop instance. That information is sourced
by the Learning Center Operator from the WorkshopEnvironment and Workshop custom resources.

The minimum required information in the workshop request is the name of the workshop
environment. You supply this by setting the environment.name field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

  name: lab-markdown-sample

Tanzu Application Platform v1.4

VMware by Broadcom 998



spec:

  environment:

    name: lab-markdown-sample

A request is successful only if requesting a workshop instance for a workshop environment is
enabled for that workshop. You can enable requests in the WorkshopEnvironment custom resource
for the workshop environment.

If multiple workshop requests, for the same workshop environment or different ones, are created in
the same namespace, the name defined in the metadata for the workshop request must be different
for each. The value of this name is not used to name workshop instances. You need the name value
to delete the workshop instance, which is done by deleting the workshop request.

Specifying required access token

If a workshop environment is configured to require an access token when making a workshop
request against that environment, you can specify decide the token by setting the
environment.token field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample

    token: lab-markdown-sample

Even with the token, the request fails if the following is true:

The workshop environment has restricted the namespaces from which a workshop request
was made

The workshop request was not created in one of the permitted namespaces

Configure the TrainingPortal resource

This topic describes how you configure the TrainingPortal custom resource, which triggers the
deployment of a set of Learning Center workshop environments and a set number of workshop
instances.

Specifying the workshop definitions

You run multiple workshop instances to perform training to a group of people by creating the
workshop environment and then creating each workshop instance. The TrainingPortal workshop
resource bundles that up as one step.

Before creating the training environment, you must load the workshop definitions as a separate
step.

To specify the names of the workshops to be used for the training, list them under the workshops
field of the training portal specification. Each entry needs to define a name property, matching the
name of the Workshop resource you created.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

Tanzu Application Platform v1.4

VMware by Broadcom 999



spec:

  portal:

    sessions:

      maximum: 8

  workshops:

  - name: lab-asciidoc-sample

  - name: lab-markdown-sample

When the training portal is created, it:

Sets up the underlying workshop environments.

Creates any workshop instances required to be created initially for each workshop.

Deploys a web portal for attendees of the training to access their workshop instances.

Limit the number of sessions

When defining the training portal, you can set a limit on the workshop sessions that can be run
concurrently. Set this limit by using the portal.sessions.maximum property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

  workshops:

  - name: lab-asciidoc-sample

  - name: lab-markdown-sample

When you specify this, the maximum capacity of each workshop is set to the maximum value for
the training portal as a whole. This means that any one workshop can have as many sessions
running as specified by the maximum for the portal. However, to achieve this maximum for a given
workshop, only instances of that workshop can be created. In other words, the maximum capacity
can be spread across a number of workshops or it can be used in its entirety by a single workshop.

If you do not set portal.sessions.maximum, you must set the capacity for each individual workshop
as detailed in the following section. In only setting the capacities of each workshop and not an
overall maximum for sessions, you cannot share the overall capacity of the training portal across
multiple workshops.

Capacity of individual workshops

When you have more than one workshop, you can want to limit how many instances of each
workshop you can have so that they cannot grow to the maximum number of sessions for the
whole training portal. This means you can stop a specific workshop from using all of the capacity of
the training portal. To do this, set the capacity field under the entry for the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

  workshops:

  - name: lab-asciidoc-sample

Tanzu Application Platform v1.4

VMware by Broadcom 1000



    capacity: 4

  - name: lab-markdown-sample

    capacity: 6

The value of capacity limits the number of workshop sessions for a specific workshop to that value.
It must be less than or equal to the maximum number of workshops sessions for the portal,
because the latter always sets the absolute limit.

Set reserved workshop instances

By default one instance of each of the listed workshops is created so when the initial user requests
that workshop, it’s available for use immediately.

When such a reserved instance is allocated to a user, provided that the workshop capacity hasn’t
been reached, a new instance of the workshop is created as a reserve ready for the next user.
When a user ends a workshop and the workshop is at capacity, when the instance is deleted, a
new reserve is created. The total of allocated and reserved sessions for a workshop cannot exceed
the capacity for that workshop.

To override for a specific workshop how many reserved instances are kept on standby ready for
users, you can set the reserved setting against the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

  workshops:

  - name: lab-asciidoc-sample

    capacity: 4

    reserved: 2

  - name: lab-markdown-sample

    capacity: 6

    reserved: 4

You can set the value of reserved to 0 if you never want any reserved instances for a workshop
and only want instances of that workshop created on demand when required for a user. Creating
instances of a workshop on demand can result in a user waiting longer to access a workshop
session.

When workshop instances are always created on demand, the oldest reserved instance is
terminated to allow a new session of a desired workshop to be created. This also happens when
reserved instances tie up capacity that could be used for a new session of another workshop. This
occurs if any caps for specific workshops are met.

Override initial number of sessions

The initial number of workshop instances created for each workshop is specified by reserved or 1 if
the setting hasn’t been provided.

In the case where reserved is set in order to keep workshop instances on standby, you can indicate
that initially you want more than the reserved number of instances created. This is useful when
running a workshop for a set period of time. You might create up-front instances of the workshop
corresponding to 75% of the expected number of attendees but with a smaller reserve number.
With this configuration, new reserve instances only start to be created when the total number
approaches 75% and all extra instances created up front have been allocated to users. This ensures

Tanzu Application Platform v1.4

VMware by Broadcom 1001



you have enough instances ready for when most people come, but you can also create other
instances later if necessary:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: kubernetes-fundamentals

spec:

  portal:

    sessions:

      maximum: 100

  workshops:

  - name: lab-kubernetes-fundamentals

    initial: 75

    reserved: 5

Setting defaults for all workshops

If you have a list of workshops, and they all must be set with the same values for capacity,
reserved, and initial, rather than add settings to each, you can set defaults to apply to all
workshops under the portal section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 10

    capacity: 6

    reserved: 2

    initial: 4

  workshops:

  - name: lab-asciidoc-sample

  - name: lab-markdown-sample

Set caps on individual users
By default a single user can run more than one workshop at a time. You can cap this to ensure that
workshops run only one at a time. This prevents a user from wasting resources by starting more
than one workshop and only working on one without shutting the other down.

To apply a limit on how many concurrent workshop sessions a user can start, use the
portal.sessions.registered setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

      registered: 1

  workshops:

  - name: lab-asciidoc-sample

    capacity: 4

    reserved: 2

  - name: lab-markdown-sample

Tanzu Application Platform v1.4

VMware by Broadcom 1002



    capacity: 6

    reserved: 4

This limit also applies to anonymous users when anonymous access is enabled through the training
portal web interface or if sessions are being created through the REST API. To set a limit on
anonymous users, you can set portal.sessions.anonymous instead:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

      anonymous: 1

  workshops:

  - name: lab-asciidoc-sample

    capacity: 4

    reserved: 2

  - name: lab-markdown-sample

    capacity: 6

    reserved: 4

Expiration of workshop sessions

After you reach the maximum capacity, no more workshops sessions can be created. After a
workshop session is allocated to a user, it cannot be reassigned to another user.

If you are running a supervised workshop, set the capacity higher than the anticipated number of
users in case you have more users than you expect. Use the setting for the reserved number of
instances. This way, even if you set a higher capacity than needed, workshop sessions are only
created as required and not all up front.

In supervised workshops, when the training is over, delete the whole training environment. All
workshop sessions are then deleted.

To host a training portal over an extended period but don’t know when users want to do a
workshop, you can set up workshop sessions to expire after a set time. When expired, the
workshop session is deleted and a new workshop session can be created in its place.

The maximum capacity is therefore the maximum at any one point in time, while the number can
grow and shrink over time. So over an extended time, you can handle many more sessions than the
set maximum capacity. The maximum capacity ensures you don’t try to allocate more workshop
sessions than you have resources for at a given time.

To set a maximum time allowed for a workshop session, use the expires setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 8

    reserved: 1

    expires: 60m

The value needs to be an integer, followed by a suffix of ‘s’, ‘m’ or ‘h’, corresponding to seconds,
minutes, or hours.

Tanzu Application Platform v1.4

VMware by Broadcom 1003



The time period is calculated from when the workshop session is allocated to a user. When the
time period is up, the workshop session is automatically deleted.

When an expiration period is specified, or when a user finishes a workshop or restarts the
workshop, the workshop is also deleted.

To cope with users who claim a workshop session, but leave and don’t use it, you can set a time
period for when a workshop session with no activity is deemed orphaned and so is deleted. Do this
using the orphaned setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 8

    reserved: 1

    expires: 60m

    orphaned: 5m

Avoid this setting for supervised workshops where the whole event only lasts a certain length of
time. This prevents a user’s session from being deleted when the user takes breaks and the
computer goes to sleep.

The expires and orphaned settings can also be set against portal to apply them to all workshops.

Updates to workshop environments

The list of workshops for an existing training portal can be changed by modifying the training portal
definition applied to the Kubernetes cluster.

If you remove a workshop from the list of workshops, the workshop environment is marked as
stopping and is deleted when all active workshop sessions have completed.

If you add a workshop to the list of workshops, a new workshop environment for it is created.

Changes to settings, such as the maximum number of sessions for the training portal or capacity
settings for individual workshops, are applied to existing workshop environments.

By default a workshop environment is left unchanged if the corresponding workshop definition is
changed. So in the default configuration, you must explicitly delete the workshop from the list of
workshops managed by the training portal and then add it back again if the workshop definition
changed.

If you prefer that workshop environments be replaced when the workshop definition changes,
enable this by using the portal.updates.workshop setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    sessions:

      maximum: 8

    updates:

      workshop: true

  workshops:

  - name: lab-markdown-sample

    reserved: 1

Tanzu Application Platform v1.4

VMware by Broadcom 1004



    expires: 60m

    orphaned: 5m

When using this option, use the portal.sessions.maximum setting to limit the number of workshop
sessions that can be run for the training portal as a whole. When replacing the workshop
environment, the old workshop environment is retained if there is still an active workshop session
being used. If the limit isn’t set, the new workshop environment is still able to grow to its specific
capacity and is not limited by how many workshop sessions are running against old instances of the
workshop environment.

Overall, VMware recommends updating workshop environments when workshop definitions
change only in development environments when working on workshop content. This is an
especially good practice until you are familiar with how the training portal replaces existing
workshop environments, and the resource implications of having old and new instances of a
workshop environment running at the same time.

Override the ingress domain

To access a workshop instance using a public URL, specify an ingress domain. If an ingress domain
isn’t specified, the default ingress domain that the Learning Center Operator is configured with is
used.

When setting a custom domain, DNS must have been configured with a wildcard domain to
forward all requests for sub-domains of the custom domain to the ingress router of the Kubernetes
cluster.

To provide the ingress domain, set the portal.ingress.domain field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      domain: learningcenter.tanzu.vmware.com

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

If overriding the domain, by default the workshop session is exposed using a HTTP connection. For
a secure HTTPS connection, you must have access to a wildcard SSL certificate for the domain. A
secret of type tls should be created for the certificate in the learningcenter namespace or the
namespace where the Learning Center Operator is deployed. The name of that secret must be set
in the portal.ingress.secret field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      domain: learningcenter.tanzu.vmware.com

      secret: learningcenter.tanzu.vmware.com-tls

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

Tanzu Application Platform v1.4

VMware by Broadcom 1005



You can terminate HTTPS connections by using an external load balancer instead of specifying a
secret for ingresses managed by the Kubernetes ingress controller. In that case, when routing
traffic into the Kubernetes cluster as HTTP connections, you can override the ingress protocol
without specifying an ingress secret. Instead, set the portal.ingress.protocol field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      domain: learningcenter.tanzu.vmware.com

      protocol: https

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

To override or set the ingress class, which dictates which ingress router is used when more than
one option is available, you can add portal.ingress.class:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      domain: learningcenter.tanzu.vmware.com

      secret: learningcenter.tanzu.vmware.com-tls

      class: nginx

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

Override the portal host name
The default host name given to the training portal is the name of the resource with -ui suffix,
followed by the domain specified by the resource or the default inherited from the configuration of
the Learning Center Operator.

To override the generated host name, you can set portal.ingress.hostname:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      hostname: labs

      domain: learningcenter.tanzu.vmware.com

      secret: learningcenter.tanzu.vmware.com-tls

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

This causes the host name to be labs.learningcenter.tanzu.vmware.com rather than the default
generated name for this example of lab-markdown-sample-ui.learningcenter.tanzu.vmware.com.

Tanzu Application Platform v1.4

VMware by Broadcom 1006



Set extra environment variables

To override any environment variables for workshop instances created for a specific work, provide
the environment variables in the env field of that workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

    env:

    - name: REPOSITORY-URL

      value: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters.
The available parameters are:

session_id - A unique ID for the workshop instance within the workshop environment.

session_namespace - The namespace created for and bound to the workshop instance. This
is the namespace unique to the session and where a workshop can create its own
resources.

environment_name - The name of the workshop environment. For now this is the same as
the name of the namespace for the workshop environment. Don’t rely on them being the
same, and use the most appropriate to cope with any future change.

workshop_namespace - The namespace for the workshop environment. This is the
namespace where all deployments of the workshop instances are created and where the
service account that the workshop instance runs as exists.

service_account - The name of the service account the workshop instance runs as and
which has access to the namespace created for that workshop instance.

ingress_domain - The host domain under which host names can be created when creating
ingress routes.

ingress_protocol - The protocol (http/https) used for ingress routes created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

Override portal credentials
When a training portal is deployed, the user name for the admin and robot accounts uses the
defaults of learningcenter and robot@learningcenter. The passwords for each account are
randomly set.

For the robot account, the OAuth application client details used with the REST API are also
randomly generated.

You can see what the credentials and client details are by running kubectl describe against the
training portal resource. This will yield output that includes:

Status:

  learningcenter:

    Clients:

Tanzu Application Platform v1.4

VMware by Broadcom 1007



      Robot:

        Id:      ACZpcaLIT3qr725YWmXu8et9REl4HBg1

        Secret:  t5IfXbGZQThAKR43apoc9usOFVDv2BLE

    Credentials:

      Admin:

        Password:  0kGmMlYw46BZT2vCntyrRuFf1gQq5ohi

        Username:  learningcenter

      Robot:

        Password:  QrnY67ME9yGasNhq2OTbgWA4RzipUvo5

        Username:  robot@learningcenter

To override any of these values to set them to a predetermined value, you can add credentials
and clients sections to the training portal specification.

To overload the credentials for the admin and robot accounts user:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    credentials:

      admin:

        username: admin-user

        password: top-secret

      robot:

        username: robot-user

        password: top-secret

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

To override the application client details for OAuth access by the robot account user:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    clients:

      robot:

        id: application-id

        secret: top-secret

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

Control registration type
By default the training portal web interface presents a registration page for users to create an
account before selecting a workshop. If you want to allow only the administrator to log in, you can
deactivate the registration page. Do this if you are using the REST API to create and allocate
workshop sessions from a separate application:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

Tanzu Application Platform v1.4

VMware by Broadcom 1008



  portal:

    registration:

      type: one-step

      enabled: false

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

If rather than requiring users to register, you want to allow anonymous access, you can switch the
registration type to anonymous:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    registration:

      type: anonymous

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

When a user visits the training portal home page in anonymous mode, an account for that user is
automatically created and the user is logged in.

Specify an event access code

When deploying the training portal with anonymous access or open registration, anyone who
knows the URL can access workshops. To at least restrict access to those who know a common
event access code or password, you can set portal.password:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    password: workshops-2020-07-01

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

When anonymous access is enabled and the training portal URL is accessed, users are asked to
enter an event access code before they are redirected to the list of workshops or to the login page.

Make a list of workshops public
By default the index page providing the catalog of available workshop images is only available after
a user has logged in, either through a registered account or as an anonymous user.

To make the catalog of available workshops public so they can be viewed before logging in, set the
portal.catalog.visibility property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

Tanzu Application Platform v1.4

VMware by Broadcom 1009



spec:

  portal:

    catalog:

      visibility: public

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

By default the catalog has visibility set to private. Use public to expose it.

This also makes it possible to access the list of available workshops from the catalog through the
REST API, without authenticating against the REST API.

Use an external list of workshops

If you are using the training portal with registration deactivated, and you are using the REST API
from a separate website to control creation of sessions, you can specify an alternate URL for
providing the list of workshops.

This helps when the REST API creates a session and cookies are deleted or a session URL is shared
with a different user. This means the value for the index_url supplied with the REST API request is
lost.

To set the URL for the external site, use the portal.index property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    index: https://www.example.com/

    registration:

      type: one-step

      enabled: false

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

If you supply this property, passing the index_url when creating a workshop session using the
REST API is optional, and the value of this property is used. You can still supply index_url when
using the REST API for a user to be redirected back to a sub-category of workshops on the site.
The URL provided in the training portal definition then acts only as a fallback. That is, when the
redirect URL becomes unavailable, it directs the user back to the top-level page for the external list
of workshops.

If a user has logged into the training portal as the admin user, the user is not redirected to the
external site and still sees the training portal’s list of workshops.

Override portal title and logo

By default the web interface for the training portal displays a generic Learning Center logo and a
page title of “Workshops.” To override these, you can set portal.title and portal.logo:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

Tanzu Application Platform v1.4

VMware by Broadcom 1010



  portal:

    title: Workshops

    logo: data:image/png;base64,....

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

The logo field should be a graphical image provided in embedded data URI format. The image is
displayed with a fixed height of “40px”. The field can also be a URL for an image stored on a
remote web server.

Allow the portal in an iframe

By default it is prohibited to display the web interface for the training portal in an iframe of another
web site, because of content security policies applying to the training portal website.

To enable the ability to iframe the full training portal web interface or even a specific workshop
session created using the REST API, provide the host name of the site that embeds it. Do this by
using the portal.theme.frame.ancestors property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    theme:

      frame:

        ancestors:

        - https://www.example.com

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

The property is a list of hosts, not a single value. To use a URL for the training portal in an iframe of
a page, which, in turn, is embedded in another iframe of a page on a different site, list the host
names of all sites.

Because the sites that embed iframes must be secure and use HTTPS, they cannot use plain HTTP.
Browser policies prohibit promoting cookies to an insecure site when embedding using an iframe. If
cookies cannot be stored, a user cannot authenticate against the workshop session.

Collect analytics on workshops

To collect analytics data on usage of workshops, supply a webhook URL. When you supply a
webhook URL, events are posted to the webhook URL, including:

Workshops started

Pages of a workshop viewed

Expiration of a workshop

Completion of a workshop

Termination of a workshop

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

Tanzu Application Platform v1.4

VMware by Broadcom 1011



metadata:

  name: lab-markdown-sample

spec:

  analytics:

    webhook:

      url: https://metrics.learningcenter.tanzu.vmware.com/?client=name&token=password

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

At present there is no metrics collection service compatible with the portal webhook reporting
mechanism, so create a custom service or integrate it with any existing web front end for the portal
REST API service.

If the collection service needs to be provided with a client ID or access token, it must accept using
query string parameters set in the webhook URL.

Include the details of the event as HTTP POST data by using the application/json content type:

{

  "portal": {

    "name": "lab-markdown-sample",

    "uid": "91dfa283-fb60-403b-8e50-fb30943ae87d",

    "generation": 3,

    "url": "https://lab-markdown-sample-ui.learningcenter.tanzu.vmware.com"

  },

  "event": {

    "name": "Session/Started",

    "timestamp": "2021-03-18T02:50:40.861392+00:00",

    "user": "c66db34e-3158-442b-91b7-25391042f037",

    "session": "lab-markdown-sample-w01-s001",

    "environment": "lab-markdown-sample-w01",

    "workshop": "lab-markdown-sample",

    "data": {}

  }

}

When an event has associated data, it is included in the data dictionary:

{

  "portal": {

    "name": "lab-markdown-sample",

    "uid": "91dfa283-fb60-403b-8e50-fb30943ae87d",

    "generation": 3,

    "url": "https://lab-markdown-sample-ui.learningcenter.tanzu.vmware.com"

  },

  "event": {

    "name": "Workshop/View",

    "timestamp": "2021-03-18T02:50:44.590918+00:00",

    "user": "c66db34e-3158-442b-91b7-25391042f037",

    "session": "lab-markdown-sample-w01-s001",

    "environment": "lab-markdown-sample-w01",

    "workshop": "lab-markdown-sample",

    "data": {

      "current": "workshop-overview",

      "next": "setup-environment",

      "step": 1,

      "total": 4

    }

  }

}

Tanzu Application Platform v1.4

VMware by Broadcom 1012



The user field is the same portal user identity returned by the REST API when creating workshop
sessions.

The event stream only produces events for things as they happen. For a snapshot of all current
workshop sessions, use the REST API to request the catalog of available workshop environments,
enabling the inclusion of current workshop sessions.

Track using Google Analytics

To record analytics data on usage of workshops by using Google Analytics, enable tracking by
supplying a tracking ID for Google Analytics:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  analytics:

    google:

      trackingId: UA-XXXXXXX-1

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

Custom dimensions are used in Google Analytics to record details about the workshop a user is
taking, including through which training portal and cluster it was accessed. So you can use the
same Google Analytics tracking ID for multiple training portal instances running on different
Kubernetes clusters.

To support use of custom dimensions in Google Analytics, configure the Google Analytics property
with the following custom dimensions. They must be added in the order shown, because Google
Analytics doesn’t allow you to specify the index position for a custom dimension. It allocates them
for you. You can’t already have custom dimensions defined for the property, as the new custom
dimensions must start at index of 1.

Custom Dimension Name Index

workshop_name 1

session_namespace 2

workshop_namespace 3

training_portal 4

ingress_domain 5

ingress_protocol 6

In addition to custom dimensions against page accesses, events are also generated. These include:

Workshop/Start

Workshop/Finish

Workshop/Expired

If you provide a Google Analytics tracking ID with the TrainingPortal resource definition, it takes
precedence over the SystemProfile resource definition.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 1013



Configure the SystemProfile resource

This topic describes how you use the SystemProfile custom resource to configure the Learning
Center operator.

You can use the default system profile to set defaults for ingress and image pull secrets. You can
also select an alternate profile for specific deployments if required.

Operator default system profile

The Learning Center Operator, by default, uses an instance of the SystemProfile custom resource
if it exists, named default-system-profile. You can override the name of the resource used by the
Learning Center Operator as the default by setting the SYSTEM_PROFILE environment variable on
the deployment for the Learning Center Operator. For example:

kubectl set env deployment/learningcenter-operator -e SYSTEM_PROFILE=default-system-pr

ofile -n learningcenter

The Learning Center Operator automatically detects and uses any changes to an instance of the
SystemProfile custom resource. You do not need to redeploy the operator when changes are
made.

Defining configuration for ingress
The SystemProfile custom resource replaces the use of environment variables to configure details
such as the ingress domain, secret, and class.

Instead of setting INGRESS_DOMAIN, INGRESS_SECRET, and INGRESS_CLASS environment variables,
create an instance of the SystemProfile custom resource named default-system-profile:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  ingress:

    domain: learningcenter.tanzu.vmware.com

    secret: learningcenter.tanzu.vmware.com-tls

    class: nginx

If you terminate HTTPS connections by using an external load balancer and not by specifying a
secret for ingresses managed by the Kubernetes ingress controller, then routing traffic into the

Google Analytics is not a reliable way to collect data. Individuals or corporate
firewalls can block the reporting of Google Analytics data. For more precise
statistics, use the webhook URL for collecting analytics with a custom data
collection platform.

Important

Changes made to the SystemProfile custom resource, or changes made by means
of environment variables, don’t take effect on already deployed TrainingPortals.
You must recreate those for the changes to be applied. You only need to recreate
the TrainingPortal resources, because this resource takes care of recreating the
WorkshopEnvironments with the new values.

Tanzu Application Platform v1.4

VMware by Broadcom 1014



Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying
an ingress secret:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  ingress:

    domain: learningcenter.tanzu.vmware.com

    protocol: https

    class: nginx

Defining container image registry pull secrets

To work with custom workshop images stored in a private image registry, the system profile can
define a list of image pull secrets. Add this to the service accounts used to deploy and run the
workshop images. Set the environment.secrets.pull property to the list of secret names:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  environment:

    secrets:

      pull:

      - private-image-registry-pull

The secrets containing the image registry credentials must exist within the learningcenter
namespace or the namespace where the Learning Center Operator is deployed. The secret
resources must be of type kubernetes.io/dockerconfigjson.

The secrets are added to the workshop namespace and are not visible to a user. No secrets are
added to the namespace created for each workshop session.

Some container images are used as part of Learning Center itself, such as the container image for
the training portal web interface and the builtin base workshop images. If you have copied these
from the public image registries and stored them in a local private registry, use the registry
section instead of the above setting. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  registry:

    secret: learningcenter-image-registry-pull

The registry.secret is the name of the secret containing the image registry credentials. This must
be present in the learningcenter namespace or the namespace where the Learning Center
Operator is deployed.

Defining storage class for volumes

Deployments of the training portal web interface and the workshop sessions make use of persistent
volumes. By default the persistent volume claims do not specify a storage class for the volume.
Instead, they rely on the Kubernetes cluster to specify a default storage class that works. If the

Tanzu Application Platform v1.4

VMware by Broadcom 1015



Kubernetes cluster doesn’t define a suitable default storage class or you need to override it, you
can set the storage.class property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  storage:

    class: default

This only applies to persistent volume claims setup by the Learning Center Operator. If a user
executes steps in a workshop that include making persistent volume claims, these are not
automatically adjusted.

Defining storage group for volumes

The cluster must apply pod security policies where persistent volumes are used by Learning Center
for the training portal web interface and workshop environments. These security policies ensure
that permissions of persistent volumes are set correctly so they can be accessed by containers
mounting the persistent volume. When the pod security policy admission controller is not enabled,
the cluster institutes a fallback to enable access to volumes by enabling group access using the
group ID of 0.

In situations where the only class of persistent storage available is NFS or similar, you might have to
override the group ID applied and set it to an alternate ID dictated by the file system storage
provider. If this is required, you can set the storage.group property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  storage:

    group: 1

Overriding the group ID to match the persistent storage relies on the group having write
permission to the volume. If only the owner of the volume has permission, this does not work.

In this case, change the owner/group and permissions of the persistent volume such that the
owner matches the user ID a container runs at. Alternatively, set the group to a known ID that is
added as a supplemental group for the container and update the persistent volume to be writable
to this group. This must be done by an init container running in the pod mounting the persistent
volume.

To trigger this change of ownership and permissions, set the storage.user property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  storage:

    user: 1

    group: 1

This results in:

The init container running as the root user.

The owner of the mount directory of the persistent volume being set to storage.user.

Tanzu Application Platform v1.4

VMware by Broadcom 1016



The group being set to storage.group.

The directory made group-writable.

The group is then added as the supplemental group to containers using the persistent volume. So
they can write to the persistent volume, regardless of what user ID the container runs as. To that
end, the specific value of storage.user doesn’t matter, but you might need to set it to a specific
user ID based on requirements of the storage provider.

Both these variations on the settings only apply to the persistent volumes used by Learning Center
itself. If a workshop asks users to create persistent volumes, those instructions, or the resource
definitions used, might need to be modified to work where the available storage class requires
access as a specific user or group ID.

Further, the second method using the init container to fix permissions does not work if pod
security policies are enforced. The ability to run a container as the root user is blocked in that case
due to the restricted PSP, which is applied to workshop instances.

Restricting network access

Any processes running from the workshop container, and any applications deployed to the session
namespaces associated with a workshop instance, can contact any network IP addresses accessible
from the cluster. To restrict access to IP addresses or IP subnets, set network.blockCIDRs. This
must be a CIDR block range corresponding to the subnet or a portion of a subnet you want to
block. A Kubernetes NetworkPolicy is used to enforce the restriction. So the Kubernetes cluster
must use a network layer supporting network policies, and the necessary Kubernetes controllers
supporting network policies must be enabled when the cluster is installed.

If deploying to AWS, it is important to block access to the AWS endpoint for querying EC2
metadata, because it can expose sensitive information that workshop users should not haves access
to. By default Learning Center will block the AWS endpoint on the TAP SystemProfile. If you need
to replicate this block to other SystemProfiles, the configuration is as follows:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  network:

    blockCIDRs:

    - 169.254.169.254/32

    - fd00:ec2::254/128

Running Docker daemon rootless

If docker is enabled for workshops, Docker-in-Docker is run using a sidecar container. Because of
the current state of running Docker-in-Docker and portability across Kubernetes environments, the
docker daemon by default runs as root. Because a privileged container is also being used, this
represents a security risk. Only run workshops requiring docker in disposable Kubernetes clusters or
for users whom you trust.

You can partly mediate the risks of running docker in the Kubernetes cluster by running the docker
daemon in rootless mode. However, not all Kubernetes clusters can support this due to the Linux
kernel configuration or other incompatibilities.

To enable rootless mode, you can set the dockerd.rootless property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

Tanzu Application Platform v1.4

VMware by Broadcom 1017



metadata:

  name: default-system-profile

spec:

  dockerd:

    rootless: true

Use of docker can be made even more secure by avoiding the use of a privileged container for the
docker daemon. This requires that you set up a specific configuration for nodes in the Kubernetes
cluster. With this configuration, you can disallow the use of a privileged container by setting
dockerd.privileged to false:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  dockerd:

    rootless: true

    privileged: false

For further details about the requirements for running rootless Docker-in-Docker and using a non-
privileged container, see the Docker documentation.

Overriding network packet size

When you enable support for building container images using docker for workshops, because of
network layering that occurs when doing docker build or docker run, you must adjust the network
packet size (MTU) used for containers run from dockerd hosted inside the workshop container.

The default MTU size for networks is 1500, but, when containers are run in Kubernetes, the size
available to containers is often reduced. To deal with this possibility, the MTU size used when
dockerd is run for a workshop is set as 1400 instead of 1500.

You might need to override this value to an even lower value if you experience problems building
or running images with docker support. These problems could include errors or timeouts in pulling
images or when pulling software packages such as PyPi, npm, and so on.

To lower the value, set the dockerd.mtu property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  dockerd:

    mtu: 1400

To discover the maximum viable size, access the docker container run with a workshop and run
ifconfig eth0. This yields something similar to:

eth0      Link encap:Ethernet  HWaddr 02:42:AC:11:00:07

          inet addr:172.17.0.7  Bcast:172.17.255.255  Mask:255.255.0.0

          UP BROADCAST RUNNING MULTICAST  MTU:1350  Metric:1

          RX packets:270018 errors:0 dropped:0 overruns:0 frame:0

          TX packets:283882 errors:0 dropped:0 overruns:0 carrier:0

          collisions:0 txqueuelen:0

          RX bytes:86363656 (82.3 MiB)  TX bytes:65183730 (62.1 MiB)

If the MTU size is less than 1400, use the value given, or a smaller value, for the dockerd.mtu setting.

Tanzu Application Platform v1.4

VMware by Broadcom 1018

https://docs.docker.com/engine/security/rootless/


Image registry pull through cache

When running or building container images with docker, if the container image is hosted on Docker
Hub, it is pulled down directly from the Docker Hub for each separate workshop session of that
workshop.

Because the image is pulled from Docker Hub, this can be slow for all users, especially for large
images. With Docker Hub introducing limits on how many images can be pulled anonymously from
an IP address within a set period, this also can result in the cap on image pulls being reached. This
prevents the workshop from being used until the period expires.

Docker Hub has a higher limit when pulling images as an authenticated user, but with the limit
applied to the user rather than by IP address. For authenticated users with a paid plan on Docker
Hub, there is no limit.

To attempt to avoid the impact of the limit, the first thing you can do is enable an image registry
mirror with image pull-through. This is enabled globally and results in an instance of an image
registry mirror being created in the workshop environment of workshops that enable docker
support. This mirror is used for all workshops sessions created against that workshop environment.
When the first user attempts to pull an image, it is pulled down from Docker Hub and cached in the
mirror. Subsequent users are served up from the image registry mirror, avoiding the need to pull
the image from Docker Hub again. Subsequent users also see a speed up in pulling the image,
because the mirror is deployed to the same cluster.

To enable the use of an image registry mirror against Docker Hub, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  dockerd:

    mirror:

      remote: https://registry-1.docker.io

For authenticated access to Docker Hub, create an access token under your Docker Hub account.
Then set the username and password using the access token as the password. Do not use the
password for the account itself. Using an access token makes it easier to revoke the token if
necessary.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  dockerd:

    mirror:

      remote: https://registry-1.docker.io

      username: username

      password: access-token

An access token provides write access to Docker Hub. It is therefore also recommended you use a
separate robot account in Docker Hub that is not used to host images and doesn’t have write
access to any other organizations. In other words, use it purely for reading images from Docker
Hub.

If this is a free account, the higher limit on image pulls then applies. If the account is paid, there
might be higher limits or no limit all all.

Tanzu Application Platform v1.4

VMware by Broadcom 1019



The image registry mirror is only used when running or building images using support for running
docker. The mirror does not come into play when creating deployments in Kubernetes, which make
use of images hosted on Docker Hub. Use of images from Docker Hub in deployments is still
subject to the limit for anonymous access, unless you supply image registry credentials for the
deployment so an authenticated user is used.

Setting default access credentials

When deploying a training portal using the TrainingPortal custom resource, the credentials for
accessing the portal are unique for each instance. Find the details of the credentials by viewing
status information added to the custom resources by using kubectl describe.

To override the credentials for the portals so the same set of credentials are used for each, add the
desired values to the system profile.

To override the user name and password for the admin and robot accounts, use
portal.credentials:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  portal:

    credentials:

      admin:

        username: learningcenter

        password: admin-password

      robot:

        username: robot@learningcenter

        password: robot-password

To override the client ID and secret used for OAuth access by the robot account, use
portal.clients:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  portal:

    clients:

      robot:

        id: robot-id

        secret: robot-secret

If the TrainingPortal has specified credentials or client information, they still take precedence over
the values specified in the system profile.

Overriding the workshop images
When a workshop does not define a workshop image to use and instead downloads workshop
content from GitHub or a web server, it uses the base-environment workshop image. The workshop
content is then added to the container, overlaid on this image.

The version of the base-environment workshop image used is the most up-to-date, compatible
version of the image available for that version of the Learning Center Operator when it was
released.

Tanzu Application Platform v1.4

VMware by Broadcom 1020



If necessary you can override the version of the base-environment workshop image used by
defining a mapping under workshop.images. For workshop images supplied as part of the Learning
Center project, you can override the short names used to refer to them.

The short versions of the recognized names are:

base-environment:* is a tagged version of the base-environment workshop image matched
with the current version of the Learning Center Operator.

To override the version of the base-environment workshop image mapped to by the * tag, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  workshop:

    images:

      "base-environment:*": "registry.tanzu.vmware.com/learning-center/base-environmen

t:latest"

It is also possible to override where images are pulled from for any arbitrary image. This could be
used where you want to cache the images for a workshop in a local image registry and avoid going
outside of your network, or the cluster, to get them. This means you wouldn’t need to override the
workshop definitions for a specific workshop to change it. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  workshop:

    images:

      "{YOUR-REGISTRY-URL}/lab-k8s-fundamentals:main": "registry.test/lab-k8s-fundamen

tals:main"

Tracking using Google Analytics
If you want to record analytics data on usage of workshops using Google Analytics, you can enable
tracking by supplying a tracking ID for Google Analytics. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  analytics:

    google:

      trackingId: UA-XXXXXXX-1

Custom dimensions are used in Google Analytics to record details about the workshop a user is
taking and through which training portal and cluster it was accessed. You can therefore use the
same Google Analytics tracking ID with Learning Center running on multiple clusters.

To support use of custom dimensions in Google Analytics, you must configure the Google Analytics
property with the following custom dimensions. They must be added in the order shown, because
Google Analytics doesn’t allow you to specify the index position for a custom dimension and
allocates them for you. You can’t already have defined custom dimensions for the property,
because the new custom dimensions must start at index of 1.

Tanzu Application Platform v1.4

VMware by Broadcom 1021



Custom Dimension Name Index

workshop_name 1

session_namespace 2

workshop_namespace 3

training_portal 4

ingress_domain 5

ingress_protocol 6

In addition to custom dimensions against page accesses, events are also generated. These include:

Workshop/Start

Workshop/Finish

Workshop/Expired

However, Google Analytics is not a reliable way to collect data. This is because individuals or
corporate firewalls can block the reporting of Google Analytics data. For more precise statistics, use
the webhook URL for collecting analytics with a custom data collection platform. Configuration of a
webhook URL for analytics can only be specified on the TrainingPortal definition and cannot be
specified globally on the SystemProfile configuration.

Overriding styling of the workshop

If using the REST API to create/manage workshop sessions, and the workshop dashboard is then
embedded into an iframe of a separate site, you can perform minor styling changes of the
dashboard, workshop content, and portal to match the separate site. To do this, provide CSS styles
under theme.dashboard.style, theme.workshop.style and theme.portal.style. For dynamic styling
or for adding hooks to report on progress through a workshop to a separate service, supply
JavaScript as part of the theme under theme.dashboard.script, theme.workshop.script, and
theme.portal.script. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  theme:

    dashboard:

      script: |

        console.log("Dashboard theme overrides.");

      style: |

        body {

          font-family: "Comic Sans MS", cursive, sans-serif;

        }

    workshop:

      script: |

        console.log("Workshop theme overrides.");

      style: |

        body {

          font-family: "Comic Sans MS", cursive, sans-serif;

        }

    portal:

      script: |

        console.log("Portal theme overrides.");

      style: |

        body {

Tanzu Application Platform v1.4

VMware by Broadcom 1022



          font-family: "Comic Sans MS", cursive, sans-serif;

        }

Additional custom system profiles

If the default system profile is specified, it is used by all deployments managed by the Learning
Center Operator, unless it was overridden by the system profile to use for a specific deployment.
You can set the name of the system profile for deployments by setting the system.profile
property of TrainingPortal, WorkshopEnvironment, and WorkshopSession custom resources. For
example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  system:

    profile: learningcenter-tanzu-vmware-com-profile

  workshops:

  - name: lab-markdown-sample

    capacity: 1

Configure the WorkshopSession resource

This topic describes how you configure the WorkshopSession custom resource, which defines a
Learning Center workshop session.

Specifying the session identity

When running training for multiple people, typically you’ll use the TrainingPortal custom resource
to set up a training environment. Alternatively, you can set up a workshop environment by using
the WorkshopEnvironment custom resource, and then create requests for workshop instances by
using the WorkshopRequest custom resource. If you’re creating requests for workshop instances,
and you need more control over how the workshop instances are set up, you can use
WorkshopSession custom resource instead of WorkshopRequest.

To specify the workshop environment the workshop instance is created against, set the
environment.name field of the specification for the workshop session. You must also specify the
session ID for the workshop instance. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample-user1

spec:

  environment:

    name: lab-markdown-sample

  session:

    id: user1

The name of the workshop specified in the metadata of the training environment must be globally
unique for the workshop instance you’re creating. You must create a separate WorkshopSession
custom resource for each workshop instance.

The session ID must be unique within the workshop environment that you’re creating the
workshop instance against.

Tanzu Application Platform v1.4

VMware by Broadcom 1023



Specifying the login credentials

You can control access to each workshop instance using login credentials. This ensures one
workshop attendee cannot interfere with another.

To set login credentials for a workshop instance, set the session.username and session.password
fields. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

  session:

    username: learningcenter

    password: lab-markdown-sample

If you do not specify login credentials, the workshop instance has no access controls and anyone
can access it.

Specifying the ingress domain
To access the workshop instance by using a public URL, you must specify an ingress domain. If an
ingress domain isn’t specified, use the default ingress domain that the Learning Center operator
was configured with.

When setting a custom domain, configure DNS with a wildcard domain to forward all requests for
sub-domains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, you can set the session.ingress.domain field. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

You can create a full host name for the session by prefixing the ingress domain with a host name
constructed from the name of the workshop environment and the session ID.

If overriding the domain, by default, the workshop session is exposed by using a HTTP connection.
If you require a secure HTTPS connection, you must have access to a wildcard SSL certificate for
the domain.

You must create a secret of type tls for the certificate in the learningcenter namespace or in the
namespace where the Learning Center operator is deployed. You must then set the name of that
secret in the session.ingress.secret field. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

Tanzu Application Platform v1.4

VMware by Broadcom 1024



  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      secret: training.learningcenter.tanzu.vmware.com-tls

You can terminate HTTPS connections by using an external load balancer rather than by specifying
a secret for ingresses managed by the Kubernetes ingress controller. When routing traffic into the
Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying
an ingress secret by setting the session.ingress.protocol field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      protocol: https

To override or set the ingress class, add session.ingress.class. This dictates which ingress router
is used when more than one option is available.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      secret: training.learningcenter.tanzu.vmware.com-tls

      class: nginx

Setting the environment variables
To set the environment variables for the workshop instance, provide the environment variables in
the session.env field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample

  session:

    id: user1

    env:

    - name: REPOSITORY-URL

      value: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

Tanzu Application Platform v1.4

VMware by Broadcom 1025



Values of fields in the list of resource objects can reference a number of predefined parameters.
Available parameters are:

session_id is a unique ID for the workshop instance within the workshop environment.

session_namespace is the namespace created for and bound to the workshop instance. This
is the namespace unique to the session and where a workshop can create their own
resources.

environment_name is the name of the workshop environment. For now this is the same as
the name of the namespace for the workshop environment. Don’t rely on them being the
same, and use the most appropriate to cope with any future change.

workshop_namespace is the namespace for the workshop environment. This is the
namespace where all deployments of the workshop instances are created, and where the
service account that the workshop instance runs as exists.

service_account is the name of the service account the workshop instance runs as, and
which has access to the namespace created for that workshop instance.

ingress_domain is the host domain under which host names can be created when creating
ingress routes.

ingress_protocol is the protocol (http/https) used for ingress routes created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

If the workshop environment had specified a set of extra environment variables to be set for
workshop instances, it is up to you to incorporate those in the set of environment variables you list
under session.env. That is, anything listed in session.env of the WorkshopEnvironment custom
resource of the workshop environment is ignored.

Enable anonymous access to a Learning Center training
portal
This topic describes how you enable anonymous access to a Learning Center training portal. The
REST API with client authentication provides a means to have the portal create and manage
workshop sessions on your behalf but allow a separate system handle user authentication.

If you do not need to authenticate users but still want to provide your own front end from which
users select a workshop, such as when integrating workshops into an existing web property, you
can enable anonymous mode and redirect users to a URL for workshop session creation.

Enabling anonymous access

Set the registration type to anonymous to enable full anonymous access to the training portal:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    registration:

Note

Anonymous mode is only recommended for temporary deployments and not for a
permanent web site providing access to workshops.

Tanzu Application Platform v1.4

VMware by Broadcom 1026



      type: anonymous

  workshops:

  ...

Triggering workshop creation

Direct users’ browsers to a URL that is specific to a workshop to trigger creation and allocation of
the workshop.

The URL format looks like this:

TRAINING-PORTAL-URL/workshops/environment/NAME/create/?index_url=INDEX

Where:

NAME is the name of the workshop environment corresponding to the workshop that you
creates.

INDEX is the URL of your custom index page that contains the workshops.

The user is redirected back to this index page when:

a user completes the workshop

an error occurs

When a user is redirected back to the index page, a query string parameter is supplied to display a
banner or other indication about why the user was returned.

The name of the query string parameter is notification and the possible values are:

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment created is invalid.

session-unavailable - Used when capacity is reached and a workshop session cannot be
created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist.
This can occur when the workshop dashboard is refreshed after the workshop session is
expired and deleted.

Enable anonymous access to a Learning Center training
portal

This topic describes how you enable anonymous access to a Learning Center training portal. The
REST API with client authentication provides a means to have the portal create and manage
workshop sessions on your behalf but allow a separate system handle user authentication.

If you do not need to authenticate users but still want to provide your own front end from which
users select a workshop, such as when integrating workshops into an existing web property, you
can enable anonymous mode and redirect users to a URL for workshop session creation.

Note

Users can still visit the training portal directly and view the catalog of available
workshops, so instead of linking to the main page of the training portal, link from
your custom index page to the individual links for creating each workshop.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 1027



Enabling anonymous access

Set the registration type to anonymous to enable full anonymous access to the training portal:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    registration:

      type: anonymous

  workshops:

  ...

Triggering workshop creation
Direct users’ browsers to a URL that is specific to a workshop to trigger creation and allocation of
the workshop.

The URL format looks like this:

TRAINING-PORTAL-URL/workshops/environment/NAME/create/?index_url=INDEX

Where:

NAME is the name of the workshop environment corresponding to the workshop that you
creates.

INDEX is the URL of your custom index page that contains the workshops.

The user is redirected back to this index page when:

a user completes the workshop

an error occurs

When a user is redirected back to the index page, a query string parameter is supplied to display a
banner or other indication about why the user was returned.

The name of the query string parameter is notification and the possible values are:

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment created is invalid.

session-unavailable - Used when capacity is reached and a workshop session cannot be
created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist.
This can occur when the workshop dashboard is refreshed after the workshop session is

Anonymous mode is only recommended for temporary deployments and not for a
permanent web site providing access to workshops.

Note

Users can still visit the training portal directly and view the catalog of available
workshops, so instead of linking to the main page of the training portal, link from
your custom index page to the individual links for creating each workshop.

Tanzu Application Platform v1.4

VMware by Broadcom 1028



expired and deleted.

Use the Learning Center workshop catalog

A single training portal can host one or more workshops. This topic describes how you use the
workshop catalog to list the available workshops and get information about them using the REST
API.

Listing available workshops

The URL sub path for accessing the list of available workshop environments is
/workshops/catalog/environments/. When making the request, you must supply the access token
in the HTTP Authorization header with type set as Bearer:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/catalog/environments/

The JSON response looks like this:

{

  "portal": {

    "name": "learningcenter-tutorials",

    "uid": "9b82a7b1-97db-4333-962c-97be6b5d7ee0",

    "generation": 451,

    "url": "<training_portal_url>",

    "sessions": {

      "maximum": 10,

      "registered": 0,

      "anonymous": 0,

      "allocated": 0

    }

  },

  "environments": [

    {

      "name": "learningcenter-tutorials-w01",

      "state": "RUNNING",

      "workshop": {

        "name": "lab-et-self-guided-tour",

        "id": "15e5f1a569496f335049bb00c370ee20",

        "title": "Workshop Building Tutorial",

        "description": "A guided tour of how to build a workshop for your team's learn

ing center.",

        "vendor": "",

        "authors": [],

        "difficulty": "",

        "duration": "",

        "tags": [],

        "logo": "",

        "url": "<workshop_repository_url>"

      },

      "duration": 1800,

      "capacity": 10,

      "reserved": 0,

      "allocated": 0,

      "available": 0

    }

  ]

}

For each workshop listed under environments, where a field listed under workshop has the same
name as appears in the Workshop custom resource, it has the same meaning. The id field is an

Tanzu Application Platform v1.4

VMware by Broadcom 1029



additional field that can uniquely identify a workshop based on the name of the workshop image,
the Git repository for the workshop, or the website hosting the workshop instructions. The value of
the id field does not rely on the name of the Workshop resource and must be the same if the same
workshop details are used but the name of the Workshop resource is different.

The duration field provides the time in seconds after which the workshop environment expires.
The value is null if there is no expiration time for the workshop.

The capacity field is the maximum number of workshop sessions that you can create for the
workshop.

The reserved field indicates how many instances of the workshop are reserved as hot spares. These
are used to service requests for a workshop session. If no reserved instances are available and
capacity has not been reached, a new workshop session is created on demand.

The allocated field indicates how many workshop sessions are active and currently allocated to a
user.

The available field indicates how many workshop sessions are available for immediate allocation.
This is never more than the number of reserved instances.

Under portal.sessions, the allocated field indicates the total number of allocated sessions across
all workshops hosted by the portal.

Where maximum, registered, and anonymous are nonzero, they are the limit on the number of
workshops run.

The maximum is the total number of workshop sessions that can be run by the portal across
all workshops. If allocated for the whole portal has reached maximum, no more workshop
sessions are created.

The value of registered when nonzero indicates a cap on the number of workshop sessions
a single registered portal user can have running at the one time.

The value of anonymous when nonzero indicates a cap on the number of workshop sessions
an anonymous user can have running at the one time. Anonymous users are users created
as a result of the REST API being used or if anonymous access is enabled when the user
accesses the portal through the web interface.

By default, only workshop environments currently marked with a state of RUNNING are returned,
that is, those workshop environments which are taking new workshop session requests. If you also
want to see the workshop environments which are currently in the process of being shut down,
you must provide the state query string parameter to the REST API call and indicate which states
workshop environments to return for.

curl -v -H "Authorization: Bearer <access-token>" \

https://lab-markdown-sample-ui.test/workshops/catalog/environments/?state=RUNNING&stat

e=STOPPING

You can include the state query string parameter more than once to see workshop environments
in both RUNNING and STOPPING states.

If anonymous access to the list of workshop environments is enabled and you are not authenticated
when using the REST API endpoint, only workshop environments in a running state are returned.

Use session management for your Learning Center
workshops

This topic describes how you use the REST API endpoints for session management, which allows
you to request a workshop session to be allocated.

Tanzu Application Platform v1.4

VMware by Broadcom 1030



Deactivating portal user registration

When you use the REST API to trigger creation of workshop sessions, VMware recommends that
you deactivate user registration through the training portal web interface. This means that only the
admin user is able to directly access the web interface for the training portal.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: learningcenter-tutorials

spec:

  portal:

    registration:

      type: one-step

      enabled: false

  workshops:

  ...

Requesting a workshop session
The form of the URL sub path for requesting the allocation of a workshop environment by using the
REST API is /workshops/environment/<name>/request/. The name segment must be replaced with
the name of the workshop environment. When making the request, the access token must be
supplied in the HTTP Authorization header with type set as Bearer:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/environment/<name>/request/?index_url=https://hub.tes

t/

You can supply a query string parameter, index_url. When you restart the workshop session from
the workshop environment web interface, the session is deleted and the user is redirected to the
supplied URL. This URL is that of your front end web application that has requested the workshop
session, allowing users to select a different workshop.

The value of the index_url is not available if session cookies are cleared or a session URL is shared
with another user. In this case, a user is redirected back to the training portal URL instead. You can
override the global default for this case by specifying the index URL as part of the TrainingPortal
configuration.

When successful, the JSON response from the request is of the form:

{

    "name": "educaes-tutorials-w01-s001",

    "user": "8d2d0c8b-6ff5-4244-b136-110fd8d8431a",

    "url": "/workshops/session/learningcenter-tutorials-w01-s001/activate/?token=6UIW4

D8Bhf0egVmsEKYlaOcTywrpQJGi&index_url=https%3A%2F%2Fhub.test%2F",

    "workshop": "learningcenter-tutorials",

    "environment": "learningcenter-tutorials-w01",

    "namespace": "learningcenter-tutorials-w01-s001"

}

This includes the name of the workshop session, an ID for identifying the user, and both a URL path
with an activation token and an index URL included as query string parameters.

Redirect the user’s browser to this URL path on the training portal host. Accessing the URL
activates the workshop session and then redirects the user to the workshop dashboard.

If the workshop session is not activated, which confirms allocation of the session, the session is
deleted after 60 seconds.

Tanzu Application Platform v1.4

VMware by Broadcom 1031



When a user is redirected back to the URL for the index page, a query string parameter is supplied
to give the reason the user is being returned. You can use this to display a banner or other
indication as to why the user was returned.

The name of the query string parameter is notification and the possible values are:

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment supplied while
attempting to create the workshop is invalid.

session-unavailable - Used when capacity is reached, and a workshop session cannot be
created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist.
This can occur when the workshop dashboard is refreshed sometime after the workshop
session expired and was deleted.

In prior versions, the name of the session was returned through the “session” property, whereas
the “name” property is now used. To support older code using the REST API, the “session”
property is still returned, but it is deprecated.

Associating sessions with a user

When the workshop session is requested, a unique user account is created in the training portal
each time. You can identify this account by using the user identifier, which is returned in the
response.

The front end using the REST API to create workshop sessions can track user activity so that the
training portal associates all workshop sessions created by the same user. Supply the user identifier
with subsequent requests by the same user in the request parameter:

curl -v -H "Authorization: Bearer <access-token>" \

https://lab-markdown-sample-ui.test/workshops/environment/<name>/request/?index_url=ht

tps://hub.test/&user=<user>

If the supplied ID matches a user in the training portal, the training portal uses it internally and
returns the same value for user in the response.

When the user does match, and if there is already a workshop session allocated to the user for the
workshop being requested, the training portal returns a link to the existing workshop session,
rather than requesting that the user create a new workshop session.

If the user is not a match, possibly because the training portal was completely redeployed since the
last time it was accessed, the training portal returns a new user identifier.

The first time you make a request to create a workshop session for a user where user is not
supplied, you can optionally supply request parameters for the following to set these as the user
details in the training portal.

email - The email address of the user.

first_name - The first name of the user.

last_name - The last name of the user.

These details will be accessible through the admin pages of the training portal.

When sessions are associated with a user, you can query all active sessions for that user across the
different workshops hosted by the instance of the training portal:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/user/<user>/sessions/

Tanzu Application Platform v1.4

VMware by Broadcom 1032



The response is of the form:

{

  "user": "8d2d0c8b-6ff5-4244-b136-110fd8d8431a",

  "sessions": [

    {

      "name": "learningcenter-tutorials-w01-s001",

      "workshop": "learningcenter-tutorials",

      "environment": "learningcenter-tutorials-w01",

      "namespace": "learningcenter-tutorials-w01-s001",

      "started": "2020-07-31T03:57:33.942Z",

      "expires": "2020-07-31T04:57:33.942Z",

      "countdown": 3353,

      "extendable": false

    }

  ]

}

After a workshop has expired or has otherwise been shut down, the training portal no longer
returns an entry for the workshop.

Listing all workshop sessions

To get a list of all running workshops sessions allocated to users, provide the sessions=true flag to
the query string parameters of the REST API call. This lists the workshop environments available
through the training portal.

curl -v -H "Authorization: Bearer <access-token>" |

<training-portal-url>/workshops/catalog/environments/?sessions=true

The JSON response is of the form:

{

  "portal": {

    "name": "learningcenter-tutorials",

    "uid": "9b82a7b1-97db-4333-962c-97be6b5d7ee0",

    "generation": 476,

    "url": "<training-portal-url>",

    "sessions": {

      "maximum": 10,

      "registered": 0,

      "anonymous": 0,

      "allocated": 1

    }

  },

  "environments": [

    {

      "name": "learningcenter-tutorials-w01",

      "state": "RUNNING",

      "workshop": {

        "name": "lab-et-self-guided-tour",

        "id": "15e5f1a569496f335049bb00c370ee20",

        "title": "Workshop Building Tutorial",

        "description": "A guided tour of how to build a workshop for your team's learn

ing center.",

        "vendor": "",

        "authors": [],

        "difficulty": "",

        "duration": "",

        "tags": [],

        "logo": "",

        "url": "<workshop-repository-url>"

      },

Tanzu Application Platform v1.4

VMware by Broadcom 1033



      "duration": 1800,

      "capacity": 10,

      "reserved": 0,

      "allocated": 1,

      "available": 0,

      "sessions": [

        {

          "name": "learningcenter-tutorials-w01-s002",

          "state": "RUNNING",

          "namespace": "learningcenter-tutorials-w01-s002",

          "user": "672338f3-4085-4782-8d9b-ae1637e1c28c",

          "started": "2021-11-05T15:50:04.824Z",

          "expires": "2021-11-05T16:20:04.824Z",

          "countdown": 1737,

          "extendable": false

        }

      ]

    }

  ]

}

No workshop sessions are returned if anonymous access to this REST API endpoint is enabled and
you are not authenticated against the training portal.

Only workshop environments with a state of RUNNING are returned by default. To see workshop
environments that are shut down and any workshop sessions that still haven’t been completed,
supply the state query string parameter with value STOPPING.

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/catalog/environments/?sessions=true&state=RUNNING&stat

e=STOPPING

Include the state query string parameter more than once to see workshop environments in both
RUNNING and STOPPING states.

Use client authentication for Learning Center

This topic describes how you can use the portal REST API to integrate access to workshops into an
existing website or to create a custom web interface for accessing workshops hosted across one or
more training portals.

The training portal web interface is a quick way of providing access to a set of workshops when
running a supervised training workshop. The REST API gives you access to the list of workshops
hosted by a training portal instance and allow you to request and access workshop sessions. This
bypasses the training portal’s own user registration and log in so you can implement whatever
access controls you need. This can include anonymous access or access integrated into an
organization’s single sign-on system.

Querying the credentials

To provide access to the REST API, a robot account is automatically provisioned. Obtain the login
credentials and details of the OAuth client endpoint used for authentication by querying the
resource definition for the training portal after it is created and the deployment completed. If using
kubectl describe, use:

kubectl describe trainingportal.learningcenter.tanzu.vmware.com/<training-portal-name>

The status section of the output reads:

Tanzu Application Platform v1.4

VMware by Broadcom 1034



Status:

  learningcenter:

    Clients:

      Robot:

        Id:      ACZpcaLIT3qr725YWmXu8et9REl4HBg1

        Secret:  t5IfXbGZQThAKR43apoc9usOFVDv2BLE

    Credentials:

      Admin:

        Password:  0kGmMlYw46BZT2vCntyrRuFf1gQq5ohi

        Username:  learningcenter

      Robot:

        Password:  QrnY67ME9yGasNhq2OTbgWA4RzipUvo5

        Username:  robot@learningcenter

Use the admin login credentials when you log in to the training portal web interface to access
admin pages.

Use the robot login credentials if you want to access the REST API.

Requesting an access token

Before you can make requests against the REST API to query details about workshops or request a
workshop session, you must log in through the REST API to get an access token.

This is done from any front-end web application or provisioning system, but the step is equivalent
to making a REST API call by using curl of:

curl -v -X POST -H \

"Content-Type: application/x-www-form-urlencoded" \

-d "grant_type=password&username=robot@learningcenter&password=<robot-password>" \

-u "<robot-client-id>:<robot-client-secret>" \

<training-portal-url>/oauth2/token/

The URL sub path is /oauth2/token/.

Upon success, the output is a JSON response consisting of:

{

    "access_token": "tg31ied56fOo4axuhuZLHj5JpUYCEL",

    "expires_in": 36000,

    "token_type": "Bearer",

    "scope": "user:info",

    "refresh_token": "1ryXhXbNA9RsTRuCE8fDAyZToJmp30"

}

Refreshing the access token
The access token that is provided expires: it needs to be refreshed before it expires if in use by a
long-running application.

To refresh the access token, use the equivalent of:

curl -v -X POST -H \

"Content-Type: application/x-www-form-urlencoded" \

-d "grant_type=refresh_token&refresh_token=<refresh-token>& \client_id=<robot-client-i

d>&client_secret=<robot-client-secret>" \

https://lab-markdown-sample-ui.test/oauth2/token/

As with requesting the initial access token, the URL sub path is /oauth2/token/.

The JSON response is of the same format as if a new token was requested.

Tanzu Application Platform v1.4

VMware by Broadcom 1035



Troubleshoot Learning Center

This topic gives you troubleshooting and recovery steps for Learning Center known issues.

Training portal stays in pending state

The training portal stays in a “pending” state.

The Training Portal custom resource (CR) has a status property. To see the status, run:

kubectl get trainingportals.learningcenter.tanzu.vmware.com

Explanation

If the status stays in a pending state, the TLS secret tls might not be available. Other errors can
also cause the status to stay in a pending state, so it is important to check the operator and portal
logs to execute the right steps.

Solution

1. Access the operator logs by running:

kubectl logs deployment/learningcenter-operator -n learningcenter

Access the portal logs by running:

kubectl logs deployment/learningcenter-portal -n {PORTAL_NAMESPACE}

2. Check whether the TLS secret tls is available. The TLS secret must be on the Learning
Center operator namespace (by default learningcenter). If the TLS secret is not on the
Learning Center operator namespace, the operator logs contain the following error:

ERROR:kopf.objects:Handler 'learningcenter' failed temporarily: TLS secret tls 

is not available

3. Follow the steps in Enforcing Secure Connections in Learning Center Operator to create
the TLS secret.

4. Redeploy the trainingPortal resource.

image-policy-webhook-service not found
You are installing a Tanzu Application Platform profile and you get this error:

Internal error occurred: failed calling webhook "image-policy-webhook.signing.run.tanz

u.vmware.com": failed to call webhook: Post "https://image-policy-webhook-service.imag

e-policy-system.svc:443/signing-policy-check?timeout=10s": service "image-policy-webho

ok-service" not found

Explanation

This is a race condition error among some Tanzu Application Platform packages.

Solution

To recover from this error you only need to redeploy the trainingPortal resource.

Updates to Tanzu Application Platform values file not
reflected in Learning Center Training Portal

Tanzu Application Platform v1.4

VMware by Broadcom 1036



If you installed Learning Center through Tanzu profiles, then your installation made use of a tap-
values.yaml file where configurations were specified for Learning Center. If you make updates to
these configurations using this command:

tanzu package installed update tap --package-name tap.tanzu.vmware.com --version {VERS

ION} -f tap-values.yml -n tap-install

then the changes are not reflected in the deployed Learning Center Training Portal resource. Tap
package updates currently DO NOT update running Learning Center Training Portal resources.

Run one of these commands to validate changes made to parameters provided to the Learning
Center Operator. These parameters include ingressDomain, TLS secret, ingressClass, and others.

Command:

kubectl describe systemprofile

Command:

kubectl describe pod  -n learningcenter

Explanation

By design, the training portal resources do not react to any changes on the parameters provided
when the training portals were created. This prevents any change on the trainingportal resource
from affecting any online user running a workshop.

Solution

You must restart the operator resource by first deleting the operator pod:

kubectl delete pod -n learningcenter learningcenter-operator-$OPERATOR_POD_NAME

Then delete the training portal resource. Redeploy trainingportal in a maintenance window
where Learning Center is unavailable while thesystemprofile is updated.

Increase your cluster’s resources

If you don’t have enough nodes or enough resources on nodes for deploying the workloads, node
pressure might occur. In this case, follow your cloud provider’s instructions on how to scale out or
scale up your cluster.

Kubernetes Api Timeout error

The following operator error log means there is a connection error with the Kubernetes API server:

operator-log: unexpected error occurred. Read timed out.

This error has been found when running Learning Center with the Azure AkS cloud provider.

Solution

To fix this error:

1. Delete the operator pod on the learningcenter namespace.

2. Delete the training portal once the operator is running again by using:

kubectl delete trainingportals $PORTAL_NAME

1. Redeploy the trainingPortal resource.

Tanzu Application Platform v1.4

VMware by Broadcom 1037



No URL returned to your trainingportal

After deploying the Learning Center Operator and Trainingportal resources, the following
command can yield the resource with no URL, even though your resources deployed correctly and
are running:

kubectl get trainingportals

You also already specified learningcenter.mydomain.com in your tap values YAML file if installed
through Tanzu Application Platform. See specifying ingress domain

Solution

Learning center requires that you use a wildcard domain (Wildcard DNS entry) to access your
training portal in the browser. This configuration must be done in your DNS provider with a rule
that points your wildcard domain to your IP/Load balancer.

For example, if using the default workshop on an Elastic Kubernetes Service (EKS) cluster, your
URL could look something like:

learning-center-guided.learningcenter.yourdomain.com

Where learningcenter.yourdomain.com needs a DNS configuration made to point to your default
ingress controller.

In this case, the wildcard domain configuration needed is *.learningcenter.yourdomain.com.

After this configuration is made, you might need to restart your operator resource by deleting and
redeploying to see the URL update.

Overview of Supply Chain Choreographer for Tanzu
This topic introduces you to Supply Chain Choreographer.

Overview
Supply Chain Choreographer is based on open source Cartographer. It allows App Operators to
create pre-approved paths to production by integrating Kubernetes resources with the elements of
their existing toolchains, for example, Jenkins.

Each pre-approved supply chain creates a path to production. Orchestrating supply chain resources
including, test, build, scan, and deploy allows developers to focus on delivering value to their users
and provides App Operators the assurance that all code in production has passed through all the
steps of an approved workflow.

Out of the Box Supply Chains
Out of the box supply chains are provided with Tanzu Application Platform.

The following three supply chains are included:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

As auxiliary components, Tanzu Application Platform also includes:

Out of the Box Templates, for providing templates used by the supply chains to perform
common tasks such as fetching source code, running tests, and building container images.

Tanzu Application Platform v1.4

VMware by Broadcom 1038

https://cartographer.sh/docs/


Out of the Box Delivery Basic, for delivering to a Kubernetes cluster the configuration built
throughout a supply chain

Both Templates and Delivery Basic are requirements for the Supply Chains.

Supply Chain Choreographer supports the following pipeline types:

Tekton pipelines

Jenkins pipelines

Overview of Supply Chain Choreographer for Tanzu

This topic introduces you to Supply Chain Choreographer.

Overview

Supply Chain Choreographer is based on open source Cartographer. It allows App Operators to
create pre-approved paths to production by integrating Kubernetes resources with the elements of
their existing toolchains, for example, Jenkins.

Each pre-approved supply chain creates a path to production. Orchestrating supply chain resources
including, test, build, scan, and deploy allows developers to focus on delivering value to their users
and provides App Operators the assurance that all code in production has passed through all the
steps of an approved workflow.

Out of the Box Supply Chains

Out of the box supply chains are provided with Tanzu Application Platform.

The following three supply chains are included:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

As auxiliary components, Tanzu Application Platform also includes:

Out of the Box Templates, for providing templates used by the supply chains to perform
common tasks such as fetching source code, running tests, and building container images.

Out of the Box Delivery Basic, for delivering to a Kubernetes cluster the configuration built
throughout a supply chain

Both Templates and Delivery Basic are requirements for the Supply Chains.

Supply Chain Choreographer supports the following pipeline types:

Tekton pipelines

Jenkins pipelines

Install Supply Chain Choreographer

This document describes how to install Supply Chain Choreographer from the Tanzu Application
Platform package repository.

Note

Follow the steps in this topic if you do not want to use a profile to install Supply
Chain Choreographer. For more information about profiles, see Components and

Tanzu Application Platform v1.4

VMware by Broadcom 1039

https://cartographer.sh/docs/


Supply Chain Choreographer provides the custom resource definitions the supply chain uses. Each
pre-approved supply chain creates a clear road to production and orchestrates supply chain
resources. You can test, build, scan, and deploy. Developers can focus on delivering value to users.
Application operators can rest assured that all code in production has passed through an approved
workflow.

For example, Supply Chain Choreographer passes the results of fetching source code to the
component that builds a container image of it, and then passes the container image to a
component that deploys the image.

Prerequisites
Before installing Supply Chain Choreographer:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install
To install Supply Chain Choreographer:

1. Get the values schema to see what properties can be configured during installation. Run:

tanzu package available get cartographer.tanzu.vmware.com/0.4.0 --values-schema 

--namespace tap-install

KEY                  DEFAULT  TYPE    DESCRIPTION

aws_iam_role_arn              string  Optional: Arn role that has access to pul

l images from ECR container registry

ca_cert_data                  string  Optional: PEM Encoded certificate data fo

r image registries with private CA.

excluded_components  []       array   Optional: List of components to exclude f

rom installation (e.g. [conventions])

2. Install v0.4.0 of the cartographer.tanzu.vmware.com package, naming the installation
cartographer. Run:

tanzu package install cartographer \

  --namespace tap-install \

  --package-name cartographer.tanzu.vmware.com \

  --version 0.4.0

Example output:

| Installing package 'cartographer.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'cartographer.tanzu.vmware.com'

| Creating service account 'cartographer-tap-install-sa'

| Creating cluster admin role 'cartographer-tap-install-cluster-role'

| Creating cluster role binding 'cartographer-tap-install-cluster-rolebinding'

- Creating package resource

\ Package install status: Reconciling

installation profiles..

The Supply Chain Choreographer is now bundled with the Cartographer
Conventions. For information on configuring and using Cartographer Conventions,
see Creating conventions.

Tanzu Application Platform v1.4

VMware by Broadcom 1040



Added installed package 'cartographer' in namespace 'tap-install'

Out of the Box Supply Chain Basic

This package contains Cartographer supply chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It contains the most basic supply chains that focus
on providing a quick path to deployment making no use of testing or scanning resources.

The supply chains included in this package perform the following:

Building from source code:

1. Watching a Git repository, Maven repository, or local directory for changes

2. Building a container image out of the source code with Buildpacks

3. Applying operator-defined conventions to the container definition

4. Creating a deliverable object for deploying the application to a cluster

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To use this package, you must:

Install Out of the Box Templates.

Configure the Developer namespace with auxiliary objects that are used by the supply chain
as described in the following section.

(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

Developer Namespace

The supply chains provide definitions of many of the objects that they create to transform the
source code to a container image and make it available as an application in a cluster.

The developer must provide or configure particular objects in the developer namespace so that the
supply chain can provide credentials and use permissions granted to a specific development team.

The objects that the developer must provide or configure include:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

Registries Secrets

Regardless of the supply chain that a workload goes through, there must be Kubernetes secrets in
the developer namespace containing credentials for both pushing and pulling the container image

Tanzu Application Platform v1.4

VMware by Broadcom 1041



that gets built by the supply chains when source code is provided. The developer namespace must
also contain registry credentials for Kubernetes to run pods using images from the installation of
Tanzu Application Platform.

1. Add read/write registry credentials for pushing and pulling application images:

tanzu secret registry add registry-credentials \

  --server REGISTRY-SERVER \

  --username REGISTRY-USERNAME \

  --password REGISTRY-PASSWORD \

  --namespace YOUR-NAMESPACE

Where:

YOUR-NAMESPACE is the name you want to use for the developer namespace. For
example, use default for the default namespace.

REGISTRY-SERVER is the URL of the registry. For Docker Hub, this must be
https://index.docker.io/v1/. Specifically, it must have the leading https://, the
v1 path, and the trailing /. For Google Container Registry (GCR), this is gcr.io.
Based on the information used in Installing the Tanzu Application Platform package
and profiles, you can use the same registry server as in ootb_supply_chain_basic -
registry - server.

2. Add a placeholder secret for gathering the credentials used for pulling container images
from the installation of Tanzu Application Platform:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: tap-registry

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

  .dockerconfigjson: e30K

EOF

With the two secrets created:

tap-registry is a placeholder secret filled indirectly by secretgen-controller Tanzu
Application Platform credentials set up during the installation of Tanzu Application Platform.

registry-credentials is a secret providing credentials for the registry where application
container images are pushed to.

The following section discusses setting up the identity required for the workload.

ServiceAccount

In a Kubernetes cluster, a ServiceAccount provides a way of representing an actor within the
Kubernetes role-based access control (RBAC) system. In the case of a developer namespace, this
represents a developer or development team.

You can directly attach secrets to the ServiceAccount through both the secrets and
imagePullSecets fields. This allows you to provide indirect ways for resources to find credentials
without knowing the exact name of the secrets.

apiVersion: v1

kind: ServiceAccount

metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 1042



  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

RoleBinding

As the supply chain takes action in the cluster on behalf of the users who created the workload, it
needs permissions within Kubernetes’ RBAC system to do so.

Tanzu Application Platform v1.2 ships with two ClusterRoles that describe all of the necessary
permissions to grant to the service account:

workload clusterrole, providing the necessary roles for the supply chains to be able to
manage the resources prescribed by them.

deliverable clusterrole, providing the roles for deliveries to deploy to the cluster the
application Kubernetes objects produced by the supply chain.

To provide those permissions to the identity we created for this workload, bind the workload
ClusterRole to the ServiceAccount we created above:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: default-permit-workload

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: workload

subjects:

  - kind: ServiceAccount

    name: default

If this is just a Build cluster, and you do not intend to run the application in it, this single
RoleBinding is all that’s necessary.

If you intend to also deploy the application that’s been built, bind to the same ServiceAccount the
deliverable ClusterRole too:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: default-permit-deliverable

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: deliverable

subjects:

  - kind: ServiceAccount

    name: default

Important

The ServiceAccount must have the secrets created earlier linked to it. If it does not,
services like Tanzu Build Service (used in the supply chain) lack the necessary
credentials for pushing the images it builds for that workload.

Tanzu Application Platform v1.4

VMware by Broadcom 1043



For more information about authentication and authorization in Tanzu Application Platform, see
Overview of Default roles for Tanzu Application Platform.

Developer workload

With the developer namespace set up with the preceding objects (secret, serviceaccount, and
rolebinding), you can create the workload object.

To do so, make use of the apps plug-in from the Tanzu CLI:

tanzu apps workload create FLAGS WORKLOAD-NAME

Where:

FLAGS are the one or more flags you want to include.

WORKLOAD-NAME is the name of the workload you want to target.

Depending on what you are aiming to achieve, you can set different flags. To know more about
those (including details about different features of the supply chains), see the following sections:

Building from source, for more information about different ways of creating a workload
where the application is built from source code.

Using an existing image, for more information about how to leverage prebuilt images in the
supply chains.

GitOps vs RegistryOps, for a description of the different ways of propagating the
deployment configuration through external systems (Git repositories and image registries).

Out of the Box Supply Chain Basic
This package contains Cartographer supply chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It contains the most basic supply chains that focus
on providing a quick path to deployment making no use of testing or scanning resources.

The supply chains included in this package perform the following:

Building from source code:

1. Watching a Git repository, Maven repository, or local directory for changes

2. Building a container image out of the source code with Buildpacks

3. Applying operator-defined conventions to the container definition

4. Creating a deliverable object for deploying the application to a cluster

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

Prerequisites
To use this package, you must:

Install Out of the Box Templates.

Configure the Developer namespace with auxiliary objects that are used by the supply chain
as described in the following section.

Tanzu Application Platform v1.4

VMware by Broadcom 1044



(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

Developer Namespace

The supply chains provide definitions of many of the objects that they create to transform the
source code to a container image and make it available as an application in a cluster.

The developer must provide or configure particular objects in the developer namespace so that the
supply chain can provide credentials and use permissions granted to a specific development team.

The objects that the developer must provide or configure include:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

Registries Secrets

Regardless of the supply chain that a workload goes through, there must be Kubernetes secrets in
the developer namespace containing credentials for both pushing and pulling the container image
that gets built by the supply chains when source code is provided. The developer namespace must
also contain registry credentials for Kubernetes to run pods using images from the installation of
Tanzu Application Platform.

1. Add read/write registry credentials for pushing and pulling application images:

tanzu secret registry add registry-credentials \

  --server REGISTRY-SERVER \

  --username REGISTRY-USERNAME \

  --password REGISTRY-PASSWORD \

  --namespace YOUR-NAMESPACE

Where:

YOUR-NAMESPACE is the name you want to use for the developer namespace. For
example, use default for the default namespace.

REGISTRY-SERVER is the URL of the registry. For Docker Hub, this must be
https://index.docker.io/v1/. Specifically, it must have the leading https://, the
v1 path, and the trailing /. For Google Container Registry (GCR), this is gcr.io.
Based on the information used in Installing the Tanzu Application Platform package
and profiles, you can use the same registry server as in ootb_supply_chain_basic -
registry - server.

2. Add a placeholder secret for gathering the credentials used for pulling container images
from the installation of Tanzu Application Platform:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: tap-registry

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

Tanzu Application Platform v1.4

VMware by Broadcom 1045



data:

  .dockerconfigjson: e30K

EOF

With the two secrets created:

tap-registry is a placeholder secret filled indirectly by secretgen-controller Tanzu
Application Platform credentials set up during the installation of Tanzu Application Platform.

registry-credentials is a secret providing credentials for the registry where application
container images are pushed to.

The following section discusses setting up the identity required for the workload.

ServiceAccount

In a Kubernetes cluster, a ServiceAccount provides a way of representing an actor within the
Kubernetes role-based access control (RBAC) system. In the case of a developer namespace, this
represents a developer or development team.

You can directly attach secrets to the ServiceAccount through both the secrets and
imagePullSecets fields. This allows you to provide indirect ways for resources to find credentials
without knowing the exact name of the secrets.

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

RoleBinding

As the supply chain takes action in the cluster on behalf of the users who created the workload, it
needs permissions within Kubernetes’ RBAC system to do so.

Tanzu Application Platform v1.2 ships with two ClusterRoles that describe all of the necessary
permissions to grant to the service account:

workload clusterrole, providing the necessary roles for the supply chains to be able to
manage the resources prescribed by them.

deliverable clusterrole, providing the roles for deliveries to deploy to the cluster the
application Kubernetes objects produced by the supply chain.

To provide those permissions to the identity we created for this workload, bind the workload
ClusterRole to the ServiceAccount we created above:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

Important

The ServiceAccount must have the secrets created earlier linked to it. If it does not,
services like Tanzu Build Service (used in the supply chain) lack the necessary
credentials for pushing the images it builds for that workload.

Tanzu Application Platform v1.4

VMware by Broadcom 1046



metadata:

  name: default-permit-workload

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: workload

subjects:

  - kind: ServiceAccount

    name: default

If this is just a Build cluster, and you do not intend to run the application in it, this single
RoleBinding is all that’s necessary.

If you intend to also deploy the application that’s been built, bind to the same ServiceAccount the
deliverable ClusterRole too:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: default-permit-deliverable

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: deliverable

subjects:

  - kind: ServiceAccount

    name: default

For more information about authentication and authorization in Tanzu Application Platform, see
Overview of Default roles for Tanzu Application Platform.

Developer workload

With the developer namespace set up with the preceding objects (secret, serviceaccount, and
rolebinding), you can create the workload object.

To do so, make use of the apps plug-in from the Tanzu CLI:

tanzu apps workload create FLAGS WORKLOAD-NAME

Where:

FLAGS are the one or more flags you want to include.

WORKLOAD-NAME is the name of the workload you want to target.

Depending on what you are aiming to achieve, you can set different flags. To know more about
those (including details about different features of the supply chains), see the following sections:

Building from source, for more information about different ways of creating a workload
where the application is built from source code.

Using an existing image, for more information about how to leverage prebuilt images in the
supply chains.

GitOps vs RegistryOps, for a description of the different ways of propagating the
deployment configuration through external systems (Git repositories and image registries).

Install Out of the Box Supply Chain Basic

This document describes how to install Out of the Box Supply Chain Basic from the Tanzu
Application Platform package repository.

Tanzu Application Platform v1.4

VMware by Broadcom 1047



The Out of the Box Supply Chain Basic package provides the most basic ClusterSupplyChain that
brings an application from source code to a deployed instance of it running in a Kubernetes
environment.

Prerequisites

Fulfill the following prerequisites:

Fulfill the prerequisites for installing Tanzu Application Platform.

Install Supply Chain Choreographer.

Install

To install Out of the Box Supply Chain Basic:

1. Familiarize yourself with the set of values of the package that can be configured by running:

tanzu package available get ootb-supply-chain-basic.tanzu.vmware.com/0.7.0 \

  --values-schema \

  -n tap-install

For example:

KEY                                   DESCRIPTION

registry.repository                    Name of the repository in the image regi

stry server where the application

                                       images from the workload should be pushe

d (required).

registry.server                        Name of the registry server where applic

ation images should be pushed to

                                       (required).

git_implementation                     Determines which git client library to u

se. Valid options are go-git or

                                       libgit2.

gitops.server_address                  Default server address to be used for fo

rming Git URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain. This must

                                       include the scheme/protocol (e.g. http

s:// or ssh://)

gitops.repository_owner                Default project or user of the repositor

y. Used to create URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain.

gitops.repository_name                 Default repository name used for forming 

Git URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Supply Chain Basic. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1048



gitops.username                        Default user name to be used for the com

mits produced by the supply chain.

gitops.branch                          Default branch to use for pushing Kubern

etes configuration files produced

                                       by the supply chain.

gitops.commit_message                  Default git commit message to write when 

publishing Kubernetes

                                       configuration files produces by the supp

ly chain to git.

gitops.email                           Default user email to be used for the co

mmits produced by the supply chain.

gitops.ssh_secret                      Name of the default Secret containing SS

H credentials to lookup in the

                                       developer namespace for the supply chain 

to fetch source code from and

                                       push configuration to.

gitops.commit_strategy                 Specification of how commits are made to 

the branch; directly or through a

                                       pull request.

gitops.repository_prefix               DEPRECATED: Use server_address and repos

itory_owner instead.

                                       Default prefix to be used for forming Gi

t SSH URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.pull_request.server_kind        The git source control platform used

gitops.pull_request.commit_branch      The branch to which commits will be mad

e, before opening a pull request

                                       to the branch specified in .gitops.branc

h If the string "" is specified,

                                       an essentially random string will be use

d for the branch name, in order

                                       to prevent collisions.

gitops.pull_request.pull_request_title The title for the pull request

gitops.pull_request.pull_request_body  Any further information to add to the pu

ll request

cluster_builder                        Name of the Tanzu Build Service ClusterB

uilder to

                                       use by default on image objects managed 

by the supply chain.

service_account                        Name of the service account in the names

pace where the Workload

                                       is submitted to utilize for providing re

gistry credentials to

                                       Tanzu Build Service Image objects as wel

l as deploying the

                                       application.

maven.repository.url                   The URL of the Maven repository to be us

ed when pulling Maven

                                       artifacts.  HTTP is not supported.  e.

g.: "https://repo.maven.apache.org/maven"

Tanzu Application Platform v1.4

VMware by Broadcom 1049



maven.repository.secret_name           The name of the Secret resource that con

tains the credentials used

                                       to access the Maven repository.

2. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding
values to the properties you want to change. For example:

registry:

  server: REGISTRY-SERVER

  repository: REGISTRY-REPOSITORY

gitops:

  server_address: https://github.com/

  repository_owner: vmware-tanzu

  branch: main

  username: supplychain

  email: supplychain

  commit_message: supplychain@cluster.local

  ssh_secret: git-ssh

  commit_strategy: direct

maven:

  repository:

    url: https://my-maven-repository/releases

    secret_name: my-maven-repository-credentials

cluster_builder: default

service_account: default

3. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-basic \

  --package-name ootb-supply-chain-basic.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-supply-chain-basic-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-basic.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-basic.tanzu.vmware.com'

| Creating service account 'ootb-supply-chain-basic-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-basic-tap-install-cluster-rol

e'

| Creating cluster role binding 'ootb-supply-chain-basic-tap-install-cluster-ro

lebinding'

| Creating secret 'ootb-supply-chain-basic-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-basic'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-supply-chain-basic' in namespace 'tap-install'

Out of the Box Supply Chain with Testing

This package contains Cartographer Supply Chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It passes the source code forward to image
building only if the testing pipeline supplied by the developers runs successfully.

Tanzu Application Platform v1.4

VMware by Broadcom 1050



This package includes all the capabilities of the Out of the Box Supply Chain Basic, but adds testing
with Tekton.

For workloads that use either source code or prebuilt images, it performs the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

3. Building a container image out of the source code with Buildpacks

4. Applying operator-defined conventions to the container definition

5. Deploying the application to the same cluster

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To make use this supply chain, ensure:

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is installed.

Out of the Box Supply Chain With Testing and Scanning is NOT installed.

Developer namespace is configured with the objects per Out of the Box Supply Chain Basic
guidance. This supply chain is in addition to the basic one.

(optionally) Install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

To verify that you have the right set of supply chains installed (that is, the one with Scanning and
not the one with testing), run:

tanzu apps cluster-supply-chain list

NAME                      LABEL SELECTOR

source-test-to-url        apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url             apps.tanzu.vmware.com/workload-type=web

If you see source-test-scan-to-url in the list, the setup is wrong: you must not have the source-
test-scan-to-url installed at the same time as source-test-to-url.

Developer Namespace
As mentioned in the prerequisites section, this supply chain builds on the previous Out of the Box
Supply Chain, so only additions are included here.

To make sure you have configured the namespace correctly, it is important that the namespace has
the following objects in it (including the ones marked with ‘new’ whose explanation and details are
provided below):

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 1051



For more information, see Out of the Box Supply Chain Basic.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain

For more information, see Out of the Box Supply Chain Basic.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

For more information, see Out of the Box Supply Chain Basic.

Tekton pipeline (new): A pipeline runs whenever the supply chain hits the stage of testing
the source code.

Below you will find details about the new objects compared to Out of the Box Supply Chain Basic.

Updates to the developer Namespace

For source code testing to be present in the supply chain, a Tekton Pipeline must exist in the same
namespace as the Workload so that, at the right moment, the Tekton PipelineRun object that gets
created to run the tests can reference such developer-provided Pipeline.

So, aside from the objects previously defined in the Out of the Box Supply Chain Basic section, you
need to include one more:

tekton/Pipeline: the definition of a series of tasks to run against the source code that has
been found by earlier resources in the Supply Chain.

Tekton/Pipeline

By default, the workload is matched to the corresponding pipeline to run using labels. Pipelines
must have the label apps.tanzu.vmware.com/pipeline: test at a minimum, but you can add
additional labels for granularity. This provides a default match in the event that no other labels are
provided. The pipeline expects two parameters:

source-url, an HTTP address where a .tar.gz file containing all the source code to be
tested can be found

source-revision, the revision of the commit or image reference (in case of
workload.spec.source.image being set instead of workload.spec.source.git)

For example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test      # (!) required

spec:

  params:

    - name: source-url                        # (!) required

    - name: source-revision                   # (!) required

  tasks:

    - name: test

      params:

        - name: source-url

          value: $(params.source-url)

        - name: source-revision

          value: $(params.source-revision)

      taskSpec:

        params:

          - name: source-url

Tanzu Application Platform v1.4

VMware by Broadcom 1052



          - name: source-revision

        steps:

          - name: test

            image: gradle

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              ./mvnw test

At this point, changes to the developer-provided Tekton Pipeline do not automatically trigger a re-
run of the pipeline. That is, a new Tekton PipelineRun is not automatically created if a field in the
Pipeline object is changed. As a workaround, the latest PipelineRun created can be deleted, which
triggers a re-run.

Allow multiple Tekton pipelines in a namespace

You can configure your developer namespace to include more than one pipeline using either of the
following methods:

Use a single pipeline running on a container image that includes testing tools and runs a
common script to execute tests. This allows you to accommodate multiple workloads based
in different languages in the same namespace that use a common make test script, as
shown in the following example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test

spec:

  #...

        steps:

          - name: test

            image: <image_that_has_JDK_and_Go>

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              make test

Update the pipeline resources to include labels that differentiate between the pipelines. For
example, differentiate between Java and Go pipelines by adding labels for Java and Go:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: java-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: java

spec:

  #...

        steps:

          - name: test

            image: gradle

            script: |-

              # ...

              ./mvnw test

---

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: go-tests

Tanzu Application Platform v1.4

VMware by Broadcom 1053



  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: go

spec:

  #...

        steps:

          - name: test

            image: golang

            script: |-

              # ...

              go test -v ./...

To match the correct pipeline, you add a testing_pipeline_matching_labels parameter to the
workload. For example, if you want to match to the Java pipeline, you have the following
workload.yaml:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: sample-java-app

  labels:

    apps.tanzu.vmware.com/has-tests: true

    apps.tanzu.vmware.com/workload-type: web

    app.kubernetes.io/part-of: sample-java-app

spec:

  params:

    - name: testing_pipeline_matching_labels

      value:

        apps.tanzu.vmware.com/pipeline: test

        apps.tanzu.vmware.com/language: java

  ...

This matches the workload to the pipeline with the apps.tanzu.vmware.com/language: java label.

Developer Workload

With the Tekton Pipeline object submitted to the same namespace as the one where the Workload
will be submitted to, you can submit your Workload.

Regardless of the workflow being targeted (local development or gitops), the Workload
configuration details are the same as in Out of the Box Supply Chain Basic, except that you mark
the workload with tests enabled by means of the has-tests label.

For example:

tanzu apps workload create tanzu-java-web-app \

  --git-repo ${GIT_PROJECT_URL} \

  --git-branch ${GIT_BRANCH} \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      9 + |  name: tanzu-java-web-app

     10 + |  namespace: default

Tanzu Application Platform v1.4

VMware by Broadcom 1054



     11 + |spec:

     12 + |  source:

     13 + |    git:

     14 + |      ref:

     15 + |        branch: main

     16 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     17 + |    subPath: tanzu-java-web-app

Out of the Box Supply Chain with Testing

This package contains Cartographer Supply Chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It passes the source code forward to image
building only if the testing pipeline supplied by the developers runs successfully.

This package includes all the capabilities of the Out of the Box Supply Chain Basic, but adds testing
with Tekton.

For workloads that use either source code or prebuilt images, it performs the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

3. Building a container image out of the source code with Buildpacks

4. Applying operator-defined conventions to the container definition

5. Deploying the application to the same cluster

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To make use this supply chain, ensure:

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is installed.

Out of the Box Supply Chain With Testing and Scanning is NOT installed.

Developer namespace is configured with the objects per Out of the Box Supply Chain Basic
guidance. This supply chain is in addition to the basic one.

(optionally) Install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

To verify that you have the right set of supply chains installed (that is, the one with Scanning and
not the one with testing), run:

tanzu apps cluster-supply-chain list

NAME                      LABEL SELECTOR

source-test-to-url        apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url             apps.tanzu.vmware.com/workload-type=web

Tanzu Application Platform v1.4

VMware by Broadcom 1055



If you see source-test-scan-to-url in the list, the setup is wrong: you must not have the source-
test-scan-to-url installed at the same time as source-test-to-url.

Developer Namespace

As mentioned in the prerequisites section, this supply chain builds on the previous Out of the Box
Supply Chain, so only additions are included here.

To make sure you have configured the namespace correctly, it is important that the namespace has
the following objects in it (including the ones marked with ‘new’ whose explanation and details are
provided below):

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

For more information, see Out of the Box Supply Chain Basic.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain

For more information, see Out of the Box Supply Chain Basic.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

For more information, see Out of the Box Supply Chain Basic.

Tekton pipeline (new): A pipeline runs whenever the supply chain hits the stage of testing
the source code.

Below you will find details about the new objects compared to Out of the Box Supply Chain Basic.

Updates to the developer Namespace

For source code testing to be present in the supply chain, a Tekton Pipeline must exist in the same
namespace as the Workload so that, at the right moment, the Tekton PipelineRun object that gets
created to run the tests can reference such developer-provided Pipeline.

So, aside from the objects previously defined in the Out of the Box Supply Chain Basic section, you
need to include one more:

tekton/Pipeline: the definition of a series of tasks to run against the source code that has
been found by earlier resources in the Supply Chain.

Tekton/Pipeline

By default, the workload is matched to the corresponding pipeline to run using labels. Pipelines
must have the label apps.tanzu.vmware.com/pipeline: test at a minimum, but you can add
additional labels for granularity. This provides a default match in the event that no other labels are
provided. The pipeline expects two parameters:

source-url, an HTTP address where a .tar.gz file containing all the source code to be
tested can be found

source-revision, the revision of the commit or image reference (in case of
workload.spec.source.image being set instead of workload.spec.source.git)

For example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 1056



  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test      # (!) required

spec:

  params:

    - name: source-url                        # (!) required

    - name: source-revision                   # (!) required

  tasks:

    - name: test

      params:

        - name: source-url

          value: $(params.source-url)

        - name: source-revision

          value: $(params.source-revision)

      taskSpec:

        params:

          - name: source-url

          - name: source-revision

        steps:

          - name: test

            image: gradle

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              ./mvnw test

At this point, changes to the developer-provided Tekton Pipeline do not automatically trigger a re-
run of the pipeline. That is, a new Tekton PipelineRun is not automatically created if a field in the
Pipeline object is changed. As a workaround, the latest PipelineRun created can be deleted, which
triggers a re-run.

Allow multiple Tekton pipelines in a namespace

You can configure your developer namespace to include more than one pipeline using either of the
following methods:

Use a single pipeline running on a container image that includes testing tools and runs a
common script to execute tests. This allows you to accommodate multiple workloads based
in different languages in the same namespace that use a common make test script, as
shown in the following example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test

spec:

  #...

        steps:

          - name: test

            image: <image_that_has_JDK_and_Go>

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              make test

Update the pipeline resources to include labels that differentiate between the pipelines. For
example, differentiate between Java and Go pipelines by adding labels for Java and Go:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 1057



  name: java-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: java

spec:

  #...

        steps:

          - name: test

            image: gradle

            script: |-

              # ...

              ./mvnw test

---

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: go-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: go

spec:

  #...

        steps:

          - name: test

            image: golang

            script: |-

              # ...

              go test -v ./...

To match the correct pipeline, you add a testing_pipeline_matching_labels parameter to the
workload. For example, if you want to match to the Java pipeline, you have the following
workload.yaml:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: sample-java-app

  labels:

    apps.tanzu.vmware.com/has-tests: true

    apps.tanzu.vmware.com/workload-type: web

    app.kubernetes.io/part-of: sample-java-app

spec:

  params:

    - name: testing_pipeline_matching_labels

      value:

        apps.tanzu.vmware.com/pipeline: test

        apps.tanzu.vmware.com/language: java

  ...

This matches the workload to the pipeline with the apps.tanzu.vmware.com/language: java label.

Developer Workload

With the Tekton Pipeline object submitted to the same namespace as the one where the Workload
will be submitted to, you can submit your Workload.

Regardless of the workflow being targeted (local development or gitops), the Workload
configuration details are the same as in Out of the Box Supply Chain Basic, except that you mark
the workload with tests enabled by means of the has-tests label.

For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1058



tanzu apps workload create tanzu-java-web-app \

  --git-repo ${GIT_PROJECT_URL} \

  --git-branch ${GIT_BRANCH} \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      9 + |  name: tanzu-java-web-app

     10 + |  namespace: default

     11 + |spec:

     12 + |  source:

     13 + |    git:

     14 + |      ref:

     15 + |        branch: main

     16 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     17 + |    subPath: tanzu-java-web-app

Install Out of the Box Supply Chain with Testing

This document describes how to install Out of the Box Supply Chain with Testing from the Tanzu
Application Platform package repository.

The Out of the Box Supply Chain with Testing package provides a ClusterSupplyChain that brings
an application from source code to a deployed instance that:

Runs in a Kubernetes environment.

Runs developer-provided tests in the form of Tekton/Pipeline objects to validate the source
code before building container images.

Prerequisites

Before installing Out of the Box Supply Chain with Testing:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Out of the Box Delivery Basic

Install Out of the Box Templates

Install

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Supply Chain with Testing. For more information about profiles, see
Components and installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1059



Install by following these steps:

1. Ensure you do not have Out of the Box Supply Chain With Testing and Scanning (ootb-
supply-chain-testing-scanning.tanzu.vmware.com) installed:

1. Run the following command:

tanzu package installed list --namespace tap-install

2. Verify ootb-supply-chain-testing-scanning is in the output:

NAME                                PACKAGE-NAME

ootb-delivery-basic                 ootb-delivery-basic.tanzu.vmware.com

ootb-supply-chain-basic             ootb-supply-chain-basic.tanzu.vmware.

com

ootb-templates                      ootb-templates.tanzu.vmware.com

3. If you see ootb-supply-chain-testing-scanning in the list, uninstall it by running:

tanzu package installed delete ootb-supply-chain-testing-scanning --names

pace tap-install

Example output:

Deleting installed package 'ootb-supply-chain-testing-scanning' in namesp

ace 'tap-install'.

Are you sure? [y/N]: y

| Uninstalling package 'ootb-supply-chain-testing-scanning' from namespac

e 'tap-install'

\ Getting package install for 'ootb-supply-chain-testing-scanning'

- Deleting package install 'ootb-supply-chain-testing-scanning' from name

space 'tap-install'

| Deleting admin role 'ootb-supply-chain-testing-scanning-tap-install-clu

ster-role'

| Deleting role binding 'ootb-supply-chain-testing-scanning-tap-install-c

luster-rolebinding'

| Deleting secret 'ootb-supply-chain-testing-scanning-tap-install-values'

| Deleting service account 'ootb-supply-chain-testing-scanning-tap-instal

l-sa'

 Uninstalled package 'ootb-supply-chain-testing-scanning' from namespace 

'tap-install'

2. Verify that the values of the package can be configured by referencing the values below:

KEY                                   DESCRIPTION

registry.repository                    Name of the repository in the image regi

stry server where the application

                                       images from the workload should be pushe

d (required).

registry.server                        Name of the registry server where applic

ation images should be pushed to

                                       (required).

git_implementation                     Determines which git client library to u

se. Valid options are go-git or

                                       libgit2.

gitops.server_address                  Default server address to be used for fo

rming Git URLs for pushing

                                       Kubernetes configuration produced by the 

Tanzu Application Platform v1.4

VMware by Broadcom 1060



supply chain. This must

                                       include the scheme/protocol (e.g. http

s:// or ssh://)

gitops.repository_owner                Default project or user of the repositor

y. Used to create URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain.

gitops.repository_name                 Default repository name used for forming 

Git URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.username                        Default user name to be used for the com

mits produced by the supply chain.

gitops.branch                          Default branch to use for pushing Kubern

etes configuration files produced

                                       by the supply chain.

gitops.commit_message                  Default git commit message to write when 

publishing Kubernetes

                                       configuration files produces by the supp

ly chain to git.

gitops.email                           Default user email to be used for the co

mmits produced by the supply chain.

gitops.ssh_secret                      Name of the default Secret containing SS

H credentials to lookup in the

                                       developer namespace for the supply chain 

to fetch source code from and

                                       push configuration to.

gitops.commit_strategy                 Specification of how commits are made to 

the branch; directly or through a

                                       pull request.

gitops.repository_prefix               DEPRECATED: Use server_address and repos

itory_owner instead.

                                       Default prefix to be used for forming Gi

t SSH URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.pull_request.server_kind         The git source control platform used

gitops.pull_request.commit_branch       The branch to which commits will be mad

e, before opening a pull request

                                       to the branch specified in .gitops.branc

h If the string "" is specified,

                                       an essentially random string will be use

d for the branch name, in order

                                       to prevent collisions.

gitops.pull_request.pull_request_title  The title for the pull request

gitops.pull_request.pull_request_body   Any further information to add to the p

ull request

cluster_builder           Name of the Tanzu Build Service ClusterBuilder to

                          use by default on image objects managed by the supply 

chain.

service_account           Name of the service account in the namespace where th

Tanzu Application Platform v1.4

VMware by Broadcom 1061



e Workload

                          is submitted to utilize for providing registry creden

tials to

                          Tanzu Build Service Image objects as well as deployin

g the

                          application.

3. Create a file named ootb-supply-chain-testing-values.yaml that specifies the
corresponding values to the properties you want to change. For example:

registry:

  server: REGISTRY-SERVER

  repository: REGISTRY-REPOSITORY

gitops:

  server_address: https://github.com/

  repository_owner: vmware-tanzu

  branch: main

  username: supplychain

  email: supplychain

  commit_message: supplychain@cluster.local

  ssh_secret: git-ssh

  commit_strategy: direct

cluster_builder: default

service_account: default

4. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-testing \

  --package-name ootb-supply-chain-testing.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-supply-chain-testing-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-testing.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-testing.tanzu.vmware.com'

| Creating service account 'ootb-supply-chain-testing-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-testing-tap-install-cluster-ro

le'

| Creating cluster role binding 'ootb-supply-chain-testing-tap-install-cluster-

rolebinding'

| Creating secret 'ootb-supply-chain-testing-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-testing'

\ 'PackageInstall' resource install status: Reconciling

Added installed package 'ootb-supply-chain-testing' in namespace 'tap-install'

Out of the Box Supply Chain with Testing and Scanning

This package contains Cartographer Supply Chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes

Important

it’s required that the gitops.repository_prefix field ends with a /.

Tanzu Application Platform v1.4

VMware by Broadcom 1062



configuration ready to be deployed to a cluster. It contains supply chains that pass the source code
through testing and vulnerability scanning, and also the container image.

This package includes all the capabilities of the Out of the Box Supply Chain With Testing, but adds
source and image scanning using Grype.

Workloads that use source code or prebuilt images perform the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

3. Scanning the source code for known vulnerabilities using Grype

4. Building a container image out of the source code with Buildpacks

5. Scanning the image for known vulnerabilities

6. Applying operator-defined conventions to the container definition

7. Deploying the application to the same cluster

Using a prebuilt application image:

1. Scanning the image for known vulnerabilities

2. Applying operator-defined conventions to the container definition

3. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To use this supply chain, verify that:

Tanzu Application Platform GUI is configured to enable CVE scan results. This configuration
enables the Supply Chain Choreographer Tanzu Application Platform GUI plug-in to retrieve
metadata about project packages and their vulnerabilities.

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is NOT installed.

Out of the Box Supply Chain With Testing and Scanning is installed.

Developer namespace is configured with the objects according to Out of the Box Supply
Chain With Testing guidance. This supply chain is in addition to the Supply Chain with
testing.

(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

Verify that you have the supply chains with scanning, not with testing, installed. Run:

tanzu apps cluster-supply-chain list

NAME                      LABEL SELECTOR

source-test-scan-to-url   apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url             apps.tanzu.vmware.com/workload-type=web

If you see source-test-to-url in the list, the setup is wrong. You must not have the source-test-
to-url installed at the same time as source-test-scan-to-url.

Developer namespace

Tanzu Application Platform v1.4

VMware by Broadcom 1063



This example builds on the previous Out of the Box Supply Chain examples, so only additions are
included here.

To ensure that you configured the namespace correctly, it is important that the namespace has the
objects that you configured in the other supply chain setups:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

For more information about the preceding objects, see Out of the Box Supply Chain Basic.

Tekton pipeline: A pipeline runs whenever the supply chain hits the stage of testing the
source code.

For more information, see Out of the Box Supply Chain Testing.

And the new objects, that you create here:

scan policy: Defines what to do with the results taken from scanning the source code and
image produced. For more information, see ScanPolicy section.

source scan template: A template of how jobs are created for scanning the source code.
For more information, see ScanTemplate section.

image scan template: A template of how jobs are created for scanning the image
produced by the supply chain. For more information, see ScanTemplate section.

The following section includes details about the new objects, compared to Out of the Box Supply
Chain With Testing.

Updates to the developer namespace

For source and image scans, scan templates and scan policies must exist in the same namespace as
the workload. These define:

ScanTemplate: how to run a scan, allowing one to change details about the execution of the
scan (either for images or source code)

ScanPolicy: how to evaluate whether the artifacts scanned are compliant. For example,
allowing one to be either very strict, or restrictive about particular vulnerabilities found.

The names of the objects must match the names in the example with default installation
configurations. This is overriden either by using the ootb_supply_chain_testing_scanning package
configuration in the tap-values.yaml file or by using workload parameters:

To override by using the ootb_supply_chain_testing_scanning package configuration,
make the following modification to your tap-values.yaml file and perform a Tanzu
Application Platform update.

ootb_supply_chain_testing_scanning:

  scanning:

    source:

      policy: SCAN-POLICY

      template: SCAN-TEMPLATE

    image:

      policy: SCAN-POLICY

      template: SCAN-TEMPLATE

Tanzu Application Platform v1.4

VMware by Broadcom 1064



Where SCAN-POLICY and SCAN-TEMPLATE are the names of the ScanPolicy and ScanTemplate.

To override through workload parameters, use the following commands. For more
information, see Tanzu apps workload apply.

tanzu apps workload apply WORKLOAD --param "scanning_source_policy=SCAN-POLICY" 

-n DEV-NAMESPACE

tanzu apps workload apply WORKLOAD --param "scanning_source_template=SCAN-TEMPL

ATE" -n DEV-NAMESPACE

Where:

WORKLOAD is the name of the workload.

SCAN-POLICY and SCAN-TEMPLATE are the names of the ScanPolicy and ScanTemplate.

DEV-NAMESPACE is the developer namespace.

ScanPolicy

The ScanPolicy defines a set of rules to evaluate for a particular scan to consider the artifacts
(image or source code) either compliant or not.

When a ImageScan or SourceScan is created to run a scan, those reference a policy whose name
must match the following sample scan-policy:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

Tanzu Application Platform v1.4

VMware by Broadcom 1065



rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

See Writing Policy Templates.

ScanTemplate

A ScanTemplate defines the PodTemplateSpec used by a Job to run a particular scan (image or
source). When the supply chain initiates an ImageScan or SourceScan, they reference these
templates which must live in the same namespace as the workload with the names matching the
following:

source scanning (blob-source-scan-template)

image scanning (private-image-scan-template)

If you are targeting a namespace that does not match the one configured in the Tanzu Application
Platform profiles, for example, if grype.namespace is not the same as the one you are writing the
workload to, you can install these in such namespace by making use of the tanzu package install
command as described in Install Supply Chain Security Tools - Scan:

1. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding
values to the properties you want to change. For example:

grype:

  namespace: YOUR-DEV-NAMESPACE

  targetImagePullSecret: registry-credentials

2. With the configuration ready, install the templates by running:

tanzu package install grype-scanner \

  --package-name grype.scanning.apps.tanzu.vmware.com \

  --version 1.0.0 \

  --namespace YOUR-DEV-NAMESPACE

Enable storing scan results

To enable SCST - Scan to store scan results by using SCST - Store, see Developer namespace
setup for exporting the SCST - Store CA certificate and authentication token to the developer
namespace.

Allow multiple Tekton pipelines in a namespace

Note

Although you can customize the templates, if you are following the Getting Started
guide, VMware recommends that you follow what is provided in the installation of
grype.scanning.apps.tanzu.vmware.com. This is created in the same namespace as
configured by using grype.namespace in either Tanzu Application Platform profiles or
individual component installation as in the earlier example. For more information,
see About Source and Image Scans.

Tanzu Application Platform v1.4

VMware by Broadcom 1066



You can configure your developer namespace to include more than one pipeline using either of the
following methods:

Use a single pipeline running on a container image that includes testing tools and runs a
common script to execute tests. This allows you to accommodate multiple workloads based
in different languages in the same namespace that use a common make test script. For
example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test

spec:

  #...

        steps:

          - name: test

            image: <image_that_has_JDK_and_Go>

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              make test

Update the template to include labels that differentiate the pipelines. Then configure the
labels to differentiate between pipelines. For example:

  selector:

     resource:

       apiVersion: tekton.dev/v1beta1

       kind: Pipeline

     matchingLabels:

       apps.tanzu.vmware.com/pipeline: test

+         apps.tanzu.vmware.com/language: #@ data.values.workload.metadata.labe

ls["apps.tanzu.vmware.com/language"]

The following example shows one namespace per-language pipeline:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: java-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: java

spec:

  #...

        steps:

          - name: test

            image: gradle

            script: |-

              # ...

              ./mvnw test

---

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: go-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: go

spec:

  #...

Tanzu Application Platform v1.4

VMware by Broadcom 1067



        steps:

          - name: test

            image: golang

            script: |-

              # ...

              go test -v ./...

Developer workload

With the ScanPolicy and ScanTemplate objects, with the required names set, submitted to the
same namespace where the workload are submitted, you are ready to submit your workload.

Regardless of the workflow being targeted, such as local development or gitops, the workload
configuration details are the same as in Out of the Box Supply Chain Basic, except that you mark
the workload as having tests enabled.

For example:

tanzu apps workload create tanzu-java-web-app \

  --git-repo ${GIT_PROJECT_URL} \

  --git-branch ${GIT_BRANCH} \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Expect to see output similar to the following:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      9 + |  name: tanzu-java-web-app

     10 + |  namespace: default

     11 + |spec:

     12 + |  source:

     13 + |    git:

     14 + |      ref:

     15 + |        branch: main

     16 + |      url: https://github.com/my/tanzu-project.git

CVE triage workflow
The Supply Chain halts progression if either a SourceScan
(sourcescans.scanning.apps.tanzu.vmware.com) or an ImageScan
(imagescans.scanning.apps.tanzu.vmware.com) fails policy enforcement through the ScanPolicy
(scanpolicies.scanning.apps.tanzu.vmware.com). This can prevent source code from building or
images deploying that contain vulnerabilities that are in violation of the user-defined scan policy.
For information about learning how to handle these vulnerabilities and unblock your Supply Chain,
see Triaging and Remediating CVEs.

Scan Images using a different scanner
Supply Chain Security Tools - Scan includes additional integrations for running an image scan using
Snyk and VMware Carbon Black.

Tanzu Application Platform v1.4

VMware by Broadcom 1068



Out of the Box Supply Chain with Testing and Scanning

This package contains Cartographer Supply Chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It contains supply chains that pass the source code
through testing and vulnerability scanning, and also the container image.

This package includes all the capabilities of the Out of the Box Supply Chain With Testing, but adds
source and image scanning using Grype.

Workloads that use source code or prebuilt images perform the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

3. Scanning the source code for known vulnerabilities using Grype

4. Building a container image out of the source code with Buildpacks

5. Scanning the image for known vulnerabilities

6. Applying operator-defined conventions to the container definition

7. Deploying the application to the same cluster

Using a prebuilt application image:

1. Scanning the image for known vulnerabilities

2. Applying operator-defined conventions to the container definition

3. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To use this supply chain, verify that:

Tanzu Application Platform GUI is configured to enable CVE scan results. This configuration
enables the Supply Chain Choreographer Tanzu Application Platform GUI plug-in to retrieve
metadata about project packages and their vulnerabilities.

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is NOT installed.

Out of the Box Supply Chain With Testing and Scanning is installed.

Developer namespace is configured with the objects according to Out of the Box Supply
Chain With Testing guidance. This supply chain is in addition to the Supply Chain with
testing.

(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

Verify that you have the supply chains with scanning, not with testing, installed. Run:

tanzu apps cluster-supply-chain list

NAME                      LABEL SELECTOR

source-test-scan-to-url   apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url             apps.tanzu.vmware.com/workload-type=web

Tanzu Application Platform v1.4

VMware by Broadcom 1069



If you see source-test-to-url in the list, the setup is wrong. You must not have the source-test-
to-url installed at the same time as source-test-scan-to-url.

Developer namespace

This example builds on the previous Out of the Box Supply Chain examples, so only additions are
included here.

To ensure that you configured the namespace correctly, it is important that the namespace has the
objects that you configured in the other supply chain setups:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

For more information about the preceding objects, see Out of the Box Supply Chain Basic.

Tekton pipeline: A pipeline runs whenever the supply chain hits the stage of testing the
source code.

For more information, see Out of the Box Supply Chain Testing.

And the new objects, that you create here:

scan policy: Defines what to do with the results taken from scanning the source code and
image produced. For more information, see ScanPolicy section.

source scan template: A template of how jobs are created for scanning the source code.
For more information, see ScanTemplate section.

image scan template: A template of how jobs are created for scanning the image
produced by the supply chain. For more information, see ScanTemplate section.

The following section includes details about the new objects, compared to Out of the Box Supply
Chain With Testing.

Updates to the developer namespace

For source and image scans, scan templates and scan policies must exist in the same namespace as
the workload. These define:

ScanTemplate: how to run a scan, allowing one to change details about the execution of the
scan (either for images or source code)

ScanPolicy: how to evaluate whether the artifacts scanned are compliant. For example,
allowing one to be either very strict, or restrictive about particular vulnerabilities found.

The names of the objects must match the names in the example with default installation
configurations. This is overriden either by using the ootb_supply_chain_testing_scanning package
configuration in the tap-values.yaml file or by using workload parameters:

To override by using the ootb_supply_chain_testing_scanning package configuration,
make the following modification to your tap-values.yaml file and perform a Tanzu
Application Platform update.

ootb_supply_chain_testing_scanning:

  scanning:

Tanzu Application Platform v1.4

VMware by Broadcom 1070



    source:

      policy: SCAN-POLICY

      template: SCAN-TEMPLATE

    image:

      policy: SCAN-POLICY

      template: SCAN-TEMPLATE

Where SCAN-POLICY and SCAN-TEMPLATE are the names of the ScanPolicy and ScanTemplate.

To override through workload parameters, use the following commands. For more
information, see Tanzu apps workload apply.

tanzu apps workload apply WORKLOAD --param "scanning_source_policy=SCAN-POLICY" 

-n DEV-NAMESPACE

tanzu apps workload apply WORKLOAD --param "scanning_source_template=SCAN-TEMPL

ATE" -n DEV-NAMESPACE

Where:

WORKLOAD is the name of the workload.

SCAN-POLICY and SCAN-TEMPLATE are the names of the ScanPolicy and ScanTemplate.

DEV-NAMESPACE is the developer namespace.

ScanPolicy

The ScanPolicy defines a set of rules to evaluate for a particular scan to consider the artifacts
(image or source code) either compliant or not.

When a ImageScan or SourceScan is created to run a scan, those reference a policy whose name
must match the following sample scan-policy:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

Tanzu Application Platform v1.4

VMware by Broadcom 1071



    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

See Writing Policy Templates.

ScanTemplate

A ScanTemplate defines the PodTemplateSpec used by a Job to run a particular scan (image or
source). When the supply chain initiates an ImageScan or SourceScan, they reference these
templates which must live in the same namespace as the workload with the names matching the
following:

source scanning (blob-source-scan-template)

image scanning (private-image-scan-template)

If you are targeting a namespace that does not match the one configured in the Tanzu Application
Platform profiles, for example, if grype.namespace is not the same as the one you are writing the
workload to, you can install these in such namespace by making use of the tanzu package install
command as described in Install Supply Chain Security Tools - Scan:

1. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding
values to the properties you want to change. For example:

grype:

  namespace: YOUR-DEV-NAMESPACE

  targetImagePullSecret: registry-credentials

2. With the configuration ready, install the templates by running:

tanzu package install grype-scanner \

  --package-name grype.scanning.apps.tanzu.vmware.com \

  --version 1.0.0 \

  --namespace YOUR-DEV-NAMESPACE

Enable storing scan results

Note

Although you can customize the templates, if you are following the Getting Started
guide, VMware recommends that you follow what is provided in the installation of
grype.scanning.apps.tanzu.vmware.com. This is created in the same namespace as
configured by using grype.namespace in either Tanzu Application Platform profiles or
individual component installation as in the earlier example. For more information,
see About Source and Image Scans.

Tanzu Application Platform v1.4

VMware by Broadcom 1072



To enable SCST - Scan to store scan results by using SCST - Store, see Developer namespace
setup for exporting the SCST - Store CA certificate and authentication token to the developer
namespace.

Allow multiple Tekton pipelines in a namespace

You can configure your developer namespace to include more than one pipeline using either of the
following methods:

Use a single pipeline running on a container image that includes testing tools and runs a
common script to execute tests. This allows you to accommodate multiple workloads based
in different languages in the same namespace that use a common make test script. For
example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test

spec:

  #...

        steps:

          - name: test

            image: <image_that_has_JDK_and_Go>

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              make test

Update the template to include labels that differentiate the pipelines. Then configure the
labels to differentiate between pipelines. For example:

  selector:

     resource:

       apiVersion: tekton.dev/v1beta1

       kind: Pipeline

     matchingLabels:

       apps.tanzu.vmware.com/pipeline: test

+         apps.tanzu.vmware.com/language: #@ data.values.workload.metadata.labe

ls["apps.tanzu.vmware.com/language"]

The following example shows one namespace per-language pipeline:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: java-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: java

spec:

  #...

        steps:

          - name: test

            image: gradle

            script: |-

              # ...

              ./mvnw test

---

apiVersion: tekton.dev/v1beta1

Tanzu Application Platform v1.4

VMware by Broadcom 1073



kind: Pipeline

metadata:

  name: go-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: go

spec:

  #...

        steps:

          - name: test

            image: golang

            script: |-

              # ...

              go test -v ./...

Developer workload

With the ScanPolicy and ScanTemplate objects, with the required names set, submitted to the
same namespace where the workload are submitted, you are ready to submit your workload.

Regardless of the workflow being targeted, such as local development or gitops, the workload
configuration details are the same as in Out of the Box Supply Chain Basic, except that you mark
the workload as having tests enabled.

For example:

tanzu apps workload create tanzu-java-web-app \

  --git-repo ${GIT_PROJECT_URL} \

  --git-branch ${GIT_BRANCH} \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Expect to see output similar to the following:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      9 + |  name: tanzu-java-web-app

     10 + |  namespace: default

     11 + |spec:

     12 + |  source:

     13 + |    git:

     14 + |      ref:

     15 + |        branch: main

     16 + |      url: https://github.com/my/tanzu-project.git

CVE triage workflow
The Supply Chain halts progression if either a SourceScan
(sourcescans.scanning.apps.tanzu.vmware.com) or an ImageScan
(imagescans.scanning.apps.tanzu.vmware.com) fails policy enforcement through the ScanPolicy
(scanpolicies.scanning.apps.tanzu.vmware.com). This can prevent source code from building or
images deploying that contain vulnerabilities that are in violation of the user-defined scan policy.

Tanzu Application Platform v1.4

VMware by Broadcom 1074



For information about learning how to handle these vulnerabilities and unblock your Supply Chain,
see Triaging and Remediating CVEs.

Scan Images using a different scanner

Supply Chain Security Tools - Scan includes additional integrations for running an image scan using
Snyk and VMware Carbon Black.

Install Out of the Box Supply Chain with Testing and
Scanning
This document describes how to install Out of the Box Supply Chain with Testing and Scanning
from the Tanzu Application Platform package repository.

The Out of the Box Supply Chain with Testing and Scanning package provides a ClusterSupplyChain
that brings an application from source code to a deployed instance that:

Runs in a Kubernetes environment.

Performs validations in terms of running application tests.

Scans the source code and image for vulnerabilities.

Prerequisites
Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Out of the Box Delivery Basic

Install Out of the Box Templates

Install
To install Out of the Box Supply Chain with Testing and Scanning:

1. Ensure you do not have Out of The Box Supply Chain With Testing (ootb-supply-chain-
testing.tanzu.vmware.com) installed:

1. Run the following command:

tanzu package installed list --namespace tap-install

2. Verify ootb-supply-chain-testing is in the output:

NAME                                PACKAGE-NAME

ootb-delivery-basic                 ootb-delivery-basic.tanzu.vmware.com

ootb-supply-chain-basic             ootb-supply-chain-basic.tanzu.vmware.

com

ootb-templates                      ootb-templates.tanzu.vmware.com

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Supply Chain with Testing and Scanning. For more information about profiles,
see Components and installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1075



3. If you see ootb-supply-chain-testing in the list, uninstall it by running:

tanzu package installed delete ootb-supply-chain-testing --namespace tap-

install

Example output:

Deleting installed package 'ootb-supply-chain-testing' in namespace 'tap-

install'.

Are you sure? [y/N]: y

| Uninstalling package 'ootb-supply-chain-testing' from namespace 'tap-in

stall'

\ Getting package install for 'ootb-supply-chain-testing'

- Deleting package install 'ootb-supply-chain-testing' from namespace 'ta

p-install'

| Deleting admin role 'ootb-supply-chain-testing-tap-install-cluster-rol

e'

| Deleting role binding 'ootb-supply-chain-testing-tap-install-cluster-ro

lebinding'

| Deleting secret 'ootb-supply-chain-testing-tap-install-values'

| Deleting service account 'ootb-supply-chain-testing-tap-install-sa'

 Uninstalled package 'ootb-supply-chain-testing' from namespace 'tap-inst

all'

2. Check the values of the package that can be configured by running:

tanzu package available get ootb-supply-chain-testing-scanning.tanzu.vmware.co

m/0.7.0 \

  --values-schema \

  -n tap-install

For example:

KEY                                   DESCRIPTION

registry.repository                    Name of the repository in the image regi

stry server where the application

                                       images from the workload should be pushe

d (required).

registry.server                        Name of the registry server where applic

ation images should be pushed to

                                       (required).

git_implementation                     Determines which git client library to u

se. Valid options are go-git or

                                       libgit2.

gitops.server_address                  Default server address to be used for fo

rming Git URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain. This must

                                       include the scheme/protocol (e.g. http

s:// or ssh://)

gitops.repository_owner                Default project or user of the repositor

y. Used to create URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain.

gitops.repository_name                 Default repository name used for forming 

Git URLs for pushing Kubernetes

Tanzu Application Platform v1.4

VMware by Broadcom 1076



                                       configuration produced by the supply cha

in.

gitops.username                        Default user name to be used for the com

mits produced by the supply chain.

gitops.branch                          Default branch to use for pushing Kubern

etes configuration files produced

                                       by the supply chain.

gitops.commit_message                  Default git commit message to write when 

publishing Kubernetes

                                       configuration files produces by the supp

ly chain to git.

gitops.email                           Default user email to be used for the co

mmits produced by the supply chain.

gitops.ssh_secret                      Name of the default Secret containing SS

H credentials to lookup in the

                                       developer namespace for the supply chain 

to fetch source code from and

                                       push configuration to.

gitops.commit_strategy                 Specification of how commits are made to 

the branch; directly or through a

                                       pull request.

gitops.repository_prefix               DEPRECATED: Use server_address and repos

itory_owner instead.

                                       Default prefix to be used for forming Gi

t SSH URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.pull_request.server_kind         The git source control platform used

gitops.pull_request.commit_branch       The branch to which commits will be mad

e, before opening a pull request

                                       to the branch specified in .gitops.branc

h If the string "" is specified,

                                       an essentially random string will be use

d for the branch name, in order

                                       to prevent collisions.

gitops.pull_request.pull_request_title  The title for the pull request

gitops.pull_request.pull_request_body   Any further information to add to the p

ull request

cluster_builder           Name of the Tanzu Build Service ClusterBuilder to

                          use by default on image objects managed by the supply 

chain.

service_account           Name of the service account in the namespace where th

e Workload

                          is submitted to utilize for providing registry creden

tials to

                          Tanzu Build Service Image objects as well as deployin

g the

                          application.

3. Create a file named ootb-supply-chain-testing-scanning-values.yaml that specifies the
corresponding values to the properties you want to change. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1077



registry:

  server: REGISTRY-SERVER

  repository: REGISTRY-REPOSITORY

gitops:

  server_address: https://github.com/

  repository_owner: vmware-tanzu

  branch: main

  username: supplychain

  email: supplychain

  commit_message: supplychain@cluster.local

  ssh_secret: git-ssh

  commit_strategy: direct

cluster_builder: default

service_account: default

4. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-testing-scanning \

  --package-name ootb-supply-chain-testing-scanning.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-supply-chain-testing-scanning-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-testing-scanning.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-testing-scanning.tanzu.vmwar

e.com'

| Creating service account 'ootb-supply-chain-testing-scanning-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-testing-scanning-tap-install-c

luster-role'

| Creating cluster role binding 'ootb-supply-chain-testing-scanning-tap-install

-cluster-rolebinding'

| Creating secret 'ootb-supply-chain-testing-scanning-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-testing-sc

anning'

\ 'PackageInstall' resource install status: Reconciling

Added installed package 'ootb-supply-chain-testing-scanning' in namespace 'tap-

install'

Out of the Box Templates for Supply Chain Choreographer

This topic describes the templates you can use with Supply Chain Choreographer.

Templates define Kubernetes objects based on configuration in the workload, supply chain Tanzu
Application Platform values, and results output from other templated objects. A supply chain
organizes a set of templates into a directed acyclic graph. This package contains templates that are
used by the Out of the Box Supply Chains and the Out of the Box Delivery. You must install this
package to have Workloads delivered properly.

The OOTB Template package includes:

Cartographer Templates: See reference

Important

The gitops.repository_prefix field must end with /.

Tanzu Application Platform v1.4

VMware by Broadcom 1078

https://cartographer.sh/docs/v0.6.0/architecture/#templates


Cartographer ClusterRunTemplates: See reference

Tekton ClusterTasks

ClusterRoles

openshift SecurityContextConstraints

For information about OOTB Supply Chains and Delivery, see:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

Out of the Box Delivery Basic

Out of the Box Templates for Supply Chain Choreographer

This topic describes the templates you can use with Supply Chain Choreographer.

Templates define Kubernetes objects based on configuration in the workload, supply chain Tanzu
Application Platform values, and results output from other templated objects. A supply chain
organizes a set of templates into a directed acyclic graph. This package contains templates that are
used by the Out of the Box Supply Chains and the Out of the Box Delivery. You must install this
package to have Workloads delivered properly.

The OOTB Template package includes:

Cartographer Templates: See reference

Cartographer ClusterRunTemplates: See reference

Tekton ClusterTasks

ClusterRoles

openshift SecurityContextConstraints

For information about OOTB Supply Chains and Delivery, see:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

Out of the Box Delivery Basic

Install Out of the Box Templates

This document describes how to install Out of the Box Templates from the Tanzu Application
Platform package repository.

The Out of the Box Templates package is used by all the Out of the Box Supply Chains to provide
the templates that are used by the Supply Chains to create the objects that drive source code all
the way to a deployed application in a cluster.

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Templates. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1079

https://cartographer.sh/docs/v0.6.0/runnable/architecture/#clusterruntemplate
https://tekton.dev/docs/pipelines/tasks/#overview
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://docs.openshift.com/container-platform/3.11/admin_guide/manage_scc.html
https://cartographer.sh/docs/v0.6.0/architecture/#templates
https://cartographer.sh/docs/v0.6.0/runnable/architecture/#clusterruntemplate
https://tekton.dev/docs/pipelines/tasks/#overview
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://docs.openshift.com/container-platform/3.11/admin_guide/manage_scc.html


Prerequisites

Before installing Out of the Box Templates:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Tekton Pipelines.

Install

To install Out of the Box Templates:

1. View the configurable values of the package by running:

tanzu package available get ootb-templates.tanzu.vmware.com/0.7.0 \

  --values-schema \

  -n tap-install

For example:

KEY                  DEFAULT  TYPE    DESCRIPTION

excluded_templates   []       array   List of templates to exclude from the

                                      installation (e.g. ['git-writer'])

2. Create a file named ootb-templates.yaml that specifies the corresponding values to the
properties you want to change.

For example, the contents of the file might look like this:

excluded_templates: []

3. After the configuration is ready, install the package by running:

tanzu package install ootb-templates \

  --package-name ootb-templates.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-templates-values.yaml

Example output:

\ Installing package 'ootb-templates.tanzu.vmware.com'

| Getting package metadata for 'ootb-templates.tanzu.vmware.com'

| Creating service account 'ootb-templates-tap-install-sa'

| Creating cluster admin role 'ootb-templates-tap-install-cluster-role'

| Creating cluster role binding 'ootb-templates-tap-install-cluster-rolebindin

g'

| Creating secret 'ootb-templates-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-templates'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-templates' in namespace 'tap-install'

Out of the Box Delivery Basic

This package provides a reusable ClusterDelivery object that delivers the Kubernetes configuration
that the Out of the Box Supply Chain produces to an environment, including Basic, Testing, and

Tanzu Application Platform v1.4

VMware by Broadcom 1080



Testing With Scanning supply chains.

Prerequisites

To make use of this package you must have installed:

Supply Chain Cartographer

Out of the Box Templates

Using Out of the Box Delivery Basic

Out of the Box Delivery Basic support both GitOps and local development workflows:

GITOPS

    Deliverable:

      points at a git repository where source code is found and

      kubernetes configuration is pushed to

LOCAL DEVELOPMENT

    Deliverable:

      points at a container image registry where the supplychain

      pushes source code and configuration to

---

DELIVERY

    takes a Deliverable (local or gitops) and passes is through

    a series of resources:

           config-provider  <---[config]--- deployer

                 .                             .

                 .                             .

    GitRepository/ImageRepository         kapp-ctrl/App

                                                - knative/Service

                                                - ResourceClaim

                                                - ServiceBinding

                                                ...

You must install this package to have Workloads delivered properly with the Basic, Testing, and
Testing With Scanning Out of the Box Supply Chains.

Consumers do not interact directly with this package. Instead, this package is used after the supply
chains create a carto.run/Deliverable object to express the intention of having the Workloads that
go through them delivered to an environment. The environment is the same Kubernetes cluster as
the Supply Chains.

More information

Reference

Installation

Out of the Box Delivery Basic

Tanzu Application Platform v1.4

VMware by Broadcom 1081

https://github.com/vmware-tanzu/cartographer


This package provides a reusable ClusterDelivery object that delivers the Kubernetes configuration
that the Out of the Box Supply Chain produces to an environment, including Basic, Testing, and
Testing With Scanning supply chains.

Prerequisites

To make use of this package you must have installed:

Supply Chain Cartographer

Out of the Box Templates

Using Out of the Box Delivery Basic

Out of the Box Delivery Basic support both GitOps and local development workflows:

GITOPS

    Deliverable:

      points at a git repository where source code is found and

      kubernetes configuration is pushed to

LOCAL DEVELOPMENT

    Deliverable:

      points at a container image registry where the supplychain

      pushes source code and configuration to

---

DELIVERY

    takes a Deliverable (local or gitops) and passes is through

    a series of resources:

           config-provider  <---[config]--- deployer

                 .                             .

                 .                             .

    GitRepository/ImageRepository         kapp-ctrl/App

                                                - knative/Service

                                                - ResourceClaim

                                                - ServiceBinding

                                                ...

You must install this package to have Workloads delivered properly with the Basic, Testing, and
Testing With Scanning Out of the Box Supply Chains.

Consumers do not interact directly with this package. Instead, this package is used after the supply
chains create a carto.run/Deliverable object to express the intention of having the Workloads that
go through them delivered to an environment. The environment is the same Kubernetes cluster as
the Supply Chains.

More information

Reference

Installation

Tanzu Application Platform v1.4

VMware by Broadcom 1082

https://github.com/vmware-tanzu/cartographer


Install Out of the Box Delivery Basic

This document describes how to install Out of the Box Delivery Basic from the Tanzu Application
Platform package repository.

The Out of the Box Delivery Basic package is used by all the Out of the Box Supply Chains to
deliver the objects that have been produced by them to a Kubernetes environment.

Prerequisites

Before installing Out of the Box Delivery Basic:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install

To install Out of the Box Delivery Basic:

1. Familiarize yourself with the set of values of the package that can be configured by running:

tanzu package available get ootb-delivery-basic.tanzu.vmware.com/0.7.0 \

  --values-schema \

  -n tap-install

For example:

KEY                  DEFAULT  TYPE    DESCRIPTION

service_account      default  string  Name of the service account in the

                                      namespace where the Deliverable is

                                      submitted to.

git_implementation   go-git   string  Which git client library to use.

                                      Valid options are go-git or libgit2.

2. Create a file named ootb-delivery-basic-values.yaml that specifies the corresponding
values to the properties you want to change.

For example, the contents of the file might look like this:

service_account: default

3. With the configuration ready, install the package by running:

tanzu package install ootb-delivery-basic \

  --package-name ootb-delivery-basic.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-delivery-basic-values.yaml

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Delivery Basic. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1083



Example output:

\ Installing package 'ootb-delivery-basic.tanzu.vmware.com'

| Getting package metadata for 'ootb-delivery-basic.tanzu.vmware.com'

| Creating service account 'ootb-delivery-basic-tap-install-sa'

| Creating cluster admin role 'ootb-delivery-basic-tap-install-cluster-role'

| Creating cluster role binding 'ootb-delivery-basic-tap-install-cluster-rolebi

nding'

| Creating secret 'ootb-delivery-basic-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-delivery-basic'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-delivery-basic' in namespace 'tap-install'

How-to guides for Supply Chain Choreographer for Tanzu

This topic describes the how-to guides you can use for Supply Chain Choreographer for Tanzu.

How-to guides

The following how-to guides apply to Supply Chain Choreographer for Tanzu:

Install Supply Chain Choreographer

Install Out of the Box Delivery Basic

Install Out of the Box Supply Chain Basic

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Out of the Box Templates

Tanzu Build Service Integration

Building from source

Git authentication

Out of the Box Supply Chain with testing on Jenkins

The Out of the Box templates package now includes a Tekton ClusterTask resource, which triggers
a build for a specified Jenkins job.

You can configure the Jenkins task in both the Out of the Box Supply Chain with Testing and Out
of the Box Supply Chain With Testing and Scanning to trigger a Jenkins job. The task is
implemented as a Tekton ClusterTask and can now run from a Tekton Pipeline.

Prerequisites

Follow the instructions from Out of the Box Supply Chain With Testing or Out of the Box Supply
Chain With Testing and Scanning to install the required packages. You must set up only one of
these packages.

These supply chains can use the Jenkins service during the source-tester phase of the pipeline.

Making a Jenkins test job

The intent of the Jenkins task for the Out of the Box templates is to help Tanzu Application
Platform users keep their existing test suites on their Jenkins services and still integrate with the

Tanzu Application Platform v1.4

VMware by Broadcom 1084



modern application deployment pipeline that Tanzu Application Platform provides.

This section of the guide instructs you on how to configure a Jenkins job triggered by the Tanzu
Application Platform Jenkins task.

It is assumed that you are using the Jenkins job to run test suites on code. For the Jenkins job to
know which source code to test, the Jenkins task calls the Jenkins job with the Workload and job-
params parameters, even if they are not declared in Workload or job-params. The Jenkins tasks only
pass these parameters if they are defined in the Jenkins job itself.

SOURCE-URL string The URL of the source code being tested. The source-provider resource
in the supply chain provides this code and is only resolvable inside the Kubernetes cluster.
This URL is only useful if your Jenkins service is running inside the cluster or if there is
ingress set up and the Jenkins service can make requests to services inside the cluster.

SOURCE-REVISION string The revision of the source code being tested. The format of this
value can vary depending on the implementation of the source_provider resource. If the
source-provider is the Flux CD GitRepository resource, then the value of the SOURCE-
REVISION is the Git branch name followed by the commit SHA, both separated by a (/) slash
character. For example: main/2b1ed6c3c4f74f15b0e4de2732234eafd050eb1ca. Your Jenkins
pipeline script must extract the commit SHA from the SOURCE-REVISION to be useful. See
the example in the Example Jenkins Job for guidance.

If you can’t use the SOURCE-URL because your Jenkins service cannot make requests into the
Kubernetes cluster, then you can supply the source code URL to the Jenkins job with other
parameters instead. See the following example.

Example Jenkins Job

Add the following parameters to your Jenkins job:

SOURCE-REVISION string

GIT-URL string

Use the following script in your pipeline:

#!/bin/env groovy

pipeline {

  agent {

    kubernetes {

      label 'maven'

    }

  }

  stages {

    stage('Checkout code') {

      steps {

        script {

          sourceUrl = params.SOURCE-REVISION

          indexSlash = sourceUrl.indexOf("/")

          revision = sourceUrl.substring(indexSlash + 1)

        }

        sh "git clone ${params.GIT-URL} target"

        dir("target") {

          sh "git checkout ${revision}"

        }

      }

    }

    stage('Maven test') {

      steps {

Tanzu Application Platform v1.4

VMware by Broadcom 1085



        container('maven') {

          dir("target") {

            // Example tests with maven

            sh "mvn clean test --no-transfer-progress"

          }

        }

      }

    }

  }

}

To configure your Workload to pass the GIT-URL parameter into the Jenkins task:

tanzu apps workload create workload \

  --namespace your-test-namespace \

  --git-branch main \

  --git-repo https://your.git/repository.git \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=test-workload \

  --param-yaml testing_pipeline_matching_labels='{"apps.tanzu.vmware.com/pipeline":"je

nkins-pipeline"}' \

  --param-yaml testing_pipeline_params='{"secret-name":"my-secret","job-name":"jenkins

-job-name","job-params":"[{\"name\":\"GIT_URL\",\"value\":\"https://your.git/repositor

y.git\"}]"}' \

  --type web \

  --yes

The Workload is described in the later Developer Workload section.

Updates to the developer namespace

Create a secret

A secret must be created in the developer namespace with the following properties:

JENKINS-URL required: URL of the Jenkins instance that hosts the job, including the
scheme. For example: https://my-jenkins.com.

USERNAME required: User name of the user that has access to trigger a build on Jenkins.

PASSWORD required: Password of the user that has access to trigger a build on Jenkins.

PEM-CA-CERT optional: The PEM-encoded CA certificate to verify the Jenkins instance
identity.

For example:

apiVersion: v1

kind: Secret

metadata:

  name: MY-SECRET

type: Opaque

stringData:

  url: JENKINS-URL

  username: USERNAME

  password: PASSWORD

  ca-cert: PEM-CA-CERT

You cannot use the Tanzu CLI to create secrets such as this, but you can use the Kubernetes CLI
tool (kubectl) instead.

If you saved the password to a file, and you saved the optional PEM-encoded CA certificate in a
file, here is an example command to create this kind of secret:

Tanzu Application Platform v1.4

VMware by Broadcom 1086



kubectl create secret generic my-secret \

  --from-literal=url=https://jenkins.instance \

  --from-literal=username=literal-username \

  --from-file=password=/path/to/file/with/password.txt \

  --from-file=ca-cert=/path/to/ca-certificate.pem \

Create a Tekton pipeline

The developer must create a Tekton Pipeline object with the following parameters:

source-url, required: An HTTP address where a .tar.gz file containing all the source code
being tested is supplied.

source-revision, required: The revision of the commit or image reference found by the
source-provider.

secret-name, required: The secret that contains the URL, user name, password, and
certificate (optional) to the Jenkins instance that houses the job that is required to run.

job-name, required: The name of the Jenkins job that is required to run.

job-params, required: A list of key-value pairs, encoded as a JSON string, that passes in
parameters needed for the Jenkins job.

Tasks:

jenkins-task, required: This ClusterTask is one of the tasks that the pipeline runs to
trigger the Jenkins job. It is installed in the cluster by the “Out of the Box Templates”
package.

Results:

jenkins-job-url: A string result that outputs the URL of the Jenkins build that the Tekton
task triggered. The jenkins-task ClusterTask populates the output.

For example:

---

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-jenkins-tekton-pipeline

  namespace: developer-namespace

  labels:

    #! This label should be provided to the Workload so that

    #! the supply chain can find this pipeline

    apps.tanzu.vmware.com/pipeline: jenkins-pipeline

spec:

  results:

  - name: jenkins-job-url   #! To show the job URL on the

    #! Tanzu Application Platform GUI

    value: $(tasks.jenkins-task.results.jenkins-job-url)

  params:

  - name: source-url        #! Required

  - name: source-revision   #! Required

  - name: secret-name       #! Required

  - name: job-name          #! Required

  - name: job-params        #! Required

  tasks:

  #! Required: Include the built-in task that triggers the

  #! given job in Jenkins

  - name: jenkins-task

    taskRef:

      name: jenkins-task

      kind: ClusterTask

Tanzu Application Platform v1.4

VMware by Broadcom 1087



    params:

      - name: source-url

        value: $(params.source-url)

      - name: source-revision

        value: $(params.source-revision)

      - name: secret-name

        value: $(params.secret-name)

      - name: job-name

        value: $(params.job-name)

      - name: job-params

        value: $(params.job-params)

Save the earlier YAML definition to a file, for example, pipeline.yaml. Run:

kubectl apply -f pipeline.yaml

Patch the Service Account

The jenkins-task ClusterTask resource uses a container image with the Jenkins Adapter
application to trigger the Jenkins job and wait for it to complete. This container image is distributed
with Tanzu Application Platform on VMware Tanzu Network, but it is not installed at the same time
as the other packages. It is pulled at the time that the supply chain executes the job. As a result, it
does not implicitly have access to the imagePullSecrets with the required credentials.

kubectl patch serviceaccount default \

  --patch '{"imagePullSecrets": [{"name": "tap-registry"}]}' \

  --namespace developer-namespace

These tasks are run by Tekton. Tekton has other methods for configuring the custom service
account credentials used by running tasks, if you prefer.

Developer Workload

Submit your Workload to the same namespace as the Tekton Pipeline defined earlier.

To enable the supply chain to run Jenkins tasks, the Workload must include the following
parameters:

parameters:

  #! Required: selects the pipeline

  - name: testing_pipeline_matching_labels

    value:

      #! This label must match the label on the pipeline created earlier

      apps.tanzu.vmware.com/pipeline: jenkins-pipeline

  #! Required: Passes parameters to pipeline

  - name: testing_pipeline_params

    value:

Important

The ServiceAccount that a developer can configure with their Workload is not
passed to the task and is not used to pull the Jenkins Adapter container image. If
you followed the Tanzu Application Platform Install Guide, then you have a Secret
named tap-registry in each of your cluster’s namespaces. You can patch the
default Service Account in your workload’s namespace so that your supply chain
can pull the Jenkins Adapter image. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1088

https://tekton.dev/docs/pipelines/pipelineruns/#specifying-custom-serviceaccount-credentials


      #! Required: Name of the Jenkins job

      job-name: my-jenkins-job

      #! Required: The secret created earlier to access Jenkins

      secret-name: my-secret

      #! Required: The `job-params` element is required, but the parameter string

      #! might be empty. If empty, then set this value to `[]`.  If non-empty then the

      #! value contains a JSON-encoded list of parameters to pass to the Jenkins job.

      #! Ensure that the quotation marks inside the JSON-encoded string are escaped.

      job-params: "[{\"name\":\"A\",\"value\":\"x\"},{\"name\":\"B\",\"value\":\"y

\"},...]"

You can create the workload by using the apps CLI plug-in:

tanzu apps workload create my-workload-name \

  --namespace developer-namespace \

  --git-branch my-branch \

  --git-repo https://my-source-code-repository \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=my-workload-name \

  --param-yaml testing_pipeline_matching_labels='{"apps.tanzu.vmware.com/pipeline":"je

nkins-pipeline"}' \

  --param-yaml testing_pipeline_params='{"secret-name":"my-secret", "job-name": "jenki

ns-job", "job-params": "SEE BELOW"}'

  --type web

The value of the job-params parameter is a list of zero-or-more parameters that are sent to the
Jenkins job. The parameter is entered into the Workload as a list of name-value pairs. For example:

[{"name":"GIT-URL", "value":"https://github.com/spring-projects/spring-petclinic"}, 

{"name":"GIT-BRANCH", "value":"main"}]

Where:

GIT-URL is the URL of your GitHub repository.

GIT-BRANCH is the branch you want to target.

Watch the quoting of the job-params value closely. In the earlier tanzu apps workload create
example, the job-params value is a string with a JSON structure in it. The value of the --param-yaml
testing_pipeline_params parameter is a JSON string. Add backslash (\) escape characters before
the double quote characters (") in the job-params value.

Example output from the tanzu apps workload create command:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

Important

None of the fields in the Workload resource are implicitly passed to the Jenkins job.
You have to set them in the job-params explicitly. An exception to this is the
SOURCE_URL and SOURCE_REVISION parameters are sent to the Jenkins job implicitly
by the Jenkins Adapter trigger application. For example, you can use the
SOURCE_REVISION to verify which commit SHA to test. See Making a Jenkins Test
Job earlier for details about how to use the Git URL and source revision in a Jenkins
test job.

Tanzu Application Platform v1.4

VMware by Broadcom 1089



      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: my-workload-name

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |  name: my-workload-name

      9 + |  namespace: developer-namespace

     10 + |spec:

     11 + |  params:

     12 + |  - name: testing_pipeline_matching_labels

     13 + |    value:

     14 + |      apps.tanzu.vmware.com/pipeline: jenkins-pipeline

     15 + |  - name: testing_pipeline_params

     16 + |    value:

     17 + |      job-name: jenkins-job

     18 + |      job-params:

     19 + |      - name: param1

     20 + |        value: value1

     21 + |      secret-name: my-secret

     22 + |  source:

     23 + |    git:

     24 + |      ref:

     25 + |        branch: my-branch

     26 + |      url: https://my-source-code-repository

Building container images with Supply Chain
Choreographer
This topic describes the methods you can use to build container images for Supply Chain
Choreographer for Tanzu.

Methods for building container images
You can build a container image by using:

A Maven artifact. See Building from source

A Dockerfile based build. See Dockerfile-based builds

Tanzu Build Service with buildpacks. See Tanzu Build Service Integration

Building from source with Supply Chain Choreographer
You can build from source by providing source code for the workload with any Supply Chain
package.

You can provide source code for the workload from one of three places:

1. A Git repository.

2. A directory in your local computer’s file system.

3. A Maven repository.

Supply Chain

-- fetch source                 * either from Git or local directory

  -- test

    -- build

      -- scan

        -- apply-conventions

          -- push config

This document provides details about each approach.

Tanzu Application Platform v1.4

VMware by Broadcom 1090



Git source
To provide source code from a Git repository to the supply chains, you must fill
workload.spec.source.git. With the Tanzu CLI, you can do so by using the following flags:

--git-branch: branch within the Git repository to checkout

--git-commit: commit SHA within the Git repository to checkout

--git-repo: Git URL to remote source code

--git-tag: tag within the Git repository to checkout

For example, after installing ootb-supply-chain-basic, to create a Workload the source code for
which comes from the main branch of the github.com/vmware-tanzu/application-accelerator-
samples Git repository, and the subdirectory tanzu-java-web-app run:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --git-repo ${GIT_PROJECT_URL} \

  --sub-path tanzu-java-web-app \

  --git-branch ${GIT_BRANCH}

Expect to see similar output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

    10 + |spec:

    11 + |  source:

    12 + |    git:

    13 + |      ref:

    14 + |        branch: main

    15 + |      url: https://github.com/my/tanzu-project.git

Private GitRepository

To fetch source code from a repository that requires credentials, you must provide those by using a
Kubernetes secret object that the GitRepository object created for that workload references. See
How It Works to learn more about detecting changes to the repository.

Note

To provide a prebuilt container image instead of building the application from the
beginning by using the supply chain, see Using an existing image.

Important

The Git repository URL must include the scheme: http://, https://, or ssh://.

Tanzu Application Platform v1.4

VMware by Broadcom 1091



Workload/tanzu-java-web-app

└─GitRepository/tanzu-java-web-app

                   └───────> secretRef: {name: GIT-SECRET-NAME}

                                                   |

                                      either a default from TAP installation or

                                           gitops_ssh_secret Workload parameter

Platform operators who install the Out of the Box Supply Chain packages by using Tanzu
Application Platform profiles can customize the default name of the secret (git-ssh) by editing the
corresponding ootb_supply_chain* property in the tap-values.yaml file:

ootb_supply_chain_basic:

  gitops:

    ssh_secret: GIT-SECRET-NAME

For platform operators who install the ootb-supply-chain-* package individually by using tanzu
package install, they can edit the ootb-supply-chain-*-values.yml as follows:

gitops:

  ssh_secret: GIT-SECRET-NAME

You can also override the default secret name directly in the workload by using the
gitops_ssh_secret parameter, regardless of how Tanzu Application Platform is installed. You can
use the --param flag in Tanzu CLI. For example:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --git-repo ${GIT_PROJECT_URL} \

  --git-branch ${GIT_BRANCH} \

  --param gitops_ssh_secret=SECRET-NAME

Expect to see similar output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

    10 + |spec:

    11 + |  params:

    12 + |  - name: gitops_ssh_secret  #! parameter that overrides the default

    13 + |    value: GIT-SECRET-NAME     #! secret name

    14 + |  source:

    15 + |    git:

    16 + |      ref:

    17 + |        branch: main

    18 + |      url: https://github.com/my/tanzu-project.git

Note

A secret reference is only provided to GitRepository if gitops_ssh_secret is set to
a non-empty string in some fashion, either by a package property or a workload

Tanzu Application Platform v1.4

VMware by Broadcom 1092



After defining the name of the Kubernetes secret, you can define the secret.

HTTP(S) Basic-authentication and Token-based authentication

Despite both the package value and workload parameter being called gitops.ssh_secret, you can
use HTTP(S) transports as well:

1. Ensure that the repository in the Workload specification uses http:// or https:// schemes
in any URLs that relate to the repositories. For example, https://github.com/my-org/my-
repo instead of github.com/my-org/my-repo or ssh://github.com:my-org/my-repo.

2. In the same namespace as the workload, create a Kubernetes secret object of type
kubernetes.io/basic-auth with the name matching the one expected by the supply chain.
For example:

apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME

  annotations:

    tekton.dev/git-0: GIT-SERVER        # ! required

type: kubernetes.io/basic-auth

stringData:

  username: GIT-USERNAME

  password: GIT-PASSWORD

3. With the secret created with the name matching the one configured for
gitops.ssh_secret, attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

For more information about the credentials and setting up the Kubernetes secret, see Git
Authentication’s HTTP section.

SSH authentication

Aside from using HTTP(S) as a transport, you can also use SSH:

1. Ensure that the repository URL in the workload specification uses ssh:// as the scheme in
the URL, for example, ssh://git@github.com:my-org/my-repo.git

2. Create a Kubernetes secret object of type kubernetes.io/ssh-auth:

apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME

  annotations:

parameter. To force a GitRepository to not reference a secret, set the value to an
empty string ("").

Tanzu Application Platform v1.4

VMware by Broadcom 1093



    tekton.dev/git-0: GIT-SERVER

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: SSH-PRIVATE-KEY     # private key with push-permissions

  identity: SSH-PRIVATE-KEY           # private key with pull permissions

  identity.pub: SSH-PUBLIC-KEY        # public of the `identity` private key

  known_hosts: GIT-SERVER-PUBLIC-KEYS # git server public keys

3. With the secret created with the name matching the one configured for
gitops.ssh_secret, attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

For information about how to generate the keys and set up SSH with the Git server, see Git
Authentication’s SSH section.

How it works

With the workload.spec.source.git filled, the supply chain takes care of managing a child
GitRepository object that keeps track of commits made to the Git repository stated in
workload.spec.source.git.

For each revision found, gitrepository.status.artifact gets updated providing information about
an HTTP endpoint that the controller makes available for other components to fetch the source
code from within the cluster.

The digest of the latest commit:

apiVersion: source.toolkit.fluxcd.io/v1beta1

kind: GitRepository

metadata:

  name: tanzu-java-web-app

spec:

  gitImplementation: go-git

  ignore: '!.git'

  interval: 1m0s

  ref: {branch: main}

  timeout: 20s

  url: https://github.com/vmware-tanzu/application-accelerator-samples

status:

  artifact:

    checksum: 375c2daee5fc8657c5c5b49711a8e94d400994d7

    lastUpdateTime: "2022-04-07T15:02:30Z"

    path: gitrepository/default/tanzu-java-web-app/d85df1fc.tar.gz

    revision: main/d85df1fc28c6b86ca54bd613f55991645d3b257c

    url: http://source-controller.flux-system.svc.cluster.local./gitrepository/defaul

t/tanzu-java-web-app/d85df1fc.tar.gz

  conditions:

  - lastTransitionTime: "2022-04-07T15:02:30Z"

    message: 'Fetched revision: main/d85df1fc28c6b86ca54bd613f55991645d3b257c'

    reason: GitOperationSucceed

    status: "True"

Tanzu Application Platform v1.4

VMware by Broadcom 1094



    type: Ready

  observedGeneration: 1

Cartographer passes the artifact URL and revision to further components in the supply chain. Those
components must consume the source code from an internal URL where a tarball with the source
code is fetched, without having to process any Git-specific details in multiple places.

Workload parameters

You can pass the following parameters by using the workload object’s workload.spec.params field
to override the default behavior of the GitRepository object created for keeping track of the
changes to a repository:

gitImplementation: name of the Git implementation (either libgit2 or go-git) to fetch the
source code.

gitops_ssh_secret: name of the secret in the same namespace as the workload where
credentials to fetch the repository are found.

You can also customize the following parameters with defaults for the whole cluster. Do this by
using properties for either tap-values.yaml when installing supply chains by using Tanzu
Application Platform profiles, or ootb-supply-chain-*-values.yml when installing the OOTB
packages individually):

git_implementation: the same as gitImplementation workload parameter

gitops.ssh_secret: the same as gitops_ssh_secret workload parameter

Local source

You can provide source code from a local directory such as, from a directory in the developer’s file
system. The Tanzu CLI provides two flags to specify the source code location in the file system and
where the source code is pushed to as a container image:

--local-path: path on the local file system to a directory of source code to build for the
workload

--source-image: destination image repository where source code is staged before being
built

This way, whether the cluster the developer targets is local (a cluster in the developer’s machine)
or not, the source code is made available by using a container image registry.

For example, if a developer has source code under the current directory (.) and access to a
repository in a container image registry, you can create a workload as follows:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --local-path . \

  --source-image $REGISTRY/test

Publish source in "." to "REGISTRY-SERVER/REGISTRY-REPOSITORY"?

It may be visible to others who can pull images from that repository

  Yes

Publishing source in "." to "REGISTRY-SERVER/REGISTRY-REPOSITORY"...

Published source

Create workload:

      1 + |---

Tanzu Application Platform v1.4

VMware by Broadcom 1095



      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

    10 + |spec:

    11 + |  source:

    12 + |    image: REGISTRY-SERVER/REGISTRY-REPOSITORY:latest@<digest>

Where:

REGISTRY-SERVER is the container image registry.

REGISTRY-REPOSITORY is the repository in the container image registry.

Authentication

Both the cluster and the developer’s machine must be configured to properly provide credentials
for accessing the container image registry where the local source code is published to.

Developer

The Tanzu CLI must push the source code to the container image registry indicated by --source-
image. To do so, the CLI must find the credentials, so the developer must configure their machine
accordingly.

To ensure credentials are available, use docker to make the necessary credentials available for the
Tanzu CLI to perform the image push. Run:

docker login REGISTRY-SERVER -u REGISTRY-USERNAME -p REGISTRY-PASSWORD

Supply chain components

Aside from the developer’s ability to push source code to the container image registry, the cluster
must also have the proper credentials, so it can pull that container image, unpack it, run tests, and
build the application.

To provide the cluster with the credentials, point the ServiceAccount used by the workload at the
Kubernetes secret that contains the credentials.

If the registry that the developer targets is the same one for which credentials were provided while
setting up the workload namespace, no further action is required. Otherwise, follow the same steps
as recommended for the application image.

How it works

A workload specifies that source code must come from an image by setting
workload.spec.source.image to point at the registry provided by using --source-image. Instead of
having a GitRepository object created, an ImageRepository object is instantiated, with its
specification filled in such a way to keep track of images pushed to the registry provided by the
user.

Take the following workload as an example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: app

Tanzu Application Platform v1.4

VMware by Broadcom 1096



  labels:

    app.kubernetes.io/part-of: app

    apps.tanzu.vmware.com/workload-type: web

spec:

  source:

    image: 10.188.0.3:5000/test:latest

Instead of a GitRepository object, an ImageRepository is created:

  Workload/app

  │

- ├─GitRepository/app

+ ├─ImageRepository/app

  │

  ├─Image/app

  │ ├─Build/app-build-1

  │ │ └─Pod/app-build-1-build-pod

  │ ├─PersistentVolumeClaim/app-cache

  │ └─SourceResolver/app-source

  │

  ├─PodIntent/app

  │

  ├─ConfigMap/app

  │

  └─Runnable/app-config-writer

    └─TaskRun/app-config-writer-2zj7w

      └─Pod/app-config-writer-2zj7w-pod

ImageRepository provides the same semantics as GitRepository, except that it looks for source
code in container image registries rather than Git repositories.

Maven Artifact

This approach aids integration with existing CI systems, such as Jenkins, and can pull artifacts from
existing Maven repositories, including Jfrog Artifactory.

There are no dedicated fields in the Workload resource for specifying the Maven artifact
configuration. You must fill in the name/value pairs in the params structure.

For example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: my-workload

  labels:

    apps.tanzu.vmware.com/workload-type: web

spec:

  params:

  - name: maven

    value:

      groupId: com.example

      artifactId: springboot-initial

      version: RELEASE      # latest 'RELEASE' or a specific version (e.g.: '1.2.2')

      type: jar             # optional (defaults to 'jar')

      classifier: sources   # optional

There are two ways to create a workload that defines a specific version of a Maven artifact as
source in the Tanzu CLI.

The first way is to define the source through CLI flags. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1097



tanzu apps workload apply my-workload \

      --maven-artifact springboot-initial \

      --maven-version 2.6.0 \

      --maven-group com.example \

      --type web --app spring-boot-initial -y

Another flag that can be used alongside the others in this type of command is --maven-type, which
refers to the Maven packaging type and defaults to jar if not specified.

The second one is through complex params (in JSON or YAML format). To specify the Maven info
with this method, run:

tanzu apps workload apply my-workload \

      --param-yaml maven='{"artifactId": "springboot-initial", "version": "2.6.0", "gr

oupId": "com.example"}'\

      --type web --app spring-boot-initial -y

To create a workload that defines the RELEASE version of a maven artifact as source, run:

tanzu apps workload apply my-workload \

      --param-yaml maven='{"artifactId": "springboot-initial", "version": "RELEASE", 

"groupId": "com.example"}'\

      --type web --app spring-boot-initial -y

The Maven repository URL and required credentials are defined in the supply chain, not the
workload. For more information, see Installing OOTB Basic.

Maven Repository Secret

The MavenArtifact only supports authentication using basic authentication.

Additionally, MavenArtifact supports security using the TLS protocol. The Application Operator can
configure the MavenArtifact to use a custom, or self-signed certificate authority (CA).

The MavenArtifact expects that all of the earlier credentials are provided in one secret, formatted
as shown later:

---

apiVersion: v1

kind: Secret

metadata:

  name: maven-credentials

type: Opaque

data:

  username: <BASE64>  # basic auth user name

  password: <BASE64>  # basic auth password

  caFile: <BASE64>    # PEM Encoded certificate data for custom CA

You cannot use the Tanzu CLI to create secrets such as this, but you can use the kubectl CLI
instead.

For example:

kubectl create secret generic maven-credentials \

  --from-literal=username=literal-username \

  --from-file=password=/path/to/file/with/password.txt \

  --from-file=caFile=/path/to/ca-certificate.pem

Use Dockerfile-based builds with Supply Chain
Choreographer

Tanzu Application Platform v1.4

VMware by Broadcom 1098



This topic explains how you can use Dockerfile-based builds with Supply Chain Choreographer.

For any source-based supply chains, when you specify the new dockerfile parameter in a
workload, the builds switch from using Kpack to using Kaniko. Source-based supply chains are
supply chains that don’t take a pre-built image. Kaniko is an open-source tool for building container
images from a Dockerfile without running Docker inside a container.

Use Dockerfile-based builds with Supply Chain
Choreographer

Parameter name Description Example

dockerfile relative path to the Dockerfile file in the build context
./Dockerfile

docker_build_conte

xt

relative path to the directory where the build context is
.

docker_build_extra

_args

list of flags to pass directly to Kaniko (such as providing
arguments, and so on to a build) - --build-arg=MY_KEY

=MY_VALUE

To build a container image from the github.com/my-foo/bar repository where the Dockerfile
resides in the root of that repository, you can switch from using Kpack to building from that
Dockerfile by passing the dockerfile parameter:

$ tanzu apps workload create my-foo \

  --git-repo https://github.com/my-foo/bar \

  --git-branch dev \

  --param dockerfile=./Dockerfile \

  --type web

🔎 Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: my-foo

      8 + |  namespace: dev

      9 + |spec:

     10 + |  params:

     11 + |  - name: dockerfile

     12 + |    value: ./Dockerfile

     13 + |  source:

     14 + |    git:

     15 + |      ref:

     16 + |        branch: dev

     17 + |      url: https://github.com/my-foo/bar

Similarly, if the context to be used for the build must be set to a different directory within the
repository, you can make use of the docker_build_context to change that:

$ tanzu apps workload create my-foo \

  --git-repo https://github.com/my-foo/bar \

  --git-branch dev \

  --param dockerfile=MyDockerfile \

  --param docker_build_context=./src

Tanzu Application Platform v1.4

VMware by Broadcom 1099



OpenShift
Despite that Kaniko can perform container image builds without needing either a Docker daemon
or privileged containers, it does require the use of:

Capabilities usually dropped from the more restrictive SecurityContextConstraints (SCC)
enabled by default in OpenShift.

The root user.

To overcome such limitations imposed by the default unprivileged SecurityContextConstraints
(SCC), Tanzu Application Platform installs:

SecurityContextConstraints/ootb-templates-kaniko-restricted-v2-with-anyuid with
enough extra privileges for Kaniko to operate.

ClusterRole/ootb-templates-kaniko-restricted-v2-with-anyuid to permit the use of such
SCC to any actor binding to that cluster role.

Each developer namespace needs a role binding that binds the role to an actor: ServiceAccount.
For more information, see Set up developer namespaces to use your installed packages.

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: workload-kaniko-scc

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: ootb-templates-kaniko-restricted-v2-with-anyuid

subjects:

  - kind: ServiceAccount

    name: default

With the SCC created and the ServiceAccount bound to the role that permits the use of the SCC,
OpenShift accepts the pods created to run Kaniko to build the container images.

Tanzu Build Service integration for Supply Chain
Choreographer

This topic describes how you can configure and use the Tanzu Build Service integration for Supply
Chain Choreographer.

Important

This feature has no platform operator configurations to be passed through tap-
values.yaml, but if ootb-supply-chain-*.registry.ca_cert_data or
shared.ca_cert_data is configured in tap-values, the certificates are considered
when pushing the container image.

Note

Such restrictions are due to well-known limitations in how Kaniko performs the
image builds, and there is currently no solution. For more information, see
kaniko#105.

Tanzu Application Platform v1.4

VMware by Broadcom 1100

https://github.com/GoogleContainerTools/kaniko/issues/105


By default, the Out of the Box supply chains (ootb-supply-chain-*) in Tanzu Application Platform
make use of Tanzu Build Service for building container images out of source code.

You can configure a platform operator by using tap-values.yaml:

1. The default container image registry where application images must be pushed:

ootb_supply_chain_basic:

  registry:

    server: <>

    repository: <>

2. The name of the Kpack ClusterBuilder used by default:

ootb_supply_chain_basic:

  cluster_builder: my-custom-cluster-builder

You can configure an application operator by using Workload:

spec.build.env are the environment variables used during the build:

kind: Workload

apiVersion: carto.run/v1alpha1

metadata:

name: tanzu-java-web-app

spec:

# ...

build:

  env:

    - name: PORT

      value: "8080"

    - name: CA_CERTIFICATE

      valueFrom:

        secretKeyRef:

          name: secret-in-the-same-namespace-as-workload

          key: crt.pem

spec.params.clusterBuilder is the name of the ClusterBuilder to use for builds of that
Workload:

kind: Workload

apiVersion: carto.run/v1alpha1

metadata:

name: tanzu-java-web-app

spec:

# ...

params:

  - name: clusterBuilder

    value: nodejs-cluster-builder

spec.params.buildServiceBindings is the object carrying the definition of a list of service
bindings to use at build time:

---

kind: Workload

apiVersion: carto.run/v1alpha1

metadata:

name: tanzu-java-web-app

spec:

# ...

params:

  - name: buildServiceBindings

    value:

Tanzu Application Platform v1.4

VMware by Broadcom 1101



      - name: settings-xml

        kind: Secret

        apiVersion: v1

---

apiVersion: v1

kind: Secret

metadata:

name: settings-xml

type: service.binding/maven

stringData:

type: maven

provider: sample

settings.xml: <settings>...</settings>

Use an existing image with Supply Chain Choreographer

This topic describes how you can use an existing image with Supply Chain Choreographer.

For apps that build container images in a predefined way, the supply chains in the Out of the Box
packages enable you to specify a prebuilt image. This uses the same stages as any other workload.

Requirements for prebuilt images

Supply chains aim at Knative as the runtime for the container image you provide. Your app must
adhere to the following Knative standards:

Container port listens on port 8080

The Knative service is created with the container port set to 8080 in the pod template spec
Therefore, your container image must have a socket listening on 8080.

ports:

  - containerPort: 8080

    name: user-port

    protocol: TCP

Non-privileged user ID

By default, the container initiated as part of the pod is run as user 1000.

securityContext:

  runAsUser: 1000

Arguments other than the image’s default ENTRYPOINT

In most cases the container image runs using the ENTRYPOINT it was configured with. In the
case of Dockerfiles, the combination of ENTRYPOINT and CMD.

If you need extra configuration for your image, use --env flags with the tanzu apps
workload create command or modify spec.env in your workload.yaml file.

Note

See the Kpack ServiceBinding documentation in GitHub for more details about
build-time service bindings.

these configuration only take effect when Kpack is used for building a container
image. If you use Dockerfile-based builds by leveraging the dockerfile parameter,
see dockerfile-based builds for more information.

Tanzu Application Platform v1.4

VMware by Broadcom 1102

https://github.com/pivotal/kpack/blob/main/docs/servicebindings.md


Credentials for pulling the container image at runtime

The image you provide is not relocated to an internal container image registry. Any
components associated with the image must have the necessary credentials to pull it. For
the service accounts used for the workload and deliverable, you must attach a secret that
contains the credentials to pull the container image.

If the image is hosted in a registry that has certificates signed by a private certificate
authority, the components of the supply chains, delivery, and the Kubernetes nodes in the
run cluster must trust the certificate.

Configure your workload to use a prebuilt image

To select a prebuilt image, set the spec.image field in your workload.yaml file with the name of the
container image that contains the app to deploy by running:

tanzu apps workload create WORKLOAD-NAME \

  --app APP-NAME \

  --type TYPE \

  --image IMAGE

Where:

WORKLOAD-NAME is the name you choose for your workload.

APP-NAME is the name of your app.

TYPE is the type of your app.

IMAGE is the container image that contains the app you want to deploy.

For example, if you have an image named IMAGE, you can create a workload with the flag
mentioned earlier:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --image IMAGE

Expected output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: hello-world

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

     10 + |spec:

     11 + |  image: IMAGE

When you run tanzu apps workload create command with the --image field, the source resolution
and build phases of the supply chain are skipped.

Examples

The following examples show ways that you can build container images for a Java-based app and
complete the supply chains to a running service.

Tanzu Application Platform v1.4

VMware by Broadcom 1103



Using a Dockerfile

Using a Dockerfile is the most common way of building container images. You can select a base
image, on top of which certain operations must occur, such as compiling code, and mutate the
contents of the file system to a final container image that has a build of your app and any required
runtime dependencies.

Here you use the maven base image for compiling your app code, and then the minimal distroless
java17-debian11 image for providing a JRE that can run your app when it is built.

After building the image, you push it to a container image registry, and then reference it in the
workload.

1. Create a Dockerfile that describes how to build your app and make it available as a
container image:

ARG BUILDER_IMAGE=maven

ARG RUNTIME_IMAGE=gcr.io/distroless/java17-debian11

FROM $BUILDER_IMAGE AS build

        ADD . .

        RUN unset MAVEN_CONFIG && ./mvnw clean package -B -DskipTests

FROM $RUNTIME_IMAGE AS runtime

        COPY --from=build /target/demo-0.0.1-SNAPSHOT.jar /demo.jar

        CMD [ "/demo.jar" ]

2. Push the container image to a container image registry by running:

docker build -t IMAGE .

docker push IMAGE

3. Create a workload by running:

tanzu apps workload create tanzu-java-web-app \

  --type web \

  --app tanzu-java-web-app \

  --image IMAGE

Expected output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: hello-world

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

     10 + |spec:

     11 + |  image: IMAGE

4. Run the following workload:

tanzu apps workload get tanzu-java-web-app

Tanzu Application Platform v1.4

VMware by Broadcom 1104



Expected output:

# tanzu-java-web-app: Ready

---

lastTransitionTime: "2022-04-06T19:32:46Z"

message: ""

reason: Ready

status: "True"

type: Ready

Workload pods

NAME                                                   STATUS      RESTARTS   A

GE

tanzu-java-web-app-00001-deployment-7d7df5ccf5-k58rt   Running     0          3

2s

tanzu-java-web-app-config-writer-xjmvw-pod             Succeeded   0          8

9s

Workload Knative Services

NAME                 READY   URL

tanzu-java-web-app   Ready   http://tanzu-java-web-app.default.example.com

Using Spring Boot’s build-image Maven target

You can use Spring Boot’s build-image target to build a container image that runs your app. The
build-image target must use a Dockerfile.

For example, using the same sample repository as mentioned before (https://github.com/vmware-
tanzu/application-accelerator-samples/tree/main/tanzu-java-web-app):

1. Build the image by running the following command from the root of the repository:

IMAGE=ghcr.io/kontinue/hello-world:tanzu-java-web-app

./mvnw spring-boot:build-image -Dspring-boot.build-image.imageName=$IMAGE

Expected output:

[INFO] Scanning for projects...

[INFO]

[INFO] --------------------------< com.example:demo >--------------------------

[INFO] Building demo 0.0.1-SNAPSHOT

[INFO] --------------------------------[ jar ]---------------------------------

[INFO]

...

[INFO]

[INFO] Successfully built image 'ghcr.io/kontinue/hello-world:tanzu-java-web-ap

p'

[INFO]

[INFO] ------------------------------------------------------------------------

[INFO] BUILD SUCCESS

[INFO] ------------------------------------------------------------------------

[INFO] Total time:  39.257 s

[INFO] Finished at: 2022-04-06T19:40:16Z

[INFO] ------------------------------------------------------------------------

2. Push the image you built to the container image registry by running:

IMAGE=ghcr.io/kontinue/hello-world:tanzu-java-web-app

docker push $IMAGE

Expected output:

Tanzu Application Platform v1.4

VMware by Broadcom 1105



The push refers to repository [ghcr.io/kontinue/hello-world]

1dc94a70dbaa: Preparing

...

9d6787a516e7: Pushed

tanzu-java-web-app: digest: sha256:7140722ea396af69fb3d0ad12e9b4419bc3e67d9c5d8

a2f6a1421decc4828ace size: 4497

After you push the container image, you see the same results as building the image using a
Dockerfile.

For more information about building container images for a Spring Boot app, see Spring Boot with
Docker

About Out of the Box Supply Chains

In Tanzu Application Platform, the ootb-supply-chain-basic, ootb-supply-chain-testing, and
ootb-supply-chain-testing-scanning packages each receive a new supply chain that provides a
prebuilt container image for your app.

ootb-supply-chain-basic

    (cluster)  basic-image-to-url   ClusterSupplyChain            (!) new

    ^          source-to-url        ClusterSupplyChain

ootb-supply-chain-testing

    (cluster)  testing-image-to-url  ClusterSupplyChain           (!) new

    ^          source-test-to-url    ClusterSupplyChain

ootb-supply-chain-testing-scanning

    (cluster)  scanning-image-scan-to-url    ClusterSupplyChain   (!) new

    ^          source-test-scan-to-url       ClusterSupplyChain

To leverage the supply chains that expect a prebuilt image, you must set the spec.image field in the
workload to the name of the container image that contains the app to deploy.

The new supply chains use a Cartographer feature that lets VMware increase the specificity of
supply chain selection by using the matchFields selector rule.

The selection takes place as follows:

ootb-supply-chain-basic

From source: label apps.tanzu.vmware.com/workload-type: web

Prebuilt image: label apps.tanzu.vmware.com/workload-type: web and set
spec.image in the workload.yaml

ootb-supply-chain-testing

From source: labels apps.tanzu.vmware.com/workload-type: web and
apps.tanzu.vmware.com/has-tests: true

Prebuilt image: label apps.tanzu.vmware.com/workload-type: web and set
spec.image in the workload.yaml

ootb-supply-chain-testing-scanning

From source: labels apps.tanzu.vmware.com/workload-type: web and
apps.tanzu.vmware.com/has-tests: true

Tanzu Application Platform v1.4

VMware by Broadcom 1106

https://spring.io/guides/topicals/spring-boot-docker/


Prebuilt image: label apps.tanzu.vmware.com/workload-type: web and set
spec.image in the workload.yaml

Workloads that already work with the supply chains before Tanzu Application Platform v1.1 continue
to work with the same supply chain. Workloads that bring a prebuilt container image must set
spec.image in the workload.yaml.

Understanding the supply chain for a prebuilt image

An ImageRepository object is created to keep track of new images pushed under that name.
ImageRepository makes the image available to further resources in the supply chain, providing the
final digest of the latest image.

Whenever a new image is pushed to the workload’s image location, the ImageRepository detects
the change. The image is then available to further resources by updating its
imagerepository.status.artifact.revision with an absolute reference to that image.

For example, if you create a workload using an image named hello-world, tagged tanzu-java-web-
app hosted under ghcr.io in the kontinue repository:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --image ghcr.io/kontinue/hello-world:tanzu-java-web-app

After a couple seconds, you see the ImageRepository object created to keep track of images
named ghcr.io/kontinue/hello-world:tanzu-java-web-app:

Workload/tanzu-java-web-app

├─ImageRepository/tanzu-java-web-app

├─PodIntent/tanzu-java-web-app

├─ConfigMap/tanzu-java-web-app

└─Runnable/tanzu-java-web-app-config-writer

  └─TaskRun/tanzu-java-web-app-config-writer-p2lzv

    └─Pod/tanzu-java-web-app-config-writer-p2lzv-pod

If you inspect the status in status.resources in the workload.yaml, you see the image-provider
resource promoting the image it found to further resources:

apiVersion: carto.run/v1alpha1

kind: Workload

spec:

  image: ghcr.io/kontinue/hello-world:tanzu-java-web-app

status:

  resources:

    - name: image-provider

      outputs:

        # output being made available to further resources in the supply chain

        # (in this case, the latest image it found under that name).

        #

        - name: image

          lastTransitionTime: "2022-04-01T15:05:01Z"

          preview: ghcr.io/kontinue/hello-world:tanzu-java-web-app@sha256:9fb930a...

      # reference to the object managed by the supply chain for this

      # resource

      #

      stampedRef:

        apiVersion: source.apps.tanzu.vmware.com/v1alpha1

        kind: ImageRepository

        name: tanzu-java-web-app

        namespace: workload

Tanzu Application Platform v1.4

VMware by Broadcom 1107



      # reference to the template that defined how this object should look

      # like

      #

      templateRef:

        apiVersion: carto.run/v1alpha1

        kind: ClusterImageTemplate

        name: image-provider-template

The image found by the ImageRepository object is carried through the supply chain to the final
configuration. This is pushed to either a Git repository or image registry so that it is deployed in a
run cluster.

Git authentication

To either fetch or push source code from or to a repository that requires credentials, you must
provide those through a Kubernetes secret object referenced by the intended Kubernetes object
created for performing the action.

The following sections provide details about how to appropriately set up Kubernetes secrets for
carrying those credentials forward to the proper resources.

HTTP
For any action upon an HTTP(s)-based repository, create a Kubernetes secret object of type
kubernetes.io/basic-auth as follows:

apiVersion: v1

kind: Secret

metadata:

  name: SECRET-NAME

  annotations:

    tekton.dev/git-0: GIT-SERVER        # ! required

type: kubernetes.io/basic-auth          # ! required

stringData:

  username: GIT-USERNAME

  password: GIT-PASSWORD

For example, assuming you have a repository called kontinue/hello-world on GitHub that requires
authentication, and you have an access token with the privileges of reading the contents of the
repository, you can create the secret as follows:

apiVersion: v1

kind: Secret

Note

The image name matches the image name supplied in the spec.image field in the
workload.yaml, but also includes the digest of the latest image found under the tag.
If a new image is pushed to the same tag, you see the ImageRepository resolving
the name to a different digest corresponding to the new image pushed.

Important

For both HTTP(s) and SSH, do not use the same server for multiple secrets to avoid
a Tekton error.

Tanzu Application Platform v1.4

VMware by Broadcom 1108



metadata:

  name: git-secret

  annotations:

    tekton.dev/git-0: https://github.com

type: kubernetes.io/basic-auth

stringData:

  username: GITHUB-USERNAME

  password: GITHUB-ACCESS-TOKEN

After you create the secret, attach it to the ServiceAccount configured for the workload by
including it in its set of secrets. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

SSH

Aside from using HTTP(S) as a transport, the supply chains also allow you to use SSH.

1. To provide the credentials for any Git operations with SSH, create the Kubernetes secret as
follows:

apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME

  annotations:

    tekton.dev/git-0: GIT-SERVER

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: SSH-PRIVATE-KEY     # private key with push-permissions

  identity: SSH-PRIVATE-KEY           # private key with pull permissions

  identity.pub: SSH-PUBLIC-KEY        # public of the `identity` private key

  known_hosts: GIT-SERVER-PUBLIC-KEYS # Git server public keys

2. Generate a new SSH keypair: identity and identity.pub.

Note

In this example, you use an access token because GitHub deprecates basic
authentication with plain user name and password. For more information, see
Creating a personal access token on GitHub.

Important

To use the pull request feature, you must use HTTP(S) authentication with an
access token.

Tanzu Application Platform v1.4

VMware by Broadcom 1109

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token


ssh-keygen -t ecdsa -b 521 -C "" -f "identity" -N ""

3. Go to your Git provider and add the identity.pub as a deployment key for the repository of
interest or add to an account that has access to it. For example, for GitHub, visit
https://github.com/<repository>/settings/keys/new.

4. Gather public keys from the provider, for example, GitHub:

ssh-keyscan github.com > ./known_hosts

5. Create the Kubernetes secret by using the contents of the files in the first step:

apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME

  annotations: {tekton.dev/git-0: GIT-SERVER}

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: SSH-PRIVATE-KEY

  identity: SSH-PRIVATE-KEY

  identity.pub: SSH-PUBLIC-KEY

  known_hosts: GIT-SERVER-PUBLIC-KEYS

For example, edit the credentials:

apiVersion: v1

kind: Secret

metadata:

  name: git-ssh

  annotations: {tekton.dev/git-0: github.com}

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: |

    -----BEGIN OPENSSH PRIVATE KEY-----

    AAAA

    ....

    ....

    -----END OPENSSH PRIVATE KEY-----

  known_hosts: |

    <known hosts entrys for git provider>

  identity: |

    -----BEGIN OPENSSH PRIVATE KEY-----

    AAAA

    ....

    ....

    -----END OPENSSH PRIVATE KEY-----

  identity.pub: ssh-ed25519 AAAABBBCCCCDDDDeeeeFFFF user@example.com

6. After you create the secret, attach it to the ServiceAccount configured for the workload by
including it in its set of secrets. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

Note

Keys of type SHA-1/RSA are recently deprecated by GitHub.

Tanzu Application Platform v1.4

VMware by Broadcom 1110



  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

Read more on Git

For information about Git, see Git Reference.

Author your supply chains

The Out of the Box Supply Chain, Delivery Basic, and Templates Supply Chain Choreographer
packages give you Kubernetes objects that cover a reference path to production. Because VMware
recognizes that you have your own needs, these objects are customizable, including individual
templates for each resource, whole supply chains, or delivery objects.

Depending on how you installed Tanzu Application Platform, there are different ways to customize
the Out of the Box Supply Chains. The following sections describe the ways supply chains and
templates are authored within the context of profile-based Tanzu Application Platform installations.

Providing your own supply chain

To create a new supply chain and make it available for workloads, ensure that the supply chain does
not conflict with those installed on the cluster, as those objects are cluster-scoped.

If this is your first time creating a supply chain, follow the tutorials from the Cartographer
documentation.

Any supply chain installed in a Tanzu Application Platform cluster might encounter two possible
cases of collisions:

object name: Supply chains are cluster scoped, such as any Cartographer resource prefixed
with Cluster. So the name of the custom supply chain must be different from the ones
provided by the Out of the Box packages.

Either create a supply chain whose name is different, or remove the installation of the
corresponding ootb-supply-chain-* from the Tanzu Application Platform.

workload selection: A workload is reconciled against a particular supply chain based on a
set of selection rules as defined by the supply chains. If the rules for the supply chain to
match a workload are ambiguous, the workload does not make any progress.

Either create a supply chain whose selection rules are different from the ones the Out of
the Box Supply Chain packages use, or remove the installation of the corresponding ootb-
supply-chain-* from Tanzu Application Platform.

See Selectors.

For Tanzu Application Platform 1.2, the following selection rules are in place for the supply chains of
the corresponding packages:

ootb-supply-chain-basic

ClusterSupplyChain/basic-image-to-url

label apps.tanzu.vmware.com/workload-type: web

workload.spec.image text box set

ClusterSupplyChain/source-to-url

Tanzu Application Platform v1.4

VMware by Broadcom 1111

https://cartographer.sh/docs/v0.3.0/tutorials/first-supply-chain/
https://cartographer.sh/docs/v0.3.0/architecture/#selectors


label apps.tanzu.vmware.com/workload-type: web

ootb-supply-chain-testing

ClusterSupplyChain/testing-image-to-url

label apps.tanzu.vmware.com/workload-type: web

workload.spec.image text box set

ClusterSupplyChain/source-test-to-url

label apps.tanzu.vmware.com/workload-type: web

label apps.tanzu.vmware.com/has-test: true

ootb-supply-chain-testing-scanning

ClusterSupplyChain/scanning-image-scan-to-url

label apps.tanzu.vmware.com/workload-type: web

workload.spec.image text box set

ClusterSupplyChain/source-test-scan-to-url

label apps.tanzu.vmware.com/workload-type: web

label apps.tanzu.vmware.com/has-test: true

For details about how to edit an existing supply chain, see Modifying an Out of the Box Supply
Chain section.

You can exclude a supply chain package from the installation to prevent the conflicts mentioned
earlier, by using the excluded_packages property in tap-values.yaml. For example:

# add to exclued_packages `ootb-*` packages you DON'T want to install

# excluded_packages:

  - ootb-supply-chain-basic.apps.tanzu.vmware.com

  - ootb-supply-chain-testing.apps.tanzu.vmware.com

  - ootb-supply-chain-testing-scanning.apps.tanzu.vmware.com

# comment out remove the `supply_chain` property

#

# supply_chain: ""

Providing your own templates
Similar to supply chains, Cartographer templates (Cluster*Template resources) are cluster-scoped,
so you must ensure that the new templates submitted to the cluster do not conflict with those
installed by the ootb-templates package.

The following set of objects are provided by ootb-templates:

ClusterConfigTemplate/config-template

ClusterConfigTemplate/convention-template

ClusterDeploymentTemplate/app-deploy

ClusterImageTemplate/image-provider-template

ClusterImageTemplate/image-scanner-template

ClusterImageTemplate/kpack-template

ClusterTask/kaniko-build

ClusterImageTemplate/kaniko-template

ClusterRole/ootb-templates-app-viewer

Tanzu Application Platform v1.4

VMware by Broadcom 1112



ClusterRole/ootb-templates-deliverable

ClusterRole/ootb-templates-workload

ClusterRunTemplate/tekton-source-pipelinerun

ClusterRunTemplate/tekton-taskrun

ClusterSourceTemplate/delivery-source-template

ClusterSourceTemplate/source-scanner-template

ClusterSourceTemplate/source-template

ClusterSourceTemplate/testing-pipeline

ClusterTask/git-writer

ClusterTask/image-writer

ClusterTemplate/config-writer-template

ClusterTemplate/deliverable-template

Before submitting your own, either ensure that the name and resource has no conflicts with those
installed by ootb-templates, or exclude from the installation the template you want to override by
using the excluded_templates property of ootb-templates.

For example, perhaps you want to override the ClusterConfigTemplate named config-template to
provide your own with the same name, so that you don’t need to edit the supply chain. In tap-
values.yaml, you can exclude template provided by Tanzu Application Platform:

ootb_templates:

  excluded_templates:

    - 'config-writer'

For details about how to edit an existing template, see Modifying an Out of the Box Supply
template section.

Modifying an Out of the Box Supply Chain

To change the shape of a supply chain or the template that it points to, do the following:

1. Copy one of the reference supply chains.

2. Remove the old supply chain. See preventing Tanzu Application Platform supply chains from
being installed.

3. Edit the supply chain object.

4. Submit the modified supply chain to the cluster.

Example

In this example, you have a new ClusterImageTemplate object named foo that you want use for
building container images instead of the out of the box object that makes use of Kpack. The supply
chain that you want to apply the modification to is source-to-url provided by the ootb-supply-
chain-basic package.

1. Find the image that contains the supply chain definition:

kubectl get app ootb-supply-chain-basic \

  -n tap-install \

  -o jsonpath={.spec.fetch[0].imgpkgBundle.image}

Tanzu Application Platform v1.4

VMware by Broadcom 1113



registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:f2ad40

1bb3e850940...

2. Pull the contents of the bundle into a directory named ootb-supply-chain-basic:

imgpkg pull \

  -b registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:f

2ad401bb3e850940... \

  -o ootb-supply-chain-basic

Pulling bundle 'registry.tanzu.vmware.com/tanzu-...

  Extracting layer 'sha256:542f2bb8eb946fe9d2c8a...

Locating image lock file images...

The bundle repo (registry.tanzu.vmware.com/tanzu...

Succeeded

3. Inspect the files obtained:

tree ./ootb-supply-chain-basic/

./ootb-supply-chain-basic/

├── config

│   ├── supply-chain-image.yaml

│   └── supply-chain.yaml

└── values.yaml

4. Edit the supply chain that you want to exchange the template with another:

--- a/supply-chain.yaml

+++ b/supply-chain.yaml

@@ -52,7 +52,7 @@ spec:

   - name: image-builder

     templateRef:

       kind: ClusterImageTemplate

-      name: kpack-template

+      name: foo

     params:

       - name: serviceAccount

         value: #@ data.values.service_account

5. Submit the supply chain to Kubernetes:

The supply chain definition found in the bundle expects the values you provided by using
tap-values.yaml to be interpolated by using YTT before they are submitted to Kubernetes.
So before applying the modified supply chain to the cluster, use YTT to interpolate those
values. After that, run:

ytt \

  --ignore-unknown-comments \

  --file ./ootb-supply-chain-basic/config \

  --data-value registry.server=REGISTRY-SERVER \

  --data-value registry.repository=REGISTRY-REPOSITORY |

  kubectl apply -f-

Important

The modified supply chain does not outlive the destruction of the cluster.
VMware recommends that you save it, for example, in a Git repository to

Tanzu Application Platform v1.4

VMware by Broadcom 1114



Modifying an Out of the Box Supply template

The Out of the Box Templates package (ootb-templates) includes all of the templates and shared
Tekton tasks used by the supply chains shipped by using ootb-supply-chain-* packages. Any
template that you want to edit, for example, to change details about the resources that are created
based on them, is part of this package.

The workflow for updating a template is as follows:

1. Copy one of the reference templates from ootb-templates.

2. Exclude that template from the set of objects provided by ootb-templates. For more
information, see excluded_templates in Providing your Own Templates.

3. Edit the template.

4. Submit the modified template to the cluster.

Example

In this example, you want to update the ClusterImageTemplate object called kpack-template, which
provides a template for creating kpack/Images to hardcode an environment variable.

1. Exclude the kpack-template from the set of templates that ootb-templates installs by
upating tap-values.yaml:

  ootb_templates:

  excluded_templates: ['kpack-template']

2. Find the image that contains the templates:

kubectl get app ootb-templates \

  -n tap-install \

  -o jsonpath={.spec.fetch[0].imgpkgBundle.image}

registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:a5e177

f38d7287f2ca7ee2afd67ff178645d8f1b1e47af4f192a5ddd6404825e

3. Pull the contents of the bundle into a directory named ootb-templates:

imgpkg pull \

  -b registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:a

5e177f38d7.. \

  -o ootb-templates

Pulling bundle 'registry.tanzu.vmware.com/tanzu-...

  Extracting layer 'sha256:a5e177f38d7...

Locating image lock file images...

The bundle repo (registry.tanzu.vmware.com/tanzu...

install on every cluster where you expect the supply chain to exist.

Note

You don’t need to change anything related to supply chains, because you’re
preserving the name of the object referenced by the supply chain.

Tanzu Application Platform v1.4

VMware by Broadcom 1115



Succeeded

4. Confirm that you downloaded all the templates:

tree ./ootb-templates

./ootb-templates

├── config

│   ├── cluster-roles.yaml

│   ├── config-template.yaml

│   ├── kpack-template.yaml         # ! the one we want to modify

...

│   └── testing-pipeline.yaml

└── values.yaml

5. Change the property you want to change:

--- a/config/kpack-template.yaml

+++ b/config/kpack-template.yaml

@@ -65,6 +65,8 @@ spec:

         subPath: #@ data.values.workload.spec.source.subPath

       build:

         env:

+        - name: FOO

+          value: BAR

         - name: BP_OCI_SOURCE

           value: #@ data.values.source.revision

         #@ if/end param("live-update"):

6. Submit the template.

The name of the template is preserved but the contents are changed. So after the template is
submitted, the supply chains are all embedded to the build of the application container images that
have FOO environment variable.

Live modification of supply chains and templates

Preceding sections covered how to update supply chains or templates installed in a cluster. This
section shows how you can experiment by making small changes in a live setup with kubectl edit.

When you install Tanzu Application Platform by using profiles, a PackageInstall object is created.
This in turn creates a set of children PackageInstall objects for installing the individual components
that make up the platform.

PackageInstall/tap

└─App/tap

  ├─ PackageInstall/cert-manager

  ├─ PackageInstall/cartographer

  ├─ ...

  └─ PackageInstall/tekton-pipelines

Because the installation is based on Kubernetes primitives, PackageInstall tries to achieve the
state where all packages are installed.

This is great but presents challenges for modifying the contents of some of the objects that the
installation submits to the cluster. Namely, such modifications cause the original definition persisting
instead of the changes.

For this reason, before you perform any customization to the Out of the Box packages, you must
pause the top-level PackageInstall/tap object. Run:

Tanzu Application Platform v1.4

VMware by Broadcom 1116



kubectl edit -n tap-install packageinstall tap

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

  name: tap

  namespace: tap-install

spec:

  paused: true                    # ! set this field to `paused: true`.

  packageRef:

    refName: tap.tanzu.vmware.com

    versionSelection:

# ...

With the installation of Tanzu Application Platform paused, all of the installed components are still
there, but changes to those children PackageInstall objects are not overwritten.

Now you can pause the PackageInstall objects that relate to the templates or supply chains you
want to edit.

For example:

To edit templates: kubectl edit -n tap-install packageinstall ootb-templates

To edit the basic supply chains: kubectl edit -n tap-install packageinstall ootb-
supply-chain-basic

setting packageinstall.spec.paused: true.

With the installations paused, further live changes to templates or supply chains are persisted until
you revert the PackageInstalls to not being paused. To persist the changes, follow the steps
outlined in the earlier sections.

Adding custom behavior to Supply Chains

Most behaviors in supply chains are supplied by Kubernetes controllers. For example, Cloud Native
Buildpacks are created by the kpack controller when a kpack Image object is created. Sometimes
there is need for behavior and no controller for it exists. In these instances, you might want to write
a script that uses a CLI tool, or interact with an external API. To do this, you can bring the behavior
to the supply chain by using Tekton.

You can look at the kaniko image-building as an example. You create a Tekton ClusterTask kaniko-
build with instructions for how to build a Docker image using kaniko given a set of parameters. The
ClusterTask has a set of steps. Each step refers to a container image and a set of instructions to run
on the image. For example, it can be a Linux image against which a set of bash instructions are run.
The ClusterTask is installed on the cluster.

You create the ClusterImageTemplate kaniko-template to create Tekton TaskRuns. TaskRuns are
immutable, so you add the lifecycle: tekton field to the template’s specifications. This ensures
two things:

When inputs to the template change, rather than updating the TaskRun, a new TaskRun is
created.

Only the values from the most recently created TaskRun that is successful are propagated
forward in the supply chain.

To learn more about the lifecycle: tekton field, see the Cartographer tutorial Lifecycle:
Templating Objects That Cannot Update. To learn more about Tekton, see the Tekton
documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 1117

https://cartographer.sh/docs/v0.6.0/tutorials/lifecycle/
https://tekton.dev/docs/


Reference guides for Supply Chain Choreographer for
Tanzu

This topic describes the reference guides you can use for Supply Chain Choreographer for Tanzu.

Reference guides

The following reference guides apply to Supply Chain Choreographer for Tanzu:

Tanzu Build Service Integration

Events reference for Supply Chain Choreographer

This topic describes each event you can view with Supply Chain Choreographer.

Events are emitted when Choreographer edits resources or notices a change in their output or
healthy state. Don’t treat events like logs, however they can offer valuable insight into what’s
happening in a supply chain over time. For example, very high occurrences of events in a short
period of time might be a sign of resources thrashing.

Events are published on Workload, Deliverable, and Runnable resources. You can view them
manually using:

kubectl describe workload.carto.run <workload-name> -n <workload-ns>

kubectl describe runnable.carto.run <runnable-name> -n <runnable-ns>

kubectl describe deliverable.carto.run <deliverable-name> -n <deliverable-ns>

Events

The following sections define the different events.

StampedObjectApplied

This event is emitted every time Choreographer creates or updates a resource. The created or
updated resource is referenced in the event message.

Example messages:

Created object [gitrepositories.source.toolkit.fluxcd.io/my-project]

Updated object [apps.kappctrl.k14s.io/my-project-app]

StampedObjectRemoved

This event is emitted every time Choreographer deletes a resource. This currently only occurs
when Runnable resources expire. The deleted object is referenced in the event message.

Example message:

Deleted object [task.tekton.dev/my-project-a737bdf]

ResourceOutputChanged

This event is emitted every time Choreographer recognizes a new output from a resource.

Example message:

[source-provider] found a new output in [imagerepositories.source.apps.tanzu.vmware.co

Tanzu Application Platform v1.4

VMware by Broadcom 1118



m/app]

ResourceHealthyStatusChanged

This event is emitted every time Choreographer recognizes that the healthy status of a resource
has changed.

Example message:

[image-provider] found healthy status in [images.kpack.io/app] changed to [True]

[source-provider] found healthy status in [[gitrepositories.source.toolkit.fluxcd.io/m

y-project]] changed to [False]

Workload Reference for Supply Chain Choreographer
This topic describes the fields you can use for Supply Chain Choreographer workloads.

This topic describes available fields for Supply Chain Choreographer workloads.

Standard Fields
Cartographer workloads have standard fields leveraged by supply chains. See Cartographer’s
Reference Documentation in the Cartographer documentation.

Labels
Workload labels affect which supply chain is selected. For information about which template is
defined for a particular reference, see Selectors in the Cartographer documentation. Individual
templates can also use workload labels.

The following are workload label keys whose values change the behavior of OOTB Supply Chains:

apps.tanzu.vmware.com/has-tests by Source-Test-to-URL and Source-Test-Scan-to-URL.

apps.tanzu.vmware.com/workload-type by all supply chains.

apis.apps.tanzu.vmware.com/register-api by the Api-Descriptors Template.

Parameters
The OOTB templates are configured with parameters from the supply chain or workload. For
information about Cartographer parameters, including precedence rules, see Parameters in the
Cartographer documentation.

What parameters are relevant depends on the supply chain that selects the workload, for two
reasons:

1. The OOTB supply chains refer to overlapping sets of templates. A workload selected by the
Source-to-URL supply chain can provide a scanning_image_template parameter, but the
supply chain does not refer to a template that leverages that parameter.

2. You can write Supply Chains to provide a parameter value to a template and prevent the
workload from overriding the value. See Further Information in the Cartographer
documentation.

The following list of parameters are respected by some OOTB supply chains. Each provides the
templates that respect the parameter. The reference for the template details which supply chains
include the template.

gitImplementation: source-template

Tanzu Application Platform v1.4

VMware by Broadcom 1119

https://cartographer.sh/docs/v0.6.0/reference/workload/#workload
https://cartographer.sh/docs/v0.6.0/architecture/#selectors
https://cartographer.sh/docs/v0.6.0/templating/#parameters
https://cartographer.sh/docs/v0.6.0/tutorials/using-params/#further-information


gitops_ssh_secret: source-template, deliverable-template, external-deliverable-template

serviceAccount: source-template, image-provider-template, kpack-template, kaniko-
template, convention-template, config-writer-template, config-writer-and-pull-requester-
template, deliverable-template, external-deliverable-template

maven: source-template

testing_pipeline_matching_labels: testing-pipeline

testing_pipeline_params: testing-pipeline

scanning_source_template: source-scanner-template

scanning_source_policy: source-scanner-template

clusterBuilder: kpack-template

buildServiceBindings: kpack-template

live-update: kpack-template, convention-template

dockerfile: kaniko-template

docker_build_context: kaniko-template

docker_build_extra_args: kaniko-template

scanning_image_template: image-scanner-template

scanning_image_policy: image-scanner-template

annotations: convention-template, service-bindings, api-descriptors

debug: convention-template

ports: server-template

api-descriptors: api-descriptors

gitops_branch: config-writer-template, config-writer-and-pull-requester-template,
deliverable-template, external-deliverable-template

gitops_user_name: config-writer-template, config-writer-and-pull-requester-template

gitops_user_email: config-writer-template, config-writer-and-pull-requester-template

gitops_commit_message: config-writer-template, config-writer-and-pull-requester-
template

gitops_repository: config-writer-template, deliverable-template, external-deliverable-
template

gitops_repository_prefix: config-writer-template, deliverable-template, external-
deliverable-template

gitops_server_address: config-writer-template, config-writer-and-pull-requester-template,
deliverable-template, external-deliverable-template

gitops_repository_owner: config-writer-template, config-writer-and-pull-requester-
template, deliverable-template, external-deliverable-template

gitops_repository_name: config-writer-template, config-writer-and-pull-requester-
template, deliverable-template, external-deliverable-template

gitops_commit_branch: config-writer-and-pull-requester-template

gitops_pull_request_title: config-writer-and-pull-requester-template

gitops_pull_request_body: config-writer-and-pull-requester-template

Tanzu Application Platform v1.4

VMware by Broadcom 1120



gitops_server_kind: config-writer-and-pull-requester-template

Service Account

To create the templated objects, Cartographer needs a reference to a service account with
permissions to manage resources. This service account might be provided in the workload’s
.spec.serviceAccountName field or in the supply chain’s spec.serviceAccountRef field. See Service
Account and Workload and Supply Chain Custom Resources in the Cartographer documentation.
When using the Tanzu CLI to create a workload, specify this service account’s name with the --
service-account flag.

After the templated objects are created, they often need a service account with permissions to do
work. In the OOTB Templates and Supply Chains, the parameter serviceAccount must reference
the service account for these objects. When using the Tanzu CLI to create a workload, specify this
service account’s name with --param serviceAccount=....

Supply chains

Tanzu Application Platform includes a number of supply chains packages, each of which installs two
ClusterSupplyChains. You can only install one supply chain package at a time.

The supply chains provide some parameters to the referenced templates. The parameters provided
by the workload might override the parameters in this topic.

Source-to-URL

Purpose

Fetches application source code

Builds it into an image

Writes the Kubernetes configuration necessary to deploy the application

Commits that configuration to either a Git repository or a container image registry

Resources

This section describes the templates and their parameters.

source-provider

Refers to source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

gitImplementation from tap-value git_implementation. NOT overridable by workload.

image-provider

Refers to kaniko-template when the workload provides a parameter dockerfile. Refers to kpack-
template otherwise.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

Tanzu Application Platform v1.4

VMware by Broadcom 1121

https://cartographer.sh/docs/v0.6.0/tutorials/first-supply-chain/#service-account
https://cartographer.sh/docs/v0.6.0/reference/workload/
https://cartographer.sh/docs/v0.6.0/reference/workload/#clustersupplychain
https://cartographer.sh/docs/v0.6.0/templating/#parameters


clusterBuilder from tap-value cluster_builder. Overridable by workload.

dockerfile value ./Dockerfile. Overridable by workload.

docker_build_context value ./. Overridable by workload.

docker_build_extra_args value []. Overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

maven_repository_url from tap-value maven.repository.url. NOT overridable by workload.

maven_repository_secret_name from tap-value maven.repository.secret_name. NOT
overridable by workload.

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Basic

More information

See Install Out of the Box Supply Chain Basic for information about setting tap-values at installation
time.

Source-Test-to-URL
Fetches application source code

Runs user defined tests against the code

Builds the code into an image

Writes the Kubernetes configuration necessary to deploy the application

Commits that configuration to either a Git repository or a container image registry

Resources

source-provider

Refers to source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

gitImplementation from tap-value git_implementation. NOT overridable by workload.

source-tester

Tanzu Application Platform v1.4

VMware by Broadcom 1122



Refers to testing-pipeline.

No parameters are provided by the supply-chain.

image-provider

Refers to kaniko-template when the workload provides a parameter dockerfile. Refers to kpack-
template otherwise.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

clusterBuilder from tap-value cluster_builder. Overridable by workload.

dockerfile value ./Dockerfile. Overridable by workload.

docker_build_context value ./. Overridable by workload.

docker_build_extra_args value []. Overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

maven_repository_url from tap-value maven.repository.url. NOT overridable by workload.

maven_repository_secret_name from tap-value maven.repository.secret_name. NOT
overridable by workload.

See Params provided by all Supply Chains to all Resources.

Package

Out of the Box Supply Chain Testing

More information

See Install Out of the Box Supply Chain with Testing for information about setting tap-values at
installation time.

Source-Test-Scan-to-URL

Fetches application source code

Runs user defined tests against the code

Scans the code for vulnerabilities

Builds the code into an image

Scans the image for vulnerabilities

Tanzu Application Platform v1.4

VMware by Broadcom 1123



Writes the Kubernetes configuration necessary to deploy the application

Commits that configuration to either a Git repository or an image registry

Resources

source-provider

Refers to source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

gitImplementation from tap-value git_implementation. NOT overridable by workload.

source-tester

Refers to testing-pipeline.

No parameters are provided by the supply-chain.

source-scanner

Refers to source-scanner-template.

Parameters provided:

scanning_source_policy from tap-value scanning.source.policy. Overridable by workload.

scanning_source_template from tap-value scanning.source.template. Overridable by
workload.

image-provider

Refers to kaniko-template when the workload provides a parameter dockerfile. Refers to kpack-
template otherwise.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

clusterBuilder from tap-value cluster_builder. Overridable by workload.

dockerfile value ./Dockerfile. Overridable by workload.

docker_build_context value ./. Overridable by workload.

docker_build_extra_args value []. Overridable by workload.

image-scanner

Refers to image-scanner-template.

Parameters provided:

scanning_image_policy from tap-value scanning.image.policy. Overridable by workload.

scanning_image_template from tap-value scanning.image.template. Overridable by
workload.

Common resources

Tanzu Application Platform v1.4

VMware by Broadcom 1124



Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

maven_repository_url from tap-value maven.repository.url. NOT overridable by workload.

maven_repository_secret_name from tap-value maven.repository.secret_name. NOT
overridable by workload.

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Testing Scanning

More information

See Install Out of the Box Supply Chain with Testing and Scanning for information about setting
tap-values at installation time.

Basic-Image-to-URL

Fetches a prebuilt image.

Writes the Kubernetes configuration necessary to deploy the application.

Commits that configuration to either a Git repository or an image registry.

Resources

image-provider

Refers to image-provider-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

See Params provided by all Supply Chains to all Resources

Tanzu Application Platform v1.4

VMware by Broadcom 1125



Package

Out of the Box Supply Chain Basic

More information

See Install Out of the Box Supply Chain Basic for information about setting tap-values at installation
time.

Testing-Image-to-URL

Fetches a prebuilt image.

Writes the Kubernetes configuration necessary to deploy the application.

Commits that configuration to either a Git repository or an image registry.

Resources

image-provider

Refers to image-provider-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Testing

More information

See Install Out of the Box Supply Chain with Testing for information about setting tap-values at
installation time.

Scanning-image-scan-to-URL
Fetches a prebuilt image.

Scans the image for vulnerabilities.

Writes the Kubernetes configuration necessary to deploy the application.

Commits the configuration to either a Git repository or an image registry.

Tanzu Application Platform v1.4

VMware by Broadcom 1126



Resources

image-provider

Refers to image-provider-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

image-scanner

Refers to image-scanner-template.

Parameters provided:

scanning_image_policy from tap-value scanning.image.policy. Overridable by workload.

scanning_image_template from tap-value scanning.image.template. Overridable by
workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Testing Scanning

More information

See Install Out of the Box Supply Chain with Testing and Scanning for information about setting
tap-values at installation time.

Source-to-URL-Package (experimental)

Purpose

Fetches the application source code.

Builds the source code into an image.

Bundles the Kubernetes configuration necessary to deploy the application into a Carvel
Package.

Commits the Package to a Git Repository.

Resources

Tanzu Application Platform v1.4

VMware by Broadcom 1127



This section describes the templates and their parameters.

source-provider

Refers to source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

gitImplementation from tap-value git_implementation. NOT overridable by workload.

image-provider

Refers to kaniko-template when the workload provides a parameter dockerfile. Refers to kpack-
template otherwise.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

clusterBuilder from tap-value cluster_builder. Overridable by workload.

dockerfile value ./Dockerfile. Overridable by workload.

docker_build_context value ./. Overridable by workload.

docker_build_extra_args value []. Overridable by workload.

carvel-package

Refers to carvel-package.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

package-config-writer

Refers to the package-config-writer-and-pull-requester-template when the tap-value
gitops.commit_strategy is pull_request. Otherwise, this resource refers to the package-config-
writer-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Parameters provided to all resources

maven_repository_url from tap-value maven.repository.url. NOT overridable by workload.

Tanzu Application Platform v1.4

VMware by Broadcom 1128



maven_repository_secret_name from tap-value maven.repository.secret_name. NOT
overridable by workload.

carvel_package_gitops_subpath from tap-value carvel_package.gitops_subpath.
Overridable by workload.

carvel_package_name_suffix from tap-value carvel_package.name_suffix. Overridable by
workload.

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Basic

More information

See Install Out of the Box Supply Chain Basic for information about setting tap-values at installation
time.

Basic-Image-to-URL-Package (experimental)
Fetches a prebuilt image.

Bundles the Kubernetes configuration necessary to deploy the application into a Carvel
Package.

Commits the Package to a Git Repository.

Resources

image-provider

Refers to image-provider-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

carvel-package

Refers to carvel-package.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

package-config-writer

Refers to the package-config-writer-and-pull-requester-template when the tap-value
gitops.commit_strategy is pull_request. Otherwise, this resource refers to the package-config-
writer-template

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

Common resources

Tanzu Application Platform v1.4

VMware by Broadcom 1129



Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

carvel_package_gitops_subpath from tap-value carvel_package.gitops_subpath.
Overridable by workload.

carvel_package_name_suffix from tap-value carvel_package.name_suffix. Overridable by
workload.

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Basic

More information

See Install Out of the Box Supply Chain Basic for information about setting tap-values at installation
time.

Resources common to all OOTB supply chains

config-provider

Refers to convention-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

app-config

The tap-values field supported_workloads defines which templates are referred to by this resource.
Default configuration is:

supported_workloads:

- type: web

  cluster_config_template_name: config-template

- type: server

  cluster_config_template_name: server-template

- type: worker

  cluster_config_template_name: worker-template

The workload’s apps.tanzu.vmware.com/workload-type label determines which template is used at
this step. For example, when the workload has a label apps.tanzu.vmware.com/workload-type:web,
the supply chain references config-template.

No parameters are provided by the supply-chain.

service-bindings

Refers to the service-binding template.

Tanzu Application Platform v1.4

VMware by Broadcom 1130



No parameters are provided by the supply-chain.

api-descriptors

Refers to the api-descriptors template.

No parameters are provided by the supply-chain.

config-writer

Refers to the config-writer-and-pull-requester-template when the tap-value
gitops.commit_strategy is pull_request. Otherwise, this resource refers to the config-writer-
template

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

deliverable

Refers to the external-deliverable-template when the tap-value external_delivery evaluates to
true. Otherwise the resource refers to the deliverable-template.

Parameters provided:

registry from tap-value registry. NOT overridable by workload.

Parameters provided by all supply chains to all resources

All of the following parameters are overridable by the workload.

gitops_branch from tap-value gitops.branch

gitops_user_name from tap-value gitops.username

gitops_user_email from tap-value gitops.email

gitops_commit_message from tap-value gitops.commit_message

gitops_ssh_secret from tap-value gitops.ssh_secret

gitops_repository_prefix from tap-value gitops.repository_prefix when present.

gitops_server_address from tap-value gitops.server_address when present.

gitops_repository_owner from tap-value gitops.repository_owner when present.

gitops_repository_name from tap-value gitops.repository_name when present.

gitops_server_kind from tap-value gitops.pull_request.server_kind when present.

gitops_commit_branch from tap-value gitops.pull_request.commit_branch when present.

gitops_pull_request_title from tap-value gitops.pull_request.pull_request_title
when present.

gitops_pull_request_body from tap-value gitops.pull_request.pull_request_body when
present.

Template reference for Supply Chain Choreographer

This topic describes the objects from templates that you can use with Supply Chain Choreographer.

Tanzu Application Platform v1.4

VMware by Broadcom 1131



All the objects referenced in this topic are Cartographer Templates packaged in Out of the Box
Templates.

This topic describes:

The purpose of the templates

The one or more objects that the templates create

The supply chains that include the templates

The parameters that the templates use

source-template

Purpose

Creates an object to fetch source code and make that code available to other objects in the supply
chain. See Building from Source.

Used by

Source-to-URL in the source-provider step.

Source-Test-to-URL in the source-provider step.

Source-Test-Scan-to-URL in the source-provider step.

Source-to-URL-Package (experimental) in the source-provider step.

Creates

The source-template creates one of three objects, either:

GitRepository. Created if the workload has .spec.source.git defined.

MavenArtifact. Created if the template is provided a value for the parameter maven.

ImageRepository. Created if the workload has .spec.source.image defined.

GitRepository

GitRepository makes source code from a particular commit available as a tarball in the cluster.
Other resources in the supply chain can then access that code.

Parameters

Template reference for Supply Chain Choreographer

Parameter
name

Meaning Example

gitImpleme

ntation

The library used to fetch source code. If not provided, Tanzu Application Platform's
default implementation uses go-git, which works with the providers supported by
Tanzu Application Platform: GitHub and GitLab. An alternate value that can be used
with other Git providers is libgit2.

      - na

me: gitImp

lementatio

n

        va

lue: libgi

t2

      

Tanzu Application Platform v1.4

VMware by Broadcom 1132

https://cartographer.sh/docs/v0.6.0/reference/template/


Parameter
name

Meaning Example

gitops_ssh

_secret

Name of the secret used to provide credentials for the Git repository. The secret
with this name must exist in the same namespace as the Workload. The credentials
must be sufficient to read the repository. If not provided, Tanzu Application
Platform defaults to look for a secret named git-ssh. See Git authentication.

      - na

me: gitops

_ssh_secre

t

        va

lue: git-c

redentials

      

More information

For an example using the Tanzu CLI to create a Workload using GitHub as the provider of source
code, see Create a workload from GitHub repository.

For information about GitRepository objects, see GitRepository.

ImageRepository

ImageRepository makes the contents of a container image available as a tarball on the cluster.

Parameters

Parameter
name

Meaning Example

serviceAcco

unt

Name of the service account, providing credentials to ImageRepository for
fetching container images. The service account must exist in the same
namespace as the Workload.

      - name: 

serviceAccount

        value: 

default

      

More information

For information about the ImageRepository resource, see the ImageRepository reference
documentation.

Note

Some Git providers, notably Azure DevOps, require you to use libgit2 due to the
server-side implementation providing support only for git’s v2 protocol. For
information about the features supported by each implementation, see git
implementation in the flux documentation.

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.4

VMware by Broadcom 1133

https://fluxcd.io/flux/components/source/gitrepositories/
https://git-scm.com/docs/protocol-v2
https://fluxcd.io/flux/components/source/gitrepositories/#git-implementation


For information about how to use the Tanzu CLI to create a workload leveraging ImageRepository,
see Create a workload from local source code.

MavenArtifact

MavenArtifact makes a pre-built Java artifact available to as a tarball on the cluster.

While the source-template leverages the workload’s .spec.source field when creating a
GitRepository or ImageRepository object, the creation of the MavenArtifact relies only on
parameters in the Workload.

Parameters

Parameter name Meaning Example

maven Points to the Maven artifact to fetch and the polling interval.
      - name: maven

        value:

          artifactI

d: springboot-initia

l

          groupId: c

om.example

          version: R

ELEASE

          classifie

r: sources         # 

optional

          type: jar                   

# optional

          artifactRe

tryTimeout: 1m0s  # 

optional

      

maven_repositor

y_url

Specifies the Maven repository from which to fetch
      - name: maven_

repository_url

        value: http

s://repo1.maven.org/

maven2/

      

maven_repositor

y_secret_name

Specifies the secret containing credentials necessary to fetch
from the Maven repository. The secret named must exist in the
same workspace as the workload.

      - name: maven_

repository_secret_na

me

        value: auth-

secret

      

More information

For information about the custom resource, see MavenArtifact reference docs.

For information about how to use the custom resource with the tanzu apps workload CLI plug-in
Create a Workload from Maven repository artifact.

testing-pipeline

Tanzu Application Platform v1.4

VMware by Broadcom 1134



Purpose

Tests the source code provided in the supply chain. Testing depends on a user provided Tekton
Pipeline. Parameters for this template allow for selection of the proper Pipeline and for specification
of additional values to pass to the Pipeline.

Used by

Source-Test-to-URL in the source-tester step.

Source-Test-Scan-to-URL in the source-tester step.

These are used as the source-tester resource.

Creates

testing-pipelinecreates a Runnable object. This Runnable provides inputs to the
ClusterRunTemplate named tekton-source-pipelinerun.

Parameters

Parameter name Meaning Example

testing_pipeline

_matching_labels

Set of labels to use when searching for Tekton Pipeline objects in
the same namespace as the Workload. By default, a Pipeline
labeled as apps.tanzu.vmware.com/pipeline: test is selected.

      - name: tes

ting_pipeline_mat

ching_labels

        value:

          apps.ta

nzu.vmware.com/pi

peline: test

          my.comp

any/language: gol

ang

      

testing_pipeline

_params

Set of parameters to pass to the Tekton Pipeline. To this set of
parameters, the template always adds the source URL and revision
as source-url and source-revision.

      - name: tes

ting_pipeline_par

ams

        value:

        - name: v

erbose

          value: 

true

        - name: f

oo

          value: 

bar

      

More information

For information about the ClusterRunTemplate that pairs with the Runnable, read tekton-source-
pipelinerun

For information about the Tekton Pipeline that the user must create, read the OOTB Supply Chain
Testing documentation of the Pipeline

source-scanner-template

Tanzu Application Platform v1.4

VMware by Broadcom 1135

https://tekton.dev/docs/pipelines/pipelines/#overview
https://cartographer.sh/docs/v0.4.0/reference/runnable/
https://cartographer.sh/docs/v0.4.0/reference/runnable/#clusterruntemplate


Purpose

Scans the source code for vulnerabilities.

Used by

Source-Test-Scan-to-URL in the source-scanner step.

This is used as the source-scanner resource.

Creates

SourceScan

Parameters

Parameter name Meaning Example

scanning_sourc

e_template

Name of the ScanTemplate object to use for running the scans. The
ScanTemplate must be in the same namespace as the Workload.       - name: scann

ing_source_template

        value: priv

ate-source-scan-tem

plate

      

scanning_sourc

e_policy

Name of the ScanPolicy object to use when evaluating the scan
results of a source scan. The ScanPolicy must be in the same
namespace as the Workload.

      - name: scann

ing_source_policy

        value: allo

wlist-policy

      

More information

For information about how to set up the Workload namespace with the ScanPolicy and
ScanTemplate required for this resource, see Out of the Box Supply Chain with Testing and
Scanning.

For information about the SourceScan custom resource, see SourceScan reference.

For information about how the artifacts found during scanning are catalogued, see Supply Chain
Security Tools for Tanzu – Store.

image-provider-template

Purpose

Fetches a container image of a prebuilt application, specified in the workload’s .spec.image field.
This makes the content-addressable name, (e.g. the image name containing the digest) available to
other resources in the supply chain.

Used by
Basic-Image-to-URL in the image-provider step.

Testing-Image-to-URL in the image-provider step.

Scanning-Image-Scan-to-URL in the image-provider step.

Basic-Image-to-URL-Package (experimental) in the image-provider step.

Tanzu Application Platform v1.4

VMware by Broadcom 1136



These are used as the image-provider resource.

Creates

ImageRepository.source.apps.tanzu.vmware.com

Parameters

Parameter
name

Meaning Example

serviceAcco

unt

Name of the service account providing credentials for the target image
registry. The service account must exist in the same namespace as the
Workload.

      - name: s

erviceAccount

        value: 

default

      

More information

For information about the ImageRepository resource, see ImageRepository reference docs.

For information about prebuilt images, see Using a prebuilt image.

kpack-template

Purpose

Builds an container image from source code using cloud native buildpacks.

Used by

Source-to-URL in the image-provider step.

Source-Test-to-URL in the image-provider step.

Source-Test-Scan-to-URL in the image-provider step.

Source-to-URL-Package (experimental) in the image-provider step.

These are used as the image-provider resource when the workload parameter dockerfile is not
defined.

Creates

Image.kpack.io

Parameters

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.4

VMware by Broadcom 1137

https://buildpacks.io/
https://github.com/pivotal/kpack/blob/main/docs/image.md


Parameter
name

Meaning Example

serviceAccou

nt

Name of the service account providing credentials for the configured image
registry. Image uses these credentials to push built container images to the
registry. The service account must exist in the same namespace as the
Workload.

      - name: 

serviceAccount

        value: 

default

      

clusterBuild

er

Name of the Kpack Cluster Builder to use.
      - name: 

clusterBuilder

        value: 

nodejs-cluster

-builder

      

buildService

Bindings

Definition of a list of service bindings to make use at build time. For example,
providing credentials for fetching dependencies from repositories that
require credentials.

      - name: 

buildServiceBi

ndings

        value:

          - na

me: settings-x

ml

            ki

nd: Secret

            ap

iVersion: v1

      

live-update Enable the use of Tilt's live-update function.
      - name: 

live-update

        value: 

"true"

      

More information

For information about the integration with Tanzu Build Service, see Tanzu Build Service Integration.

For information about live-update, see Developer Conventions and Overview of Tanzu Developer
Tools for IntelliJ.

For information about using Kpack builders with clusterBuilder, see Builders.

For information about buildServiceBindings, see Service Bindings.

kaniko-template

Purpose

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.4

VMware by Broadcom 1138

https://github.com/pivotal/kpack/blob/main/docs/builders.md
https://github.com/pivotal/kpack/blob/main/docs/servicebindings.md


Build an image for source code that includes a Dockerfile.

Used by

Source-to-URL in the image-provider step.

Source-Test-to-URL in the image-provider step.

Source-Test-Scan-to-URL in the image-provider step.

Source-to-URL-Package (experimental) in the image-provider step.

These are used as the image-provider resource when the workload parameter dockerfile is
defined.

Creates

A taskrun.tekton.dev which provides configuration to a Tekton ClusterTask to build an image with
kaniko.

This template uses the lifecycle: tekton flag to create new immutable objects rather than updating
the previous object.

Parameters

Parameter
name

Meaning Example

dockerfile relative path to the Dockerfile file in the build context
./Dockerfil

e

docker_build

_context

relative path to the directory where the build context is
.

docker_build

_extra_args

List of flags to pass directly to kaniko,such as providing arguments to a build.
- --build-a

rg=FOO=BAR

serviceAccou

nt

Name of the service account to use for providing Docker credentials. The service
account must exist in the same namespace as the Workload. The service account
must have a secret associated with the credentials. See Configuring
authentication for Docker in the Tekton documentation.

      - nam

e: serviceA

ccount

        val

ue: default

      

registry Specification of the registry server and repository in which the built image is
placed.       - nam

e: registry

        val

ue:

          s

erver: inde

x.docker.io

          r

epository: 

web-team

      

More information

Tanzu Application Platform v1.4

VMware by Broadcom 1139

https://cartographer.sh/docs/v0.6.0/lifecycle/
https://tekton.dev/docs/pipelines/auth/#configuring-authentication-for-docker


For information about how to use Dockerfile-based builds and limits associated with the function,
see Dockerfile-based builds.

For information about lifecycle:tekton, read Cartographer Lifecycle.

image-scanner-template

Purpose

Scans the container image for vulnerabilities, persists the results in a store, and prevents the image
from moving forward if CVEs are found which are not compliant with its referenced ScanPolicy.

Used by

Source-Test-Scan-to-URL in the image-scanner step.

Scanning-Image-Scan-to-URL in the image-scanner step.

Creates

ImageScan.scanning.apps.tanzu.vmware.com

Parameters

Parameter name Meaning Example

scanning_image

_template

Name of the ScanTemplate object for running the scans against a
container image. The ScanTemplate must be in the same
namespace as the Workload.

      - name: scann

ing_image_template

        value: priv

ate-image-scan-temp

late

      

scanning_image

_policy

Name of the ScanPolicy object for evaluating the scan results of an
image scan. The ScanPolicy must be in the same namespace as the
Workload.

      - name: scann

ing_image_policy

        value: allo

wlist-policy

      

More information

For information about the ImageScan custom resource, see ImageScan reference.

For information about how the artifacts found during scanning are catalogued, see Supply Chain
Security Tools for Tanzu – Store.

convention-template

Purpose

Create the PodTemplateSpec for the Kubernetes configuration (e.g. the knative service or
kubernetes deployment) which are applied to the cluster.

Used by

Source-to-URL in the config-provider step.

Basic-Image-to-URL in the config-provider step.

Tanzu Application Platform v1.4

VMware by Broadcom 1140

https://cartographer.sh/docs/v0.6.0/lifecycle/


Source-Test-to-URL in the config-provider step.

Testing-Image-to-URL in the config-provider step.

Source-Test-Scan-to-URL in the config-provider step.

Scanning-Image-Scan-to-URL in the config-provider step.

Source-to-URL-Package (experimental) in the config-provider step.

Basic-Image-to-URL-Package (experimental) in the config-provider step.

Creates

Creates a PodIntent object. The PodIntent leverages conventions installed on the cluster. The
PodIntent object is responsible for generating a PodTemplateSpec. The PodTemplateSpec is used
in app configs, such as knative services and deployments, to represent the shape of the pods to run
the application in containers.

Parameters

Parameter
name

Meaning Example

serviceAc

count

Name of the serviceAccount providing necessary credentials to PodIntent. The
serviceAccount must be in the same namespace as the Workload. The serviceAccount
is set as the serviceAccountName in the podtemplatespec. The credentials associated
with the serviceAccount must allow fetching the container image used to inspect the
metadata passed to convention servers.

      - n

ame: serv

iceAccoun

t

        v

alue: def

ault

      

annotatio

ns

Extra set of annotations to pass down to the PodTemplateSpec.
      - n

ame: anno

tations

        v

alue:

          

name: my-

applicati

on

          

version: 

v1.2.3

          

team: sto

re

      

debug Put the workload in debug mode.
      - n

ame: debu

g

        v

alue: "tr

ue"

      

Tanzu Application Platform v1.4

VMware by Broadcom 1141



Parameter
name

Meaning Example

live-

update

Enable live-updating of the code (for innerloop development).
      - n

ame: live

-update

        v

alue: "tr

ue"

      

More information

For information about PodTemplateSpec, see PodTemplateSpec in the Kubernetes documentation.

For information about conventions, see Cartographer Conventions.

For information about the two convention servers enabled by default in Tanzu Application Platform
installations, see Developer Conventions and Spring Boot conventions.

config-template

Purpose

For workloads with the label apps.tanzu.vmware.com/workload-type: web, define a knative service.

Used by

Source-to-URL in the app-config step.

Basic-Image-to-URL in the app-config step.

Source-Test-to-URL in the app-config step.

Testing-Image-to-URL in the app-config step.

Source-Test-Scan-to-URL in the app-config step.

Scanning-Image-Scan-to-URL in the app-config step.

Creates

A ConfigMap, in which the data field has a key delivery.yaml whose value is the definition of a
knative service.

Parameters

None

More information

See workload types for more details about the three different types of workloads.

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.4

VMware by Broadcom 1142

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


worker-template

Purpose

For workloads with the label apps.tanzu.vmware.com/workload-type: worker, define a Kubernetes
Deployment.

Used by

Source-to-URL in the app-config step.

Basic-Image-to-URL in the app-config step.

Source-Test-to-URL in the app-config step.

Testing-Image-to-URL in the app-config step.

Source-Test-Scan-to-URL in the app-config step.

Scanning-Image-Scan-to-URL in the app-config step.

Creates

A ConfigMap, in which the data field has a key delivery.yaml whose value is the definition of a
Kubernetes Deployment.

Parameters

None

More information

For information about the three different types of workloads, see workload types.

server-template

Purpose

For workloads with the label apps.tanzu.vmware.com/workload-type: server, define a Kubernetes
Deployment and a Kubernetes Service.

Used by

Source-to-URL in the app-config step.

Basic-Image-to-URL in the app-config step.

Source-Test-to-URL in the app-config step.

Testing-Image-to-URL in the app-config step.

Source-Test-Scan-to-URL in the app-config step.

Scanning-Image-Scan-to-URL in the app-config step.

Source-to-URL-Package (experimental) in the app-config step.

Basic-Image-to-URL-Package (experimental) in the app-config step.

Creates

A ConfigMap, in which the data field has a key delivery.yaml whose value is the definitions of a
Kubernetes Deployment and a Kubernetes Service to expose the pods.

Tanzu Application Platform v1.4

VMware by Broadcom 1143



Parameters

Parameter
name

Meaning Example

ports Set of network ports to expose from the application to the
Kubernetes cluster.       - name: ports

        value:

          - containerPor

t: 2025

            name: smtp

            port: 25

      

More information

For information about the three different types of workloads, see workload types.

For information about the ports parameter, see server-specific Workload parameters.

service-bindings

Purpose

Adds ServiceBindings to the set of Kubernetes configuration files.

Used by

Source-to-URL in the service-bindings step.

Basic-Image-to-URL in the service-bindings step.

Source-Test-to-URL in the service-bindings step.

Testing-Image-to-URL in the service-bindings step.

Source-Test-Scan-to-URL in the service-bindings step.

Scanning-Image-Scan-to-URL in the service-bindings step.

Source-to-URL-Package (experimental) in the service-bindings step.

Basic-Image-to-URL-Package (experimental) in the service-bindings step.

Creates

A ConfigMap. This template consumes input of multiple deployment YAML files and enriches the
input with ResourceClaims and ServiceBindings if the workload contains serviceClaims.

Parameters

Tanzu Application Platform v1.4

VMware by Broadcom 1144



Parameter
name

Meaning Example

annotations Extra set of annotations to pass down to the ServiceBinding and
ResourceClaim objects.       - name: annotati

ons

        value:

          name: my-app

lication

          version: v1.

2.3

          team: store

      

More information

For an example, see –service-ref in the Tanzu CLI documentation.

For an overview of the function, see Consume services on Tanzu Application Platform.

api-descriptors

Purpose

The api-descriptor resource takes care of adding an APIDescriptor to the set of Kubernetes
objects to deploy such that API auto registration takes place.

Used by

Source-to-URL in the api-descriptors step.

Basic-Image-to-URL in the api-descriptors step.

Source-Test-to-URL in the api-descriptors step.

Testing-Image-to-URL in the api-descriptors step.

Source-Test-Scan-to-URL in the api-descriptors step.

Scanning-Image-Scan-to-URL in the api-descriptors step.

Source-to-URL-Package (experimental) in the api-descriptors step.

Basic-Image-to-URL-Package (experimental) in the api-descriptors step.

Creates

A ConfigMap. This template consumes input of multiple YAML files and enriches the input with an
APIDescriptor if the workload has a label apis.apps.tanzu.vmware.com/register-api set to true.

Parameters

Parameter
name

Meaning Example

annotations Extra set of annotations to pass down to the
APIDescriptor object.       - name: annotations

        value:

          name: my-application

          version: v1.2.3

          team: store

      

Tanzu Application Platform v1.4

VMware by Broadcom 1145



Parameter
name

Meaning Example

api_descrip

tor

Information used to fill the state that you
want of the APIDescriptor object (its spec).       - name: api_descriptor

        value:

          type: openapi

          location:

            baseURL: http://petclinic-

hard-coded.my-apps.tapdemo.vmware.com/

            path: "/v3/api

          owner: team-petclinic

          system: pet-clinics

          description: "example"

      

More information

For information about API auto registration, see Use API Auto Registration.

config-writer-template

Purpose

Persist in an external system, such as a registry or git repository, the Kubernetes configuration
passed to the template.

Used by

Source-to-URL in the config-writer step.

Basic-Image-to-URL in the config-writer step.

Source-Test-to-URL in the config-writer step.

Testing-Image-to-URL in the config-writer step.

Source-Test-Scan-to-URL in the config-writer step.

Scanning-Image-Scan-to-URL in the config-writer step.

Creates

A runnable which creates a Tekton TaskRun that refers either to the Tekton Task git-writer or the
Tekton Task image-writer.

Parameters

Parameter
name

Meaning Example

serviceAccoun

t

Name of the service account which provides the
credentials to the registry or repository. The service
account must exist in the same namespace as the
Workload.

      - name: serviceAcco

unt

        value: default

      

Tanzu Application Platform v1.4

VMware by Broadcom 1146



Parameter
name

Meaning Example

gitops_branch Name of the branch to push the configuration to.
      - name: gitops_bran

ch

        value: main

      

gitops_user_n

ame

User name to use in the commits.
      - name: gitops_user

_name

        value: "Alice Le

e"

      

gitops_user_e

mail

User email address to use in the commits.
      - name: gitops_user

_email

        value: alice@exam

ple.com

      

gitops_commit

_message

Message to write as the body of the commits produced for
pushing configuration to the Git repository.       - name: gitops_comm

it_message

        value: "ci bump"

      

gitops_reposi

tory

The full repository URL to which the configuration is
committed. DEPRECATED       - name: gitops_repo

sitory

        value: "https://g

ithub.com/vmware-tanzu/ca

rtographer"

      

gitops_reposi

tory_prefix

The prefix of the repository URL. DEPRECATED
      - name: gitops_repo

sitory

        value: "https://g

ithub.com/vmware-tanzu/"

      

gitops_server

_address

The server URL of the Git repository to which configuration
is applied.       - name: gitops_serv

er_address

        value: "https://g

ithub.com/"

      

gitops_reposi

tory_owner

The owner/organization to which the repository belongs.
      - name: gitops_repo

sitory_owner

        value: vmware-tan

zu

      

Tanzu Application Platform v1.4

VMware by Broadcom 1147



Parameter
name

Meaning Example

gitops_reposi

tory_name

The name of the repository.
      - name: gitops_repo

sitory_name

        value: cartograph

er

      

registry Specification of the registry server and repository in which
the configuration is placed.       - name: registry

        value:

          server: index.d

ocker.io

          repository: web

-team

          ca_cert_data:

            -----BEGIN CE

RTIFICATE-----

            MIIFXzCCA0egA

wIBAgIJAJYm37SFocjlMA0GCS

qGSIb3DQEBDQUAMEY...

            -----END CERT

IFICATE-----

      

More information

For information about operating this template, see Gitops vs RegistryOps and the config-writer-
and-pull-requester-template.

config-writer-and-pull-requester-template

Purpose

Persist the passed in Kubernetes configuration to a branch in a repository and open a pull request
to another branch. This process allows for manual review of configuration before deployment to a
cluster.

Used by

Source-to-URL in the config-writer step.

Basic-Image-to-URL in the config-writer step.

Source-Test-to-URL in the config-writer step.

Testing-Image-to-URL in the config-writer step.

Source-Test-Scan-to-URL in the config-writer step.

Scanning-Image-Scan-to-URL in the config-writer step.

Creates

A runnable which provides configuration to the ClusterRunTemplate commit-and-pr-pipelinerun to
create a Tekton TaskRun. The Tekton TaskRun refers to the Tekton Task commit-and-pr.

Parameters

Tanzu Application Platform v1.4

VMware by Broadcom 1148



Parameter name Meaning Example

serviceAccount Name of the service account which provides the credentials to the
registry or repository. The service account must exist in the same
namespace as the Workload.

      - name: serv

iceAccount

        value: def

ault

      

gitops_commit_b

ranch

Name of the branch to which configuration is pushed.
      - name: gito

ps_commit_branch

        value: fea

ture

      

gitops_branch Name of the branch to which a pull request is opened.
      - name: gito

ps_branch

        value: mai

n

      

gitops_user_nam

e

User name to use in the commits.
      - name: gito

ps_user_name

        value: "Al

ice Lee"

      

gitops_user_ema

il

User email address to use in the commits.
      - name: gito

ps_user_email

        value: ali

ce@example.com

      

gitops_commit_m

essage

Message to write as the body of the commits produced for pushing
configuration to the Git repository.       - name: gito

ps_commit_message

        value: "ci 

bump"

      

gitops_pull_req

uest_title

Title of the pull request to be opened.
      - name: gito

ps_pull_request_ti

tle

        value: "re

ady for review"

      

gitops_pull_req

uest_body

Body of the pull request to be opened.
      - name: gito

ps_pull_request_bo

dy

        value: "ge

nerated by supply 

chain"

      

Tanzu Application Platform v1.4

VMware by Broadcom 1149



Parameter name Meaning Example

gitops_server_a

ddress

The server URL of the Git repository to which configuration is
applied.       - name: gito

ps_server_address

        value: "ht

tps://github.com/"

      

gitops_reposito

ry_owner

The owner/organization to which the repository belongs.
      - name: gito

ps_repository_owne

r

        value: vmw

are-tanzu

      

gitops_reposito

ry_name

The name of the repository.
      - name: gito

ps_repository_name

        value: car

tographer

      

gitops_server_k

ind

The kind of Git provider
      - name: gito

ps_server_kind

        value: git

lab

      

More information

For information about the operation of this template, see Gitops vs RegistryOps and the config-
writer-template.

deliverable-template

Purpose

Create a deliverable which pairs with a Delivery to deploy Kubernetes configuration on the cluster.

Used by

Source-to-URL in the deliverable step.

Basic-Image-to-URL in the deliverable step.

Source-Test-to-URL in the deliverable step.

Testing-Image-to-URL in the deliverable step.

Source-Test-Scan-to-URL in the deliverable step.

Scanning-Image-Scan-to-URL in the deliverable step.

Creates

A Deliverable preconfigured with reference to a repository or registry from which to fetch
Kubernetes configuration.

Tanzu Application Platform v1.4

VMware by Broadcom 1150

https://cartographer.sh/docs/v0.6.0/architecture/#clusterdelivery
https://cartographer.sh/docs/v0.6.0/reference/deliverable/#deliverable


Parameters

Parameter
name

Meaning Example

serviceAccou

nt

Name of the service account providing the necessary permissions
for the Delivery to create children objects. Populates the
Deliverable's serviceAccount parameter. The service account must
be in the same namespace as the Deliverable.

      - name: service

Account

        value: defaul

t

      

gitops_ssh_s

ecret

Name of the secret where credentials exist for fetching the
configuration from a Git repository. Populates the Deliverable's
gitops_ssh_secret parameter. The service account must be in the
same namespace as the Deliverable.

      - name: gitops_

ssh_secret

        value: ssh-se

cret

      

gitops_branc

h

Name of the branch from which to fetch the configuration.
      - name: gitops_

branch

        value: main

      

gitops_repos

itory

The full repository URL to which the configuration is fetched.
DEPRECATED       - name: gitops_

repository

        value: "http

s://github.com/vmware

-tanzu/cartographer"

      

gitops_repos

itory_prefix

The prefix of the repository URL. DEPRECATED
      - name: gitops_

repository

        value: "http

s://github.com/vmware

-tanzu/"

      

gitops_serve

r_address

The server URL of the Git repository from which configuration is
fetched.       - name: gitops_

server_address

        value: "http

s://github.com/"

      

gitops_repos

itory_owner

The owner/organization to which the repository belongs.
      - name: gitops_

repository_owner

        value: vmware

-tanzu

      

gitops_repos

itory_name

The name of the repository.
      - name: gitops_

repository_name

        value: cartog

rapher

      

Tanzu Application Platform v1.4

VMware by Broadcom 1151



Parameter
name

Meaning Example

registry Specification of the registry server and repository from which the
configuration is fetched.       - name: registr

y

        value:

          server: ind

ex.docker.io

          repository: 

web-team

          ca_cert_dat

a:

            -----BEGI

N CERTIFICATE-----

            MIIFXzCCA

0egAwIBAgIJAJYm37SFoc

jlMA0GCSqGSIb3DQEBDQU

AMEY...

            -----END 

CERTIFICATE-----

      

More information

For information about the ClusterDelivery shipped with ootb-delivery-basic, see Out of the Box
Delivery Basic.

external-deliverable-template

Purpose

Create a definition of a deliverable which a user can manually applied to an external kubernetes
cluster. When a properly configured Delivery is installed on that external cluster, the Deliverable
will pair with the Delivery to deploy Kubernetes configuration on the cluster. For example, the
OOTB Delivery.

Used by

Source-to-URL in the deliverable step.

Basic-Image-to-URL in the deliverable step.

Source-Test-to-URL in the deliverable step.

Testing-Image-to-URL in the deliverable step.

Source-Test-Scan-to-URL in the deliverable step.

Scanning-Image-Scan-to-URL in the deliverable step.

Creates

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.4

VMware by Broadcom 1152

https://cartographer.sh/docs/v0.6.0/architecture/#clusterdelivery


A configmap in which the .data field has a key deliverable for which the value is the YAML
definition of a Deliverable.

Parameters

Parameter
name

Meaning Example

serviceAccou

nt

Name of the service account providing the necessary permissions
for the Delivery to create children objects. Populates the
Deliverable's serviceAccount parameter. The service account must
be in the same namespace as the Deliverable.

      - name: service

Account

        value: defaul

t

      

gitops_ssh_s

ecret

Name of the secret where credentials exist for fetching the
configuration from a Git repository. Populates the Deliverable's
gitops_ssh_secret parameter. The service account must be in the
same namespace as the Deliverable.

      - name: gitops_

ssh_secret

        value: ssh-se

cret

      

gitops_branc

h

Name of the branch from which to fetch the configuration.
      - name: gitops_

branch

        value: main

      

gitops_repos

itory

The full repository URL to which the configuration is fetched.
DEPRECATED       - name: gitops_

repository

        value: "http

s://github.com/vmware

-tanzu/cartographer"

      

gitops_repos

itory_prefix

The prefix of the repository URL. DEPRECATED
      - name: gitops_

repository

        value: "http

s://github.com/vmware

-tanzu/"

      

gitops_serve

r_address

The server URL of the Git repository from which configuration is
fetched.       - name: gitops_

server_address

        value: "http

s://github.com/"

      

gitops_repos

itory_owner

The owner/organization to which the repository belongs.
      - name: gitops_

repository_owner

        value: vmware

-tanzu

      

Tanzu Application Platform v1.4

VMware by Broadcom 1153

https://cartographer.sh/docs/v0.6.0/reference/deliverable/#deliverable


Parameter
name

Meaning Example

gitops_repos

itory_name

The name of the repository.
      - name: gitops_

repository_name

        value: cartog

rapher

      

registry Specification of the registry server and repository from which the
configuration is fetched.       - name: registr

y

        value:

          server: ind

ex.docker.io

          repository: 

web-team

          ca_cert_dat

a:

            -----BEGI

N CERTIFICATE-----

            MIIFXzCCA

0egAwIBAgIJAJYm37SFoc

jlMA0GCSqGSIb3DQEBDQU

AMEY...

            -----END 

CERTIFICATE-----

      

More information

For information about the ClusterDelivery shipped with ootb-delivery-basic, see Out of the Box
Delivery Basic.

For information about using the Deliverable object in a multicluster environment, see Getting
started with multicluster Tanzu Application Platform.

delivery-source-template

Purpose

Continuously fetches Kubernetes configuration files from a Git repository or container image
registry and makes them available on the cluster.

Used by

Delivery-Basic

Creates

The source-template creates one of three objects, either: - GitRepository. Created if the
deliverable has .spec.source.git defined. - ImageRepository. Created if the deliverable has
.spec.source.image defined.

GitRepository

GitRepository makes source code from a particular commit available as a tarball in the cluster.
Other resources in the supply chain can then access that code.

Tanzu Application Platform v1.4

VMware by Broadcom 1154



Parameters

Parameter
name

Meaning Example

gitImpleme

ntation

The library used to fetch source code. If not provided, Tanzu Application Platform's
default implementation uses go-git, which works with the providers supported by
Tanzu Application Platform: GitHub and GitLab. An alternate value that you can use
with other Git providers is libgit2.

      - na

me: gitImp

lementatio

n

        va

lue: libgi

t2

      

gitops_ssh

_secret

Name of the secret used to provide credentials for the Git repository. The secret
with this name must exist in the same namespace as the Deliverable. The
credentials must be sufficient to read the repository. If not provided, Tanzu
Application Platform defaults to look for a secret named git-ssh. See Git
authentication.

      - na

me: gitops

_ssh_secre

t

        va

lue: git-c

redentials

      

More information

For an example using the Tanzu CLI to create a Workload using GitHub as the provider of source
code, see Create a workload from GitHub repository.

For information about GitRepository objects, see GitRepository.

ImageRepository

ImageRepository makes the contents of a container image available as a tarball on the cluster.

Parameters

Parameter
name

Meaning Example

serviceAcco

unt

Name of the service account, providing credentials to ImageRepository for
fetching container images. The service account must exist in the same
namespace as the Deliverable.

      - name: 

serviceAccoun

t

        valu

e: default

      

More information

Note

Some Git providers, notably Azure DevOps, require you to use libgit2 due to the
server-side implementation providing support only for git’s v2 protocol. For
information about the features supported by each implementation, see git
implementation in the flux documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 1155

https://fluxcd.io/flux/components/source/gitrepositories/
https://git-scm.com/docs/protocol-v2
https://fluxcd.io/flux/components/source/gitrepositories/#git-implementation


For information about the ImageRepository resource, see ImageRepository reference docs.

app-deploy

Purpose

Applies Kubernetes configuration to the cluster.

Used by

Delivery-Basic

Creates

A kapp App.

Parameters

Parameter name Meaning Example

serviceAccount Name of the service account providing the necessary privileges for App to
apply the Kubernetes objects to the cluster. The service account must be in
the same namespace as the Deliverable.

      - name: 

serviceAccoun

t

        valu

e: default

      

gitops_sub_path

(deprecated)

Sub directory within the configuration bundle that is used for looking up
the files to apply to the Kubernetes cluster. DEPRECATED       - name: 

gitops_sub_pa

th

        valu

e: ./config

      

More information

For details about RBAC and how kapp-controller makes use of the ServiceAccount provided
through the Deliverable’s serviceAccount parameter, see kapp-controller’s Security Model.

carvel-package (experimental)

Purpose

Bundles Kubernetes configuration into a Carvel Package.

Used by

Source-to-URL-Package (experimental) in the carvel-package step.

Basic-Image-to-URL-Package (experimental) in the carvel-package step.

Note

The gitops_sub_path parameter is deprecated. Use
deliverable.spec.source.subPath instead.

Tanzu Application Platform v1.4

VMware by Broadcom 1156

https://carvel.dev/kapp-controller/docs/v0.41.0/app-overview/
https://carvel.dev/kapp-controller/docs/v0.41.0/security-model/


Creates

A taskrun.tekton.dev which provides configuration to a Tekton ClusterTask to bundle Kubernetes
configuration into a Carvel Package.

This template uses the lifecycle: tekton flag to create new immutable objects rather than updating
the previous object.

Parameters

Parameter
name

Meaning Example

serviceAccoun

t

Name of the service account to use for providing Docker
credentials. The service account must exist in the same
namespace as the Workload. The service account must have a
secret associated with the credentials. See Configuring
authentication for Docker in the Tekton documentation.

      - name: serviceA

ccount

        value: default

      

registry Specification of the registry server and repository in which the
built image is placed.       - name: registry

        value:

          server: inde

x.docker.io

          repository: 

web-team

      

carvel_packag

e_gitops_subp

ath

Specifies the subpath to which Carvel Packages should be
written.       - name: carvel_p

ackage_gitops_subpath

        value: path/t

o/my/dir

      

carvel_packag

e_name_suffix

Specifies the suffix to append to the Carvel Package name. The
format is
WORKLOAD_NAME.WORKLOAD_NAMESPACE.carvel_packa
ge_name_suffix The full Carvel Package name must be a valid
DNS subdomain name as defined in RFC 1123.

      - name: carvel_p

ackage_name_suffix

        value: vmware.

com

      

Tanzu Application Platform v1.4

VMware by Broadcom 1157

https://cartographer.sh/docs/v0.6.0/lifecycle/
https://tekton.dev/docs/pipelines/auth/#configuring-authentication-for-docker


Parameter
name

Meaning Example

carvel_packag

e_parameters

Specifies the custom Carvel Package parameters
      - name: carvel_p

ackage_parameters

        value: |

        - selector:

            matchLabel

s:

              apps.tan

zu.vmware.com/workload

-type: server

          schema: |

            #@data/val

ues-schema

            ---

            #@schema/t

itle "Workload name"

            #@schema/d

esc "Required. Name of 

the workload, used by 

K8s Ingress HTTP rule

s."

            #@schema/e

xample "tanzu-java-web

-app"

            #@schema/v

alidation min_len=1

            workload_n

ame: ""

            #@schema/t

itle "Replicas"

            #@schema/d

esc "Number of replica

s."

            replicas: 

1

            #@schema/t

itle "Port"

            #@schema/d

esc "Port number for t

he backend associated 

with K8s Ingress."

            port: 8080

            #@schema/t

itle "Hostname"

            #@schema/d

esc "If set, K8s Ingre

ss will be created wit

h HTTP rules for hostn

ame."

            #@schema/e

xample "app.tanzu.vmwa

re.com"

            hostname: 

""

            #@schema/t

itle "Cluster Issuer"

            #@schema/d

esc "CertManager Issue

r to use to generate c

Tanzu Application Platform v1.4

VMware by Broadcom 1158



Parameter
name

Meaning Example

ertificate for K8s Ing

ress."

            cluster_is

suer: "tap-ingress-sel

fsigned"

          overlays: |

            #@ load("@

ytt:overlay", "overla

y")

            #@ load("@

ytt:data", "data")

            #@overlay/

match by=overlay.subse

t({"apiVersion":"apps/

v1", "kind": "Deployme

nt"})

            ---

            spec:

              #@overla

y/match missing_ok=Tru

e

              replica

s: #@ data.values.repl

icas

            #@ if dat

a.values.hostname != 

"":

            ---

            apiVersio

n: networking.k8s.io/v

1

            kind: Ingr

ess

            metadata:

              name: #@ 

data.values.workload_n

ame

              annotati

ons:

                cert-m

anager.io/cluster-issu

er:  #@ data.values.cl

uster_issuer

                ingres

s.kubernetes.io/force-

ssl-redirect: "true"

                kubern

etes.io/ingress.class: 

contour

                kapp.k

14s.io/change-rule: "u

psert after upserting 

Services"

              labels:

                app.ku

bernetes.io/component: 

"run"

                carto.

run/workload-name:  #@ 

data.values.workload_n

ame

            spec:

Tanzu Application Platform v1.4

VMware by Broadcom 1159



Parameter
name

Meaning Example

              tls:

                - secr

etName: #@ data.value

s.workload_name

                  host

s:

                  - #@ 

data.values.hostname

              rules:

              - host: 

#@ data.values.hostnam

e

                http:

                  path

s:

                  - pa

thType: Prefix

                    pa

th: /

                    ba

ckend:

                      

service:

                        

name: #@ data.values.w

orkload_name

                        

port:

                          

number: #@ data.value

s.port

            #@ end              

        - selector:

            matchLabel

s:

              apps.tan

zu.vmware.com/workload

-type: web

          schema: |

            #@data/val

ues-schema

            ---

            #@schema/v

alidation min_len=1

            workload_n

ame: ""

          overlays: ""

        - selector:

            matchLabel

s:

              apps.tan

zu.vmware.com/workload

-type: worker

          schema: |

            #@data/val

ues-schema

            ---

            #@schema/v

alidation min_len=1

            workload_n

ame: ""

            replicas: 

1

Tanzu Application Platform v1.4

VMware by Broadcom 1160



Parameter
name

Meaning Example

          overlays: |

            #@ load("@

ytt:overlay", "overla

y")

            #@ load("@

ytt:data", "data")

            #@overlay/

match by=overlay.subse

t({"apiVersion":"apps/

v1", "kind": "Deployme

nt"})

            ---

            spec:

              #@overla

y/match missing_ok=Tru

e

              replica

s: #@ data.values.repl

icas

      

carvel_packag

e_openapiv3_e

nabled

Specifies whether the Carvel Package should include a
generated OpenAPIv3 specification       - name: carvel_p

ackage_openapiv3_enabl

ed

        value: true

      

More information

To read more about lifecycle:tekton, read Cartographer Lifecycle.

package-config-writer-template (experimental)

Purpose

Persist in an external git repository the Carvel Package Kubernetes configuration passed to the
template.

Used by

Source-to-URL-Package (experimental) in the config-writer step.

Basic-Image-to-URL-Package (experimental) in the config-writer step.

Creates

A runnable which creates a Tekton TaskRun that refers either to the Tekton Task git-writer.

Parameters

Tanzu Application Platform v1.4

VMware by Broadcom 1161

https://cartographer.sh/docs/v0.6.0/lifecycle/


Parameter
name

Meaning Example

serviceAccoun

t

Name of the service account which provides the credentials to the
registry or repository. The service account must exist in the same
namespace as the Workload.

      - name: servic

eAccount

        value: defau

lt

      

gitops_branch Name of the branch to push the configuration to.
      - name: gitops

_branch

        value: main

      

gitops_user_n

ame

User name to use in the commits.
      - name: gitops

_user_name

        value: "Alic

e Lee"

      

gitops_user_e

mail

User email address to use in the commits.
      - name: gitops

_user_email

        value: alice

@example.com

      

gitops_commit

_message

Message to write as the body of the commits produced for
pushing configuration to the Git repository.       - name: gitops

_commit_message

        value: "ci b

ump"

      

gitops_reposi

tory

The full repository URL to which the configuration is committed.
DEPRECATED       - name: gitops

_repository

        value: "http

s://github.com/vmwar

e-tanzu/cartographe

r"

      

gitops_reposi

tory_prefix

The prefix of the repository URL. DEPRECATED
      - name: gitops

_repository

        value: "http

s://github.com/vmwar

e-tanzu/"

      

gitops_server

_address

The server URL of the Git repository to which configuration is
applied.       - name: gitops

_server_address

        value: "http

s://github.com/"

      

Tanzu Application Platform v1.4

VMware by Broadcom 1162



Parameter
name

Meaning Example

gitops_reposi

tory_owner

The owner/organization to which the repository belongs.
      - name: gitops

_repository_owner

        value: vmwar

e-tanzu

      

gitops_reposi

tory_name

The name of the repository.
      - name: gitops

_repository_name

        value: carto

grapher

      

registry Specification of the registry server and repository in which the
configuration is placed.       - name: regist

ry

        value:

          server: in

dex.docker.io

          repositor

y: web-team

          ca_cert_da

ta:

            -----BEG

IN CERTIFICATE-----

            MIIFXzCC

A0egAwIBAgIJAJYm37SF

ocjlMA0GCSqGSIb3DQEB

DQUAMEY...

            -----END 

CERTIFICATE-----

      

carvel_packag

e_gitops_subp

ath

Specifies the subpath to which Carvel Packages should be written.
      - name: carvel

_package_gitops_subp

ath

        value: path/

to/my/dir

      

carvel_packag

e_name_suffix

Specifies the suffix to append to the Carvel Package name. The
format is
WORKLOAD_NAME.WORKLOAD_NAMESPACE.carvel_package
_name_suffix The full Carvel Package name must be a valid DNS
subdomain name as defined in RFC 1123.

      - name: carvel

_package_name_suffix

        value: vmwar

e.com

      

More information

See Gitops vs RegistryOps for more information about the operation of this template and of the
package-config-writer-and-pull-requester-template (experimental).

package-config-writer-and-pull-requester-template
(experimental)

Tanzu Application Platform v1.4

VMware by Broadcom 1163



Purpose

Persist the passed in Carvel Package Kubernetes configuration to a branch in a repository and open
a pull request to another branch. (This process allows for manual review of configuration before
deployment to a cluster)

Used by

Source-to-URL-Package (experimental) in the config-writer step.

Basic-Image-to-URL-Package (experimental) in the config-writer step.

Creates

A runnable which provides configuration to the ClusterRunTemplate commit-and-pr-pipelinerun to
create a Tekton TaskRun. The Tekton TaskRun refers to the Tekton Task commit-and-pr.

Parameters

Parameter name Meaning Example

serviceAccount Name of the service account which provides the credentials to the
registry or repository. The service account must exist in the same
namespace as the Workload.

      - name: 

serviceAccount

        value: 

default

      

gitops_commit_

branch

Name of the branch to which configuration is pushed.
      - name: 

gitops_commit_

branch

        value: 

feature

      

gitops_branch Name of the branch to which a pull request is opened.
      - name: 

gitops_branch

        value: 

main

      

gitops_user_na

me

User name to use in the commits.
      - name: 

gitops_user_na

me

        value: 

"Alice Lee"

      

gitops_user_em

ail

User email address to use in the commits.
      - name: 

gitops_user_em

ail

        value: 

alice@example.

com

      

Tanzu Application Platform v1.4

VMware by Broadcom 1164



Parameter name Meaning Example

gitops_commit_

message

Message to write as the body of the commits produced for pushing
configuration to the Git repository.       - name: 

gitops_commit_

message

        value: 

"ci bump"

      

gitops_pull_re

quest_title

Title of the pull request to be opened.
      - name: 

gitops_pull_re

quest_title

        value: 

"ready for rev

iew"

      

gitops_pull_re

quest_body

Body of the pull request to be opened.
      - name: 

gitops_pull_re

quest_body

        value: 

"generated by 

supply chain"

      

gitops_server_

address

The server URL of the Git repository to which configuration is applied.
      - name: 

gitops_server_

address

        value: 

"https://githu

b.com/"

      

gitops_reposit

ory_owner

The owner/organization to which the repository belongs.
      - name: 

gitops_reposit

ory_owner

        value: 

vmware-tanzu

      

gitops_reposit

ory_name

The name of the repository.
      - name: 

gitops_reposit

ory_name

        value: 

cartographer

      

gitops_server_

kind

The kind of Git provider
      - name: 

gitops_server_

kind

        value: 

gitlab

      

Tanzu Application Platform v1.4

VMware by Broadcom 1165



Parameter name Meaning Example

carvel_package

_gitops_subpat

h

Specifies the subpath to which Carvel Packages should be written.
      - name: 

carvel_package

_gitops_subpat

h

        value: 

path/to/my/dir

      

carvel_package

_name_suffix

Specifies the suffix to append to the Carvel Package name. The format is
WORKLOAD_NAME.WORKLOAD_NAMESPACE.carvel_package_name
_suffix The full Carvel Package name must be a valid DNS subdomain
name as defined in RFC 1123.

      - name: 

carvel_package

_name_suffix

        value: 

vmware.com

      

More information

See Gitops vs RegistryOps for more information about the operation of this template and of the
package-config-writer-template (experimental).

ClusterRunTemplate reference

All the objects referenced in this topic are Cartographer ClusterRunTemplates packaged in Out of
the Box Templates. This topic describes the one or more objects they create, the supply chains
that include them, and the parameters they use.

tekton-source-pipelinerun

Purpose

Tests source code.

Used by

testing-pipeline

Creates

This ClusterRunTemplate creates a Tekton PipelineRun referring to the user’s Tekton Pipeline.

Inputs

ClusterRunTemplate reference

Tanzu Application Platform v1.4

VMware by Broadcom 1166

https://cartographer.sh/docs/v0.6.0/reference/runnable/#clusterruntemplate
https://tekton.dev/docs/pipelines/pipelineruns/


Input name Meaning Example

tekton-

params

Set of parameters to pass to the
Tekton Pipeline       - name: source-url

        value: https://github.com/vmware-tanz

u/cartographer.git

      - name: source-revision

        value: e4a53f49a92fc913d26f8cc23d5910

2a51a5e635

      - name: verbose

        value: true

      - name: foo

        value: bar

      

More information

For information about the runnable created in the OOTB Testing and OOTB Testing and Scanning,
see testing-pipeline.

For information about the Tekton Pipeline that the user must create, see Tekton/Pipeline.

tekton-taskrun

Purpose

Generic template for creating a Tekton TaskRun.

Used by

config-writer-template

Creates

A Tekton TaskRun.

Inputs

Input name Meaning Example

serviceAccou

nt

Service Account with permissions necessary for the Tekton
Task

default

taskRef Reference to the Tekton Task to which the TaskRun provides
parameters         kind: ClusterTask

        name: git-writer

        

params Parameters which are provided to the Tekton Task
        - name: git_branc

h

          value: main

        - name: git_user_

name

          value: "Some Na

me"

        

commit-and-pr-pipelinerun

Tanzu Application Platform v1.4

VMware by Broadcom 1167



Purpose

Commit configuration to a Git repository and open a pull request for review.

Used by

config-writer-and-pull-requester-template

Creates

Creates a Tekton TaskRun referring to the commit-and-pr Tekton Task.

Inputs

Input
name

Meaning Example

serviceA

ccount

Service Account with credentials for
the Git repository default

git_serv

er_kind

Type of Git provider
github

git_serv

er_addre

ss

Server URL
https://github.com

reposito

ry_owner

Owner or Organization in which the
repository resides vmware-tanzu

reposito

ry_name

Name of the repository
cartographer

commit_b

ranch

Name of the commit branch.
Recommended value is an empty
string.

""

pull_req

uest_tit

le

Title of the PR to be opened
 "Update" 

pull_req

uest_bod

y

Body of the PR to be opened
 "Ready for review" 

base_bra

nch

Branch into which the PR is merged
main

git_user

_name

User name associated with the commit
Waciuma Rasheed

git_user

_email

User email associated with the commit
Sam@todd.com

git_comm

it_messa

ge

Message on commit
 "App update" 

git_file

s

Base64 encoded JSON file where keys
equal the filename and the value is the
file contents.

 "eyJkZWxpdmVyeS55bWwiOiJhcGlWZXJzaW9uOiBzZX

J2aW5nLmtuYXRpdmUuZGV2L3YxXG5raW5kOiBTZXJ2aW

NlXG4ifQ==" 

Tanzu Application Platform v1.4

VMware by Broadcom 1168



sub_path The directory location in the repository
in which to write the files.  "." 

More information

For information about the template creating the related runnable, see config-writer-and-pull-
requester-template.

For information about gitops, see GitOps versus RegistryOps.

Delivery reference

Tanzu Application Platform delivery package installs a single ClusterDelivery.

The delivery provides some parameters to the templates. The parameters provided by the
deliverable might override some of the delivery parameters in this topic. See parameters in the
Cartographer documentation.

delivery-basic

Purpose

Fetches Kubernetes configuration created by a supply chain.

Deploys the configuration on the cluster.

Resources

The following resources describe the templates.

source-provider

Refers to delivery-source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by deliverable.

gitImplementation from tap-value git_implementation. Not overridable by deliverable.

Deployer

Refers to app-deploy template.

Parameter provided:

serviceAccount from tap-value service_account. Overridable by deliverable.

Package

Refers to Out of the Box Delivery Basic.

More information

For information about setting tap-values.yaml at installation time, see Install Out of the Box
Delivery Basic.

Git

Tanzu Application Platform v1.4

VMware by Broadcom 1169

https://cartographer.sh/docs/v0.6.0/reference/deliverable/#clusterdelivery
https://cartographer.sh/docs/v0.6.0/templating/#parameters


The out of the box supply chains and delivery use Git in 3 ways:

To fetch the developers source code, using the template.

To store complete Kubernetes configuration, the “write” side of gitops, use template 1 and
template 2.

To fetch stored Kubernetes configuration, the read side of gitops, from either the same or a
different Kubernetes cluster, use the template.

Supported Git Repositories

Tanzu Application Platform supports two Git providers:

GitHub

GitLab

Related Articles

Git Authentication: walks through the objects, such as secrets and service accounts, to create on
cluster to allow supply chain Git operations to succeed.

GitOps versus RegistryOps: discusses the two methods of storing built Kubernetes configuration,
either in a git repository or an image registry, and walks through the parameters that must be
provided for each.

GitOps versus RegistryOps

Regardless of the supply chain that a workload goes through, in the end, some Kubernetes
configuration is pushed to an external entity, either to a Git repository or to a container image
registry.

For example:

Supply Chain

  -- fetch source

    -- test

      -- build

        -- scan

          -- apply-conventions

            -- push config        * either to Git or Registry

This topic dives into the specifics of that last phase of the supply chains by pushing configuration to
a Git repository or a container image registry.

GitOps
The GitOps approach differs from local iteration in that GitOps configures the supply chains to push
the Kubernetes configuration to a remote Git repository. This allows users to compare configuration
changes and promote those changes through environments by using GitOps principles.

Note

For more information about providing source code either from a local directory or
Git repository, see Building from Source.

Tanzu Application Platform v1.4

VMware by Broadcom 1170



Typically associated with an outerloop workflow, the GitOps approach is only activated if a
collection of parameters are set:

gitops.server_address during the Out of the Box Supply Chains package installation or
gitops_server_address configured as a workload parameter.

gitops.repository_owner during the Out of the Box Supply Chains package installation or
gitops_repository_owner configured as a workload parameter.

gitops.repository_name during the Out of the Box Supply Chains package installation or
gitops_repository_name configured as a workload parameter.

With all three values set, Kubernetes configuration is written to the specified repository. If a value is
set at installation and the corresponding workload parameter is also set, the value of the workload
parameter is respected.

In the repository, files are located in the ./config/{workload-namespace}/{workload-name}
directory. This allows multiple workloads to commit configuration to the same repository.

Examples

tap-values.yaml

gitops:

  server_address:

  repository_owner:

  repository_name:

workload

  name: incrediApp

  namespace: awesomeTeam

  params:

    - name: gitops_server_address

      value: https://github.com/

    - name: gitops_repository_owner

      value: vmware-tanzu

    - name: gitops_repository_name

      value: cartographer

Resulting gitops repository: https://github.com/vmware-tanzu/cartographer

Directory containing configuration: ./config/awesomeTeam/incrediApp

tap-values.yaml

gitops:

  server_address: https://github.com/

  repository_owner: vmware-tanzu

  repository_name: cartographer

workload

  name: superApp

  namespace: awesomeTeam

Resulting gitops repository: https://github.com/vmware-tanzu/cartographer

Directory containing configuration: ./config/awesomeTeam/superApp

tap-values.yaml

Tanzu Application Platform v1.4

VMware by Broadcom 1171



gitops:

  server_address: https://github.com/

  repository_owner: vmware-tanzu

workload

  name: superApp

  namespace: awesomeTeam

  params:

     - name: gitops_repository_owner

       value: pivotal

     - name: gitops_repository_name

       value: kpack

Resulting gitops repository: https://github.com/pivotal/kpack

Directory containing configuration: ./config/awesomeTeam/superApp

tap-values.yaml

gitops:

  server_address:

  repository_owner:

  repository_name:

workload

  name: superApp

  namespace: awesomeTeam

  params:

     - name: gitops_repository_owner

       value: pivotal

     - name: gitops_repository_name

       value: kpack

Resulting gitops repository: Fails to resolve as some, but not all, of the three required values are
provided.

Deprecated parameters

The following parameters are deprecated and no longer recommended for specifying gitops
repositories:

gitops.repository_prefix: configured during the Out of the Box Supply Chains package
installation.

gitops_repository: configured as a workload parameter.

For example, assuming the installation of the supply chain packages through Tanzu Application
Platform profiles and a tap-values.yaml:

ootb_supply_chain_basic:

  registry:

    server: REGISTRY-SERVER

    repository: REGISTRY-REPOSITORY

  gitops:

    repository_prefix: https://github.com/my-org/

Workloads in the cluster with the Kubernetes configuration produced throughout the supply chain
are pushed to the repository whose name is formed by concatenating gitops.repository_prefix

Tanzu Application Platform v1.4

VMware by Broadcom 1172



with the name of the workload. In this case, for example, https://github.com/my-
org/$(workload.metadata.name).git.

Supply Chain

  params:

      - gitops_repository_prefix: GIT-REPO_PREFIX

workload-1:

  `git push` to GIT-REPO-PREFIX/workload-1.git

workload-2:

  `git push` to GIT-REPO-PREFIX/workload-2.git

...

workload-n:

  `git push` to GIT-REPO-PREFIX/workload-n.git

Alternatively, you can force a workload to publish the configuration in a Git repository by providing
the gitops_repository parameter to the workload:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --git-repo ${GIT_PROJECT_URL} \

  --git-branch ${GIT_BRANCH} \

  --param gitops_ssh_secret=GIT-SECRET-NAME \

  --param gitops_repository=https://github.com/my-org/config-repo

In this case, at the end of the supply chain, the configuration for this workload is published to the
repository provided under the gitops_repository parameter.

If you use deprecated parameters, Kubernetes configuration is committed to the ./config
directory in the repository. This can lead to collisions if two workloads specify the same repository,
or two workloads in different namespaces have the same name and the gitops.repository_prefix
is set in tap-values.yaml.

If the deprecated values are set and any of the suggested gitops values are set, the deprecated
values are ignored.

Examples

tap-values.yaml

gitops:

  repository_prefix: https://github.com/vmware-tanzu

workload

  name: superApp

  namespace: awesomeTeam

Resulting gitops repository: https://github.com/vmware-tanzu/incrediApp

Directory containing configuration: ./config

tap-values.yaml

gitops:

  server_address: https://github.com/

Tanzu Application Platform v1.4

VMware by Broadcom 1173



  repository_owner: vmware-tanzu

  repository_name: cartographer

workload

  name: superApp

  namespace: awesomeTeam

  params:

    - name: gitops_repository

      value: https://github.com/pivotal/kpack

Resulting gitops repository: https://github.com/vmware-tanzu/cartographer (The deprecated
param gitops_repository is ignored.)

Directory containing configuration: ./config/awesomeTeam/superApp

tap-values.yaml

gitops:

  repository_prefix: https://github.com/vmware-tanzu

workload

  name: superApp

  namespace: awesomeTeam

  params:

    - name: gitops_repository_owner

      value: pivotal

    - name: gitops_repository_name

      value: kpack

Resulting gitops repository: Fails to resolve as some, but not all, of the three gitops values are
provided. (The deprecated value repository_prefix is ignored because suggested values are
present)

Pull requests

In the standard git-ops approach, configuration is pushed to a repository and is immediately
applied to a cluster by any deliverable watching that repository. Operators might want to manually
review configuration before applying it to the cluster. To do this, operators must specify a
pull_request commit strategy. You can use this strategy with the following Git providers:

GitHub

GitLab

Authentication

The pull request approach requires HTTP(S) authentication with a token.

The pull request function is not a part of the Git specification, but most Git server providers include
it. You must authenticate with those providers using a token.

In the Kubernetes secret that holds the Git credentials, the password text box must contain a
token. When generating a token, ensure that it has the proper scope:

On GitHub, the token must have a Repo scope.

On GitLab, the token must have an API scope.

To use the pull_request commit strategy, set the following parameters:

Tanzu Application Platform v1.4

VMware by Broadcom 1174

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html#personal-access-token-scopes


commit_strategy == pull_request configured during the Out of the Box Supply Chains
package installation.

gitops.pull_request.server_kind configured during the Out of the Box Supply Chains
package installation or gitops_server_kind configured as a workload parameter. Supported
values are github and gitlab.

gitops.pull_request.commit_branch configured during the Out of the Box Supply Chains
package installation or gitops_commit_branch configured as a workload parameter.

gitops.pull_request.pull_request_title configured during the Out of the Box Supply
Chains package installation or gitops_pull_request_title configured as a workload
parameter.

gitops.pull_request.pull_request_body configured during the Out of the Box Supply
Chains package installation or gitops_pull_request_body configured as a workload
parameter.

If a value is set at both installation and in a workload parameter, the workload parameter is
respected.

The recommended value for commit_branch is an empty string. This generates a new branch for
each commit based on a hash of the time when the commit is created. This prevents collisions
between multiple workloads using a single Git repository.

For example, using the following Tanzu Application Platform values:

ootb_supply_chain_basic:

   gitops:

     server_address: https://github.com/

     repository_owner: vmware-tanzu

     repository_name: cartographer

     branch: main

     commit_strategy: pull_request

     pull_request:

       server_kind: github

       commit_branch: ""

       pull_request_title: ready for review

       pull_request_body: generated by supply chain

In a workload with the name app in the dev namespace, you find:

A commit to the https://github.com/vmware-tanzu/cartographer repository on a branch with a
random name. For example, MTY1MTYxMzE0NQo=. There is a pull request open to merge this branch
into the base branch main.

Authentication

Regardless of how the supply chains are configured, if the repository prefix or repository name is
configured to push to Git, you must provide credentials for the remote provider by using a
Kubernetes secret in the same namespace as the workload attached to the workload
ServiceAccount.

Because the operation of pushing requires elevated permissions, credentials are required by both
public and private repositories.

HTTP(S) Basic-auth or Token-based authentication

If the repository at which configuration is published uses https:// or http:// as the URL scheme,
the Kubernetes secret must provide the credentials for that repository as follows:

Tanzu Application Platform v1.4

VMware by Broadcom 1175



apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME  # `git-ssh` is the default name.

                        #   - operators can change such default by using the

                        #     `gitops.ssh_secret` property in `tap-values.yaml`

                        #   - developers can override by using the workload parameter

                        #     named `gitops_ssh_secret`.

  annotations:

    tekton.dev/git-0: GIT-SERVER        # ! required

type: kubernetes.io/basic-auth          # ! required

stringData:

  username: GIT-USERNAME

  password: GIT-PASSWORD

Both the Tekton annotation and the basic-auth secret type must be set. GIT-SERVER must be
prefixed with the appropriate URL scheme and the Git server. For example, for
https://github.com/vmware-tanzu/cartographer, https://github.com must be provided as the
GIT-SERVER.

To use the pull request approach, the password text box must contain a token. See Pull Requests.

After the Secret is created, attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

For more information about the credentials and setting up the Kubernetes secret, see Git
Authentication’s HTTP section.

SSH

If the repository to which configuration is published uses https:// or http:// as the URL scheme,
the Kubernetes secret must provide the credentials for that repository as follows:

apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME  # `git-ssh` is the default name.

                        #   - operators can change such default through the

                        #     `gitops.ssh_secret` property in `tap-values.yaml`

                        #   - developers can override by using the workload parameter

                        #     named `gitops_ssh_secret`.

  annotations:

    tekton.dev/git-0: GIT-SERVER

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: SSH-PRIVATE-KEY     # private key with push-permissions

  identity: SSH-PRIVATE-KEY           # private key with pull permissions

  identity.pub: SSH-PUBLIC-KEY        # public of the `identity` private key

  known_hosts: GIT-SERVER-PUBLIC-KEYS # git server public keys

After the Secret is created, attach it to the ServiceAccount used by the workload. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1176



apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

For information about the credentials and setting up the Kubernetes secret, see Git
Authentication’s SSH section.

GitOps workload parameters

While installing ootb-*, operators can configure gitops.repository_prefix to indicate what prefix
the supply chain must use when forming the name of the repository to push to the Kubernetes
configurations produced by the supply chains.

To change the behavior to use GitOps, set the source of the source code to a Git repository. As the
supply chain progresses, configuration is pushed to a repository named
$(gitops.repository_prefix) + $(workload.name).

For example, configure gitops.repository_prefix to git@github.com/foo/ and create a workload
as follows:

tanzu apps workload create tanzu-java-web-app \

  --git-repo ${GIT_PROJECT_URL} \

  --git-branch ${GIT_BRANCH} \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Expect to see the following output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

    10 + |spec:

    11 + |  source:

    12 + |    git:

    13 + |      ref:

    14 + |        branch: main

    15 + |      url: https://github.com/my/tanzu-project.git

As a result, the Kubernetes configuration is pushed to git@github.com/foo/tanzu-java-web-
app.git.

Regardless of the setup, developers can also manually override the repository where configuration
is pushed to by tweaking the following parameters:

gitops_ssh_secret: Name of the secret in the same namespace as the workload where
SSH credentials exist for pushing the configuration produced by the supply chain to a Git
repository. Example: ssh-secret

Tanzu Application Platform v1.4

VMware by Broadcom 1177



gitops_repository: SSH URL of the Git repository to push the Kubernetes configuration
produced by the supply chain to. Example: ssh://git@foo.com/staging.git

gitops_branch: Name of the branch to push the configuration to. Example: main

gitops_commit_message: Message to write as the body of the commits produced for pushing
configuration to the Git repository. Example: ci bump

gitops_user_name: User name to use in the commits. Example: Alice Lee

gitops_user_email: User email address to use in the commits. Example: alice@example.com

Read more on Git

See Git Reference

RegistryOps

RegistryOps is typically used for inner loop flows where configuration is treated as an artifact from
quick iterations by developers. In this scenario, at the end of the supply chain, configuration is
pushed to a container image registry in the form of an imgpkg bundle. You can think of it as a
container image whose sole purpose is to carry arbitrary files.

To enable this mode of operation, the supply chains must be configured without the following
parameters being configured during the installation of the ootb- packages or overwritten by the
workload by using the following parameters:

gitops_repository_prefix

gitops_repository

If none of the parameters are set, the configuration is pushed to the same container image registry
as the application image. That is, to the registry configured under the registry: {} section of the
ootb- values.

For example, assuming the installation of Tanzu Application Platform by using profiles, configure the
ootb-supply-chain* package as follows:

ootb_supply_chain_basic:

  registry:

    server: REGISTRY-SERVER

    repository: REGISTRY_REPOSITORY

The Kubernetes configuration produced by the supply chain is pushed to an image named after
REGISTRY-SERVER/REGISTRY-REPOSITORY including the workload name.

In this scenario, no extra credentials must be set up, because the secret containing the credentials
for the container image registry were already configured during the setup of the workload
namespace.

Overview of Supply Chain Security Tools - Scan
This topic describes overview information, such as, use cases, features, and CVEs for Supply Chain
Security Tools - Scan.

Overview
With Supply Chain Security Tools - Scan, you can build and deploy secure, trusted software that
complies with your corporate security requirements. Supply Chain Security Tools - Scan provides
scanning and gatekeeping capabilities that Application and DevSecOps teams can incorporate early

Tanzu Application Platform v1.4

VMware by Broadcom 1178

https://carvel.dev/imgpkg/docs/v0.27.0/


in their path to production as it is a known industry best practice for reducing security risk and
ensuring more efficient remediation.

Language support

For information about the languages and frameworks that are supported by Tanzu Application
Platform components, see the Language and framework support in Tanzu Application Platform
table.

Use cases

The following use cases apply to Supply Chain Security Tools - Scan:

Use your scanner as a plug-in to scan source code repositories and images for known
Common Vulnerabilities and Exposures (CVEs) before deploying to a cluster.

Identify CVEs by continuously scanning each new code commit or each new image built.

Analyze scan results against user-defined policies by using Open Policy Agent.

Produce vulnerability scan results and post them to the Supply Chain Security Tools - Store
from where they are queried.

Supply Chain Security Tools - Scan features

The following Supply Chain Security Tools - Scan features enable the Use cases:

Kubernetes controllers to run scan jobs.

Custom Resource Definitions (CRDs) for Image and Source Scan.

CRD for a scanner plug-in. Example is available by using Anchore’s Syft and Grype.

CRD for policy enforcement.

Enhanced scanning coverage by analyzing the Cloud Native Buildpack SBoMs that Tanzu
Build Service images provide.

A Note on Vulnerability Scanners

Although vulnerability scanning is an important practice in DevSecOps and the benefits of it are
widely recognized and accepted, it is important to remember that there are limitations present that
impact its efficacy. The following examples illustrate the limitations that are prevalent in most
scanners today:

Missed CVEs

One limitation of all vulnerability scanners is that there is no one tool that can find 100% of all CVEs,
which means there is always a risk that a missed CVE can be exploited. Some reasons for missed
CVEs include:

The scanner does not detect the vulnerability because it is just discovered and the CVE
databases that the scanner checks against are not updated yet.

Scanners verify different CVE sources based on the detected package type and OS.

The scanner might not fully support a particular programming language, packaging system
or manifest format.

The scanner might not implement binary analysis or fingerprinting.

Tanzu Application Platform v1.4

VMware by Broadcom 1179

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-about-package-profiles.html#language-and-framework-support-in-tanzu-application-platform-2


The detected component does not always include a canonical name and vendor, requiring
the scanner to infer and attempt fuzzy matching.

When vendors register impacted software with NVD, the provided information might not
exactly match the values in the release artifacts.

False positives

Vulnerability scanners cannot always access the information to accurately identify whether a CVE
exists. This often leads to an influx of false positives where the tool mistakenly flags something as a
vulnerability when it isn’t. Unless a user is specialized in security or is deeply familiar with what is
deemed to be a vulnerable component by the scanner, assessing and determining false positives
becomes a challenging and time-consuming activity. Some reasons for a false positive flag include:

A component might be misidentified due to similar names.

A subcomponent might be identified as the parent component.

A component is correctly identified but the impacted function is not on a reachable code
path.

A component’s impacted function is on a reachable code path but is not a concern due to
the specific environment or configuration.

The version of a component might be incorrectly flagged as impacted.

The detected component does not always include a canonical name and vendor, requiring
the scanner to infer and attempt fuzzy matching.

So what can you do to protect yourselves and your software?

Although vulnerability scanning is not a perfect solution, it is an essential part of the process for
keeping your organization secure. You can take the following measures to maximize the benefits
while minimizing the impact of the limitations:

Scan more continuously and comprehensively to identify and remediate zero-day
vulnerabilities quicker. Comprehensive scanning can be achieved by:

scanning earlier in the development cycle to ensure issues can be addressed more
efficiently and do not delay a release. Tanzu Application Platform includes security
practices such as source and container image vulnerability scanning earlier in the
path to production for application teams.

scanning any base images in use. Tanzu Application Platform image scanning
includes the ability to recognize and scan the OS packages from a base image.

scanning running software in test, stage, and production environments at a regular
cadence.

generating accurate provenance at any level so that scanners have a complete
picture of the dependencies to scan. This is where a software bill of materials
(SBoM) comes into play. To help you automate this process, VMware Tanzu Build
Service, leveraging Cloud Native Buildpacks, generates an SBoM for buildpack-
based projects. Since this SBoM is generated during the image building stage, it is
more accurate and complete than one generated earlier or later in the release life
cycle. This is because it can highlight dependencies introduced at the time of build
that might introduce potential for compromise.

Scan by using multiple scanners to maximize CVE coverage.

Practice keeping your dependencies up-to-date.

Reduce overall surface area of attack by:

Tanzu Application Platform v1.4

VMware by Broadcom 1180



using smaller dependencies.

reducing the amount of third party dependencies when possible.

using distroless base images when possible.

Maintain a central record of false positives to ease CVE triaging and remediation efforts.

Overview of Supply Chain Security Tools - Scan

This topic describes overview information, such as, use cases, features, and CVEs for Supply Chain
Security Tools - Scan.

Overview

With Supply Chain Security Tools - Scan, you can build and deploy secure, trusted software that
complies with your corporate security requirements. Supply Chain Security Tools - Scan provides
scanning and gatekeeping capabilities that Application and DevSecOps teams can incorporate early
in their path to production as it is a known industry best practice for reducing security risk and
ensuring more efficient remediation.

Language support

For information about the languages and frameworks that are supported by Tanzu Application
Platform components, see the Language and framework support in Tanzu Application Platform
table.

Use cases

The following use cases apply to Supply Chain Security Tools - Scan:

Use your scanner as a plug-in to scan source code repositories and images for known
Common Vulnerabilities and Exposures (CVEs) before deploying to a cluster.

Identify CVEs by continuously scanning each new code commit or each new image built.

Analyze scan results against user-defined policies by using Open Policy Agent.

Produce vulnerability scan results and post them to the Supply Chain Security Tools - Store
from where they are queried.

Supply Chain Security Tools - Scan features

The following Supply Chain Security Tools - Scan features enable the Use cases:

Kubernetes controllers to run scan jobs.

Custom Resource Definitions (CRDs) for Image and Source Scan.

CRD for a scanner plug-in. Example is available by using Anchore’s Syft and Grype.

CRD for policy enforcement.

Enhanced scanning coverage by analyzing the Cloud Native Buildpack SBoMs that Tanzu
Build Service images provide.

A Note on Vulnerability Scanners

Although vulnerability scanning is an important practice in DevSecOps and the benefits of it are
widely recognized and accepted, it is important to remember that there are limitations present that

Tanzu Application Platform v1.4

VMware by Broadcom 1181

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-about-package-profiles.html#language-and-framework-support-in-tanzu-application-platform-2


impact its efficacy. The following examples illustrate the limitations that are prevalent in most
scanners today:

Missed CVEs

One limitation of all vulnerability scanners is that there is no one tool that can find 100% of all CVEs,
which means there is always a risk that a missed CVE can be exploited. Some reasons for missed
CVEs include:

The scanner does not detect the vulnerability because it is just discovered and the CVE
databases that the scanner checks against are not updated yet.

Scanners verify different CVE sources based on the detected package type and OS.

The scanner might not fully support a particular programming language, packaging system
or manifest format.

The scanner might not implement binary analysis or fingerprinting.

The detected component does not always include a canonical name and vendor, requiring
the scanner to infer and attempt fuzzy matching.

When vendors register impacted software with NVD, the provided information might not
exactly match the values in the release artifacts.

False positives

Vulnerability scanners cannot always access the information to accurately identify whether a CVE
exists. This often leads to an influx of false positives where the tool mistakenly flags something as a
vulnerability when it isn’t. Unless a user is specialized in security or is deeply familiar with what is
deemed to be a vulnerable component by the scanner, assessing and determining false positives
becomes a challenging and time-consuming activity. Some reasons for a false positive flag include:

A component might be misidentified due to similar names.

A subcomponent might be identified as the parent component.

A component is correctly identified but the impacted function is not on a reachable code
path.

A component’s impacted function is on a reachable code path but is not a concern due to
the specific environment or configuration.

The version of a component might be incorrectly flagged as impacted.

The detected component does not always include a canonical name and vendor, requiring
the scanner to infer and attempt fuzzy matching.

So what can you do to protect yourselves and your software?

Although vulnerability scanning is not a perfect solution, it is an essential part of the process for
keeping your organization secure. You can take the following measures to maximize the benefits
while minimizing the impact of the limitations:

Scan more continuously and comprehensively to identify and remediate zero-day
vulnerabilities quicker. Comprehensive scanning can be achieved by:

scanning earlier in the development cycle to ensure issues can be addressed more
efficiently and do not delay a release. Tanzu Application Platform includes security
practices such as source and container image vulnerability scanning earlier in the
path to production for application teams.

scanning any base images in use. Tanzu Application Platform image scanning
includes the ability to recognize and scan the OS packages from a base image.

Tanzu Application Platform v1.4

VMware by Broadcom 1182



scanning running software in test, stage, and production environments at a regular
cadence.

generating accurate provenance at any level so that scanners have a complete
picture of the dependencies to scan. This is where a software bill of materials
(SBoM) comes into play. To help you automate this process, VMware Tanzu Build
Service, leveraging Cloud Native Buildpacks, generates an SBoM for buildpack-
based projects. Since this SBoM is generated during the image building stage, it is
more accurate and complete than one generated earlier or later in the release life
cycle. This is because it can highlight dependencies introduced at the time of build
that might introduce potential for compromise.

Scan by using multiple scanners to maximize CVE coverage.

Practice keeping your dependencies up-to-date.

Reduce overall surface area of attack by:

using smaller dependencies.

reducing the amount of third party dependencies when possible.

using distroless base images when possible.

Maintain a central record of false positives to ease CVE triaging and remediation efforts.

Install Supply Chain Security Tools - Scan

This topic describes how you can install Supply Chain Security Tools - Scan from the Tanzu
Application Platform package repository.

Prerequisites
Before installing SCST - Scan:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Supply Chain Security Tools - Store for scan results to persist. The integration with
SCST - Store are handled in:

Single Cluster: The SCST - Store is present in the same cluster where SCST - Scan
and the ScanTemplates are present.

Multi-Cluster: The SCST - Store is present in a different cluster (e.g.: view cluster)
where the SCST - Scan and ScanTemplates are present.

Integration Deactivated: The SCST - Scan deployment is not required to
communicate with SCST - Store.

For information about SCST - Store, see Using the Supply Chain Security Tools - Store.

Configure properties

Note

Follow the steps in this topic if you do not want to use a profile to install Supply
Chain Security Tools - Scan. For more information about profiles, see Components
and installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1183



When you install the SCST - Scan (Scan controller), you can configure the following optional
properties:

Key Default Type Description
ScanTemplate
Version

resources.limits.c
pu

250m integer
/string

Limits describes the maximum amount of
CPU resources allowed.

n/a

resources.limits.
memory

256Mi integer
/string

Limits describes the maximum amount of
memory resources allowed.

n/a

resources.request
s.cpu

100m integer
/string

Requests describes the minimum amount
of CPU resources required.

n/a

resources.request
s.memory

128Mi integer
/string

Requests describes the minimum amount
of memory resources required.

n/a

namespace scan-link-system string Deployment namespace for the Scan
Controller

n/a

metadataStore.c
aSecret.importFr
omNamespace

metadata-store string Namespace from which you import the
Insight Metadata Store CA Cert

earlier than
v1.2.0

metadataStore.c
aSecret.name

app-tls-cert string Name of deployed secret with key ca.crt
holding the CA Cert of the Insight
Metadata Store

earlier than
v1.2.0

metadataStore.cl
usterRole

metadata-store-read-
write

string Name of the deployed ClusterRole for
read/write access to the Insight Metadata
Store deployed in the same cluster

earlier than
v1.2.0

metadataStore.ur
l

https://metadata-store-
app.metadata-
store.svc.cluster.local:8
443

string URL of the Insight Metadata Store earlier than
v1.2.0

metadataStore.a
uthSecret.import
FromNamespace

n/a string Namespace from which to import the
Insight Metadata Store auth_token

earlier than
v1.2.0

metadataStore.a
uthSecret.name

n/a string Name of deployed secret with key
auth_token

earlier than
v1.2.0

retryScanJobsSe
condsAfterError

60 integer Seconds to wait before retrying errored
scans

v1.3.1 and later

caCertData "" string The custom certificates trusted by the
scans’ connections.

v1.4.0 and later

When you install the SCST - Scan (Grype scanner), you can configure the following optional
properties:

Key Default Type Description
ScanTemplate
Version

resources.request
s.cpu

250m integer
/string

Requests describes the minimum amount
of CPU resources required.

resources.request
s.memory

128Mi integer
/string

Requests describes the minimum amount
of memory resources required.

scanner.serviceA
ccount

grype-scanner string Name of scan pod’s service
ServiceAccount

Tanzu Application Platform v1.4

VMware by Broadcom 1184



Key Default Type Description
ScanTemplate
Version

scanner.serviceA
ccountAnnotatio
ns

nil object Annotations added to ServiceAccount

targetImagePullS
ecret

n/a string Reference to the secret used for pulling
images from private registry

targetSourceSsh
Secret

n/a string Reference to the secret containing SSH
credentials for cloning private
repositories

namespace default string Deployment namespace for the Scan
Templates

n/a

metadataStore.ur
l

https://metadata-store-
app.metadata-
store.svc.cluster.local:8
443

string URL of the Insight Metadata Store v1.2.0 and earlier

metadataStore.a
uthSecret.name

n/a string Name of deployed secret with key
auth_token

v1.2.0 and earlier

metadataStore.a
uthSecret.import
FromNamespace

n/a string Namespace from which to import the
Insight Metadata Store auth_token

v1.2.0 and earlier

metadataStore.c
aSecret.importFr
omNamespace

metadata-store string Namespace from which to import the
Insight Metadata Store CA Cert

v1.2.0 and earlier

metadataStore.c
aSecret.name

app-tls-cert string Name of deployed secret with key ca.crt
holding the CA Cert of the Insight
Metadata Store

v1.2.0 and earlier

metadataStore.cl
usterRole

metadata-store-read-
write

string Name of the deployed ClusterRole for
read/write access to the Insight Metadata
Store deployed in the same cluster

v1.2.0

Install

There are two options for installing Supply Chain Security Tools – Scan

Option 1: Install to multiple namespaces with the Namespace
Provisioner

The Namespace Provisioner enables operators to securely automate the provisioning of multiple
developer namespaces in a shared cluster. To install Supply Chain Security Tools – Scan by using
the Namespace Provisioner, see Tutorial: Provisioning new developer namespaces.

The Namespace Provisioner can also create scan policies across multiple developer namespaces.
See Add the resources required by the Out of the Box Testing and Scanning Supply Chain for
configuration steps.

Option 2: Install manually to each individual namespace

The installation for Supply Chain Security Tools – Scan involves installing two packages:

Scan controller

Grype scanner

Tanzu Application Platform v1.4

VMware by Broadcom 1185



The Scan controller enables you to use a scanner, in this case, the Grype scanner. Ensure that both
the Grype scanner and the Scan controller are installed.

To install SCST - Scan (Scan controller):

1. List version information for the package by running:

tanzu package available list scanning.apps.tanzu.vmware.com --namespace tap-ins

tall

For example:

$ tanzu package available list scanning.apps.tanzu.vmware.com --namespace tap-i

nstall

/ Retrieving package versions for scanning.apps.tanzu.vmware.com...

  NAME                             VERSION       RELEASED-AT

  scanning.apps.tanzu.vmware.com   1.1.0

2. (Optional) Make changes to the default installation settings:

If you are using Grype Scanner v1.5.0 and later or other supported scanners included
with Tanzu Application Platform v1.5 and later and do not want to use the default SCST -
Store integration, explicitly deactivate the integration by appending the following field to
the values.yaml file:

---

metadataStore: {} # Deactivate Supply Chain Security Tools - Store integration

If you are using Grype Scanner v1.2.0 and earlier, or the Snyk Scanner, the following
scanning configuration deactivates the embedded SCST - Store integration with a scan-
values.yaml file.

---

metadataStore:

  url: ""

If you’re using the Grype Scanner earlier than 1.2.0, the scanning configuration must
configure the store parameters. See the v1.1 docs for reference.

You can retrieve any other configurable setting using the following command, and
appending the key-value pair to the previous scan-values.yaml file:

tanzu package available get scanning.apps.tanzu.vmware.com/VERSION --values-sch

ema -n tap-install

Where VERSION is your package version number. For example, 1.1.0.

3. Install the package by running:

tanzu package install scan-controller \

  --package-name scanning.apps.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file scan-values.yaml

Where VERSION is your package version number. For example, 1.1.0.

To install SCST - Scan (Grype scanner):

Note

Tanzu Application Platform v1.4

VMware by Broadcom 1186

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.1/tap/GUID-scst-scan-install-scst-scan.html


1. List version information for the package by running:

tanzu package available list grype.scanning.apps.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list grype.scanning.apps.tanzu.vmware.com --namespace 

tap-install

/ Retrieving package versions for grype.scanning.apps.tanzu.vmware.com...

  NAME                                  VERSION       RELEASED-AT

  grype.scanning.apps.tanzu.vmware.com  1.1.0

2. (Optional) Make changes to the default installation settings:

To define the configuration for the SCST - Store integration in the grype-values.yaml file
for the Grype Scanner:

---

namespace: "DEV-NAMESPACE" # The developer namespace where the ScanTemplates ar

e gonna be deployed

metadataStore:

  url: "METADATA-STORE-URL" # The base URL where the Store deployment can be re

ached

  caSecret:

    name: "CA-SECRET-NAME" # The name of the secret containing the ca.crt

    importFromNamespace: "SECRET-NAMESPACE" # The namespace where Store is depl

oyed (if single cluster) or where the connection secrets were created (if multi

-cluster)

  authSecret:

    name: "TOKEN-SECRET-NAME" # The name of the secret containing the auth toke

n to connect to Store

    importFromNamespace: "SECRET-NAMESPACE" # The namespace where the connectio

n secrets were created (if multi-cluster)

Note In a single cluster, the connection between the scanning pod and the metadata store
happens inside the cluster and does not pass through ingress. This is automatically
configured. You do not need to provide an ingress connection to the store. For information
about troubleshooting issues with scanner to metadata store connection configuration, see
Troubleshooting Scanner to MetadataStore Configuration.

Where:

DEV-NAMESPACE is the namespace where you want to deploy the ScanTemplates. This
is the namespace where the scanning feature runs.

METADATA-STORE-URL is the base URL where the Supply Chain Security Tools (SCST) -
Store deployment is reached, for example, https://metadata-store-app.metadata-
store.svc.cluster.local:8443.

CA-SECRET-NAME is the name of the secret containing the ca.crt to connect to the
SCST - Store deployment.

You can use Namespace Provisioner to install Grype in multiple namespaces.

Important

You must either define both the METADATA-STORE-URL and CA-SECRET-NAME,
or not define them as they depend on each other.

Tanzu Application Platform v1.4

VMware by Broadcom 1187



SECRET-NAMESPACE is the namespace where SCST - Store is deployed, if you are
using a single cluster. If you are using multicluster, it is where the connection
secrets were created.

TOKEN-SECRET-NAME is the name of the secret containing the authentication token to
connect to the SCST - Store deployment when installed in a different cluster, if you
are using multicluster. If built images are pushed to the same registry as the Tanzu
Application Platform images, this can reuse the tap-registry secret created in Add
the Tanzu Application Platform package repository as described earlier.

You can retrieve any other configurable setting using the following command, and
appending the key-value pair to the previous grype-values.yaml file:

tanzu package available get grype.scanning.apps.tanzu.vmware.com/VERSION --valu

es-schema -n tap-install

Where VERSION is your package version number. For example, 1.1.0.

For example:

$ tanzu package available get grype.scanning.apps.tanzu.vmware.com/1.1.0 --valu

es-schema -n tap-install

| Retrieving package details for grype.scanning.apps.tanzu.vmware.com/1.1.0...

  KEY                        DEFAULT  TYPE    DESCRIPTION

  namespace                  default  string  Deployment namespace for the Scan 

Templates

  resources.limits.cpu       1000m    <nil>   Limits describes the maximum amou

nt of cpu resources allowed.

  resources.requests.cpu     250m     <nil>   Requests describes the minimum am

ount of cpu resources required.

  resources.requests.memory  128Mi    <nil>   Requests describes the minimum am

ount of memory resources required.

  targetImagePullSecret      <EMPTY>  string  Reference to the secret used for 

pulling images from private registry.

  targetSourceSshSecret      <EMPTY>  string  Reference to the secret containin

g SSH credentials for cloning private repositories.

3. Install the package by running:

tanzu package install grype-scanner \

  --package-name grype.scanning.apps.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file grype-values.yaml

Where VERSION is your package version number. For example, 1.1.0.

For example:

$ tanzu package install grype-scanner \

  --package-name grype.scanning.apps.tanzu.vmware.com \

  --version 1.1.0 \

  --namespace tap-install \

  --values-file grype-values.yaml

/ Installing package 'grype.scanning.apps.tanzu.vmware.com'

| Getting namespace 'tap-install'

Important

If targetSourceSshSecret is not set, the private source scan template is not
installed.

Tanzu Application Platform v1.4

VMware by Broadcom 1188



| Getting package metadata for 'grype.scanning.apps.tanzu.vmware.com'

| Creating service account 'grype-scanner-tap-install-sa'

| Creating cluster admin role 'grype-scanner-tap-install-cluster-role'

| Creating cluster role binding 'grype-scanner-tap-install-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

 Added installed package 'grype-scanner' in namespace 'tap-install'

Upgrade Supply Chain Security Tools - Scan

This topic describes how you can upgrade Supply Chain Security Tools - Scan from the Tanzu
Application Platform package repository.

You can perform a fresh install of SCST - Scan by following the instructions in Install Supply Chain
Security Tools - Scan.

Prerequisites

Before you upgrade SCST - Scan, upgrade the Tanzu Application Platform by following the
instructions in Upgrading Tanzu Application Platform.

General Upgrades for SCST - Scan

When you’re upgrading to any version of SCST - Scan these are some factors to accomplish this
task:

1. Inspect the Release Notes for the version you’re upgrading to. There you can find any
breaking changes for the installation.

2. Get the values schema for the package version you’re upgrading to by running:

tanzu package available get scanning.apps.tanzu.vmware.com/$VERSION --values-sc

hema -n tap-install

Where $VERSION is the new version. This gives you insights on the values you can configure
in your tap-values.yaml for the new version.

Upgrading a scanner in all namespaces

This section describes how to upgrade a supported scanner in all namespaces. The procedure is
different depending on the installation method:

1. Installation by using Namespace Provisioner

2. Manual installation

Installation by using Namespace Provisioner

All scanners installed by the Namespace Provisioner in all managed namespaces are upgraded
automatically. For example, if you upgrade your installation of Tanzu Application Platform and the
version of Grype is updated, all Grype scanners installed by the Namespace Provisioner for all
managed namespaces are automatically upgraded.

Manual installation

1. If a scanner, such as Grype Scanner, was installed as part of Tanzu Application Platform by
using the full profile, run to upgrade:

Tanzu Application Platform v1.4

VMware by Broadcom 1189



tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION --values-

file tap-values.yaml -n tap-install

Where VERSION is your Tanzu Application Platform version.

2. If a scanner, such as Grype Scanner, was installed by using component installation you must
manually run:

tanzu package installed update grype -p grype.scanning.apps.tanzu.vmware.com -v 

GRYPE-VERSION --values-file grype-values.yaml -n NAMESPACE

Where:

GRYPE-VERSION is the version of Grype that you are upgrading to.

NAMESPACE is the namespace in which Grype is installed in.

Upgrade to Version v1.2.0

To upgrade from a previous version of SCST - Scan to the version v1.2.0:

1. Change the SecretExports from SCST - Store.

SCST - Scan needs information to connect to the SCST - Store deployment, you must
change where these secrets are exported to enable the connection with the version v1.2.0
of SCST - Scan.

For a single cluster deployment:

1. Edit the tap-values.yaml file you used to deploy SCST - Store to export the
CA certificate to your developer namespace.

metadata_store:

    ns_for_export_app_cert: "DEV-NAMESPACE"

2. Update Tanzu Application Platform to apply the changes:

tanzu package installed update tap -f tap-values.yaml -n tap-insta

ll

For a multi-cluster deployment:

You must reapply the SecretExport by changing the toNamespace: scan-link-
system to toNamespace: DEV-NAMESPACE:

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: store-ca-cert

  namespace: metadata-store-secrets

spec:

Note

The ns_for_export_app_cert supports one namespace at a
time. If you have multiple namespaces you can replace this
value with a *, but this exports the CA certificate to all
namespaces. Consider whether this increased visibility
presents a risk.

Tanzu Application Platform v1.4

VMware by Broadcom 1190



  toNamespace: "DEV-NAMESPACE"

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: store-auth-token

  namespace: metadata-store-secrets

spec:

  toNamespace: "DEV-NAMESPACE"

2. Update your tap-values.yaml file.

The installation of the SCST - Scan and the Grype scanner have some changes. The
connection to the SCST - Store component have moved to the Grype scanner package. To
deactivate the connection from the SCST - Scan, which is still present for backwards
compatibility, but is deprecated and is removed in v1.3.0.

# Deactivate scan controller embedded Supply Chain Security Tools - Store integ

ration

scanning:

  metadataStore:

    url: ""

# Install Grype Scanner v1.2.0

grype:

  namespace: "DEV-NAMESPACE" # The developer namespace where the ScanTemplates 

are gonna be deployed

  metadataStore:

    url: "METADATA-STORE-URL" # The base URL where the Store deployment can be 

reached

    caSecret:

      name: "CA-SECRET-NAME" # The name of the secret containing the ca.crt

      importFromNamespace: "SECRET-NAMESPACE" # The namespace where Store is de

ployed (if single cluster) or where the connection secrets were created (if mul

ti-cluster)

    authSecret:

      name: "TOKEN-SECRET-NAME" # The name of the secret containing the auth to

ken to connect to Store

      importFromNamespace: "SECRET-NAMESPACE" # The namespace where the connect

ion secrets were created (if multi-cluster)

For more insights on how to install Grype, see Install Supply Chain Security Tools - Scan
(Grype Scanner).

3. Update Tanzu Application Platform to apply the changes:

tanzu package installed update tap -f tap-values.yaml -n tap-install

4. Update the ScanPolicy to include the latest structure changes for v1.2.0.

Note

If a mix of Grype templates, such as earlier than v1.2.0 and v1.2.0 and later,
are used, both scanning and grype must configure the parameters. The
secret must also export to both scan-link-system and the developer
namespace. Do this by exporting to * or by defining multiple secrets and
exports. If Grype is installed to multiple namespaces there must be
corresponding exports. See Install Supply Chain Security Tools - Scan (Grype
Scanner).

Tanzu Application Platform v1.4

VMware by Broadcom 1191



To update to the latest valid Rego File in the ScanPolicy, Enforce compliance policy using
Open Policy Agent. v1.2.0 introduced some breaking changes in the Rego File structure
used for the ScanPolicies. For more information, see the Release Notes.

5. Verify the upgrade.

You can run any ImageScan or SourceScan in your DEV-NAMESPACE where the Grype Scanner
was installed, and it finishes. Here is a sample you can try to run to detect if everything
upgraded.

1. Create the verify-upgrade.yaml file in your system with the following content:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", 

"UnknownSeverity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e 

:= match.ratings.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := i

nput.bom.components.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e 

:= comp.vulnerabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := v

uln.ratings.rating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-public-image-scan

spec:

Tanzu Application Platform v1.4

VMware by Broadcom 1192



  registry:

    image: "nginx:1.16"

  scanTemplate: public-image-scan-template

  scanPolicy: scan-policy

2. Deploy the resources:

kubectl apply -f verify-upgrade.yaml -n DEV-NAMESPACE

3. View the scan results:

kubectl describe imagescan sample-public-image-scan -n DEV-NAMESPACE

If it is successful, the ImageScan goes to the Failed phase and shows the results of the scan
in the Status.

Install another scanner for Supply Chain Security Tools -
Scan

This topic describes how you can install scanners to work with Supply Chain Security Tools - Scan
from the Tanzu Application Platform package repository.

Follow the instructions in this topic to install a scanner other than the out of the box Grype Scanner
with SCST - Scan.

Prerequisites

Before installing a new scanner, install Supply Chain Security Tools - Scan. It must be present on
the same cluster. The prerequisites for Scan are also required.

Install

To install a new scanner, follow these steps:

1. Complete scanner specific prerequisites for the scanner you’re trying to install. For
example, creating an API token to connect to the scanner.

Snyk Scanner (Beta) is available for image scanning.

Carbon Black Scanner (Beta) is available for image scanning.

2. List the available packages to discover what scanners you can use by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

  NAME                                                 DISPLAY-NAME                                        

SHORT-DESCRIPTION

  grype.scanning.apps.tanzu.vmware.com                 Grype Scanner for Supply 

Chain Security Tools - Scan                      Default scan templates using A

nchore Grype

  snyk.scanning.apps.tanzu.vmware.com                  Snyk for Supply Chain Se

curity Tools - Scan                               Default scan templates using 

Snyk

  carbonblack.scanning.apps.tanzu.vmware.com           Carbon Black Scanner for 

Supply Chain Security Tools - Scan               Default scan templates using C

arbon Black

Tanzu Application Platform v1.4

VMware by Broadcom 1193



3. List version information for the scanner package by running:

tanzu package available list SCANNER-NAME --namespace tap-install

For example:

$ tanzu package available list snyk.scanning.apps.tanzu.vmware.com --namespace 

tap-install

/ Retrieving package versions for snyk.scanning.apps.tanzu.vmware.com...

  NAME                                  VERSION           RELEASED-AT

  snyk.scanning.apps.tanzu.vmware.com   1.0.0-beta.2

4. (Optional) Confirm that the secret created in Step 1 for scanner specific prerequisites is
created.

5. Create a values.yaml to apply custom configurations to the scanner:

To list the values you can configure for any scanner, run:

tanzu package available get SCANNER-NAME/VERSION --values-schema -n tap-install

Where:

SCANNER-NAME is the name of the scanner package you retrieved earlier.

VERSION is your package version number. For example,
snyk.scanning.apps.tanzu.vmware.com/1.0.0-beta.2.

For example:

$ tanzu package available get snyk.scanning.apps.tanzu.vmware.com/1.0.0-beta.2 

--values-schema -n tap-install

KEY                                           DEFAULT                                                      

TYPE    DESCRIPTION

metadataStore.authSecret.name                                                                              

string  Name of deployed Secret with key auth_token

metadataStore.authSecret.importFromNamespace                                                               

string  Namespace from which to import the Insight Metadata Store auth_token

metadataStore.caSecret.importFromNamespace    metadata-store                                               

string  Namespace from which to import the Insight Metadata Store CA Cert

metadataStore.caSecret.name                   app-tls-cert                                                 

string  Name of deployed Secret with key ca.crt holding the CA Cert of the Insi

ght Metadata Store

metadataStore.clusterRole                     metadata-store-read-write                                    

string  Name of the deployed ClusterRole for read/write access to the Insight M

etadata Store deployed in the same cluster

metadataStore.url                             https://metadata-store-app.metada

ta-store.svc.cluster.local:8443  string  Url of the Insight Metadata Store

namespace                                     default                                                      

string  Deployment namespace for the Scan Templates

resources.requests.cpu                        250m                                                         

<nil>   Requests describes the minimum amount of cpu resources required.

resources.requests.memory                     128Mi                                                        

<nil>   Requests describes the minimum amount of memory resources required.

resources.limits.cpu                          1000m                                                        

<nil>   Limits describes the maximum amount of cpu resources allowed.

snyk.tokenSecret.name                                                                                      

Note

This step might be required for some scanners but optional for others.

Tanzu Application Platform v1.4

VMware by Broadcom 1194



string  Reference to the secret containing a Snyk API Token as snyk_token.

targetImagePullSecret                                                                                      

string  Reference to the secret used for pulling images from private registry.

6. Define the --values-file flag to customize the default configuration:

The values.yaml file you created earlier is referenced with the --values-file flag when
running your Tanzu install command:

tanzu package install REFERENCE-NAME \

  --package-name SCANNER-NAME \

  --version VERSION \

  --namespace tap-install \

  --values-file PATH-TO-VALUES-YAML

Where:

REFERENCE-NAME is the name referenced by the installed package. For example,
grype-scanner, snyk-scanner.

SCANNER-NAME is the name of the scanner package you retrieved earlier. For
example, snyk.scanning.apps.tanzu.vmware.com.

VERSION is your package version number. For example, 1.0.0-beta.2.

PATH-TO-VALUES-YAML is the path that points to the values.yaml file created earlier.

For example:

$ tanzu package install snyk-scanner \

  --package-name snyk.scanning.apps.tanzu.vmware.com \

  --version 1.1.0 \

  --namespace tap-install \

  --values-file values.yaml

/ Installing package 'snyk.scanning.apps.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'snyk.scanning.apps.tanzu.vmware.com'

| Creating service account 'snyk-scanner-tap-install-sa'

| Creating cluster admin role 'snyk-scanner-tap-install-cluster-role'

| Creating cluster role binding 'snyk-scanner-tap-install-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

 Added installed package 'snyk-scanner' in namespace 'tap-install'

Verify Installation
To verify the installation create an ImageScan or SourceScan referencing one of the newly added
ScanTemplates for the scanner.

1. (Optional) Create a ScanPolicy formatted for the output specific to the scanner you are
installing, to reference in the ImageScan or SourceScan.

  kubectl apply -n $DEV_NAMESPACE -f SCAN-POLICY-YAML

Note

As vulnerability scanners output different formats, the ScanPolicies can
vary. For information about policies and samples, see Enforce compliance
policy using Open Policy Agent.

Tanzu Application Platform v1.4

VMware by Broadcom 1195



2. Retrieve available ScanTemplates from the namespace where the scanner is installed:

kubectl get scantemplates -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For example:

$ kubectl get scantemplates

NAME                               AGE

blob-source-scan-template          10d

private-image-scan-template        10d

public-image-scan-template         10d

public-source-scan-template        10d

snyk-private-image-scan-template   10d

snyk-public-image-scan-template    10d

3. Create the following ImageScan YAML:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-scanner-public-image-scan

spec:

  registry:

    image: "nginx:1.16"

  scanTemplate: SCAN-TEMPLATE

  scanPolicy: SCAN-POLICY # Optional

Where:

SCAN-TEMPLATE is the name of the installed ScanTemplate in the DEV-NAMESPACE you
retrieved earlier.

SCAN-POLICY it’s an optional reference to an existing ScanPolicy in the same DEV-
NAMESPACE.

For example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-snyk-public-image-scan

spec:

  registry:

    image: "nginx:1.16"

  scanTemplate: snyk-public-image-scan-template

  scanPolicy: snyk-scan-policy

4. Create the following SourceScan YAML:

Note

Some scanners do not support both ImageScan and SourceScan.

Note

Some scanners do not support both ImageScan and SourceScan.

Tanzu Application Platform v1.4

VMware by Broadcom 1196



apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  name: sample-scanner-public-source-scan

spec:

  git:

    url: "https://github.com/houndci/hound.git"

    revision: "5805c650"

  scanTemplate: SCAN-TEMPLATE

  scanPolicy: SCAN-POLICY # Optional

Where:

SCAN-TEMPLATE is the name of the installed ScanTemplate in the DEV-NAMESPACE you
retrieved earlier.

SCAN-POLICY is an optional reference to an existing ScanPolicy in the same DEV-
NAMESPACE.

For example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  name: sample-grype-public-source-scan

spec:

  git:

    url: "https://github.com/houndci/hound.git"

    revision: "5805c650"

  scanTemplate: public-source-scan-template

  scanPolicy: scan-policy

5. Apply the ImageScan and SourceScan YAMLs:

To run the scans, apply them to the cluster by running these commands:

ImageScan:

kubectl apply -f PATH-TO-IMAGE-SCAN-YAML -n DEV-NAMESPACE

Where PATH-TO-IMAGE-SCAN-YAML is the path to the YAML file created earlier.

SourceScan:

kubectl apply -f PATH-TO-SOURCE-SCAN-YAML -n DEV-NAMESPACE

Where PATH-TO-SOURCE-SCAN-YAML is the path to the YAML file created earlier.

For example:

$ kubectl apply -f imagescan.yaml -n my-apps

imagescan.scanning.apps.tanzu.vmware.com/sample-snyk-public-image-scan created

$ kubectl apply -f sourcescan.yaml -n my-apps

sourcescan.scanning.apps.tanzu.vmware.com/sample-grype-public-source-scan creat

ed

6. To verify the integration, get the scan to see if it completed by running:

For ImageScan:

kubectl get imagescan IMAGE-SCAN-NAME -n DEV-NAMESPACE

Tanzu Application Platform v1.4

VMware by Broadcom 1197



Where IMAGE-SCAN-NAME is the name of the ImageScan as defined in the YAML file created
earlier.

For SourceScan:

kubectl get sourcescan SOURCE-SCAN-NAME -n DEV-NAMESPACE

Where SOURCE-SCAN-NAME is the name of the SourceScan as defined in the YAML file created
earlier.

For example:

$ kubectl get imagescan sample-snyk-public-image-scan -n my-apps

NAME                            PHASE       SCANNEDIMAGE   AGE   CRITICAL   HIG

H   MEDIUM   LOW   UNKNOWN   CVETOTAL

sample-snyk-public-image-scan   Completed   nginx:1.16     26h   0          114    

58       314   0         486

$ kubectl get sourcescan sample-grype-public-source-scan -n my-apps

NAME                                                                      PHASE       

SCANNEDREVISION   SCANNEDREPOSITORY                      AGE     CRITICAL   HIG

H   MEDIUM   LOW   UNKNOWN   CVETOTAL

sourcescan.scanning.apps.tanzu.vmware.com/grypesourcescan-sample-public   Compl

eted   5805c650          https://github.com/houndci/hound.git   8m34s   21         

121    112      9     0         263

7. Clean up:

kubectl delete -f PATH-TO-SCAN-YAML -n DEV-NAMESPACE

Where PATH-TO-SCAN-YAML is the path to the YAML file created earlier.

Install scanner to multiple namespaces

To install a Scanner to multiple namespaces, VMware recommends using a namespace provisioner.
See Namespace Provisioner

Configure Tanzu Application Platform Supply Chain to use
new scanner

In order to scan your images with the new scanner installed in the Out of the Box Supply Chain
with Testing and Scanning, you must update your Tanzu Application Platform installation.

Add the ootb_supply_chain_testing_scanning.scanning section to your tap-values.yaml and
perform a Tanzu Application Platform update.

You can define which ScanTemplates is used for both SourceScan and ImageScan. The default values
are the Grype Scanner ScanTemplates, but they are overwritten by any other ScanTemplate present
in your DEV-NAMESPACE. The same applies to the ScanPolicies applied to each kind of scan.

ootb_supply_chain_testing_scanning:

  scanning:

    image:

Note

If you define a ScanPolicy for the scans and the evaluation finds a violation,
the Phase is Failed instead of Completed. In both cases the scan finished.

Tanzu Application Platform v1.4

VMware by Broadcom 1198



      template: IMAGE-SCAN-TEMPLATE

      policy: IMAGE-SCAN-POLICY

    source:

      template: SOURCE-SCAN-TEMPLATE

      policy: SOURCE-SCAN-POLICY

For example:

ootb_supply_chain_testing_scanning:

  scanning:

    image:

      template: snyk-private-image-scan-template

      policy: snyk-scan-policy

    source:

      template: blob-source-scan-template

      policy: scan-policy

Uninstall Scanner

To replace the scanner in the Supply Chain, follow the steps mentioned in Configure TAP Supply
Chain to Use New Scanner. After the scanner is no longer required by the Supply Chain, you can
remove the package by running:

tanzu package installed delete REFERENCE-NAME \

    --namespace tap-install

Where REFERENCE-NAME is the name you identified the package with, when installing in the Install
section. For example, grype-scanner, snyk-scanner.

For example:

$ tanzu package installed delete snyk-scanner \

    --namespace tap-install

Other Available Scanner Integrations

In addition to providing the above supported integrations, VMware encourages the broader
community to support VMware in our goal of integrating with customers’ preferred CVE scanners.

Additional integrations:

Prisma Scanner (Alpha) is available for source and image scanning.

Note

For the Supply Chain to work properly, the SOURCE-SCAN-TEMPLATE must support
blob files and the IMAGE-SCAN-TEMPLATE must support private images.

Note

This integration is in Alpha, which means that it is still in active development
by the Tanzu Practices Global Tech Team and may be subject to change at
any point. Users may encounter unexpected behavior.

Tanzu Application Platform v1.4

VMware by Broadcom 1199



Prerequisites for Snyk Scanner for Supply Chain Security
Tools - Scan (Beta)

This topic describes the prerequisites you must complete to install Supply Chain Security Tools -
Scan (Snyk Scanner) from the Tanzu Application Platform package repository.

Prepare the Snyk Scanner configuration

1. Obtain a Snyk API Token from the Snyk documentation.

2. Create a Snyk secret YAML file and insert the base64 encoded Snyk API token into the
snyk_token:

apiVersion: v1

kind: Secret

metadata:

  name: snyk-token-secret

  namespace: my-apps

data:

  snyk_token: BASE64-SNYK-API-TOKEN

Where BASE64-SNYK-API-TOKEN is the Snyk API Token obtained earlier.

3. Apply the Snyk secret YAML file by running:

kubectl apply -f YAML-FILE

Where YAML-FILE is the name of the Snyk secret YAML file you created.

4. Define the --values-file flag to customize the default configuration. You must define the
following fields in the values.yaml file for the Snyk Scanner configuration. You can add
fields as needed to activate or deactivate behaviors. You can append the values to this file
as shown later in this topic. Create a values.yaml file by using the following configuration:

---

namespace: DEV-NAMESPACE

targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

snyk:

  tokenSecret:

    name: SNYK-TOKEN-SECRET

Where:

DEV-NAMESPACE is your developer namespace.

Important

Snyk’s image scanning capability is in beta. Snyk might only return a partial list of
CVEs when scanning Buildpack images.

Note

To use a namespace other than the default namespace, ensure that
the namespace exists before you install. If the namespace does not
exist, the scanner installation fails.

Tanzu Application Platform v1.4

VMware by Broadcom 1200

https://docs.snyk.io/snyk-cli/authenticate-the-cli-with-your-account


TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

SNYK-TOKEN-SECRET is the name of the secret you created that contains the
snyk_token to connect to the Snyk API. This field is required.

The Snyk Scanner integration can work with or without the SCST - Store integration. The
values.yaml file is slightly different for each configuration.

Supply Chain Security Tools - Store integration

Using Supply Chain Security Tools - Store Integration: To persist the results found by the Snyk
Scanner, you can enable the SCST - Store integration by appending the fields to the values.yaml
file.

The Grype and Snyk Scanner Integrations both enable the Metadata Store. To prevent conflicts,
the configuration values are slightly different based on whether the Grype Scanner Integration is
installed or not. If Tanzu Application Platform is installed using the Full Profile, the Grype Scanner
Integration is installed, unless it is explicitly excluded.

If the Grype Scanner Integration is installed in the same dev-namespace Snyk Scanner is
installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.l

ocal:8443"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store 

Deployment.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    importFromNamespace: "" #! since both Snyk and Grype both enable store, one 

must leave importFromNamespace blank

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to t

he Store Deployment.

    name: "AUTH-SECRET-NAME"

    importFromNamespace: "" #! since both Snyk and Grype both enable store, one 

must leave importFromNamespace blank

If the Grype Scanner Integration is not installed in the same dev-namespace Snyk Scanner is
installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.l

ocal:8443"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store 

Deployment.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    #! Default value is: "metadata-store"

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

  #! authSecret is for multicluster configurations.

  authSecret:

Tanzu Application Platform v1.4

VMware by Broadcom 1201

https://docs.snyk.io/snyk-cli/configure-the-snyk-cli#environment-variables


    #! The name of the secret that contains the auth token to authenticate to t

he Store Deployment.

    name: "AUTH-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

Without SCST - Store Integration: The SCST - Store integration is enabled by default. If you don’t
want to use this integration, explicitly deactivate the integration by appending the following field to
the values.yaml file:

# ...

metadataStore:

  url: "" # Configuration is moved, so set this string to empty.

Sample ScanPolicy for Snyk in SPDX JSON format

1. Create a ScanPolicy YAML with a Rego file for scanner output in the SPDX JSON format.
Here is a sample scan policy resource:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: snyk-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      fails := contains(notAllowedSeverities, match.relationships[_].ratedBy.ra

ting[_].severity)

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      vuln := input.vulnerabilities[_]

      ratings := vuln.relationships[_].ratedBy.rating[_].severity

      comp := vuln.relationships[_].affect.to[_]

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp, vuln.id, ratings])

    }

2. Apply the YAML file by running:

kubectl apply -n $DEV_NAMESPACE -f SCAN-POLICY-YAML

Tanzu Application Platform v1.4

VMware by Broadcom 1202



After all prerequisites are completed, follow the steps in Install another scanner for Supply Chain
Security Tools - Scan to install the Snyk Scanner.

Prerequisites for Carbon Black Scanner for Supply Chain
Security Tools - Scan(Beta)

This topic describes prerequisites you must complete to install Supply Chain Security Tools - Scan
(Carbon Black Scanner) from the Tanzu Application Platform package repository. The Carbon Black
Scanner integration is only available for an image scan, not a source scan.

Prepare the Carbon Black Scanner configuration

To prepare the Carbon Black Scanner configuration before you install any scanners:

1. Obtain a Carbon Black API Token from Carbon Black Cloud.

2. Create a Carbon Black secret YAML file and insert the Carbon Black API configuration key.
Obtain all values from your CBC console.

apiVersion: v1

kind: Secret

metadata:

  name: CARBONBLACK-CONFIG-SECRET

  namespace: my-apps

stringData:

  cbc_api_id: CBC-API-ID

  cbc_api_key: CBC-API-KEY

  cbc_org_key: CBC-ORG-KEY

  cbc_saas_url: CBC-SAAS-URL

Where:

CBC-API-ID is the API ID obtained from CBC.

CBC-API-KEY is the API Key obtained from CBC.

CBC-ORG-KEY is the Org Key of your CBC organization.

CBC-SAAS-URL is the CBC Backend URL.

3. Apply the Carbon Black secret YAML file by running:

kubectl apply -f YAML-FILE

Where YAML-FILE is the name of the Carbon Black secret YAML file you created.

4. Define the --values-file flag to customize the default configuration. Create a values.yaml
file by using the following configuration:

Note

The Snyk Scanner integration is only available for an image scan, not a source scan.

Important

Carbon Black’s image scanning capability is in beta. Carbon Black might only return
a partial list of CVEs when scanning Buildpack images.

Tanzu Application Platform v1.4

VMware by Broadcom 1203



You must define the following fields in the values.yaml file for the Carbon Black Scanner
configuration. You can add fields as needed to enable or deactivate behaviors. You can
append the values to this file as shown later in this topic.

---

namespace: DEV-NAMESPACE

targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

carbonBlack:

  configSecret:

    name: CARBONBLACK-CONFIG-SECRET

DEV-NAMESPACE is your developer namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

CARBONBLACK-CONFIG-SECRET is the name of the secret you created that contains the
Carbon Black configuration to connect to CBC. This field is required.

The Carbon Black Scanner integration can work with or without the SCST - Store
integration. The values.yaml file is slightly different for each configuration.

Supply Chain Security Tools - Store integration

To Integrate:

1. Do one of the following procedures:

Use the Supply Chain Security Tools - Store

Without using the Supply Chain Security Tools - Store

2. Apply the YAML.

Using Supply Chain Security Tools - Store Integration

To persist the results found by the Carbon Black Scanner, you can enable the SCST - Store
integration by appending the fields to the values.yaml file.

The Grype and Carbon Black Scanner Integrations both enable the Metadata Store. To prevent
conflicts, the configuration values are slightly different based on whether the Grype Scanner
Integration is installed or not. If Tanzu Application Platform was installed using the Full Profile, the
Grype Scanner Integration was installed, unless it was explicitly excluded.

If the Grype Scanner Integration is installed in the same dev-namespace Carbon Black
Scanner is installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.l

ocal:8443"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store 

Important

To use a namespace other than the default namespace, ensure that
the namespace exists before you install. If the namespace does not
exist, the scanner installation fails.

Tanzu Application Platform v1.4

VMware by Broadcom 1204



Deployment.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    importFromNamespace: "" #! since both Carbon Black and Grype both enable st

ore, one must leave importFromNamespace blank

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to t

he Store Deployment.

    name: "AUTH-SECRET-NAME"

    importFromNamespace: "" #! since both Carbon Black and Grype both enable st

ore, one must leave importFromNamespace blank

If the Grype Scanner Integration is not installed in the same dev-namespace Carbon Black
Scanner is installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.l

ocal:8443"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store 

Deployment.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    #! Default value is: "metadata-store"

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to t

he Store Deployment.

    name: "AUTH-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

Without Supply Chain Security Tools - Store Integration

If you don’t want to enable the SCST - Store integration, explicitly deactivate the integration by
appending the next field to the values.yaml file, because it’s enabled by default:

# ...

metadataStore:

  url: "" # Deactivate Supply Chain Security Tools - Store integration

Sample ScanPolicy in CycloneDX format

1. Create a ScanPolicy YAML with a Rego file for scanner output in the CycloneDX format. For
example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

Tanzu Application Platform v1.4

VMware by Broadcom 1205



    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := mat

ch.ratings.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.b

om.components.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := com

p.vulnerabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ra

tings.rating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

2. Apply the YAML:

kubectl apply -n $DEV_NAMESPACE -f SCAN-POLICY-YAML

After all prerequisites are completed, follow the steps in Install another scanner for Supply Chain
Security Tools - Scan to install the Carbon Black Scanner.

Prerequisites for Prisma Scanner for Supply Chain Security
Tools - Scan (Alpha)

This topic describes prerequisites you must complete to install SCST - Scan (Prisma) from the
VMware package repository.

Verify the latest alpha package version

Run this command to output a list of available tags.

Important

This integration is in Alpha, which means that it is still in active development by the
Tanzu Practices Global Tech Team and might be subject to change at any point.
Users might encounter unexpected behavior.

Tanzu Application Platform v1.4

VMware by Broadcom 1206



imgpkg tag list -i projects.registry.vmware.com/tanzu_practice/tap-scanners-package/pr

isma-repo-scanning-bundle | grep -v sha | sort -V

Use the latest version returned in place of the sample version in this topic, such as 0.1.4-alpha.12
in the following output.

imgpkg tag list -i projects.registry.vmware.com/tanzu_practice/tap-scanners-package/pr

isma-repo-scanning-bundle | grep -v sha | sort -V

0.1.4-alpha.1  

0.1.4-alpha.6  

0.1.4-alpha.11

0.1.4-alpha.12  

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before installing. The Prisma Scanner is in the Alpha development phase,
and not packaged as part of Tanzu Application Platform. It is hosted on the VMware Project
Repository instead of VMware Tanzu Network. If you relocated the Tanzu Application Platform
images, you can also relocate the Prisma Scanner package. If you don’t relocate the images, the
Prisma Scanner installation depends on VMware Tanzu Network for continued operation, and
VMware Tanzu Network offers no uptime guarantees. The option to skip relocation is documented
for evaluation and proof-of-concept only.

For information about supported registries, see each registry’s documentation.

To relocate images from the VMware Project Registry to your registry:

1. Install Docker if it is not already installed.

2. Log in to your container image registry by running:

docker login MY-REGISTRY

Where MY-REGISTRY is your own registry.

3. Log in to the VMware Tanzu Network registry with your VMware Tanzu Network
credentials by running:

docker login projects.registry.vmware.com

4. Set up environment variables for installation by running:

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own registry.

VERSION is your Prisma Scanner version. For example, 0.1.4-alpha.12.

TARGET-REPOSITORY is your target repository, a directory or repository on MY-
REGISTRY that serves as the location for the installation files for Prisma Scanner.

Tanzu Application Platform v1.4

VMware by Broadcom 1207



5. Install the Carvel tool imgpkg CLI. See Deploying Cluster Essentials.

6. Relocate images with the imgpkg CLI by running:

imgpkg copy -b projects.registry.vmware.com/tanzu_practice/tap-scanners-packag

e/prisma-repo-scanning-bundle:${VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAM

E}/${INSTALL_REPO}/prisma-repo-scanning-bundle

Add the Prisma Scanner package repository
Tanzu CLI packages are available on repositories. Adding the Prisma Scanning package repository
makes the Prisma Scanning bundle and its packages available for installation.

VMware recommends installing the Prisma Scanner objects in the existing tap-install namespace
to keep the Prisma Scanner grouped logically with the other Tanzu Application Platform
components.

1. Add the Prisma Scanner package repository to the cluster by running:

tanzu package repository add prisma-scanner-repository \

  --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/prisma-repo-scanning-bundl

e:$VERSION \

  --namespace tap-install

2. Get the status of the Prisma Scanner package repository, and ensure that the status
updates to Reconcile succeeded by running:

tanzu package repository get prisma-scanner-repository --namespace tap-install

For example:

$ tanzu package repository get prisma-scanning-repository --namespace tap-insta

ll

- Retrieving repository prisma-scanner-repository...

NAME:          prisma-scanner-repository

VERSION:       71091125

REPOSITORY:    projects.registry.vmware.com/tanzu_practice/tap-scanners-packag

e/prisma-repo-scanning-bundle

TAG:           0.1.4-alpha.12

STATUS:        Reconcile succeeded

REASON:

3. List the available packages by running:

tanzu package available list --namespace tap-install

Note

The VMware project repository does not require authentication, so there is no need
to perform a docker login.

Note

VMware recommends, but does not require, relocating images to a registry for
installation. This section assumes that you relocated images to a registry. See the
earlier section to fill in the variables.

Tanzu Application Platform v1.4

VMware by Broadcom 1208

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path-6


For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

  NAME                                                 DISPLAY-NAME                                        

SHORT-DESCRIPTION

  prisma.scanning.apps.tanzu.vmware.com                Prisma for Supply Chain 

Security Tools - Scan                             Default scan templates using 

Prisma

Prepare the Prisma Scanner configuration

Before installing the Prisma scanner, you must create the configuration and a Kubernetes secret
that contains credentials to access Prisma Cloud.

Obtain Console url and Access Keys/Token

The Prisma Scanner supports two methods of authentication:

1) Basic Authentication with API Key and Secret 2) Token Based Authentication

The steps to configure both are outlined to allow you to decide which option you use.

To obtain your Prisma Compute Console URL and Access Keys and Token. See Access keys in the
Palo Alto Networks documentation.

1) Basic Authentication with API Key and Secret 2) Token Based Authentication

Access key and secret authentication

To create a Prisma secret, use the following instructions.

1. Create a Prisma secret YAML file and insert the base64 encoded Prisma API token into the
prisma_token:

apiVersion: v1

kind: Secret

metadata:

  name: PRISMA-ACCESS-KEY-SECRET

  namespace: APP-NAME

data:

  username: BASE64-PRISMA-ACCESS-KEY-ID

  password: BASE64-PRISMA-ACCESS-KEY-PASSWORD

Where:

PRISMA-ACCESS-KEY-SECRET is the name of your Prisma token secret.

APP-NAME is the namespace you want to use.

BASE64-PRISMA-ACCESS-KEY-ID is your base64 encoded Prisma Access Key ID.

BASE64-PRISMA-ACCESS-KEY-PASSWORD is your base64 encoded Prisma Access Key
Password.

2. Apply the Prisma secret YAML file by running:

Note

The token method issued by Prisma Cloud has a expiration of 1 hour, so it requires
frequent refreshing.

Tanzu Application Platform v1.4

VMware by Broadcom 1209

https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/authentication/access_keys


kubectl apply -f YAML-FILE

Where YAML-FILE is the name of the Prisma secret YAML file you created.

3. Define the --values-file flag to customize the default configuration. You must define the
following fields in the values.yaml file for the Prisma Scanner configuration. You can add
fields to activate or deactivate behaviors. You can append the values to this file as shown
later in this topic. Create a values.yaml file by using the following configuration:

---

namespace: DEV-NAMESPACE

targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

prisma:

  url: PRISMA-URL

  basicAuth:

    name: PRISMA-ACCESS-KEY-SECRET

Where:

DEV-NAMESPACE is your developer namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

PRISMA-URL is the FQDN of your Twistlock server.

PRISMA-CONFIG-SECRET is the name of the secret you created that contains the
Prisma configuration to connect to Prisma. This field is required.

The Prisma integration can work with or without the SCST - Store integration. The values.yaml file
is slightly different for each configuration.

Access Token Authentication

1. Create a Prisma secret YAML file and insert the base64 encoded Prisma API token into the
prisma_token:

Create Prisma Secret

To create a Prisma secret, follow the instructions in the sections below.

Access Token Authentication

1. Create a Prisma secret YAML file and insert the base64 encoded Prisma API token into the
prisma_token:

apiVersion: v1

kind: Secret

metadata:

  name: PRISMA-TOKEN-SECRET

  namespace: APP-NAME

data:

  prisma_token: BASE64-PRISMA-API-TOKEN

Note

To use a namespace other than the default namespace, ensure that the
namespace exists before you install. If the namespace does not exist, the
scanner installation fails.

Tanzu Application Platform v1.4

VMware by Broadcom 1210



Where:

PRISMA-TOKEN-SECRET is the name of your Prisma token secret.

APP-NAME is the namespace you want to use.

BASE64-PRISMA-API-TOKEN is the name of your base64 encoded Prisma API token.

2. Apply the Prisma secret YAML file by running:

kubectl apply -f YAML-FILE

Where YAML-FILE is the name of the Prisma secret YAML file you created.

3. Define the --values-file flag to customize the default configuration. You must define the
following fields in the values.yaml file for the Prisma Scanner configuration. You can add
fields to activate or deactivate behaviors. You can append the values to this file as shown
later in this topic. Create a values.yaml file by using the following configuration:

---

namespace: DEV-NAMESPACE

targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

prisma:

  url: PRISMA-URL

  tokenSecret:

    name: PRISMA-CONFIG-SECRET

Where:

DEV-NAMESPACE is your developer namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

PRISMA-URL is the FQDN of your Twistlock server.

PRISMA-CONFIG-SECRET is the name of the secret you created that contains the
Prisma configuration to connect to Prisma. This field is required.

Access Key Authentication

1. Create a Prisma secret YAML file and insert the base64 encoded Prisma API token into the
prisma_token:

apiVersion: v1

kind: Secret

metadata:

  name: PRISMA-ACCESS-KEY-SECRET

  namespace: APP-NAME

data:

  username: BASE64-PRISMA-ACCESS-KEY-ID

  password: BASE64-PRISMA-ACCESS-KEY-PASSWORD

Where:

PRISMA-ACCESS-KEY-SECRET is the name of your Prisma token secret.

Note

To use a namespace other than the default namespace, ensure that the
namespace exists before you install. If the namespace does not exist, the
scanner installation fails.

Tanzu Application Platform v1.4

VMware by Broadcom 1211



APP-NAME is the namespace you want to use.

BASE64-PRISMA-ACCESS-KEY-ID is your base64 encoded Prisma Access Key ID.

BASE64-PRISMA-ACCESS-KEY-PASSWORD is your base64 encoded Prisma Access Key
Password.

2. Apply the Prisma secret YAML file by running:

kubectl apply -f YAML-FILE

Where YAML-FILE is the name of the Prisma secret YAML file you created.

3. Define the --values-file flag to customize the default configuration. You must define the
following fields in the values.yaml file for the Prisma Scanner configuration. You can add
fields as needed to activate or deactivate behaviors. You can append the values to this file
as shown later in this topic. Create a values.yaml file by using the following configuration:

---

namespace: DEV-NAMESPACE

targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

prisma:

  url: PRISMA-URL

  basicAuth:

    name: PRISMA-ACCESS-KEY-SECRET

Where:

DEV-NAMESPACE is your developer namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

PRISMA-URL is the FQDN of your Twistlock server.

PRISMA-CONFIG-SECRET is the name of the secret you created that contains the
Prisma configuration to connect to Prisma. This field is required.

The Prisma integration can work with or without the SCST - Store integration. The values.yaml file
is slightly different for each configuration.

Supply Chain Security Tools - Store integration
The Prisma Scanner integration can work with or without the SCST - Store integration. The
values.yaml file is slightly different for each configuration.

When using SCST - Store integration, to persist the results found by the Prisma Scanner, you can
enable the SCST - Store integration by appending the fields to the values.yaml file.

The Grype, Snyk, and Prisma Scanner Integrations enable the Metadata Store. To prevent conflicts,
the configuration values are slightly different based on whether the Grype Scanner Integration is
installed or not. If Tanzu Application Platform is installed using the Full Profile, the Grype Scanner
Integration is installed unless it is explicitly excluded.

Note

To use a namespace other than the default namespace, ensure that the
namespace exists before you install. If the namespace does not exist, the
scanner installation fails.

Tanzu Application Platform v1.4

VMware by Broadcom 1212



Multiple Scanners installed

In order to find your CA secret name and authentication token secret name as needed for your
values.yaml when installing Prisma Scanner you must look at the configuration of a prior installed
scanner in the same namespace as it already exists.

For information about how the scanner was likely initially created, see Multicluster Setup

An example values.yaml when there are other scanners already installed in the same dev-
namespace where the Prisma Scanner is installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.local:84

43"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store Deploym

ent.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    importFromNamespace: "" #! since both Prisma and Grype/Snyk both enable store, one 

must leave importFromNamespace blank

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to the Stor

e Deployment.

    name: "AUTH-SECRET-NAME"

    importFromNamespace: "" #! since both Prisma and Grype/Snyk both enable store, one 

must leave importFromNamespace blank

Where:

STORE-URL is the URL where the Store deployment is accessible.

CA-SECRET-NAME is the name of the secret that contains the ca.crt to connect to the Store
Deployment. Default is app-tls-cert.

AUTH-SECRET-NAME is the name of the secret that contains the authentication token to
authenticate to the Store Deployment.

Prisma Only Scanner Installed

For information about creating and exporting secrets for the Metadata Store CA and authentication
token referenced in the data values when installing Prisma Scanner, see Multicluster Setup.

An example values.yaml when no other scanner integrations installed in the same dev-namespace
where the Prisma Scanner is installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.local:84

43"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store Deploym

ent.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    #! Default value is: "metadata-store"

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

Tanzu Application Platform v1.4

VMware by Broadcom 1213



  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to the Stor

e Deployment.

    name: "AUTH-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

Where:

STORE-URL is the URL where the Store deployment is accessible.

CA-SECRET-NAME is the name of the secret that contains the ca.crt to connect to the Store
Deployment. Default is app-tls-cert.

STORE-SECRETS-NAMESPACE is the namespace where the secrets for the Store Deployment
live. Default is metadata-store.

AUTH-SECRET-NAME is the name of the secret that contains the authentication token to
authenticate to the Store Deployment.

No Store Integration

If you do not want to enable the SCST - Store integration, explicitly deactivate the integration by
appending the following fields to the values.yaml file that is enabled by default:

# ...

metadataStore:

  url: "" # Configuration is moved, so set this string to empty

Prepare the ScanPolicy
To prepare the ScanPolicy, use the instructions in the following sections.

Sample ScanPolicy using Prisma Policies

The following sample ScanPolicy allows you to control whether the SupplyChain passes or fails
based on the compliance and vulnerability rules configured in the Prisma Compute Console.

The policy reads the complianceScanPassed and vulnerabilityScanPassed fields returned from
Prisma scanner output to control the results of the scan.

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: prisma-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    

    import future.keywords.in

    import future.keywords.if

    

    failedPrismaComplianceOrVulnerabilityChecks(metadata) {

      x := false in cast_set(metadata.properties.property)

      x

    }

    deny[msg] {

      failedPrismaComplianceOrVulnerabilityChecks(input.bom.metadata)

      vulnerabilityMessages := { message |

Tanzu Application Platform v1.4

VMware by Broadcom 1214



        components := {e | e := input.bom.components.component} | {e | e := input.bom.

components.component[_]}

        some component in components

        vulnerabilities := {e | e := component.vulnerabilities.vulnerability} | {e | e 

:= component.vulnerabilities.vulnerability[_]}

        some vulnerability in vulnerabilities

        ratings := {e | e := vulnerability.ratings.rating.severity} | {e | e := vulner

ability.ratings.rating[_].severity}

        formattedRatings := concat(", ", ratings)

        message := sprintf("Vulnerability - Component: %s CVE: %s Severity: %s", [comp

onent.name, vulnerability.id, formattedRatings])

      }

      complianceMessages := { message |

        compliances := {e | e := input.bom.metadata.component.compliances.compliance} 

| {e | e := input.bom.metadata.component.compliances.compliance[_]}

        some compliance in compliances

        message := sprintf("Compliance - %s \\nId: %s Severity: %s Category: %s", [com

pliance.title, compliance.id, compliance.severity, compliance.category])

      }

      combinedMessages := complianceMessages | vulnerabilityMessages

      some message in combinedMessages

      msg := message

    }

Sample ScanPolicy using Local Policies

The following sample ScanPolicy allows you to control whether the SupplyChain passes or fails
based on the Prisma Scanner CycloneDX vulnerability results returned from the Prisma Scanner.

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: prisma-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

Tanzu Application Platform v1.4

VMware by Broadcom 1215



      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

Apply the YAML:

kubectl apply -n $DEV-NAMESPACE -f SCAN-POLICY-YAML

Where:

DEV-NAMESPACE is the name of the developer namespace you want to use.

SCAN-POLICY-YAML is the name of your SCST - Scan YAML.

Install Prisma Scanner

After all prerequisites are completed, install the Prisma Scanner. See Install another scanner for
Supply Chain Security Tools - Scan.

Self-Signed Registry Certificate

When attempting to pull an image from a registry with a self-signed certificate during image scans
additional configuration is necessary.

Tanzu Application Platform Values Shared CA

If your tap-values.yaml used during install has the following shared section filled out, Prisma
Scanner uses this and enable it to connect to your registry without additional configuration.

shared:

   ca_cert_data: | # To be passed if using custom certificates.

      -----BEGIN CERTIFICATE-----

      MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

      -----END CERTIFICATE-----

Secret within Developer Namespace

1. Create a secret that holds the registry’s CA certificate data.

An example of the secret:

apiVersion: v1

kind: Secret

metadata:

 name: prisma-registry-cert

 namespace: dev

type: Opaque

data:

 ca_cert_data: BASE64_CERT

2. Update your Prisma Scanner install values.yaml.

Add caCertSecret to the root of your prisma-values.yaml when installing Prisma Scanner

Tanzu Application Platform v1.4

VMware by Broadcom 1216



Example:

namespace: dev

targetImagePullSecret: tap-registry

caCertSecret: prisma-registry-cert

Known Limits

OpenShift is not supported

Spec reference

This topic describes the specifications and custom resources you can use with Supply Chain
Security Tools - Scan.

With the Scan Controller and Grype Scanner installed the following Custom Resource Definitions
(CRDs) are now available:

$ kubectl get crds | grep scanning.apps.tanzu.vmware.com

imagescans.scanning.apps.tanzu.vmware.com                2021-09-09T15:22:07Z

scanpolicies.scanning.apps.tanzu.vmware.com              2021-09-09T15:22:07Z

scantemplates.scanning.apps.tanzu.vmware.com             2021-09-09T15:22:07Z

sourcescans.scanning.apps.tanzu.vmware.com               2021-09-09T15:22:07Z

For more information about installing SCST - Scan, see Installing Individual Packages.

About source and image scans
Both SourceScan (sourcescans.scanning.apps.tanzu.vmware.com) and ImageScan
(imagescans.scanning.apps.tanzu.vmware.com) define what will be scanned, and ScanTemplate
(scantemplates.scanning.apps.tanzu.vmware.com) will define how to run a scan. We have provided
five custom resources (CRs) pre-installed for use. You can either use them as-is or as samples to
create your own.

To view the pre-installed Scan Template CRs, run:

kubectl get scantemplates

You will see the following scan templates:

CR Name Use Case

public-source-scan-

template

Clones and scans source code from a public repository.

private-source-scan-

template

Connects with SSH credentials to clone and scan source code from a private repository.

public-image-scan-

template

Pulls and scans images from a public registry.

private-image-scan-

template

Connects with the registry credentials to pull and scan images from a private registry.

blob-source-scan-

template

To be used in a Supply Chain. Gets a .tar.gz available file with wget, uncompresses it, and
scans the source code inside it.

By default, three scan templates are deployed (public-source-scan-template, public-image-scan-
template, and blob-source-scan-template).

Tanzu Application Platform v1.4

VMware by Broadcom 1217



If targetImagePullSecret is set in tap-values.yaml, private-image-scan-template is also deployed.
If targetSourceSshSecret is set in tap-values.yaml, private-source-scan-template is also
deployed.

The private scan templates reference secrets created using the Docker server and credentials you
provided, which means they are ready to use immediately.

For more information about the SourceScan and ImageScan CRDs and how to customize your own,
refer to Configuring Code Repositories and Image Artifacts to be Scanned.

About policy enforcement around vulnerabilities found

The Scan Controller supports policy enforcement by using an Open Policy Agent (OPA) engine.
ScanPolicy (scanpolicies.scanning.apps.tanzu.vmware.com) allows scan results to be validated for
company policy compliance and can prevent source code from being built or images from being
deployed.

For more information, see Configuring Policy Enforcement using Open Policy Agent (OPA).

Scan samples for Supply Chain Security Tools - Scan

This section provides samples on multiple use cases for SCST - Scan that you can copy to your
cluster for testing purposes.

Running a sample public image scan with compliance check

Running a sample public source scan with compliance check

Running a sample private image scan

Running a sample private source scan

Running a sample public source scan of a blob/tar file

Scan samples for Supply Chain Security Tools - Scan

This section provides samples on multiple use cases for SCST - Scan that you can copy to your
cluster for testing purposes.

Running a sample public image scan with compliance check

Running a sample public source scan with compliance check

Running a sample private image scan

Running a sample private source scan

Running a sample public source scan of a blob/tar file

Sample public image scan with compliance check for Supply
Chain Security Tools - Scan
This topic includes an example public image scan with compliance check for SCST - Scan.

Public image scan
The following example performs an image scan on an image in a public registry. This image revision
has 223 known vulnerabilities (CVEs), spanning a number of severities. ImageScan uses the
ScanPolicy to run a compliance check against the CVEs.

Tanzu Application Platform v1.4

VMware by Broadcom 1218



The policy in this example is set to only consider Critical severity CVEs as a violation, which
returns 21 Critical Severity Vulnerabilities.

In this example, the scan does the following:

Finds all 223 of the CVEs

Ignores any CVEs with severities that are not critical

Indicates in the Status.Conditions that 21 CVEs have violated policy compliance

Define the ScanPolicy and ImageScan

Create sample-public-image-scan-with-compliance-check.yaml:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: sample-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

Note

This example ScanPolicy is deliberately constructed to showcase the features
available and must not be considered an acceptable base policy.

Tanzu Application Platform v1.4

VMware by Broadcom 1219



ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-public-image-scan-with-compliance-check

spec:

  registry:

    image: "nginx:1.16"

  scanTemplate: public-image-scan-template

  scanPolicy: sample-scan-policy

(Optional) Set up a watch

Before deploying the resources to a user specified namespace, set up a watch in another terminal
to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information about setting up a watch, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-public-image-scan-with-compliance-check.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan results

kubectl describe imagescan sample-public-image-scan-with-compliance-check -n DEV-NAMES

PACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information about scan status conditions, see Viewing and Understanding Scan Status
Conditions.

Edit the ScanPolicy

To edit the Scan Policy, see Step 5: Sample Public Source Code Scan with Compliance Check.

Clean up

To clean up, run:

kubectl delete -f sample-public-image-scan-with-compliance-check.yaml -n DEV-NAMESPACE

Note

The Status.Conditions includes a Reason: EvaluationFailed and Message: Policy
violated because of 21 CVEs.

Tanzu Application Platform v1.4

VMware by Broadcom 1220



Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Sample public source code scan with compliance check for
Supply Chain Security Tools - Scan
This topic includes an example public source code scan with compliance check for SCST - Scan.

Public source scan
This example performs a source scan on a public repository. The source revision has 192 known
Common Vulnerabilities and Exposures (CVEs), spanning several severities. SourceScan uses the
ScanPolicy to run a compliance check against the CVEs.

The example policy is set to only consider Critical severity CVEs as violations, which returns 7
Critical Severity Vulnerabilities.

For this example, the scan (at the time of writing):

Finds all 192 of the CVEs.

Ignores any CVEs that have severities that are not critical.

Indicates in the Status.Conditions that 7 CVEs have violated policy compliance.

Run an example public source scan

To perform an example source scan on a public repository:

1. Create sample-public-source-scan-with-compliance-check.yaml to define the ScanPolicy
and SourceScan:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: sample-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

    notAllowedSeverities := ["Critical"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := mat

ch.ratings.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

Note

This example ScanPolicy is deliberately constructed to showcase the features
available and must not be considered an acceptable base policy.

Tanzu Application Platform v1.4

VMware by Broadcom 1221



      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.b

om.components.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := com

p.vulnerabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ra

tings.rating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  name: sample-public-source-scan-with-compliance-check

spec:

  git:

    url: "https://github.com/houndci/hound.git"

    revision: "5805c650"

  scanTemplate: public-source-scan-template

  scanPolicy: sample-scan-policy

2. (Optional) Before deploying the resources to a user specified namespace, set up a watch in
another terminal to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolici

es -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information, see Observing and Troubleshooting.

3. Deploy the resources by running:

kubectl apply -f sample-public-source-scan-with-compliance-check.yaml -n DEV-NA

MESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

4. When the scan completes, view the results by running:

kubectl describe sourcescan sample-public-source-scan-with-compliance-check -n 

DEV-NAMESPACE

The Status.Conditions includes a Reason: EvaluationFailed and Message: Policy
violated because of 7 CVEs. For more information, see Viewing and Understanding Scan
Status Conditions.

5. If the failing CVEs are acceptable or the build must be deployed regardless of these CVEs,
the app is patched to remove the vulnerabilities. Update the ignoreCVEs array in the
ScanPolicy to include the CVEs to ignore:

Tanzu Application Platform v1.4

VMware by Broadcom 1222



...

spec:

  regoFile: |

    package policies

    default isCompliant = false

    # Accepted Values: "UnknownSeverity", "Critical", "High", "Medium", "Low", 

"Negligible"

    violatingSeverities := ["Critical"]

    # Adding the failing CVEs to the ignore array

    ignoreCVEs := ["CVE-2018-14643", "GHSA-f2jv-r9rf-7988", "GHSA-w457-6q6x-cgp

9", "CVE-2021-23369", "CVE-2021-23383", "CVE-2020-15256", "CVE-2021-29940"]

...

6. The changes applied to the new ScanPolicy trigger the scan to run again. Reapply the
resources by running:

kubectl apply -f sample-public-source-scan-with-compliance-check.yaml -n DEV-NA

MESPACE

7. Re-describe the SourceScan CR by running:

kubectl describe sourcescan sample-public-source-scan-with-compliance-check -n 

DEV-NAMESPACE

8. Ensure that Status.Conditions now includes a Reason: EvaluationPassed and No CVEs
were found that violated the policy. You can update the violatingSeverities array in
the ScanPolicy if you want. For reference, the Grype scan returns the following Severity
spread of vulnerabilities:

Critical: 7

High: 88

Medium: 92

Low: 5

Negligible: 0

UnknownSeverity: 0

9. Clean up by running:

kubectl delete -f sample-public-source-scan-with-compliance-check.yaml -n DEV-N

AMESPACE

Sample private image scan for Supply Chain Security Tools
- Scan
This example describes how you can perform a scan against an image located in a private registry
for SCST - Scan.

Define the resources

Set up target image pull secret

1. Confirm that target image secret is configured. This is completed during Tanzu Application
Platform installation. If the target image secret exists, see Create the private image scan.

Tanzu Application Platform v1.4

VMware by Broadcom 1223



2. If the target image secret was not configured, create a secret containing the credentials
used to pull the target image you want to scan. For information about secret creation, see
the Kubernetes documentation.

kubectl create secret docker-registry TARGET-REGISTRY-CREDENTIALS-SECRET \

--docker-server=<your-registry-server> \

--docker-username=<your-name> \

--docker-password=<your-password> \

--docker-email=<your-email> \

-n DEV-NAMESPACE

Where:

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that is created.

DEV-NAMESPACE is the developer namespace where the scanner is installed.

3. Update the tap-values.yaml file to include the name of secret created earlier.

grype:

namespace: "MY-DEV-NAMESPACE"

targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

4. Upgrade Tanzu Application Platform with the modified tap-values.yaml file.

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP-VERSION}  -

-values-file tap-values.yaml -n tap-install

Where TAP-VERSION is the Tanzu Application Platform version.

Create the private image scan

Create sample-private-image-scan.yaml:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-private-image-scan

spec:

  registry:

    image: IMAGE-URL

  scanTemplate: private-image-scan-template

Where IMAGE-URL is the URL of an image in a private registry.

(Optional) Set up a watch
Before deploying the resources to a user specified namespace, set up a watch in another terminal
to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information, see Observing and Troubleshooting.

Deploy the resources

Tanzu Application Platform v1.4

VMware by Broadcom 1224

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line


kubectl apply -f sample-private-image-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan results

When the scan completes, run:

kubectl describe imagescan sample-private-image-scan -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Clean up

kubectl delete -f sample-private-image-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View vulnerability reports
After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability
results.

Sample private source scan for Supply Chain Security Tools
- Scan

This example shows how you can perform a private source scan for SCST - Scan.

Define the resources

1. Create a Kubernetes secret with an SSH key for cloning a Git repository. See the
Kubernetes documentation.

cat <<EOF | kubectl create -f -

apiVersion: v1

kind: Secret

metadata:

name: SECRET-SSH-AUTH

namespace: DEV-NAMESPACE

annotations:

  tekton.dev/git-0: https://github.com

  tekton.dev/git-1: https://gitlab.com

type: kubernetes.io/ssh-auth

stringData:

ssh-privatekey: |

  -----BEGIN OPENSSH PRIVATE KEY-----

  ....

  ....

  -----END OPENSSH PRIVATE KEY-----

EOF

Note

The Status.Conditions includes a Reason: JobFinished and Message: The scan job
finished. See Viewing and Understanding Scan Status Conditions.

Tanzu Application Platform v1.4

VMware by Broadcom 1225

https://kubernetes.io/docs/concepts/configuration/secret/#use-case-pod-with-ssh-keys


Where:

SECRET-SSH-AUTH is the name of the secret that is being created.

DEV-NAMESPACE is the developer namespace where the scanner is installed.

.stringData.ssh-privatekey contains the private key with pull-permissions.

2. Update the tap-values.yaml file to include the name of secret created above.

grype:

namespace: "MY-DEV-NAMESPACE"

targetSourceSshSecret: "SECRET-SSH-AUTH"

3. Upgrade Tanzu Application Platform with the modified tap-values.yaml file.

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP-VERSION}  -

-values-file tap-values.yaml -n tap-install

Where TAP-VERSION is the Tanzu Application Platform version.

4. Create sample-private-source-scan.yaml:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

name: sample-private-source-scan

spec:

git:

  url: URL

  revision: REVISION

  knownHosts: |

    KNOWN-HOSTS

scanTemplate: private-source-scan-template

Where:

URL is the Git clone repository using SSH.

REVISION is the commit hash.

KNOWN-HOSTS are the SSH client stored host keys generated by ssh-keyscan.

For example, ssh-keyscan github.com produces:

github.com ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9I

DSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyC

OV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU8

4KezmD5QlWpXLmvU31/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqU

UmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28

G3skua2SmVi/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==

github.com ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAA

IbmlzdHAyNTYAAABBBEmKSENjQEezOmxkZMy7opKgwFB9nkt5YRrYMjNuG5N87uRgg

6CLrbo5wAdT/y6v0mKV0U2w0WZ2YB/++Tpockg=

github.com ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIOMqqnkVzrm0SdG6UOo

qKLsabgH5C9okWi0dh2l9GKJl

For example:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

name: sample-private-source-scan

spec:

Tanzu Application Platform v1.4

VMware by Broadcom 1226

https://www.ssh.com/academy/ssh/host-key#known-host-keys
https://man.openbsd.org/ssh-keyscan


git:

  url: git@github.com:acme/website.git

  revision: 25as5e7df56c6401111be514a2f3666179ba04d0

  knownHosts: |

    10.254.171.53 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItb

POVVQF/CzuAeQNv4fZVf2pLxpGHle15zkpxOosckequUDxoq

scanTemplate: private-source-scan-template

(Optional) Set up a watch

Before deploying the resources to a user specified namespace, set up a watch in another terminal
to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

See Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-private-source-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan status

After the scan has completed, run:

kubectl describe sourcescan sample-private-source-scan -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Notice the Status.Conditions includes a Reason: JobFinished and Message: The scan job
finished. See Viewing and Understanding Scan Status Conditions.

Clean up

kubectl delete -f sample-private-source-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View vulnerability reports
After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability
results.

Sample public source scan of a blob for Supply Chain
Security Tools - Scan

You can do a public source scan of a blob for SCST - Scan. This example performs a scan against
source code in a .tar.gz file. This is helpful in a Supply Chain, where there is a GitRepository step
that handles cloning a repository and outputting the source code as a compressed archive.

Tanzu Application Platform v1.4

VMware by Broadcom 1227



Define the resources

Create public-blob-source-example.yaml:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  name: public-blob-source-example

spec:

  blob:

    url: "https://gitlab.com/nina-data/ckan/-/archive/master/ckan-master.tar.gz"

  scanTemplate: blob-source-scan-template

(Optional) Set up a watch
Before deploying the resources to a user specified namespace, set up a watch in another terminal
to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f public-blob-source-example.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan results

When the scan completes, perform:

kubectl describe sourcescan public-blob-source-example -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Notice the Status.Conditions includes a Reason: JobFinished and Message: The scan job
finished.

For more information, see Viewing and Understanding Scan Status Conditions.

Clean up

kubectl delete -f public-blob-source-example.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View vulnerability reports

After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability
results.

Tanzu Application Platform v1.4

VMware by Broadcom 1228



Using Grype in air-gapped (offline) environments for Supply
Chain Security Tools - Scan

This topic tells you how to use Grype in air-gapped (offline) environments for Supply Chain Security
Tools (SCST) - Scan.

The grype CLI attempts to perform two over the Internet calls:

One to verify for later versions of the CLI.

One to update the vulnerability database before scanning.

For the grype CLI to function in an offline or air-gapped environment, the vulnerability database
must be hosted within the environment. You must configure the grype CLI with the internal URL.

The grype CLI accepts environment variables to satisfy these needs.

For information about setting up an offline vulnerability database, see the Anchore Grype README
in GitHub.

To enable Grype in offline air-gapped environments

1. Add the following to your tap-values.yaml file:

grype:

  db:

    dbUpdateUrl: INTERNAL-VULN-DB-URL

Where INTERNAL-VULN-DB-URL is the URL that points to the internal file server.

2. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Troubleshooting

ERROR failed to fetch latest cli version

The Grype CLI checks for later versions of the CLI by contacting the anchore endpoint over the
Internet.

ERROR failed to fetch latest version: Get "https://toolbox-data.anchore.io/grype/relea

ses/latest/VERSION": dial tcp: lookup toolbox-data.anchore.io on [::1]:53: read udp 

[::1]:65010->[::1]:53: read: connection refused

Note

If you are using the Namespace Provisioner to provision a new developer
namespace and want to apply a package overlay for Grype, you must complete
additional configuration steps. See Grype package overlays are not applied to
scantemplates created by Namespace Provisioner.

Note

This message is a warning and the Grype scan still runs with this message.

Tanzu Application Platform v1.4

VMware by Broadcom 1229

https://github.com/anchore/grype#offline-and-air-gapped-environments


Solution

To deactivate this check, set the environment variable GRYPE_CHECK_FOR_APP_UPDATE to false by
using a package overlay with the following steps:

1. Create a secret that contains the ytt overlay to add the Grype environment variable to the
ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

  name: grype-airgap-deactivate-cli-check-overlay

  namespace: tap-install #! namespace where tap is installed

stringData:

  patch.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1+"

    ---

    spec:

      template:

        initContainers:

          #@overlay/match by=overlay.subset({"name": "scan-plugin"}), expects

="1+"

          - name: scan-plugin

            #@overlay/match missing_ok=True

            env:

              #@overlay/append

              - name: GRYPE_CHECK_FOR_APP_UPDATE

                value: "false"

2. Configure tap-values.yaml to use package_overlays. Add the following to your tap-
values.yaml file:

package_overlays:

  - name: "grype"

    secrets:

        - name: "grype-airgap-deactivate-cli-check-overlay"

3. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Database is too old

1 error occurred:

  * db could not be loaded: the vulnerability database was built N days/weeks ago (max 

allowed age is 5 days)

Grype needs up-to-date vulnerability information to provide accurate matches. By default, it fails to
run if the local database was not built in the last 5 days.

Solution

Two options to resolve this:

1. Stale databases weaken your security posture. VMware recommends updating the
database daily as the first recommended solution.

2. If updating the database daily is not an option, the data staleness check is configurable by
using the environment variable GRYPE_DB_MAX_ALLOWED_BUILT_AGE and is addressed using a

Tanzu Application Platform v1.4

VMware by Broadcom 1230



package overlay with the following steps:

1. Create a secret that contains the ytt overlay to add the Grype environment variable
to the ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

  name: grype-airgap-override-stale-db-overlay

  namespace: tap-install #! namespace where tap is installed

stringData:

  patch.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1

+"

    ---

    spec:

      template:

        initContainers:

          #@overlay/match by=overlay.subset({"name": "scan-plugin"}), exp

ects="1+"

          - name: scan-plugin

            #@overlay/match missing_ok=True

            env:

              #@overlay/append

              - name: GRYPE_DB_MAX_ALLOWED_BUILT_AGE #! see note on best 

practices

                value: "120h"

2. Configure tap-values.yaml to use package_overlays. Add the following to your tap-
values.yaml file:

package_overlays:

  - name: "grype"

    secrets:

        - name: "grype-airgap-override-stale-db-overlay"

3. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Grype package overlays are not applied to scantemplates created by
Namespace Provisioner

If you used the Namespace Provisioner to provision a new developer namespace and want to apply
a package overlay for Grype, see Import overlay secrets.

scan-pod[scan-plugin]  1 error occurred:

scan-pod[scan-plugin]  * failed to load vulnerability db: vulnerability database is in

valid (run db update to correct): database metadata not found: /.cache/grype/db/5

Note

The default maximum allowed built age of Grype’s vulnerability
database is 5 days. This means that scanning with a 6 day old
database causes the scan to fail. You can use the
GRYPE_DB_MAX_ALLOWED_BUILT_AGE parameter to override the default
in accordance with your security posture.

Tanzu Application Platform v1.4

VMware by Broadcom 1231

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/namespace-provisioner-customize-installation.html


Solution

Examine the listing.json file you created. This matches the format of the listing file. The listing file
is located at Anchore Grype’s public endpoint. See the Grype README.md in GitHub.

Here is an example of a properly formatted listing.json:

#@ load("@ytt:overlay", "overlay")

#@ def matchGrypeScanners(index, left, right):

  #@ if left["apiVersion"] != "packaging.carvel.dev/v1alpha1" or left["kind"] != "Pack

ageInstall":

    #@ return False

  #@ end

  #@ return left["metadata"]["name"].startswith("grype-scanner")

#@ end

#@ def customize():

#@overlay/match by=matchGrypeScanners, expects="0+"

---

metadata:

  annotations:

    #@overlay/match missing_ok=True

    ext.packaging.carvel.dev/ytt-paths-from-secret-name.0: SECRET-NAME

#@  end

Where:

5 refers to the Grype’s vulnerability database schema.

built is the build timestamp in the format yyyy-MM-ddTHH:mm:ssZ.

url is the download URL for the tarball containing the database. This points at your internal
endpoint. The tarball contains the following files:

vulnerability.db is an SQLite file that is Grype’s vulnerability database. Each time
the data shape of the vulnerability database changes, a new schema is created.
Different Grype versions require specific database schema versions. For example,
Grype v0.54.0 requires database schema version v5.

metadata.json file

checksum is the SHA used to verify the database’s integrity.

Verify these possible reasons why the vulnerability database is not valid:

1. The database schema is invalid. Confirm that the required database schema for the installed
Grype version is used. Confirm that the top level version key matches the nested version.
For example, the top level version 1 in the following snippet does not match the nested
version: 5.

{

  "available": {

    "1": [{

           "built": "2023-02-08T08_17_20Z",

           "version": 5,

           "url": "https://INTERNAL-ENDPOINT/PATH-TO-TARBALL/vulnerability-db_v

5_2023-02-08T08_17_20Z_6ef73016d160043c630f.tar.gz",

           "checksum": "sha256:aab8d369933c845878ef1b53bb5c26ee49b91ddc5cd87c9e

b57ffb203a88a72f"

    }]

  }

}

Tanzu Application Platform v1.4

VMware by Broadcom 1232

https://github.com/anchore/grype#how-database-updates-work


Where PATH-TO-TARBALL is the path to the tarball containing the vulnerability database.

As stale databases weaken your security posture, VMware recommends using the newest
entry of the relevant schema version in the listing.json file. See Anchore’s grype-db in
GitHub.

2. The built parameters in the listing.json file are incorrectly formatted. The proper format
is yyyy-MM-ddTHH:mm:ssZ.

3. The url that you modified to point at an internal endpoint is not reachable from within the
cluster. For information about verifying connectivity, see Debug Grype database in a
cluster.

Debug Grype database in a cluster

1. Describe the failed source scan or image scan to verify the name of the ScanTemplate
being used.

For sourcescan, run:

kubectl describe sourcescan SCAN-NAME -n DEV-NAMESPACE

For imagescan, run:

kubectl describe imagescan SCAN-NAME -n DEV-NAMESPACE

Where SCAN-NAME is the name of the source or image scan that failed.

2. Edit the ScanTemplate’s scan-plugin container to include a “sleep” entrypoint which allows
you to troubleshoot inside the container:

- name: scan-plugin

  volumeMounts:

    ...

  image: #@ data.values.scanner.image

  imagePullPolicy: IfNotPresent

  env:

    ...

  command: ["/bin/bash"]

  args:

  - "sleep 1800" # insert 30 min sleep here

3. Re-run the scan.

4. Get the name of the scan-plugin pod.

kubectl get pods -n DEV-NAMESPACE

5. Get a shell to the container. See the Kubernetes documentation:

kubectl exec --stdin --tty SCAN-PLUGIN-POD -c step-scan-plugin -- /bin/bash

Where SCAN-PLUGIN-POD is the name of the scan-plugin pod.

6. Inside the container, run Grype CLI commands to report database status and verify
connectivity from cluster to mirror. See the Grype documentation in GitHub.

Report current status of Grype’s database (location, build date, and checksum):

grype db status

Tanzu Application Platform v1.4

VMware by Broadcom 1233

https://github.com/anchore/grype-db
https://kubernetes.io/docs/tasks/debug/debug-application/get-shell-running-container/
https://github.com/anchore/grype#cli-commands-for-database-management


7. Ensure that the built parameters in the listing.json has timestamps in this proper format
yyyy-MM-ddTHH:mm:ssZ.

Triage and Remediate CVEs for Supply Chain Security Tools
- Scan
This topic explains how you can triage and remediate CVEs related to SCST - Scan.

Confirm that Supply Chain stopped due to failed policy
enforcement

To confirm that Supply Chain failure is related to policy enforcement:

1. Verify that the status of the workload is MissingValueAtPath due to waiting on a
.status.compliantArtifact from either the SourceScan or ImageScan:

kubectl describe workload WORKLOAD-NAME -n DEVELOPER-NAMESPACE

2. Describe the SourceScan or ImageScan to determine what CVE(s) violated the ScanPolicy:

kubectl describe sourcescan NAME -n DEVELOPER-NAMESPACE

kubectl describe imagescan NAME -n DEVELOPER-NAMESPACE

Triage

The goal of triage is to analyze and prioritize the reported vulnerability data to discover the
appropriate course of action to take at the remediation step. To remediate efficiently and
appropriately, you need context on the vulnerabilities that are blocking your supply chain, the
packages that are affected, and the impact they can have.

During triage, review which packages are impacted by the CVEs that violated your scan policy.
Enabling CVE scan causes Supply Chain Choreographer by using Tanzu Application Platform GUI to
visualize your supply chain, including the scans, scan policy, and CVEs. See Enable CVE scan
results. You can also use the Tanzu Insight plug-in to query packages and CVEs using a CLI. See
Tanzu Insight plug-in.

During this stage, VMware recommends reviewing information pertaining to the CVEs from sources
such as the National Vulnerability Database or the release page of a package.

Remediation

After triage is complete, the next step is to remediate the blocking vulnerabilities quickly. Some
common methods for CVE remediation are as follows:

Updating the affected component to remove the CVE

Amending the scan policy with an exception if you decide to accept the CVE and unblock
your supply chain

Updating the affected component

Vulnerabilities that occur in older versions of a package might be resolved in later versions. Apply a
patch by upgrading to a later version. You can further adopt security best practices by using your
project’s package manager tools, such as go mod graph for projects in Go, to identify transitive or
indirect dependencies that can affect CVEs.

Tanzu Application Platform v1.4

VMware by Broadcom 1234

https://nvd.nist.gov/vuln


Amending the scan policy

If you decide to proceed without remediating the CVE, for example, when a CVE is evaluated to be
a false positive or when a fix is not available, you can amend the ScanPolicy to ignore one or more
CVEs. For information about common scanner limitations, see Note on Vulnerability Scanners. For
information about templates, see Writing Policy Templates.

Under RBAC, users with the app-operator-scanning role that is part of the app-operator aggregate
role, have permission to edit the ScanPolicy. See Detailed role permissions breakdown.

Observe Supply Chain Security Tools - Scan

This topic outlines observability and troubleshooting methods and issues you can use with SCST -
Scan components.

Observability

The scans run inside a Kubernetes Job where the Job creates a pod. Both the Job and pod are
cleaned up after completion.

Before applying a new scan, you can set a watch on the TaskRuns, Pods, SourceScans, and
Imagescans to observe their progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Troubleshoot Supply Chain Security Tools - Scan

This topic describes troubleshooting methods you can use with SCST - Scan.

Debugging commands

Run these commands to get more logs and details about the errors around scanning. The Jobs and
pods persist for a predefined amount of seconds before getting deleted.
(deleteScanJobsSecondsAfterFinished is the tap pkg variable that defines this)

Debugging Scan pods

Run the following to get error logs from a pod when scan pods are in a failing state:

kubectl logs scan-pod-name -n DEV-NAMESPACE

Where DEV-NAMESPACE is the name of the developer namespace you want to use.

See here for more details about debugging Kubernetes pods.

The following is an example of a successful scan run output:

scan:

  cveCount:

    critical: 20

    high: 120

    medium: 114

    low: 9

    unknown: 0

  scanner:

    name: Grype

Tanzu Application Platform v1.4

VMware by Broadcom 1235

https://jamesdefabia.github.io/docs/user-guide/kubectl/kubectl_logs/


    vendor: Anchore

    version: v0.37.0

  reports:

  - /workspace/scan.xml

eval:

  violations:

  - CVE node-fetch GHSA-w7rc-rwvf-8q5r Low

store:

  locations:

  - https://metadata-store-app.metadata-store.svc.cluster.local:8443/api/sources?repo=

hound&sha=5805c6502976c10f5529e7f7aeb0af0c370c0354&org=houndci

A scan run that has an error means that one of the init containers: scan-plugin, metadata-store-
plugin, compliance-plugin, summary, or any other additional containers had a failure.

To inspect for a specific init container in a pod:

kubectl logs scan-pod-name -n DEV-NAMESPACE -c init-container-name

Where DEV-NAMESPACE is the name of the developer namespace you want to use.

See Debug Init Containers in the Kubernetes documentation for debug init container tips.

Debugging SourceScan and ImageScan

To retrieve status conditions of an SourceScan and ImageScan, run:

kubectl describe sourcescan SOURCE-SCAN -n DEV-NAMESPACE

Where:

DEV-NAMESPACE is the name of the developer namespace you want to use.

SOURCE-SCAN is the name of the SourceScan you want to use.

kubectl describe imagescan IMAGE-SCAN -n DEV-NAMESPACE

Where:

DEV-NAMESPACE is the name of the developer namespace you want to use.

IMAGE-SCAN is the name of the ImageScan you want to use.

Under Status.Conditions, for a condition look at the “Reason”, “Type”, “Message” values that use
the keyword “Error” to investigate issues.

Debugging Scanning within a SupplyChain

See here for Tanzu workload commands for tailing build and runtime logs and getting workload
status and details.

Viewing the Scan-Controller manager logs

To retrieve scan-controller manager logs:

kubectl -n scan-link-system logs -f deployment/scan-link-controller-manager -c manager

Restarting Deployment

If you encounter an issue with the scan-link controller not starting, run the following to restart the
deployment to see if it’s reproducible or flaking upon starting:

Tanzu Application Platform v1.4

VMware by Broadcom 1236

https://kubernetes.io/docs/tasks/debug/debug-application/debug-init-containers/


kubectl rollout restart deployment scan-link-controller-manager -n scan-link-system

Troubleshooting scanner to MetadataStore configuration

Insight CLI failed to post scan results to metadata store due to failed
certificate verification

If you encounter this issue:

✖  Error: Post "https://metadata-store.tap.tanzu.example.com/api/sourceReport?": tls: 

failed to verify certificate: x509: certificate signed by unknown authority

To ensure that the caSecret from the scanner DEV-NAMESPACE matches the caSecret from the
METADATASTORE-NAMESPACE namespace:

1. In a single cluster, the connection between the scanning pod and the metadata store
happens inside the cluster and does not pass through ingress. This is automatically
configured. You do not need to provide an ingress connection to the store. If you provided
an ingress connection to the store, delete it.

2. Get the caSecret.name depending if your setup is single or multicluster.

1. If you are using a single cluster setup, the default value for
grype.metadataStore.caSecret.name is app-tls-cert. See Install Supply Chain
Security Tools - Scan.

2. If you are using a multicluster setup, retrieve grype.metadataStore.caSecret.name
from the Grype config:

grype:

metadataStore:

  caSecret:

    name: store-ca-cert

    importFromNamespace: metadata-store-secrets

Note caSecret.name is set to store-ca-cert. See Multicluster setup.

3. Verify that the CA-SECRET secret exists in the DEV-NAMESPACE.

kubectl get secret CA-SECRET -n DEV-NAMESPACE

4. If the secret CA-SECRET doesn’t exist in your DEV-NAMESPACE, verify that the CA-SECRET exists
in the METADATASTORE-NAMESPACE namespace:

kubectl get secret CA-SECRET -n METADATASTORE-NAMESPACE

Where METADATASTORE-NAMESPACE is the namespace that contains the secret CA-SECRET. If
you are using a single cluster, it is configured using the metadata-store namespace. If
multicluster, it is configured using the metadata-store-secrets.

If CA-SECRET doesn’t exist in the metadata store namespace, configure the
certificate. See Custom certificate configuration.

5. Check if the secretexport and secretimport exist and are reconciling successfully:

kubectl get secretexports.secretgen.carvel.dev -n `METADATASTORE-NAMESPACE`

kubectl get secretimports.secretgen.carvel.dev -n `DEV-NAMESPACE`

Tanzu Application Platform v1.4

VMware by Broadcom 1237



SCST - Store creates the single cluster secretexport by default. See Deployment
details and configuration.

For information about creating the multicluster secretexport, see Multicluster setup.

6. Verify that the ca.crt field in both secrets from METADATASTORE-NAMESPACE and DEV-
NAMESPACE match, or that the ca.crt field of the secret in the METADATASTORE-NAMESPACE
includes the ca.crt field of the DEV-NAMESPACE secret.

You can confirm this by base64 decoding both secrets and seeing if there is a match:

kubectl get secret CA-SECRET -n DEV-NAMESPACE -o json | jq -r '.data."ca.crt"' 

| base64 -d

kubectl get secret CA-SECRET -n METADATASTORE-NAMESPACE -o json | jq -r '.dat

a."ca.crt"' | base64 -d

The certificates in the METADATASTORE-NAMESPACE and DEV-NAMESPACE must have a match for
the scanner to connect to the metadata-store.

Troubleshooting issues

Missing target SSH secret

Scanning source code from a private source repository requires an SSH secret present in the
namespace and referenced as grype.targetSourceSshSecret in tap-values.yaml. See Installing the
Tanzu Application Platform Package and Profiles.

If a private source scan is triggered and the secret cannot be found, the scan pod includes a
FailedMount warning in Events with the message MountVolume.SetUp failed for volume "ssh-
secret" : secret "secret-ssh-auth" not found, where secret-ssh-auth is the value specified in
grype.targetSourceSshSecret.

Missing target image pull secret

Scanning an image from a private registry requires an image pull secret to exist in the Scan CRs
namespace and be referenced as grype.targetImagePullSecret in tap-values.yaml. See Installing
the Tanzu Application Platform Package and Profiles.

If a private image scan is triggered and the secret is not configured, the scan job fails with the error
as follows:

Job.batch "scan-${app}-${id}" is invalid: [spec.template.spec.volumes[2].secret.secret

Name: Required value, spec.template.spec.containers[0].volumeMounts[2].name: Not foun

d: "registry-cred"]

Deactivate Supply Chain Security Tools (SCST) - Store

SCST - Store is required to install SCST - Scan. If you install without the SCST - Store, you must
edit the configurations to deactivate the Store:

---

metadataStore:

  url: ""

Install the package with the edited configurations by running:

tanzu package install scan-controller \

  --package-name scanning.apps.tanzu.vmware.com \

  --version VERSION \

Tanzu Application Platform v1.4

VMware by Broadcom 1238



  --namespace tap-install \

  --values-file tap-values.yaml

Resolving Incompatible Syft Schema Version

You might encounter the following error:

The provided SBOM has a Syft Schema Version which doesn't match the version that is su

pported by Grype...

This means that the Syft Schema Version from the provided SBOM doesn’t match the version
supported by the installed grype-scanner. There are two different methods to resolve this
incompatibility issue:

(Preferred method) Install a version of Tanzu Build Service that provides an SBOM with a
compatible Syft Schema Version.

Deactivate the failOnSchemaErrors in grype-values.yaml. See Install Supply Chain Security
Tools - Scan. Although this change bypasses the check on Syft Schema Version, it does not
resolve the incompatibility issue and produces a partial scanning result.

syft:

  failOnSchemaErrors: false

Resolving incompatible scan policy

If your scan policy appears to not be enforced, it might be because the Rego file defined in the
scan policy is incompatible with the scanner that is being used. For example, the Grype Scanner
outputs in the CycloneDX XML format while the Snyk Scanner outputs SPDX JSON.

See Sample ScanPolicy for Snyk in SPDX JSON format for an example of a ScanPolicy formatted for
SPDX JSON.

Could not find CA in secret

If you encounter the following issue, it might be due to not exporting app-tls-cert to the correct
namespace:

{"level":"error","ts":"2022-06-08T15:20:48.43237873Z","logger":"setup","msg":"Could no

t find CA in Secret","err":"unable to set up connection to Supply Chain Security Tools 

- Store"}

Configure ns_for_export_app_cert in your tap-values.yaml.

metadata_store:

  ns_for_export_app_cert: "DEV-NAMESPACE"

Where DEV-NAMESPACE is the name of the developer namespace you want to use.

If there are multiple developer namespaces, use ns_for_export_app_cert: "*".

Blob Source Scan is reporting wrong source URL

A Source Scan for a blob artifact can cause reporting in the status.artifact and
status.compliantArtifact the wrong URL for the resource, passing the remote SSH URL instead
of the cluster local fluxcd one. One symptom of this issue is the image-builder failing with a ssh://
is an unsupported protocol error message.

Tanzu Application Platform v1.4

VMware by Broadcom 1239



You can confirm you’re having this problem by running kubectl describe in the affected resource
and comparing the spec.blob.url value against the status.artifact.blob.url. The problem
occurs if they are different URLs. For example:

kubectl describe sourcescan SOURCE-SCAN-NAME -n DEV-NAMESPACE

Where:

SOURCE-SCAN-NAME is the name of the source scan you want to configure.

DEV-NAMESPACE is the name of the developer namespace you want to use. And compare the
output:

...

spec:

  blob:

    ...

    url: http://source-controller.flux-system.svc.cluster.local./gitrepository/sample/

repo/8d4cea98b0fa9e0112d58414099d0229f190f7f1.tar.gz

    ...

status:

  artifact:

    blob:

      ...

      url: ssh://git@github.com:sample/repo.git

  compliantArtifact:

    blob:

      ...

      url: ssh://git@github.com:sample/repo.git

Workaround: This problem happens in SCST - Scan v1.2.0 when you use a Grype Scanner
ScanTemplates earlier than v1.2.0, because this is a deprecated path. To fix this problem, upgrade
your Grype Scanner deployment to v1.2.0 or later. See Upgrading Supply Chain Security Tools -
Scan for step-by-step instructions.

Resolving failing scans that block a Supply Chain

If the Supply Chain is not progressing due to CVEs found in either the SourceScan or ImageScan,
see the CVE triage workflow in Triaging and Remediating CVEs.

Policy not defined in the Tanzu Application Platform GUI

If you encounter No policy has been defined, it might be because the Tanzu Application Platform
GUI is unable to view the Scan Policy resource.

Confirm that the Scan Policy associated with a SourceScan or ImageScan exists. For example, the
scanPolicy in the scan matches the name of the Scan Policy.

kubectl describe sourcescan NAME -n DEV-NAMESPACE

kubectl describe imagescan NAME -n DEV-NAMESPACE

kubectl get scanpolicy NAME -n DEV-NAMESPACE

Where DEV-NAMESPACE is the name of the developer namespace you want to use.

Add the app.kubernetes.io/part-of label to the Scan Policy. See Enable Tanzu Application
Platform GUI to view ScanPolicy Resource.

Lookup error when connecting to SCST - Store

If your scan pod is failing, you might see the following connection error in the logs:

Tanzu Application Platform v1.4

VMware by Broadcom 1240



dial tcp: lookup metadata-store-app.metadata-store.svc.cluster.local on 10.100.0.10:5

3: no such host

A connection error while attempting to connect to the local cluster URL causes this error. If this is a
multicluster deployment, set the grype.metadataStore.url property in your Build profile
values.yaml. You must set the ingress domain of SCST - Store which is deployed in the View
cluster. For information about this configuration, see Install Build profile.

Sourcescan error with SCST - Store endpoint without a prefix

If your Source Scan resource is failing, the status might show this error:

Error: endpoint require 'http://' or 'https://' prefix

This is because the grype.metadataStore.url value in the Tanzu Application Platform profile
values.yaml was not configured with the correct prefix. Verify that the URL starts with either
http:// or https://.

Deprecated pre-v1.2 templates

If the scan phase is in Error and the status condition message is:

Summary logs could not be retrieved: . error opening stream pod logs reader: container 

summary is not valid for pod scan-grypeimagescan-sample-public-zmj2g-hqv5g

This error might be a consequence of using Grype Scanner ScanTemplates shipped with SCST -
Scan v1.1 or earlier. These ScanTemplates are deprecated and are not supported in Tanzu
Application Platform v1.4.0 and later.

There are two options to resolve this issue:

Option 1: Upgrade to the latest Grype Scanner version. This automatically replaces the old
ScanTemplates with the upgraded ScanTemplates.

Option 2: Create a ScanTemplate. Follow the steps in Create a scan template.

Incorrectly configured self-signed certificate

The following error in the pod logs indicate that the self-signed certificate might be incorrectly
configured:

x509: certificate signed by unknown authority

To resolve this issue, ensure that shared.ca_cert_data contains the required certificate. For an
example of setting up the shared self-signed certificate, see Build profile.

For information about shared.ca_cert_data, see View possible configuration settings for your
package.

Unable to pull scan controller and scanner images from a specified
registry

The docker field and related sub-fields by SCST - Scan Controller, Grype Scanner, or Snyk Scanner
are deprecated in Tanzu Application Platform v1.4.0. Previously these text boxes might be used to
populate the registry-credentials secret. You might encounter the following error during
installation:

UNAUTHORIZED: unauthorized to access repository

Tanzu Application Platform v1.4

VMware by Broadcom 1241



The recommended migration path for users setting up their namespaces manually is to add registry
credentials to both the developer namespace and the scan-link-system namespace, using these
instructions.

Grype database not available

Prior to running a scan, the Grype scanner downloads a copy of its database. If the database fails to
download, the following log message might appear.

Vulnerability DB [no update available] New version of grype is available: 0.50.2 [000

0] WARN unable to check for vulnerability database update 1 error occurred: * failed t

o load vulnerability db: vulnerability database is corrupt (run db update to correct): 

database metadata not found: ~/Library/Caches/grype/db/3

To resolve this issue, ensure that Grype has access to its vulnerability database:

If you have set up a mirror of the vulnerability database, verify that it is populated and
reachable.

If you did not set up a mirror, Grype manages its database behind the scenes. Verify that
the cluster has access to https://anchore.com/.

This issue is unrelated to Supply Chain Security Tools for Tanzu – Store.

Configure code repositories and image artifacts for Supply
Chain Security Tools - Scan
This topic describes how you can configure code repositories and image artifacts for SCST - Scan.

Prerequisite
Both the source and image scans require you to define a ScanTemplate. Run kubectl get
scantemplates for the ScanTemplates provided with the scanner installation. For information about
how to reference these ScanTemplates, see How to create a ScanTemplate.

Deploy scan custom resources
The scan controller defines two custom resources to create scanning jobs:

SourceScan

ImageScan

SourceScan

The SourceScan custom resource helps you define and trigger a scan for a given repository. You
can deploy SourceScan with source code existing in a public repository or a private one:

1. Create the SourceScan custom resource.

Example:

Important

This step does not apply to users who used --export-to-all-namespaces when
setting up the Tanzu Application Platform package repository.

Tanzu Application Platform v1.4

VMware by Broadcom 1242



apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  # set the name of the source scan CR

  name: sample-source-scan

spec:

  # At least one of these fields (blob or git) must be defined.

  blob:

    # location to a file with the source code compressed (supported files: .ta

r.gz)

    url:

  git:

    # A multiline string defining the known hosts that are going to be used for 

the SSH client on the container

    knownHosts:

    # Branch, tag, or commit digest

    revision:

    # The name of the kubernetes secret containing the private SSH key informat

ion.

    sshKeySecret:

    # A string containing the repository URL.

    url:

    # The username needed to SSH connection. Default value is “git”

    username:

  # A string defining the name of an existing ScanTemplate custom resource. 

  scanTemplate: my-scan-template

   # A string defining the name of an existing ScanPolicy custom resource. See 

"Enforcement Policies (OPA)" section.

  scanPolicy: my-scan-policy

2. Deploy the SourceScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

After the scanning completes, the following fields appear in the custom resource and are
filled by the scanner:

# These fields are populated from the source scan results

status:

  # The source code information as provided in the CycloneDX `bom>metadata>comp

onent>*` fields

  artifact:

    blob:

      url:

    git:

      url:

      revision:

  # An array populated with information about the scanning status

  # and the policy validation. These conditions might change in the lifecycle

  # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

  conditions: []

  # The URL of the vulnerability scan results in the Metadata Store integratio

n.

  # Only available when the integration is configured.

  metadataUrl:

  # When the CRD is updated to point at new revisions, this lets you know

  # if the status reflects the latest one or not

Tanzu Application Platform v1.4

VMware by Broadcom 1243



  observedGeneration: 1

  observedPolicyGeneration: 1

  observedTemplateGeneration: 1

  # The latest datetime when the scanning was successfully finished.

  scannedAt:

  # Information about the scanner that was used for the latest image scan.

  # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

  scannedBy:

    scanner:

      # The name of the scanner that was used.

      name: my-image-scanner

      # The name of the scanner's development company or team

      vendor: my-image-scanner-provider

      # The version of the scanner used.

      version: 1.0.0

ImageScan

The ImageScan custom resource helps you define and trigger a scan for a given image. You can
deploy ImageScan with an image existing in a public or private registry:

1. Create the ImageScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  # set the name of the image scan CR

  name: sample-image-scan

spec:

  registry:

    # Required. A string containing the image name can additionally add its tag 

or its digest

    image: nginx:1.16

    # A string containing the secret needed to pull the image from a private re

gistry.

    # The secret needs to be deployed in the same namespace as the ImageScan

    imagePullSecret: my-image-pull-secret

  # A string defining the name of an existing ScanTemplate custom resource. See 

"How To Create a ScanTemplate" section.

  scanTemplate: my-scan-template

  # A string defining the name of an existing ScanPolicy custom resource. See 

"Enforcement Policies (OPA)" section.

  scanPolicy: my-scan-policy

2. Deploy the ImageScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

After the scanning completes, the following fields appear in the custom resource and are
filled by the scanner:

 # These fields are populated from the image scan results

status:

  artifact:

Tanzu Application Platform v1.4

VMware by Broadcom 1244



    registry:

      # The image name with its digest as provided in the CycloneDX `bom>metada

ta>component>*` fields

      image:

      imagePullSecret:

  # An array that is populated with information about the scanning status

  # and the policy validation. These conditions might change in the lifecycle

  # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

  conditions: []

  # The URL of the vulnerability scan results in the Metadata Store integratio

n.

  # Only available when the integration is configured.

  metadataUrl:

  # When the CRD is updated to point at new revisions, this lets you know

  # whether the status reflects the latest one

  observedGeneration: 1

  observedPolicyGeneration: 1

  observedTemplateGeneration: 1

  # The latest datetime when the scanning was successfully finished.

  scannedAt:

  # Information about the scanner used for the latest image scan.

  # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

  scannedBy:

    scanner:

      # The name of the scanner that was used.

      name: my-image-scanner

      # The name of the scanner's development company or team

      vendor: my-image-scanner-provider

      # The version of the scanner used.

      version: 1.0.0

Configure code repositories and image artifacts for Supply
Chain Security Tools - Scan
This topic describes how you can configure code repositories and image artifacts for SCST - Scan.

Prerequisite
Both the source and image scans require you to define a ScanTemplate. Run kubectl get
scantemplates for the ScanTemplates provided with the scanner installation. For information about
how to reference these ScanTemplates, see How to create a ScanTemplate.

Deploy scan custom resources
The scan controller defines two custom resources to create scanning jobs:

SourceScan

ImageScan

SourceScan

Tanzu Application Platform v1.4

VMware by Broadcom 1245



The SourceScan custom resource helps you define and trigger a scan for a given repository. You
can deploy SourceScan with source code existing in a public repository or a private one:

1. Create the SourceScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  # set the name of the source scan CR

  name: sample-source-scan

spec:

  # At least one of these fields (blob or git) must be defined.

  blob:

    # location to a file with the source code compressed (supported files: .ta

r.gz)

    url:

  git:

    # A multiline string defining the known hosts that are going to be used for 

the SSH client on the container

    knownHosts:

    # Branch, tag, or commit digest

    revision:

    # The name of the kubernetes secret containing the private SSH key informat

ion.

    sshKeySecret:

    # A string containing the repository URL.

    url:

    # The username needed to SSH connection. Default value is “git”

    username:

  # A string defining the name of an existing ScanTemplate custom resource. 

  scanTemplate: my-scan-template

   # A string defining the name of an existing ScanPolicy custom resource. See 

"Enforcement Policies (OPA)" section.

  scanPolicy: my-scan-policy

2. Deploy the SourceScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

After the scanning completes, the following fields appear in the custom resource and are
filled by the scanner:

# These fields are populated from the source scan results

status:

  # The source code information as provided in the CycloneDX `bom>metadata>comp

onent>*` fields

  artifact:

    blob:

      url:

    git:

      url:

      revision:

  # An array populated with information about the scanning status

  # and the policy validation. These conditions might change in the lifecycle

  # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

  conditions: []

  # The URL of the vulnerability scan results in the Metadata Store integratio

Tanzu Application Platform v1.4

VMware by Broadcom 1246



n.

  # Only available when the integration is configured.

  metadataUrl:

  # When the CRD is updated to point at new revisions, this lets you know

  # if the status reflects the latest one or not

  observedGeneration: 1

  observedPolicyGeneration: 1

  observedTemplateGeneration: 1

  # The latest datetime when the scanning was successfully finished.

  scannedAt:

  # Information about the scanner that was used for the latest image scan.

  # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

  scannedBy:

    scanner:

      # The name of the scanner that was used.

      name: my-image-scanner

      # The name of the scanner's development company or team

      vendor: my-image-scanner-provider

      # The version of the scanner used.

      version: 1.0.0

ImageScan

The ImageScan custom resource helps you define and trigger a scan for a given image. You can
deploy ImageScan with an image existing in a public or private registry:

1. Create the ImageScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  # set the name of the image scan CR

  name: sample-image-scan

spec:

  registry:

    # Required. A string containing the image name can additionally add its tag 

or its digest

    image: nginx:1.16

    # A string containing the secret needed to pull the image from a private re

gistry.

    # The secret needs to be deployed in the same namespace as the ImageScan

    imagePullSecret: my-image-pull-secret

  # A string defining the name of an existing ScanTemplate custom resource. See 

"How To Create a ScanTemplate" section.

  scanTemplate: my-scan-template

  # A string defining the name of an existing ScanPolicy custom resource. See 

"Enforcement Policies (OPA)" section.

  scanPolicy: my-scan-policy

2. Deploy the ImageScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

Tanzu Application Platform v1.4

VMware by Broadcom 1247



After the scanning completes, the following fields appear in the custom resource and are
filled by the scanner:

 # These fields are populated from the image scan results

status:

  artifact:

    registry:

      # The image name with its digest as provided in the CycloneDX `bom>metada

ta>component>*` fields

      image:

      imagePullSecret:

  # An array that is populated with information about the scanning status

  # and the policy validation. These conditions might change in the lifecycle

  # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

  conditions: []

  # The URL of the vulnerability scan results in the Metadata Store integratio

n.

  # Only available when the integration is configured.

  metadataUrl:

  # When the CRD is updated to point at new revisions, this lets you know

  # whether the status reflects the latest one

  observedGeneration: 1

  observedPolicyGeneration: 1

  observedTemplateGeneration: 1

  # The latest datetime when the scanning was successfully finished.

  scannedAt:

  # Information about the scanner used for the latest image scan.

  # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

  scannedBy:

    scanner:

      # The name of the scanner that was used.

      name: my-image-scanner

      # The name of the scanner's development company or team

      vendor: my-image-scanner-provider

      # The version of the scanner used.

      version: 1.0.0

Enforce compliance policy using Open Policy Agent

This topic describes how you can use Open Policy Agent to enforce compliance policy for Supply
Chain Security Tools - Scan.

Writing a policy template

The Scan Policy custom resource (CR) allows you to define a Rego file for policy enforcement that
you can reuse across image scan and source scan CRs.

The Scan Controller supports policy enforcement by using an Open Policy Agent (OPA) engine with
Rego files. This allows you to validate scan results for company policy compliance and can prevent
source code from being built or images from being deployed.

Rego file contract

Tanzu Application Platform v1.4

VMware by Broadcom 1248



To define a Rego file for an image scan or source scan, you must comply with the requirements
defined for every Rego file for the policy verification to work. For information about how to write
Rego, see Open Policy Agent documentation.

Package main: The Rego file must define a package in its body called main. The system
looks for this package to verify the scan results compliance.

Input match: The Rego file evaluates one vulnerability match at a time, iterating as many
times as the Rego file finds vulnerabilities in the scan. The match structure is accessed in
the input.currentVulnerability object inside the Rego file and has the CycloneDX format.

deny rule: The Rego file must define a deny rule inside its body. deny is a set of error
messages that are returned to the user. Each rule you write adds to that set of error
messages. If the conditions in the body of the deny statement are true then the user is
handed an error message. If false, the vulnerability is allowed in the Source or Image scan.

Define a Rego file for policy enforcement

Follow these steps to define a Rego file for policy enforcement that you can reuse across image
scan and source scan CRs that output in the CycloneDX XML format.

1. Create a scan policy with a Rego file. The following is an example scan policy resource:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := mat

ch.ratings.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

Note

The Snyk Scanner outputs SPDX JSON. For an example of a ScanPolicy formatted
for SPDX JSON output, see Sample ScanPolicy for Snyk in SPDX JSON format.

Tanzu Application Platform v1.4

VMware by Broadcom 1249

https://www.openpolicyagent.org/docs/latest/policy-language/
https://cyclonedx.org/docs/1.3/


    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.b

om.components.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := com

p.vulnerabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ra

tings.rating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

You can edit the following text boxes of the Rego file as part of the CVE triage workflow:

notAllowedSeverities contains the categories of CVEs that cause the SourceScan
or ImageScan failing policy enforcement. The following example shows an app-
operator blocking only Critical, High and UnknownSeverity CVEs.

...

spec:

regoFile: |

  package main

  # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", 

"UnknownSeverity"

  notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

  ignoreCves := []

...

ignoreCves contains individual ignored CVEs when determining policy enforcement.
In the following example, an app-operator ignores CVE-2018-14643 and GHSA-f2jv-
r9rf-7988 if they are false positives. See A Note on Vulnerability Scanners.

...

spec:

regoFile: |

  package main

  notAllowedSeverities := []

  ignoreCves := ["CVE-2018-14643", "GHSA-f2jv-r9rf-7988"]

...

2. Deploy the scan policy to the cluster:

kubectl apply -f <path_to_scan_policy>/<scan_policy_filename>.yaml -n <desired_

namespace>

For information about how scan policies are used in the CVE triage workflow, see Triaging and
Remediating CVEs.

Further refine the Scan Policy for use

The scan policy earlier demonstrates how vulnerabilities are ignored during a compliance check. It
is not possible to audit why a vulnerability is ignored. You might want to allow an exception, where
a build with a failing vulnerability is allowed to progress through a supply chain. You can allow this
exception for a certain period of time, requiring an expiration date. Vulnerability Exploitability
Exchange (VEX) documents are gaining popularity to capture security advisory information
pertaining to vulnerabilities. You can use Rego for these use cases.

Tanzu Application Platform v1.4

VMware by Broadcom 1250



For example, the following scan policy includes an additional text box to capture comments
regarding why the scan ignores a vulnerability. The notAllowedSeverities array remains an array of
strings, but the ignoreCves array updates from an array of strings to an array of objects. This causes
a change to the contains function, splitting it into separate functions for each array.

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    # List of known vulnerabilities to ignore when deciding whether to fail complianc

e. Example:

    # ignoreCves := [

    #   {

    #     "id": "CVE-2018-14643",

    #     "detail": "Determined affected code is not in the execution path."

    #   }

    # ]

    ignoreCves := []

    containsSeverity(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := containsSeverity(notAllowedSeverities, severities[i])

      not fails

    }

    containsCve(array, elem) = true {

      array[_].id = elem

    } else = false { true }

    isSafe(match) {

      ignore := containsCve(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

Tanzu Application Platform v1.4

VMware by Broadcom 1251



      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

The following example includes an expiration text box and only allows the vulnerability to be
ignored for a period of time:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    # List of known vulnerabilities to ignore when deciding whether to fail complianc

e. Example:

    # ignoreCves := [

    #   {

    #     "id": "CVE-2018-14643",

    #     "detail": "Determined affected code is not in the execution path.",

    #     "expiration": "2022-Dec-31"

    #   }

    # ]

    ignoreCves := []

    containsSeverity(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := containsSeverity(notAllowedSeverities, severities[i])

      not fails

    }

    containsCve(array, elem) = true {

      array[_].id = elem

      curr_time := time.now_ns()

      date_format := "2006-Jan-02"

      expire_time := time.parse_ns(date_format, array[_].expiration)

      curr_time < expire_time

    } else = false { true }

    isSafe(match) {

      ignore := containsCve(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

Tanzu Application Platform v1.4

VMware by Broadcom 1252



      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

Enable Tanzu Application Platform GUI to view ScanPolicy
Resource
For the Tanzu Application Platform GUI to view the ScanPolicy resource, it must have a matching
kubernetes-label-selector with a part-of prefix.

The following example is portion of a ScanPolicy that is viewable by the Tanzu Application Platform
GUI:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

    ...

Deprecated Rego file Definition

Before Scan Controller v1.2.0, you must use the following format where the rego file differences
are:

The package name must be package policies instead of package main.

The deny rule is a Boolean isCompliant instead of deny[msg].

isCompliant rule: The Rego file must define inside its body an isCompliant rule.
This must be a Boolean type containing the result whether the vulnerability violates
the security policy or not. If isCompliant is true, the vulnerability is allowed in the
Source or Image scan. Otherwise, false is considered. Any scan that finds at least
one vulnerability that evaluates to isCompliant=false makes the PolicySucceeded
condition set to false.

The following is an example scan policy resource:

apiVersion: scanning.apps.tanzu.vmware.com/v1alpha1

kind: ScanPolicy

metadata:

  name: v1alpha1-scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

Note

The value for the label can be anything. The Tanzu Application Platform GUI is
looking for the existence of the part-of prefix string and doesn’t match for anything
else specific.

Tanzu Application Platform v1.4

VMware by Broadcom 1253



    package policies

    default isCompliant = false

    ignoreSeverities := ["Critical", "High"]

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isCompliant {

      ignore := contains(ignoreSeverities, input.currentVulnerability.Ratings.Rating

[_].Severity)

      ignore

    }

Create a ScanTemplate with Supply Chain Security Tools -
Scan
This topic describes how to create a ScanTemplate with Supply Chain Security Tools - Scan.

Overview
The ScanTemplate custom resource (CR) defines how the scan Pod fulfills the task of vulnerability
scanning. There are default ScanTemplates provided out of the box using the Tanzu Application
Platform default scanner, Anchore Grype. One or more initContainers run to complete the scan
and must save results to a shared volume. After the initContainers completes, a single container
on the scan Pod called summary combines the result of the initContainers so that the Scan CR status
is updated.

A customized ScanTemplate is created by editing or replacing initContainer definitions and
reusing the summary container from the grype package. A container can read the out.yaml from an
earlier step to locate relevant inputs.

Output Model
Each initContainer can create a subdirectory in /workspace to use as a scratch space. Before
terminating the container must create an out.yaml file in the subdirectory containing the relevant
subset of fields from the output model:

fetch:

  git: 

    url:

    revision:

    path:

  blob:

    url:

    revision:

    path:

  image:

    url:

    revision:

    path:

sbom:

    packageCount:

    reports: []

scan:

  cveCount:

    critical:

    high:

Tanzu Application Platform v1.4

VMware by Broadcom 1254



    medium:

    low:

    unknown:

  scanner:

    name:

    vendor:

    version:

    db:

      version:

  reports: []

eval:

  violations: []

store:

  locations: []

The scan portion of the earlier output is required and if missing the scan controller fails to properly
update the final status of the Scan CR. Other portions of the output, including those of store and
policy evaluation, are optional and can be omitted if not applicable in a custom supply chain
setup.

ScanTemplate Structure

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanTemplate

spec:

    template: # a core/v1 PodSpec

      # Here are list volumes mounted for writing to or 

      # reading from during different stages of the scan

      volumes:

        # required the results of different scan stages 

        # should be saved in files digestible by the scan 

        # controller in this volume

        - name: workspace

        emptyDir: { }

      # different steps required for a scanning can be staged 

      # in sequential stages through initContainers. 

      initContainers:

      # Summary container will take results of initContainers 

      # and will let Controller to update Scan CR status.

      containers:

        - name: summary

Sample Outputs

# example for a typical git clone (source scan fetch stage)

# saved at: /workspace/git-clone/out.yaml

fetch:

  git:

    url: github.com/my/repo

    revision: aee9f8

    path: /workspace/git-clone/cloned-repository

# an example of typical scan stage

# saved at: /workspace/grype-scan/out.yaml

scan:

  cveCount:

    critical: 0

    high: 1

    medium: 3

    low: 25

    unknown: 0

Tanzu Application Platform v1.4

VMware by Broadcom 1255



  scanner:

    name: grype

    vendor: Anchore

    version: 0.33.0

    db:

      version: 2022-04-13

  reports:

  - /workspace/grype-scan/repo.cyclonedx.xml

  - /workspace/grype-scan/app.cyclonedx.xml

  - /workspace/grype-scan/base.cyclonedx.xml

# example of a typical evaluation stage

# saved at: /workspace/policy-eval/out.yaml

eval:

  violations:

    - banned package log4j

    - critical CVE 2022-01-01-3333

    - number of critical CVEs over threshold

# example of a typical upload to store stage

# saved at: /workspace/upload-to-store/out.yaml

store:

  locations:

    - http://metadata-store.cluster.local:8080/reports/3

View scan status conditions for Supply Chain Security Tools
- Scan

This topic explains how you can view scan status conditions for Supply Chain Security Tools - Scan.

Viewing scan status

You can view the scan status by using kubectl describe on a SourceScan or ImageScan. You can
see information about the scan status under the Status field for each scan CR.

Understanding conditions

The Status.Conditions array is populated with the scan status information during and after
scanning execution, and the policy validation (if defined for the scan) after the results are available.

Condition types for the scans

Scanning

The Condition with type Scanning indicates the execution of the scanning job. The Status field
indicates whether the scan is still running or has already finished (i.e., if Status: True, the scan job
is still running; if Status: False, the scan is done).

The Reason field is JobStarted while the scanning is running and JobFinished when it is done.

The Message field can either be The scan job is running or The scan job terminated depending
on the current Status and Reason.

Succeeded

The Condition with type Succeeded indicates the scanning job result. The Status field indicates
whether the scan finished successfully or if it encountered an error (i.e., the status is Status: True

Tanzu Application Platform v1.4

VMware by Broadcom 1256



if it completed successfully or Status: False otherwise).

The Reason field is JobFinished if the scanning was successful or Error if otherwise.

The Message and Error fields have more information about the last seen status of the scan job.

SendingResults

The condition with type SendingResults indicates sending the scan results to the metadata store.
In addition to a successful process of sending the results, the condition may also indicate that the
metadata store integration has not been configured or that there was an error sending. An error
would usually be a misconfigured metadata store url or that the metadata store is inaccessible.
Check the installation steps to ensure the configuration is correct regarding secrets being set within
the scan-link-system namespace.

PolicySucceeded

The Condition with type PolicySucceeded indicates the compliance of the scanning results against
the defined policies (see Code Compliance Policy Enforcement using Open Policy Agent (OPA).
The Status field indicates whether the results are compliant or not (Status: True or Status: False
respectively) or Status: Unknown in case an error occurred during the policy verification.

The Reason field is EvaluationPassed if the scan complies with the defined policies. The Reason
field is EvaluationFailed if the scan is not compliant, or Error if something went wrong.

The Message and Error fields are populated with An error has occurred and an error message if
something went wrong during policy verification. Otherwise, the Message field displays No CVEs
were found that violated the policy if there are no non-compliant vulnerabilities found or Policy
violated because of X CVEs indicating the count of unique vulnerabilities found.

Understanding CVECount

The status.CVECount is populated with the number of CVEs in each category (CRITICAL, HIGH,
MEDIUM, LOW, UNKNOWN) and the total (CVETOTAL).

Understanding MetadataURL

The status.metadataURL is populated with the url of the vulnerability scan results in the metadata
store integration. This is only available when the integration is configured.

Understanding Phase
The status.phase field is populated with the current phase of the scan. The phases are: Pending,
Scanning, Completed, Failed, and Error.

Pending: initial phase of the scan.

Scanning: execution of the scan job is running.

Completed: scan completed and no CVEs were found that violated the scan policy.

Failed: scan completed but CVEs were found that violated the scan policy.

Note

You can also view scan CVE summary in print columns with kubectl get on a
SourceScan or ImageScan.

Tanzu Application Platform v1.4

VMware by Broadcom 1257



Error: indication of an error (e.g., an invalid scantemplate or scan policy).

Understanding ScannedBy

The status.scannedBy field is populated with the name, vendor, and scanner version that
generates the security assessment report.

Understanding ScannedAt

The status.scannedAt field is populated with the latest date when the scanning was successfully
finished.

Overview of Supply Chain Security Tools for VMware Tanzu
- Policy Controller

Supply Chain Security Tools - Policy Controller is a security tool that helps you ensure that the
container images in their registry have not been tampered with. Policy Controller is a Kubernetes
Admission Controller that allows you to apply policies to verify signatures on container images
before being admitted to a cluster.

The Policy Controller:

Verifies signatures on container images used by Kubernetes resources

Enforces policies to allow or deny images being admitted a cluster

Allows operators to define multiple policies in the cluster

Allows operators to select which namespaces to enforce policies against

Supports cosign signatures and keyless signing

Supports storing public keys in a KMS

It enforces its policies against all resources that create Pods as part of their life cycle:

Pod

ReplicaSet

Deployment

Job

StatefulSet

DaemonSet

CronJob

Note

The PHASE print column also shows this with kubectl get on a SourceScan or
ImageScan.

Note

This component is the successor to Supply Chain Security Tools - Sign, which is
deprecated. Support and maintenance for Supply Chain Security Tools - Sign
continues. Monitor Release Notes for updates.

Tanzu Application Platform v1.4

VMware by Broadcom 1258



Supply Chain Security Tools - Policy Controller is based on Sigstore’s Policy Controller and is
compatible only with cosign signatures. See Cosign and Policy Controller in GitHub. For information
about image signing and verification, see Sigstore open source community and the cosign project in
GitHub.

The Policy Controller component is a policy enforcement tool only. It does not sign images.
Operators can configure image signing for their containers in several ways, including:

By using Tanzu Build Service

By using kpack

By integrating cosign into their build pipelines

Image signatures generated by cosign are stored in the same registry location as the image itself
unless configured with the COSIGN_REPOSITORY environment variable. Policy Controller uses registry
credentials provided in the admission request, Service Account, or signaturePullSecrets defined
in the policy to connect to the registry to verify a signature.

To Install Supply Chain Security Tools - Policy Controller, see Install Supply Chain Security Tools -
Policy Controller

Overview of Supply Chain Security Tools for VMware Tanzu
- Policy Controller
Supply Chain Security Tools - Policy Controller is a security tool that helps you ensure that the
container images in their registry have not been tampered with. Policy Controller is a Kubernetes
Admission Controller that allows you to apply policies to verify signatures on container images
before being admitted to a cluster.

The Policy Controller:

Verifies signatures on container images used by Kubernetes resources

Enforces policies to allow or deny images being admitted a cluster

Allows operators to define multiple policies in the cluster

Allows operators to select which namespaces to enforce policies against

Supports cosign signatures and keyless signing

Supports storing public keys in a KMS

It enforces its policies against all resources that create Pods as part of their life cycle:

Pod

ReplicaSet

Deployment

Job

StatefulSet

DaemonSet

CronJob

Important

This component does not work with insecure registries.

Tanzu Application Platform v1.4

VMware by Broadcom 1259

https://github.com/sigstore/cosign
https://github.com/sigstore/policy-controller
https://www.sigstore.dev/
https://docs.sigstore.dev/
https://github.com/pivotal/kpack/blob/main/docs/tutorial.md
https://docs.sigstore.dev/


Supply Chain Security Tools - Policy Controller is based on Sigstore’s Policy Controller and is
compatible only with cosign signatures. See Cosign and Policy Controller in GitHub. For information
about image signing and verification, see Sigstore open source community and the cosign project in
GitHub.

The Policy Controller component is a policy enforcement tool only. It does not sign images.
Operators can configure image signing for their containers in several ways, including:

By using Tanzu Build Service

By using kpack

By integrating cosign into their build pipelines

Image signatures generated by cosign are stored in the same registry location as the image itself
unless configured with the COSIGN_REPOSITORY environment variable. Policy Controller uses registry
credentials provided in the admission request, Service Account, or signaturePullSecrets defined
in the policy to connect to the registry to verify a signature.

To Install Supply Chain Security Tools - Policy Controller, see Install Supply Chain Security Tools -
Policy Controller

Install Supply Chain Security Tools - Policy Controller

You install Supply Chain Security Tools - Policy Controller as part of Tanzu Application Platform’s
Full, Iterate, and Run profiles. You can use the instructions in this topic to manually install SCST -
Policy Controller.

Prerequisites
Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

A container image registry that supports TLS connections.

Note

This component is the successor to Supply Chain Security Tools - Sign, which is
deprecated. Support and maintenance for Supply Chain Security Tools - Sign
continues. Monitor Release Notes for updates.

Important

This component does not work with insecure registries.

Note

Follow the steps in this topic if you do not want to use a profile to install Supply
Chain Security Tools - Policy Controller. For more information about profiles, see
Components and installation profiles.

Important

Tanzu Application Platform v1.4

VMware by Broadcom 1260

https://github.com/sigstore/cosign
https://github.com/sigstore/policy-controller
https://www.sigstore.dev/
https://docs.sigstore.dev/
https://github.com/pivotal/kpack/blob/main/docs/tutorial.md
https://docs.sigstore.dev/


For keyless authorities support, you must set policy.tuf_enabled: true. By default, the
public official Sigstore The Update Framework (TUF) server is used. To target an alternative
Sigstore stack, specify policy.tuf_mirror and policy.tuf_root.

If you are installing in an air-gapped environment and require keyless authorities, you must
deploy a Sigstore Stack on the cluster or be accessible from the air-gapped environment.
For information, see Install Sigstore Stack.

During configuration, you provide a cosign public key to validate signed images. The Policy
Controller only supports ECDSA public keys. An example cosign public key is provided that
can validate an image from the public cosign registry. To provide your own key and images,
follow the Cosign Quick Start Guide in GitHub.

Install

To install Supply Chain Security Tools - Policy Controller:

1. List version information for the package by running:

tanzu package available list policy.apps.tanzu.vmware.com --namespace tap-insta

ll

For example:

$ tanzu package available list policy.apps.tanzu.vmware.com --namespace tap-ins

tall

- Retrieving package versions for policy.apps.tanzu.vmware.com...

  NAME                          VERSION        RELEASED-AT

  policy.apps.tanzu.vmware.com  1.2.0          2023-10-01 20:00:00 -0400 EDT

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get policy.apps.tanzu.vmware.com/VERSION --values-schem

a --namespace tap-install

Where VERSION is the version number you discovered. For example, 1.2.0.

For example:

$ tanzu package available get policy.apps.tanzu.vmware.com/1.2.0 --values-schem

a --namespace tap-install

| Retrieving package details for policy.apps.tanzu.vmware.com/1.2.0...

KEY                        DEFAULT        TYPE     DESCRIPTION

custom_cas                 <nil>          array    List of custom CA contents t

hat should be included in the application container for registry communication.

                                                   An array of items containing 

a ca_content field with the PEM-encoded contents of a certificate authority.

deployment_namespace       cosign-system  string   Deployment namespace specifi

es the namespace where this component should be deployed to.

This component does not work with not secure registries.

Caution

This component rejects pods if they are not correctly configured. Test your
configuration in a test environment before applying policies to your production
cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 1261

https://github.com/sigstore/cosign#quick-start


                                                   If not specified, "cosign-sy

stem" is assumed.

fail_on_empty_authorities  true           boolean  Configure if a ClusterImageP

olicy will fail or allow empty authorities

limits_cpu                 200m           string   The CPU limit defines a hard 

ceiling on how much CPU time

                                                   that the Policy Controller m

anager container can use.

                                                   https://kubernetes.io/docs/c

oncepts/configuration/manage-resources-containers/#meaning-of-cpu

no_match_policy            deny           string   The action when no policy ma

tches the admitting image digest. Valid values are "warn", "allow", or "deny".

quota.pod_number           6              string   The maximum number of Policy 

Controller Pods allowed to be created with the priority class

                                                   system-cluster-critical. Thi

s value must be enclosed in quotes (""). If this value is not

                                                   specified then a default val

ue of 6 is used.

replicas                   1              integer  The number of replicas to be 

created for the Policy Controller. This value must not be enclosed

                                                   in quotes. If this value is 

not specified then a default value of 1 is used.

requests_memory            20Mi           string   The memory request defines t

he minium memory amount for the Policy Controller manager.

                                                   https://kubernetes.io/docs/c

oncepts/configuration/manage-resources-containers/#meaning-of-memory

tuf_root                                  string   The root.json file content o

f the TUF mirror

custom_ca_secrets          <nil>          array    List of custom CA secrets th

at should be included in the application container for registry communication.

                                                   An array of secret reference

s each containing a secret_name field with the secret name to be referenced

                                                   and a namespace field with t

he name of the namespace where the referred secret resides.

limits_memory              200Mi          string   The memory limit defines a h

ard ceiling on how much memory

                                                   that the Policy Controller m

anager container can use.

                                                   https://kubernetes.io/docs/c

oncepts/configuration/manage-resources-containers/#meaning-of-memory

requests_cpu               20m            string   The CPU request defines the 

minimum CPU time for the Policy

                                                   Controller manager. During C

PU contention, CPU request is used as

                                                   a weighting where higher CPU 

requests are allocated more CPU time.

                                                   https://kubernetes.io/docs/c

oncepts/configuration/manage-resources-containers/#meaning-of-cpu

tuf_mirror                                string   TUF mirror address

3. Create a file named scst-policy-values.yaml and add the settings you want to customize:

custom_ca_secrets: If your container registries are secured by self-signed
certificates, this setting controls which secrets are added to the application
container as custom certificate authorities (CAs). custom_ca_secrets consists of an
array of items. Each item contains two text boxes: the secret_name text box defines
the name of the secret, and the namespace text box defines the name of the
namespace where said secret is stored.

For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1262



custom_ca_secrets:

- secret_name: first-ca

  namespace: ca-namespace

- secret_name: second-ca

  namespace: ca-namespace

custom_cas: This setting enables adding certificate content in PEM format. The
certificate content is added to the application container as custom certificate
authorities (CAs) to communicate with registries deployed with self-signed
certificates. custom_cas consists of an array of items. Each item contains a single
text box named ca_content. The value of this text box must be a PEM-formatted
certificate authority. The certificate content must be defined as a YAML block,
preceded by the literal indicator (|) to preserve line breaks and ensure that the
certificates are interpreted correctly.

For example:

custom_cas:

- ca_content: |

    ----- BEGIN CERTIFICATE -----

    first certificate content here...

    ----- END CERTIFICATE -----

- ca_content: |

    ----- BEGIN CERTIFICATE -----

    second certificate content here...

    ----- END CERTIFICATE -----

deployment_namespace: This setting controls the namespace to which this
component is deployed. When not specified, the namespace cosign-system is
assumed. This component creates the specified namespace to deploy required
resources. Select a namespace that is not used by any other components.

limits_cpu: This setting controls the maximum CPU resource allocated to the Policy
admission controller. The default value is “200m”. See Kubernetes documentation.

limits_memory: This setting controls the maximum memory resource allocated to
the Policy admission controller. The default value is “200Mi”. See Kubernetes
documentation.

quota.pod_number: This setting controls the maximum number of pods that are
allowed in the deployment namespace with the system-cluster-critical priority
class. This priority class is added to the pods to prevent preemption of this
component’s pods in case of node pressure.

The default value for this text box is 6. If your use requires more than 6 pods,
change this value to allow the number of replicas you intend to deploy.

Note

This setting is allowed even if custom_cas is defined.

Note

This setting is allowed even if custom_ca_secrets is defined.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 1263

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory


replicas: This setting controls the default amount of replicas deployed by this
component. The default value is 1.

For production environments: VMware recommends you increase the number of
replicas to 3 to ensure that the availability of the component and better admission
performance.

requests_cpu: This setting controls the minimum CPU resource allocated to the
Policy admission controller. During CPU contention, this value is used as a weighting
where higher values indicate more CPU time is allocated. The default value is 20m.
See CPU resource units in the Kubernetes documentation.

requests_memory: This setting controls the minimum memory resource allocated to
the Policy admission controller. The default value is 20Mi. See Memory resource
units in the Kubernetes documentation.

tuf_enabled: This setting defines whether the TUF initialization is done on startup. It
is required for keyless verification support. The default value is false, which means
that keyless authorities of ClusterImagePolicy are not supported. Also, policy-
controller does not have an external dependency on setup.

tuf_root: The root.json file content of the TUF mirror.

tuf_mirror: This setting defines the TUF mirror address which is used for doing the
initialization.

no_match_policy: The action when no policy matches the admitting image digest.
Valid values are "warn", "allow", or "deny". Default value is "deny"

fail_on_empty_authorities: Failing or allowing empty authorities when adding a
new ClusterImagePolicy. Default value is true.

4. Install the package:

tanzu package install policy-controller \

  --package-name policy.apps.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file scst-policy-values.yaml

Where VERSION is the version number you discovered earlier. For example, 1.2.0.

For example:

$ tanzu package install policy-controller \

    --package-name policy.apps.tanzu.vmware.com \

    --version 1.2.0 \

    --namespace tap-install \

    --values-file scst-policy-values.yaml

  Installing package 'policy.apps.tanzu.vmware.com'

  Getting package metadata for 'policy.apps.tanzu.vmware.com'

  Creating service account 'policy-controller-tap-install-sa'

  Creating cluster admin role 'policy-controller-tap-install-cluster-role'

  Creating cluster role binding 'policy-controller-tap-install-cluster-rolebind

ing'

  Creating package resource

  Waiting for 'PackageInstall' reconciliation for 'policy-controller'

  'PackageInstall' resource install status: Reconciling

VMware recommends to run this component with a critical priority
level to prevent the cluster from rejecting all admission requests if
the component’s pods are evicted due to resource limits.

Tanzu Application Platform v1.4

VMware by Broadcom 1264

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory


  'PackageInstall' resource install status: ReconcileSucceeded

  'PackageInstall' resource successfully reconciled

  Added installed package 'policy-controller'

After you run the commands earlier the policy controller is running.

Policy Controller is now installed, but it does not enforce any policies by default. Policies must be
explicitly configured on the cluster. To configure signature verification policies, see Configuring
Supply Chain Security Tools - Policy.

Install Sigstore Stack

Note: VMware does not support Sigstore stack deployments. However, a sample version 0.4.8
deployment that uses keyless signing and verification in air-gapped environments is shown in this
section.

Sigstore/scaffolding is used for bringing up the Sigstore Stack.

The Sigstore Stack consists of:

Trillian

Rekor

Fulcio

Certificate Transparency Log (CTLog)

TheUpdateFramework (TUF)

For information about air-gapped installation, see Install Tanzu Application Platform in an air-
gapped environment.

If a Sigstore Stack TUF is already deployed and accessible in the air-gapped environment, proceed
to Update Policy Controller with TUF Mirror and Root.

Download Stack Release Files
Download the release files of all the Sigstore Stack components from Sigstore/scaffolding:

RELEASE_VERSION="v0.4.8"

TRILLIAN_URL="https://github.com/sigstore/scaffolding/releases/download/${RELEASE_VERS

ION}/release-trillian.yaml"

REKOR_URL="https://github.com/sigstore/scaffolding/releases/download/${RELEASE_VERSIO

N}/release-rekor.yaml"

FULCIO_URL="https://github.com/sigstore/scaffolding/releases/download/${RELEASE_VERSIO

N}/release-fulcio.yaml"

CTLOG_URL="https://github.com/sigstore/scaffolding/releases/download/${RELEASE_VERSIO

N}/release-ctlog.yaml"

TUF_URL="https://github.com/sigstore/scaffolding/releases/download/${RELEASE_VERSION}/

release-tuf.yaml"

curl -sL "${TRILLIAN_URL}" -o "release-trillian.yaml"

curl -sL "${REKOR_URL}" -o "release-rekor.yaml"

curl -sL "${FULCIO_URL}" -o "release-fulcio.yaml"

curl -sL "${CTLOG_URL}" -o "release-ctlog.yaml"

curl -sL "${TUF_URL}" -o "release-tuf.yaml"

Migrate Images onto Internal Registry

Tanzu Application Platform v1.4

VMware by Broadcom 1265

https://github.com/sigstore/scaffolding
https://github.com/google/trillian
https://github.com/sigstore/rekor
https://github.com/sigstore/fulcio
https://github.com/google/certificate-transparency-go
https://theupdateframework.io/


For air-gapped environments, you must migrate the images from the release-*.yaml to the
internal air-gapped registry and update the corresponding image references.

The following example shows this migration:

TARGET_REGISTRY=TARGET-REGISTRY

Where `TARGET-REGISTRY` is the name of the registry you want to migrate to.

# Use yq to find all "image" keys from the release-*.yaml downloaded

found_images=($(yq eval '.. | select(has("image")) | .image' release-*.yaml | grep --i

nvert-match  -- '---'))

# Loop through each found image

# Pull, retag, push the images

# Update the found image references in all the release-*.yaml

for image in "${found_images[@]}"; do

  if echo "${image}" | grep -q '@'; then

    # If image is a digest reference

    image_ref=$(echo "${image}" | cut -d'@' -f1)

    image_sha=$(echo "${image}" | cut -d'@' -f2)

    image_path=$(echo "${image_ref}" | cut -d'/' -f2-)

    docker pull "${image}"

    docker tag "${image}" "${TARGET_REGISTRY}/${image_path}"

    # Obtain the new sha256 from the `docker push` output

    new_sha=$(docker push "${TARGET_REGISTRY}/${image_path}" | tail -n1 | cut -d' ' -f

3)

    new_reference="${TARGET_REGISTRY}/${image_path}@${new_sha}"

  else

    # If image is a tag reference

    image_path=$(echo ${image} | cut -d'/' -f2-)

    docker pull ${image}

    docker tag ${image} ${TARGET_REGISTRY}/${image_path}

    docker push ${TARGET_REGISTRY}/${image_path}

    new_reference="${TARGET_REGISTRY}/${image_path}"

  fi

  # Replace the image reference with the new reference in all the release-*.yaml

  sed -i.bak -E "s#image: ${image}#image: ${new_reference}#" release-*.yaml

done

During Sigstore Stack deployment, a sidecar image such as queue-proxy, can require additional
credentials. You can achieve this by adding a secretgen annotated placeholder secret to the target
namespace and patching the corresponding service account. The placeholder imports the tap-
registry secret to the targeted namespace.

# <SERVICE> includes "trillian", "rekor", "fulcio", "ctlog", and "tuf"

echo "Create tap-registry secret import"

cat <<EOF | kubectl apply -f -

---

apiVersion: v1

kind: Secret

metadata:

  name: tap-registry

  namespace: SERVICE-system

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

stringData:

  .dockerconfigjson: "{}"

type: kubernetes.io/dockerconfigjson

Tanzu Application Platform v1.4

VMware by Broadcom 1266



EOF

echo "Patch SERVICE service account"

kubectl -n SERVICE-system patch serviceaccount SERVICE -p '{"imagePullSecrets": [{"nam

e": "tap-registry"}]}'

Where SERVICE is the name of the service you want to configure with your target namespace.

Copy Release Files to Cluster Accessible Machine

With the images migrated and accessible, copy the release-*.yaml files onto the cluster accessible
machine that is installing the Sigstore Stack with Kubernetes cluster access.

Prepare Patching Fulcio Release File

The default release-fulcio.yaml has a fulcio-config resource. This config specifies the
OIDCIssuer. By default, there are issuers for:

Kubernetes API ServiceAccount token

Google Accounts

Sigstore OAuth2

Github Action Token

To add other OIDC Issuers, configure fulcio-config further.

Apart from Kubernetes API ServiceAccount token, the other OIDCIssuers require access to
external services. Your cluster must have an OIDC issuer enabled to configure OIDCIssuers
correctly. If you don’t need keyless signatures, you can remove the OIDCIssuers entry. In an air-
gapped environment, you must remove these OIDCIssuers.

You can add the correct MetaIssuers for your IaaS environment.

A config_json is constructed and then applied to the release-fulcio.yaml.

OIDCIssuer

A config_json containing the Kubernetes API ServiceAccount token issuer:

config_json='{

  "OIDCIssuers": {

    "https://kubernetes.default.svc": {

      "IssuerURL": "https://kubernetes.default.svc",

      "ClientID": "sigstore",

      "Type": "kubernetes"

    }

  },

  "MetaIssuers": {

    "https://kubernetes.*.svc": {

      "ClientID": "sigstore",

      "Type": "kubernetes"

    }

  }

}'

Set the IssuerURL to the OIDC issuer configured in your cluster. You can discover your the URL by
using kubectl proxy -p 8001 and running:

curl localhost:8001/.well-known/openid-configuration | jq .issuer

Then set the OIDCIssuer to the value returned in the last command.

Tanzu Application Platform v1.4

VMware by Broadcom 1267



Other sample OIDCIssuers:

config_json='{

  "OIDCIssuers": {

    "https://accounts.google.com": {

      "IssuerURL": "https://accounts.google.com",

      "ClientID": "sigstore",

      "Type": "email"

    },

    "https://allow.pub": {

      "IssuerURL": "https://allow.pub",

      "ClientID": "sigstore",

      "Type": "spiffe",

      "SPIFFETrustDomain": "allow.pub"

    },

    "https://oauth2.sigstore.dev/auth": {

      "IssuerURL": "https://oauth2.sigstore.dev/auth",

      "ClientID": "sigstore",

      "Type": "email",

      "IssuerClaim": "$.federated_claims.connector_id"

    },

    "https://token.actions.githubusercontent.com": {

      "IssuerURL": "https://token.actions.githubusercontent.com",

      "ClientID": "sigstore",

      "Type": "github-workflow"

    }

  }

}'

MetaIssuers

If installing on EKS, update the config_json to include this MetaIssuer:

config_json='{

  "MetaIssuers": {

    ...

    "https://oidc.eks.*.amazonaws.com/id/*": {

      "ClientID": "sigstore",

      "Type": "kubernetes"

    }

  }

}'

If installing on GCP, update the config_json to include this MetaIssuer:

config_json='{

  "MetaIssuers": {

    ...

    "https://container.googleapis.com/v1/projects/*/locations/*/clusters/*": {

      "ClientID": "sigstore",

      "Type": "kubernetes"

    }

  }

}'

If installing on AKS, update the config_json to include this MetaIssuer:

config_json='{

  "MetaIssuers": {

    ...

Tanzu Application Platform v1.4

VMware by Broadcom 1268



    "https://oidc.prod-aks.azure.com/*": {

      "ClientID": "sigstore",

      "Type": "kubernetes"

    }

  }

}'

Applying the patch for Fulcio release file

After configuring the required config_json, you can apply it by manually editing the release-
fulcio.yaml file or by running:

# Use `yq` to find the correct fulcio-config resource

# Update the `data.config.json` property with the new config JSON string

config_json="${config_json}" \

  yq e '. |

    select(.metadata.name == "fulcio-config") as $config |

    select(.metadata.name != "fulcio-config") as $other |

    $config.data["config.json"] = strenv(config_json) |

    ($other, $config)' -i release-fulcio.yaml

Patch Knative-Serving
Knative Serving might already be deployed, depending on the selected profile, during the first
attempt of installing Tanzu Application Platform. Knative Serving is required to continue deploying
the Sigstore Stack. If Knative is not present, install it. See Install Cloud Native Runtimes.

With the Sigstore Stack deployment, you must update Knative Serving’s configmap/config-
features to enable required features. Run:

kubectl patch configmap/config-features \

  --namespace knative-serving \

  --type merge \

  --patch '{"data":{"kubernetes.podspec-fieldref":"enabled", "kubernetes.podspec-volum

es-emptydir":"enabled", "multicontainer":"enabled"}}'

Create OIDC Reviewer Binding

To fetch public keys and validate the JWT tokens from the Discovery Document, you must allow
unauthenticated requests.

kubectl create clusterrolebinding oidc-reviewer \

  --clusterrole=system:service-account-issuer-discovery \

  --group=system:unauthenticated

For more information, see Service Account Issuer Discovery in the Kubernetes documentation.

Install Trillian

To install Trillian:

1. kubectl apply the release-trillian.yaml.

2. Add the secretgen placeholder for secretgen to import tap-registry secret to the
namespace for queue-proxy.

3. Patch the service account to use the imported tap-registry secret.

4. Wait for the jobs and services to be Complete or be Ready.

Tanzu Application Platform v1.4

VMware by Broadcom 1269

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#service-account-issuer-discovery


echo 'Install Trillian'

kubectl apply -f "release-trillian.yaml"

echo "Create tap-registry secret import"

cat <<EOF | kubectl apply -f -

---

apiVersion: v1

kind: Secret

metadata:

  name: tap-registry

  namespace: trillian-system

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

stringData:

  .dockerconfigjson: "{}"

type: kubernetes.io/dockerconfigjson

EOF

echo "Patch trillian service account"

kubectl -n trillian-system patch serviceaccount trillian -p '{"imagePullSecrets": [{"n

ame": "tap-registry"}]}'

echo 'Restart trillian deployment if tap-registry secret was required'

kubectl -n trillian-system rollout restart deployment/log-server-00001-deployment

kubectl -n trillian-system rollout restart deployment/log-signer-00001-deployment

echo 'Wait for Trillian ready'

kubectl wait --timeout 2m -n trillian-system --for=condition=Ready ksvc log-server

kubectl wait --timeout 2m -n trillian-system --for=condition=Ready ksvc log-signer

Install Rekor

To install Rekor:

1. kubectl apply the release-rekor.yaml.

2. Add the secretgen placeholder for secretgen to import tap-registry secret to the
namespace for queue-proxy.

3. Patch the service account to use the imported tap-registry secret.

4. Wait for the jobs and services to be Complete or be Ready.

echo 'Install Rekor'

kubectl apply -f "release-rekor.yaml"

echo "Create tap-registry secret import"

cat <<EOF | kubectl apply -f -

---

apiVersion: v1

kind: Secret

metadata:

  name: tap-registry

  namespace: rekor-system

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

stringData:

  .dockerconfigjson: "{}"

type: kubernetes.io/dockerconfigjson

EOF

echo "Patch rekor service account"

kubectl -n rekor-system patch serviceaccount rekor -p '{"imagePullSecrets": [{"name": 

"tap-registry"}]}'

Tanzu Application Platform v1.4

VMware by Broadcom 1270



echo 'Restart rekor deployment if tap-registry secret was required'

kubectl -n rekor-system rollout restart deployment/rekor-00001-deployment

echo 'Wait for Rekor ready'

kubectl wait --timeout 5m -n rekor-system --for=condition=Complete jobs --all

kubectl wait --timeout 2m -n rekor-system --for=condition=Ready ksvc rekor

Install Fulcio

To install Fulcio:

1. kubectl apply the release-fulcio.yaml.

2. Add the secretgen placeholder for secretgen to import tap-registry secret to the
namespace for queue-proxy.

3. Patch the service account to use the imported tap-registry secret.

4. Wait for the jobs and services to be Complete or be Ready.

The Sigstore Scaffolding release-fulcio.yaml downloaded can have an empty YAML document at
the end of the file separated by --- and followed by no elements. This results in:

error: error validating "release-fulcio.yaml": error validating data: [apiVersion not 

set, kind not set]; if you choose to ignore these errors, turn validation off with --v

alidate=false

This is a known issue and you can ignore it.

echo 'Install Fulcio'

kubectl apply -f "release-fulcio.yaml"

echo "Create tap-registry secret import"

cat <<EOF | kubectl apply -f -

---

apiVersion: v1

kind: Secret

metadata:

  name: tap-registry

  namespace: fulcio-system

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

stringData:

  .dockerconfigjson: "{}"

type: kubernetes.io/dockerconfigjson

EOF

echo "Patch fulcio service account"

kubectl -n fulcio-system patch serviceaccount fulcio -p '{"imagePullSecrets": [{"nam

e": "tap-registry"}]}'

echo 'Restart fulcio deployment if tap-registry secret was required'

kubectl -n fulcio-system rollout restart deployment/fulcio-00001-deployment

echo 'Wait for Fulcio ready'

kubectl wait --timeout 5m -n fulcio-system --for=condition=Complete jobs --all

kubectl wait --timeout 5m -n fulcio-system --for=condition=Ready ksvc fulcio

Install Certificate Transparency Log (CTLog)
To install CTLog:

Tanzu Application Platform v1.4

VMware by Broadcom 1271



1. kubectl apply the release-ctlog.yaml.

2. Add the secretgen placeholder for secretgen to import tap-registry secret to the
namespace for queue-proxy.

3. Patch the service account to use the imported tap-registry secret.

4. Wait for the jobs and services to be Complete or be Ready.

echo 'Install CTLog'

kubectl apply -f "release-ctlog.yaml"

echo "Create tap-registry secret import"

cat <<EOF | kubectl apply -f -

---

apiVersion: v1

kind: Secret

metadata:

  name: tap-registry

  namespace: ctlog-system

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

stringData:

  .dockerconfigjson: "{}"

type: kubernetes.io/dockerconfigjson

EOF

echo "Patch ctlog service account"

kubectl -n ctlog-system patch serviceaccount ctlog -p '{"imagePullSecrets": [{"name": 

"tap-registry"}]}'

echo 'Restart ctlog deployment if tap-registry secret was required'

kubectl -n ctlog-system rollout restart deployment/ctlog-00001-deployment

echo 'Wait for CTLog ready'

kubectl wait --timeout 5m -n ctlog-system --for=condition=Complete jobs --all

kubectl wait --timeout 2m -n ctlog-system --for=condition=Ready ksvc ctlog

Install TUF

To install TUF:

1. If you are using OpenShift, add a RoleBinding.

2. kubectl apply the release-tuf.yaml.

3. Add the secretgen placeholder for secretgen to import tap-registry secret to the
namespace for queue-proxy.

4. Patch the service account to use the imported tap-registry secret.

5. Copy the public keys from the previous deployment of CTLog, Fulcio, and Rekor to the TUF
namespace.

6. Wait for the jobs and services to be Complete or be Ready.

If you are using OpenShift, you must set the correct Security Context Constraints so the TUF
server can write to the root file system. This is done by adding the anyuid Security Context
Constraint through a RoleBinding:

cat <<EOF >> release-tuf.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name:  tuf-os-scc-role-binding

Tanzu Application Platform v1.4

VMware by Broadcom 1272



  namespace: tuf-system

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: system:openshift:scc:anyuid

subjects:

  - kind: ServiceAccount

    namespace: tuf-system

    name: tuf

EOF

Now proceed to install TUF:

echo 'Install TUF'

kubectl apply -f "release-tuf.yaml"

echo "Create tap-registry secret import"

cat <<EOF | kubectl apply -f -

---

apiVersion: v1

kind: Secret

metadata:

  name: tap-registry

  namespace: tuf-system

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

stringData:

  .dockerconfigjson: "{}"

type: kubernetes.io/dockerconfigjson

EOF

echo "Patch tuf service account"

kubectl -n tuf-system patch serviceaccount tuf -p '{"imagePullSecrets": [{"name": "tap

-registry"}]}'

# Then copy the secrets (even though it's all public stuff, certs, public keys)

# to the tuf-system namespace so that we can construct a tuf root out of it.

kubectl -n ctlog-system get secrets ctlog-public-key -oyaml | sed 's/namespace: .*/nam

espace: tuf-system/' | kubectl apply -f -

kubectl -n fulcio-system get secrets fulcio-pub-key -oyaml | sed 's/namespace: .*/name

space: tuf-system/' | kubectl apply -f -

kubectl -n rekor-system get secrets rekor-pub-key -oyaml | sed 's/namespace: .*/namesp

ace: tuf-system/' | kubectl apply -f -

echo 'Wait for TUF ready'

kubectl wait --timeout 4m -n tuf-system --for=condition=Complete jobs --all

kubectl wait --timeout 2m -n tuf-system --for=condition=Ready ksvc tuf

Update Policy Controller with TUF Mirror and Root

Obtain the root.json file from the tuf-system namespace. Run:

kubectl -n tuf-system get secrets tuf-root -o jsonpath='{.data.root}' | base64 -d > ro

ot.json

Update the tap-values that are used for installation of Tanzu Application Platform.

If the internally deployed TUF is used, tuf_mirror is http://tuf.tuf-system.svc. If the mirror is
hosted elsewhere, provide the correct mirror URL. The default public TUF instance mirror URL is
https://sigstore-tuf-root.storage.googleapis.com.

The tuf_root is the contents of the obtained root.json from the tuf-root secret in the tuf-system
namspace. The public TUF instance’s root.json.

Tanzu Application Platform v1.4

VMware by Broadcom 1273

https://sigstore-tuf-root.storage.googleapis.com/root.json


If Policy Controller was installed through Tanzu Application Profiles, update the values file with:

policy:

  tuf_mirror: http://tuf.tuf-system.svc

  tuf_root: |

    MULTI-LINE-ROOT-JSON

Where MULTI-LINE-ROOT-JSON is a multi-line string content of from your root.json file.

When updating the current Tanzu Application Platform installed through profiles with the updated
values file, the previously failing Tanzu Application Platform PackageInstall has the following error:

tanzu package installed update tap --values-file tap-values-updated.yaml -n tap-instal

l

 Updating installed package 'tap'

 Getting package install for 'tap'

 Getting package metadata for 'tap.tanzu.vmware.com'

 Updating secret 'tap-tap-install-values'

 Updating package install for 'tap'

 Waiting for 'PackageInstall' reconciliation for 'tap'

Error: resource reconciliation failed: kapp: Error: waiting on reconcile packageinstal

l/policy-controller (packaging.carvel.dev/v1alpha1) namespace: tap-install:

  Finished unsuccessfully (Reconcile failed:  (message: Error (see .status.usefulError

Message for details))). Reconcile failed: Error (see .status.usefulErrorMessage for de

tails)

Error: exit status 1

Although the command fails, the values file is updated in the installation secrets. During the next
reconciliation cycle, the package attempts to reconcile and sync with the expected configuration.
At that point, Policy Controller updates and reconciles with the latest values.

If Policy Controller was installed standalone or updated manually, update the values file with:

tuf_mirror: http://tuf.tuf-system.svc

tuf_root: |

  MULTI-LINE-ROOT-JSON

Where MULTI-LINE-ROOT-JSON is a multi-line string content of from your root.json file.

Run with the values file configured for Policy Controller only:

tanzu package installed update policy-controller --values-file tap-values-standalone.y

aml -n tap-install

 Updating installed package 'policy-controller'

 Getting package install for 'policy-controller'

 Getting package metadata for 'policy.apps.tanzu.vmware.com'

 Creating secret 'policy-controller-tap-install-values'

 Updating package install for 'policy-controller'

 Waiting for 'PackageInstall' reconciliation for 'policy-controller'

 'PackageInstall' resource install status: Reconciling

 'PackageInstall' resource install status: ReconcileSucceeded

 'PackageInstall' resource successfully reconciled

Updated installed package 'policy-controller' in namespace 'tap-install'

This updates the policy-controller only. It is important that if Policy Controller was installed through
the Tanzu Application Platform package with profiles, the update command to update the Tanzu
Application Platform installation is still required, as it updates the values file. If only the Policy
Controller package is updated with new values and not the Tanzu Application Platform package’s
values, the Tanzu Application Platform package’s values overwrite the Policy Controller’s values.

Tanzu Application Platform v1.4

VMware by Broadcom 1274



For more information about profiles, see Package Profiles. For more information about Policy
Controller, see Install Supply Chain Security Tools - Policy Controller documentation.

Uninstall Sigstore Stack

To uninstall Sigstore Stack, run:

kubectl delete -f "release-tuf.yaml"

kubectl delete -f "release-ctlog.yaml"

kubectl delete -f "release-fulcio.yaml"

kubectl delete -f "release-rekor.yaml"

kubectl delete -f "release-trillian.yaml"

Migration From Supply Chain Security Tools - Sign

This topic explains how you can migrate from Supply Chain Security Tools - Sign to Supply Chain
Security Tools - Policy.

In Tanzu Application Platform v1.4, the Image Policy Webhook is removed. If the Image Policy
Webhook was used with the previous Tanzu Application Platform versions in your cluster, you must
migrate the ClusterImagePolicy resource from Image Policy Webhook to Policy Controller. For
information about additional features introduced in SCST - Policy, see Configuring Supply Chain
Security Tools - Policy.

Enable Policy Controller on Namespaces

Policy Controller works with an opt-in system. Operators must update namespaces with the label
policy.sigstore.dev/include: "true" to the namespace resource to enable Policy Controller
verification.

kubectl label namespace my-secure-namespace policy.sigstore.dev/include=true

Policy Controller ClusterImagePolicy

The Policy Controller ClusterImagePolicy does not have a name. Image Policy Controller required
that the ClusterImagePolicy be named image-policy and that there be only one
ClusterImagePolicy. Multiple Policy Controller ClusterImagePolicies are applied. During validation,
all ClusterImagePolicy that have an image glob pattern that matches the deploying image is
evaluated. All matched ClusterImagePolicies must be valid. For a ClusterImagePolicy to be valid,
at least one authority in the policy must validate the signature of the deploying image.

Excluding Namespaces

Caution

Without a Policy Controller ClusterImagePolicy applied, there are fallback behaviors
where images are validated against the public Sigstore Rekor and Fulcio servers by
using a keyless authority flow. Therefore, if the deploying image is signed publicly by
a third-party using the keyless authority flow, the image are admitted as it can
validate against the public Rekor and Fulcio. To avoid this behavior, develop, and
apply a ClusterImagePolicy that applies to the images being deployed in the
namespace.

Tanzu Application Platform v1.4

VMware by Broadcom 1275



The namespaces listed in spec.verification.exclude.resources.namespaces[] must have
policy.sigstore.dev/include set to false or not be set. Therefore, they are exempted from Policy
Controller validation.

Image Policy Webhook:

---

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  verification:

    ...

    exclude:

      resources:

        namespaces:

        - image-policy-system

        - kube-system

        - cert-manager

    ...

Specifying Public Keys

spec.verification.keys[].publicKey from Image Policy Webhook is mapped to
spec.authorities[].key.data for Policy Controller.

The name associated with each key is no longer required. Image Policy Webhook has direct
association between key name and imagePattern. For Policy Controller, multiple
ClusterImagePolicy resources are defined to create direct association between image patterns and
key authorities.

Image patterns and keys are scoped to each ClusterImagePolicy resource.

Therefore, to have direct association be isolated between key and imagePattern, multiple Policy
Controller ClusterImagePolicy must be created. Each ClusterImagePolicy has the image glob
pattern defined and the associated key authorities defined.

Image Policy Webhook:

---

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  verification:

    ...

    keys:

    - name: official-cosign-key

      publicKey: |

        -----BEGIN PUBLIC KEY-----

        MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhyQCx0E9wQWSFI9ULGwy3BuRklnt

        IqozONbbdbqz11hlRJy9c7SG+hdcFl9jE9uE/dwtuwU2MqU9T/cN0YkWww==

        -----END PUBLIC KEY-----

    ...

Policy Controller:

Tanzu Application Platform v1.4

VMware by Broadcom 1276



---

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: POLICY-NAME

spec:

  authorities:

  ...

  - key:

      data: |

        -----BEGIN PUBLIC KEY-----

        MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhyQCx0E9wQWSFI9ULGwy3BuRklnt

        IqozONbbdbqz11hlRJy9c7SG+hdcFl9jE9uE/dwtuwU2MqU9T/cN0YkWww==

        -----END PUBLIC KEY-----

  ...

Where POLICY-NAME is the name of the cluster image policy you want to use.

Specifying Image Matching

spec.verification.images[].namePattern from Image Policy Webhook maps to
spec.images[].glob for Policy Controller.

Policy Controller follows more closely to glob matching. For the Image Policy Webhook,
registry.com/* wildcards all projects and images under the registry. However, glob matching uses
/ separator delimiting. Therefore, the glob wildcard matching equivalent is registry.com/**/*. The
** allows for recursive project path matching while the trailing * images found in the terminating
project path.

If only one level of pathing is required, the glob pattern is registry.com/*/*.

Policy Controller has defaults defined. If * is specified, the glob matching behavior is
index.docker.io/library/*. If */* is specified, the glob matching behavior is index.docker.io/*/*.
With these defaults, the glob pattern ** matches against all images.

Image Policy Webhook:

---

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  verification:

    ...

    images:

    - namePattern: gcr.io/projectsigstore/cosign*

      keys:

      - name: official-cosign-key

      secretRef:

        name: your-secret

        namespace: your-namespace

    ...

Policy Controller:

---

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

Tanzu Application Platform v1.4

VMware by Broadcom 1277



metadata:

  name: POLICY-NAME

spec:

  images:

  - glob: gcr.io/projectsigstore/cosign*

Where POLICY-NAME is the name of the cluster image policy you want to use.

Specifying policy mode

If AllowUnmatchedImages is set to true in the Image Policy Webhook deployment, create the
following policy in the cluster:

---

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: allow-unmatched-image-policy

spec:

  images:

  - glob: "**"

    authorities:

    - static:

        action: pass

Configuring Supply Chain Security Tools - Policy

This topic describes how you can configure Supply Chain Security Tools - Policy. SCST - Policy
requires extra configuration steps to verify your container images.

Admission of Images

An image is admitted after it is validated against all policies with matching image patterns, and
where at least one valid signature is obtained from the authorities provided in the matched
ClusterImagePolicy later in the topic. Within a single policy, every signature must be valid. When
more than one policy has a matching image pattern, the image must match at least one signature
from each ClusterImagePolicy.

Including Namespaces

The Policy Controller only validates resources in namespaces that have chosen to opt-in. This is
done by adding the label policy.sigstore.dev/include: "true" to the namespace resource.

kubectl label namespace my-secure-namespace policy.sigstore.dev/include=true

Caution

Without a Policy Controller ClusterImagePolicy applied, there are fallback behaviors
where images are validated against the public Sigstore Rekor and Fulcio servers by
using a keyless authority flow. Therefore, if the deploying image is signed publicly by
a third-party using the keyless authority flow, the image is admitted as it can
validate against the public Rekor and Fulcio. To avoid this behavior, develop, and
apply a ClusterImagePolicy that applies to the images being deployed in the
namespace.

Tanzu Application Platform v1.4

VMware by Broadcom 1278



Create a ClusterImagePolicy resource

The cluster image policy is a custom resource containing the following properties:

images: The images block defines the patterns of images that must be subject to the
ClusterImagePolicy. If multiple policies match a particular image, ALL of those policies
must be satisfied for the image to be admitted.

Policy Controller by default defines if the following globs are specified:

If * is specified, the glob matching behavior is index.docker.io/library/*.

If */* is specified, the glob matching behavior is index.docker.io/*/*. With these
defaults, you require the glob pattern ** to match against all images. If your image
is hosted on Docker Hub, include index.docker.io as the host for the glob.

authorities: The authorities block defines the rules for discovering and validating
signatures. Discovery is done by using the sources text box, and is specified on any entry.
Signatures are cryptographically verified using one of the key or keyless text boxes.

When a policy is selected to be evaluated against the matched image, the authorities are used to
validate signatures. If at least one authority is satisfied and a signature is validated, the policy is
validated.

mode

In a ClusterImagePolicy, spec.mode specifies the action of a policy:

enforce: The default behavior. If the policy fails to validate the image, the policy fails.

warn: If the policy fails to validate the image, validation error messages are converted to
Warnings and the policy passes.

A sample of a ClusterImagePolicy which has warn mode configured.

---

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: POLICY-NAME

spec:

  mode: warn

Where POLICY-NAME is the name of the policy you want to configure your ClusterImagePolicy with.

When enforce mode rejects an image, the image is not admitted.

Sample output message:

error: failed to patch: admission webhook "policy.sigstore.dev" denied the request: va

lidation failed: failed policy: POLICY-NAME: spec.template.spec.containers[0].image

IMAGE-REFERENCE signature key validation failed for authority authority-0 for IMAGE-RE

FERENCE: GET IMAGE-SIGNATURE-REFERENCE: DENIED: denied; denied

failed policy: POLICY-NAME: spec.template.spec.containers[1].image

IMAGE-REFERENCE signature key validation failed for authority authority-0 for IMAGE-RE

FERENCE: GET IMAGE-SIGNATURE-REFERENCE: DENIED: denied; denied

When warn mode rejects an image, the image is admitted.

Sample output message:

Warning: failed policy: POLICY-NAME: spec.template.spec.containers[0].image

Warning: IMAGE-REFERENCE signature key validation failed for authority authority-0 for 

IMAGE-REFERENCE: GET IMAGE-SIGNATURE-REFERENCE: DENIED: denied; denied

Tanzu Application Platform v1.4

VMware by Broadcom 1279



Warning: failed policy: POLICY-NAME: spec.template.spec.containers[1].image

Warning: IMAGE-REFERENCE signature key validation failed for authority authority-0 for 

IMAGE-REFERENCE: GET IMAGE-SIGNATURE-REFERENCE: DENIED: denied; denied

If a namespace contains both signed and unsigned images, utilizing two ClusterImagePolicies can
address this. You can configure one policy with enforce for images that are signed and configure
the other policy with warn to allow expected unsigned images.

For example, allowing unsigned tap-packages images required for the platform through a warn
policy. However, the signed images produced from Tanzu Build Service are verified with an enforce
policy.

If Warning is undesirable, you might configure a static.action pass authority to allow expected
unsigned images. For information about static action authorities, see the Static Action
documentation.

images

In a ClusterImagePolicy, spec.images specifies a list of glob matching patterns. These patterns are
matched against the image digest in PodSpec for resources attempting deployment.

Policy Controller defines the following globs by default:

If * is specified, the glob matching behavior is index.docker.io/library/*.

If */* is specified, the glob matching behavior is index.docker.io/*/*.

With these defaults, you require the glob pattern ** to match against all images. If your image is
hosted on Docker Hub, include index.docker.io as the host for the glob.

A sample of a ClusterImagePolicy which matches against all images using glob:

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  images:

  - glob: "**"

match

You can use match to filter resources using group, version, kind, or labels in a selected namespace
to enforce the defined policy. If the list of matching resources is empty, all core resources are used
by default.

For example, you can filter all v1 cronjobs with the label app: tap in a namespace that is labeled
for policy enforcement:

spec:

  match:

  - group: batch

    resource: cronjobs

    version: v1

    selector:

      matchLabels:

        app: tap

authorities

Authorities listed in the authorities block of the ClusterImagePolicy are key or keyless
specifications.

Tanzu Application Platform v1.4

VMware by Broadcom 1280



Each key authority can contain a PEM-encoded ECDSA public key, a secretRef, or a kms path.

spec:

  authorities:

    - key:

        data: |

          -----BEGIN PUBLIC KEY-----

          ...

          -----END PUBLIC KEY-----

    - key:

        secretRef:

          name: secretName

    - key:

        kms: KMSPATH

Where KMSPATH is the name of the KMS path you want to configure in your key authority.

Each keyless authority can contain a Fulcio URL, a Rekor URL, a certificate, or an array of identities.

Identities are represented with a combination of issuer or issuerRegExp with subject or
subjectRegExp.

issuer: Defines the issuer for this identity.

issuerRegExp: Specifies a regular expression to match the issuer for this identity.

subject: Defines the subject for this identity.

subjectRegExp: Specifies a regular expression to match the subject for this identity.

An example of keyless authority structure:

spec:

  authorities:

    - keyless:

        url: https://fulcio.example.com

        ca-cert:

          data: Certificate Data

        identities:

          - issuer: https://accounts.google.com

            subjectRegExp: .*@example.com 

          - issuer: https://token.actions.githubusercontent.com

            subject: https://github.com/mycompany/*/.github/workflows/*@*

      ctlog:

Note

Keyless support is deactivated by default. For more information, see Install Supply
Chain Security Tools - Policy Controller.

Important

Only ECDSA public keys are supported.

Note

The secret referenced in key.secretRef.name must be created in the cosign-system
namespace or the namespace where the Policy Controller is installed. Such secret
must only contain one data entry with the public key.

Tanzu Application Platform v1.4

VMware by Broadcom 1281



        url: https://rekor.example.com

    - keyless:

        url: https://fulcio.example.com

        ca-cert:

          secretRef:

            name: secretName

        identities:

          - issuerRegExp: .*kubernetes.default.*

            subjectRegExp: .*kubernetes.io/namespaces/default/serviceaccounts/default

The authorities are evaluated using the any of operator to admit container images. For each pod,
the Policy Controller iterates over the list of containers and init containers. For every policy that
matches against the images, they must each have at least one valid signature obtained using the
authorities specified. If an image does not match any policy, the Policy Controller does not admit
the image.

static.action

ClusterImagePolicy authorities are configured to always pass or fail with static.action.

Sample ClusterImagePolicy with static action fail.

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: POLICY-NAME

spec:

  authorities:

  - static:

      action: fail

Where POLICY-NAME is the name of the policy you want to configure your ClusterImagePolicy with.

A sample output of static action fail:

error: failed to patch: admission webhook "policy.sigstore.dev" denied the request: va

lidation failed: failed policy: POLICY-NAME: spec.template.spec.containers[0].image

IMAGE-REFERENCE disallowed by static policy

failed policy: POLICY-NAME: spec.template.spec.containers[1].image

IMAGE-REFERENCE disallowed by static policy

Images that are unsigned in a namespace with validation enabled are admitted with an authority
with static action pass.

A scenario where this applies is configuring a policy with static.action pass for tap-packages
images. Another policy is then configured to validate signed images produced by Tanzu Build
Service. This allows images from tap-packages, which are unsigned and required by the platform, to
be admitted while still validating signed built images from Tanzu Build Service. See Configure your
supply chain to sign and verify your image builds for an example.

If Warning messages are desirable for admitted images where validation failed, you can configure a
policy with warn mode and valid authorities. For information about ClusterImagePolicy modes, see
the Mode documentation.

Provide credentials for the package

There are three ways the package reads credentials to authenticate to registries protected by
authentication:

1. Reading imagePullSecrets directly from the resource being admitted. See Container image
pull secrets in the Kubernetes documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 1282

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


2. Reading imagePullSecrets from the service account the resource is running as. See
Arranging for imagePullSecrets to be automatically attached in the Kubernetes
documentation.

3. Reading a secretRef from the ClusterImagePolicy resource’s signaturePullSecrets when
specifying the cosign signature source.

Authentication can fail for the following scenarios:

A not valid credential is specified in the imagePullSecrets of the resource or in the service
account the resource runs as.

A not valid credential is specified in the ClusterImagePolicy signaturePullSecrets text
box.

Provide secrets for authentication in your policy

You can provide secrets for authentication as part of the policy configuration. The oci location is
the image location or a remote location where signatures are configured to be stored during
signing. The signaturePullSecrets is available in the cosign-system namespace or the namespace
where the Policy Controller is installed.

By default, imagePullSecrets from the resource or service account is used while the default oci
location is the image location.

See the following example:

spec:

  authorities:

    - key:

        data: |

          -----BEGIN PUBLIC KEY-----

          ...

          -----END PUBLIC KEY-----

      source:

        - oci: registry.example.com/project/signature-location

          signaturePullSecrets:

            - name: MY-SECRET

    - keyless:

        url: https://fulcio.example.com

      source:

        - oci: registry.example.com/project/signature-location

          signaturePullSecrets:

            - name: MY-SECRET

Where MY-SECRET is the name of the secret you want to use with your credentials.

VMware recommends using a set of credentials with the least amount of privilege that allows
reading the signature stored in your registry.

Verify your configuration
A sample policy:

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  images:

  - glob: "gcr.io/projectsigstore/cosign*"

  authorities:

  - name: official-cosign-key

Tanzu Application Platform v1.4

VMware by Broadcom 1283

https://kubernetes.io/docs/concepts/configuration/secret/#arranging-for-imagepullsecrets-to-be-automatically-attached


    key:

      data: |

        -----BEGIN PUBLIC KEY-----

        MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhyQCx0E9wQWSFI9ULGwy3BuRklnt

        IqozONbbdbqz11hlRJy9c7SG+hdcFl9jE9uE/dwtuwU2MqU9T/cN0YkWww==

        -----END PUBLIC KEY-----

When using the sample policy, run these commands to verify your configuration:

1. Verify that the Policy Controller admits the signed image that validates with the configured
public key. Run:

kubectl run cosign \

  --image=gcr.io/projectsigstore/cosign:v1.2.1 \

  --dry-run=server

For example:

$ kubectl run cosign \

  --image=gcr.io/projectsigstore/cosign:v1.2.1 \

  --dry-run=server

pod/cosign created (server dry run)

2. Verify that the Policy Controller rejects the unmatched image. Run:

kubectl run busybox --image=busybox --dry-run=server

For example:

$ kubectl run busybox --image=busybox --dry-run=server

  Error from server (BadRequest): admission webhook "policy.sigstore.dev" denie

d the request: validation failed: no matching policies: spec.containers[0].imag

e

  index.docker.io/library/busybox@sha256:3614ca5eacf0a3a1bcc361c939202a974b4902

b9334ff36eb29ffe9011aaad83

In the output, it did not specify which authorities were used as there was no policy found
that matched the image. Therefore, the image fails to validate for a signature and fails to
deploy.

3. Verify that the Policy Controller rejects a matched image signed with a different key than
the one configured. Run:

kubectl run cosign-fail \

  --image=gcr.io/projectsigstore/cosign:v0.3.0 \

  --dry-run=server

For example:

$ kubectl run cosign-fail \

    --image=gcr.io/projectsigstore/cosign:v0.3.0 \

    --dry-run=server

  Error from server (BadRequest): admission webhook "policy.sigstore.dev" denie

d the request: validation failed: failed policy: image-policy: spec.containers

[0].image

  gcr.io/projectsigstore/cosign@sha256:135d8c5e27bdc917f04b415fc947d7d5b1137f99

bb8fa00bffc3eca1856e9c52 failed to validate public keys with authority official

-cosign-key for gcr.io/projectsigstore/cosign@sha256:135d8c5e27bdc917f04b415fc9

47d7d5b1137f99bb8fa00bffc3eca1856e9c52: no matching signatures:

In the output, it specifies which authorities were used for validation when a policy was
found that matched the image. In this case, the authority used was official-cosign-key. If

Tanzu Application Platform v1.4

VMware by Broadcom 1284



no name is specified, it is defaulted to authority-#.

Overview of Supply Chain Security Tools for VMware Tanzu
- Sign
This component is removed in Tanzu Application Platform v1.4 in favor of Supply Chain Security
Tools - Policy Controller.

To migrate from Supply Chain Security Tools - Sign to Supply Chain Security Tools - Policy
Controller, see Migration From Supply Chain Security Tools - Sign

Overview of Supply Chain Security Tools for Tanzu – Store
This topic gives you an overview of Supply Chain Security Tools (SCST) – Store.

Overview
Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database and
allows you to query for image, source code, package, and vulnerability relationships. It integrates
with Supply Chain Security Tools - Scan to automatically store the resulting source code and image
vulnerability reports. It accepts CycloneDX input and outputs in both human-readable and
machine-readable formats, including JSON, text, and CycloneDX.

The following is a quick demo of configuring the tanzu insight plug-in and querying the metadata
store for CVEs and scan results.

Tanzu Application Platform - Querying with InsighTanzu Application Platform - Querying with Insigh……

Using the Tanzu Insight CLI plug-in
the Tanzu Insight CLI plug-in is the primary way to view results from the Supply Chain Security
Tools - Scan of source code and image files. Use it to query by source code commit, image digest,
and CVE identifier to understand security risks.

See Tanzu Insight plug-in overview to install, configure, and use tanzu insight.

Multicluster configuration
See Multicluster setup for information about how to set up SCST - Store in a multicluster setup.

Integrating with Tanzu Application Platform GUI

Tanzu Application Platform v1.4

VMware by Broadcom 1285

https://www.youtube.com/watch?v=qBBv3YKwH2E


Using the Supply Chain Choreographer in Tanzu Application Platform GUI, you can visualize your
supply chain. It uses SCST - Store to show the packages and vulnerabilities in your source code and
images.

To enable this feature, see Supply Chain Choreographer in Tanzu Application Platform GUI - Enable
CVE scan results.

Additional documentation

Additional documentation includes information about the API, deployment details and
configuration, AWS RDS configuration, other database backup recommendations, known issues,
and other topics.

Overview of Supply Chain Security Tools for Tanzu – Store

This topic gives you an overview of Supply Chain Security Tools (SCST) – Store.

Overview

Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database and
allows you to query for image, source code, package, and vulnerability relationships. It integrates
with Supply Chain Security Tools - Scan to automatically store the resulting source code and image
vulnerability reports. It accepts CycloneDX input and outputs in both human-readable and
machine-readable formats, including JSON, text, and CycloneDX.

The following is a quick demo of configuring the tanzu insight plug-in and querying the metadata
store for CVEs and scan results.

Tanzu Application Platform - Querying with InsighTanzu Application Platform - Querying with Insigh……

Using the Tanzu Insight CLI plug-in

the Tanzu Insight CLI plug-in is the primary way to view results from the Supply Chain Security
Tools - Scan of source code and image files. Use it to query by source code commit, image digest,
and CVE identifier to understand security risks.

See Tanzu Insight plug-in overview to install, configure, and use tanzu insight.

Multicluster configuration

See Multicluster setup for information about how to set up SCST - Store in a multicluster setup.

Tanzu Application Platform v1.4

VMware by Broadcom 1286

https://www.youtube.com/watch?v=qBBv3YKwH2E


Integrating with Tanzu Application Platform GUI

Using the Supply Chain Choreographer in Tanzu Application Platform GUI, you can visualize your
supply chain. It uses SCST - Store to show the packages and vulnerabilities in your source code and
images.

To enable this feature, see Supply Chain Choreographer in Tanzu Application Platform GUI - Enable
CVE scan results.

Additional documentation

Additional documentation includes information about the API, deployment details and
configuration, AWS RDS configuration, other database backup recommendations, known issues,
and other topics.

Configure your target endpoint and certificate for Supply
Chain Security Tools - Store

This topic describes how you can configure your target endpoint and certificate for Supply Chain
Security Tools (SCST) - Store.

Overview

The connection to Supply Chain Security Tools - Store requires TLS encryption, and the
configuration depends on the kind of installation.

For a production environment, VMware recommends that SCST - Store is installed with ingress
enabled. The following instructions help set up the TLS connection, assuming that you deployed
with ingress enabled.

Using Ingress

When using an Ingress setup, SCST - Store creates a specific TLS Certificate for HTTPS
communications under the metadata-store namespace.

Set the endpoint host to metadata-store.INGRESS-DOMAIN, such as metadata-
store.example.domain.com. Where INGRESS-DOMAIN isthe value of the ingress_domain property in
your deployment yaml.

Note In a multi-cluster setup, a DNS record is required for the domain. The below instructions for
single cluster setup do not apply, skip to Set Target section.

Single Cluster setup

In a single-cluster setup, a DNS record is still recommended. However, if no accessible DNS record
exists for the domain, edit the /etc/hosts file to add a local record:

ENVOY_IP=$(kubectl get svc envoy -n tanzu-system-ingress -o jsonpath="{.status.loadBal

ancer.ingress[0].ip}")

# Replace with your domain

METADATA_STORE_DOMAIN="metadata-store.example.domain.com"

# Delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "$ENVOY_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Tanzu Application Platform v1.4

VMware by Broadcom 1287



Set Target

To get the certificate, run:

kubectl get secret ingress-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN --ca-cert insight-ca.cr

t

Next Step

Configure access token

Additional Resources

For information about deploying SCST - Store without Ingress, see:

Using LoadBalancer

Using NodePort

Configure your access tokens for Supply Chain Security
Tools - Store

This topic describes how to configure your access tokens for Supply Chain Security Tools - Store.

The access token is a Bearer token used in the http request header Authorization. For example,
Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0....

Service accounts are required to have associated access tokens. Before Kubernetes 1.24, service
accounts generated access tokens automatically. Since Kubernetes 1.24, a secret must be applied
manually.

By default, Supply Chain Security Tools - Store includes a read-write service account installed with
an access token generated. This service account is cluster-wide. If you want to create your own
service accounts, see Create Service Accounts.

Setting the Access Token

When using the insight plug-in, you must set the METADATA_STORE_ACCESS_TOKEN environment
variable, or use the --access-token flag. VMware discourages using the --access-token flag as the
token appears in your shell history.

The following command retrieves the access token from the default metadata-store-read-write-
client service account and stores it in METADATA_STORE_ACCESS_TOKEN:

Important

The tanzu insight config set-target does not initiate a test connection. Use
tanzu insight health to test connecting using the configured endpoint and CA
certificate. Neither commands test whether the access token is correct. For that
you must use the plug-in to add data and query data.

Tanzu Application Platform v1.4

VMware by Broadcom 1288



export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets metadata-store-read-write-cli

ent -n metadata-store -o jsonpath="{.data.token}" | base64 -d)

Additional Resources

Retrieve access tokens

Create service accounts

Create a service account with a custom cluster role

Security details for Supply Chain Security Tools - Store

This topic describes the security details for Supply Chain Security Tools (SCST) - Store.

Application security

TLS encryption

Supply Chain Security Tools - Store requires TLS connection. If certificates are not provided, the
application does not start. It supports TLS v1.2 and TLS v1.3. It does not support TLS 1.0, so a
downgrade attack cannot happen. TLS 1.0 is prohibited under Payment Card Industry Data Security
Standard (PCI DSS).

Cryptographic algorithms

Elliptic Curve:

CurveP521

CurveP384

CurveP256

Cipher Suites:

TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Access controls

SCST - Store uses kube-rbac-proxy as the only entry point to its API. Authentication and
Authorization must be completed by using the kube-rbac-proxy before its API is accessible.

Authentication

The kube-rbac-proxy uses Token Review to verify that the token is valid. Token Review is a
Kubernetes API to ensure that a trusted vendor issued the access token provided by the user. To
issue an access token using Kubernetes, the user can create a Kubernetes Service Account and
retrieve the corresponding generated secret for the access token.

To create a service account and use its access token, see the Create Service Account Docs.

Authorization

Tanzu Application Platform v1.4

VMware by Broadcom 1289

https://github.com/brancz/kube-rbac-proxy
https://kubernetes.io/docs/reference/access-authn-authz/authentication/


The kube-rbac-proxy uses Subject Access Review to ensure that users access certain operations.
Subject Access Review is a Kubernetes API that uses Kubernetes RBAC to verify that the user can
perform specific actions. See Create Service Account Doc.

There are two supported roles:

Read Only cluster role

Read and Write cluster role

These cluster roles are deployed by default. Additionally, a service account is created and bound to
the Read and Write cluster role by default. If you do not want this service account, set the
add_default_rw_service_account property to false in the metadata-store-values.yaml file durring
deployment. See Install SCST - Store.

There is no default service account bound to the Read Only cluster role. You must create your
service account and cluster role binding to bind to the Read Only role.

Container security

Non-root user

All containers shipped do not use root user accounts or accounts with root access. Using
Kubernetes Security Context ensures that applications do not run with root users.

Security Context for the API server:

allowPrivilegeEscalation: false

runAsUser: 65532

fsGroup: 65532

Security Context for the PostgreSQL database pod:

allowPrivilegeEscalation: false

runAsUser: 999

fsGroup: 999

Security scanning

There are two types of security scans that are performed before every release.

Static Application Security Testing (SAST)

A Coverity Scan is run on the source code of the API server, CLI, and all their dependencies. There
are no high or critical items outstanding at the time of release.

Software Composition Analysis (SCA)

Important

There is no support for roles with access to only specific types of resources For
example, images, packages, and vulnerabilities.

Note

65532 is the UUID for the nobody user. 999 is the UUID for the PostgreSQL user.

Tanzu Application Platform v1.4

VMware by Broadcom 1290

https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


A Black Duck scan is run on the compiled binary to check for vulnerabilities and license data. There
are no high or critical items outstanding at the time of release.

A Grype scan is run against the source code and the compiled container for dependencies
vulnerabilities. There are no high or critical items outstanding at the time of release.

Additional documentation for Supply Chain Security Tools -
Store
This topic describes additional documentation you can use with Supply Chain Security Tools - Store.

Use and operate
Multicluster setup

Developer namespace setup

API details

API walkthrough

Failover, redundancy, and backups

Troubleshooting and logging
Troubleshooting upgrading

Log configuration and usage

Connecting to the Postgres Database

Configuration
Deployment details and configuration

Access control

Retrieve access tokens

Create service accounts

Create a service account with a custom cluster role

Certificates

Ingress support

Using LoadBalancer

Using NodePort

Custom certificate configuration

TLS configuration

Certificate rotation

Database

Use external postgres database

AWS RDS postgres configuration

Database backup recommendations

Tanzu Application Platform v1.4

VMware by Broadcom 1291



Other

Install SCST - Store independent from TAP profiles

Additional documentation for Supply Chain Security Tools -
Store

This topic describes additional documentation you can use with Supply Chain Security Tools - Store.

Use and operate

Multicluster setup

Developer namespace setup

API details

API walkthrough

Failover, redundancy, and backups

Troubleshooting and logging

Troubleshooting upgrading

Log configuration and usage

Connecting to the Postgres Database

Configuration

Deployment details and configuration

Access control

Retrieve access tokens

Create service accounts

Create a service account with a custom cluster role

Certificates

Ingress support

Using LoadBalancer

Using NodePort

Custom certificate configuration

TLS configuration

Certificate rotation

Database

Use external postgres database

AWS RDS postgres configuration

Database backup recommendations

Tanzu Application Platform v1.4

VMware by Broadcom 1292



Other

Install SCST - Store independent from TAP profiles

API reference for Supply Chain Security Tools - Store

This topic contains API reference information for Supply Chain Security Tools - Store. See API
walkthrough for an SCST - Store example.

Information

Version

1.4.1

Content negotiation

URI Schemes

http

https

Consumes

application/json

Produces

application/json

All endpoints

images

Method URI Name Summary

POST /api/imageReport create image
report

Create a new image report. Related packages and
vulnerabilities are also created.

GET /api/images get images Search image by id, name or digest .

GET /api/packages/{IDorNam
e}/images

get package
images

List the images that contain the given package.

GET /api/vulnerabilities/{CVEI
D}/images

get vulnerability
images

List the images that contain the given vulnerability.

Operations

Method URI Name Summary

GET /api/health health check

Packages

Tanzu Application Platform v1.4

VMware by Broadcom 1293



Method URI Name Summary

GET /api/images/{IDorDigest}/packages get image packages List the packages in an image.

GET /api/images/packages get image packages
query

List packages of the given image.

GET /api/packages get packages Search packages by id, name and/or
version.

GET /api/sources/{IDorRepoorSha}/pack
ages

get source packages

GET /api/sources/packages get source packages
query

List packages of the given source.

GET /api/vulnerabilities/{CVEID}/packag
es

get vulnerability
packages

List packages that contain the given CVE
id.

Sources

Method URI Name Summary

POST /api/sourceReport create source
report

Create a new source report. Related packages and
vulnerabilities are also created.

GET /api/packages/{IDorNam
e}/sources

get package
sources

List the sources containing the given package.

GET /api/sources get sources Search for sources by ID, repository, commit sha and/or
organization.

GET /api/vulnerabilities/{CVEI
D}/sources

get vulnerability
sources

List sources that contain the given vulnerability.

v1artifact_groups

Method URI Name Summary

POST /api/v1/artifa
ct-groups

create
artifact
group

Create an artifact group with specified labels and entity

POST /api/v1/artifa
ct-
groups/_sea
rch

search
artifact
groups

Query for a list of artifact group that contains image(s) with specified
digests, and or source(s) with specified shas. At least one image digest or
source sha must be provided. This query can be further refined by matching
images and sources with a specific combination of package name and/or
cve id.

POST /api/v1/artifa
ct-
groups/vulne
rabilities/_re
ach

search
artifact
groups vuln
reach

Search for how many artifact groups are affected by vulnerabilities
associated with the specified image(s) digests, and/or source(s) shas. At
least one image digest or source sha must be provided.

POST /api/v1/artifa
ct-
groups/vulne
rabilities/_se
arch

search
artifact
groups
vulnerabilitie
s

Search for all vulnerabilities associated with an artifact group that contains
image(s) with specified digests, and/or source(s) with specified shas. At least
one image digest or source sha must be provided.

v1images

Tanzu Application Platform v1.4

VMware by Broadcom 1294



Method URI Name Summary

GET /api/v1/images/{I
D}

get image by
ID

Search image by ID

GET /api/v1/images v1 get images Query for images. If no parameters are given, this endpoint will return
all images.

v1packages

Method URI Name Summary

GET /api/v1/packag
es/{ID}

get package by
ID

Search package by ID

GET /api/v1/images
/packages

v1 get images
packages

Query for packages with images parameters. If no parameters are given,
this endpoint will return all packages related to images.

GET /api/v1/packag
es

v1 get
packages

Query for packages. If no parameters are given, this endpoint will return
all packages.

GET /api/v1/source
s/packages

v1 get sources
packages

Query for packages with source parameters. If no parameters are given,
this endpoint will return all packages related to sources.

v1sources

Method URI Name Summary

GET /api/v1/sources/{I
D}

get source by ID Search source by ID

GET /api/v1/sources v1 get sources Query for sources. If no parameters are given, this endpoint will
return all sources.

GET /api/v1/sources/v
ulnerabilities

v1 get sources
vulnerabilities

Query for vulnerabilities with source parameters. If no parameters
are given, this endpoint will return all vulnerabilities.

v1vulnerabilities

Method URI Name Summary

GET /api/v1/vulnerabil
ities/{ID}

get vulnerability
by ID

Search vulnerability by ID

GET /api/v1/images/v
ulnerabilities

v1 get images
vulnerabilities

Query for vulnerabilities with image parameters. If no parameters
are give, this endpoint will return all vulnerabilities.

vulnerabilities

Method URI Name Summary

GET /api/images/{IDorDigest}/vulnerabiliti
es

get image vulnerabilities List vulnerabilities from the given
image.

GET /api/packages/{IDorName}/vulnerabili
ties

get package vulnerabilities List vulnerabilities from the given
package.

GET /api/sources/{IDorRepoorSha}/vulnera
bilities

get source vulnerabilities

GET /api/sources/vulnerabilities get source vulnerabilities
query

List vulnerabilities of the given
source.

GET /api/vulnerabilities get vulnerabilities Search for vulnerabilities by CVE id.

Tanzu Application Platform v1.4

VMware by Broadcom 1295



Paths

Create an artifact group with specified labels and entity
(CreateArtifactGroup)

POST /api/v1/artifact-groups

Parameters

Name Source Type Go type Separator Required Default Description

ArtifactGroupPo
stRequest

body ArtifactGroupPo
stRequest

models.ArtifactGro

upPostRequest

✓

All responses

Code Status Description Has headers Schema

201 Created ArtifactGroupPostResponse schema

400 Bad Request ErrorMessage schema

default ErrorMessage schema

Responses

201 - ArtifactGroupPostResponse

Status: Created

Schema

ArtifactGroupPostResponse

400 - ErrorMessage

Status: Bad Request

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Create a new image report. Related packages and vulnerabilities are
also created. (CreateImageReport)

POST /api/imageReport

Tanzu Application Platform v1.4

VMware by Broadcom 1296



Parameters

Name Source Type Go type Separator Required Default Description

Image body Image models.Image ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

Default Response

ErrorMessage

Schema

ErrorMessage

Create a new source report. Related packages and vulnerabilities
are also created. (CreateSourceReport)

POST /api/sourceReport

Parameters

Name Source Type Go type Separator Required Default Description

Image body Source models.Source ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Tanzu Application Platform v1.4

VMware by Broadcom 1297



Status: OK

Schema

Source

Default Response

ErrorMessage

Schema

ErrorMessage

Search image by ID (GetImageByID)

GET /api/v1/images/{ID}

Parameters

Name Source Type Go type Separator Required Default Description

ID path uint64 (formatted integer) uint64 ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Tanzu Application Platform v1.4

VMware by Broadcom 1298



Schema

ErrorMessage

List the packages in an image. (GetImagePackages)

GET /api/images/{IDorDigest}/packages

Parameters

Name Source Type Go type Separator Required Default Description

IDorDigest path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

List packages of the given image. (GetImagePackagesQuery)

GET /api/images/packages

Parameters

Name Source Type Go type Separator Required Default Description

digest query string string

id query int64 (formatted integer) int64

name query string string

All responses

Tanzu Application Platform v1.4

VMware by Broadcom 1299



Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

List vulnerabilities from the given image. (GetImageVulnerabilities)

GET /api/images/{IDorDigest}/vulnerabilities

Parameters

Name Source Type
Go
type

Separator Required Default Description

IDorDig
est

path strin
g

strin

g

✓

Severit
y

query strin
g

strin

g

Case insensitive vulnerabilities severity filter.
Possible values are: low, medium, high, critical,
unknown.

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerability

Status: OK

Schema

Tanzu Application Platform v1.4

VMware by Broadcom 1300



[]Vulnerability

Default Response

ErrorMessage

Schema

ErrorMessage

Search image by id, name or digest . (GetImages)

GET /api/images

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

Default Response

ErrorMessage

Schema

ErrorMessage

Search package by ID (GetPackageByID)

GET /api/v1/packages/{ID}

Parameters

Name Source Type Go type Separator Required Default Description

ID path uint64 (formatted integer) uint64 ✓

All responses

Tanzu Application Platform v1.4

VMware by Broadcom 1301



Code Status Description Has headers Schema

200 OK Package schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

Package

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

List the images that contain the given package. (GetPackageImages)

GET /api/packages/{IDorName}/images

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Tanzu Application Platform v1.4

VMware by Broadcom 1302



Status: OK

Schema

[]Image

Default Response

ErrorMessage

Schema

ErrorMessage

List the sources containing the given package. (GetPackageSources)

GET /api/packages/{IDorName}/sources

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[]Source

Default Response

ErrorMessage

Schema

[]ErrorMessage

List vulnerabilities from the given package.
(GetPackageVulnerabilities)

GET /api/packages/{IDorName}/vulnerabilities

Tanzu Application Platform v1.4

VMware by Broadcom 1303



Parameters

Name Source Type
Go
type

Separator Required Default Description

IDorNa
me

path strin
g

strin

g

✓

Severit
y

query strin
g

strin

g

Case insensitive vulnerabilities severity filter.
Possible values are: low, medium, high, critical,
unknown.

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerability

Status: OK

Schema

[]Vulnerability

Default Response

ErrorMessage

Schema

ErrorMessage

Search packages by id, name and/or version. (GetPackages)

GET /api/packages

Parameters

Name Source Type
Go
type

Separator Required Default Description

id query int64 (formatted
integer)

int64 Any of id or name must be
provided

name query string string Any of id or name must be
provided

versio
n

query string string

All responses

Tanzu Application Platform v1.4

VMware by Broadcom 1304



Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

Search source by ID (GetSourceByID)

GET /api/v1/sources/{ID}

Parameters

Name Source Type Go type Separator Required Default Description

ID path uint64 (formatted integer) uint64 ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

Source

404 - ErrorMessage

Tanzu Application Platform v1.4

VMware by Broadcom 1305



Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

get source packages (GetSourcePackages)

GET /api/sources/{IDorRepoorSha}/packages

Parameters

Name Source Type Go type Separator Required Default Description

IDorRepoorSha path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

List packages of the given source. (GetSourcePackagesQuery)

GET /api/sources/packages

Tanzu Application Platform v1.4

VMware by Broadcom 1306



Parameters

Name Source Type Go type Separator Required Default Description

id query uint64 (formatted integer) uint64

repo query string string

sha query string string

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

get source vulnerabilities (GetSourceVulnerabilities)

GET /api/sources/{IDorRepoorSha}/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

IDorRepoorSha path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

Tanzu Application Platform v1.4

VMware by Broadcom 1307



200 - Vulnerability

Status: OK

Schema

[]Vulnerability

Default Response

ErrorMessage

Schema

ErrorMessage

List vulnerabilities of the given source.
(GetSourceVulnerabilitiesQuery)

GET /api/sources/vulnerabilities

Parameters

Name Source Type
Go
type

Separator Required Default Description

Severi
ty

query string stri

ng

Case insensitive vulnerabilities severity
filter. Possible values are: low, medium,
high, critical, unknown.

id query uint64
(formatted
integer)

uint

64

repo query string stri

ng

sha query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerability

Status: OK

Schema

[]Vulnerability

Tanzu Application Platform v1.4

VMware by Broadcom 1308



Default Response

ErrorMessage

Schema

ErrorMessage

Search for sources by ID, repository, commit sha and/or
organization. (GetSources)

GET /api/sources

Parameters

Name Source Type Go type Separator Required Default Description

id query int64 (formatted integer) int64

org query string string

repo query string string

sha query string string

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[]Source

Default Response

ErrorMessage

Schema

ErrorMessage

Search for vulnerabilities by CVE id. (GetVulnerabilities)

GET /api/vulnerabilities

Tanzu Application Platform v1.4

VMware by Broadcom 1309



Parameters

Name Source Type
Go
type

Separator Required Default Description

CVEID query strin
g

strin

g

✓

Severi
ty

query strin
g

strin

g

Case insensitive vulnerabilities severity filter.
Possible values are: low, medium, high, critical,
unknown.

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerability

Status: OK

Schema

[]Vulnerability

Default Response

ErrorMessage

Schema

ErrorMessage

Search vulnerability by ID (GetVulnerabilityByID)

GET /api/v1/vulnerabilities/{ID}

Parameters

Name Source Type Go type Separator Required Default Description

ID path uint64 (formatted integer) uint64 ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Tanzu Application Platform v1.4

VMware by Broadcom 1310



Responses

200 - Vulnerability

Status: OK

Schema

Vulnerability

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

List the images that contain the given vulnerability.
(GetVulnerabilityImages)

GET /api/vulnerabilities/{CVEID}/images

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

[]Image

Tanzu Application Platform v1.4

VMware by Broadcom 1311



Default Response

ErrorMessage

Schema

ErrorMessage

List packages that contain the given CVE id.
(GetVulnerabilityPackages)

GET /api/vulnerabilities/{CVEID}/packages

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

List sources that contain the given vulnerability.
(GetVulnerabilitySources)

GET /api/vulnerabilities/{CVEID}/sources

Parameters

Tanzu Application Platform v1.4

VMware by Broadcom 1312



Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[]Source

Default Response

ErrorMessage

Schema

ErrorMessage

health check (HealthCheck)

GET /api/health

All responses

Code Status Description Has headers Schema

200 OK schema

default ErrorMessage schema

Responses

200

Status: OK

Schema

Default Response

ErrorMessage

Schema

Tanzu Application Platform v1.4

VMware by Broadcom 1313



ErrorMessage

Query for a list of artifact group that contains image(s) with specified
digests, and or source(s) with specified shas. At least one image
digest or source sha must be provided. This query can be further
refined by matching images and sources with a specific combination
of package name and/or cve id. (SearchArtifactGroups)

POST /api/v1/artifact-groups/_search

Query for a list of artifact group that contains image(s) with specified digests, and or source(s) with
specified shas.

Parameters

Name Source Type Go type Separator Required Default Description

ArtifactGroupFilter
sPostRequest

body ArtifactGroupS
earchFilters

models.ArtifactGro

upSearchFilters

✓

All responses

Code Status Description Has headers Schema

200 OK PaginatedArtifactGroupResponse schema

400 Bad Request ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedArtifactGroupResponse

Status: OK

Schema

PaginatedArtifactGroupResponse

400 - ErrorMessage

Status: Bad Request

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Tanzu Application Platform v1.4

VMware by Broadcom 1314



Search for how many artifact groups are affected by vulnerabilities
associated with the specified image(s) digests, and/or source(s) shas.
At least one image digest or source sha must be provided.
(SearchArtifactGroupsVulnReach)

POST /api/v1/artifact-groups/vulnerabilities/_reach

Parameters

Name Source Type Go type Separator Required Default Description

ArtifactGroupVul
nReachFiltersPos
tRequest

body ArtifactGroupVul
nReachFiltersPos
tRequest

models.ArtifactGr

oupVulnReachFilte

rsPostRequest

✓

All responses

Code Status Description Has headers Schema

200 OK PaginatedArtifactGroupVulnReachResponse schema

400 Bad Request ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedArtifactGroupVulnReachResponse

Status: OK

Schema

PaginatedArtifactGroupVulnReachResponse

400 - ErrorMessage

Status: Bad Request

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Search for all vulnerabilities associated with an artifact group that
contains image(s) with specified digests, and/or source(s) with

Tanzu Application Platform v1.4

VMware by Broadcom 1315



specified shas. At least one image digest or source sha must be
provided. (SearchArtifactGroupsVulnerabilities)

POST /api/v1/artifact-groups/vulnerabilities/_search

The result can be further refined by matching the images and sources with a package name and/or
an artifact group UID

Parameters

Name Source Type Go type Separator Required Default Description

ArtifactGroupVulnSe
archFiltersPostRequ
est

body ArtifactGroupV
ulnSearchFilter
s

models.ArtifactG

roupVulnSearchFi

lters

✓

All responses

Code Status Description Has headers Schema

200 OK PaginatedArtifactGroupVulnerabilityResponse schema

400 Bad Request ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedArtifactGroupVulnerabilityResponse

Status: OK

Schema

PaginatedArtifactGroupVulnerabilityResponse

400 - ErrorMessage

Status: Bad Request

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for images. If no parameters are given, this endpoint will
return all images. (V1GetImages)

Tanzu Application Platform v1.4

VMware by Broadcom 1316



GET /api/v1/images

Parameters

Name Source Type
Go
type

Separator Required Default Description

all query boolean bool If no pagination parameters are
provided, defaults to true and returns all
available results.

digest query string stri

ng

name query string stri

ng

page query int64
(formatted
integer)

int6

4

1

page_s
ize

query int64
(formatted
integer)

int6

4

20

registry query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedImageResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedImageResponse

Status: OK

Schema

PaginatedImageResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Tanzu Application Platform v1.4

VMware by Broadcom 1317



Schema

ErrorMessage

Query for packages with images parameters. If no parameters are
given, this endpoint will return all packages related to images.
(V1GetImagesPackages)

GET /api/v1/images/packages

Parameters

Name Source Type
Go
type

Separator Required Default Description

all query boolean bool If no pagination parameters are
provided, defaults to true and returns all
available results.

digest query string stri

ng

name query string stri

ng

package
_name

query string stri

ng

Substring package name filter. For
example, setting name=cur would match
curl and libcurl.

page query int64
(formatted
integer)

int6

4

1

page_siz
e

query int64
(formatted
integer)

int6

4

20

registry query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedPackageResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedPackageResponse

Status: OK

Schema

PaginatedPackageResponse

Tanzu Application Platform v1.4

VMware by Broadcom 1318



404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for vulnerabilities with image parameters. If no parameters
are give, this endpoint will return all vulnerabilities.
(V1GetImagesVulnerabilities)

GET /api/v1/images/vulnerabilities

Parameters

Name Source Type
Go
type

Separator Required Default Description

Severit
y

query string stri

ng

Case insensitive vulnerabilities severity
filter. Possible values are: low, medium,
high, critical, unknown.

all query boolean bool If no pagination parameters are provided,
defaults to true and returns all available
results.

digest query string stri

ng

name query string stri

ng

page query int64
(formatted
integer)

int6

4

1

page_
size

query int64
(formatted
integer)

int6

4

20

registr
y

query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedVulnerabilityResponse schema

404 Not Found ErrorMessage schema

Tanzu Application Platform v1.4

VMware by Broadcom 1319



Code Status Description Has headers Schema

default ErrorMessage schema

Responses

200 - PaginatedVulnerabilityResponse

Status: OK

Schema

PaginatedVulnerabilityResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for packages. If no parameters are given, this endpoint will
return all packages. (V1GetPackages)

GET /api/v1/packages

Parameters

Name Source Type
Go
type

Separator Required Default Description

all query boolean bool If no pagination parameters are provided,
defaults to true and returns all available
results.

name query string stri

ng

Name filter works as a substring match on
the package name. For example, setting
name=cur would match curl and libcurl.

package
_manag
er

query string stri

ng

page query int64
(formatte
d integer)

int6

4

1

Tanzu Application Platform v1.4

VMware by Broadcom 1320



Name Source Type
Go
type

Separator Required Default Description

page_siz
e

query int64
(formatte
d integer)

int6

4

20

version query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedPackageResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedPackageResponse

Status: OK

Schema

PaginatedPackageResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for sources. If no parameters are given, this endpoint will
return all sources. (V1GetSources)

GET /api/v1/sources

Parameters

Tanzu Application Platform v1.4

VMware by Broadcom 1321



Name Source Type
Go
type

Separator Required Default Description

all query boolean bool If no pagination parameters are
provided, defaults to true and returns all
available results.

org query string stri

ng

page query int64
(formatted
integer)

int6

4

1

page_s
ize

query int64
(formatted
integer)

int6

4

20

repo query string stri

ng

sha query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedSourceResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedSourceResponse

Status: OK

Schema

PaginatedSourceResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Tanzu Application Platform v1.4

VMware by Broadcom 1322



Query for packages with source parameters. If no parameters are
given, this endpoint will return all packages related to sources.
(V1GetSourcesPackages)

GET /api/v1/sources/packages

All responses

Code Status Description Has headers Schema

200 OK PaginatedPackageResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedPackageResponse

Status: OK

Schema

PaginatedPackageResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for vulnerabilities with source parameters. If no parameters
are given, this endpoint will return all vulnerabilities.
(V1GetSourcesVulnerabilities)

GET /api/v1/sources/vulnerabilities

Parameters

Tanzu Application Platform v1.4

VMware by Broadcom 1323



Name Source Type
Go
type

Separator Required Default Description

Severit
y

query string stri

ng

Case insensitive vulnerabilities severity
filter. Possible values are: low, medium,
high, critical, unknown.

all query boolean bool If no pagination parameters are provided,
defaults to true and returns all available
results.

org query string stri

ng

page query int64
(formatted
integer)

int6

4

1

page_
size

query int64
(formatted
integer)

int6

4

20

repo query string stri

ng

sha query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedVulnerabilityResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedVulnerabilityResponse

Status: OK

Schema

PaginatedVulnerabilityResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Tanzu Application Platform v1.4

VMware by Broadcom 1324



Schema

ErrorMessage

Models

ArtifactGroupPostRequest

Properties

Name Type Go type Required Default Description Example

EntityI
D

uint64
(formatted
integer)

uint64 The database ID of the source or
image being associated with this
artifact group

24

Labels map of
string

map[stri

ng]strin

g

Key-Value pair of labels associated
with the Artifact Group

{"env":"production

","namespace":"def

ault"}

Type string string The entity type being associated
with this artifact group. Allowable
values: image, source

image

UID string string ✓ Unique identifier for the Artifact
Group such as workload UID

8b1cc5da-fabe-

45a6-ab8c-

49260bbeef99

ArtifactGroupResponse

Properties

Name Type Go type Required Default Description Example

Entitie
s

[]Entity []*Entity Entities associated with the
Artifact Group

Labels map of
string

map[strin

g]string

Key-Value pair of labels
associated with the Artifact
Group

{"env":"production","n

amespace":"default"}

UID string string Unique identifier for the Artifact
Group such as workload UID

8b1cc5da-fabe-45a6-

ab8c-49260bbeef99

ArtifactGroupSearchFilters

Properties

Name Type
Go
type

Required Default Description Example

All boolea
n

bool If no pagination parameters are provided,
defaults to true and returns all available
results.

CVEID string stri

ng

An optional CVE ID that the image and
source must contain. Only packages, and
their images and sources, with this CVE
ID will be returned. If both package name
and CVE ID are provided, then only the
images and sources with the specified
package name and CVE ID will be
returned.

CVE-7467-2020

Tanzu Application Platform v1.4

VMware by Broadcom 1325



Name Type
Go
type

Required Default Description Example

Digest
s

[]strin
g

[]st

ring

A list of image digests. At least one
image digest or source sha must be
provided.

["9n38274ods897fmay487

gsdyfga678wr82","7n382

74ods897fmay487gsdyfga

678wr82"]

Packa
geNa
me

string stri

ng

An optional package name that the
image and source must contain. Only
packages, and their images and sources,
with this name will be returned. If both
package name and CVE ID are provided,
then only the images and sources with
the specified package name and CVE ID
will be returned.

package1

Page int64
(forma
tted
integer
)

int6

4

1

PageS
ize

int64
(forma
tted
integer
)

int6

4

20

Shas []strin
g

[]st

ring

A list of source shas. At least one image
digest or source sha must be provided.

["sha256:2c11624a8d9c9

071996a886a4acaf09939e

f3386e4c07735c6a2532f0

2eed4ea","sha256:04baf

e0d8df23ec342edb72acc3

fb02f61c418bc6e8d70931

49956a9aad2d12a"]

ArtifactGroupVulnReachFiltersPostRequest

Properties

Name Type
Go
type

Required Default Description Example

All boolean bool If no pagination
parameters are provided,
defaults to true and
returns all available
results.

Digest
s

[]string []st

ring

A list of image digests. ["sha256:2c11624a8d9c9071996a886a4

acaf09939ef3386e4c07735c6a2532f02e

ed4ea","sha256:04bafe0d8df23ec342e

db72acc3fb02f61c418bc6e8d709314995

6a9aad2d12a"]

Page int64
(formatt
ed
integer)

int6

4

1

PageS
ize

int64
(formatt
ed
integer)

int6

4

20

Tanzu Application Platform v1.4

VMware by Broadcom 1326



Name Type
Go
type

Required Default Description Example

Shas []string []st

ring

A list of source shas. ["9n38274ods897fmay487gsdyfga678wr

82","7n38274ods897fmay487gsdyfga67

8wr82"]

ArtifactGroupVulnReachPostResponse

Properties

Name Type Go type Required Default Description Example

AgCount uint64 (formatted
integer)

uint64 Number of artifact groups affected by
the vulnerability

5

Vulnerabil
ity

VulnResponse VulnRespo

nse

ArtifactGroupVulnSearchFilters

Properties

Name Type
Go
type

Required Default Description Example

All boole
an

bool If no pagination parameters are provided,
defaults to true and returns all available
results.

Artifac
tGroup
UID

string stri

ng

An optional artifact group UID that the
image and source must contain. Only
artifact groups, and their images and
sources, with this artifact group UID will be
returned. If both package name and artifact
group UID are provided, then only the
images and sources with the specified
package name and artifact group UID will
be returned.

9aa3548e-5fae-11ed-

9b6a-0242ac120002

Digest
s

[]strin
g

[]st

ring

A list of image digests. At least one image
digest or source sha must be provided.

["9n38274ods897fmay48

7gsdyfga678wr82","7n3

8274ods897fmay487gsdy

fga678wr82"]

Packa
geNa
me

string stri

ng

An optional package name that the image
and source must contain. Only packages,
and their images and sources, with this
name will be returned. If both package
name and artifact group UID are provided,
then only the images and sources with the
specified package name and artifact group
UID will be returned.

package1

Page int64
(forma
tted
intege
r)

int6

4

1

PageSi
ze

int64
(forma
tted
intege
r)

int6

4

20

Tanzu Application Platform v1.4

VMware by Broadcom 1327



Name Type
Go
type

Required Default Description Example

Shas []strin
g

[]st

ring

A list of source shas. At least one image
digest or source sha must be provided.

["sha256:2c11624a8d9c

9071996a886a4acaf0993

9ef3386e4c07735c6a253

2f02eed4ea","sha256:0

4bafe0d8df23ec342edb7

2acc3fb02f61c418bc6e8

d7093149956a9aad2d12a

"]

DeletedAt

composed type NullTime

Entity

Properties

Name Type
Go
type

Required Default Description Example

Digest string strin

g

The digest of the image entity.
Only visible if the entity is of
image type

sha256:f7de1564f13da1ef7

e5720ebce14006793242c0d8

d7d60c343632bcf3bc5306d

Host string strin

g

The dns name where the source
entity is hosted on. Only visible if
the entity type is of source type

gitlab.com

ID uint64
(formatte
d integer)

uint6

4

✓ The database ID of the source or
image

24

Name string strin

g

The name of the image entity. Only
visible if the entity is of image
type.

checkr/flagr

Org string strin

g

The organization name of the
source entity. Only visible if the
entity type is of source type

my-organization

Packa
ges

[]Package []*Pa

ckage

Regist
ry

string strin

g

The DNS name of the registry that
stores the image entity. Only
visible if the entity is of image type

docker.io

Repo string strin

g

The repository name of the source
entity. Only visible if the entity
type is of source type

my-sample-repo

Sha string strin

g

The commit sha of the source
entity. Only visible if the entity
type is of source type

d6cd1e2bd19e03a81132a23b

2025920577f84e37

Type string strin

g

✓ The entity Type of scan that is
stored. This is set to either
“image” or “source”.

image

ErrorMessage

Tanzu Application Platform v1.4

VMware by Broadcom 1328



ErrorMessage wraps an error message in a struct so responses are properly marshalled as a JSON
object.

Properties

Name Type Go type Required Default Description Example

Message string string in: body something went wrong

Image

Properties

Name Type Go type Required Default Description Example

Digest string string ✓ 9n38274ods897fmay487gsdyfga67

8wr82

ID uint64 (formatted
integer)

uint64

Name string string ✓ myorg/application

Package
s

[]Package []*Packa

ge

Registry string string ✓ docker.io

Sources []Source []*Sourc

e

MethodType

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

ID uint64 (formatted integer) uint64

Name string string

Rating []Rating []*Rating

UpdatedAt date-time (formatted string) strfmt.DateTime

Model

Model a basic GoLang struct which includes the following fields: ID, CreatedAt, UpdatedAt,
DeletedAt It may be embedded into your model or you may build your own model without it type
User struct { gorm.Model }

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

ID uint64 (formatted integer) uint64

Tanzu Application Platform v1.4

VMware by Broadcom 1329



Name Type Go type Required Default Description Example

UpdatedAt date-time (formatted string) strfmt.DateTime

NullTime

NullTime implements the Scanner interface so it can be used as a scan destination, similar to
NullString.

Properties

Name Type Go type Required Default Description Example

Time date-time (formatted string) strfmt.DateTime

Valid boolean bool

Package

Properties

Name Type Go type Required Default Description Example

Homepage string string

ID uint64 (formatted integer) uint64

Images []Image []*Image

Name string string

PackageManager string string

Sources []Source []*Source

Version string string

Vulnerabilities []Vulnerability []*Vulnerability

PaginatedArtifactGroupVulnReachResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPa
ge

int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ArtifactGroupVulnReachP
ostResponse

[]*ArtifactGroupVulnReach

PostResponse

PaginatedResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

Tanzu Application Platform v1.4

VMware by Broadcom 1330



Name Type Go type Required Default Description Example

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []interface{} []interface{}

Rating

Properties

Name Type Go type Required Default Description Example

ID uint64 (formatted integer) uint64

MethodType MethodType MethodType

MethodTypeID uint64 (formatted integer) uint64

Score double (formatted number) float64

Severity string string

Vector string string

RatingResponse

Properties

Name Type
Go
type

Required Default Description Example

ID uint64 (formatted
integer)

uint64 Rating ID 3

Score double (formatted
number)

float6

4

CVSS score 9.7

Severit
y

string string Threat level of
vulnerability

High

Vector string string CVSS score in vector
format

AV:L/AC:L/Au:N/C:C/I:

C/A:C

Source

Properties

Name Type Go type Required Default Description Example

DeletedAt DeletedAt DeletedAt

Host string string gitlab.com

ID uint64 (formatted integer) uint64

Images []Image []*Image

Organization string string vmware

Packages []Package []*Package

Repository string string ✓ myproject

Tanzu Application Platform v1.4

VMware by Broadcom 1331



Name Type Go type Required Default Description Example

Sha string string ✓ 0eb5fcd1

StringArray

[]string

VulnResponse

Properties

Name Type
Go
type

Required Default Description Example

CNA string strin

g

CVE
Numbering
Authority

GitHub, Inc.

CVEID string strin

g

CVE ID of the
vulnerability

CVE-7467-2020

Descri
ption

string strin

g

Description of
the
vulnerability

IBM Datapower Gateway 10.0.2.0 through

10.0.4.0, 10.0.1.0 through 10.0.1.5, and

2018.4.1.0 through 2018.4.1.18 could allow

unauthorized viewing of logs and files due

to insufficient authorization checks. IBM

X-Force ID: 218856.

ID uint64
(formatt
ed
integer)

uint6

4

Vulnerability
ID

12

Rating
s

[]Rating
Respons
e

[]*Ra

tingR

espon

se

Rating
information

Refere
nces

[]string []str

ing

Additional
external links

https://github.com/example/repo/issues/11

URL string strin

g

Related url to
the
vulnerability

https://nvd.nist.gov/vuln/detail/CVE-7467-

2020

Vulnerability

Properties

Name Type Go type Required Default Description Example

CNA string string GitHub, Inc.

CVEID string string ✓ CVE-7467-2020

Descripti
on

string string A description of CVE-7467-2020

ID uint64 (formatted
integer)

uint64

Package
s

[]Package []*Packa

ge

Tanzu Application Platform v1.4

VMware by Broadcom 1332



Name Type Go type Required Default Description Example

Ratings []Rating []*Ratin

g

Referenc
es

StringArray StringAr

ray

URL string string https://nvd.nist.gov/vuln/detail

/CVE-7467-2020

artifactGroupPostEntity

Properties

Name Type
Go
type

Required Default Description Example

ID uint64
(formatted
integer)

uint6

4

✓ The database ID of the source or image 24

Type string strin

g

✓ The entity Type of scan that is stored. This is set
to either “image” or “source”.

image

artifactGroupPostResponse

Properties

Name Type Go type Required Default Description Example

Entitie
s

[]ArtifactGro
upPostEntit
y

[]*ArtifactG

roupPostEnti

ty

Entities associated with the
Artifact Group

Labels map of
string

map[string]s

tring

Key-Value pair of labels
associated with the Artifact
Group

{"env":"production",

"namespace":"default

"}

UID string string Unique identifier for the
Artifact Group such as
workload UID

8b1cc5da-fabe-45a6-

ab8c-49260bbeef99

artifactGroupVulnArtifactGroup

Properties

Name Type Go type Required Default Description Example

Entitie
s

[]ArtifactGro
upVulnEntit
y

[]*ArtifactG

roupVulnEnti

ty

Entities associated with the
Artifact Group

Labels map of
string

map[string]s

tring

Key-Value pair of labels
associated with the Artifact
Group

{"env":"production",

"namespace":"default

"}

UID string string Unique identifier for the
Artifact Group such as
workload UID

8b1cc5da-fabe-45a6-

ab8c-49260bbeef99

artifactGroupVulnEntity

Properties

Tanzu Application Platform v1.4

VMware by Broadcom 1333



Name Type
Go
type

Required Default Description Example

Digest string stri

ng

The digest of the image entity.
Only visible if the entity is of image
type

sha256:f7de1564f13da1ef7

e5720ebce14006793242c0d8

d7d60c343632bcf3bc5306d

Host string stri

ng

The dns name where the source
entity is hosted on. Only visible if
the entity type is of source type

gitlab.com

ID uint64
(formatted
integer)

uint

64

✓ The database ID of the source or
image

24

Name string stri

ng

The name of the image entity. Only
visible if the entity is of image type.

checkr/flagr

Org string stri

ng

The organization name of the
source entity. Only visible if the
entity type is of source type

my-organization

Regist
ry

string stri

ng

The DNS name of the registry that
stores the image entity. Only
visible if the entity is of image type

docker.io

Repo string stri

ng

The repository name of the source
entity. Only visible if the entity type
is of source type

my-sample-repo

Sha string stri

ng

The commit sha of the source
entity. Only visible if the entity type
is of source type

d6cd1e2bd19e03a81132a23b

2025920577f84e37

Type string stri

ng

✓ The entity Type of scan that is
stored. This is set to either “image”
or “source”.

image

artifactGroupVulnPackage

Properties

Name Type Go type Required Default Description Example

Homepage string string

ID uint64 (formatted
integer)

uint64

Images []Image []*Image This field will always be
empty

[]

Name string string

PackageMana
ger

string string

Sources []Source []*Source This field will always be
empty

[]

Version string string

Vulnerabilities []Vulnerability []*Vulnerabil

ity

This field will always be
empty

[]

artifactGroupVulnResult

Tanzu Application Platform v1.4

VMware by Broadcom 1334



Properties

Name Type Go type Required Default Description Example

ArtifactGr
oups

[]ArtifactGroupV
ulnArtifactGroup

[]*ArtifactGroup

VulnArtifactGrou

p

CNA string string GitHub, Inc.

CVEID string string ✓ CVE-7467-2020

Descripti
on

string string A description of CVE-

7467-2020

ID uint64
(formatted
integer)

uint64

Packages []ArtifactGroupV
ulnPackage

[]*ArtifactGroup

VulnPackage

Ratings []Rating []*Rating

Reference
s

StringArray StringArray

URL string string https://nvd.nist.gov/vul

n/detail/CVE-7467-2020

paginatedArtifactGroupResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ArtifactGroupResponse []*ArtifactGroupResponse

paginatedArtifactGroupVulnerabilityResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPag
e

int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ArtifactGroupVulnResul
t

[]*ArtifactGroupVulnResul

t

paginatedImageResponse

Properties

Tanzu Application Platform v1.4

VMware by Broadcom 1335



Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ResponseImage []*ResponseImage

paginatedPackageResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ResponsePackage []*ResponsePackage

paginatedSourceResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ResponseSource []*ResponseSource

paginatedVulnerabilityResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ResponseVulnerability []*ResponseVulnerability

responseImage

Properties

Tanzu Application Platform v1.4

VMware by Broadcom 1336



Name Type Go type Required Default Description Example

CreatedA
t

date-time (formatted
string)

strfmt.Date

Time

Digest string string ✓ 9n38274ods897fmay487gsdyfg

a678wr82

ID uint64 (formatted
integer)

uint64

Name string string ✓ myorg/application

Packages []Package []*Package

Registry string string ✓ docker.io

Sources []Source []*Source

Updated
At

date-time (formatted
string)

strfmt.Date

Time

responsePackage

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

Homepage string string

ID uint64 (formatted integer) uint64

Images []Image []*Image

Name string string

PackageManager string string

Sources []Source []*Source

UpdatedAt date-time (formatted string) strfmt.DateTime

Version string string

Vulnerabilities []Vulnerability []*Vulnerability

responseSource

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

Host string string gitlab.com

ID uint64 (formatted integer) uint64

Images []Image []*Image

Organization string string vmware

Packages []Package []*Package

Repository string string ✓ myproject

Tanzu Application Platform v1.4

VMware by Broadcom 1337



Name Type Go type Required Default Description Example

Sha string string ✓ 0eb5fcd1

UpdatedAt date-time (formatted string) strfmt.DateTime

responseVulnerability

Properties

Name Type Go type Required Default Description Example

CNA string string GitHub, Inc.

CVEID string string ✓ CVE-7467-2020

Created
At

date-time
(formatted string)

strfmt.Dat

eTime

Descripti
on

string string A description of CVE-7467-2020

ID uint64 (formatted
integer)

uint64

Package
s

[]Package []*Package

Ratings []Rating []*Rating

Referenc
es

StringArray StringArra

y

URL string string https://nvd.nist.gov/vuln/deta

il/CVE-7467-2020

Updated
At

date-time
(formatted string)

strfmt.Dat

eTime

API walkthrough for Supply Chain Security Tools - Store

This topic tells you how to make an API call that you can use with Supply Chain Security Tools -
Store. For information about using the SCST - Store API, see API reference for Supply Chain
Security Tools - Store.

Using curl to post an image report

1. Switch to the kubectl context or kubeconfig to target the View cluster.

2. Retrieve the CA certificate and store it locally. Run:

kubectl get secret ingress-cert -n metadata-store -o json | jq -r '.data."ca.cr

t"' | base64 -d > /tmp/ca.crt

3. Using the health endpoint as an example, run:

curl -i https://metadata-store.INGRESS-DOMAIN/api/health \

   --cacert /tmp/ca.crt

For example:

$ curl -i https://metadata-store.example.com/api/health \

  --cacert /tmp/ca.crt

Tanzu Application Platform v1.4

VMware by Broadcom 1338



HTTP/2 200

content-length: 0

date: Tue, 23 Jan 2024 22:50:57 GMT

x-envoy-upstream-service-time: 0

server: envoy

4. To make a request to an authenticated endpoint an access token is required. To retrieve
the metadata-store-read-write-client access token, run:

export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets metadata-store-read-wr

ite-client -n metadata-store -o jsonpath="{.data.token}" | base64 -d)

For more information, see Retrieve access tokens for Supply Chain Security Tools - Store.

5. Using the api/imageReport endpoint as an example, create a post request:

curl https://metadata-store.INGRESS-DOMAIN/api/imageReport \

    --cacert /tmp/ca.crt \

    -H "Authorization: Bearer ${METADATA_STORE_ACCESS_TOKEN}" \

    -H "Content-Type: application/json" \

    -X POST \

    --data "@ABSOLUTE-PATH-TO-THE-POST-BODY"

Where ABSOLUTE-PATH-TO-THE-POST-BODY is the absolute filepath of the API JSON for an
image report.

For example, the following is a sample post body of an image report API JSON:

{

  "Name" : "burger-image-2",

  "Registry" : "test-registry",

  "Digest" : "test-digest@45asd61asasssdfsdfddssghjkdfsdfasdfasdsdasdassdfghjdd

asfddfsadfadfgfshdasdfsdfsdfsdasdsdfsdfadsdassdfdasdfaasdsdfsddfsdasgsasddffdgf

dasddfgdfssdfakasdasdasdsdasddasdsd23",

  "Sources" : [

    {

      "Repository" : "aaaaoslfdfggo",

      "Organization" : "pivotal",

      "Sha" : "1235assdfssadfacfddxdf41",

      "Host" : "http://oslo.io",

      "Packages" : [

        {

          "Name" : "Source package5",

          "Version" : "v2sfsfdd34",

          "PackageManager" : "test-manager",

          "Vulnerabilities" : [

            {

              "CVEID" : "0011",

              "PrimaryURL" : "http://www.mynamejeff.comm",

              "Description" : "Bye",

              "CNA" : "NVD",

              "Ratings": [{

                "Vector" : "AV:L/AC:L/Au:N/C:P/I:P/A:P",

                "Score" : 0,

                "MethodTypeID" : 1,

                "Severity":   "High"

              }],

              "References" : [""]

            }

          ]

        }

      ]

    }

  ],

Tanzu Application Platform v1.4

VMware by Broadcom 1339



  "Packages" : [

    {

      "Name" : "bob-dependency-35daasds56j",

      "Version" : "v2",

      "PackageManager" : "test-manager",

      "Vulnerabilities" : [

        {

          "CVEID" : "002",

          "PrimaryURL" : "http://www.mynamejeff.comm",

          "Description" : "Bye",

          "CNA" : "NVD",

          "Ratings": [{

            "Vector" : "AV:L/AC:L/Au:N/C:P/I:P/A:P",

            "Score" : 0,

            "MethodTypeID" : 1,

            "Severity":   "High"

          }],

          "References" : [""]

        }

      ]

    }

  ]

}

Connect to the PostgreSQL database

You can use a PostgreSQL database with Supply Chain Security Tools - Store. To connect to the
PostgreSQL database, you need the following values:

database name

user name

password

database host

database port

database CA certificate

Connect to the PostgreSQL database:

1. Obtain the database name, user name, password, and CA certificate. Run:

db_name=$(kubectl get secret postgres-db-secret -n metadata-store -o json | jq 

-r '.data.POSTGRES_DB' | base64 -d)

db_username=$(kubectl get secret postgres-db-secret -n metadata-store -o json | 

jq -r '.data.POSTGRES_USER' | base64 -d)

db_password=$(kubectl get secret postgres-db-secret -n metadata-store -o json | 

jq -r '.data.POSTGRES_PASSWORD' | base64 -d)

db_ca_dir=$(mktemp -d -t ca-cert-XXXX)

db_ca_path="$db_ca_dir/ca.crt"

kubectl get secrets postgres-db-tls-cert -n metadata-store -o json | jq -r '.da

ta."ca.crt"' | base64 -d > $db_ca_path

Note

If Tanzu Application Platform is deployed without Ingress, see Use your NodePort
with Supply Chain Security Tools - Store and Use your LoadBalancer with Supply
Chain Security Tools - Store.

Tanzu Application Platform v1.4

VMware by Broadcom 1340



If the password was auto-generated, the password command returns an empty string. Run:

db_password=$(kubectl get secret postgres-db-password -n metadata-store -o json 

| jq -r '.data.DB_PASSWORD' | base64 -d)

2. In a separate terminal, run:

kubectl port-forward service/metadata-store-db 5432:5432 -n metadata-store

3. Set the database host and port values on the first terminal:

db_host="localhost"

db_port=5432

4. To port forward to a different local port number, use the following command template:

kubectl port-forward service/metadata-store-db <LOCAL_PORT>:5432 -n metadata-st

ore

Where LOCAL-PORT is the port number for the database you want to use.

You can now connect to the database and make queries. For example:

psql "host=$db_host port=$db_port user=$db_username dbname=$db_name sslmode=verify-ca 

sslrootcert=$db_ca_path" -c "SELECT * FROM images"

You can use GUI clients such as Postico or DBeaver to interact with the database.

Deployment details and configuration for Supply Chain
Security Tools - Store

This topic describes how you can deploy and configure your Kubernetes cluster for Supply Chain
Security Tools (SCST) - Store.

What is deployed

The installation creates the following in your Kubernetes cluster:

Two components — an API back end and a database. Each component includes:

service

deployment

replicaset

Pod

Persistent volume claim

External IP address (based on a deployment configuration set to use LoadBalancer).

A Kubernetes secret to allow pulling SCST - Store images from a registry.

A namespace called metadata-store.

A service account with read-write privileges named metadata-store-read-write-client,
and a corresponding secret for the service account. It’s bound to a ClusterRole named
metadata-store-read-write.

A read-only ClusterRole named metadata-store-read-only that isn’t bound to a service
account. See Service Accounts.

Tanzu Application Platform v1.4

VMware by Broadcom 1341

https://eggerapps.at/postico2/
https://dbeaver.io/


(Optional) An HTTPProxy object for ingress support.

Deployment configuration

All configurations are nested inside of metadata_store in your tap values deployment YAML.

Supported Network Configurations

The following connection methods are recommended based on Tanzu Application Platform setup:

Single or multicluster with Contour = Ingress

Single cluster without Contour and with LoadBalancer support = LoadBalancer

Single cluster without Contour and without LoadBalancer = NodePort

Multicluster without Contour = Not supported

For a production environment, VMware recommends that you install SCST - Store with ingress
enabled.

App service type

Supported values include LoadBalancer, ClusterIP, NodePort. The app_service_type is set to
LoadBalancer by default. If your environment does not support LoadBalancer, and you want to use
ClusterIP, configure the app_service_type property in your deployment YAML:

app_service_type: "ClusterIP"

If you set the ingress_enabled to "true", VMware recommends setting the app_service_type
property to "ClusterIP".

Ingress support

SCST - Store’s values file allows you to enable ingress support and to configure a custom domain
name to use Contour to provide external access to SCST - Store’s API. For example:

ingress_enabled: "true"

ingress_domain: "example.com"

app_service_type: "ClusterIP" # recommended setting

An HTTPProxy object is installed with metadata-store.example.com as the fully qualified domain
name. See Ingress.

Database configuration

The default database included with the deployment is meant to get users started using the
metadata store. The default database deployment does not support many enterprise production
requirements, including scaling, redundancy, or failover. However, it is a secure deployment.

Using AWS RDS PostgreSQL database

Note

The ingress_enabled property expects a string value of "true" or "false", not a
Boolean value.

Tanzu Application Platform v1.4

VMware by Broadcom 1342



Users can also configure the deployment to use their own RDS database instead of the default. See
AWS RDS Postgres Configuration.

Using external PostgreSQL database

Users can configure the deployment to use any other PostgreSQL database. See Use external
postgres database.

Custom database password

By default, a database password is generated upon deployment. To configure a custom password,
use the db_password property in the deployment YAML.

db_password: "PASSWORD-0123"

Where PASSWORD-0123 is the same password used between deployments.

Service accounts

By default, a service account with read-write privileges to the metadata store app is installed. This
service account is a cluster-wide account that uses ClusterRole. If you don’t want the service
account and role, set the add_default_rw_service_account property to "false". To create a
custom service account, see Create Service Account.

The store creates a read-only cluster role, which is bound to a service account by using
ClusterRoleBinding. To create service accounts to bind to this cluster role, see Create Service
Account.

Exporting certificates

SCST - Store creates a Secret Export for exporting certificates to Supply Chain Security Tools -
Scan to securely post scan results. These certificates are exported to the namespace where Supply
Chain Security Tools - Scan is installed.

Configure your AWS RDS PostgreSQL configuration

This topic describes how you can configure your AWS RDS PostgreSQL configuration for Supply
Chain Security Tools (SCST) - Store.

Prerequisites

AWS Account

Setup certificate and configuration

1. Create an Amazon RDS Postgres using the Amazon RDS Getting Started Guide

2. Once the database instance starts, retrieve the following information:

1. DB Instance Endpoint

Important

There is a known issue related to changing database passwords Persistent Volume
Retains Data.

Tanzu Application Platform v1.4

VMware by Broadcom 1343

https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/secret-export.md
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.PostgreSQL.html#CHAP_GettingStarted.Creating.PostgreSQL


2. Master Username

3. Master Password

4. Database Name

3. Create a security group to allow inbound connections from the cluster to the Postgres DB

4. Retrieve the corresponding CA Certificate that signed the Postgres TLS Certificate using
the following link

5. In the metadata-store-values.yaml fill the following settings:

db_host: "<DB Instance Endpoint>"

db_user: "<Master Username>"

db_password: "<Master Password>"

db_name: "<Database Name>"

db_port: "5432"

db_sslmode: "verify-full"

db_max_open_conns: 10

db_max_idle_conns: 100

db_conn_max_lifetime: 60

db_ca_certificate: |

  <Corresponding CA Certification>

  ...

  ...

  ...

deploy_internal_db: "false"

Use external PostgreSQL database for Supply Chain
Security Tools - Store
This topic describes how you can configure and use your external PostgreSQL database for Supply
Chain Security Tools (SCST) - Store.

Prerequisites
Set up your external PostgreSQL database. After the database instance starts, retrieve the
following information:

1. Database Instance Endpoint

2. Main User name

3. Main Password

4. Database Name

Set up certificate and configuration

Note

If the database name is - in the AWS RDS UI, the value is likely
postgres.

Note

If deploy_internal_db is set to false, an instance of Postgres will not be deployed
in the cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 1344

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html


1. Create a security group to allow inbound connections from the cluster to the PostgreSQL
database.

2. Retrieve the corresponding CA Certificate that signed the PostgreSQL TLS Certificate.

3. In the metadata-store-values.yaml fill the following settings:

db_host: "<DB Instance Endpoint>"

db_user: "<Master Username>"

db_password: "<Master Password>"

db_name: "<Database Name>"

db_port: "5432"

db_sslmode: "verify-full"

db_max_open_conns: 10

db_max_idle_conns: 100

db_conn_max_lifetime: 60

db_ca_certificate: |

  <Corresponding CA Certification>

  ...

  ...

  ...

deploy_internal_db: "false"

Validation
Verification was done using bitnami PostgreSQL. You can get more information from the bitnami
documentation.

Database backup recommendations for Supply Chain
Security Tools - Store

This topic describes database backup recommendations for Supply Chain Security Tools - Store.

By default, the metadata store uses a PersistentVolume mounted on a Postgres instance, making it
a stateful component of Tanzu Application Platform. VMware recommends implementing a regular
backup strategy as part of your disaster recovery plan when using the provided Postgres instance.

Backup

You can use Velero to create regular backups.

velero install --provider PROVIDER --bucket BUCKET-NAME --plugins PLUGIN-IMAGE-LOCATIO

N --secret-file SECRET-FILE

Where:

Note

If deploy_internal_db is set to false, an instance of PostgreSQL is not deployed in
the cluster.

Note

Backup support for PersistentVolume depends on the used StorageClass and
existing provider plug-ins. See the officially supported plug-ins here.

Tanzu Application Platform v1.4

VMware by Broadcom 1345

https://github.com/bitnami/charts/tree/main/bitnami/postgresql
https://velero.io/
https://velero.io/plugins/


PROVIDER is the name of the provider you want to use.

BUCKET-NAME is the name of the bucket you want to use.

PLUGIN-IMAGE-LOCATION is the location of the plug ins you want to use.

SECRET-FILE is the file where the secret is located.

Velero CLI can then be used to create a backup of all the resources in the metadata-store
namespace, including PersistentVolumeClaim and PersistentVolume.

velero backup create metadata-store-$(date '+%s') --include-namespaces=metadata-store

Restore

Velero CLI can restore the Store in the same or a different cluster. The same namespace can be
used to restore, but may collide with other Supply Chain Security Tools – Store installations.
Furthermore, restoring into the same namespace restores a fully functional instance of Supply
Chain Security Tools – Store; however, this instance is not managed by Tanzu Application Platform
and can cause conflicts with future installations.

velero restore create restore-metadata-store-$timestamp --from-backup metadata-store

-$timestamp --namespace-mappings metadata-store:metadata-store

Alternatively, a different namespace can be used to restore Supply Chain Security Tools – Store. In
this case, Supply Chain Security Tools – Store API is not available due to conflicting definitions in
the RBAC proxy configuration, causing all requests to fail with an Unauthorized error. In this
scenario, the postgres instance is still accessible, and tools such as pg_dump can be used to retrieve
table contents and restore in a new live installation of Supply Chain Security Tools – Store.

velero restore create restore-metadata-store-$timestamp --from-backup metadata-store

-$timestamp --namespace-mappings metadata-store:restored-metadata-store

Currently, mounting an existing PersistentVolume or PersistentVolumeClaim during installation is
not supported.

The minimum suggested resources for backups are PersistentVolume, PersistentVolumeClaim and
Secret. The database password Secret is needed to set up a Postgres instance with the correct
password to properly read data from the restored volume.

Log configuration and usage for Supply Chain Security
Tools - Store
This topic describes how you can configure Supply Chain Security Tools (SCST) - Store to output
and interpret detailed log information.

Verbosity levels
There are six verbosity levels that the Supply Chain Security Tools - Store supports.

Level Description

Trace Output extended debugging logs.

Debug Output standard debugging logs.

More Output more verbose informational logs.

Tanzu Application Platform v1.4

VMware by Broadcom 1346



Level Description

Default Output standard informational logs.

Less Outputs less verbose informational logs.

Minimum Outputs a minimal set of informational logs.

When the Store is deployed at a specific verbosity level, all logs of that level and lower are
outputted to the console. For example, setting the verbosity level to More outputs logs from
Minimal to More, while Debug and Trace logs are muted.

Currently, the application logs output at these levels:

Minimum does not output any logs.

Less outputs a single log line indicating the current verbosity level the Metadata Store is
configured to when the application starts.

Default outputs API endpoint access information.

Debug outputs API endpoint payload information, both for requests and responses.

Trace outputs verbose debug information about the actual SQL queries for the database.

Other log levels do not output any additional log information and are present for future
extensibility.

If no verbosity level is specified when the Store is installed, the level is set to default.

Error Logs

Error logs are always outputted regardless of the verbosity level, even when set to minimum.

Obtaining logs

Kubernetes pods emit logs. The deployment has two pods: one for the database and one for the
API back end.

Use kubectl get pods to obtain the names of the pods by running:

kubectl get pods -n metadata-store

For example:

$ kubectl get pods -n metadata-store

NAME                                  READY   STATUS    RESTARTS   AGE

metadata-store-app-67659bbc66-2rc6k   2/2     Running   0          4d3h

metadata-store-db-64d5b88587-8dns7    1/1     Running   0          4d3h

The database pod has prefix metadata-store-db- and the API backend pod has the prefix
metadata-store-app-. Use kubectl logs to get the logs from the pod you’re interested in. For
example, to see the logs of the database pod, run:

$ kubectl logs metadata-store-db-64d5b88587-8dns7 -n metadata-store

The files belonging to this database system will be owned by user "postgres".

This user must also own the server process.

...

The API backend pod has two containers, one for kube-rbac-proxy, and the other for the API
server. Use the --all-containers flag to see logs from both containers. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1347



$ kubectl logs metadata-store-app-67659bbc66-2rc6k --all-containers -n metadata-store

I1206 18:34:17.686135       1 main.go:150] Reading config file: /etc/kube-rbac-proxy/c

onfig-file.yaml

I1206 18:34:17.784900       1 main.go:180] Valid token audiences:

...

{"level":"info","ts":"2022-05-27T13:47:52.54099339Z","logger":"MetadataStore","msg":"L

og settings","hostname":"metadata-store-app-5c9d6bccdb-kcrt2","LOG_LEVEL":"default"}

{"level":"info","ts":"2022-05-27T13:47:52.541133699Z","logger":"MetadataStore","ms

g":"Server Settings","hostname":"metadata-store-app-5c9d6bccdb-kcrt2","bindingaddres

s":"localhost:9443"}

{"level":"info","ts":"2022-05-27T13:47:52.541150096Z","logger":"MetadataStore","ms

g":"Database Settings","hostname":"metadata-store-app-5c9d6bccdb-kcrt2","maxopenconnec

tion":10,"maxidleconnection":100,"connectionmaxlifetime":60}

API endpoint log output

When an API endpoint handles a request, the Store generates two and five log lines. They are:

1. When the endpoint receives a request, it outputs a Processing request line. This logline is
shown at the default verbosity level.

2. If the endpoint includes query or path parameters, it outputs a Request parameters line.
This line logs the parameters passed in the request. This line is shown at the default
verbosity level.

3. If the endpoint takes in a request body, it outputs a Request body line. This line outputs the
entire request body as a string. This line is shown at the debug verbosity level.

4. When the endpoint returns a response, it outputs a Request response line. This line is
shown at the default verbosity level.

5. If the endpoint returns a response body, it outputs a second Request response line with an
extra key payload, and its value is set to the entire response body. This line is shown at the
debug verbosity level.

Format

The logs use JSON output format.

When the Store handles a request, it outputs some API endpoint access information in the
following format:

{"level":"info","ts":"2022-05-27T15:41:36.051991749Z","logger":"MetadataStore","ms

g":"Processing request","hostname":"metadata-store-app-c7c8648f7-8dmdl","method":"GE

T","endpoint":"/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8

495f851d0f4bf57b0bab6"}

Key-value pairs

Since JSON output format uses Key-value pairs, the tables in the following sections list each key
and the meaning of their values.

Common to all logs

Note

The kube-rbac-proxy container uses a different log format than the Store. For
information about the proxy’s container log format, see Logging Formats in Github.

Tanzu Application Platform v1.4

VMware by Broadcom 1348

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/logging.md#logging-formats


The following key-value pairs are common for all logs.

Key Type
Verbosity
Level

Description

level string all The log level of the message. This is either ‘error’ for error messages, or ‘info’ for all
other messages.

ts string all The timestamp when the log message was generated. It uses RFC 3339 format with
nanosecond precision and 00:00 offset from UTC, meaning Zulu time.

logge
r

string all Used to identify what produced the log entry. For Store, the name always starts with
MetadataStore. For log entries that display the raw SQL queries, the name is
MetadataStore.gorm

msg string all A short description of the logged event.

hostn
ame

string all The Kubernetes hostname of the pod handling the request. This helps identify the
specific instance of the Store when you deploy multiple instances on a cluster.

error string all The error message which is only available in error log entries.

endpo
int

string default The API endpoint the Metadata Store attempts to handle the request. This also includes
any query and path parameters passed in.

metho
d

string default The HTTP verb to access the endpoint. For example, ‘GET’ or ‘POST’.

code integ
er

default The HTTP response code.

respo
nse

string default The HTTP response in human-readable format. For example, ‘OK’, ‘Bad Request’, or
‘Internal Server Error’.

functi
on

string debug The function name that handles the request.

Logging query and path parameter values

Those endpoints that use query or path parameters are logged on the Request parameters logline
as key-value pairs. Afterward, they are appended to all other log lines of the same request as key-
value pairs.

The key names are the query or path parameter’s name, while the value is set to the value of those
parameters in string format.

For example, the following log line contains the digest and id key, which represents the respective
digest and id query parameters, as well as their values:

{"level":"info","ts":"2022-05-27T15:41:36.052063176Z","logger":"MetadataStore","ms

g":"Request parameters","hostname":"metadata-store-app-c7c8648f7-8dmdl","method":"GE

T","endpoint":"/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8

495f851d0f4bf57b0bab6","id":0,"digest":"sha256:20521f76ff3d27f436e03dc666cc97a511bbe71

e8e8495f851d0f4bf57b0bab6","name":""}

These key/value pairs show up in all subsequent log lines of the same call. For example:

{"level":"info","ts":"2022-05-27T15:41:36.057393519Z","logger":"MetadataStore","ms

g":"Request response","hostname":"metadata-store-app-c7c8648f7-8dmdl","method":"GE

T","endpoint":"/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8

495f851d0f4bf57b0bab6","id":0,"digest":"sha256:20521f76ff3d27f436e03dc666cc97a511bbe71

e8e8495f851d0f4bf57b0bab6","name":"","code":200,"response":"OK"}

This is done to ensure:

Tanzu Application Platform v1.4

VMware by Broadcom 1349



The application interprets the values of the query or path parameters correctly.

Help figure out which log lines are associated with a particular API request. Since there can
be several simultaneous endpoint calls, this is a first attempt at grouping logs by specific
calls.

API payload log output

As mentioned at the start of this section, by setting the verbosity level to debug, the Store logs the
body payload data for both the request and response of an API call.

The debug verbosity level, instead of the default, is used to display this information instead of
default because:

Body payloads can be huge, containing full CycloneDX and SBOM information. Moving the
payload information at this level helps keep the production log output to a reasonable size.

Some information in these payloads may be sensitive, and the user may not want them
exposed in production environment logs.

SQL Query log output

Some Store logs display the executed SQL query commands when you set the verbosity level to
trace or a failed SQL call occurs.

Format

When the Store display SQL query logs, it uses the following format:

{"level":"info","ts":"2022-05-27T15:37:26.186960324Z","logger":"MetadataStore.gorm","m

sg":"sql call","hostname":"metadata-store-app-c7c8648f7-8dmdl","rows":1,"sql":"SELECT 

count(*) FROM information_schema.tables WHERE table_schema = CURRENT_SCHEMA() AND tabl

e_name = 'images' AND table_type = 'BASE TABLE'"}

It is similar to the API endpoint log output format, but also uses the following key-value pairs:

Key Type
Log
Level

Description

row
s

integ
er

trace Indicates the number of rows affected by the SQL query.

sql string trace Displays the raw SQL query for the database.

data
#

string all Used in error log entries. You can replace # with an integer because multiples of these keys
can appear in the same log entry. These keys contain extra information related to the error.

Connect to the PostgreSQL database

You can use a PostgreSQL database with Supply Chain Security Tools - Store. To connect to the
PostgreSQL database, you need the following values:

database name

user name

Note

Some information in these SQL Query trace logs might be sensitive, and the user
might not want them exposed in production environment logs.

Tanzu Application Platform v1.4

VMware by Broadcom 1350



password

database host

database port

database CA certificate

Connect to the PostgreSQL database:

1. Obtain the database name, user name, password, and CA certificate. Run:

db_name=$(kubectl get secret postgres-db-secret -n metadata-store -o json | jq 

-r '.data.POSTGRES_DB' | base64 -d)

db_username=$(kubectl get secret postgres-db-secret -n metadata-store -o json | 

jq -r '.data.POSTGRES_USER' | base64 -d)

db_password=$(kubectl get secret postgres-db-secret -n metadata-store -o json | 

jq -r '.data.POSTGRES_PASSWORD' | base64 -d)

db_ca_dir=$(mktemp -d -t ca-cert-XXXX)

db_ca_path="$db_ca_dir/ca.crt"

kubectl get secrets postgres-db-tls-cert -n metadata-store -o json | jq -r '.da

ta."ca.crt"' | base64 -d > $db_ca_path

If the password was auto-generated, the password command returns an empty string. Run:

db_password=$(kubectl get secret postgres-db-password -n metadata-store -o json 

| jq -r '.data.DB_PASSWORD' | base64 -d)

2. In a separate terminal, run:

kubectl port-forward service/metadata-store-db 5432:5432 -n metadata-store

3. Set the database host and port values on the first terminal:

db_host="localhost"

db_port=5432

4. To port forward to a different local port number, use the following command template:

kubectl port-forward service/metadata-store-db <LOCAL_PORT>:5432 -n metadata-st

ore

Where LOCAL-PORT is the port number for the database you want to use.

You can now connect to the database and make queries. For example:

psql "host=$db_host port=$db_port user=$db_username dbname=$db_name sslmode=verify-ca 

sslrootcert=$db_ca_path" -c "SELECT * FROM images"

You can use GUI clients such as Postico or DBeaver to interact with the database.

Troubleshooting Supply Chain Security Tools - Store

This topic contains ways you can troubleshoot known issues for Supply Chain Security Tools (SCST)
- Store.

Querying by insight source returns zero CVEs even though
there are CVEs in the source scan

Symptom

Tanzu Application Platform v1.4

VMware by Broadcom 1351

https://eggerapps.at/postico2/
https://dbeaver.io/


When attempting to look up CVE and affected packages, querying insight source get (or other
insight source commands) might return zero results due to supply chain configuration and
repository URL.

Solution

You might have to include different combinations of --repo, --org, --commit due to how the scan-
controller populates the software bill of materials (SBOM). For more information see Query
vulnerabilities, images, and packages.

Persistent volume retains data

Symptom

If Supply Chain Security Tools - Store is deployed, deleted, redeployed, and the database
password is changed during the redeployment, the metadata-store-db pod fails to start. This is
caused by the persistent volume used by postgres retaining old data, even though the retention
policy is set to DELETE.

Solution

To redeploy the app, either use the same database password or follow these steps to erase the
data on the volume:

1. Deploy metadata-store app by using kapp.

2. Verify that the metadata-store-db-* pod fails.

3. Run:

kubectl exec -it metadata-store-db-<some-id> -n metadata-store /bin/bash

Where <some-id> is the ID generated by Kubernetes and appended to the pod name.

4. Run rm -rf /var/lib/postgresql/data/* to delete all database data.

Where /var/lib/postgresql/data/* is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app by using kapp.

6. Deploy the metadata-store app by using kapp.

Missing persistent volume

Symptom

After SCST - Store is deployed, metadata-store-db pod might fail for missing volume while
postgres-db-pv-claim pvc is in PENDING state.

This is because the cluster where SCST - Store is deployed does not have storageclass defined.
storageclass’s provisioner is responsible for creating the persistent volume after metadata-store-
db attaches postgres-db-pv-claim.

Caution

Changing the database password deletes your Supply Chain Security Tools - Store
data.

Tanzu Application Platform v1.4

VMware by Broadcom 1352



Solution

1. Verify that your cluster has storageclass by running kubectl get storageclass.

2. Create a storageclass in your cluster before deploying SCST - Store. For example:

# This is the storageclass that Kind uses

kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provision

er/master/deploy/local-path-storage.yaml

# set the storage class as default

kubectl patch storageclass local-path -p '{"metadata": {"annotations":{"storage

class.kubernetes.io/is-default-class":"true"}}}'

Builds fail due to volume errors on EKS running Kubernetes
v1.23

Symptom

When installing SCST - Store on or upgrading an existing EKS cluster to Kubernetes v1.23, the
satabase pod shows:

running PreBind plugin "VolumeBinding": binding volumes: provisioning failed for PVC 

"postgres-db-pv-claim"

Explanation

This is due to the CSIMigrationAWS in this Kubernetes version which requires users to install the
Amazon Elastic Block Store (EBS) CSI Driver to use EBS volumes.

SCST - Store uses the default storage class which uses EBS volumes by default on EKS.

Solution

Follow the AWS documentation to install the Amazon EBS CSI Driver before installing SCST - Store
or before upgrading to Kubernetes v1.23.

Certificate Expiries

Symptom

The Insight CLI or the Scan Controller fails to connect to SCST - Store.

The logs of the metadata-store-app pod show the following error:

$ kubectl logs deployment/metadata-store-app -c metadata-store-app -n metadata-store

...

2022/09/12 21:22:07 http: TLS handshake error from 127.0.0.1:35678: write tcp 127.0.0.

1:9443->127.0.0.1:35678: write: broken pipe

...

or

The logs of metadata-store-db show the following error:

$ kubectl logs statefulset/metadata-store-db -n metadata-store

...

2022-07-20 20:02:51.206 UTC [1] LOG:  database system is ready to accept connections

2022-09-19 18:05:26.576 UTC [13097] LOG:  could not accept SSL connection: sslv3 alert 

Tanzu Application Platform v1.4

VMware by Broadcom 1353

https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-kubernetes-1-23/
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html


bad certificate

...

Explanation

cert-manager rotates the certificates, but the metadata-store and the PostgreSQL db are unaware
of the change, and are using the old certificates.

Solution

If you see TLS handshake error in the metadata-store-app logs, delete the metadata-store-app
pod and wait for it to come back up.

kubectl delete pod metadata-store-app-xxxx -n metadata-store

If you see could not accept SSL connection in the metadata-store-db logs, delete the metadata-
store-db pod and wait for it to come back up.

kubectl delete pod metadata-store-db-0 -n metadata-store

Troubleshooting errors from Tanzu Application Platform
GUI related to SCST - Store

Different Tanzu Application Platform GUI plug-ins use SCST - Store to display information about
vulnerabilities and packages. Some errors visible in Tanzu Application Platform GUI are related to
this connection.

An error occurred while loading data from the Metadata Store

Symptom

In the Supply Chain Choreographer plug-in, you see the error message An error occurred while
loading data from the Metadata Store.

Cause

Tanzu Application Platform v1.4

VMware by Broadcom 1354



There are multiple potential causes. The most common cause is tap-values.yaml missing the
configuration that enables Tanzu Application Platform GUI to communicate with Supply Chain
Security Tools - Store.

Solution

See Supply Chain Choreographer - Enable CVE scan results for the necessary configuration to add
to tap-values.yaml. After adding the configuration, update your Tanzu Application Platform
deployment or Tanzu Application Platform GUI deployment with the new values.

Troubleshoot upgrading Supply Chain Security Tools -
Store

This topic describes how you can troubleshoot upgrading issues Supply Chain Security Tools (SCST)
- Store.

Database deployment does not exist

To prevent issues with the metadata store database, such as the ones described in this topic, the
database deployment is StatefulSet in

Tanzu Application Platform v1.2 and later

Metadata Store v1.1 and later

If you have scripts searching for a metadata-store-db deployment, edit the scripts to instead search
for StatefulSet.

Invalid checkpoint record

When using Tanzu to upgrade to a new version of the store, there is occasionally data corruption.
Here is an example of how this shows up in the log:

PostgreSQL Database directory appears to contain a database; Skipping initialization

2022-01-21 21:53:38.799 UTC [1] LOG:  starting PostgreSQL 13.5 (Ubuntu 13.5-1.pgdg18.0

4+1) on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0, 64-b

it

2022-01-21 21:53:38.799 UTC [1] LOG:  listening on IPv4 address "0.0.0.0", port 5432

2022-01-21 21:53:38.799 UTC [1] LOG:  listening on IPv6 address "::", port 5432

2022-01-21 21:53:38.802 UTC [1] LOG:  listening on Unix socket "/var/run/postgresql/.

s.PGSQL.5432"

2022-01-21 21:53:38.807 UTC [14] LOG:  database system was shut down at 2022-01-21 21:

21:12 UTC

2022-01-21 21:53:38.807 UTC [14] LOG:  invalid record length at 0/1898BE8: wanted 24, 

got 0

2022-01-21 21:53:38.807 UTC [14] LOG:  invalid primary checkpoint record

2022-01-21 21:53:38.807 UTC [14] PANIC:  could not locate a valid checkpoint record

2022-01-21 21:53:39.496 UTC [1] LOG:  startup process (PID 14) was terminated by signa

l 6: Aborted

2022-01-21 21:53:39.496 UTC [1] LOG:  aborting startup due to startup process failure

2022-01-21 21:53:39.507 UTC [1] LOG:  database system is shut down

The log shows a database pod in a failure loop. For steps to fix the issue so that the upgrade can
proceed, see the SysOpsPro documentation.

Upgraded pod hanging

Tanzu Application Platform v1.4

VMware by Broadcom 1355

https://sysopspro.com/fix-postgresql-error-panic-could-not-locate-a-valid-checkpoint-record/


Because the default access mode in the PVC is ReadWriteOnce, if you are deploying in an
environment with multiple nodes then each pod might be on a different node. This causes the
upgraded pod to spin up but then get stuck initializing because the original pod does not stop. To
resolve this issue, find and delete the original pod so that the new pod can attach to the persistent
volume:

1. Discover the name of the app pod that is not in a pending state by running:

kubectl get pods -n metadata-store

2. Delete the pod by running:

kubectl delete pod METADATA-STORE-APP-POD-NAME -n metadata-store

Failover, redundancy, and backups for Supply Chain
Security Tools - Store

This topic describes how you can configure and use failover, redundancy, and backups for Supply
Chain Security Tools (SCST) - Store.

API Server

By default the API server has 1 replica. If the pod fails, the single instance restarts by normal
Kubernetes behavior, but there is downtime. If you upgrade, some downtime is possible.

You can configure the number of replicas by using the app_replicas text box in the scst-store-
values.yaml file.

Database

By default, the database has one replica, and restarts with some downtime if it fails.

Use external postgres database

AWS RDS postgres configuration

For the default PostgreSQL database deployment, with deploy_internal_db set to true, you can
use Velero as the backup method. For information about using Velero as the backup method, see
Backups.

Custom certificate configuration for Supply Chain Security
Tools - Store

This topic describes how you can configure the following certificates for Supply Chain Security Tools
(SCST) - Store:

1. Default configuration

2. Custom certificate

Caution

Although you can configure db_replicas in scst-store-values.yaml, this is
discouraged because db_replicas is still experimental. The default internal database
is not for production use. For production deployments, use an external database.

Tanzu Application Platform v1.4

VMware by Broadcom 1356



Default configuration

By default, SCST - Store creates a self-signed certificate and TLS communication is automatically
enabled.

If ingress support is enabled, SCST - Store installation creates an HTTPProxy entry with host
routing by using the qualified name metadata-store.<ingress_domain>. For example, metadata-
store.example.com. The created route supports HTTPS communication using the self-signed
certificate with the same subject Alternative Name.

(Optional) Setting up custom ingress TLS certificate

(Optional) Users can configure TLS to use a custom certificate. To do that:

1. Place the certificates in the secret.

2. Edit the tap-values.yaml to use this secret.

Place the certificates in secret

1. Create the certificate secret before deploying SCST - Store.

2. Create a Kubernetes object with kind Secret and type kubernetes.io/tls.

Update tap-values.yaml

1. In the tap-values.yaml file, you can configure the metadata store to use the namespace and
secretName from the secret created in the last step.

metadata_store:

  tls:

    namespace: "namespace"

    secretName: "secretName"

Where:

namespace is the targeted namespace for secret consumption by the HTTPProxy.

secretName is the name of secret for consumption by the HTTPProxy.

Additional resources

Ingress support

TLS configuration

TLS configuration for Supply Chain Security Tools - Store

This topic describes how you can configure TLS for Supply Chain Security Tools (SCST) - Store.

Setting up custom ingress TLS ciphers
In the tap-values.yaml file, tls.server.rfcCiphers are set as shown in the following YAML:

Important

SCST - Store only supports TLS v1.2.

Tanzu Application Platform v1.4

VMware by Broadcom 1357



metadata_store:

  tls:

    server:

      rfcCiphers:

        - TLS_AES_128_GCM_SHA256

        - TLS_AES_256_GCM_SHA384

        - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

        - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

        - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

        - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Where tls.server.rfcCiphers is a list of cipher suites for the server. Values are from the Go TLS
package constants. If you omit values, the default Go cipher suites are used. These are the default
values:

TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Example custom TLS settings

The following is a complete example of TLS configuration:

metadata_store:

  tls:

    namespace: NAMESPACE

    secretName: SECRET-NAME

    server:

      rfcCiphers:

        - TLS_AES_128_GCM_SHA256

        - TLS_AES_256_GCM_SHA384

        - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

        - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

        - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

        - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Where:

NAMESPACE is the name of the namespace you want to configure TLS with.

SECRET-NAME is the name of the secret you want to configure TLS with.

Additional resources

Custom certificate configuration

Ingress support

Certificate rotation for Supply Chain Security Tools - Store

This topic describes how you can rotate TLS certificates for Supply Chain Security Tools (SCST) -
Store.

Certificates

Tanzu Application Platform v1.4

VMware by Broadcom 1358

https://golang.org/pkg/crypto/tls/#pkg-constants


By default, the use_cert_manager setting is set to "true". When the setting use_cert_manager is
"true" the Store uses cert-manager to generate a CA certificate, an API certificate, and a database
Certificate.

To see these certificates:

$ kubectl get certificate -n metadata-store

NAME                    READY   SECRET                  AGE

app-tls-ca-cert         True    app-tls-ca-cert         38d

app-tls-cert            True    app-tls-cert            38d

postgres-db-tls-cert    True    postgres-db-tls-cert    38d

The earlier certificates are automatically rotated by cert-manager.

The Store can run these certificates automatically once cert-manager rotates them.

If the environment is a multi-cluster setup, the operator must manually copy over the new CA
certificate to the build cluster.

Certificate duration setting

In the tap-values.yaml file, api_cert_duration, api_cert_renew_before, ca_cert_duration, and
ca_cert_renew_before are configurable as shown in the following YAML:

metadata_store:

  ca_cert_duration: CA-DURATION

  ca_cert_renew_before: CA-RENEW

  api_cert_duration: API-DURATION

  api_cert_renew_before: API-RENEW

Where:

CA-DURATION is the duration that the ca certificate is valid for. Must be given in h, m, or s.
Default value is 8760h.

CA-RENEW is how long before the expiry of the ca certificate is renewed. Must be given in h,
m, or s. Default value is 1h.

API-DURATION is the duration that the API certificate is valid for. Must be given in h, m, or s.
Default value is 2160h.

API-RENEW is how long before the expiry of the API certificate is renewed. Must be given in
h, m, or s. Default value is 24h.

Ingress support for Supply Chain Security Tools - Store

This topic describes how to configure ingress for Supply Chain Security Tools (SCST) - Store.

Ingress configuration

Important

The *_cert_duration and the corresponding *_renew_before settings must not be
close. For more information, see the cert-manager documentation. This can lead to
a renewal loop. The *_cert_duration must be greater than the corresponding
*_renew_before. The earlier settings only take effect when use_cert_manager is
"true". If the use_cert_manager is not set, it defaults to "true".

Tanzu Application Platform v1.4

VMware by Broadcom 1359

https://cert-manager.io/docs/usage/certificate/#renewal


Supply Chain Security Tools (SCST) - Store has ingress support by using Contour’s HTTPProxy
resources. To enable ingress support, a Contour installation must be available in the cluster.

To change ingress configuration, edit your tap-values.yaml when you install a Tanzu Application
Platform profile. When you configure the shared.ingress_domain property, SCST - Store
automatically uses that setting.

Alternatively, you can customize SCST - Store’s configuration under the metadata_store property.
Under metadata_store, there are two values to configure the proxy:

ingress_enabled

ingress_domain

This is an example snippet in a tap-values.yaml:

...

metadata_store:

  ingress_enabled: "true"

  ingress_domain: "example.com"

  app_service_type: "ClusterIP"  # Defaults to `LoadBalancer`. If ingress is enabled t

hen this must be set to `ClusterIP`.

...

SCST - Store installation creates an HTTPProxy entry with host routing by using the qualified name
METADATA-STORE.INGRESS-DOMAIN. For example, metadata-store.example.com. The route supports
HTTPS communication using a certificate. By default, a self-signed certificate is used with the same
subject alternative name. For more information, see Custom certificate configuration.

Contour and DNS setup are not part of SCST - Store installation. Access to SCST - Store using
Contour depends on the correct configuration of these two components.

Make the proper DNS record available to clients to resolve metadata-store and set ingress_domain
to Envoy service’s external IP address.

DNS setup example:

$ kubectl describe svc envoy -n tanzu-system-ingress

> ...

  Type:                     LoadBalancer

  ...

  LoadBalancer Ingress:     100.2.3.4

  ...

  Port:                     https  443/TCP

  ...

$ nslookup metadata-store.example.com

> Server:    8.8.8.8

  Address:  8.8.8.8#53

  Non-authoritative answer:

  Name:  metadata-store.example.com

  Address: 100.2.3.4

$ curl https://metadata-store.example.com/api/health -k -v

> ...

  < HTTP/2 200

  ...

Note

The preceding curl example uses the not secure -k flag to skip TLS verification
because the Store installs a self-signed certificate. The following section shows how

Tanzu Application Platform v1.4

VMware by Broadcom 1360



Get the TLS CA certificate

To get SCST - Store’s TLS CA certificate, use kubectl get secret. In this example, you save the
certificate for the environment variable to a file.

kubectl get secret CERT-NAME -n metadata-store -o json | jq -r '.data."ca.crt"' | base

64 -d > OUTPUT-FILE

Where:

CERT-NAME is the name of the certificate. This must be ingress-cert if no custom certificate
is used.

OUTPUT-FILE is the file you want to create to store the certificate.

For example:

$ kubectl get secret ingress-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | 

base64 -d > insight-ca.crt

$ cat insight-ca.crt

Additional Resources
Custom certificate configuration

TLS configuration

Certificate rotation

Configure target endpoint and certificate

Use your LoadBalancer with Supply Chain Security Tools -
Store

This topic describes how to use your LoadBalancer with Supply Chain Security Tools (SCST) - Store.

Configure LoadBalancer

To configure a LoadBalancer:

1. Edit /etc/hosts/ to use the external IP address of the metadata-store-app service.

METADATA_STORE_IP=$(kubectl get service/metadata-store-app --namespace metadata

-store -o jsonpath="{.status.loadBalancer.ingress[0].ip}")

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metada

ta-store -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

# Delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

to access the CA certificate to enable TLS verification for HTTP clients.

Note

LoadBalancer is not the recommended service type. Consider the recommended
configuration of enabling Ingress.

Tanzu Application Platform v1.4

VMware by Broadcom 1361



echo "$METADATA_STORE_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /de

v/null

2. Select one of the IP addresses returned from the dig command and write it to the
/etc/hosts file.

Port forwarding

If you want to use port forwarding instead of the external IP address from the LoadBalancer, follow
these steps:

Configure port forwarding for the service so the insight plug-in can access SCST - Store. Run:

kubectl port-forward service/metadata-store-app 8443:8443 -n metadata-store

Note: You must run the port forwarding command in a separate terminal window, or run the
command in the background: kubectl port-forward service/metadata-store-app 8443:8443 -n
metadata-store &

Edit your /etc/hosts file for Port Forwarding

Use the following script to add a new local entry to /etc/hosts:

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metadata-stor

e -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

# delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "127.0.0.1 $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Configure the Insight plug-in

Because you deployed Supply Chain Security Tools (SCST) - Store without using Ingress, you must
use the Certificate resource app-tls-cert for HTTPS communication.

To get the CA Certificate:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN:$METADATA_STORE_PORT --

ca-cert insight-ca.crt

Note

On EKS, you must get the IP address for the LoadBalancer. Find the IP
address by running something similar to the following: dig RANDOM-SHA.us-
east-2.elb.amazonaws.com. Where RANDOM-SHA is the EXTERNAL-IP
received for the LoadBalancer.

Important

Tanzu Application Platform v1.4

VMware by Broadcom 1362



Use your NodePort with Supply Chain Security Tools -
Store
This topic describes how you can use your NodePort with Supply Chain Security Tools (SCST) -
Store.

Overview

You must use port forwarding when using the NodePort configuration.

Configure port forwarding for the service so the insight plug-in can access SCST - Store. Run:

kubectl port-forward service/metadata-store-app 8443:8443 -n metadata-store

Note: You must run the port forwarding command in a separate terminal window, or run the
command in the background: kubectl port-forward service/metadata-store-app 8443:8443 -n
metadata-store &

Edit your /etc/hosts file for Port Forwarding

Use the following script to add a new local entry to /etc/hosts:

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metadata-stor

e -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

# delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "127.0.0.1 $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Configure the Insight plug-in

Because you deployed Supply Chain Security Tools (SCST) - Store without using Ingress, you must
use the Certificate resource app-tls-cert for HTTPS communication.

To get the CA Certificate:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

Set the target by running:

The tanzu insight config set-target does not initiate a test connection. Use
tanzu insight health to test connecting using the configured endpoint and CA
certificate. Neither commands test whether the access token is correct. For that
you must use the plug-in to add data and query data.

Note

The recommended service type is Ingress. NodePort is only recommended when
the cluster does not support Ingress or the cluster does not support the
LoadBalancer service type. NodePort is not supported for a multicluster setup, as
certificates cannot be modified.

Tanzu Application Platform v1.4

VMware by Broadcom 1363



tanzu insight config set-target https://$METADATA_STORE_DOMAIN:$METADATA_STORE_PORT --

ca-cert insight-ca.crt

Multicluster setup for Supply Chain Security Tools - Store

This topic describes how you can deploy Supply Chain Security Tools (SCST) - Store in a
multicluster setup, including installing multiple profiles such as, View, Build, Run, and Iterate.

Overview

SCST - Store is deployed with the View profile. After installing the View profile, but before installing
the Build profile, you must add configuration for SCST - Store to the Kubernetes cluster where you
intend to install the Build profile. This topic explains how to add configuration which allows
components in the Build cluster to communicate with SCST - Store in the View cluster.

Prerequisites
You must install the View profile. See Install View profile.

Procedure summary
1. Copy SCST - Store CA certificate from the View cluster.

2. Copy SCST - Store authentication token from the View cluster.

3. Apply the CA certificate and authentication token to the Kubernetes cluster where you
intend to install the Build profile.

4. Install the Build profile.

Copy SCST - Store CA certificate from View cluster
With your kubectl targeted at the View cluster, you can view SCST - Store’s TLS CA certificate.
Run these commands to copy the CA certificate into a file store_ca.yaml.

CA_CERT=$(kubectl get secret -n metadata-store CERT-NAME -o json | jq -r ".data.\"ca.c

rt\"")

cat <<EOF > store_ca.yaml

---

apiVersion: v1

kind: Secret

Important

The tanzu insight config set-target does not initiate a test connection. Use
tanzu insight health to test connecting using the configured endpoint and CA
certificate. Neither commands test whether the access token is correct. For that
you must use the plug-in to add data and query data.

Note

If you already deployed the Build profile, you can follow this procedure. However, in
the Install Build profile step, instead of deploying the Build profile again, update your
deployment using tanzu package installed update.

Tanzu Application Platform v1.4

VMware by Broadcom 1364



type: Opaque

metadata:

  name: store-ca-cert

  namespace: metadata-store-secrets

data:

  ca.crt: $CA_CERT

EOF

Where CERT-NAME is the name of the certificate you want to reference in store_ca.yaml.

For example:

$ CA_CERT=$(kubectl get secret -n metadata-store ingress-cert -o json | jq -r ".dat

a.\"ca.crt\"")

$ cat <<EOF > store_ca.yaml

---

apiVersion: v1

kind: Secret

type: Opaque

metadata:

  name: store-ca-cert

  namespace: metadata-store-secrets

data:

  ca.crt: $CA_CERT

EOF

Copy SCST - Store authentication token from the View
cluster

Copy the SCST - Store authentication token into an environment variable. You use this
environment variable in the next step.

AUTH_TOKEN=$(kubectl get secrets metadata-store-read-write-client -n metadata-store -o 

jsonpath="{.data.token}" | base64 -d)

Apply the CA certificate and authentication token to a new
Kubernetes cluster

Before you deploy the Build profile, you must apply the CA certificate and authentication token
from the earlier steps. Then the Build profile deployment has access to these values.

To apply the CA certificate and authentication token:

1. With your kubectl targeted at the Build cluster, create a namespace for the CA certificate
and authentication token.

kubectl create ns metadata-store-secrets

2. Apply the CA certificate store_ca.yaml secret YAML you generated earlier.

kubectl apply -f store_ca.yaml

3. Create a secret to store the access token. This uses the AUTH_TOKEN environment variable.

kubectl create secret generic store-auth-token \

  --from-literal=auth_token=$AUTH_TOKEN -n metadata-store-secrets

The cluster now has a CA certificate named store-ca-cert and authentication token named store-
auth-token in the namespace metadata-store-secrets.

Tanzu Application Platform v1.4

VMware by Broadcom 1365



Install Build profile

If you came to this topic from the Install multicluster Tanzu Application Platform profiles topic after
installing the View profile, return to that topic to install the Build profile.

The Build profile values.yaml contains configuration that references the secrets in the metadata-
store-secrets namespace you created in this guide. The names of these secrets are hard coded in
the example values.yaml.

More information about how Build profile uses the configuration

The secrets you created are used in the Build profile values.yaml to configure the Grype scanner
which talks to SCST - Store. After performing a vulnerabilities scan, the Grype scanner sends the
results to SCST - Store. Here’s a snippet of what the configuration might look like.

...

grype:

  namespace: "MY-DEV-NAMESPACE" # (Optional) Defaults to default namespace.

  targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

  metadataStore:

    url: METADATA-STORE-URL-ON-VIEW-CLUSTER

    caSecret:

        name: store-ca-cert

        importFromNamespace: metadata-store-secrets

    authSecret:

        name: store-auth-token

        importFromNamespace: metadata-store-secrets

...

Where:

METADATA-STORE-URL-ON-VIEW-CLUSTER is the ingress URL of SCST - Store deployed to the
View cluster. For example, https://metadata-store.example.com. See Ingress support.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from the registry for scanning.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Scan deploys the
ScanTemplates there. This allows the scanning feature to run in this namespace.

Configure developer namespaces

After you finish the entire Tanzu Application Platform installation process, you are ready to
configure developer namespaces. To prepare developer namespaces, you must export the secrets
you created earlier to those namespaces.

Exporting SCST - Store secrets to a developer namespace in a Tanzu
Application Platform multicluster deployment

Export secrets to a developer namespace by creating SecretExport resources on the developer
namespace. Run the following command to create the SecretExport resources. You must have
created and populated the metadata-store-secrets namespace.

cat <<EOF | kubectl apply -f -

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: store-ca-cert

  namespace: metadata-store-secrets

spec:

Tanzu Application Platform v1.4

VMware by Broadcom 1366



  toNamespaces: [DEV-NAMESPACES]

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: store-auth-token

  namespace: metadata-store-secrets

spec:

  toNamespaces: [DEV-NAMESPACES]

EOF

Where [DEV-NAMESPACES] is an array of developer namespaces where the secrets are exported.

Additional resources

Ingress support

Custom certificate configuration

Developer namespace setup for Supply Chain Security
Tools - Store
This topic describes how you can set up your developer namespace for Supply Chain Security Tools
(SCST) - Store.

Overview
After you finish the entire Tanzu Application Platform installation process, you are ready to
configure the developer namespace. When you configure a developer namespace, you must
export the Supply Chain Security Tools (SCST) - Store CA certificate and authentication token to
the namespace. This enables SCST - Scan to find the credentials to send scan results to SCST -
Store.

There are two ways to deploy Tanzu Application Platform:

Single cluster, which entails using the Tanzu Application Platform values file

Multicluster, which entails using SecretExport

Single cluster - Using the Tanzu Application Platform values
file

When deploy the Tanzu Application Platform Full or Build profile, edit the tap-values.yaml file you
used to deploy Tanzu Application Platform.

metadata_store:

  ns_for_export_app_cert: "DEV-NAMESPACE"

Where DEV-NAMESPACE is the name of the developer namespace.

The ns_for_export_app_cert supports one namespace at a time. If you have multiple namespaces
you can replace this value with a "*", but this exports the CA to all namespaces. Consider whether
this increased visibility presents a risk.

metadata_store:

  ns_for_export_app_cert: "*"

Update Tanzu Application Platform to apply the changes by running:

Tanzu Application Platform v1.4

VMware by Broadcom 1367



$ tanzu package installed update tap -f tap-values.yaml -n tap-install

Multicluster - Using SecretExport

In a multicluster deployment, follow the steps in Multicluster setup. It describes how to create
secrets and export secrets to developer namespaces.

Next steps

If you arrived in this topic from Setting up the Out of the Box Supply Chain with testing and
scanning, return to that topic and continue with the instructions.

Retrieve access tokens for Supply Chain Security Tools -
Store
This topic describes how you can retrieve access tokens for Supply Chain Security Tools (SCST) -
Store.

Overview
When you install Tanzu Application Platform, the Supply Chain Security Tools (SCST) - Store
deployment automatically includes a read-write service account. This service account is bound to
the metadata-store-read-write role.

There are two types of SCST - Store service accounts:

1. Read-write service account - full access to the POST and GET API requests

2. Read-only service account - can only use GET API requests

This topic shows how to retrieve the access token for these service accounts.

Retrieving the read-write access token
To retrieve the read-write access token, run:

kubectl get secrets metadata-store-read-write-client -n metadata-store -o jsonpath="{.

data.token}" | base64 -d

Retrieving the read-only access token

In order retrieve the read-only access token, you must first have a read-only service account. See
Create read-only service account.

To retrieve the read-only access token, run:

kubectl get secrets metadata-store-read-client -n metadata-store -o jsonpath="{.data.t

oken}" | base64 -d

Using an access token

The access token is a Bearer token used in the http request header Authorization. For example,
Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0....

Tanzu Application Platform v1.4

VMware by Broadcom 1368



Additional Resources

Create service accounts

Create a service account with a custom cluster role

Retrieve and create service accounts for Supply Chain
Security Tools - Store

This topic explains how you can create service accounts for Supply Chain Security Tools (SCST) -
Store.

Overview

When you install Tanzu Application Platform, the Supply Chain Security Tools (SCST) - Store
deployment automatically includes a read-write service account. This service account is bound to
the metadata-store-read-write role.

There are two types of SCST - Store service accounts:

1. Read-write service account - full access to the POST and GET API requests

2. Read-only service account - can only use GET API requests

Create read-write service account

When you install Tanzu Application Platform, the SCST - Store deployment automatically includes a
read-write service account. This service account is already bound to the metadata-store-read-
write role.

To create an additional read-write service account, run the following command. The command
creates a service account called metadata-store-read-write-client, depending on the Kubernetes
version:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  name: metadata-store-read-write

  namespace: metadata-store

rules:

- resources: ["all"]

  verbs: ["get", "create", "update"]

  apiGroups: [ "metadata-store/v1" ]

---

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: metadata-store-read-write

  namespace: metadata-store

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: Role

  name: metadata-store-read-write

subjects:

- kind: ServiceAccount

  name: metadata-store-read-write-client

  namespace: metadata-store

---

apiVersion: v1

kind: ServiceAccount

Tanzu Application Platform v1.4

VMware by Broadcom 1369



metadata:

  name: metadata-store-read-write-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-group: "metadata-store.apps.tanzu.vmware.com/service-account"

automountServiceAccountToken: false

---

apiVersion: v1

kind: Secret

type: kubernetes.io/service-account-token

metadata:

  name: metadata-store-read-write-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-rule: "upsert after upserting metadata-store.apps.tanzu.vmwar

e.com/service-account"

    kubernetes.io/service-account.name: "metadata-store-read-write-client"

EOF

Create a read-only service account

You can create a read-only service account with a default cluster role or with a custom cluster role.

With a default cluster role

During Store installation, the metadata-store-read-only cluster role is created by default. This
cluster role allows the bound user to have get access to all resources. To bind to this cluster role,
run the following command depending on the Kubernetes version:

kubectl apply -f - -o yaml << EOF

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: metadata-store-read-only

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: metadata-store-read-only

subjects:

- kind: ServiceAccount

  name: metadata-store-read-client

  namespace: metadata-store

---

apiVersion: v1

kind: ServiceAccount

metadata:

  name: metadata-store-read-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-group: "metadata-store.apps.tanzu.vmware.com/service-account"

automountServiceAccountToken: false

---

apiVersion: v1

kind: Secret

Note

For Kubernetes v1.24 and later, services account secrets are no longer
automatically created. This is why the example adds a Secret resource in the earlier
YAML.

Tanzu Application Platform v1.4

VMware by Broadcom 1370



type: kubernetes.io/service-account-token

metadata:

  name: metadata-store-read-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-rule: "upsert after upserting metadata-store.apps.tanzu.vmwar

e.com/service-account"

    kubernetes.io/service-account.name: "metadata-store-read-client"

EOF

With a custom cluster role

If using the default role is not sufficient, see Create a service account with a custom cluster role.

Additional Resources
Retrieve access tokens

Create a service account with a custom cluster role

Create a service account with a custom cluster role for
Supply Chain Security Tools - Store

This topic describes how you can create a service account with a custom cluster role for Supply
Chain Security Tools (SCST)- Store.

Example service account

If you do not want to bind to the default cluster role, create a read-only role in the metadata-store
namespace with a service account. The following example creates a service account named
metadata-store-read-client, depending on the Kubernetes version:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  name: metadata-store-ro

  namespace: metadata-store

rules:

- resources: ["all"]

  verbs: ["get"]

  apiGroups: [ "metadata-store/v1" ]

---

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: metadata-store-ro

  namespace: metadata-store

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: Role

  name: metadata-store-ro

Note

For Kubernetes v1.24 and later, services account secrets are no longer
automatically created. This is why the example adds a Secret resource in the earlier
YAML.

Tanzu Application Platform v1.4

VMware by Broadcom 1371



subjects:

- kind: ServiceAccount

  name: metadata-store-read-client

  namespace: metadata-store

---

apiVersion: v1

kind: ServiceAccount

metadata:

  name: metadata-store-read-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-group: "metadata-store.apps.tanzu.vmware.com/service-account"

automountServiceAccountToken: false

---

apiVersion: v1

kind: Secret

type: kubernetes.io/service-account-token

metadata:

  name: metadata-store-read-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-rule: "upsert after upserting metadata-store.apps.tanzu.vmwar

e.com/service-account"

    kubernetes.io/service-account.name: "metadata-store-read-client"

EOF

Additional Resources

Retrieve access tokens

Create service accounts

Install Supply Chain Security Tools - Store independent
from Tanzu Application Platform profiles

This topic describes how you can install Supply Chain Security Tools (SCST) - Store from the Tanzu
Application Platform package repository.

Prerequisites

Before installing SCST - Store:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cert-manager on the cluster. See Install cert-manager.

Note

For Kubernetes v1.24 and later, service account secrets are no longer automatically
created. This is why the example adds a Secret resource in the earlier YAML.

Note

Follow the steps in this topic if you do not want to use a profile to install Supply
Chain Security Tools - Store. For more information about profiles, see Components
and installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1372



See Deployment Details and Configuration to review what resources are deployed. For
more information, see the overview.

Install

To install SCST - Store:

1. To use this deployment, the user must have set up the Kubernetes cluster to provision
persistent volumes on demand. Ensure that a default storage class is available in your
cluster. Verify whether default storage class is set in your cluster using kubectl get
storageClass.

kubectl get storageClass

For example:

$ kubectl get storageClass

NAME                 PROVISIONER             RECLAIMPOLICY   VOLUMEBINDINGMODE      

ALLOWVOLUMEEXPANSION   AGE

standard (default)   rancher.io/local-path   Delete          WaitForFirstConsum

er   false                  7s

2. List version information for the package using tanzu package available list.

tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace 

tap-install

- Retrieving package versions for metadata-store.apps.tanzu.vmware.com...

  NAME                         VERSION       RELEASED-AT

  metadata-store.apps.tanzu.vmware.com  1.0.2

3. (Optional) List all the available deployment configuration options.

tanzu package available get metadata-store.apps.tanzu.vmware.com/VERSION --valu

es-schema -n tap-install

Where VERSION is the your package version number.

For example:

$ tanzu package available get metadata-store.apps.tanzu.vmware.com/1.0.2 --valu

es-schema -n tap-install

| Retrieving package details for metadata-store.apps.tanzu.vmware.com/1.0.2...

   KEY                             DEFAULT                                                                 

TYPE     DESCRIPTION

kube_rbac_proxy_limit_memory    512Mi                                                                      

string   Memory limit for kube-rbac-proxy container in the metadata-store-app d

eployment

pg_req_cpu                      1Gi                                                                        

string   CPU request for postgres container in metadata-store-db deployment

app_req_cpu                     100m                                                                       

string   CPU request for metadata-store-app container

db_port                         5432                                                                       

string   The database port to use. This is the port to use when connecting to t

he database pod.

db_sslmode                      verify-full                                                                

string   Determines the security connection between API server and Postgres dat

Tanzu Application Platform v1.4

VMware by Broadcom 1373



abase. This can be set to 'verify-ca' or 'verify-full'

kube_rbac_proxy_limit_cpu       250m                                                                       

string   CPU limit for kube-rbac-proxy container in the metadata-store-app depl

oyment

ns_for_export_app_cert          scan-link-system                                                           

string   The namespace where the "Supply Chain Security Tools for VMware Tanzu 

- Scan" component is installed in. Certain certificates will be exported to tha

t namespace so that scan reports can be posted to the Metadata Store.

pg_limit_memory                 4Gi                                                                        

string   Memory limit for postgres container in metadata-store-db deployment

tls.namespace                                                                                              

string   The targeted namespace for secret consumption by the HTTPProxy.

api_port                        9443                                                                       

integer  The internal port for the metadata app api endpoint. This will be used 

by the kube-rbac-proxy sidecar.

app_limit_cpu                   250m                                                                       

string   CPU limit for metadata-store-app container

db_conn_max_lifetime            60                                                                         

integer  Sets the maximum amount of time a database connection may be reused in 

seconds.

tls.server.minTLSVersion        VersionTLS12                                                               

string   Minimum TLS version supported. Value must match version names from htt

ps://golang.org/pkg/crypto/tls/#pkg-constants. (default "VersionTLS12")

db_ca_certificate                                                                                          

string   This should only be set in the case when 'deploy_internal_db' is 'fals

e'. Set this to the trusted CA Certificate that signed the Postgres DB TLS Cert

ificate

db_password                                                                                                

string   The database user password. If no value is provided, a 32 character va

lue will be generated.

log_level                       default                                                                    

string   Sets the log level. This can be set to "minimum", "less", "default", 

"more", "debug" or "trace". "minimum" currently does not output logs. "less" ou

tputs log configuration options only. "default" and "more" outputs API endpoint 

access information. "debug" and "trade" outputs extended API endpoint

                                                                                                           

access information(such as body payload) and other debug information.

kubernetes_distribution                                                                                    

string   Kubernetes platform distribution where the metadata-store is being ins

talled on. Accepted values: ["", "openshift"]

pg_limit_cpu                    2Gi                                                                        

string   CPU limit for postgres container in metadata-store-db deployment

tls.secretName                                                                                             

string   The name of secret for consumption by the HTTPProxy.

tls.server.rfcCiphers           [TLS_AES_128_GCM_SHA256 TLS_AES_256_GCM_SHA384 

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384]  a

rray    List of cipher suites for the server. Values are from tls package const

ants (https://golang.org/pkg/crypto/tls/#pkg-constants). If omitted, the defaul

t Go cipher suites will be used

app_limit_memory                512Mi                                                                      

string   Memory limit for metadata-store-app container

app_service_type                LoadBalancer                                                               

string   The type of service to use for the metadata app service. This can be s

et to 'Nodeport', 'ClusterIP' or 'LoadBalancer'.

db_replicas                     1                                                                          

integer  The number of replicas for the metadata-store-db

kube_rbac_proxy_req_cpu         100m                                                                       

string   CPU request for kube-rbac-proxy container in the metadata-store-app de

ployment

pg_req_memory                   1Gi                                                                        

string   Memory request for postgres container in metadata-store-db deployment

db_host                         metadata-store-db                                                          

string   The address to the postgres database host that the metadata-store app 

uses to connect. The default is set to metadata-store-db which is the postgres 

service name. Changing this does not change the postgres service name

Tanzu Application Platform v1.4

VMware by Broadcom 1374



db_max_idle_conns               100                                                                        

integer  Sets the maximum number of database connections from the Metadata Stor

e in the idle connection pool.

db_name                         metadata-store                                                             

string   The name of the database to use.

kube_rbac_proxy_req_memory      128Mi                                                                      

string   Memory request for kube-rbac-proxy container in the metadata-store-app 

deployment

db_max_open_conns               10                                                                         

integer  Sets the maximum number of open database connections from the Metadata 

Store to the database.

deploy_internal_db              true                                                                       

string   If set to 'true', a postgres deployment will be created. If set to 'fa

lse', db_host and db_port should point to an accessible postgres instance. Post

gres connections require TLS, so the corresponding db_ca_certification must be 

provided

ingress_domain                                                                                             

string   Domain to be used by the HTTPProxy ingress object. The "metadata-stor

e" subdomain will be prepended to the value provided. For example: "example.co

m" would become "metadata-store.example.com". Required if ingress_enabled is tr

ue.

use_cert_manager                true                                                                       

string   Cert manager is required to be installed to use this flag. When true, 

this creates certificates object to be signed by cert manager for the API serve

r and Postgres database. If false, the certificate object have to be provided b

y the user.

add_default_rw_service_account  true                                                                       

string   Adds a read-write service account which can be used to obtain access t

oken to use metadata-store CLI

api_host                        localhost                                                                  

string   The internal hostname for the metadata api endpoint. This will be used 

by the kube-rbac-proxy sidecar.

auth_proxy_port                 8443                                                                       

integer  The external port address of the of the kube-rbac-proxy sidecar

database_request_storage        10Gi                                                                       

string   The storage requested of the persistent volume used by Postgres databa

se for storing data.

db_user                         metadata-store-user                                                        

string   The database user to create and use for updating and querying. The met

adata postgres section create this user. The metadata api server uses this user

name to connect to the database.

ingress_enabled                 false                                                                      

string   Contour is required to be installed to use this flag. When true, this 

creates an HTTPProxy object for the metadata-store. If false, then no ingress i

s configured.

kubernetes_version                                                                                         

string   Kubernetes platform distribution version where the metadata-store is b

eing installed on. This is required when openshift version is higher than 4.10

priority_class_name                                                                                        

string   If specified, this value is the name of the desired PriorityClass for 

the metadata-store-db deployment

app_replicas                    1                                                                          

integer  The number of replicas for the metadata-store-app

app_req_memory                  128Mi                                                                      

string   Memory request for metadata-store-app container

auth_proxy_host                 0.0.0.0                                                                    

string   The binding ip address of the kube-rbac-proxy sidecar

storage_class_name                                                                                         

string   The storage class name of the persistent volume used by Postgres datab

ase for storing data. The default value will use the default class name defined 

on the cluster.

4. (Optional) Edit one of the deployment configurations by creating a configuration YAML with
the custom configuration values you want. For example, if your environment does not

Tanzu Application Platform v1.4

VMware by Broadcom 1375



support LoadBalancer, and you want to use ClusterIP, then create a metadata-store-
values.yaml and configure the app_service_type property.

---

app_service_type: "ClusterIP"

See Deployment details and configuration for more information about configuration options.

For information about ingress and custom domain name support, see Ingress support.

5. Install the package using tanzu package install.

tanzu package install metadata-store \

  --package-name metadata-store.apps.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file metadata-store-values.yaml

Where:

--values-file is an optional flag. Only use it to customize the deployment
configuration.

VERSION is the package version number.

For example:

$ tanzu package install metadata-store \

  --package-name metadata-store.apps.tanzu.vmware.com \

  --version 1.0.2 \

  --namespace tap-install \

  --values-file metadata-store-values.yaml

- Installing package 'metadata-store.apps.tanzu.vmware.com'

/ Getting namespace 'tap-install'

- Getting package metadata for 'metadata-store.apps.tanzu.vmware.com'

/ Creating service account 'metadata-store-tap-install-sa'

/ Creating cluster admin role 'metadata-store-tap-install-cluster-role'

/ Creating cluster role binding 'metadata-store-tap-install-cluster-rolebindin

g'

/ Creating secret 'metadata-store-tap-install-values'

| Creating package resource

- Package install status: Reconciling

Added installed package 'metadata-store' in namespace 'tap-install'

Overview of Tanzu Developer Tools for Visual Studio

VMware Tanzu Developer Tools for Visual Studio is the official VMware Tanzu IDE extension for
Visual Studio 2022. The extension helps you develop with Tanzu Application Platform and enables
you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

This plug-in extends Microsoft Visual Studio 2022 only. It is incompatible with Visual Studio Code
and Visual Studio for Mac.

Note

This extension is in the beta stage of development.

Tanzu Application Platform v1.4

VMware by Broadcom 1376



Extension Features

The extension has the following features:

See code updates running on-cluster in seconds:

With the use of Live Update facilitated by Tilt, deploy your workload once, save changes to
the code and then, seconds later, see those changes reflected in the workload running on
the cluster. All Live Update output is filtered to its own output pane window within Visual
Studio.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on a Kubernetes
cluster of yours that has Tanzu Application Platform. The similarity of an environment to
production relies on keeping dependencies updated, among other variables.

Deploy a workload to a Kubernetes cluster:

Deploy your workload straight to your Kubernetes cluster and, after you’re finished using it,
you can delete it. All the output for deleting a workload is filtered to its own output pane
window within Visual Studio.

See workloads running on the cluster:

From the Tanzu Panel, you can see any workload found within the cluster and namespace
specified in the current kubectl context.

Overview of Tanzu Developer Tools for Visual Studio

VMware Tanzu Developer Tools for Visual Studio is the official VMware Tanzu IDE extension for
Visual Studio 2022. The extension helps you develop with Tanzu Application Platform and enables
you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

This plug-in extends Microsoft Visual Studio 2022 only. It is incompatible with Visual Studio Code
and Visual Studio for Mac.

Extension Features
The extension has the following features:

See code updates running on-cluster in seconds:

With the use of Live Update facilitated by Tilt, deploy your workload once, save changes to
the code and then, seconds later, see those changes reflected in the workload running on
the cluster. All Live Update output is filtered to its own output pane window within Visual
Studio.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on a Kubernetes
cluster of yours that has Tanzu Application Platform. The similarity of an environment to
production relies on keeping dependencies updated, among other variables.

Deploy a workload to a Kubernetes cluster:

Note

This extension is in the beta stage of development.

Tanzu Application Platform v1.4

VMware by Broadcom 1377



Deploy your workload straight to your Kubernetes cluster and, after you’re finished using it,
you can delete it. All the output for deleting a workload is filtered to its own output pane
window within Visual Studio.

See workloads running on the cluster:

From the Tanzu Panel, you can see any workload found within the cluster and namespace
specified in the current kubectl context.

Install Tanzu Developer Tools for Visual Studio

This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio.

Prerequisites

Ensure that you have the following installed on your workstation before installing Tanzu Developer
Tools for Visual Studio:

Visual Studio 2022 v17.7 or later

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio.

2. Double-click the .vsix install file and click through the prompts.

3. Open Visual Studio and verify that the extension is installed and enabled.

Uninstall

To uninstall:

1. From the top menu, click the Extensions tab and then click Manage Extensions.

2. Select the Installed section and then click the Uninstall button for this extension.

Next steps

Use Tanzu Developer Tools for Visual Studio.

Note

If you are an app developer, someone else in your organization might have already
set up the Tanzu Application Platform environment.

Tanzu Application Platform v1.4

VMware by Broadcom 1378

https://visualstudio.microsoft.com/vs/
https://kubernetes.io/docs/tasks/tools/
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform/


Use Tanzu Developer Tools for Visual Studio

This topic tells you how to use VMware Tanzu Developer Tools for Visual Studio.

Configure settings
To configure settings, right-click anywhere in the Solution Explorer and click Tanzu > Settings….

Tanzu CLI is installed in a location in your PATH environment variable.

A valid workload.yaml file is in the project. For more information, see the specification for
Tanzu apps workload apply.

You have a functional Tanzu Application Platform environment.

Your kubeconfig file is modified for Tanzu Application Platform workload deployments.

You have an image repository to which source code in the local file system can be uploaded
before Build Service builds it.

Workload Actions
The extension enables you to apply, debug, and Live Update your application on a Kubernetes
cluster that has Tanzu Application Platform. The developer sandbox experience enables you to Live
Update your code, and simultaneously debug the updated code, without deactivating Live Update.

Apply a workload

To apply a workload, right-click anywhere in the Solution Explorer and click Tanzu > Apply
Workload. Alternatively, right-click an associated workload in the Tanzu Panel and click Apply
Workload.

Delete a workload

To delete a workload, right-click anywhere in the Solution Explorer and click Tanzu > Delete
Workload. Alternatively, right-click an associated workload in the Tanzu Panel and click Delete
Workload.

Start debugging on the cluster

To remote debug a workload, right-click anywhere in the Solution Explorer and click Tanzu >
Debug Workload. Alternatively, right-click an associated workload in the Tanzu Panel and click
Debug Workload.

Note

This extension is in the beta stage of development.

Caution

Do not use the red square Stop button to end your debugging session. Using the
red square Stop button might cause the Tanzu Application Platform workload to fail.
Instead, in the top menu click Debug > Detach All.

Tanzu Application Platform v1.4

VMware by Broadcom 1379



Live Update

See the following sections for how to use Live Update.

Start Live Update

Ensure that the following Tanzu Settings parameters are set:

Local Path, which is the path on the local file system to a directory of source code to build.

Namespace, which is the namespace that workloads are deployed into. Optional.

Source Image, which is the registry location for publishing local source code. For example,
registry.io/yourapp-source. It must include both a registry and a project name. The
source image parameter is not needed if you configured Local Source Proxy.

To start Live Update, right-click anywhere in the Solution Explorer and click Tanzu > Start Live
Update. Alternatively, right-click an associated workload in the Tanzu Panel and click Start Live
Update.

After starting Live Update, local builds changes are synchronized with the container.

Stop Live Update

To stop Live Update, right-click anywhere in the Solution Explorer and click Tanzu > Stop Live
Update. Alternatively, right-click an associated workload in the Tanzu Panel and click Stop Live
Update.

Tanzu Workloads panel

Stop Remote Debug

To view the Tanzu Workloads panel, right-click anywhere in the Solution Explorer and click Tanzu >
View Workloads.

Extension logs

The extension creates log entries in two files named tanzu-dev-tools-{GUID}.log and tanzu-
language-server-{GUID}.log. These files are in the directory where Visual Studio Installer installed
the extension.

To find the log files from PowerShell, run:

If the name of your running app process (the app DLL process), does not match the
name of your .NET project as shown in the Visual Studio Solution Explorer, the
remote debugging agent might fail to attach.

Tanzu Application Platform v1.4

VMware by Broadcom 1380



dir $Env:LOCALAPPDATA\Microsoft\VisualStudio\*\Extensions\*\Logs\tanzu-*.log

To find the log files from CMD, run:

dir %LOCALAPPDATA%\Microsoft\VisualStudio\*\Extensions\*\Logs\tanzu-*.log

This extension records logs in a .log file whose name starts with tanzu-dev-tools and ends with a
string of numbers representing the date, such as tanzu-dev-tools20221202.log. A new log file is
created for each day and retained for a maximum of 31 days. These log files are in the installation
directory of the .vsix file. By default, this is

C:\Users\NAME\AppData\Local\Microsoft\VisualStudio\VERSION\Extensions\VMware\Tanzu Dev

eloper Tools\VSIX-VERSION

Where NAME, VERSION, and VSIX-VERSION are placeholders.

Troubleshoot Tanzu Developer Tools for Visual Studio
This topic tells you how to troubleshoot issues you encounter with VMware Tanzu Developer Tools
for Visual Studio.

Erroneous WorkloadNotRunningState error message

Symptom

In v0.1.0 and earlier, the Tanzu: Delete Workload command might give the following error
message even when a workload is running:

Invalid transition DeleteWorkload from state WorkloadNotRunningState

Solution

Re-apply your workload by running Tanzu: Workload Apply or Tanzu: Start Live Update. This
realigns the extension’s internal state with the proper workload state. The delete operation is
enabled again after the extension detects that the workload is running.

Live Update fails to update remote app

Symptom

In v0.1.0 and earlier, the Tanzu: Start Live Update command does not update the remote app.

Cause

The Tiltfile might be specifying an incorrect local path.

Solution

In your Tiltfile, change the lines

  live_update=[

    sync('./bin', '/workspace')

  ]

to

Tanzu Application Platform v1.4

VMware by Broadcom 1381



  live_update=[

    sync('./bin/Debug/net6.0', '/workspace')

  ]

This copies the correct portion of the local workspace to the remote app. The actual path
bin/Debug/net6.0 might be different depending on your Visual Studio configuration and target.

Delete workload command fails to delete workload

Symptom

In v0.1.0 and earlier, the Tanzu: Delete Workload command appears to run but does not delete the
workload.

Cause

The workload is running in a namespace other than default.

Solution

Only deploy workloads to the default namespace. Alternatively, set the default Kubernetes
namespace to the one where your workload is running. To do so, run:

kubectl config set-context --current --namespace=NAMESPACE

Live Update does not work with the Jammy ClusterBuilder

Symptom

Live Update does not work when using the Jammy ClusterBuilder.

Solution

A fix is planned for Tanzu Application Platform v1.5.1.

Frequent application restarts

Symptom

When an application is applied from Visual Studio it restarts frequently.

Cause

An application or environment behavior is triggering the application to restart.

Observed trigger behaviors include:

The application itself writing logs to the file system in the application directory that Live
Update is watching

Autosave being set to a very high frequency in the IDE configuration

Solution

Prevent the trigger behavior. Example solutions include:

Prevent 12-factor applications from writing to the file system.

Reduce the autosave frequency to once every few minutes.

Tanzu Application Platform v1.4

VMware by Broadcom 1382



Overview of Tanzu Developer Tools for VS Code

VMware Tanzu Developer Tools for Visual Studio Code (VS Code) is the official VMware Tanzu IDE
extension for VS Code. The extension helps you develop with Tanzu Application Platform and
enables you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

Tanzu Developer Tools for VS Code currently supports VS Code on macOS and Windows OS for
Java applications.

Extension features

The extension has the following features:

Deploy applications directly from VS Code:

Rapidly iterate on your applications on Tanzu Application Platform by deploying them as
workloads directly from within VS Code.

See code updates running on-cluster in seconds:

With Live Update (facilitated by Tilt), you can deploy your workload once, save changes to
the code and then see those changes reflected within seconds in the workload running on
the cluster.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies and other variables updated.

See workloads running on the cluster:

From the Tanzu Workloads panel you can see any workload found within the cluster and
namespace specified in the current kubectl context.

Overview of Tanzu Developer Tools for VS Code

VMware Tanzu Developer Tools for Visual Studio Code (VS Code) is the official VMware Tanzu IDE
extension for VS Code. The extension helps you develop with Tanzu Application Platform and
enables you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

Tanzu Developer Tools for VS Code currently supports VS Code on macOS and Windows OS for
Java applications.

Extension features

The extension has the following features:

Deploy applications directly from VS Code:

Rapidly iterate on your applications on Tanzu Application Platform by deploying them as
workloads directly from within VS Code.

See code updates running on-cluster in seconds:

With Live Update (facilitated by Tilt), you can deploy your workload once, save changes to
the code and then see those changes reflected within seconds in the workload running on
the cluster.

Debug workloads directly on the cluster:

Tanzu Application Platform v1.4

VMware by Broadcom 1383



Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies and other variables updated.

See workloads running on the cluster:

From the Tanzu Workloads panel you can see any workload found within the cluster and
namespace specified in the current kubectl context.

Install Tanzu Developer Tools for your VS Code

This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites

Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

Tanzu Application Platform v1.4

VMware by Broadcom 1384

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode


When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Configure
To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall
To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps
Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Get started with Tanzu Developer Tools for VS Code
This topic guides you through getting started with VMware Tanzu Developer Tools for Visual Studio
Code (VS Code).

Prerequisite
Install VMware Tanzu Developer Tools for Visual Studio Code.

Tanzu Application Platform v1.4

VMware by Broadcom 1385

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/


Set up Tanzu Developer Tools

The extension makes use of the following files within your project:

workload.yaml

catalog-info.yaml

Tiltfile

.tanzuignore

You can create these files by using the instructions in this topic, or use the files in the View an
example project section.

There are two ways to create these files:

Using the code snippets that Tanzu Developer Tools provide, which create templates in
empty files that you then fill in with the required information.

Writing the files manually.

Create the workload.yaml file

workload.yaml provides instructions to the Supply Chain Choreographer about how to build and
manage a workload.

The extension requires only one workload.yaml file per project. workload.yaml must be a single-
document YAML file, not a multidocument YAML file.

Before beginning to write your workload.yaml file, ensure that you know:

The name of your application. For example, my app.

The workload type of your application. For example, web.

The GitHub source code URL. For example, github.com/mycompany/myapp.

The Git branch of the source code that you intend to use. For example, main.

Code snippets
To create a workload.yaml file by using code snippets:

1. (Optional) Create a directory named config in the root directory of your project. For
example, my project/config.

2. Create a file named workload.yaml in the new config directory. For example, my
project/config/workload.yaml.

3. Open the new workload.yaml file in VS Code, enter tanzu workload in the file to trigger
the code snippets, and either press Enter or left-click the tanzu workload text in the
drop-down menu.

4. Fill in the template by pressing the Tab key.

Manual
To create your workload.yaml file manually, follow this example:

apiVersion: carto.run/v1alpa1

kind: Workload

Tanzu Application Platform v1.4

VMware by Broadcom 1386



metadata:

 name: APP-NAME

 labels:

   apps.tanzu.vmware.com/workload-type: WORKLOAD-TYPE

   app.kubernetes.io/part-of: APP-NAME

spec:

 source:

   git:

     url: GIT-SOURCE-URL

     ref:

       branch: GIT-BRANCH-NAME

Where:

APP-NAME is the name of your application.

WORKLOAD-TYPE is the type of this workload. For example, web.

GIT-SOURCE-URL is your GitHub source code URL.

GIT-BRANCH-NAME is the Git branch of your source code.

Alternatively, you can use the Tanzu CLI to create a workload.yaml file. For more information
about the Tanzu CLI command, see Tanzu apps workload apply in the Tanzu CLI documentation.

Create the catalog-info.yaml file

catalog-info.yaml enables the workloads of this project to appear in Tanzu Application Platform
GUI.

Before beginning to write your catalog-info.yaml file, ensure that you:

Know the name of your application. For example, my app.

Have a description of your application ready.

Code snippets
To create a catalog-info.yaml file by using the code snippets:

1. (Optional) Create a directory named catalog in the root directory of your project. For
example, my project/catalog.

2. Create a file named catalog-info.yaml in the new config directory. For example, my
project/catalog/catalog-info.yaml.

3. Open the new catalog-info.yaml file in VS Code, enter tanzu catalog-info in the file
to trigger the code snippets, and then either press Enter or left-click the tanzu catalog-
info text in the drop-down menu.

4. Fill in the template by pressing the Tab key.

Manual
To create your catalog-info.yaml file manually, follow this example:

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: APP-NAME

Tanzu Application Platform v1.4

VMware by Broadcom 1387



 description: APP-DESCRIPTION

 tags:

   - tanzu

 annotations:

   'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=APP-NAME'

spec:

 type: service

 lifecycle: experimental

 owner: default-team

Where:

APP-NAME is the name of your application

APP-DESCRIPTION is the description of your application

Create the Tiltfile file

The Tiltfile file provides the Tilt configuration to enable your project to Live Update on your
Kubernetes cluster that has Tanzu Application Platform. The Tanzu Developer Tools extension
requires only one Tiltfile per project.

Before beginning to write your Tiltfile file, ensure that you know:

The name of your application. For example, my app.

The value of the source image. For example, docker.io/mycompany/myapp.

Whether you want to compile the source image from a local directory other than the
project directory or otherwise leave the local path value unchanged. For more
information, see local path in the glossary.

The path to your workload.yaml file. For example, config/workload.yaml.

The name of your current Kubernetes context, if the targeting Kubernetes cluster enabled
by Tanzu Application Platform is not running on your local machine.

Code Snippets
To create a Tiltfile file by using the code snippets:

1. Create a file named Tiltfile with no file extension in the root directory of your project.
For example, my project/Tiltfile.

2. Open the new Tiltfile file in VS Code and enter tanzu tiltfile in the file to trigger the
code snippets, and then either press Enter or left-click the tanzu tiltfile text in the
drop-down menu.

3. Fill in the template by pressing the Tab key.

4. If the targeting Kubernetes cluster enabled by Tanzu Application Platform is not running
on your local machine, add a new line to the end of the Tiltfile template and enter:

allow_k8s_contexts('CONTEXT-NAME')

Where CONTEXT-NAME is the name of your current Kubernetes context.

Manual
To create a Tiltfile file manually, follow this example:

Tanzu Application Platform v1.4

VMware by Broadcom 1388

https://docs.tilt.dev/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/


SOURCE_IMAGE = os.getenv("SOURCE_IMAGE", default='SOURCE-IMAGE')

LOCAL_PATH = os.getenv("LOCAL_PATH", default='.')

NAMESPACE = os.getenv("NAMESPACE", default='default')

k8s_custom_deploy(

   'APP-NAME',

   apply_cmd="tanzu apps workload apply -f PATH-TO-WORKLOAD-YAML --live-update" +

       " --local-path " + LOCAL_PATH +

       " --SOURCE-IMAGE " + SOURCE_IMAGE +

       " --namespace " + NAMESPACE +

       " --yes >/dev/null" +

       " && kubectl get workload APP-NAME --namespace " + NAMESPACE + " -o yaml",

   delete_cmd="tanzu apps workload delete -f PATH-TO-WORKLOAD-YAML --namespace " + N

AMESPACE + " --yes" ,

   deps=['pom.xml', './target/classes'],

   container_selector='workload',

   live_update=[

       sync('./target/classes', '/workspace/BOOT-INF/classes')

   ]

)

k8s_resource('APP-NAME', port_forwards=["8080:8080"],

   extra_pod_selectors=[{'carto.run/workload-name': 'APP-NAME', 'app.kubernetes.io/c

omponent': 'run'}])

allow_k8s_contexts('CONTEXT-NAME')

Where:

SOURCE-IMAGE is the value of source image.

APP-NAME is the name of your application.

PATH-TO-WORKLOAD-YAML is the local file system path to workload.yaml. For example,
config/workload.yaml.

CONTEXT-NAME is the name of your current Kubernetes context. If your Kubernetes cluster
enabled by Tanzu Application Platform is running locally on your local machine, you can
remove the entire allow_k8s_contexts line. For more information, see the Tilt
documentation.

Create a .tanzuignore file

The .tanzuignore file specifies the file paths to exclude from the source code image. When
working with local source code, you can exclude files from the source code to be uploaded within
the image. Directories must not end with the system path separator (/ or \). See this example. in
GitHub.

View an example project

Before you begin, you need a container registry for the sample application.

You can view a sample application that demonstrates the necessary configuration files. There are
two ways to obtain the sample application:

Application Accelerator
If your company has configured Application Accelerator, you can obtain the sample application
there if it was not removed. To do so:

1. Open Application Accelerator.

2. Search for Tanzu Java Web App in Application Accelerator.

Tanzu Application Platform v1.4

VMware by Broadcom 1389

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://docs.tilt.dev/api.html#api.allow_k8s_contexts
https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/tanzu-java-web-app/.tanzuignore


3. Add the required configuration information and generate the application.

4. Unzip the file and open the project in a VS Code workspace.

Clone from GitHub
To clone the sample application from GitHub:

1. Run git clone to clone the tanzu-java-web-app repository from GitHub.

2. Change into the tanzu-java-web-app directory.

3. Open the Tiltfile and replace your-registry.io/project with your container registry.

Next steps

Use Tanzu Developer Tools for VS Code.

Use Tanzu Developer Tools for VS Code

This topic tells you how to use VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Ensure that the project you want to use the extension with has the required files specified in Get
started with Tanzu Developer Tools for VS Code.

The extension requires only one Tiltfile and one workload.yaml per project. The workload.yaml
must be a single-document YAML file, not a multidocument YAML file.

Configure for multiple projects in the workspace

When working with multiple projects in a single workspace, you can configure the extension
settings on a per-project basis by using the drop-down menu in Settings.

Apply a workload

The extension enables you to apply workloads on your Kubernetes cluster that has Tanzu
Application Platform.

To apply a workload:

1. Right-click anywhere in the VS Code project explorer or open the Command Palette by
pressing ⇧⌘P (Ctrl+Shift+P on Windows).

2. Run Tanzu: Apply Workload.

3. If there are multiple projects with workloads, select the workload to apply.

Tanzu Application Platform v1.4

VMware by Broadcom 1390

https://github.com/vmware-tanzu/application-accelerator-samples


A notification appears showing that the workload was applied.

A new workload appears on the Tanzu Workloads panel.

The Workloads panel shows the workloads running in the namespace that is defined in the
current Kubernetes context.

4. (Optional) See the context and namespace currently configured by running:

kubectl config get-contexts

5. (Optional) Set a namespace for the current context by running:

kubectl config set-context --current --namespace=YOUR-NAMESPACE

After the workload is deployed, the status on the Tanzu Workloads panel changes to Ready.

Debugging on the cluster

The extension enables you to debug your application on your Kubernetes cluster that has Tanzu
Application Platform.

Debugging requires a workload.yaml file in your project. For information about creating a
workload.yaml file, see Get Started with Tanzu Developer Tools for VS Code.

Tanzu Application Platform v1.4

VMware by Broadcom 1391



The developer sandbox experience enables developers to Live Update their code, and
simultaneously debug the updated code, without having to deactivate Live Update when
debugging.

Start debugging on the cluster

To start debugging on the cluster:

1. Add a breakpoint in your code.

2. Right-click anywhere in the VS Code project explorer or open the Command Palette by
pressing ⇧⌘P (Ctrl+Shift+P on Windows).

3. Click Tanzu: Java Debug Workload from either menu.

Stop Debugging on the cluster

To stop debugging on the cluster, you can click the stop button in the Debug overlay.

Alternatively, you can press ⌘+J (Ctrl+J on Windows) to open the panel and then click the trash
can button for the debug task running in the panel.

Debug apps in a microservice repository

To debug multiple apps in a microservice repository:

1. Add each app folder as a workspace folder. For instructions, see the Visual Studio Code
documentation.

2. Update the tanzu.debugPort setting so that it does not conflict with other debugging
sessions. For how to update individual workspace folder settings, see the Visual Studio
Code documentation.

Live Update

With the use of Live Update facilitated by Tilt, the extension enables you to deploy your workload
once, save changes to the code, and see those changes reflected in the workload running on the
cluster within seconds.

Tanzu Application Platform v1.4

VMware by Broadcom 1392

https://code.visualstudio.com/docs/editor/debugging#_breakpoints
https://code.visualstudio.com/docs/editor/multi-root-workspaces#_adding-folders
https://code.visualstudio.com/docs/editor/multi-root-workspaces#_settings
https://docs.tilt.dev/


Live Update requires a workload.yaml file and a Tiltfile in your project. For information about how
to create a workload.yaml and a Tiltfile, see Get Started with Tanzu Developer Tools for VS Code.

The developer sandbox experience enables developers to Live Update their code, and
simultaneously debug the updated code, without having to deactivate Live Update when
debugging.

Start Live Update

You can start Live Update by right-clicking anywhere in the VS Code project explorer and then
clicking Tanzu: Live Update Start in the pop-up menu.

Alternatively, you can press ⇧⌘P to open the Command Palette and then run the Tanzu: Live
Update Start command.

Stop Live Update

Tanzu Application Platform v1.4

VMware by Broadcom 1393



When Live Update stops, your application continues to run on the cluster, but the changes you
made and saved in your editor are not present in your running application unless you redeploy your
application to the cluster.

To stop Live Update, click the trash can button in the terminal pane to stop the Live Update
process.

Deactivate Live Update

You can remove the Live Update capability from your application entirely. You might find this
option useful in a troubleshooting scenario. Deactivating Live Update redeploys your workload to
the cluster and removes the Live Update capability.

To deactivate Live Update:

1. Press ⇧⌘P (Ctrl+Shift+P on Windows) to open the Command Palette.

2. Run Tanzu: Live Update Disable.

3. Type the name of the workload for which you want to deactivate Live Update.

Live Update status

The current status of Live Update is visible on the right side of the status bar at the bottom of the
VS Code window.

The Live Update status bar entry shows the following states:

Live Update Stopped

Live Update Starting…

Live Update Running

To hide the Live Update status bar entry, right-click it and then click Hide ‘Tanzu Developer Tools
(Extension)’.

Live Update apps in a microservices repository

To Live Update multiple apps in a microservice repository:

Tanzu Application Platform v1.4

VMware by Broadcom 1394



1. Add each app folder as a workspace folder. For instructions, see the Visual Studio Code
documentation.

2. Ensure that a port is available to port-forward the Knative service. For example, you might
have this in your Tiltfile:

k8s_resource('tanzu-java-web-app', port_forwards=["NUMBER:8080"],

           extra_pod_selectors=[{'carto.run/workload-name': 'tanzu-java-web-ap

p', 'app.kubernetes.io/component': 'run'}])

Where NUMBER is the port you choose. For example, port_forwards=["9999:8080"].

Delete a workload

The extension enables you to delete workloads on your Kubernetes cluster that has Tanzu
Application Platform.

To delete a workload:

1. Right-click anywhere in the VS Code project explorer or open the Command Palette by
pressing ⇧⌘P (Ctrl+Shift+P on Windows).

2. Run Tanzu: Delete Workload.

3. Select the workload to delete.

If the Tanzu: Confirm Delete setting is enabled, a message appears that prompts you to
delete the workload and not warn again, delete the workload, or cancel.

A notification appears showing that the workload was deleted.

Switch namespaces

To switch the namespace where you created the workload:

1. Go to Code > Preferences > Settings.

2. Expand the Extensions section of the settings and click Tanzu.

Tanzu Application Platform v1.4

VMware by Broadcom 1395

https://code.visualstudio.com/docs/editor/multi-root-workspaces#_adding-folders


3. In the Namespace option, add the namespace you want to deploy to. This is the default
namespace by default.

Tanzu Workloads panel

The current state of the workloads is visible on the Tanzu Workloads panel in the bottom left corner
of the VS Code window. The panel shows the current status of each workload, namespace, and
cluster. It also shows whether Live Update and Debug is running, stopped, or deactivated.

The Tanzu Workloads panel uses the cluster and namespace specified in the current kubectl
context.

1. View the current context and namespace by running:

kubectl config get-contexts

2. Set a namespace for the current context by running:

kubectl config set-context --current --namespace=YOUR-NAMESPACE

Working with Microservices in a Monorepo

Tanzu Application Platform v1.4

VMware by Broadcom 1396



A monorepo is single Git repository that contains multiple workloads. Each individual workload is
placed in a subfolder of the main repository.

You can find an example of this in Application Accelerator. The relevant accelerator is called Spring
SMTP Gateway, and you can obtain its source code as an accelerator or directly from the
application-accelerator-samples GitHub repository.

This project exemplifies a typical layout:

MONO-REPO-ROOT/

pom.xml (parent pom)

microservice-app-1/

pom.xml

mvnw (and other mvn-related files for building the workload)

Tiltfile (supports Live Update)

config

workload.yaml (supports deploying and debugging from IntelliJ)

src/ (contains source code for this microservice)

microservice-app-2/

…similar layout

Recommended structure: Microservices that can be built
independently

In this example, each of the microservices can be built independently of one another. Each
subfolder contains everything needed to build that workload.

This is reflected in the source section of workload.yaml by using the subPath attribute:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: microservice-app-1

  ...

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/kdvolder/sample-mono-repo.git

    subPath: microservice-app-1 # build only this

  ...

For setting up your own repositories, it’s best practice to set up a monorepo so that each
microservice can be built completely independently.

To work with these monorepos:

Import the monorepo as a project into VSCode.

Interact with each of the subfolders in the same way you would a project containing a single
workload.

Alternative structure: Services with build-time interdependencies

Some monorepos do not have submodules that can be independently built. Instead the pom.xml
files of the submodules are set up to have some build-time interdependencies. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1397

https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.3.x/spring-smtp-gateway


A submodule pom.xml can reference the parent pom.xml as a common place for centralized
dependency management.

A microservice submodule can reference another, as a maven dependency.

Several microservice submodules can reference one or more shared library modules.

For these projects, make these adjustments:

1. Make workload.yaml point to the repository root, not a subfolder. Because submodules
have dependencies on code outside of their own subfolder, all source code from the
repository must be supplied to the workload builder.

2. Make workload.yaml specify additional buildpack arguments through environment variables.
They differentiate the submodule that the build is targeting.

Both of these workload.yaml changes are in the following example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

name: fortune-ui

labels:

  apps.tanzu.vmware.com/workload-type: web

  app.kubernetes.io/part-of: fortune-ui

spec:

build:

  env:

     - name: BP_MAVEN_BUILD_ARGUMENTS

     value: package -pl fortune-teller-ui -am # indicate which module to build.

     - name: BP_MAVEN_BUILT_MODULE

     value: fortune-teller-ui # indicate where to find the built artefact to de

ploy.

source:

  git:

     url: https://github.com/my-user/fortune-teller # repo root

     ref:

     branch: main

For more information about these and other BP_xxx buildpack parameters, see the
Buildpack Documentation.

3. Make the local path preference for each subfolder point to the path of the repository root
Because submodules have dependencies on code outside of their own subfolder, all source
code from the repository must be supplied to the workload builder.

Tanzu Application Platform v1.4

VMware by Broadcom 1398

https://github.com/paketo-buildpacks/maven/blob/main/README.md


Pinniped compatibility

This topic tells you the compatibility details of Pinniped in GitHub.

OAuth

OAuth login is compatible only when both --skip-browser and --skip-listen flags are not set.

LDAP

LDAP authentication is not compatible with VMware Tanzu Developer Tools for Visual Studio Code.

Integrate Live Hover by using Spring Boot Tools

For more information about this feature, see the Live application information hovers section of
the Spring Boot Tools Marketplace page.

Prerequisites

To integrate Live Hover by using Spring Boot Tools you need:

A Tanzu Spring Boot application, such as tanzu-java-web-app

Spring Boot Extension Pack (includes Spring Boot Dashboard) extension

Activate the Live Hover feature

Activate the Live Hover feature by enabling it in Code > Preferences > Settings > Extensions >
Tanzu Developer Tools.

Deploy a Workload to the Cluster

Follow these steps to deploy the workload for an app to a cluster, making live hovers appear. The
examples in some steps reference the sample tanzu-java-web-app.

1. Clone the repository by running:

git clone REPOSITORY-ADDRESS

Where REPOSITORY-ADDRESS is your repository address. For example,
https://github.com/vmware-tanzu/application-accelerator-samples.

2. Open the project in VS Code, with the Live Hover feature enabled, by running:

TAP_LIVE_HOVER=true code ./PROJECT-DIRECTORY

Where PROJECT-DIRECTORY is your project directory. For example, ./application-
accelerator-samples/tanzu-java-web-app.

3. Verify that you are targeting the cluster on which you want to run the workload by running:

kubectl cluster-info

For example:

$ kubectl cluster-info

Kubernetes control plane is running at https://...

CoreDNS is running at https://...

Tanzu Application Platform v1.4

VMware by Broadcom 1399

https://github.com/vmware-tanzu/pinniped
https://marketplace.visualstudio.com/items?itemName=Pivotal.vscode-spring-boot
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/tanzu-java-web-app
https://marketplace.visualstudio.com/items?itemName=Pivotal.vscode-boot-dev-pack
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/tanzu-java-web-app


To further debug and diagnose cluster problems, use 'kubectl cluster-info dum

p'.

Tanzu Developer Tools for VS Code periodically connects to your cluster to search for pods
from which live data can be extracted and shown. Tanzu Developer Tools for VS Code uses
your current context from ~/.kube/config to choose which cluster to connect with.

4. If you don’t have the workload running yet, run Tanzu: Apply Workload from the Command
Palette. Tanzu Developer Tools for VS Code periodically searches for pods in your cluster
that correspond to the workload configurations it finds in your workspace.

5. The workload takes time to build and then start a running pod. To see if a pod has started
running, run:

kubectl get pods

For example:

$ kubectl get pods

NAME                                                   READY   STATUS      REST

ARTS   AGE

tanzu-java-web-app-00001-deployment-8596bfd9b4-5vgx2   2/2     Running     0          

20s

tanzu-java-web-app-build-1-build-pod                   0/1     Completed   0          

2m26s

tanzu-java-web-app-config-writer-fpnzb-pod             0/1     Completed   0          

67s

In this example, live data can be extracted from the ...-0001-deployment-... pod.

6. Open a Java file, such as HelloController.java. After a delay of up to 30 seconds, because
of a 30-second polling loop, green highlights appear in your code.

7. Hover over any of the bubbles to see live information about the corresponding element.

8. The Live Beans and Live Endpoint Mapping information are displayed in Spring Boot
Dashboard. To view the Spring Boot Dashboard, run View: Show Spring Boot Dashboard
from the Command Palette.

Tanzu Application Platform v1.4

VMware by Broadcom 1400



Use Memory View in Spring Boot Dashboard

This topic tells you how to use Spring Boot Dashboard to view memory use.

For more information about Spring Boot Dashboard, see Spring Boot Dashboard.

Prerequisites

To see the Memory View in Spring Boot Dashboard you need:

A Tanzu Spring Boot application, such as tanzu-java-web-app

The Spring Boot Extension Pack, which includes Spring Boot Dashboard

Deploy a workload

Deploy the workload for an app to a cluster by following the steps in Deploy a Workload to the
Cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 1401

https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-spring-boot-dashboard
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/tanzu-java-web-app
https://marketplace.visualstudio.com/items?itemName=Pivotal.vscode-boot-dev-pack


View memory use in Spring Boot Dashboard

To view the Spring Boot Dashboard, run View: Show Spring Boot Dashboard from the Command
Palette.

When the app is running, the Memory View section is displayed in Spring Boot Dashboard. The
graphical representation in the memory view highlights the memory use inside the Java virtual
machine (JVM). The drop-down menus beneath the graph enable you to switch between different
running processes and graphical views.

The heap and non-heap memory regions provide memory insights into the application. The real-
time graphs display a stacked overview of the different spaces in memory relative to the total
memory used and total memory size.

Tanzu Application Platform v1.4

VMware by Broadcom 1402



The memory view also contains graphs to display the garbage-collection pauses and garbage-
collection events. Long and frequent garbage-collection pauses indicate that the app is having a
memory problem that requires further investigation.

Tanzu Application Platform v1.4

VMware by Broadcom 1403



Tanzu Application Platform v1.4

VMware by Broadcom 1404



The graphs show only real-time data. You can configure the number of data points to view and the
interval by changing the settings. To access the settings on macOS, go to Code > Preferences >
Settings > Extensions > Spring Boot Dashboard > Memory View Settings. The navigation path
might differ on other operating systems, such as Windows and Linux.

Tanzu Application Platform v1.4

VMware by Broadcom 1405



Troubleshoot Tanzu Developer Tools for VS Code

This topic tells you what to do when you encounter issues with VMware Tanzu Developer Tools for
Visual Studio Code (VS Code).

Unable to view workloads on the panel when connected to
GKE cluster

Symptom

When connecting to Google’s GKE clusters, an error appears with the text WARNING: the gcp auth
plugin is deprecated in v1.22+, unavailable in v1.25+; use gcloud instead.

Cause

GKE authentication was extracted into a separate plug-in and is no longer inside the Kubernetes
client or libraries.

Solution

Download and configure the GKE authentication plug-in. For instructions, see the Google
documentation.

Live Update fails with UnsupportedClassVersionError

Symptom

After live-update has synchronized changes you made locally to the running workload, the
workload pods start failing with an error message similar to the following:

Caused by: org.springframework.beans.factory.CannotLoadBeanClassException: Error loadi

ng class

[com.example.springboot.HelloController] for bean with name 'helloController' defined 

in file

[/workspace/BOOT-INF/classes/com/example/springboot/HelloController.class]: problem wi

th class file

or dependent class; nested exception is

java.lang.UnsupportedClassVersionError: com/example/springboot/HelloController has bee

n compiled by

a more recent version of the Java Runtime (class file version 61.0), this version of t

he

Java Runtime only recognizes class file versions up to 55.0

Cause

The classes produced locally on your machine are compiled to target a later Java virtual machine
(JVM). The error message mentions class file version 61.0, which corresponds to Java 17. The
buildpack, however, is set up to run the application with an earlier JVM. The error message
mentions class file versions up to 55.0, which corresponds to Java 11.

The root cause of this is a misconfiguration of the Java compiler that VS Code uses. The cause
might be a suspected issue with the VS Code Java tooling, which sometimes fails to properly
configure the compiler source and target compatibility-level from information in the Maven POM.

For example, in the tanzu-java-web-app sample application the POM contains the following:

<properties>

        <java.version>11</java.version>

Tanzu Application Platform v1.4

VMware by Broadcom 1406

https://cloud.google.com/blog/products/containers-kubernetes/kubectl-auth-changes-in-gke


        ...

</properties>

This correctly specifies that the app must be compiled for Java 11 compatibility. However, the VS
Code Java tooling sometimes fails to take this information into account.

Solution

Force the VS Code Java tooling to re-read and synchronize information from the POM:

1. Right-click the pom.xml file.

2. Click Reload Projects.

This causes the internal compiler level to be set correctly based on the information from pom.xml.
For example, Java 11 in tanzu-java-web-app.

Timeout error when Live Updating

Symptom

When you attempt to Live Update your workload, the following error message appears in the log:

ERROR: Build Failed: apply command timed out after 30s - see }}{{https://docs.tilt.de

v/api.html#api.update_settings{{ for how to increase}}

Cause

Kubernetes times out on upserts over 30 seconds.

Solution

Add update_settings (k8s_upsert_timeout_secs = 300) to the Tiltfile. For more information, see
the Tiltfile documentation.

Task-related error when running a Tanzu Debug launch
configuration

Symptom

When you attempt to run a Tanzu Debug launch configuration, you see a task-related error
message similar to the following:

Could not find the task 'tanzuManagement: Kill Port Forward my-app

Cause

The task you’re trying to run is no longer supported.

Solution

Delete the launch configuration from your launch.json file in your .vscode directory.

Frequent application restarts

Symptom

When an application is applied from VS Code it restarts frequently.

Tanzu Application Platform v1.4

VMware by Broadcom 1407

https://docs.tilt.dev/api.html#api.update_settings


Cause

An application or environment behavior is triggering the application to restart.

Observed trigger behaviors include:

The application itself writing logs to the file system in the application directory that Live
Update is watching

Autosave being set to a very high frequency in the IDE configuration

Solution

Prevent the trigger behavior. Example solutions include:

Prevent 12-factor applications from writing to the file system.

Reduce the autosave frequency to once every few minutes.

Overview of Tanzu Developer Tools for IntelliJ

Tanzu Developer Tools for IntelliJ is the official VMware Tanzu IDE extension for IntelliJ IDEA. The
extension helps you develop with Tanzu Application Platform and enables you to rapidly iterate on
your workloads on supported Kubernetes clusters that have Tanzu Application Platform installed.

Tanzu Developer Tools for IntelliJ currently supports Java applications on macOS and Windows.

Extension features

This extension gives the following features.

Deploy applications directly from IntelliJ:

Rapidly iterate on your applications on Tanzu Application Platform and deploy them as
workloads directly from within IntelliJ.

See code updates running on-cluster in seconds:

With the use of Live Update facilitated by Tilt, deploy your workload once, save changes to
the code and then, seconds later, see those changes reflected in the workload running on
the cluster.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies updated, among other variables.

See workloads running on the cluster:

From the Workloads panel you can see any workload found within the cluster and
namespace specified in the current kubectl context.

Work with microservices in a Java monorepo:

Tanzu Developer Tools for IntelliJ v1.3 and later supports working with a monorepo
containing multiple modules that represent different microservices. This makes it possible to
deploy, debug, and live update multiple workloads simultaneously from the same IntelliJ
multimodule project. For more information about projects with multiple modules, see the
IntelliJ documentation. For more information about a typical monorepo setup, see Working
with microservices in a monorepo.

Next steps

Tanzu Application Platform v1.4

VMware by Broadcom 1408

https://www.jetbrains.com/help/idea/creating-and-managing-modules.html#modules-idea-java


Follow the steps to install the extension.

Overview of Tanzu Developer Tools for IntelliJ

Tanzu Developer Tools for IntelliJ is the official VMware Tanzu IDE extension for IntelliJ IDEA. The
extension helps you develop with Tanzu Application Platform and enables you to rapidly iterate on
your workloads on supported Kubernetes clusters that have Tanzu Application Platform installed.

Tanzu Developer Tools for IntelliJ currently supports Java applications on macOS and Windows.

Extension features

This extension gives the following features.

Deploy applications directly from IntelliJ:

Rapidly iterate on your applications on Tanzu Application Platform and deploy them as
workloads directly from within IntelliJ.

See code updates running on-cluster in seconds:

With the use of Live Update facilitated by Tilt, deploy your workload once, save changes to
the code and then, seconds later, see those changes reflected in the workload running on
the cluster.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies updated, among other variables.

See workloads running on the cluster:

From the Workloads panel you can see any workload found within the cluster and
namespace specified in the current kubectl context.

Work with microservices in a Java monorepo:

Tanzu Developer Tools for IntelliJ v1.3 and later supports working with a monorepo
containing multiple modules that represent different microservices. This makes it possible to
deploy, debug, and live update multiple workloads simultaneously from the same IntelliJ
multimodule project. For more information about projects with multiple modules, see the
IntelliJ documentation. For more information about a typical monorepo setup, see Working
with microservices in a monorepo.

Next steps

Follow the steps to install the extension.

Install Tanzu Developer Tools for IntelliJ

This topic explains how to install the VMware Tanzu Developer Tools for IntelliJ IDE extension. The
extension currently only supports Java applications on macOS and Windows. The extension
currently supports IntelliJ IDEA v2022.2 to v2022.3.

Prerequisites

Before installing the extension, you must have:

IntelliJ

Tanzu Application Platform v1.4

VMware by Broadcom 1409

https://www.jetbrains.com/help/idea/creating-and-managing-modules.html#modules-idea-java
https://www.jetbrains.com/idea/download/#section=mac


kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

Install

To install VMware Tanzu Developer Tools for IntelliJ:

1. Download VMware Tanzu Developer Tools for IntelliJ from the VMware Tanzu Network.

2. Open IntelliJ.

3. Open the Preferences pane and then go to Plugins.

4. Click the gear icon and then click Install Plugin from disk….

5. Use the file picker to select the ZIP file downloaded from the VMware Tanzu Network.

Update

To update to a later version, repeat the steps in the Install section. You do not need to uninstall the
current version.

Uninstall

To uninstall the VMware Tanzu Developer Tools for IntelliJ:

Note

If you are an app developer, someone else in your organization might have already
set up the Tanzu Application Platform environment.

Tanzu Application Platform v1.4

VMware by Broadcom 1410

https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform/


1. Open the Preferences pane and then go to Plugins.

2. Select the extension, click the gear icon, and then click Uninstall.

3. Restart IntelliJ.

Next steps

Proceed to Getting started.

Get Started with Tanzu Developer Tools for IntelliJ

This topic guides you through getting started with Tanzu Developer Tools for IntelliJ.

Prerequisite

Install Tanzu Developer Tools for IntelliJ.

Run Tanzu Developer Tools for IntelliJ

Run IntelliJ from a CLI, instead of through your operating system GUI, to avoid restricting the set of
environment variables the app receives. This is especially relevant for macOS.

Limited environment variables can cause problems with cluster authentication for Tanzu Developer
Tools for IntelliJ. For example, a common situation is that a sanitized PATH does not provide access
to the gke-cloud-auth-plugin installed on your system. This makes Tanzu Developer Tools for
IntelliJ unable to authenticate and access your GKE cluster.

This situation is complex and different things can go wrong depending on:

Precisely how you installed various cloud-related CLI tools

How you set environment variables

Your OS version

Which cloud provider and authentication method you are using

All of these problems are most easily avoided by running IntelliJ from a CLI. Run IntelliJ from a CLI
in macOS by running:

open /Applications/IntelliJ\ IDEA.app

Set up Tanzu Developer Tools

The extension makes use of the following files within your project:

workload.yaml

catalog-info.yaml

Tiltfile

.tanzuignore

You can create these files by using the instructions in this topic, or use the files in the View an
example project section.

There are two ways to create these files:

Using the code snippets that Tanzu Developer Tools provide, which create templates in
empty files that you then fill in with the required information.

Tanzu Application Platform v1.4

VMware by Broadcom 1411



Writing the files manually.

Create the workload.yaml file

You must include a file named workload.yaml in your project. For example, my-
project/config/workload.yaml.

workload.yaml provides instructions to Supply Chain Choreographer about how to build and
manage a workload. For more information, see Supply Chain Choreographer for Tanzu.

The Tanzu Developer Tools for IntelliJ extension requires only one workload.yaml file per project.
workload.yaml must be a single-document YAML file, not a multi-document YAML file.

To create a workload.yaml file by using code snippets:

1. Right-click on the IntelliJ project explorer and then click New.

2. Select the Tanzu workload.

3. Add the filename workload.

4. Fill in the template.

See the following workload.yaml example:

apiVersion: carto.run/v1alpa1

kind: Workload

metadata:

 name: APP-NAME

 labels:

   apps.tanzu.vmware.com/workload-type: WORKLOAD-TYPE

   app.kubernetes.io/part-of: APP-NAME

spec:

 source:

   git:

     url: GIT-SOURCE-URL

     ref:

       branch: GIT-BRANCH-NAME

Where:

APP-NAME is the name of your application. For example, my app.

WORKLOAD-TYPE is the type of workload for your app. For example, web. For more
information, see Workload types.

GIT-SOURCE-URL is the Git source code URL for your app. For example,
github.com/mycompany/myapp.

GIT-BRANCH-NAME is the branch of the Git source code you want to use. For example, main.

Alternatively you can use the Tanzu CLI to create a workload.yaml file. For more information about
the relevant Tanzu CLI command, see Tanzu apps workload apply.

Create the catalog-info.yaml file

You must include a file named catalog-info.yaml in your project. For example, my-
project/catalog/catalog-info.yaml.

catalog-info.yaml enables the workloads created with Tanzu Developer Tools for IntelliJ to be
visible in Tanzu Application Platform GUI. For more information, see Overview of Tanzu Application
Platform GUI.

To create a catalog-info.yaml file by using the code snippets:

Tanzu Application Platform v1.4

VMware by Broadcom 1412



1. Right-click on the IntelliJ project explorer and then click New.

2. Select the Tanzu Catalog.

3. Add the filename catalog-info.

4. Fill in the template.

See the following workload.yaml example:

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: APP-NAME

 description: APP-DESCRIPTION

 tags:

   - tanzu

 annotations:

   'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=APP-NAME'

spec:

 type: service

 lifecycle: experimental

 owner: default-team

Where:

APP-NAME is the name of your application.

APP-DESCRIPTION is a description of your application.

Create the Tiltfile file

In your project you must include a file named Tiltfile with no extension (no filetype), such as my-
project/Tiltfile.

The Tiltfile provides the configuration for Tilt to enable your project to Live Update on the Tanzu
Application Platform-enabled Kubernetes cluster. For more information, see the Tilt
documentation.

The Tanzu Developer Tools for IntelliJ extension requires only one Tiltfile per project.

The following is an example Tiltfile:

SOURCE_IMAGE = os.getenv("SOURCE_IMAGE", default='SOURCE-IMAGE-VALUE')

LOCAL_PATH = os.getenv("LOCAL_PATH", default='.')

NAMESPACE = os.getenv("NAMESPACE", default='default')

k8s_custom_deploy(

   'APP-NAME',

   apply_cmd="tanzu apps workload apply -f PATH-TO-WORKLOAD-YAMl --live-update" +

       " --local-path " + LOCAL_PATH +

       " --source-image " + SOURCE_IMAGE +

       " --namespace " + NAMESPACE +

       " --yes >/dev/null" +

       " && kubectl get workload APP-NAME --namespace " + NAMESPACE + " -o yaml",

   delete_cmd="tanzu apps workload delete -f PATH-TO-WORKLOAD-YAML --namespace " + NAM

ESPACE + " --yes" ,

   deps=['pom.xml', './target/classes'],

   container_selector='workload',

   live_update=[

       sync('./target/classes', '/workspace/BOOT-INF/classes')

   ]

)

k8s_resource('APP-NAME', port_forwards=["8080:8080"],

   extra_pod_selectors=[{'carto.run/workload-name': 'APP-NAME', 'app.kubernetes.io/com

Tanzu Application Platform v1.4

VMware by Broadcom 1413

https://docs.tilt.dev/


ponent': 'run'}])

allow_k8s_contexts('CONTEXT-NAME')

Where:

SOURCE-IMAGE-VALUE is your source image.

APP-NAME is the name of your application.

PATH-TO-WORKLOAD-YAML is the local file system path to your workload.yaml file. For example,
config/workload.yaml.

CONTEXT-NAME is the name of your current Kubernetes context. If your Tanzu Application
Platform-enabled Kubernetes cluster is running on your local machine, you can remove the
entire allow_k8s_contexts line. For more information about this line, see the Tilt
documentation.

If you want to compile the source image from a local directory other than the project directory,
change the value of local path. For more information, see local path in the glossary.

Create the .tanzuignore file

In your project, you can include a file named .tanzuignore with no file extension. For example, my-
project/.tanzuignore.

When working with local source code, .tanzuignore excludes files from the source code that are
uploaded within the image. It has syntax similar to the .gitignore file.

For an example, see the .tanzuignore file in GitHub that is used for the sample Tanzu Java web
app. You can use the file as it is or edit it for your needs.

View an example project

Before you begin, you need a container image registry to use the sample application. There are
two ways to view a sample application that demonstrates the necessary configuration files.

Use Application Accelerator
If your company has configured Application Accelerator, you can obtain the sample application
there if it was not removed. To view the example using Application Accelerator:

1. Open Application Accelerator. The Application Accelerator location varies based on
where your company placed it. Contact the appropriate team to learn its location.

2. Search for Tanzu Java Web App in the Application Accelerator.

3. Add the required configuration information and generate the application.

4. Unzip the application and open the directory in IntelliJ.

Clone from GitHub
To clone the example from GitHub:

1. Use git clone to clone the application-accelerator-samples repository from GitHub.

2. Go to the tanzu-java-web-app directory.

3. Open the Tiltfile and replace your-registry.io/project with your registry.

Next steps

Use Tanzu Developer Tools for IntelliJ.

Tanzu Application Platform v1.4

VMware by Broadcom 1414

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://docs.tilt.dev/api.html#api.allow_k8s_contexts
https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/tanzu-java-web-app/.tanzuignore
https://github.com/vmware-tanzu/application-accelerator-samples


Use Tanzu Developer Tools for IntelliJ

Ensure that the project you want to use the Tanzu Developer Tools for IntelliJ extension with has
the required files specified in Getting started.

The extension requires only one Tiltfile and one workload.yaml file per project. workload.yaml must
be a single-document YAML file, not a multi-document YAML file.

Apply a workload

The extension enables you to apply workloads on your Kubernetes cluster that has Tanzu
Application Platform.

To apply a workload:

1. Right-click anywhere in the IntelliJ project explorer.

2. Click Tanzu > Apply Workload.

3. Click Tanzu > Modify Apply Configuration.

The Tanzu workload apply command is triggered in the terminal and the workload is applied. A
new workload appears on the Tanzu panel.

Delete a workload

The extension enables you to delete workloads on your Kubernetes cluster that has Tanzu
Application Platform.

To delete a workload:

1. Right-click anywhere in the IntelliJ project explorer.

2. Click Tanzu > Delete Workload.

Tanzu Application Platform v1.4

VMware by Broadcom 1415



A message appears that prompts you to delete the workload and not warn again, delete the
workload, or cancel. A notification appears showing that the workload was deleted.

Debugging on the cluster
The extension enables you to debug your application on a Kubernetes cluster that has Tanzu
Application Platform.

Debugging requires a single-document workload.yaml file in your project. For how to create
workload.yaml, see Set up Tanzu Developer Tools.

The developer sandbox experience enables developers to Live Update their code, and
simultaneously debug the updated code, without having to deactivate Live Update when
debugging.

Start debugging on the cluster

To start debugging on the cluster:

1. Add a breakpoint in your code.

2. Right-click the workload.yaml file in your project.

3. Click Debug ‘Tanzu Debug Workload…’ in the pop-up menu.

Tanzu Application Platform v1.4

VMware by Broadcom 1416

https://www.jetbrains.com/help/idea/using-breakpoints.html


4. Ensure that the configuration parameters are set:

Source Image: This is the registry location for publishing local source code. For
example, registry.io/yourapp-source. It must include both a registry and a project
name.

Local Path: This is the path on the local file system to a directory of source code to
build.

Namespace: This is the namespace that workloads are deployed into.

You can also manually create Tanzu Debug configurations by using the Edit Configurations
IntelliJ UI.

Stop Debugging on the Cluster

Click the stop button in the Debug overlay to stop debugging on the cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 1417



Live Update

See the following sections for how to use Live Update.

Start Live Update

To start Live Update:

1. Right-click your project’s Tiltfile and then click Run ‘Tanzu Live Update - …’.

2. Ensure that the configuration parameters are set:

Source Image: This is the registry location for publishing local source code. For
example, registry.io/yourapp-source. It must include both a registry and a project
name.

Local Path: This is the path on the local file system to a directory of source code to
build.

Namespace: This is the namespace that workloads are deployed into.

Stop Live Update

To stop Live Update, use the native controls to stop the Tanzu Live Update Run Configuration that
is running.

Tanzu Workloads panel

The current state of the workloads is visible on the Tanzu Workloads panel in the bottom of the IDE
window. The panel shows the current status of each workload, namespace, and cluster. It also
shows whether Live Update and Debug is running, stopped, or deactivated.

Because each workload is deployed on the cluster, the activity section on the right in the Tanzu
Workloads panel enables developers to visualize the supply chain, delivery, and running application

Note

You must compile your code before the changes are synchronized to the container.
For example, Build Project: ⌘+F9.

Tanzu Application Platform v1.4

VMware by Broadcom 1418



pods. The panel displays detailed error messages on each resource and enables a developer to
view and describe logs on these resources from within their IDE.

The Tanzu Workloads panel uses the cluster and namespace specified in the current kubectl
context.

1. View the current context and namespace by running:

kubectl config get-contexts

2. Set a namespace for the current context by running:

kubectl config set-context --current --namespace=YOUR-NAMESPACE

Working with microservices in a monorepo
A monorepo is single Git repository that contains multiple workloads. Each individual workload is
placed in a subfolder of the main repository.

You can find an example of this in Application Accelerator.

The relevant accelerator is called Spring SMTP Gateway, and you can obtain its source code as an
accelerator or directly from the application-accelerator-samples GitHub repository.

This project is an example of a typical layout:

MONO-REPO-ROOT/

pom.xml (parent pom)

microservice-app-1/

pom.xml

mvnw (and other mvn-related files for building the workload)

Tiltfile (supports Live Update)

config

workload.yaml (supports deploying and debugging from IntelliJ)

src/ (contains source code for this microservice)

microservice-app-2/

…similar layout

Recommended structure: Microservices that can be built
independently

In this example, each of the microservices can be built independently of one another. Each
subfolder contains everything needed to build that workload.

This is reflected in the source section of workload.yaml by using the subPath attribute:

Tanzu Application Platform v1.4

VMware by Broadcom 1419

https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.3.x/spring-smtp-gateway


apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: microservice-app-1

  ...

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/kdvolder/sample-mono-repo.git

    subPath: microservice-app-1 # build only this

  ...

For setting up your own repositories, it’s best practice to set up a monorepo so that each
microservice can be built completely independently.

To work with these monorepos:

1. Import the monorepo as a project into IntelliJ.

2. Interact with each of the subfolders as you would interact with a project containing a single
workload.

Alternative structure: Services with build-time interdependencies

Some monorepos do not have submodules that can be independently built. Instead the pom.xml
files of the submodules are set up to have some build-time interdependencies. For example:

A submodule pom.xml can reference the parent pom.xml as a common place for centralized
dependency management.

A microservice submodule can reference another, as a maven dependency.

Several microservice submodules can reference one or more shared library modules.

For these projects, make these adjustments:

1. Make workload.yaml point to the repository root, not a subfolder. Because submodules
have dependencies on code outside of their own subfolder, all source code from the
repository must be supplied to the workload builder.

2. Make workload.yaml specify additional buildpack arguments through environment variables.
They differentiate the submodule that the build is targeting.

Both of these workload.yaml changes are in the following example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

name: fortune-ui

labels:

  apps.tanzu.vmware.com/workload-type: web

  app.kubernetes.io/part-of: fortune-ui

spec:

build:

  env:

     - name: BP_MAVEN_BUILD_ARGUMENTS

     value: package -pl fortune-teller-ui -am # indicate which module to build.

     - name: BP_MAVEN_BUILT_MODULE

     value: fortune-teller-ui # indicate where to find the built artefact to de

ploy.

source:

  git:

     url: https://github.com/my-user/fortune-teller # repository root

Tanzu Application Platform v1.4

VMware by Broadcom 1420



     ref:

     branch: main

For more information about these and other BP_xxx buildpack parameters, see the
Buildpack documentation.

3. Make the local path attribute in the launch configuration for each workload point to the
path of the repository root. Because submodules have dependencies on code outside of
their own subfolder, all source code from the repository must be supplied to the workload
builder.

Glossary of terms
This topic gives you explanations of common terms used throughout the Tanzu Developer Tools for
IntelliJ documentation, and within the extension itself. Some of these terms are unique to Tanzu
Application Platform, while others might have a different meaning outside of Tanzu Application
Platform and are included here for clarification.

Live Update
Live Update, facilitated by Tilt, enables you to deploy your workload once, save changes to the
code, and see those changes reflected in the workload running on the cluster within seconds.

Tiltfile
The Tiltfile is a file with no extension that is required for Tilt to enable the Live Update feature. For
more information about the Tiltfile, see the Tilt documentation.

Debugging on the cluster
The Tanzu Developer Tools on IntelliJ extension enables you to debug your application in an
environment similar to production by debugging on your Tanzu Application Platform enabled
Kubernetes cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 1421

https://github.com/paketo-buildpacks/maven/blob/main/README.md
https://docs.tilt.dev/
https://docs.tilt.dev/tiltfile_concepts.html


YAML file format
YAML is a human-readable data-serialization language. It is commonly used for configuration files.
For more information, see the YAML Wikipedia entry.

workload.yaml file
The workload YAML file is a required configuration file used by the Tanzu Application Platform to
specify the details of an application including its name, type, and source code URL.

catalog-info.yaml file
The catalog-info YAML file enables the workloads created with the Tanzu Developer Tools for
IntelliJ extension to be visible in the Tanzu Application Platform GUI.

Code snippet
Code snippets enable you to quickly add project files that are necessary to develop using Tanzu
Application Platform by creating a template in an empty file that you fill out with the required
information.

Source image
The source image is the registry location to publish local source code, for example,
registry.io/yourapp-source. This must include both a registry and a project name.

Local path
The local path value tells the Tanzu Developer Tools for IntelliJ extension which directory on your
local file system to bring into the source image container image. The default local path value is the
current directory where you saved the files for your open IntelliJ project.

Kubernetes context
A Kubernetes context is a set of access parameters that contains a Kubernetes cluster, a user, and
a namespace. A Kubernetes context acts like a set of coordinates that describe the target of the
Kubernetes commands that you run. For more information, see the Kubernetes documentation.

Kubernetes namespace
As defined by the Kubernetes documentation, in Kubernetes, namespaces provide a mechanism
for isolating groups of resources within a single cluster. Names of resources need to be unique
within a namespace, but not across namespaces.

Troubleshoot Tanzu Developer Tools for IntelliJ
This topic helps you troubleshoot issues with Tanzu Developer Tools for IntelliJ.

Note

An environment’s similarity to production relies on keeping dependencies updated,
among other variables.

Tanzu Application Platform v1.4

VMware by Broadcom 1422

https://en.wikipedia.org/wiki/YAML
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/


Tanzu Debug re-applies the workload when namespace
field is empty

Symptoms

If the namespace field of the debug launch configuration is empty, the workload is re-applied even if
it exists on the cluster.

Cause

Internally, workloads are gathered in the cluster in the current namespace and compared with the
information that you specify. If the namespace field is empty, it is considered null and the internal
checks fail.

Solution

Do not leave the namespace field blank.

Workload is wrongly re-applied because of debug
configuration selected from the launch configuration drop-
down menu

Symptoms

If your debug configuration is created from the launch configuration drop-down menu, it re-applies
the workload even if the workload already exists on the cluster.

Cause

There is internal logic that is not run when debug configuration is created from the drop-down
menu. However, the logic is run when debug configuration is selected from the right-click pop-up
menu.

Solution

Select debug configuration from the right-click pop-up menu.

Unable to view workloads on the panel when connected to
GKE cluster

Symptom

When connecting to Google’s GKE clusters, an error appears with the text WARNING: the gcp auth
plugin is deprecated in v1.22+, unavailable in v1.25+; use gcloud instead.

Cause

GKE authentication was extracted into a separate plug-in and is no longer inside the Kubernetes
client or libraries.

Solution

Download and configure the GKE authentication plug-in. For instructions, see the Google
documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 1423

https://cloud.google.com/blog/products/containers-kubernetes/kubectl-auth-changes-in-gke


Deactivated launch controls after running a launch
configuration

Symptom

When you run or debug a launch configuration, IntelliJ deactivates the launch controls.

Cause

IntelliJ deactivates the launch controls to prevent other launch configurations from being launched
at the same time. These controls are reactivated when the launch configuration is started. As such,
starting multiple Tanzu debug and live update sessions is a synchronous activity.

Starting a Tanzu Debug session fails with Unable to open
debugger port

Symptom

You try to start a Tanzu Debug session and it immediately fails with an error message similar to:

Error running 'Tanzu Debug - fortune-teller-fortune-service': Unable to open debugger 

port (localhost:5005): java.net.ConnectException "Connection refused"

Cause

Old Tanzu Debug launch configurations sometimes appear to be corrupted after installing a later
version of the plug-in. You can see whether this is the problem you are experiencing by opening
the launch configuration:

1. Right-click workload.yaml.

2. Click Modify Run Configuration… in the menu.

3. Scroll down and expand the Before Launch section of the dialog.

4. Verify that it contains the two Unknown Task entries
com.vmware.tanzu.tanzuBeforeRunPortForward and
com.vmware.tanzu.tanzuBeforeRunWorkloadApply.

Because these two tasks are unknown causes, these steps of the debug launch are not run. This in
turn means that the target application is not deployed and accessible on the expected port, which
causes an error when the debugger tries to connect to it.

It might be that although the launch configuration appears corrupt when seen in the launch config
editor, in fact there is no corruption. It’s suspected that this problem only occurs when you install a
new version of the plug-in and start using it before first restarting IntelliJ.

There is possibly an issue in the IntelliJ platform that prevents completely or correctly initializing the
plug-in when the plug-in is hot-swapped into an active session instead of loaded on startup.

Solution

Closing and restarting IntelliJ typically fixes this problem. If that doesn’t work for you, delete the old
corrupted launch configuration and recreate it.

Timeout error when Live Updating

Symptom

Tanzu Application Platform v1.4

VMware by Broadcom 1424



When you attempt to Live Update your workload, the following error message appears in the log:

ERROR: Build Failed: apply command timed out after 30s - see }}{{https://docs.tilt.de

v/api.html#api.update_settings{{ for how to increase}}

Cause

Kubernetes times out on upserts over 30 seconds.

Solution

Add update_settings (k8s_upsert_timeout_secs = 300) to the Tiltfile. For more information, see
the Tiltfile documentation.

Tanzu Panel empty when using a GKE cluster on macOS

Symptom

On macOS, the Tanzu Panel doesn’t display workloads or any other resources when using a GKE
cluster. Other tools, such as the Tanzu CLI Apps plug-in, display resources correctly.

Cause

gke-cloud-auth-plugin is required to properly authenticate to a GKE cluster. However, when
starting IntelliJ from Dock or Spotlight, environment variables set by using .profile,
.bash_profile, or .zshrc are not available. For more information, see this YouTrack issue.

This might cause gke-cloud-auth-plugin to be missing from PATH when launching IntelliJ and
prevent the Tanzu Panel from reaching the cluster.

Solution

Open IntelliJ from the CLI. Example command:

open /Applications/IntelliJ\ IDEA.app

The Describe action in the Activity panel fails when used on
PodIntent resources

Symptom

The pop-up menu Describe action in the Activity panel fails when used on PodIntent resources.
The error message is similar to the following:

Warning: conventions.apps.tanzu.vmware.com/v1alpha1 PodIntent is deprecated; \

use conventions.carto.run/v1alpha1 PodIntent instead

Error from server (NotFound): podintents.conventions.apps.tanzu.vmware.com "my-app" no

t found

Process finished with exit code 1

Cause

When there are multiple resource types with the same kind, attempting to describe a resource of
that kind without fully qualifying the API version causes this error.

Tanzu Application Platform v1.4

VMware by Broadcom 1425

https://docs.tilt.dev/api.html#api.update_settings
https://youtrack.jetbrains.com/issue/IDEA-99154


Solution

There is no workaround for this issue at present. A fix is planned for this issue in the next version.

Tanzu panel shows workloads but doesn’t show Kubernetes
resources

Symptom

The Tanzu panel shows workloads but doesn’t show Kubernetes resources in the center panel of
the activity pane.

Cause

When switching the Kubernetes context, the activity pane doesn’t automatically update the
namespace, but the workload pane detects the new namespace. Therefore, the Tanzu panel shows
workloads but doesn’t show Kubernetes resources in the center panel of the activity pane.

Solution

Restart IntelliJ to properly detect the context change.

Live Update does not work with the Jammy ClusterBuilder

Symptom

Live Update does not work when using the Jammy ClusterBuilder.

Solution

A fix is planned for Tanzu Application Platform v1.5.1.

Frequent application restarts

Symptom

When an application is applied from IntelliJ it restarts frequently.

Cause

An application or environment behavior is triggering the application to restart.

Observed trigger behaviors include:

The application itself writing logs to the file system in the application directory that Live
Update is watching

Autosave being set to a very high frequency in the IDE configuration

Solution

Prevent the trigger behavior. Example solutions include:

Prevent 12-factor applications from writing to the file system.

Reduce the autosave frequency to once every few minutes.

Overview of Tanzu Application Platform GUI

Tanzu Application Platform v1.4

VMware by Broadcom 1426



Tanzu Application Platform GUI (commonly called TAP GUI) is a tool for your developers to view
your applications and services running for your organization. This portal provides a central location
in which you can view dependencies, relationships, technical documentation, and the service
status.

Tanzu Application Platform GUI is built from the Cloud Native Computing Foundation’s project
Backstage.

Tanzu Application Platform GUI consists of the following components:

Your organization catalog:

The catalog serves as the primary visual representation of your running services
(components) and applications (systems).

Tanzu Application Platform GUI plug-ins:

These plug-ins expose capabilities regarding specific Tanzu Application Platform tools.
Initially the included plug-ins are:

Runtime Resources Visibility

Application Live View

Application Accelerator

API Documentation

Supply Chain Choreographer

TechDocs:

This plug-in enables you to store your technical documentation in Markdown format in a
source-code repository and display it alongside the relevant catalog entries.

Search:

This plug-in enables you to search your organization’s catalog, including domains, systems,
components, APIs, accelerators, and TechDocs.

A Git repository:

Tanzu Application Platform GUI stores the following in a Git repository:

The structure for your application catalog.

Your technical documentation about the catalog items, if you enable Tanzu
Application Platform GUI TechDocs capabilities.

You can host the structure for your application catalog and your technical documentation in the
same repository as your source code.

Tanzu Application Platform v1.4

VMware by Broadcom 1427

https://www.cncf.io/
https://backstage.io/


Overview of Tanzu Application Platform GUI

Tanzu Application Platform GUI (commonly called TAP GUI) is a tool for your developers to view
your applications and services running for your organization. This portal provides a central location
in which you can view dependencies, relationships, technical documentation, and the service
status.

Tanzu Application Platform GUI is built from the Cloud Native Computing Foundation’s project
Backstage.

Tanzu Application Platform GUI consists of the following components:

Your organization catalog:

The catalog serves as the primary visual representation of your running services
(components) and applications (systems).

Tanzu Application Platform GUI plug-ins:

These plug-ins expose capabilities regarding specific Tanzu Application Platform tools.
Initially the included plug-ins are:

Runtime Resources Visibility

Application Live View

Application Accelerator

API Documentation

Supply Chain Choreographer

TechDocs:

This plug-in enables you to store your technical documentation in Markdown format in a
source-code repository and display it alongside the relevant catalog entries.

Search:

This plug-in enables you to search your organization’s catalog, including domains, systems,
components, APIs, accelerators, and TechDocs.

A Git repository:

Tanzu Application Platform GUI stores the following in a Git repository:

The structure for your application catalog.

Your technical documentation about the catalog items, if you enable Tanzu
Application Platform GUI TechDocs capabilities.

Tanzu Application Platform v1.4

VMware by Broadcom 1428

https://www.cncf.io/
https://backstage.io/


You can host the structure for your application catalog and your technical documentation in the
same repository as your source code.

Install Tanzu Application Platform GUI

This topic tells you how to install Tanzu Application Platform GUI (commonly called TAP GUI) from
the Tanzu Application Platform package repository.

Prerequisites

Before installing Tanzu Application Platform GUI:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
the Tanzu Application Platform Prerequisites.

Create a Git repository for Tanzu Application Platform GUI software catalogs, with a token
allowing read access. Supported Git infrastructure includes:

GitHub

GitLab

Azure DevOps

Install Tanzu Application Platform GUI Blank Catalog

1. Go to the Tanzu Application Platform section of VMware Tanzu Network.

2. Under the list of available files to download, open the tap-gui-catalogs-latest
folder.

3. Extract Tanzu Application Platform GUI Blank Catalog to your Git repository. This
serves as the configuration location for your organization’s Catalog inside Tanzu
Application Platform GUI.

Procedure

To install Tanzu Application Platform GUI on a compliant Kubernetes cluster:

1. List version information for the package by running:

tanzu package available list tap-gui.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list tap-gui.tanzu.vmware.com --namespace tap-install

- Retrieving package versions for tap-gui.tanzu.vmware.com...

  NAME                      VERSION     RELEASED-AT

  tap-gui.tanzu.vmware.com  1.0.1       2022-01-10T13:14:23Z

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get tap-gui.tanzu.vmware.com/VERSION-NUMBER --values-sc

hema --namespace \

Note

Follow the steps in this topic if you do not want to use a profile to install Tanzu
Application Platform GUI. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1429

https://network.tanzu.vmware.com/products/tanzu-application-platform/


tap-install

Where VERSION-NUMBER is the number you discovered previously. For example, 1.0.1.

For more information about values schema options, see the individual product
documentation.

3. Create tap-gui-values.yaml and paste in the following YAML:

ingressEnabled: true

ingressDomain: "INGRESS-DOMAIN"

app_config:

  catalog:

    locations:

      - type: url

        target: https://GIT-CATALOG-URL/catalog-info.yaml

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-
shared-ingress service’s External IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. It is
from either the included Blank catalog (provided as an additional download named
Blank Tanzu Application Platform GUI Catalog) or a Backstage-compliant catalog
that you’ve already built and posted on the Git infrastructure specified in Adding
Tanzu Application Platform GUI integrations.

4. Install the package by running:

tanzu package install tap-gui \

 --package-name tap-gui.tanzu.vmware.com \

 --version VERSION -n tap-install \

 -f tap-gui-values.yaml

Where VERSION is the version that you want. For example, 1.0.1.

For example:

$ tanzu package install tap-gui -package-name tap-gui.tanzu.vmware.com --versio

n 1.0.1 -n \

tap-install -f tap-gui-values.yaml

- Installing package 'tap-gui.tanzu.vmware.com'

| Getting package metadata for 'tap-gui.tanzu.vmware.com'

| Creating service account 'tap-gui-default-sa'

| Creating cluster admin role 'tap-gui-default-cluster-role'

| Creating cluster role binding 'tap-gui-default-cluster-rolebinding'

| Creating secret 'tap-gui-default-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tap-gui' in namespace 'tap-install'

5. Verify that the package installed by running:

tanzu package installed get tap-gui -n tap-install

For example:

$ tanzu package installed get tap-gui -n tap-install

| Retrieving installation details for cc...

NAME:                    tap-gui

PACKAGE-NAME:            tap-gui.tanzu.vmware.com

Tanzu Application Platform v1.4

VMware by Broadcom 1430



PACKAGE-VERSION:         1.0.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

6. To access Tanzu Application Platform GUI, use the service you exposed in the service_type
field in the values file.

Runtime configuration options for Tanzu Application
Platform GUI
You can provide a series of options to the Tanzu Application Platform GUI (commonly called TAP
GUI) package to configure it and do some basic runtime customization.

Identify the Tanzu Application Platform GUI version you
have available

From the Tanzu CLI, discover the Tanzu Application Platform GUI package version that is available
to configure by running:

tanzu package available get tap-gui.tanzu.vmware.com -n INSTALL-NAMESPACE

Where INSTALL-NAMESPACE is the namespace in which you configured the Tanzu Application
Platform installation. In most cases the namespace is tap-install.

For example:

$ tanzu package available get tap-gui.tanzu.vmware.com -n tap-install

NAME:                   tap-gui.tanzu.vmware.com

DISPLAY-NAME:           Tanzu Application Platform GUI

CATEGORIES:

SHORT-DESCRIPTION:      web app graphical user interface for Tanzu Application Platfor

m

LONG-DESCRIPTION:       web app graphical user interface for Tanzu Application Platfor

m

PROVIDER:               VMware

MAINTAINERS:            - name: VMware

SUPPORT-DESCRIPTION:    https://tanzu.vmware.com/support

  VERSION  RELEASED-AT

  1.7.6    2023-10-17 00:25:21 +0000 UTC

Display the possible values options for Tanzu Application
Platform GUI
From the Tanzu CLI, identify possible values options for Tanzu Application Platform GUI by running:

tanzu package available get tap-gui.tanzu.vmware.com/VERSION --values-schema -n INSTAL

L-NAMESPACE

Where:

VERSION is the Tanzu Application Platform GUI package version you learned earlier

INSTALL-NAMESPACE is the namespace in which you configured the Tanzu Application
Platform installation. In most cases the namespace is tap-install.

Tanzu Application Platform v1.4

VMware by Broadcom 1431



For example:

$ tanzu package available get tap-gui.tanzu.vmware.com/1.7.6 --values-schema -n tap-in

stall

  KEY                                                                 DEFAULT   TYPE     

DESCRIPTION

  #Details of all the possible configuration values

  ...

Customize the Tanzu Application Platform GUI portal

This section describes how to customize the Tanzu Application Platform GUI portal.

Customize branding

To customize the branding in your portal, you can choose the name of the portal and the logo for it.
To make these customizations:

1. Provide additional configuration parameters to the app_config section of tap-values.yaml:

tap_gui:

  app_config:

    customize:

      custom_logo: 'BASE-64-IMAGE'

      custom_name: 'PORTAL-NAME'

Where:

BASE-64-IMAGE is the image encoded in base64. A 512-pixel by 512-pixel PNG image
with a transparent background is optimal.

PORTAL-NAME is the name of your portal, such as Our Custom Developer Experience
Portal.

2. Reinstall your Tanzu Application Platform GUI package by following steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

If there is an error in any of the supplied images encoded in base64 or in your choice of portal
name, Tanzu Application Platform GUI reverts to the original branding template.

Tanzu Application Platform v1.4

VMware by Broadcom 1432



Customize the Software Catalog page

You can customize the name of your organization on the Software Catalog page of Tanzu
Application Platform GUI portal. By default, the portal displays Your Organization next to Catalog
and in the selection box.

Customize the name of the organization

To customize the name of the organization for the software catalog in your portal:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    organization:

      name: 'ORG-NAME'

Where ORG-NAME is the name of your organization for the software catalog, such as Our
Organization Name. You don’t need to add Catalog to the ORG-NAME.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

If there is an error in the provided configuration parameters, Tanzu Application Platform GUI reverts
to the original organization name.

Prevent changes to the software catalog

Tanzu Application Platform v1.4

VMware by Broadcom 1433



You can deactivate the Register Entity button to prevent a user from making changes to the
software catalog, including registering and deregistering locations. To do so, add readonly: true to
the catalog section in tap-values.yaml, as in this example:

tap_gui:

  app_config:

    catalog:

      readonly: true

Customize the Authentication page

To customize the portal name on the Authentication page and the name of the browser tab for
Tanzu Application Platform GUI:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    app:

      title: 'CUSTOM-TAB-NAME'

Where CUSTOM-TAB-NAME is the name on the Authentication page and the browser tab of
your portal, such as Our Organization Full Name.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Customize the default view
You can set your default route when the user is accessing your portal. Without this customization,
when the user accesses the Tanzu Application Platform GUI URL, it displays the list of owned
components of the software catalog.

To change the default view:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    customize:

      default_route: 'YOUR-PREFERRED-ROUTE'

Where YOUR-PREFERRED-ROUTE is the path to the route that the portal uses by default. For
example, you can type /catalog?filters%5Bkind%5D=component&filters%5Buser%5D=all to
show all components of the software catalog instead of defaulting to owned components.
As another example, you can type /create to show Application Accelerator when the portal
starts.

Caution

Tanzu Application Platform v1.4

VMware by Broadcom 1434



2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Customize the Tanzu Application Platform GUI portal

This section describes how to customize the Tanzu Application Platform GUI portal.

Customize branding

To customize the branding in your portal, you can choose the name of the portal and the logo for it.
To make these customizations:

1. Provide additional configuration parameters to the app_config section of tap-values.yaml:

tap_gui:

  app_config:

    customize:

      custom_logo: 'BASE-64-IMAGE'

      custom_name: 'PORTAL-NAME'

Where:

BASE-64-IMAGE is the image encoded in base64. A 512-pixel by 512-pixel PNG image
with a transparent background is optimal.

PORTAL-NAME is the name of your portal, such as Our Custom Developer Experience
Portal.

2. Reinstall your Tanzu Application Platform GUI package by following steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

If there is an error in any of the supplied images encoded in base64 or in your choice of portal
name, Tanzu Application Platform GUI reverts to the original branding template.

Tanzu Application Platform GUI redirects you to tap-gui.INGRESS-
DOMAIN/YOUR-PREFERRED-ROUTE even if there is an error in YOUR-PREFERRED-
ROUTE.

Tanzu Application Platform v1.4

VMware by Broadcom 1435



Customize the Software Catalog page

You can customize the name of your organization on the Software Catalog page of Tanzu
Application Platform GUI portal. By default, the portal displays Your Organization next to Catalog
and in the selection box.

Customize the name of the organization

To customize the name of the organization for the software catalog in your portal:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    organization:

      name: 'ORG-NAME'

Where ORG-NAME is the name of your organization for the software catalog, such as Our
Organization Name. You don’t need to add Catalog to the ORG-NAME.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Tanzu Application Platform v1.4

VMware by Broadcom 1436



If there is an error in the provided configuration parameters, Tanzu Application Platform GUI reverts
to the original organization name.

Prevent changes to the software catalog

You can deactivate the Register Entity button to prevent a user from making changes to the
software catalog, including registering and deregistering locations. To do so, add readonly: true to
the catalog section in tap-values.yaml, as in this example:

tap_gui:

  app_config:

    catalog:

      readonly: true

Customize the Authentication page

To customize the portal name on the Authentication page and the name of the browser tab for
Tanzu Application Platform GUI:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    app:

      title: 'CUSTOM-TAB-NAME'

Where CUSTOM-TAB-NAME is the name on the Authentication page and the browser tab of
your portal, such as Our Organization Full Name.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Customize the default view

You can set your default route when the user is accessing your portal. Without this customization,
when the user accesses the Tanzu Application Platform GUI URL, it displays the list of owned
components of the software catalog.

To change the default view:

Tanzu Application Platform v1.4

VMware by Broadcom 1437



1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    customize:

      default_route: 'YOUR-PREFERRED-ROUTE'

Where YOUR-PREFERRED-ROUTE is the path to the route that the portal uses by default. For
example, you can type /catalog?filters%5Bkind%5D=component&filters%5Buser%5D=all to
show all components of the software catalog instead of defaulting to owned components.
As another example, you can type /create to show Application Accelerator when the portal
starts.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Customize the Support menu

This topic describes how to customize the support menu.

Overview

Many important pages of Tanzu Application Platform GUI have a Support button that displays a
pop-out menu. This menu contains a one-line description of the page the user is looking at, and a
list of support item groupings.

Caution

Tanzu Application Platform GUI redirects you to tap-gui.INGRESS-
DOMAIN/YOUR-PREFERRED-ROUTE even if there is an error in YOUR-PREFERRED-
ROUTE.

Tanzu Application Platform v1.4

VMware by Broadcom 1438



As standard, there are two support item groupings:

Contact Support, which is marked with an email icon and contains a link to VMware Tanzu’s
support portal.

Documentation, which is marked with a docs icon and contains a link to the Tanzu
Application Platform documentation that you are currently reading.

Customizing

The set of support item groupings is completely customizable. However, you might want to offer
custom in-house links for your Tanzu Application Platform users rather than simply sending them to
VMware support and documentation. You can provide this configuration by using your tap-
values.yaml. Here is a configuration snippet, which produces the default support menu:

tap_gui:

  app_config:

    app:

      support:

        url: https://tanzu.vmware.com/support

        items:

          - title: Contact Support

            icon: email

            links:

              - url: https://tanzu.vmware.com/support

                title: Tanzu Support Page

          - title: Documentation

            icon: docs

            links:

              - url: https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/inde

x.html

                title: Tanzu Application Platform Documentation

Structure of the support configuration

URL

Tanzu Application Platform v1.4

VMware by Broadcom 1439



The url field under the support section, for example,

      support:

        url: https://tanzu.vmware.com/support

provides the address of the contact support link that appears on error pages.

Items

The items field under the support section, for example, provides the set of support item groupings
to display when the support menu is expanded.

Title

The title field on a support item grouping, for example,

        items:

          - title: Contact Support

provides the label for the grouping.

Icon

The icon field on a support item grouping, for example,

        items:

          - icon: email

provides the icon to use for that grouping. The valid choices are:

brokenImage

catalog

chat

dashboard

docs

email

github

Tanzu Application Platform v1.4

VMware by Broadcom 1440



group

help

user

warning

Links

The links field on a support item grouping, for example,

        items:

          - links:

              - url: https://tanzu.vmware.com/support

                title: Tanzu Support Page

is a list of YAML objects that render as links. Each link has the text given by the title field and links
to the value of the url field.

Access Tanzu Application Platform GUI

This topic tells you how to access Tanzu Application Platform GUI (commonly called TAP GUI) by
using one of the following methods:

Access with the LoadBalancer method (default)

Access with the shared Ingress method

Access with the LoadBalancer method (default)

1. Verify that you specified the service_type for Tanzu Application Platform GUI in tap-
values.yaml, as in this example:

tap_gui:

  service_type: LoadBalancer

2. Obtain the external IP address of your LoadBalancer by running:

kubectl get svc -n tap-gui

3. Access Tanzu Application Platform GUI by using the external IP address with the default
port of 7000. It has the following form:

http://EXTERNAL-IP:7000

Where EXTERNAL-IP is the external IP address of your LoadBalancer.

Access with the shared Ingress method

The Ingress method of access for Tanzu Application Platform GUI uses the shared tanzu-system-
ingress instance of Contour that is installed as part of the Profile installation.

1. The Ingress method of access requires that you have a DNS host name that you can point
at the External IP address of the envoy service that the shared tanzu-system-ingress uses.
Retrieve this IP address by running:

kubectl get service envoy -n tanzu-system-ingress

Tanzu Application Platform v1.4

VMware by Broadcom 1441



This returns a value similar to this example:

$ kubectl get service envoy -n tanzu-system-ingress

NAME    TYPE           CLUSTER-IP     EXTERNAL-IP      PORT(S)                      

AGE

envoy   LoadBalancer   10.0.242.171   40.118.168.232   80:31389/TCP,443:31780/T

CP   27h

The IP address in the EXTERNAL-IP field is the one that you point a DNS host record to.
Tanzu Application Platform GUI prepends tap-gui to your provided subdomain. This makes
the final host name tap-gui.YOUR-SUBDOMAIN. You use this host name in the appropriate
fields in the tap-values.yaml file mentioned later.

2. Specify parameters in tap-values.yaml related to Ingress. For example:

shared:

  ingress_domain: "example.com"

3. Update your other host names in the tap_gui section of your tap-values.yaml with the
new host name. For example:

shared:

  ingress_domain: "example.com"

tap_gui:

# Existing tap-values.yaml above

  app_config:

    app:

      baseUrl: http://tap-gui.example.com # No port needed with Ingress

    integrations:

      github: # Other are integrations available

        - host: github.com

          token: GITHUB-TOKEN

    catalog:

      locations:

        - type: url

          target: https://GIT-CATALOG-URL/catalog-info.yaml

    backend:

      baseUrl: http://tap-gui.example.com # No port needed with Ingress

      cors:

        origin: http://tap-gui.example.com # No port needed with Ingress

4. Update your package installation with your changed tap-values.yaml file by running:

tanzu package installed update tap --package-name tap.tanzu.vmware.com --versio

n VERSION-NUMBER \

--values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13.

5. Use a web browser to access Tanzu Application Platform GUI at the host name that you
provided.

Catalog operations

The software catalog setup procedures in this topic make use of Backstage. For more information
about Backstage, see the Backstage documentation.

Adding catalog entities

Tanzu Application Platform v1.4

VMware by Broadcom 1442

https://backstage.io/docs/features/software-catalog/


This section describes how you can format your own catalog. Creating catalogs consists of building
metadata YAML files stored together with the code. This information is read from a Git-compatible
repository consisting of these YAML catalog definition files. Changes made to the catalog
definitions on your Git infrastructure are automatically reflected every 200 seconds or when
manually registered.

For each catalog entity kind you create, there is a file format you must follow. For information
about all types of entities, see the Backstage documentation.

You can use the example blank catalog described in the Tanzu Application Platform GUI
prerequisites as a foundation for creating user, group, system, and main component YAML files.

The organization contains Group 1, and Group 1 contains Users 1 and 2. System contains
Components 1 and 2. User 1 owns Component 2. Group 1 owns System.

Users and groups

A user entity describes a specific person and is used for identity purposes. Users are members of
one or more groups. A group entity describes an organizational team or unit.

Users and groups have different descriptor requirements in their descriptor files:

User descriptor files require apiVersion, kind, metadata.name, and spec.memberOf.

Group descriptor files require apiVersion, kind, and metadata.name. They also require
spec.type and spec.children where spec.children is another group.

To link a logged-in user to a user entity, include the optional spec.profile.email field.

Sample user entity:

apiVersion: backstage.io/v1alpha1

kind: User

metadata:

  name: default-user

spec:

  profile:

    displayName: Default User

    email: guest@example.com

    picture: https://avatars.dicebear.com/api/avataaars/guest@example.com.svg?backgrou

nd=%23fff

  memberOf: [default-team]

Sample group entity:

apiVersion: backstage.io/v1alpha1

kind: Group

metadata:

  name: default-team

Tanzu Application Platform v1.4

VMware by Broadcom 1443

https://backstage.io/docs/features/software-catalog/descriptor-format


  description: Default Team

spec:

  type: team

  profile:

    displayName: Default Team

    email: team-a@example.com

    picture: https://avatars.dicebear.com/api/identicon/team-a@example.com.svg?backgro

und=%23fff

  parent: default-org

  children: []

For more information about user entities and group entities, see the Backstage documentation.

Systems

A system entity is a collection of resources and components.

System descriptor files require values for apiVersion, kind, metadata.name, and also spec.owner
where spec.owner is a user or group.

A system has components when components specify the system name in the field spec.system.

Sample system entity:

apiVersion: backstage.io/v1alpha1

kind: System

metadata:

  name: backstage

  description: Tanzu Application Platform GUI System

spec:

  owner: default-team

For more information about system entities, see the Backstage documentation.

Components

A component describes a software component, or what might be described as a unit of software.

Component descriptor files require values for apiVersion, kind, metadata.name, spec.type,
spec.lifecycle, and spec.owner.

Some useful optional fields are spec.system and spec.subcomponentOf, both of which link a
component to an entity that it is part of.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: backstage-component

  description: Tanzu Application Platform GUI Component

  annotations:

    'backstage.io/kubernetes-label-selector': 'app=backstage' #Identifies the Kubernet

es objects that make up this component

    'backstage.io/techdocs-ref': dir:. #TechDocs label

spec:

  type: service

  lifecycle: alpha

  owner: default-team

  system: backstage

For more information about component entities, see the Backstage documentation.

Update software catalogs

Tanzu Application Platform v1.4

VMware by Broadcom 1444

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-group
https://backstage.io/docs/features/software-catalog/descriptor-format#kind-system
https://backstage.io/docs/features/software-catalog/descriptor-format#kind-component


The following procedures describe how to update software catalogs.

Register components

To update your software catalog with new entities without re-deploying the entire tap-gui
package:

1. Go to your Software Catalog page.

2. Click Register Entity at the top-right of the page.

3. Enter the full path to link to an existing entity file and start tracking your entity.

4. Import the entities and view them in your Software Catalog page.

Deregister components

To deregister an entity:

1. Go to your Software Catalog page.

2. Select the entity to deregister, such as component, group, or user.

3. Click the three dots at the top-right of the page and then click Unregister….

Add or change organization catalog locations

To add or change organization catalog locations, you can use static configuration or you can use
GitLabDiscoveryProcessor to discover and register catalog entities that match the configured path.

Use static configuration
To use static configuration to add or change catalog locations:

1. Update components by changing the catalog location in either the app_config section of
tap-gui-values.yaml or the custom values file you used when installing. For example:

tap_gui:

  app_config:

    catalog:

      locations:

        - type: url

          target: UPDATED-CATALOG-LOCATION

2. Register components by adding the new catalog location in either the app_config
section of tap-gui-values.yaml or the custom values file you used when installing. For
example:

tap_gui:

  app_config:

    catalog:

      locations:

        - type: url

          target: EXISTING-CATALOG-LOCATION

        - type: url

          target: EXTRA-CATALOG-LOCATION

When targeting GitHub, don’t write the raw URL. Instead, use the URL that you see
when you navigate to the file in the browser. The catalog processor cannot set up the
files properly if you use the raw URL.

Example raw URL:
https://raw.githubusercontent.com/user/repo/catalog.yaml

Tanzu Application Platform v1.4

VMware by Broadcom 1445



Example target URL: https://github.com/user/repo/blob/main/catalog.yaml

When targeting GitLab, use a scoped route to the catalog file. This is a route with the
/-/ separator after the project name. If you don’t use a scoped route, your entity fails to
appear in the catalog.

Example unscoped URL:
https://gitlab.com/group/project/blob/main/catalog.yaml

Example target URL:
https://gitlab.com/group/project/-/blob/main/catalog.yaml

For more information about static catalog configuration, see the Backstage
documentation.

Use GitLabDiscoveryProcessor
To use GitLabDiscoveryProcessor to discover and register catalog entities:

1. Use type: gitlab-discovery to make GitLabDiscoveryProcessor crawl the GitLab
instance to discover and register catalog entities that match the configured path. For
more information, see the Backstage documentation.

2. Update the package to include the catalog:

If you installed Tanzu Application Platform GUI by using a profile, run:

tanzu package installed update tap \

--package-name tap.tanzu.vmware.com \

--version PACKAGE-VERSION \

--values-file tap-values.yaml \

--namespace tap-install

If you installed Tanzu Application Platform GUI as an individual package, run:

tanzu package installed update tap-gui \

--package-name tap-gui.tanzu.vmware.com \

--version PACKAGE-VERSION \

--values-file tap-gui-values.yaml \

--namespace tap-install

3. Verify the status of this update by running:

tanzu package installed list -n tap-install

Install demo apps and their catalogs

To set up one of the demos, you can choose a blank catalog or a sample catalog.

Yelb system

The Yelb demo catalog in GitHub includes all the components that make up the Yelb system and
the default Backstage components.

Install Yelb

1. Download the necessary file for running the Yelb application itself from GitHub.

2. Install the application on the Kubernetes cluster that you used for Tanzu Application
Platform. Preserve the metadata labels on the Yelb application objects.

Tanzu Application Platform v1.4

VMware by Broadcom 1446

https://docs.gitlab.com/ee/development/routing.html#project-routes
https://backstage.io/docs/features/software-catalog/configuration#static-location-configuration
https://backstage.io/docs/integrations/gitlab/discovery#alternative-processor
https://github.com/mreferre/yelb/tree/master/deployments/platformdeployment/Kubernetes/yaml
https://github.com/mreferre/yelb/tree/master/deployments/platformdeployment/Kubernetes/yaml


Install the Yelb catalog

1. From the Tanzu Application Platform downloads page, click tap-gui-catalogs-latest >
Tanzu Application Platform GUI Yelb Catalog.

2. Follow the earlier steps for Adding catalog entities to add catalog-info.yaml.

View resources on multiple clusters in Tanzu Application
Platform GUI

You can configure Tanzu Application Platform GUI (commonly called TAP GUI) to retrieve
Kubernetes object details from multiple clusters and then surface those details in the various Tanzu
Application Platform GUI plug-ins.

Set up a Service Account to view resources on a cluster

To view resources on the Build or Run clusters, create a service account on the View cluster that
can get, watch, and list resources on those clusters.

You first create a ClusterRole with these rules and a ServiceAccount in its own Namespace, and
then bind the ClusterRole to the ServiceAccount. Depending on your topology, not every cluster
has all of the following objects. For example, the Build cluster doesn’t have any of the
serving.knative.dev objects, by design, because it doesn’t run the workloads themselves. You can
edit the following object lists to reflect your topology.

To set up a Service Account to view resources on a cluster:

1. Copy this YAML content into a file called tap-gui-viewer-service-account-rbac.yaml.

apiVersion: v1

kind: Namespace

metadata:

  name: tap-gui

---

apiVersion: v1

kind: ServiceAccount

metadata:

  namespace: tap-gui

  name: tap-gui-viewer

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: tap-gui-read-k8s

subjects:

- kind: ServiceAccount

Important

In this topic the terms Build, Run, and View describe the cluster’s roles and
distinguish which steps to apply to which cluster.

Build clusters are where the code is built and packaged, ready to be run.

Run clusters are where the Tanzu Application Platform workloads themselves run.

View clusters are where the Tanzu Application Platform GUI is run from.

In multicluster configurations, these can be separate clusters. However, in many
configurations these can also be the same cluster.

Tanzu Application Platform v1.4

VMware by Broadcom 1447

https://network.tanzu.vmware.com/products/tanzu-application-platform


  namespace: tap-gui

  name: tap-gui-viewer

roleRef:

  kind: ClusterRole

  name: k8s-reader

  apiGroup: rbac.authorization.k8s.io

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: k8s-reader

rules:

- apiGroups: ['']

  resources: ['pods', 'pods/log', 'services', 'configmaps', 'limitranges']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['metrics.k8s.io']

  resources: ['pods']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['apps']

  resources: ['deployments', 'replicasets', 'statefulsets', 'daemonsets']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['autoscaling']

  resources: ['horizontalpodautoscalers']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['networking.k8s.io']

  resources: ['ingresses']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['networking.internal.knative.dev']

  resources: ['serverlessservices']

  verbs: ['get', 'watch', 'list']

- apiGroups: [ 'autoscaling.internal.knative.dev' ]

  resources: [ 'podautoscalers' ]

  verbs: [ 'get', 'watch', 'list' ]

- apiGroups: ['serving.knative.dev']

  resources:

  - configurations

  - revisions

  - routes

  - services

  verbs: ['get', 'watch', 'list']

- apiGroups: ['carto.run']

  resources:

  - clusterconfigtemplates

  - clusterdeliveries

  - clusterdeploymenttemplates

  - clusterimagetemplates

  - clusterruntemplates

  - clustersourcetemplates

  - clustersupplychains

  - clustertemplates

  - deliverables

  - runnables

  - workloads

  verbs: ['get', 'watch', 'list']

- apiGroups: ['source.toolkit.fluxcd.io']

  resources:

  - gitrepositories

  verbs: ['get', 'watch', 'list']

- apiGroups: ['source.apps.tanzu.vmware.com']

  resources:

  - imagerepositories

  - mavenartifacts

  verbs: ['get', 'watch', 'list']

- apiGroups: ['conventions.apps.tanzu.vmware.com']

  resources:

  - podintents

Tanzu Application Platform v1.4

VMware by Broadcom 1448



  verbs: ['get', 'watch', 'list']

- apiGroups: ['kpack.io']

  resources:

  - images

  - builds

  verbs: ['get', 'watch', 'list']

- apiGroups: ['scanning.apps.tanzu.vmware.com']

  resources:

  - sourcescans

  - imagescans

  - scanpolicies

  - scantemplates

  verbs: ['get', 'watch', 'list']

- apiGroups: ['tekton.dev']

  resources:

  - taskruns

  - pipelineruns

  verbs: ['get', 'watch', 'list']

- apiGroups: ['kappctrl.k14s.io']

  resources:

  - apps

  verbs: ['get', 'watch', 'list']

- apiGroups: [ 'batch' ]

  resources: [ 'jobs', 'cronjobs' ]

  verbs: [ 'get', 'watch', 'list' ]

- apiGroups: ['conventions.carto.run']

  resources:

  - podintents

  verbs: ['get', 'watch', 'list']

This YAML content creates Namespace, ServiceAccount, ClusterRole, and
ClusterRoleBinding.

2. On the Build and Run clusters, create Namespace, ServiceAccount, ClusterRole, and
ClusterRoleBinding by running:

kubectl create -f tap-gui-viewer-service-account-rbac.yaml

3. Again, on the Build and Run clusters, discover the CLUSTER_URL and CLUSTER_TOKEN values.

v1.23 or earlier Kubernetes cluster
If you’re watching a v1.23 or earlier Kubernetes cluster, run:

CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluste

r.server}')

CLUSTER_TOKEN=$(kubectl -n tap-gui get secret $(kubectl -n tap-gui get sa tap

-gui-viewer -o=json \

| jq -r '.secrets[0].name') -o=json \

| jq -r '.data["token"]' \

| base64 --decode)

echo CLUSTER_URL: $CLUSTER_URL

echo CLUSTER_TOKEN: $CLUSTER_TOKEN

v1.24 or later Kubernetes cluster
If you’re watching a v1.24 or later Kubernetes cluster, run:

CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluste

r.server}')

kubectl apply -f - <<EOF

apiVersion: v1

Tanzu Application Platform v1.4

VMware by Broadcom 1449



kind: Secret

metadata:

  name: tap-gui-viewer

  namespace: tap-gui

  annotations:

    kubernetes.io/service-account.name: tap-gui-viewer

type: kubernetes.io/service-account-token

EOF

CLUSTER_TOKEN=$(kubectl -n tap-gui get secret tap-gui-viewer -o=json \

| jq -r '.data["token"]' \

| base64 --decode)

echo CLUSTER_URL: $CLUSTER_URL

echo CLUSTER_TOKEN: $CLUSTER_TOKEN

4. (Optional) Configure the Kubernetes client to verify the TLS certificates presented by a
cluster’s API server. To do this, discover CLUSTER_CA_CERTIFICATES by running:

CLUSTER_CA_CERTIFICATES=$(kubectl config view --raw -o jsonpath='{.clusters[?

(@.name=="CLUSTER-NAME")].cluster.certificate-authority-data}')

echo CLUSTER_CA_CERTIFICATES: $CLUSTER_CA_CERTIFICATES

Where CLUSTER-NAME is your cluster name.

5. Record the Build and Run clusters’ CLUSTER_URL and CLUSTER_TOKEN values for when you
Update Tanzu Application Platform GUI to view resources on multiple clusters later.

Update Tanzu Application Platform GUI to view resources
on multiple clusters

The clusters must be identified to Tanzu Application Platform GUI with the ServiceAccount token
and the cluster Kubernetes control plane URL.

You must add a kubernetes section to the app_config section in the tap-values.yaml file that
Tanzu Application Platform used when you installed it. This section must have an entry for each
Build and Run cluster that has resources to view.

To do so:

1. Copy this YAML content into tap-values.yaml:

tap_gui:

## Previous configuration above

  app_config:

    kubernetes:

      serviceLocatorMethod:

        type: 'multiTenant'

      clusterLocatorMethods:

        - type: 'config'

          clusters:

          ## Cluster 1

            - url: CLUSTER-URL

Note

You can create a short-lived token with the kubectl create token
command if that is the preferred method. This method requires frequent
token rotation.

Tanzu Application Platform v1.4

VMware by Broadcom 1450



              name: CLUSTER-NAME

              authProvider: serviceAccount

              serviceAccountToken: "CLUSTER-TOKEN"

              skipTLSVerify: true

              skipMetricsLookup: true

          ## Cluster 2+

            - url: CLUSTER-URL

              name: CLUSTER-NAME

              authProvider: serviceAccount

              serviceAccountToken: "CLUSTER-TOKEN"

              skipTLSVerify: true

              skipMetricsLookup: true

Where:

CLUSTER-URL is the value you discovered earlier.

CLUSTER-TOKEN is the value you discovered earlier.

CLUSTER-NAME is a unique name of your choice.

If there are resources to view on the View cluster that hosts Tanzu Application Platform
GUI, add an entry to clusters for it as well.

If you would like the Kubernetes client to verify the TLS certificates presented by a cluster’s
API server, set the following properties for the cluster:

skipTLSVerify: false

caData: CLUSTER-CA-CERTIFICATES

Where CLUSTER-CA-CERTIFICATES is the value you discovered earlier.

2. Update the tap package by running this command:

tanzu package installed update tap -n tap-install --values-file tap-values.yaml

3. Wait a moment for the tap and tap-gui packages to update and then verify that STATUS is
Reconcile succeeded by running:

tanzu package installed get all -n tap-install

View resources on multiple clusters in the Runtime
Resources Visibility plug-in
To view resources on multiple clusters in the Runtime Resources Visibility plug-in:

1. Go to the Runtime Resources Visibility plug-in for a component that is running on multiple
clusters.

2. View the multiple resources and their statuses across the clusters.

Tanzu Application Platform v1.4

VMware by Broadcom 1451



Set up authentication for Tanzu Application Platform GUI
Tanzu Application Platform GUI (commonly called TAP GUI) extends the current Backstage
authentication plug-in so that you can see a login page based on the authentication providers
configured at installation. This feature is a work in progress.

Tanzu Application Platform GUI currently supports the following authentication providers:

Auth0

Azure

Bitbucket

GitHub

GitLab

Google

Okta

OneLogin

You can also configure a custom OpenID Connect (OIDC) provider.

View your Backstage Identity
A Backstage identity is defined as a combination of:

The user reference: each entity in the catalog is uniquely identified by the triplet of its kind

A namespace

A name

For example, the user Jane can be assigned to the user entity user:default/jane and an
ownership reference, which is used to determine what that user owns. Jane (user:default/jane)
might have the ownership references user:default/jane, group:default/team-a, and
group:default/admins. This would mean that Jane belongs to those groups and, therefore, owns
those references.

To view your current Backstage identity, in the Settings section of the left side navigation pane
click the General tab.

Tanzu Application Platform v1.4

VMware by Broadcom 1452

https://backstage.io/docs/auth/auth0/provider/
https://backstage.io/docs/auth/microsoft/provider/
https://backstage.io/docs/auth/bitbucket/provider/
https://backstage.io/docs/auth/github/provider/
https://backstage.io/docs/auth/gitlab/provider/
https://backstage.io/docs/auth/google/provider/
https://backstage.io/docs/auth/okta/provider/
https://backstage.io/docs/auth/onelogin/provider/
https://backstage.io/docs/features/software-catalog/descriptor-format/#apiversion-and-kind-required
https://backstage.io/docs/features/software-catalog/descriptor-format/#namespace-optional
https://backstage.io/docs/features/software-catalog/descriptor-format/#name-required


Configure an authentication provider

Configure a supported authentication provider or a custom OIDC provider:

To configure a supported authentication provider, see the Backstage authentication
documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 1453

https://backstage.io/docs/auth/


To configure a custom OIDC provider, edit your tap-values.yaml file or your custom
configuration file to include an OIDC authentication provider. Configure the OIDC provider
with your OAuth App values. For example:

shared:

  ingress_domain: "INGRESS-DOMAIN"

# ... any existing values

tap_gui:

  # ... any other TAP GUI values

  app_config:

    auth:

      environment: development

      session:

        secret: custom session secret

      providers:

        oidc:

          development:

            metadataUrl: AUTH-OIDC-METADATA-URL

            clientId: AUTH-OIDC-CLIENT-ID

            clientSecret: AUTH-OIDC-CLIENT-SECRET

            tokenSignedResponseAlg: AUTH-OIDC-TOKEN-SIGNED-RESPONSE-ALG # defau

lt='RS256'

            scope: AUTH-OIDC-SCOPE # default='openid profile email'

            prompt: auto # default=none (allowed values: auto, none, consent, l

ogin)

Where AUTH-OIDC-METADATA-URL is a JSON file with generic OIDC provider configuration. It
contains authorizationUrl and tokenUrl. Tanzu Application Platform GUI reads these
values from metadataUrl, so you must not specify these values explicitly in the earlier
authentication configuration.

You must also the provide the redirect URI of the Tanzu Application Platform GUI instance
to your identity provider. The redirect URI is sometimes called the redirect URL, the
callback URL, or the callback URI. The redirect URI takes the following form:

SCHEME://tap-gui.INGRESS-DOMAIN/api/auth/oidc/handler/frame

Where:

SCHEME is the URI scheme, most commonly http or https

INGRESS-DOMAIN is the host name you selected for your Tanzu Application Platform
GUI instance

When using https and example.com as examples for the two placeholders respectively, the
redirect URI reads as follows:

https://tap-gui.example.com/api/auth/oidc/handler/frame

For more information, see this example in GitHub.

(Optional) Configure offline access scope for the OIDC provider by adding the scope
parameter offline_access to either tap-values.yaml or your custom configuration file. For
example:

auth:

  providers:

    oidc:

      development:

Tanzu Application Platform v1.4

VMware by Broadcom 1454

https://github.com/backstage/backstage/blob/e4ab91cf571277c636e3e112cd82069cdd6fca1f/app-config.yaml#L333-L347


        ... # auth configs

        scope: 'openid profile email offline_access'

By default, scope is not configured to provide persistence to user login sessions, such as in
the case of a page refresh. Not all identity providers support the offline_access scope. For
more information, see your identity provider documentation.

(Optional) Allow guest access

Enable guest access with other providers by adding the following flag under your authentication
configuration:

auth:

  allowGuestAccess: true

(Optional) Customize the login page

Change the card’s title or description for a specific provider with the following configuration:

auth:

  environment: development

  providers:

    ... # auth providers config

  loginPage:

    github:

      title: Github Login

      message: Enter with your GitHub account

For a provider to appear on the login page, ensure that it is properly configured under the
auth.providers section of your values file.

View resources on remote clusters
You can control the access to Kubernetes runtime resources on Tanzu Application Platform GUI
(commonly called TAP GUI) based on user roles and permissions for each of the visible remote
clusters.

RBAC is currently supported for the following Kubernetes cluster providers:

EKS (Elastic Kubernetes Service) on AWS

GKE (Google Kubernetes Engine) on GCP

Support for other Kubernetes providers is planned for future releases of Tanzu Application Platform.

Tanzu Application Platform GUI is designed under the assumption that the roles and permissions for
the Kubernetes clusters are already defined and that the users are already assigned to their roles.
For information about assigning roles and permissions to users, see Assigning roles and permissions
on Kubernetes clusters.

Adding access-controlled visibility for a remote cluster is similar to Setting up unrestricted remote
cluster visibility.

Caution

Setting up role-based access control (RBAC) might impact the user’s ability to view
workloads in the Security Analysis GUI and the Workloads table of the Supply Chain
Choreographer plug-in GUI.

Tanzu Application Platform v1.4

VMware by Broadcom 1455



The steps are:

1. Set up the OIDC provider

2. Configure the Kubernetes cluster with the OIDC provider

3. Configure the Tanzu Application Platform GUI to view the remote cluster

4. Upgrade the Tanzu Application Platform GUI package

After following these steps, you can view your runtime resources on a remote cluster in Tanzu
Application Platform GUI. For more information, see View runtime resources on remote clusters.

View resources on remote clusters

You can control the access to Kubernetes runtime resources on Tanzu Application Platform GUI
(commonly called TAP GUI) based on user roles and permissions for each of the visible remote
clusters.

RBAC is currently supported for the following Kubernetes cluster providers:

EKS (Elastic Kubernetes Service) on AWS

GKE (Google Kubernetes Engine) on GCP

Support for other Kubernetes providers is planned for future releases of Tanzu Application Platform.

Tanzu Application Platform GUI is designed under the assumption that the roles and permissions for
the Kubernetes clusters are already defined and that the users are already assigned to their roles.
For information about assigning roles and permissions to users, see Assigning roles and permissions
on Kubernetes clusters.

Adding access-controlled visibility for a remote cluster is similar to Setting up unrestricted remote
cluster visibility.

The steps are:

1. Set up the OIDC provider

2. Configure the Kubernetes cluster with the OIDC provider

3. Configure the Tanzu Application Platform GUI to view the remote cluster

4. Upgrade the Tanzu Application Platform GUI package

After following these steps, you can view your runtime resources on a remote cluster in Tanzu
Application Platform GUI. For more information, see View runtime resources on remote clusters.

View resources on remote EKS clusters

This topic tells you how to view your runtime resources on a remote EKS cluster in Tanzu
Application Platform GUI (commonly called TAP GUI). For more information, see View runtime
resources on remote clusters.

Set up the OIDC provider

Caution

Setting up role-based access control (RBAC) might impact the user’s ability to view
workloads in the Security Analysis GUI and the Workloads table of the Supply Chain
Choreographer plug-in GUI.

Tanzu Application Platform v1.4

VMware by Broadcom 1456



You must set up the OIDC provider to enable RBAC visibility of remote EKS clusters. You can see
the list of supported OIDC providers in Setting up a Tanzu Application Platform GUI authentication
provider.

Tanzu Application Platform GUI supports multiple OIDC providers. Auth0 is used here as an
example.

1. Log in to the Auth0 dashboard.

2. Go to Applications.

3. Create an application of the type Single Page Web Application named TAP-GUI or a name
of your choice.

4. Click the Settings tab.

5. Under Application URIs > Allowed Callback URLs, add

https://tap-gui.INGRESS-DOMAIN/api/auth/auth0/handler/frame

Where INGRESS-DOMAIN is the domain you chose for your Tanzu Application Platform GUI in
Installing the Tanzu Application Platform package and profiles.

6. Click Save Changes.

After creating an application with your OIDC provider, you receive the following credentials for
setting up RBAC for your remote cluster:

Domain, which is used as ISSUER-URL in the following sections (AUTH0_DOMAIN for Auth0)

Client ID, which is used as CLIENT-ID in the following sections

Client Secret, which is used as CLIENT-SECRET in the following sections

For more information, see Auth0 Setup Walkthrough in the Backstage documentation. To
configure other OIDC providers, see Authentication in Backstage in the Backstage documentation.

Configure the Kubernetes cluster with the OIDC provider

To configure the cluster with the OIDC provider’s credentials:

1. Create a file with the following content and name it rbac-setup.yaml. This content applies
to EKS clusters.

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

  name: "CLUSTER-NAME"

  region: "AWS-REGION"

identityProviders:

  - name: auth0

    type: oidc

    issuerUrl: "ISSUER-URL"

    clientId: "CLIENT-ID"

    usernameClaim: email

Where:

CLUSTER-NAME is the cluster name for your EKS cluster as an AWS identifier

AWS-REGION is the AWS region of the EKS cluster

CLIENT-ID is the Client ID you obtained while setting up the OIDC provider

ISSUER-URL is the Issuer URL you obtained while setting up the OIDC provider. For
Auth0, this is https://${AUTH0_DOMAIN}/.

Tanzu Application Platform v1.4

VMware by Broadcom 1457

https://backstage.io/docs/auth/auth0/provider
https://backstage.io/docs/auth/


2. Using eksctl, run:

eksctl associate identityprovider -f rbac-setup.yaml

3. Verify that the association of the OIDC provider with the EKS cluster was successful by
running:

eksctl get identityprovider --cluster CLUSTER-NAME

Where CLUSTER-NAME is the cluster name for your EKS cluster as an AWS identifier

Verify that the output shows ACTIVE in the STATUS column.

Configure the Tanzu Application Platform GUI
Configure visibility of the remote cluster in Tanzu Application Platform GUI:

1. Obtain your cluster’s URL by running:

CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.s

erver}')

echo CLUSTER-URL: $CLUSTER_URL

This command returns the URL of the first configured cluster in your kubeconfig file. To
view other clusters one by one, edit the number in .clusters[0].cluster.server or edit
the command to view all the configured clusters.

2. Ensure you have an auth section in the app_config section that Tanzu Application Platform
GUI uses. In the example for Auth0, copy this YAML content into tap-values.yaml:

auth:

  environment: development

  providers:

    auth0:

      development:

        clientId: "CLIENT-ID"

        clientSecret: "CLIENT-SECRET"

        domain: "ISSUER-URL"

Where:

CLIENT-ID is the Client ID you obtained while setting up the OIDC provider.

CLIENT-SECRET is the Client Secret you obtained while setting up the OIDC provider.

ISSUER-URL is the Issuer URL you obtained while setting up the OIDC provider. For
Auth0, it is only AUTH0_DOMAIN.

3. Add a kubernetes section to the app_config section that Tanzu Application Platform GUI
uses. This section must have an entry for each cluster that has resources to view. To do so,
copy this YAML content into tap-values.yaml:

kubernetes:

  serviceLocatorMethod:

    type: 'multiTenant'

  clusterLocatorMethods:

    - type: 'config'

      clusters:

        - name: "CLUSTER-NAME-UNCONSTRAINED"

          url: "CLUSTER-URL"

          authProvider: oidc

Tanzu Application Platform v1.4

VMware by Broadcom 1458



          oidcTokenProvider: auth0

          skipTLSVerify: true

          skipMetricsLookup: true

Where:

CLUSTER-NAME-UNCONSTRAINED is the cluster name of your choice for your EKS cluster

CLUSTER-URL is the URL for the remote cluster you are connecting to Tanzu
Application Platform GUI. You obtained this earlier in the procedure.

If there are any other clusters that you want to make visible in Tanzu Application Platform
GUI, add their entries to clusters as well.

Upgrade the Tanzu Application Platform GUI package

After the new configuration file is ready, update the tap package:

1. Run:

tanzu package installed update tap --values-file tap-values.yaml

2. Wait a moment for the tap-gui package to update and then verify that STATUS is Reconcile
succeeded by running:

tanzu package installed get tap-gui -n tap-install

View resources on remote GKE clusters
This topic tells you about two supported options to add access-controlled visibility for a remote
GKE cluster:

Leverage an external OIDC provider

Leveraging Google’s OIDC provider

After the authorization is enabled, you can view your runtime resources on a remote cluster in
Tanzu Application Platform GUI. For more information, see View runtime resources on remote
clusters.

Leverage an external OIDC provider
To leverage an external OIDC provider, such as Auth0:

1. Set up the OIDC provider

2. Configure the GKE cluster with the OIDC provider

3. Configure Tanzu Application Platform GUI to view the remote GKE cluster

4. Upgrade tap-gui package

Set up the OIDC provider

You must set up the OIDC provider to enable RBAC visibility of remote clusters. You can see the
list of supported OIDC providers in Setting up a Tanzu Application Platform GUI authentication
provider.

Tanzu Application Platform GUI supports multiple OIDC providers. Auth0 is used here as an
example.

1. Log in to the Auth0 dashboard.

Tanzu Application Platform v1.4

VMware by Broadcom 1459



2. Go to Applications.

3. Create an application of the type Single Page Web Application named TAP-GUI or a name
of your choice.

4. Click the Settings tab.

5. Under Application URIs > Allowed Callback URLs, add

https://tap-gui.INGRESS-DOMAIN/api/auth/auth0/handler/frame

Where INGRESS-DOMAIN is the domain you chose for your Tanzu Application Platform GUI in
Installing the Tanzu Application Platform package and profiles.

6. Click Save Changes.

After creating an application with your OIDC provider, you receive the following credentials for
setting up RBAC for your remote cluster:

Domain, which is used as issuerURL in the following sections

Client ID, which is used as CLIENT-ID in the following sections

Client Secret, which is used as CLIENT-SECRET in the following sections

For more information, see Auth0 Setup Walkthrough in the Backstage documentation. To
configure other OIDC providers, see Authentication in Backstage in the Backstage documentation.

Configure the GKE cluster with the OIDC provider

Add redirect configuration on the OIDC side by following the Google Cloud documentation.

Configure visibility of the remote cluster

Configure visibility of the remote cluster in Tanzu Application Platform GUI:

1. Obtain your cluster’s URL by running:

CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.s

erver}')

echo CLUSTER-URL: $CLUSTER_URL

This command returns the URL of the first configured cluster in your kubeconfig file. To
view other clusters one by one, edit the number in .clusters[0].cluster.server or edit
the command to view all the configured clusters.

2. Ensure you have an auth section in the app_config section that Tanzu Application Platform
GUI uses. In the example for Auth0, copy this YAML content into tap-values.yaml:

auth:

  environment: development

  providers:

    auth0:

      development:

        clientId: "CLIENT-ID"

        clientSecret: "CLIENT-SECRET"

        domain: "ISSUER-URL"

Where:

CLIENT-ID is the Client ID you obtained while setting up the OIDC provider

CLIENT-SECRET is the Client Secret you obtained while setting up the OIDC provider

Tanzu Application Platform v1.4

VMware by Broadcom 1460

https://backstage.io/docs/auth/auth0/provider
https://backstage.io/docs/auth/
https://cloud.google.com/kubernetes-engine/docs/how-to/oidc


ISSUER-URL is the Issuer URL you obtained while setting up the OIDC provider

3. Add a kubernetes section to the app_config section that Tanzu Application Platform GUI
uses. This section must have an entry for each cluster that has resources to view. To do so,
copy this YAML content into tap-values.yaml:

kubernetes:

  serviceLocatorMethod:

    type: 'multiTenant'

  clusterLocatorMethods:

    - type: 'config'

      clusters:

        - name: "CLUSTER-NAME-UNCONSTRAINED"

          url: "CLUSTER-URL"

          authProvider: oidc

          oidcTokenProvider: auth0

          skipTLSVerify: true

          skipMetricsLookup: true

Where:

CLUSTER-NAME-UNCONSTRAINED is the cluster name of your choice for your GKE cluster

CLUSTER-URL is the URL for the remote cluster you are connecting to Tanzu
Application Platform GUI. You obtained this earlier in the procedure.

If there are any other clusters that you want to make visible in Tanzu Application Platform
GUI, add their entries to clusters as well.

Update the tap-gui package to finish leveraging the external OIDC
provider

After the new configuration file is ready, update the tap-gui package:

1. Run:

tanzu package installed update tap --values-file tap-values.yaml

2. Wait a moment for the tap-gui package to update and then verify that STATUS is Reconcile
succeeded by running:

tanzu package installed get tap-gui -n tap-install

Leverage Google’s OIDC provider

When leveraging Google’s OIDC provider, fewer steps are needed to enable authorization:

1. Add redirect configuration on the OIDC side.

2. Configure the Tanzu Application Platform GUI to view the remote GKE cluster

3. Upgrade the Tanzu Application Platform GUI package

Add redirect configuration on the OIDC side

Add redirect configuration on the OIDC side by following the Google Cloud documentation.

Configure visibility of the remote GKE cluster

Configure visibility of the remote GKE cluster in Tanzu Application Platform GUI:

1. Obtain your cluster’s URL by running:

Tanzu Application Platform v1.4

VMware by Broadcom 1461

https://cloud.google.com/kubernetes-engine/docs/how-to/oidc


CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.s

erver}')

echo CLUSTER-URL: $CLUSTER_URL

This command returns the URL of the first configured cluster in your kubeconfig file. To
view other clusters one by one, edit the number in .clusters[0].cluster.server or edit
the command to view all the configured clusters.

2. Ensure you have an auth section in the app_config section that Tanzu Application Platform
GUI uses. In the example for Auth0, copy this YAML content into tap-values.yaml:

auth:

  environment: development

  providers:

    google:

      development:

        clientId: "CLIENT-ID"

        clientSecret: "CLIENT-SECRET"

Where:

CLIENT-ID is the Client ID you obtained while setting up the OIDC provider

CLIENT-SECRET is the Client Secret you obtained while setting up the OIDC provider

3. Add a kubernetes section to the app_config section that Tanzu Application Platform GUI
uses. This section must have an entry for each cluster that has resources to view. To do so,
copy this YAML content into tap-values.yaml:

kubernetes:

  clusterLocatorMethods:

    - type: 'config'

      clusters:

        - name: "CLUSTER-NAME-UNCONSTRAINED"

          url: "CLUSTER-URL"

          authProvider: google

          caData: "CA-DATA"

Where:

CLUSTER-NAME-UNCONSTRAINED is the cluster name of your choice for your GKE
cluster.

CLUSTER-URL is the URL for the remote cluster you are connecting to Tanzu
Application Platform GUI. You obtained this earlier in the procedure.

CA-DATA is the CA certificate data.

If there are any other clusters that you want to make visible in Tanzu Application Platform
GUI, add their entries to clusters as well.

Update the tap-gui package to finish leveraging the Google OIDC
provider

After the new configuration file is ready, update the tap-gui package:

1. Run:

tanzu package installed update tap --values-file tap-values.yaml

2. Wait a moment for the tap-gui package to update and then verify that STATUS is Reconcile
succeeded by running:

Tanzu Application Platform v1.4

VMware by Broadcom 1462



tanzu package installed get tap-gui -n tap-install

View runtime resources on authorization-enabled clusters

To visualize runtime resources on authorization-enabled clusters in Tanzu Application Platform GUI
(commonly called TAP GUI), proceed to the software catalog component of choice and click the
Runtime Resources tab on top of the ribbon.

After you click Runtime Resources, Tanzu Application Platform GUI uses your credentials to query
the clusters for the respective runtime resources. The system verifies that you are authenticated
with the OIDC providers configured for the remote clusters. If you are not authenticated, the
system prompts you for your OIDC credentials.

Remote clusters that are not restricted by authorization are visible by using the general Service
Account of Tanzu Application Platform GUI. It is not restricted for users. For more information
about how to set up unrestricted remote cluster visibility, see Viewing resources on multiple
clusters in Tanzu Application Platform GUI.

The type of query to the remote cluster depends on the definition of the software catalog
component. In Tanzu Application Platform GUI, there are globally-scoped components and
namespace-scoped components.

This property of the component affects runtime resource visibility, depending on your permissions
on a specific cluster.

If your permissions on the authorization-enabled cluster are limited to specific namespaces, you do
not have visibility into runtime resources of globally-scoped components.

You need cluster-scoped access to have visibility into runtime resources of globally-scoped
components.

Globally-scoped components

For globally-scoped components, when you access Runtime Resources Tanzu Application Platform
GUI queries all Kubernetes namespaces for runtime resources that have a matching kubernetes-
label-selector, usually with a part-Of prefix.

For example, demo-component-a does not have a backstage.io/kubernetes-namespace in the
metadata.annotations section. This makes it a globally-scoped component. See the following

Tanzu Application Platform v1.4

VMware by Broadcom 1463



example YAML.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: demo-component-a

  description: Demo Component A

  tags:

    - java

  annotations:

    'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=component-a'

spec:

  type: service

  lifecycle: experimental

  owner: team-a

Namespace-scoped components

If a component is namespace-scoped, when you access Runtime Resources Tanzu Application
Platform GUI queries only the associated Kubernetes namespace for each remote cluster that is
visible to Tanzu Application Platform GUI.

To make a component namespace-scoped, pass the following annotation to the definition YAML
file of the component:

annotations:

  'backstage.io/kubernetes-namespace': NAMESPACE-NAME

Where NAMESPACE-NAME is the Kubernetes namespace you want to associate your component with.

For example, demo-component-b has a kubernetes-namespace in the metadata.annotations section,
which associates it with the component-b namespaces on each of the visible clusters. This makes it a
namespace-scoped component. See the following example YAML.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: demo-component-b

  description: Demo Component B

  tags:

    - java

  annotations:

    'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=component-b'

    'backstage.io/kubernetes-namespace': component-b

spec:

  type: service

  lifecycle: experimental

  owner: team-b

When the kubernetes-namespace annotation is absent, the component is considered globally-
scoped by default. For more information, see Adding Namespace Annotation in the Backstage
documentation.

Assign roles and permissions on Kubernetes clusters

This topic gives you an overview of creating roles and permissions on Kubernetes clusters and
assigning these roles to users. For more information, see Using RBAC Authorization in the
Kubernetes documentation.

The steps to define and assign roles are:

Tanzu Application Platform v1.4

VMware by Broadcom 1464

https://backstage.io/docs/features/kubernetes/configuration#adding-the-namespace-annotation
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


1. Create roles

2. Create users

3. Assign users to their roles

Create roles

To control the access to Kubernetes runtime resources on Tanzu Application Platform GUI based
on users’ roles and permissions for each of visible remote clusters, VMware recommends two role
types:

Cluster-scoped roles

Namespace-scoped roles

Cluster-scoped roles

Cluster-scoped roles provide cluster-wide privileges. They enable visibility into runtime resources
across all of a cluster’s namespaces.

In this example YAML snippet, the pod-viewer role enables pod visibility on the cluster:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: pod-viewer

rules:

- apiGroups: [""]

  resources: ["pods"]

  verbs: ["get", "watch", "list"]

Namespace-scoped roles

Namespace-scoped roles provide privileges that are limited to a certain namespace. They enable
visibility into runtime resources inside namespaces.

In this example YAML snippet, the pod-viewer-app1 role enables pod visibility in the app1
namespace:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  namespace: app1

  name: pod-viewer-app1

rules:

- apiGroups: [""]

  resources: ["pods"]

  verbs: ["get", "list"]

Create users

You can create users by running the kubectl create command. In this example YAML snippet, the
user john is defined:

apiVersion: rbac.authorization.k8s.io/v1

kind: User

metadata:

  namespace: default

  name: john

Tanzu Application Platform v1.4

VMware by Broadcom 1465



Assign users to their roles

After the users and role are created, the next step is to bind them together.

To bind a Tanzu Application Platform default role, see Bind a user or group to a default role.

In this example YAML snippet, the user john is bound with the pod-viewer cluster role:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: john-pod-viewer

  namespace: default

subjects:

- kind: User

  name: john

  apiGroup: rbac.authorization.k8s.io

roleRef:

  kind: ClusterRole

  name: pod-viewer

  apiGroup: rbac.authorization.k8s.io

In this example YAML snippet, the user john is bound with the pod-viewer-app1 namespace-
specific role:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: john-pod-viewer-app1

  namespace: app1

subjects:

- kind: User

  name: john

  apiGroup: rbac.authorization.k8s.io

roleRef:

  kind: Role

  name: pod-viewer-app1

  apiGroup: rbac.authorization.k8s.io

To verify the user’s permissions, run the can-i commands to get a yes or no answer. To verify that
you can list pods in your cluster-wide role, run:

kubectl auth can-i get pods --all-namespaces

To verify that you can list pods in namespace app1 in your namespace-specific role, run:

kubectl auth can-i get pods --namespace app1

Add Tanzu Application Platform GUI integrations
You can integrate Tanzu Application Platform GUI (commonly called TAP GUI) with several Git
providers. To use an integration, you must enable it and provide the necessary token or credentials
in tap-values.yaml.

Add a GitHub provider integration
To add a GitHub provider integration, edit tap-values.yaml as in this example:

app_config:

  app:

Tanzu Application Platform v1.4

VMware by Broadcom 1466



    baseUrl: http://EXTERNAL-IP:7000

  # Existing tap-values.yaml above

  integrations:

    github: # Other integrations available see NOTE below

      - host: github.com

        token: GITHUB-TOKEN

Where:

EXTERNAL-IP is the external IP address.

GITHUB-TOKEN is a valid token generated from your Git infrastructure of choice. Ensure that
GITHUB-TOKEN has the necessary read permissions for the catalog definition files you
extracted from the blank software catalog introduced in the Tanzu Application Platform GUI
prerequisites.

Add a Git-based provider integration that isn’t GitHub

To enable Tanzu Application Platform GUI to read Git-based non-GitHub repositories containing
component information:

1. Add the following YAML to tap-values.yaml:

app_config:

  # Existing tap-values.yaml above

  backend:

    reading:

      allow:

        - host: "GIT-CATALOG-URL-1"

        - host: "GIT-CATALOG-URL-2" # Including more than one URL is optional

Where GIT-CATALOG-URL-1 and GIT-CATALOG-URL-2 are URLs in a list of URLs that Tanzu
Application Platform GUI can read when registering new components. For example,
git.example.com. For more information about registering new components, see Adding
catalog entities.

2. Adding the YAML from the previous step currently causes the Accelerators page to break
and not show any accelerators. Provide a value for Application Accelerator as a
workaround, as in this example:

app_config:

  # Existing tap-values.yaml above

  backend:

    reading:

      allow:

        - host: acc-server.accelerator-system.svc.cluster.local

Add a non-Git provider integration
To add an integration for a provider that isn’t associated with GitHub, see the Backstage
documentation.

Update the package profile
After changing tap-values.yaml, update the package profile by running:

tanzu package installed update  tap --package-name tap.tanzu.vmware.com --version VERS

ION-NUMBER \

--values-file tap-values.yaml -n tap-install

Tanzu Application Platform v1.4

VMware by Broadcom 1467

https://backstage.io/docs/integrations/


Where VERSION-NUMBER is the Tanzu Application Platform version. For example, 1.4.13.

For example:

$ tanzu package installed update  tap --package-name tap.tanzu.vmware.com --version \

1.4.13 --values-file tap-values.yaml -n tap-install

| Updating package 'tap'

| Getting package install for 'tap'

| Getting package metadata for 'tap.tanzu.vmware.com'

| Updating secret 'tap-tap-install-values'

| Updating package install for 'tap'

/ Waiting for 'PackageInstall' reconciliation for 'tap'

Updated package install 'tap' in namespace 'tap-install'

Configure the Tanzu Application Platform GUI database

The Tanzu Application Platform GUI (commonly called TAP GUI) catalog gives you two approaches
for storing catalog information:

In-memory database:

The default option uses an in-memory database and is suitable for test and development
scenarios only. The in-memory database reads the catalog data from Git URLs that you
write in tap-values.yaml.

This data is temporary. Any operations that cause the server pod in the tap-gui namespace
to be re-created also cause this data to be rebuilt from the Git location.

This can cause issues when you manually register entities by using the UI because they only
exist in the database and are lost when that in-memory database is rebuilt. If you choose
this method, you lose all user preferences and any manually registered entities when the
Tanzu Application Platform GUI server pod is re-created.

PostgreSQL database:

For production use-cases, use a PostgreSQL database that exists outside the Tanzu
Application Platform packaging. The PostgreSQL database stores all the catalog data
persistently both from the Git locations and the UI manual entity registrations.

For production or general-purpose use-cases, a PostgreSQL database is recommended.

Configure a PostgreSQL database

See the following sections for configuring Tanzu Application Platform GUI to use a PostgreSQL
database.

Edit tap-values.yaml

Apply the following values in tap-values.yaml:

# ... existing tap-values.yaml above

tap_gui:

  # ... existing tap_gui values

  app_config:

    backend:

      database:

        client: pg

        connection:

          host: PG-SQL-HOSTNAME

          port: 5432

Tanzu Application Platform v1.4

VMware by Broadcom 1468



          user: PG-SQL-USERNAME

          password: PG-SQL-PASSWORD

          ssl: {rejectUnauthorized: false} # Set to true if using SSL

Where:

PG-SQL-HOSTNAME is the host name of your PostgreSQL database

PG-SQL-USERNAME is the user name of your PostgreSQL database

PG-SQL-PASSWORD is the password of your PostgreSQL database

(Optional) Configure extra parameters

Beyond the minimum configuration options needed to make Tanzu Application Platform GUI work
with the pg driver, there are many more configuration options for other purposes. For example, you
can restrict Tanzu Application Platform GUI to a single database. For more information about this
restriction, see the Backstage documentation.

By default, Tanzu Application Platform GUI creates a database for each plug-in, but you can
configure it to divide plug-ins based on different PostgreSQL schemas and use a single specified
database.

See the following example of extra configuration parameters:

# ... existing tap-values.yaml above

tap_gui:

  # ... existing tap_gui values

  app_config:

    backend:

      # ... other backend details

      database:

        client: pg

        # This parameter tells Tanzu Application Platform GUI to put plug-ins in their 

own schema instead

        # of their own database.

        # default: database

        pluginDivisionMode: schema

        connection:

          # ... other connection details

          database: PG-SQL-DATABASE

Where PG-SQL-DATABASE is the database name for Tanzu Application Platform GUI to use

For the complete list of these configuration options, see the node-postgres documentation.

Update the package profile

You can apply your new configuration by updating Tanzu Application Platform with your modified
values. Doing so updates Tanzu Application Platform GUI because it belongs to Tanzu Application
Platform.

To apply your new configuration, run:

tanzu package installed update  tap --package-name tap.tanzu.vmware.com --version VERS

ION-NUMBER --values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.4.13.

For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1469

https://backstage.io/docs/tutorials/switching-sqlite-postgres#using-a-single-database
https://node-postgres.com/apis/client


$ tanzu package installed update  tap --package-name tap.tanzu.vmware.com --version 1.

4.13 --values-file tap-values.yaml -n tap-install

| Updating package 'tap'

| Getting package install for 'tap'

| Getting package metadata for 'tap.tanzu.vmware.com'

| Updating secret 'tap-tap-install-values'

| Updating package install for 'tap'

/ Waiting for 'PackageInstall' reconciliation for 'tap'

Updated package install 'tap' in namespace 'tap-install'

Generate and publish TechDocs

This topic tells you how to generate and publish TechDocs for catalogs as part of Tanzu Application
Platform GUI (commonly called TAP GUI). For more information about TechDocs, see the
Backstage.io documentation.

Create an Amazon S3 bucket

To create an Amazon S3 bucket:

1. Go to Amazon S3.

2. Click Create bucket.

3. Give the bucket a name.

4. Select the AWS region.

5. Keep Block all public access checked.

6. Click Create bucket.

Configure Amazon S3 access

The TechDocs are published to the S3 bucket that was recently created. You need an AWS user’s
access key to read from the bucket when viewing TechDocs.

Create an AWS IAM user group

To create an AWS IAM User Group:

1. Click Create Group.

2. Give the group a name.

3. Click Create Group.

4. Click the new group and navigate to Permissions.

5. Click Add permissions and click Create Inline Policy.

6. Click the JSON tab and replace contents with this JSON replacing BUCKET-NAME with the
bucket name.

{

  "Version": "2012-10-17",

  "Statement": [

      {

          "Sid": "ReadTechDocs",

          "Effect": "Allow",

          "Action": [

Tanzu Application Platform v1.4

VMware by Broadcom 1470

https://backstage.io/docs/features/techdocs/
https://s3.console.aws.amazon.com/s3/home
https://console.aws.amazon.com/iamv2/home#/groups


              "s3:ListBucket",

              "s3:GetObject"

          ],

          "Resource": [

              "arn:aws:s3:::BUCKET-NAME",

              "arn:aws:s3:::BUCKET-NAME/*"

          ]

      }

  ]

}

7. Click Review policy.

8. Give the policy a name and click Create policy.

Create an AWS IAM user

To create an AWS IAM User to add to this group:

1. Click Add users.

2. Give the user a name.

3. Verify Access key - Programmatic access and click Next: Permissions.

4. Verify the IAM Group to add the user to and click Next: Tags.

5. Click Next: Review then click Create user.

6. Record the Access key ID (AWS_READONLY_ACCESS_KEY_ID) and the Secret access key
(AWS_READONLY_SECRET_ACCESS_KEY) and click Close.

Find the catalog locations and their entities’ namespace,
kind, and name

TechDocs are generated for catalogs that have Markdown source files for TechDocs. To find the
catalog locations and their entities’ namespace, kind, and name:

1. The catalogs appearing in Tanzu Application Platform GUI are listed in the config values
under app_config.catalog.locations.

2. For a catalog, clone the catalog’s repository to the local file system.

3. Find the mkdocs.yml that is at the root of the catalog. There is a YAML file describing the
catalog at the same level called catalog-info.yaml.

4. Record the values for namespace, kind, and metadata.name, and the directory path
containing the YAML file.

5. Record the spec.targets in that file.

6. Find the namespace, kind, or name for each of the targets:

1. Go to the target’s YAML file.

2. The namespace value is the value of namespace. If it is not specified, it has the value
default.

3. The kind value is the value of kind.

4. The name value is the value of metadata.name.

5. Record the directory path containing the YAML file.

Use the TechDocs CLI to generate and publish TechDocs

Tanzu Application Platform v1.4

VMware by Broadcom 1471

https://console.aws.amazon.com/iamv2/home#/users


VMware uses npx to run the TechDocs CLI, which requires Node.js and npm. To generate and
publish TechDocs by using the TechDocs CLI:

1. Download and install Node.js and npm.

2. Install npx by running:

npm install -g npx

3. Generate the TechDocs for the root of the catalog by running:

npx @techdocs/cli generate --source-dir DIRECTORY-CONTAINING-THE-ROOT-YAML-FILE 

--output-dir ./site

4. Review the contents of the site directory to verify the TechDocs were generated.

5. Set environment variables for authenticating with Amazon S3 with an account that has
read/write access:

export AWS_ACCESS_KEY_ID=AWS-ACCESS-KEY-ID

export AWS_SECRET_ACCESS_KEY=AWS-SECRET-ACCESS-KEY

export AWS_REGION=AWS-REGION

6. Publish the TechDocs for the root of the catalog to the Amazon S3 bucket you created
earlier by running:

npx @techdocs/cli publish --publisher-type awsS3 --storage-name BUCKET-NAME --e

ntity \

NAMESPACE/KIND/NAME --directory ./site

Where NAMESPACE/KIND/NAME are the values for namespace, kind, and metadata.name you
recorded earlier. For example, default/location/yelb-catalog-info.

7. For each of the spec.targets found earlier, repeat the generate and publish commands.

Update the techdocs section in app-config.yaml to point to
the Amazon S3 bucket

Update the config values you used during installation to point to the Amazon S3 bucket that has
the published TechDocs files:

1. Add or edit the techdocs section under app_config in the config values with the following
YAML, replacing placeholders with the appropriate values.

Note

This creates a temporary site directory in your current working directory
that contains the generated TechDocs files.

Note

The generate command erases the contents of the site directory before
creating new TechDocs files. Therefore, the publish command must follow
the generate command for each target.

Tanzu Application Platform v1.4

VMware by Broadcom 1472

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm


techdocs:

  builder: 'external'

  publisher:

    type: 'awsS3'

    awsS3:

      bucketName: BUCKET-NAME

      credentials:

        accessKeyId: AWS-READONLY-ACCESS-KEY-ID

        secretAccessKey: AWS-READONLY-SECRET-ACCESS-KEY

      region: AWS-REGION

      s3ForcePathStyle: false

2. Update your installation from the Tanzu CLI.

Tanzu Application Platform package installation
If you installed Tanzu Application Platform GUI as part of the Tanzu Application Platform
package (in other words, if you installed it by running tanzu package install tap ...)
then run:

tanzu package installed update tap \

  --version PACKAGE-VERSION \

  -f VALUES-FILE

Where PACKAGE-VERSION is your package version and VALUES-FILE is your values file

Separate package installation
If you installed Tanzu Application Platform GUI as its own package (in other words, if you
installed it by running tanzu package install tap-gui ...) then run:

tanzu package installed update tap-gui \

  --version PACKAGE-VERSION \

  -f VALUES-FILE

Where PACKAGE-VERSION is your package version and VALUES-FILE is your values file

3. Verify the status of the update by running:

tanzu package installed list

4. Go to the Docs section of your catalog and view the TechDocs pages to verify the content
is loaded from the S3 bucket.

Overview of Tanzu Application Platform GUI plug-ins

Tanzu Application Platform GUI (commonly called TAP GUI) has many pre-integrated plug-ins. You
need not configure the plug-ins. To use a plug-in, you must install the relevant Tanzu Application
Platform component.

Tanzu Application Platform has the following GUI plug-ins:

Runtime Resources Visibility

Application Live View

Application Accelerator

API Documentation

Security Analysis

Supply Chain Choreographer

Tanzu Application Platform v1.4

VMware by Broadcom 1473



Overview of Tanzu Application Platform GUI plug-ins

Tanzu Application Platform GUI (commonly called TAP GUI) has many pre-integrated plug-ins. You
need not configure the plug-ins. To use a plug-in, you must install the relevant Tanzu Application
Platform component.

Tanzu Application Platform has the following GUI plug-ins:

Runtime Resources Visibility

Application Live View

Application Accelerator

API Documentation

Security Analysis

Supply Chain Choreographer

Runtime resources visibility in Tanzu Application Platform
GUI

This topic tells you about runtime resources visibility.

The Runtime Resources Visibility plug-in enables users to visualize their Kubernetes resources
associated with their workloads.

Prerequisite

Do one of the following actions to access the Runtime Resources Visibility plug-in:

Install the Tanzu Application Platform Full or View profile

Install Tanzu Application Platform without using a profile and then install Tanzu Application
Platform GUI separately

Review the section If you have a metrics server

If you have a metrics server

By default, the Kubernetes API does not attempt to use any metrics servers on your clusters. To
access metrics information for a cluster, set skipMetricsLookup to false for that cluster in the
kubernetes section of app-config.yaml. Example:

tap_gui:

  # ... existing configuration

  app_config:

    # ... existing configuration

    kubernetes:

      clusterLocatorMethods:

        - type: 'config'

          clusters:

            - url: https://KUBERNETES-SERVICE-HOST:KUBERNETES-SERVICE-PORT

              name: host

              authProvider: serviceAccount

              serviceAccountToken: KUBERNETES-SERVICE-ACCOUNT-TOKEN

              skipTLSVerify: true

              skipMetricsLookup: false

Where:

Tanzu Application Platform v1.4

VMware by Broadcom 1474



KUBERNETES-SERVICE-HOST and KUBERNETES-SERVICE-PORT are the URL and ports of your
Kubernetes cluster. You can gather these through kubectl cluster-info.

KUBERNETES-SERVICE-ACCOUNT-TOKEN is the token from your tap-gui-token-id.

You can retrieve this secret’s ID by running:

kubectl get secrets -n tap-gui

and then running

kubectl describe secret tap-gui-token-ID

Where ID is the secret name from the first step.

Visualize Workloads on Tanzu Application Platform GUI

In order to view your applications on Tanzu Application Platform GUI, use the following steps:

1. Deploy your first application on the Tanzu Application Platform

2. Add your application to Tanzu Application Platform GUI Software Catalog

Navigate to the Runtime Resources Visibility screen

You can view the list of running resources and the details of their status, type, namespace, cluster,
and public URL if applicable for the resource type.

To view the list of your running resources:

1. Select your component from the Catalog index page.

2. Select the Runtime Resources tab.

Resources

Built-in Kubernetes resources in this view are:

Services

Caution

If you enable metrics for a cluster but do not have a metrics server running on it,
Tanzu Application Platform web interface users see an error notifying them that
there is a problem connecting to the back end.

Tanzu Application Platform v1.4

VMware by Broadcom 1475



Deployments

ReplicaSets

Pods

Jobs

Cronjobs

DaemonSets

ReplicaSets

The Runtime Resource Visibility plug-in also displays CRDs created with the Supply Chain,
including:

Cartographer Workloads

Knative Services, Configurations, Revisions, and Routes

For more information, see Supply Chain Choreographer in Tanzu Application Platform GUI.

CRDs from Supply Chain are associated with Knative Resources, further down the chain, and built-
in resources even further down the chain.

Resources details page

To get more information about a particular workload, select it from the table on the main Runtime
Resources page to visit a page that provides details about the workload. These details include the
workload status, ownership, and resource-specific information.

Tanzu Application Platform v1.4

VMware by Broadcom 1476



Overview card

All detail pages provide an overview card with information related to the selected resource. Most of
the information feeds from the metadata attribute in each object. The following are some attributes
that are displayed in the overview card:

View Pod Logs button

View .YAML button

URL, which is for Knative and Kubernetes service detail pages

Type

System

Namespace

Cluster

Tanzu Application Platform v1.4

VMware by Broadcom 1477



Status card

The status section displays all of the conditions in the resource’s attribute status.conditions. Not
all resources have conditions, and they can vary from one resource to the other.

For more information about object spec and status, see the Kubernetes documentation.

Note

The VIEW CPU AND MEMORY DETAILS and VIEW THREADS sections are only
available for applications supporting Application Live View.

Tanzu Application Platform v1.4

VMware by Broadcom 1478

https://kubernetes.io/docs/concepts/_print/#object-spec-and-status


Ownership card

Depending on the resource that you are viewing, the ownership section displays all the resources
specified in metadata.ownerReferences. You can use this section to navigate between resources.

For more information about owners and dependents, see the Kubernetes documentation.

Annotations and Labels

Tanzu Application Platform v1.4

VMware by Broadcom 1479

https://kubernetes.io/docs/concepts/overview/working-with-objects/owners-dependents/


The Annotations and Labels card displays information about metadata.annotations and
metadata.labels.

Selecting completed supply chain pods

Completed supply chain pods (build pods and ConfigWriter pods) are hidden by default in the index
table. Users can choose to display them from the Show Additional Resources drop-down menu
above the Resources index table. This drop-down menu is only visible if the resources include Build
or ConfigWriter pods.

Navigating to the pod Details page
Users can see the pod table in each resource details page.

Overview of pod metrics

If you have a metrics server running on your cluster, the overview card displays realtime metrics for
pods.

If you do not have a metrics server, the overview card displays the user-configured resource limits
on the pod, defined in accordance with the Kubernetes documentation.

Tanzu Application Platform v1.4

VMware by Broadcom 1480

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


For applications built using Spring Boot, you can also monitor the actual real-time resource use
using Screenshot of Application Live View for Spring Boot Applications in Tanzu Application
Platform GUI..

Metrics and limits are also displayed for each container on a pod details page. If a particular
container’s current limit conflicts with a namespace-level LimitRange, a small warning indicator is
displayed next to the container limit. Most conflicts are due to creating a container before applying
a LimitRange.

Pods display the sum of the limits of all their containers. If a limit is not specified for a container,
both the container and its pod are deemed to require unlimited resources.

Namespace-level resource limits, such as default memory limits and default CPU limits, are not
considered as part of these calculations.

For more information about default memory limits and default CPU limits see the Kubernetes
documentation.

These limits apply only for Memory and CPU that a pod or container can use. Kubernetes manages
these resource units by using a binary base, which is explained in the Kubernetes documentation.

Navigating to Application Live View

To view additional information about your running applications, see the Application Live View
section in the Pod Details page.

Viewing pod logs

Tanzu Application Platform v1.4

VMware by Broadcom 1481

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/memory-default-namespace/
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/cpu-default-namespace/
https://kubernetes.io/docs/reference/kubernetes-api/common-definitions/quantity/


To view logs for a pod, click View Pod Logs from the Pod Details page. By default, logs for the
pod’s first container are displayed, dating back to when the pod was created.

Pausing and resuming logs

Log entries are streamed in real time. New entries appear at the bottom of the log content area.
Click or scroll the log content area to pause the log stream. Pausing the log stream enables you to
focus on specific entries.

To resume the stream, click the Follow Latest button that appears after pausing.

Filtering by container

To display logs for a different container, select the container that you want from the Container
drop-down menu.

Filtering by date and time

To see logs since a specific date and time, select or type the UTC timestamp in the Since date
field. If no logs are displayed, adjust the timestamp to an earlier time. If you do not select a
timestamp, all logs produced since the pod was created are displayed.

For optimal performance, the pod logs page limits the total log entries displayed to the last 10,000,
at most.

Changing log levels

If the pod is associated with an application that supports Application Live View, you can change the
application’s log levels by clicking the Change Log Levels button. You then see a panel that
enables you to select levels for each logger associated with your application.

Tanzu Application Platform v1.4

VMware by Broadcom 1482



To change the levels for your application, select the desired level for each logger presented, and
then click X in the upper-right corner of the panel, or press the Escape key, to close the panel.

Because adjusting log levels makes a real-time configuration change to your application, log-level
adjustments are only reflected in log entries that your application produces after the change.

If no log entries for the expected levels appear, ensure that:

1. You adjusted the correct application loggers

2. You are viewing logs for the correct container and time frame

3. Your application is currently producing logs at the expected levels

Line wrapping

By default, log entries are not wrapped. To activate or deactivate line wrapping, click the Wrap
lines toggle.

Downloading logs

To download current log content, click the Download logs button.

For optimal performance, the pod logs page limits the total log entries downloaded to the last
10,000, at most.

Connection interruptions

If the log stream connection is interrupted for any reason, such as a network error, a notification
appears after the most recent log entry, and the page attempts to reconnect to the log stream. If
reconnection fails, an error message displays at the top of the page, and you can click the Refresh
button at the upper-right of the page to attempt to reconnect.

Tanzu Application Platform v1.4

VMware by Broadcom 1483



If you notice frequent disconnections at regular intervals, contact your administrator. Your
administrator might need to update the back-end configuration for your installation to allow long-
lived HTTP connections to log endpoints (endpoints starting with BACKEND-HOST/api/k8s-logging/).

Application Live View in Tanzu Application Platform GUI

This topic tells you about Application Live View in Tanzu Application Platform GUI (commonly called
TAP GUI).

Overview

The Application Live View features of Tanzu Application Platform include sophisticated components
to give developers and operators a view into their running workloads on Kubernetes.

Application Live View shows an individual running process, for example, a Spring Boot application
deployed as a workload resulting in a JVM process running inside of a pod. This is an important
concept of Application Live View. Application Live View only recognizes running processes. If there
is not a running process inside of a running pod, Application Live View does not show anything.

Under the hood, Application Live View uses the concept of actuators to gather data from those
running processes. It visualizes them in a semantically meaningful way and allows users to interact
with the inner workings of the running processes within limited boundaries.

The actuator data serves as the source of truth. Application Live View provides a live view of the
data from inside of the running processes only. It does not store any of that data for further analysis
or historical views.

This easy-to-use interface provides ways to troubleshoot, learn, and maintain an overview of
certain aspects of the running processes. It gives a level of control to the users to change some
parameters, such as environment properties, without a restart (where the Spring Boot application,
for example, supports that).

Entry point to Application Live View plug-in

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To use the
Application Live View plug-in:

1. Select the relevant component under the Organization Catalog in Tanzu Application
Platform GUI.

2. Select the desired service under the Runtime Resources tab.

3. Select the desired pod from the Pods section under the Runtime Resources tab.

4. You can now see all the details, do some lightweight troubleshooting, and interact with the
application within certain boundaries under the Live View section.

Application Live View in Tanzu Application Platform GUI

This topic tells you about Application Live View in Tanzu Application Platform GUI (commonly called
TAP GUI).

Overview

The Application Live View features of Tanzu Application Platform include sophisticated components
to give developers and operators a view into their running workloads on Kubernetes.

Tanzu Application Platform v1.4

VMware by Broadcom 1484



Application Live View shows an individual running process, for example, a Spring Boot application
deployed as a workload resulting in a JVM process running inside of a pod. This is an important
concept of Application Live View. Application Live View only recognizes running processes. If there
is not a running process inside of a running pod, Application Live View does not show anything.

Under the hood, Application Live View uses the concept of actuators to gather data from those
running processes. It visualizes them in a semantically meaningful way and allows users to interact
with the inner workings of the running processes within limited boundaries.

The actuator data serves as the source of truth. Application Live View provides a live view of the
data from inside of the running processes only. It does not store any of that data for further analysis
or historical views.

This easy-to-use interface provides ways to troubleshoot, learn, and maintain an overview of
certain aspects of the running processes. It gives a level of control to the users to change some
parameters, such as environment properties, without a restart (where the Spring Boot application,
for example, supports that).

Entry point to Application Live View plug-in

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To use the
Application Live View plug-in:

1. Select the relevant component under the Organization Catalog in Tanzu Application
Platform GUI.

2. Select the desired service under the Runtime Resources tab.

3. Select the desired pod from the Pods section under the Runtime Resources tab.

4. You can now see all the details, do some lightweight troubleshooting, and interact with the
application within certain boundaries under the Live View section.

Application Live View for Spring Boot applications in Tanzu
Application Platform GUI
This topic tells you about the Application Live View pages for Spring Boot Applications in Tanzu
Application Platform GUI (commonly called TAP GUI).

Details page
This is the default page loaded in the Live View section. This page gives a tabular overview
containing the following information:

application name

instance ID

location

actuator location

health endpoint

direct actuator access

framework

version

new patch version

new major version

Tanzu Application Platform v1.4

VMware by Broadcom 1485



build version

You can navigate between Information Categories by selecting from the drop-down menu on the
top right corner of the page.

Health page

To go to the health page, select the Health option from the Information Category drop-down
menu. The health page provides detailed information about the health of the application. It lists all
the components that make up the health of the application such as readiness, liveness, and disk
space. It displays the status and details associated with each component.

Environment page

To go to the Environment page, select the Environment option from the Information Category
drop-down menu. The Environment page contains details of the applications’ environment. It
contains properties including, but not limited to, system properties, environment variables, and
configuration properties (such as application.properties) in a Spring Boot application.

The page includes the following capabilities for viewing configured environment properties:

The UI has a search feature that enables you to search for a property or values.

Each property has a search icon at the right corner which helps you quickly see all the
occurrences of a specific property key without manually typing in the search box. Clicking
the search button locates the property name.

The Refresh Scope button on the top right corner of the page probes the application to
refresh all the environment properties.

The page also includes the following capabilities for editing configured environment properties:

The UI allows you to edit environment properties and see the live changes in the
application. These edits are temporary and go away if the underlying pod is restarted.

For each configured environment property, you can edit its value by clicking on the
Override button in the same row. After the value is saved, you can view the message that
the property was overridden from the initial value. The updated property is visible in the

Tanzu Application Platform v1.4

VMware by Broadcom 1486



Applied Overrides section at the top of the page. The Reset button in the same row
resets the environment property to the initial state.

You can edit or remove the overridden environment variables in the Applied Overrides
section.

The Applied Overrides section also enables you to add new environment properties to the
application.

Log Levels page
To go to the Log Levels page, select the Log Levels option from the Information Category drop-
down menu. The log levels page provides access to the application’s loggers and the configuration
of their levels.

You can configure the log levels such as INFO, DEBUG, and TRACE in real time from the UI. You
can search for a package and edit its respective log level. You can configure the log levels at a
specific class and package. They can deactivate all the log levels by modifying the log level of root
logger to OFF.

The toggle Changes Only displays the changed log levels. Use the search feature to search by
logger name. The Reset resets the log levels to the original state. The Reset All on top right corner
of the page resets all the loggers to default state.

Note

management.endpoint.env.post.enabled=true must be set in the application config
properties of the application and a corresponding, editable environment must be
present in the application.

Note

Use the UI to change the log levels and see the live changes on the application.
These changes are temporary and go away if the underlying pod is restarted.

Tanzu Application Platform v1.4

VMware by Broadcom 1487



Threads page

To go to the Threads page, select the Threads option from the Information Category drop-down
menu.

This page displays all details related to Java Virtual Machine (JVM) threads and running processes of
the application. This tracks live threads and daemon threads real-time. It is a snapshot of different
thread states. Navigating to a thread state displays all the information about a particular thread and
its stack trace.

Use the search feature to search for threads by thread ID or state. The refresh icon refreshes to the
latest state of the threads. You can view more thread details by clicking on the Thread ID. The
page also has a feature to download thread dump data for analysis purposes.

Memory page

Tanzu Application Platform v1.4

VMware by Broadcom 1488



To go to the Memory page, select the Memory option from the Information Category drop-down
menu.

The memory page highlights the memory use inside of the JVM. It displays a graphical
representation of the different memory regions within heap and non-heap memory. This
visualizes data from inside of the JVM (in case of Spring Boot apps running on a JVM) and
therefore provides memory insights into the application in contrast to “outside” information
about the Kubernetes pod level.

The real-time graphs displays a stacked overview of the different spaces in memory with
the total memory used and total memory size. The page contains graphs to display the GC
pauses and GC events.

The Heap Dump at the top-right corner enables you to download heap dump data.

Request Mappings page
To go to the Request Mappings page, select the Request Mappings option from the Information
Category drop-down menu.

This page provides information about the application’s request mappings. For each mapping, it
displays the request handler method. You can view more details of the request mapping, such as
the header metadata of the application.

When you click on the request mapping, a side panel appears. This panel contains information
about the mapping-media types Produces and Consumes. The panel also displays the Handler class
for the request. Use the search feature to search for the request mapping or the method. The
toggle /actuator/** Request Mappings displays the actuator related mappings of the application.

Note

This graphical visualization happens in real time and shows real-time data only. As
mentioned at the top, the Application Live View features do not store any
information. That means the graphs visualize the data over time only for as long as
you stay on that page.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 1489



HTTP Requests page

To go to the HTTP Requests page, click HTTP Requests from the Information Category drop-
down menu. The HTTP Requests page provides information about HTTP request-response
exchanges to the application.

The graph visualizes the requests per second indicating the response status of all the requests. You
can filter the response statuses, which include info, success, redirects, client-errors, and server-
errors. The trace data is captured in detail in a tabular format with metrics such as timestamp,
method, path, status, content-type, length, time.

The search feature on the table filters the traces based on the search field value. You can view
more details of the request, such as method, headers, and response of the application by clicking
on the timestamp. The refresh icon above the graph loads the latest traces of the application. The
toggle /actuator/** on the top right corner of the page displays the actuator related traces of the
application.

When application actuator endpoint is exposed on management.server.port, the
application does not return any actuator request mappings data in the context. The
application displays a message when the actuator toggle is enabled.

Note

When application actuator endpoint is exposed on management.server.port, no
actuator HTTP Traces data is returned for the application. In this case, a message is
displayed when the actuator toggle is enabled.

Tanzu Application Platform v1.4

VMware by Broadcom 1490



Caches page

To go to the Caches page, select the Caches option from the Information Category drop-down
menu.

The Caches page provides access to the application’s caches. It gives the details of the cache
managers associated with the application including the fully qualified name of the native cache.

Use the search feature in the Caches Page to search for a specific cache/cache manager. You can
clear individual caches by clicking Evict. You can clear all the caches completely by clicking Evict
All. If there are no cache managers for the application, the message No cache managers available
for the application is displayed.

Configuration Properties page

To go to the Configuration Properties page, select the Configuration Properties option from the
Information Category drop-down menu.

The configuration properties page provides information about the configuration properties of the
application. In case of Spring Boot, it displays application’s @ConfigurationProperties beans. It
gives a snapshot of all the beans and their associated configuration properties. Use the search
feature to search for a property’s key/value or the bean name.

Tanzu Application Platform v1.4

VMware by Broadcom 1491



Conditions page

To go to the Conditions page, select the Conditions option from the Information Category drop-
down menu. The conditions evaluation report provides information about the evaluation of
conditions on configuration and auto-configuration classes.

In the case of Spring Boot, this gives you a view of all the beans configured in the application.
When you click on the bean name, the conditions and the reason for the conditional match is
displayed.

In the case of non-configured beans, it shows both the matched and unmatched conditions of the
bean if any. In addition to this, it also displays names of unconditional auto configuration classes if
any. You can use the search feature to filter out the beans and the conditions.

Scheduled Tasks page
To go to the Scheduled Tasks page, select the Scheduled Tasks option from the Information
Category drop-down menu.

Tanzu Application Platform v1.4

VMware by Broadcom 1492



The scheduled tasks page provides information about the application’s scheduled tasks. It includes
cron tasks, fixed delay tasks and fixed rate tasks, custom tasks and the properties associated with
them.

You can search for a particular property or a task in the search bar to retrieve the task or property
details.

Beans page
To go to the Beans page, select the Beans option from the Information Category drop-down
menu. The beans page provides information about a list of all application beans and its
dependencies. It displays the information about the bean type, dependencies, and its resource.
You can search by the bean name or its corresponding fields.

Metrics page

To go to the Metrics page, select the Metrics option from the Information Category drop-down
menu.

The metrics page provides access to application metrics information. You can choose from the list
of various metrics available for the application, such as jvm.memory.used, jvm.memory.max,
http.server.request, and so on.

Tanzu Application Platform v1.4

VMware by Broadcom 1493



After the metric is chosen, you can view the associated tags. You can choose the value of each tag
based on filtering criteria. Clicking Add Metric adds the metric to the page which is refreshed every
5 seconds by default.

You can pause the auto refresh feature by deactivating the Auto Refresh toggle. You can refresh
the metrics manually by clicking Refresh All. The format of the metric value can be changed
according to your needs. They can delete a particular metric by clicking the minus symbol in the
same row.

Actuator page
To go to the Actuator page, select the Actuator option from the Information Category drop-
down menu. The actuator page provides a tree view of the actuator data. You can choose from a
list of actuator endpoints and parse through the raw actuator data.

Troubleshooting

You might run into cases where a workload running on your cluster does not appear in the
Application Live View overview, the detail pages do not load any information while running, or
similar issues. If you encounter issues, see Troubleshooting in the Application Live View
documentation.

Application Live View for Spring Cloud Gateway
applications in Tanzu Application Platform GUI

Tanzu Application Platform v1.4

VMware by Broadcom 1494



This topic tells you about the Application Live View pages for Spring Cloud Gateway applications in
Tanzu Application Platform GUI (commonly called TAP GUI).

API Success Rate page

To access to the API Success Rate page, select the API Success Rate option from the Information
Category drop-down menu.

The API success rate page displays the total successes, average response time, and maximum
response time for the gateway routes. It also displays the details of each successful route path.

API Overview page
To access the API Overview page, select the API Overview option from the Information Category
drop-down menu.

The API Overview page provides route count, number of successes, errors, and the rate-limited
requests. It also provides an auto refresh feature to get the updated results. These metrics are
depicted in a line graph.

API Authentications By Path page

To access the API Authentications By Path page, select the API Authentications By Path option
from the Information Category drop-down menu.

The API Authentications By Path page displays the total requests, number of successes, and
forbidden and unsuccessful authentications grouped by the HTTP method and gateway route path.
The page also displays the success rate for each route.

Tanzu Application Platform v1.4

VMware by Broadcom 1495



Troubleshooting
You might run into cases where a workload running on your cluster does not appear in the
Application Live View overview, or the detail pages do not load any information while running, or
other similar issues. For more information about such issues, see Troubleshooting in the Application
Live View documentation.

Application Live View for Steeltoe applications in Tanzu
Application Platform GUI

This topic tells you about the Application Live View pages for Steeltoe applications in Tanzu
Application Platform GUI (commonly called TAP GUI).

Details page

This is the default page loaded in the Live View section. This page gives a tabular overview
containing the following information:

Application name

Instance ID

Location

Actuator location

Health endpoint

Direct actuator access

Framework

Version

New patch version

New major version

Build version

You can navigate between Information Categories by selecting from the drop-down menu on the
top right corner of the page.

Health page

Note

In addition to the preceding three pages, the Spring Boot actuator pages are also
displayed.

Tanzu Application Platform v1.4

VMware by Broadcom 1496



To access the health page, select the Health option from the Information Category drop-down
menu.

The health page provides detailed information about the health of the application. It lists all the
components that make up the health of the application, such as readiness, liveness, and disk space.
It displays the status and details associated with each component.

Environment page
To access the Environment page, select the Environment option from the Information Category
drop-down menu.

The Environment page contains details of the applications’ environment. It contains properties
including, but not limited to, system properties, environment variables, and configuration properties
(such as appsettings.json) in a Steeltoe application.

The page includes the following capabilities for viewing configured environment properties:

The UI has a search feature that enables you to search for a property or values.

Each property has a search icon at the right corner which helps you quickly see all the
occurrences of a specific property key without manually typing in the search box. Clicking
the search button locates the property name.

The Refresh Scope button on the top right corner of the page probes the application to
refresh all the environment properties.

The page also includes the following capabilities for editing configured environment properties:

The UI allows you to edit environment properties and see the live changes in the
application. These edits are temporary and go away if the underlying pod is restarted.

For each of the configured environment properties, you can edit its value by clicking on the
Override button in the same row. After the value is saved, you can view the message that
the property was overridden from the initial value. Also, the updated property is visible in
the Applied Overrides section at the top of the page. The Reset button in the same row
resets the environment property to the initial state.

You can also edit or remove the overridden environment variables in the Applied
Overrides section.

The Applied Overrides section also enables you to add new environment properties to the
application.

Note

The management.endpoint.env.post.enabled=true must be set in the application
config properties of the application, and a corresponding editable environment must
be present in the application.

Tanzu Application Platform v1.4

VMware by Broadcom 1497



Log Levels page
To go to the Log Levels page, select the Log Levels option from the Information Category drop-
down menu. The Log Levels page provides access to the application’s loggers and the
configuration of the levels.

You can:

Configure log levels, such as INFO, DEBUG, and TRACE, in real time from the UI

Search for a package and edit its respective log level

Configure the log levels at a specific class and package

Deactivate all the log levels by changing the log level of root logger to OFF

Use the Changes Only toggle to display the changed log levels. Use the search feature to search
by logger name. Click Reset All to reset all the loggers to the default state.

Note

The UI allows you to change the log levels and see the live changes on the
application. These changes are temporary and go away if the underlying pod is
restarted.

Tanzu Application Platform v1.4

VMware by Broadcom 1498



Threads page

To access the Threads page, select the Threads option from the Information Category drop-
down menu.

This page displays all details related to CLR threads and running processes of the application. This
tracks worker threads and completion port threads real-time. Navigating to a thread state displays
all the information about a particular thread and its stack trace.

The refresh icon refreshes to the latest state of the threads.

To view more thread details, click the thread ID.

The page also has a feature to download the thread dump for analysis.

Memory page

To access the Memory page, select the Memory option from the Information Category drop-
down menu.

This page displays all details related to used and committed memory of the application. This also
displays the garbage collection count by generation (gen0/gen1). The page also has a feature to
download the heap dump for analysis.

Request Mappings page

To access the Request Mappings page, select the Request Mappings option from the
Information Category drop-down menu.

Tanzu Application Platform v1.4

VMware by Broadcom 1499



This page provides information about the application’s request mappings. For each mapping, the
page displays the request handler method. You can view more details of the request mapping, such
as the header metadata of the application.

When you click on the request mapping, a side panel appears. This panel contains information
about the mapping-media types Produces and Consumes. The panel also displays the Handler class
for the request. The search feature enables you to search for the request mapping or the method.
The toggle /actuator/** Request Mappings displays the actuator-related mappings of the
application.

HTTP Requests page

To access the HTTP Requests page, select the HTTP Requests option from the Information
Category drop-down menu.

The HTTP Requests page provides information about HTTP request-response exchanges to the
application.

The graph visualizes the requests per second, which indicates the response status of all the
requests. You can filter by the response statuses, which include info, success, redirects, client-
errors, and server-errors. The trace data is captured in detail in a tabular format with metrics,
such as timestamp, method, path, status, content-type, length, and time.

The search feature on the table filters the traces based on the search text box value. By clicking on
the timestamp, you can view more details of the request, such as method, headers, and the
response of the application.

The refresh icon above the graph loads the latest traces of the application. The toggle /actuator/**
on the top-right corner of the page displays the actuator-related traces of the application.

Metrics page
To access the Metrics page, select the Metrics option from the Information Category drop-down
menu.

Tanzu Application Platform v1.4

VMware by Broadcom 1500



The metrics page provides access to application metrics information. You can choose from the list
of various metrics available for the application, such as clr.memory.used, System.Runtime.gc-
committed, clr.threadpool.active, and so on.

After you choose the metric, you can view the associated tags. You can choose the value of each
of the tags based on filtering criteria. Click Add Metric to add the metric to the page. The page is
refreshed every 5 seconds by default.

The UI on the Metrics page includes features that enable you to:

Pause the auto refresh feature by deactivating the Auto Refresh toggle.

Refresh the metrics manually by clicking Refresh All.

Change the format of the metric value according to your needs.

Delete a particular metric by clicking the minus-sign button in the relevant row.

Actuator page

To access the Actuator page, select the Actuator option from the Information Category drop-
down menu. The actuator page provides a tree view of the actuator data. You can choose from a
list of actuator endpoints and parse through the raw actuator data.

Troubleshooting

You might run into cases where a workload running on your cluster does not appear in the
Application Live View overview, or the Details pages do not load any information while running, or
other similar issues. For help with troubleshooting common issues, see Troubleshooting.

Application Accelerator in Tanzu Application Platform GUI

This topic tells you how to use Application Accelerator in Tanzu Application Platform GUI
(commonly called TAP GUI).

Tanzu Application Platform v1.4

VMware by Broadcom 1501



Overview

Application Accelerator for VMware Tanzu helps you bootstrap developing and deploying your
applications in a discoverable and repeatable way.

Enterprise architects author and publish accelerator projects that provide developers and operators
with ready-made, enterprise-conforming code and configurations. You can then use Application
Accelerator to create new projects based on those accelerator projects.

The Application Accelerator UI enables you to discover available accelerators, configure them, and
generate new projects to download.

Access Application Accelerator

To open the Application Accelerator UI plug-in and select an accelerator:

1. Within Tanzu Application Platform, click Create in the left navigation pane to open the
Accelerators page.

Here you can view accelerators already registered with the system. Developers can add
new accelerators by registering them with Kubernetes.

2. Every accelerator has a title and short description. Click VIEW REPOSITORY to view an
accelerator definition. This opens the accelerator’s Git repository in a new browser tab.

3. Search and filter based on text and tags associated with the accelerators to find the
accelerator representing the project you want to create.

4. Click CHOOSE for the accelerator you want. This opens the Generate Accelerators page.

Configure project generation

To configure how projects are generated:

1. On the Generate Accelerators page, add any configuration values needed to generate the
project. The application architect defined these values in accelerator.yaml in the
accelerator definition. Filling some text boxes can cause other text boxes to appear. Fill
them all in.

Tanzu Application Platform v1.4

VMware by Broadcom 1502



2. Click EXPLORE to open the Explore Project page and view the project before it is
generated.

3. After configuring your project, click NEXT STEP to see the project summary page.

4. Review the values you specified for the configurable options.

5. Click BACK to make more changes, if necessary. Otherwise, proceed to create the project.

Create the project

To create the project:

1. Click Create to start generating your project. See the progress on the Task Activity page.
A detailed log is displayed on the right.

2. After the project is generated, click EXPLORE ZIP FILE to open the Explore Project page
to verify configuration.

3. Click DOWNLOAD ZIP FILE to download the project in a ZIP file.

Develop your code

To develop your code:

1. Expand the ZIP file.

2. Open the project in your integrated development environment (IDE).

Tanzu Application Platform v1.4

VMware by Broadcom 1503



Next steps

To learn more about Application Accelerator for VMware Tanzu, see the Application Accelerator
documentation.

Application Accelerator in Tanzu Application Platform GUI

This topic tells you how to use Application Accelerator in Tanzu Application Platform GUI
(commonly called TAP GUI).

Overview

Application Accelerator for VMware Tanzu helps you bootstrap developing and deploying your
applications in a discoverable and repeatable way.

Enterprise architects author and publish accelerator projects that provide developers and operators
with ready-made, enterprise-conforming code and configurations. You can then use Application
Accelerator to create new projects based on those accelerator projects.

The Application Accelerator UI enables you to discover available accelerators, configure them, and
generate new projects to download.

Access Application Accelerator

To open the Application Accelerator UI plug-in and select an accelerator:

1. Within Tanzu Application Platform, click Create in the left navigation pane to open the
Accelerators page.

Tanzu Application Platform v1.4

VMware by Broadcom 1504



Here you can view accelerators already registered with the system. Developers can add
new accelerators by registering them with Kubernetes.

2. Every accelerator has a title and short description. Click VIEW REPOSITORY to view an
accelerator definition. This opens the accelerator’s Git repository in a new browser tab.

3. Search and filter based on text and tags associated with the accelerators to find the
accelerator representing the project you want to create.

4. Click CHOOSE for the accelerator you want. This opens the Generate Accelerators page.

Configure project generation
To configure how projects are generated:

1. On the Generate Accelerators page, add any configuration values needed to generate the
project. The application architect defined these values in accelerator.yaml in the
accelerator definition. Filling some text boxes can cause other text boxes to appear. Fill
them all in.

2. Click EXPLORE to open the Explore Project page and view the project before it is
generated.

3. After configuring your project, click NEXT STEP to see the project summary page.

4. Review the values you specified for the configurable options.

5. Click BACK to make more changes, if necessary. Otherwise, proceed to create the project.

Tanzu Application Platform v1.4

VMware by Broadcom 1505



Create the project

To create the project:

1. Click Create to start generating your project. See the progress on the Task Activity page.
A detailed log is displayed on the right.

2. After the project is generated, click EXPLORE ZIP FILE to open the Explore Project page
to verify configuration.

3. Click DOWNLOAD ZIP FILE to download the project in a ZIP file.

Develop your code
To develop your code:

1. Expand the ZIP file.

2. Open the project in your integrated development environment (IDE).

Next steps

Tanzu Application Platform v1.4

VMware by Broadcom 1506



To learn more about Application Accelerator for VMware Tanzu, see the Application Accelerator
documentation.

Install Application Accelerator

This topic tells you how to install Application Accelerator from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites

Before installing Application Accelerator:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Flux SourceController on the cluster. See Install Flux CD Source Controller.

Install Source Controller on the cluster. See Install Source Controller.

Configure properties and resource use

When you install the Application Accelerator, you can configure the following optional properties
from within your .yaml configuration file:

Property Default Description

registry.secret_ref registry.tanzu<.vmware.com The secret used for accessing the registry where the App-
Accelerator images are located

server.service_type ClusterIP The service type for the acc-ui-server service including
LoadBalancer, NodePort, or ClusterIP

server.watched_namesp
ace

accelerator-system The namespace the server watches for accelerator
resources

server.engine_invocatio
n_url

http://acc-engine.accelerator-
system.svc.cluster.local/invoc
ations

The URL to use for invoking the accelerator engine

engine.service_type ClusterIP The service type for the acc-engine service including
LoadBalancer, NodePort, or ClusterIP

engine.max_direct_me
mory_size

32M The maximum size for the Java -XX:MaxDirectMemorySize
setting

samples.include True Option to include the bundled sample Accelerators in the
installation

ingress.include False Option to include the ingress configuration in the
installation

ingress.enable_tls False Option to include TLS for the ingress configuration

domain tap.example.com Top-level domain to use for ingress configuration, default
is shared.ingress_domain

Note

Follow the steps in this topic if you do not want to use a profile to install Application
Accelerator. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1507



Property Default Description

tls.secret_name tls The name of the secret

tls.namespace tanzu-system-ingress The namespace for the secret

telemetry.retain_invocat
ion_events_for_no_day
s

30 The number of days to retain recorded invocation events
resources

telemetry.record_invoca
tion_events

true The system records each engine invocation when
generating files for an accelerator?

git_credentials.secret_n
ame

git-credentials The name to use for the secret storing Git credentials for
accelerators

git_credentials.usernam
e

null The user name to use in secret storing Git credentials for
accelerators

git_credentials.passwor
d

null The password to use in secret storing Git credentials for
accelerators

git_credentials.ca_file null The CA certificate data to use in secret storing Git
credentials for accelerators

managed_resources.ena
ble

false Whether to enable the App used to control managed
accelerator resources

managed_resources.git.
url

none Required if managed_resources are enabled. Git
repository URL containing manifests for managed
accelerator resources

managed_resources.git.r
ef

origin/main Required if managed_resources are enabled. Git ref to use
for repository containing manifests for managed
accelerator resources

managed_resources.git.
sub_path

null Git subPath to use for repository containing manifests for
managed accelerator resources

managed_resources.git.
secret_ref

git-credentials Secret name to use for repository containing manifests for
managed accelerator resources

VMware recommends that you do not override the default setting for registry.secret_ref,
server.engine_invocation_url, or engine.service_type. These properties are only used to
configure non-standard installations.

The following table is the resource use configurations for the components of Application
Accelerator.

Component Resource requests Resource limits

acc-controller CPU: 100m
memory: 20Mi

CPU: 100m
memory: 30Mi

acc-server CPU: 100m
memory:20Mi

CPU: 100m
memory: 30Mi

acc-engine CPU: 500m
memory: 1Gi

CPU: 500m
memory: 2Gi

Install

To install Application Accelerator:

1. List version information for the package by running:

Tanzu Application Platform v1.4

VMware by Broadcom 1508



tanzu package available list accelerator.apps.tanzu.vmware.com --namespace tap-

install

For example:

$ tanzu package available list accelerator.apps.tanzu.vmware.com --namespace ta

p-install

- Retrieving package versions for accelerator.apps.tanzu.vmware.com...

  NAME                               VERSION  RELEASED-AT

  accelerator.apps.tanzu.vmware.com  1.4.0    2022-12-08 12:00:00 -0500 EST

2. (Optional) To make changes to the default installation settings, run:

tanzu package available get "accelerator.apps.tanzu.vmware.com/${ACCELERATOR_VE

RSION_NUMBER}" --values-schema --namespace tap-install

Where ACCELERATOR-VERSION-NUMBER is the version of the Accelerator package that was
listed earlier.

For example:

tanzu package available get accelerator.apps.tanzu.vmware.com/1.4.0 --values-sc

hema --namespace tap-install

For more information about values schema options, see the properties listed earlier.

3. Create an app-accelerator-values.yaml using the following example code:

server:

  service_type: "LoadBalancer"

  watched_namespace: "accelerator-system"

samples:

  include: true

Edit the values if needed or leave the default values.

4. (Optional) For clusters that do not support the LoadBalancer service type, override the
default value for server.service_type. For example:

server:

  service_type: "ClusterIP"

  watched_namespace: "accelerator-system"

samples:

  include: true

5. Install the package by running:

tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 

${ACCELERATOR_VERSION_NUMBER} -n tap-install -f app-accelerator-values.yaml

Where ACCELERATOR-VERSION-NUMBER is the version of the Application Accelerator package
included with the Tanzu Application Platform installation.

For example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 

1.4.0 -n tap-install -f app-accelerator-values.yaml

- Installing package 'accelerator.apps.tanzu.vmware.com'

| Getting package metadata for 'accelerator.apps.tanzu.vmware.com'

| Creating service account 'app-accelerator-tap-install-sa'

| Creating cluster admin role 'app-accelerator-tap-install-cluster-role'

| Creating cluster role binding 'app-accelerator-tap-install-cluster-rolebindin

Tanzu Application Platform v1.4

VMware by Broadcom 1509



g'

| Creating secret 'app-accelerator-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'app-accelerator' in namespace 'tap-install'

6. Verify the package install by running:

tanzu package installed get app-accelerator -n tap-install

For example:

$ tanzu package installed get app-accelerator -n tap-install

| Retrieving installation details for cc...

NAME:                    app-accelerator

PACKAGE-NAME:            accelerator.apps.tanzu.vmware.com

PACKAGE-VERSION:         1.4.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

7. To see the IP address for the Application Accelerator API when the server.service_type is
set to LoadBalancer, run:

kubectl get service -n accelerator-system

This lists an external IP address for use with the --server-url Tanzu CLI flag for the
Accelerator plug-in generate & generate-from-local command.

Troubleshooting

Depending on the error output, there are some actions that you can take.

Verify installed packages

The package might be already installed. Verify this by running:

tanzu package installed list -n tap-install

Look for any package called accelerator.apps.tanzu.vmware.com.

Look at resource events

The error might be within the custom resources such as accelerator, Git repository, fragment, and
so on. These errors are checked by using Kubernetes command line interface tool (kubectl).

Here is an example using the custom resource accelerator:

kubectl get acc -n accelerator-system.

It displays the output:

NAME                       READY   REASON     AGE

appsso-starter-java        True    Ready      5h2m

where-for-dinner           True    Ready      5h2m

java-function              True    Ready      5h2m

java-rest-service          True    Ready      5h2m

java-server-side-ui        True    Ready      5h2m

node-express               True    Ready      5h2m

node-function              False   Not-Ready  5h2m

Tanzu Application Platform v1.4

VMware by Broadcom 1510



python-function            True    Ready      5h2m

spring-cloud-serverless    True    Ready      5h2m

spring-smtp-gateway        True    Ready      5h2m

tanzu-java-web-app         True    Ready      5h2m

tap-initialize             True    Ready      5h2m

weatherforecast-csharp     True    Ready      5h2m

weatherforecast-steeltoe   True    Ready      5h2m

To verify the error event, run:

kubectl get acc node-function -n accelerator-system -o yaml

You can then look at the event section for more information about the error.

Create an Application Accelerator Git repository during
project creation
This topic tells you how to enable and use GitHub repository creation in the Application Accelerator
plug-in of Tanzu Application Platform GUI (commonly called TAP GUI).

Overview
The Application Accelerator plug-in uses the Backstage GitHub provider integration and the
authentication mechanism to retrieve an access token. Then it can interact with the provider API to
create GitHub repositories.

Supported Providers
The supported Git providers are GitHub and GitLab.

Configure

The following steps describe an example configuration that uses GitHub:

1. Create an OAuth App in GitHub based on the configuration described in this Backstage
documentation. GitHub Apps are not supported. For more information about creating an
OAuth App in GitHub, see the GitHub documentation.

These values appear in your app-config.yaml or app-config.local.yaml for local
development. For example:

auth:

 environment: development

 providers:

   github:

     development:

       clientId: GITHUB-CLIENT-ID

       clientSecret: GITHUB-CLIENT-SECRET

2. Add a GitHub integration in your app-config.yaml configuration. For example:

app_config:

  integrations:

Note

To create a repository in a self-hosted GitLab, you must add a custom GitLab
integration in tap-values.yaml as described in the Full Profile sample.

Tanzu Application Platform v1.4

VMware by Broadcom 1511

https://backstage.io/docs/auth/github/provider
https://docs.github.com/en/developers/apps/building-oauth-apps/creating-an-oauth-app


     github:

        - host: github.com

For more information, see the Backstage documentation.

(Optional) Deactivate Git repository creation in the Application
Accelerator extension for VS Code

From Tanzu Application Platform v1.4, the Application Accelerator extension for VS Code uses the
Tanzu Application Platform GUI URL to interact with the accelerator system. There is a new plug-in
called gitProviders that you can configure to deactivate Git repository creation in the VS Code
extension.

To deactivate Git repository creation, set app_config.gitProviders.active to false in tap-
values.yaml as shown in the following example:

   app_config:

      gitProviders:

         active: false

Create a Project

To create a project:

1. Go to Tanzu Application Platform GUI, access the Accelerators section, and then select an
accelerator. The accelerator form now has a second step named Git repository.

2. Fill in the accelerator options and click Next.

3. Select the Create Git repo? check box.

4. Fill in the Owner, Repository, and Default Branch text boxes.

5. After entering the repository name, a dialog box appears that requests GitHub credentials.
Log in and then click Next.

6. Click GENERATE ACCELERATOR. A link to the repository location appears.

Tanzu Application Platform v1.4

VMware by Broadcom 1512

https://backstage.io/docs/integrations/github/locations


API documentation plug-in in Tanzu Application Platform
GUI

This topic gives you an overview of the API documentation plug-in of Tanzu Application Platform
GUI (commonly called TAP GUI). For more information, see Get started with the API
documentation plug-in.

Overview

The API documentation plug-in provides a standalone list of APIs that can be connected to
components and systems of the Tanzu Application Platform GUI software catalog.

Each API entity can reflect the components that provide that API and the list of components that
are consumers of that API. Also, an API entity can be associated with systems and appear on the
system diagram. To show this dependency, make the spec.providesApis: and spec.consumesApis:
sections of the component definition files reference the name of the API entity.

Here’s a sample of how you can add providesApis and consumesApis to an existing component’s
catalog definition, linking them together.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: example-component

  description: Example Component

spec:

  type: service

  lifecycle: experimental

Tanzu Application Platform v1.4

VMware by Broadcom 1513



  owner: team-a

  system: example-system

  providesApis: # list of APIs provided by the Component

    - example-api-1

  consumesApis: # list of APIs consumed by the Component

    - example-api-2

For more information about the structure of the definition file for an API entity, see the Backstage
Kind: API documentation. For more information about the API documentation plug-in, see the
Backstage API documentation in GitHub.

Use the API documentation plug-in

The API documentation plug-in is part of Tanzu Application Platform GUI.

The first way to use the API documentation plug-in is API-first. Click APIs in the left navigation
pane of Tanzu Application Platform GUI. This opens the API catalog page.

On that page, you can view all the APIs already registered in the catalog regardless of whether
they are associated with components or systems.

The second way to use the API documentation plug-in is to use components and systems of the
software catalog, listed on the home page of Tanzu Application Platform GUI. If there is an API
entity associated with the selected component or system, the VIEW API icon is active.

The VIEW API tab displays which APIs are being consumed by a component and which APIs are
being provided by the component.

Tanzu Application Platform v1.4

VMware by Broadcom 1514

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-api
https://github.com/backstage/backstage/blob/master/plugins/api-docs/README.md


Clicking on the API itself takes you to the catalog entry for the API, which the Kind type listed in
the upper-left corner denotes. Every API entity has a title and short description, including a
reference to the team that owns the definition of that API and the software catalog objects that are
connected to it.

Select the Definition tab on the top of the API page to see the definition of that API in human-
readable and machine-readable format.

The API documentation plug-in supports the following API formats:

OpenAPI 2 & 3

AsyncAPI

GraphQL

Plain (to support any other format)

Create a new API entry

You can create a new API entry manually or automatically.

Tanzu Application Platform v1.4

VMware by Broadcom 1515



Manually create a new API entry

Manually creating a new API entity is similar to registering any other software catalog entity. To
manually create a new API entity:

1. Click the Home button on the left navigation pane to access the home page of Tanzu
Application Platform GUI.

2. Click REGISTER ENTITY.

3. Register an existing component prompts you to type a repository URL. Paste the link to
the catalog-info.yaml file of your choice that contains the definition of your API entity. For
example, you can copy the following YAML content and save it as catalog-info.yaml on a
Git repository of your choice.

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

name: demo-api

description: The demo API for Tanzu Application Platform GUI

links:

  - url: https://api.agify.io

    title: API Definition

    icon: docs

spec:

type: openapi

lifecycle: experimental

owner: demo-team

system: demo-app # Or specify system name of your choice

definition: |

  openapi: 3.0.1

  info:

    title: defaultTitle

    description: defaultDescription

    version: '0.1'

  servers:

    - url: https://api.agify.io

  paths:

    /:

      get:

        description: Auto generated using Swagger Inspector

        parameters:

          - name: name

            in: query

            schema:

              type: string

            example: type_any_name

        responses:

          '200':

            description: Auto generated using Swagger Inspector

            content:

              application/json; charset=utf-8:

                schema:

                  type: string

                examples: {}

4. Click ANALYZE and then review the catalog entities to be added.

Tanzu Application Platform v1.4

VMware by Broadcom 1516



5. Click IMPORT.

6. Click APIs on the left navigation pane to view entries on the API page.

Automatically create a new API entry

Tanzu Application Platform v1.3 introduced a feature called API Auto Registration that can
automatically register your APIs. For more information, see API Auto Registration.

API documentation plug-in in Tanzu Application Platform
GUI

This topic gives you an overview of the API documentation plug-in of Tanzu Application Platform
GUI (commonly called TAP GUI). For more information, see Get started with the API
documentation plug-in.

Overview

The API documentation plug-in provides a standalone list of APIs that can be connected to
components and systems of the Tanzu Application Platform GUI software catalog.

Each API entity can reflect the components that provide that API and the list of components that
are consumers of that API. Also, an API entity can be associated with systems and appear on the
system diagram. To show this dependency, make the spec.providesApis: and spec.consumesApis:
sections of the component definition files reference the name of the API entity.

Here’s a sample of how you can add providesApis and consumesApis to an existing component’s
catalog definition, linking them together.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

Tanzu Application Platform v1.4

VMware by Broadcom 1517



  name: example-component

  description: Example Component

spec:

  type: service

  lifecycle: experimental

  owner: team-a

  system: example-system

  providesApis: # list of APIs provided by the Component

    - example-api-1

  consumesApis: # list of APIs consumed by the Component

    - example-api-2

For more information about the structure of the definition file for an API entity, see the Backstage
Kind: API documentation. For more information about the API documentation plug-in, see the
Backstage API documentation in GitHub.

Use the API documentation plug-in

The API documentation plug-in is part of Tanzu Application Platform GUI.

The first way to use the API documentation plug-in is API-first. Click APIs in the left navigation
pane of Tanzu Application Platform GUI. This opens the API catalog page.

On that page, you can view all the APIs already registered in the catalog regardless of whether
they are associated with components or systems.

The second way to use the API documentation plug-in is to use components and systems of the
software catalog, listed on the home page of Tanzu Application Platform GUI. If there is an API
entity associated with the selected component or system, the VIEW API icon is active.

Tanzu Application Platform v1.4

VMware by Broadcom 1518

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-api
https://github.com/backstage/backstage/blob/master/plugins/api-docs/README.md


The VIEW API tab displays which APIs are being consumed by a component and which APIs are
being provided by the component.

Clicking on the API itself takes you to the catalog entry for the API, which the Kind type listed in
the upper-left corner denotes. Every API entity has a title and short description, including a
reference to the team that owns the definition of that API and the software catalog objects that are
connected to it.

Select the Definition tab on the top of the API page to see the definition of that API in human-
readable and machine-readable format.

The API documentation plug-in supports the following API formats:

OpenAPI 2 & 3

AsyncAPI

GraphQL

Plain (to support any other format)

Tanzu Application Platform v1.4

VMware by Broadcom 1519



Create a new API entry

You can create a new API entry manually or automatically.

Manually create a new API entry

Manually creating a new API entity is similar to registering any other software catalog entity. To
manually create a new API entity:

1. Click the Home button on the left navigation pane to access the home page of Tanzu
Application Platform GUI.

2. Click REGISTER ENTITY.

3. Register an existing component prompts you to type a repository URL. Paste the link to
the catalog-info.yaml file of your choice that contains the definition of your API entity. For
example, you can copy the following YAML content and save it as catalog-info.yaml on a
Git repository of your choice.

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

name: demo-api

description: The demo API for Tanzu Application Platform GUI

links:

  - url: https://api.agify.io

    title: API Definition

    icon: docs

spec:

type: openapi

lifecycle: experimental

owner: demo-team

system: demo-app # Or specify system name of your choice

definition: |

  openapi: 3.0.1

  info:

    title: defaultTitle

    description: defaultDescription

    version: '0.1'

  servers:

    - url: https://api.agify.io

  paths:

    /:

      get:

        description: Auto generated using Swagger Inspector

        parameters:

          - name: name

            in: query

            schema:

              type: string

            example: type_any_name

        responses:

          '200':

            description: Auto generated using Swagger Inspector

            content:

              application/json; charset=utf-8:

                schema:

                  type: string

                examples: {}

4. Click ANALYZE and then review the catalog entities to be added.

Tanzu Application Platform v1.4

VMware by Broadcom 1520



5. Click IMPORT.

6. Click APIs on the left navigation pane to view entries on the API page.

Automatically create a new API entry

Tanzu Application Platform v1.3 introduced a feature called API Auto Registration that can
automatically register your APIs. For more information, see API Auto Registration.

Get started with the API documentation plug-in

This topic tells you how to get started with the API documentation plug-in in Tanzu Application
Platform GUI (commonly called TAP GUI).

API entries

This section describes API entities, how to add them, and how to update them.

About API entities

The list of API entities is visible on the left side navigation pane of Tanzu Application Platform GUI.
It is also visible on the Overview page of specific components on the home page. APIs are a
definition of the interface between components.

Their definition is provided in raw machine-readable and human-readable formats. For more
information, see the API plug-in documentation.

Add a demo API entity to the Tanzu Application Platform GUI
software catalog

To add a demo API entity and its related Catalog objects, follow the steps used for registering any
other software catalog entity:

Tanzu Application Platform v1.4

VMware by Broadcom 1521



1. Go to the Home page of Tanzu Application Platform GUI by clicking Home on the left-side
navigation pane.

2. Click REGISTER ENTITY.

3. In the repository URL text box, type the link to the catalog-info.yaml file of your choice or
use the following sample definition.

4. Save this code block as catalog-info.yaml.

5. Upload it to the Git repository of your choice and copy the link to catalog-info.yaml. This
demo setup includes a domain named demo-domain with a single system named demo-
system. This systems consists of two microservices (demo-app-ms-1 and demo-app-ms-1) and
one API named demo-api that demo-app-ms-1 provides and that demo-app-ms-2 consumes.

apiVersion: backstage.io/v1alpha1

kind: Domain

metadata:

  name: demo-domain

  description: Demo Domain for Tanzu Application Platform

  annotations:

    'backstage.io/techdocs-ref': dir:.

spec:

  owner: demo-team

---

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: demo-app-ms-1

  description: Demo Application's Microservice-1

  tags:

    - microservice

  annotations:

    'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=demo-a

pp-ms-1'

    'backstage.io/techdocs-ref': dir:.

spec:

  type: service

  providesApis:

   - demo-api

  lifecycle: alpha

  owner: demo-team

  system: demo-app

---

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: demo-app-ms-2

  description: Demo Application's Microservice-2

  tags:

    - microservice

  annotations:

    'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=demo-a

pp-ms-2'

    'backstage.io/techdocs-ref': dir:.

spec:

  type: service

  consumesApis:

   - demo-api

  lifecycle: alpha

  owner: demo-team

Tanzu Application Platform v1.4

VMware by Broadcom 1522



  system: demo-app

---

apiVersion: backstage.io/v1alpha1

kind: System

metadata:

  name: demo-app

  description: Demo Application for Tanzu Application Platform

  annotations:

    'backstage.io/techdocs-ref': dir:.

spec:

  owner: demo-team

  domain: demo-domain

---

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

  name: demo-api

  description: The demo API for Tanzu Application Platform GUI

  links:

    - url: https://api.agify.io

      title: API Definition

      icon: docs

spec:

  type: openapi

  lifecycle: experimental

  owner: demo-team

  system: demo-app # Or specify system name of your choice

  definition: |

    openapi: 3.0.1

    info:

      title: Demo API

      description: defaultDescription

      version: '0.1'

    servers:

      - url: https://api.agify.io

    paths:

      /:

        get:

          description: Auto generated using Swagger Inspector

          parameters:

            - name: name

              in: query

              schema:

                type: string

              example: type_any_name

          responses:

            '200':

              description: Auto generated using Swagger Inspector

              content:

                application/json; charset=utf-8:

                  schema:

                    type: string

                  examples: {}

6. Paste the link to catalog-info.yaml and click ANALYZE.

7. Review the catalog entities and click IMPORT.

Tanzu Application Platform v1.4

VMware by Broadcom 1523



8. Go to the API page by clicking APIs on the left side navigation pane. The catalog changes
and entries are visible for further inspection. If you select the system demo-app, the
diagram appears as follows:

Update your demo API entry

Tanzu Application Platform v1.4

VMware by Broadcom 1524



To update your demo API entity, click on demo-api from the list of available APIs in your software
catalog and click the Edit icon on the Overview page.

It opens the source catalog-info.yaml file that you can edit. For example, you can change the
spec.paths.parameters.example from type_any_name to Tanzu and then save your changes.

![Screenshot of the overview of demo dash api. The edit button on the card labeled Abo

ut is framed in red.](../images/api-plugin-9.png)

It opens the source `catalog-info.yaml` file that you can edit. For example, you can c

hange the

`spec.paths.parameters.example` from `type_any_name` to `Tanzu` and then save your cha

nges.

After making any edits, Tanzu Application Platform GUI re-renders the API entry with the next
refresh cycle.

Validation Analysis of API specifications

This section describes the Validation Analysis card, the data format needed to populate the card,
and how to get automatic scores for your OpenAPI entities.

About the Validation Analysis card

When viewing entities of the kind API on the Overview tab, you see the Validation Analysis card
that displays the health of an API through various scoring parameters.

To display the health scores, an API entity must contain the following metadata structure:

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

  name: NAME

  description: DESCRIPTION

  apiscores:

    scores:

    - id: documentationReport

      label: "Documentation Health"

      value: 34.375

      valueType: percentage

      status: failed

    - id: securityReport

      label: "Security Score"

Tanzu Application Platform v1.4

VMware by Broadcom 1525



      value: 70.0

      valueType: percentage

      status: warning

    - id: openApiHealthReport

      label: "OpenAPI Health"

      value: 89.0625

      valueType: percentage

      status: passed

    scoreDetailsURL:  VALIDATION-REPORT-URL-FOR-MORE-DETAILS

# Other API Entity parameters

If an API entity follows this schema, the Validation Analysis card displays helpful information about
the API.

    - id:        # Unique ID

      label:     # Descriptive label displayed as a title over the numerical value

      value:     # Any number value

      valueType: # One of the types (percentage or other). Displays the % symbol or di

splays nothing.

      status:    # One of the statuses (passed, warning, or failed). Displays the numb

er in green, yellow, or red.

Automatic OpenAPI specification validation

To receive automatic validation analysis for OpenAPI specifications by using API Validation Scoring:

1. Install API Validation and Scoring.

2. Use API Auto Registration or API Validation Scoring Design GitOps to automatically
generate the API entities in Tanzu Application Platform GUI.

The automatic scoring cannot score or replace API entities created through other methods, such as
regular GitOps or manual registration. You might see the following message signaling that the
OpenAPI specification was registered with regular GitOps methods or manual registration.

Validation analysis is currently unavailable for APIs registered via TAP GUI without b

eing attached \

to a workload.

Security Analysis in Tanzu Application Platform GUI

This topic tells you about the Security Analysis plug-in in Tanzu Application Platform GUI
(commonly called TAP GUI).

Overview

The Security Analysis plug-in summarizes vulnerability data across all workloads running in Tanzu
Application Platform, enabling faster identification and remediation of CVEs.

Installing and configuring

The Security Analysis plug-in is installed by default. It is tightly coupled with the Supply Chain
Choregrapher plug-in. After installing and configuring the Supply Chain Choreographer GUI plug-in,
there is no additional configuration needed for the Security Analysis plug-in.

The Security Analysis plug-in is part of the Tanzu Application Platform Full and View profiles.

Accessing the plug-in

Tanzu Application Platform v1.4

VMware by Broadcom 1526



The Security Analysis plug-in is always accessible from the left navigation pane. Click the Security
Analysis button to open the Security Analysis dashboard.

Viewing vulnerability data

The Security Analysis dashboard provides a summary of all vulnerabilities across all clusters for
single-cluster and multicluster deployments.

Tanzu Application Platform v1.4

VMware by Broadcom 1527



The Vulnerabilities by Severity widget quickly counts the number of critical, high, medium, low,
and unknown severity CVEs, based on the CVSS severity rating of each CVE.

It includes a sum of all workloads’ source and image scan vulnerabilities. For example, if CVE-123
exists in the latest source scans and image scans of Workload ABC and Workload DEF, it is counted
four times.

The Workload Build Vulnerabilities tables, with the Violates Policy tab and Does Not Violate
tab, separate workloads based on the scan policy. For more information, see Enforce compliance
policy using Open Policy Agent The Unique CVEs column uses the same sum logic as described
earlier, but for individual workloads.

The sum of a workload’s CVEs might not match the Supply Chain Choreographer’s Vulnerability
Scan Results. The data on this dashboard is based on kubectl describe for SourceScan and
ImageScan. The data on the Supply Chain Choreographer’s Vulnerability Scan Results is based on
Metadata Store data.

Only vulnerability scans associated with a Cartographer workload appear. Use tanzu insight to view
results for non-workload scan results.

Viewing CVE and package details
The Security Analysis plug-in has a CVE page and a Package page. These are accessed by clicking
on a workload name, which opens the Supply Chain Choregrapher plug-in. Clicking on the CVE or
Package name opens the CVE or Package page, respectively.

Note

The sum includes any CVEs on the allowlist (ignoreCVEs).

Tanzu Application Platform v1.4

VMware by Broadcom 1528



The CVE page contains basic information about the vulnerability and includes a table with all
affected packages and versions.

The Package page contains basic information about a package and includes a table with all CVEs
and the affected package versions.

Supply Chain Choreographer in Tanzu Application Platform
GUI
This topic tells you about Supply Chain Choreographer in Tanzu Application Platform GUI
(commonly called TAP GUI).

Overview
The Supply Chain Choreographer (SCC) plug-in enables you to visualize the execution of a workload
by using any of the installed Out-of-the-Box supply chains. For more information about the Out-of-
the-Box (OOTB) supply chains that are available in Tanzu Application Platform, see Supply Chain
Choreographer for Tanzu.

Prerequisites
To use Supply Chain Choreographer in Tanzu Application Platform GUI you must have:

One of the following installed on your cluster:

Tanzu Application Platform Full profile

Tanzu Application Platform View profile

Tanzu Application Platform GUI package and a metadata store package

One of the following installed on the target cluster where you want to deploy your
workload:

Tanzu Application Platform Run profile

Tanzu Application Platform Full profile

For more information, see Overview of multicluster Tanzu Application Platform

Tanzu Application Platform v1.4

VMware by Broadcom 1529



Enable CVE scan results

To enable CVE scan results:

1. Obtain the read-write token, which is created by default when installing Tanzu Application
Platform. Alternatively, create an additional read-write service account.

2. Add this proxy configuration to the tap-gui: section of tap-values.yaml:

tap_gui:

  app_config:

    proxy:

      /metadata-store:

        target: https://metadata-store-app.metadata-store:8443/api/v1

        changeOrigin: true

        secure: false

        headers:

          Authorization: "Bearer ACCESS-TOKEN"

          X-Custom-Source: project-star

Where ACCESS-TOKEN is the token you obtained after creating a read-write service account.

Enable GitOps Pull Request Flow

To enable the supply chain box-and-line diagram to show Approve a Request in the Config
Writer stage, set up for GitOps and pull requests. For more information, see GitOps vs.
RegistryOps.

Supply Chain Visibility

Before using the Supply Chain Visibility (SCC) plug-in to visualize a workload, you must create a
workload.

The workload must have the app.kubernetes.io/part-of label specified, whether you manually
create the workload or use one supplied with the OOTB supply chains.

Use the left sidebar navigation to access your workload and visualize it in the supply chain that is
installed on your cluster.

The example workload described in this topic is named tanzu-java-web-app.

Click tanzu-java-web-app in the WORKLOADS table to navigate to the visualization of the supply
chain.

Important

The Authorization value must start with the word Bearer.

Tanzu Application Platform v1.4

VMware by Broadcom 1530



There are two sections within this view:

The box-and-line diagram at the top shows all the configured CRDs that this supply chain
uses, and any artifacts that the supply chain’s execution outputs

The Stage Detail section at the bottom shows source data for each part of the supply chain
that you select in the diagram view

When a workload is deployed to a cluster that has the deliverable package installed, a new section
appears in the supply chain that shows Pull Config boxes and Delivery boxes.

When you have a Pull Request configured in your environment, access the merge request from
the supply chain by clicking APPROVE A REQUEST. This button is displayed after you click Config
Writer in the supply chain diagram.

View Vulnerability Scan Results
Click the Source Scan stage or Image Scan stage to view vulnerability source scans and image
scans for workload builds. The data is from Supply Chain Security Tools - Store.

Tanzu Application Platform v1.4

VMware by Broadcom 1531



CVE issues represent any vulnerabilities associated with a package or version found in the source
code or image, including vulnerabilities from past scans.

Overview of enabling TLS for Tanzu Application Platform
GUI

Many users want inbound traffic to Tanzu Application Platform GUI (commonly called TAP GUI) to
be properly encrypted. These topics tell you how to enable TLS encryption either with an existing
certificate or by using the included cert-manager instance.

Concepts

The two key concepts are certificate delegation and the relationship between cert-manager,
certificates, and ClusterIssuers.

Certificate delegation

Tanzu Application Platform GUI uses the established shared Contour ingress for TLS termination.

This enables you to store the certificate in a Kubernetes secret and then pass that secret and
namespace to the httpProxy that was created during installation. To do this, see Configuring a TLS
certificate by using an existing certificate.

cert-manager, certificates, and ClusterIssuers

Note

For example, the log4shell package is found in image ABC on 1 January without
any CVEs. On 15 January, the log4j CVE issue is found while scanning image DEF. If
a user returns to the Image Scan stage for image ABC, the log4j CVE issue appears
and is associated with the log4shell package.

Tanzu Application Platform v1.4

VMware by Broadcom 1532



Tanzu Application Platform GUI can also use the cert-manager package that is installed when the
profile was installed.

This tool allows cert-manager to automatically acquire a certificate from a clusterIssuer entity.

This external entity can be an external certificate authority, such as Let’s Encrypt, or a self-signed
certificate.

Guides
The following topics describe different ways to configure TLS:

Configuring a TLS certificate by using an existing certificate

Configuring a TLS certificate by using a self-signed certificate

Configuring a TLS certificate by using cert-manager and a ClusterIssuer

Overview of enabling TLS for Tanzu Application Platform
GUI

Many users want inbound traffic to Tanzu Application Platform GUI (commonly called TAP GUI) to
be properly encrypted. These topics tell you how to enable TLS encryption either with an existing
certificate or by using the included cert-manager instance.

Concepts

The two key concepts are certificate delegation and the relationship between cert-manager,
certificates, and ClusterIssuers.

Tanzu Application Platform v1.4

VMware by Broadcom 1533



Certificate delegation

Tanzu Application Platform GUI uses the established shared Contour ingress for TLS termination.

This enables you to store the certificate in a Kubernetes secret and then pass that secret and
namespace to the httpProxy that was created during installation. To do this, see Configuring a TLS
certificate by using an existing certificate.

cert-manager, certificates, and ClusterIssuers

Tanzu Application Platform GUI can also use the cert-manager package that is installed when the
profile was installed.

This tool allows cert-manager to automatically acquire a certificate from a clusterIssuer entity.

This external entity can be an external certificate authority, such as Let’s Encrypt, or a self-signed
certificate.

Tanzu Application Platform v1.4

VMware by Broadcom 1534



Guides
The following topics describe different ways to configure TLS:

Configuring a TLS certificate by using an existing certificate

Configuring a TLS certificate by using a self-signed certificate

Configuring a TLS certificate by using cert-manager and a ClusterIssuer

Configure a TLS certificate by using an existing certificate
This topic tells you how to use the certificate information from your external certificate authority to
encrypt inbound traffic to Tanzu Application Platform GUI (commonly called TAP GUI).

Prerequisites
Your certificate authority gave you a certificate file, of the form CERTIFICATE-FILE-NAME.crt, and a
signing key, of the form KEY-FILE-NAME.key. Ensure that these files are present on the host from
which you run the CLI commands.

Tanzu Application Platform v1.4

VMware by Broadcom 1535



Procedure

To configure Tanzu Application Platform GUI with an existing certificate:

1. Create the Kubernetes secret by running:

kubectl create secret tls tap-gui-cert --key="KEY-FILE-NAME.key" --cert="CERTIF

ICATE-FILE-NAME.crt" -n tap-gui

Where:

KEY-FILE-NAME is the name of the key file that your certificate issuer gave you

CERTIFICATE-FILE-NAME is the name of the crt file that your certificate issuer gave
you

2. Configure Tanzu Application Platform GUI to use the newly created secret. Do so by editing
the tap-values.yaml file that you used during installation to include the following under the
tap-gui section:

A top-level tls key with subkeys for namespace and secretName

A namespace referring to the namespace used earlier

A secret name referring to the secretName value defined earlier

Example:

tap_gui:

 tls:

   namespace: tap-gui

   secretName: tap-gui-cert

# Additional configuration below this line as needed

3. Update the Tanzu Application Platform package with the new values in tap-values.yaml by
running:

Tanzu Application Platform v1.4

VMware by Broadcom 1536



tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION  --va

lues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the version number that matches the values you used when you
installed your profile.

Configure a TLS certificate by using a self-signed certificate

This topic tells you how to use cert-manager to create a self-signed certificate issuer and then
generate a certificate for Tanzu Application Platform GUI to use based on that issuer.

Some browsers and corporate policies do not allow you to visit webpages that have self-signed
certificates. You might need to navigate through a series of error messages to visit the page.

Prerequisite
Install a Tanzu Application Platform profile that includes cert-manager. Verify you did this by
running the following command to detect the cert-manager namespace:

kubectl get ns

Procedure

To configure a self-signed TLS certificate for Tanzu Application Platform GUI:

1. Create a certificate.yaml file that defines an issuer and a certificate. For example:

apiVersion: cert-manager.io/v1

kind: Issuer

Tanzu Application Platform v1.4

VMware by Broadcom 1537



metadata:

 name: ca-issuer

 namespace: tap-gui

spec:

 selfSigned: {}

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

 name: tap-gui-cert

 namespace: tap-gui

spec:

 secretName: tap-gui-cert

 dnsNames:

 - tap-gui.INGRESS-DOMAIN

 issuerRef:

   name: ca-issuer

Where INGRESS-DOMAIN is your domain value that matches the values you used when you
installed the profile.

2. Add the issuer and certificate to your cluster by running:

kubectl apply -f certificate.yaml

3. Configure Tanzu Application Platform GUI to use the newly created certificate. Update the
tap-values.yaml file used during installation to include the following under the tap-gui
section:

A top-level tls key with subkeys for namespace and secretName

A namespace referring to the namespace containing the Certificate object
mentioned earlier

A secret name referring to the secretName value defined in your Certificate
resource earlier

Example:

tap_gui:

 tls:

   namespace: tap-gui

   secretName: tap-gui-cert

# Additional configuration below this line as needed

4. Update the Tanzu Application Platform package with the new values in tap-values.yaml:

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION  --va

lues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the version that matches the values you used when you installed the
profile.

Configure a TLS certificate by using cert-manager and a
ClusterIssuer
This topic tells you how to use cert-manager to create a certificate issuer and then generate a
certificate for Tanzu Application Platform GUI (commonly called TAP GUI) to use based on that
issuer.

This topic uses the free certificate issuer Let’s Encrypt. You can use other certificate issuers
compatible with cert-manager in a similar fashion.

Tanzu Application Platform v1.4

VMware by Broadcom 1538

https://letsencrypt.org/


Prerequisites
Fulfil these prerequisites:

Install a Tanzu Application Platform profile that includes cert-manager. Verify you did this by
running the following command to detect the cert-manager namespace:

kubectl get ns

Obtain a domain name that you control or own and have proof that you control or own it. In
most cases, this domain name is the one you used for the INGRESS-DOMAIN values when you
installed Tanzu Application Platform and Tanzu Application Platform GUI.

If cert-manager cannot perform the challenge to verify your domain’s compatibility, you
must do so manually. For more information, see How It Works and Getting Started in the
Let’s Encrypt documentation.

Ensure that your domain name is pointed at the shared Contour ingress for the installation.
Find the IP address by running:

kubectl -n tanzu-system-ingress get services envoy -o jsonpath='{.status.loadBa

lancer.ingress[0].ip}'

Procedure

To configure a self-signed TLS certificate for Tanzu Application Platform GUI:

1. Create a certificate.yaml file that defines an issuer and a certificate. For example:

Tanzu Application Platform v1.4

VMware by Broadcom 1539

https://letsencrypt.org/how-it-works/
https://letsencrypt.org/getting-started/


apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-http01-issuer

  namespace: cert-manager

spec:

  acme:

    server: https://acme-v02.api.letsencrypt.org/directory

    email: EMAIL-ADDRESS

    privateKeySecretRef:

      name: letsencrypt-http01-issuer

    solvers:

    - http01:

        ingress:

          class: contour

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  namespace: cert-manager

  name: tap-gui

spec:

  commonName: tap-gui.INGRESS-DOMAIN

  dnsNames:

    - tap-gui.INGRESS-DOMAIN

  issuerRef:

    name: letsencrypt-http01-issuer

    kind: ClusterIssuer

  secretName: tap-gui

Where:

EMAIL-ADDRESS is the email address that Let’s Encrypt shows as responsible for this
certificate

INGRESS-DOMAIN is your domain value that matches the values you used when you
installed the profile

2. Add the issuer and certificate to your cluster by running:

kubectl apply -f certificate.yaml

By applying the certificate, cert-manager attempts to perform an HTTP01 challenge by
creating an Ingress resource specifically for the challenge. This is automatically removed
from your cluster after the challenge is completed. For more information about how this
works, and when it might not, see the cert-manager documentation.

3. Validate the certificate was created and is ready by running:

kubectl get certs -n cert-manager

Wait a few moments for this to take place, if need be.

4. Configure Tanzu Application Platform GUI to use the newly created certificate. To do so,
update the tap-values.yaml file that you used during installation to include the following
items under the tap-gui section:

A top-level tls key with subkeys for namespace and secretName

A namespace referring to the namespace containing the Certificate object from
earlier

A secret name referring to the secretName value defined in your Certificate
resource earlier

Tanzu Application Platform v1.4

VMware by Broadcom 1540

https://cert-manager.io/docs/configuration/acme/http01/


Example:

tap_gui:

 tls:

   namespace: cert-manager

   secretName: tap-gui

# Additional configuration below this line as needed

5. Update the Tanzu Application Platform package with the new values in tap-values.yaml by
running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION  --va

lues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the version that matches the values you used when you installed the
profile.

Upgrade Tanzu Application Platform GUI
This topic tells you how to upgrade Tanzu Application Platform GUI (commonly called TAP GUI)
outside of a Tanzu Application Platform profile installation. If you installed Tanzu Application
Platform through a profile, see Upgrading Tanzu Application Platform instead.

Considerations
As part of the upgrade, Tanzu Application Platform updates its container with the new version.

As a result, if you installed Tanzu Application Platform GUI without the support of a backing
database, you lose your in-memory data for any manual component registrations when the
container restarts. While the update is pulling the new pod from the registry, users might
experience a short UI interruption and might need to re-authenticate because the in-memory
session data is rebuilt.

Upgrade within a Tanzu Application Platform profile
If you installed Tanzu Application Platform GUI as part of a Tanzu Application Platform profile, see
Upgrading Tanzu Application Platform.

Upgrade Tanzu Application Platform GUI individually
These steps only apply to installing Tanzu Application Platform GUI individually, not as part of a
Tanzu Application Platform profile.

To upgrade Tanzu Application Platform GUI outside of a Tanzu Application Platform profile:

1. Ensure that your repository has access to the new version of the package by running:

tanzu package available list tap-gui.tanzu.vmware.com -n tap-install

For example:

$ tanzu package available list tap-gui.tanzu.vmware.com -n tap-install

- Retrieving package versions for tap-gui.tanzu.vmware.com...

  NAME                      VERSION  RELEASED-AT

  tap-gui.tanzu.vmware.com  1.0.1    2021-12-22 17:45:51 +0000 UTC

  tap-gui.tanzu.vmware.com  1.0.2    2022-01-25 01:57:19 +0000 UTC

2. Perform the package upgrade by using the targeted package update version. Run:

Tanzu Application Platform v1.4

VMware by Broadcom 1541



tanzu package installed update tap-gui -p tap-gui.tanzu.vmware.com -v VERSION  

--values-file \

TAP-GUI-VALUES.yaml -n tap-install

Where:

VERSION is the target version of Tanzu Application Platform GUI that you want.

TAP-GUI-VALUES is the configuration values file that contains the configuration used
when you installed Tanzu Application Platform GUI.

3. Verify that you upgraded your application by running:

tanzu package installed get tap-gui -n tap-install

Troubleshoot Tanzu Application Platform GUI

This topic tells you how to troubleshoot issues encountered when installing Tanzu Application
Platform GUI (commonly called TAP GUI). The topic is divided into sections:

General issues

Runtime Resources tab issues

Accelerators page issues

Security Analysis plug-in issues

Supply Chain Choreographer plug-in issues

General issues

The following are general issues:

Tanzu Developer Portal reports that the port range is not valid

Symptom

You provided a full URL in a backend.reading.allow entry, as in this example tap-values.yaml
snippet:

tap_gui:

  app_config:

    backend:

      reading:

        allow:

          - host: http://gitlab.example.com/some-group/some-repo/-/blob/main/catalog-i

nfo.yaml

and you see the following error message:

Backend failed to start up, Error: Port range is not valid: //gitlab.example.com/some-

group/some-repo/-/blob/main/catalog-info.yaml

Cause

Tanzu Application Platform GUI expects a host name to be passed into the field
backend.reading.allow[].host.

Solution

Tanzu Application Platform v1.4

VMware by Broadcom 1542



Edit your tap-values.yaml file as in the following example:

tap_gui:

  app_config:

    backend:

      reading:

        allow:

          - host: gitlab.example.com

            paths: ['/some-group/some-repo/']

Tanzu Application Platform GUI does not load the catalog

Symptom

You are able to visit Tanzu Application Platform GUI, but it does not load the catalog and you see
the following error message.

> Error: Could not fetch catalog entities.

> TypeError: Failed to fetch

When viewing your network tab you see that your browser has not downloaded mixed content.
This might look different on different browsers.

Chrome
In the Status column you see (blocked:mixed-content)

Firefox
In the Transferred column you see Mixed Block

Cause

As of Tanzu Application Platform v1.4, Tanzu Application Platform GUI provides TLS connections by
default. Because of this, if you visit a Tanzu Application Platform GUI site your connection is
automatically upgraded to https.

You might have manually set the fields app.baseUrl, backend.baseUrl, and backend.cors.origin in
your tap-values.yaml file. Tanzu Application Platform GUI uses the baseUrl to determine how to
create links to fetch from its APIs. The combination of these two factors causes your browser to
attempt to fetch mixed content.

Solution

The solution is to delete these fields or update your values in tap-values.yaml to reflect that your
Tanzu Application Platform GUI instance is serving https, as in the following example:

tap_gui:

  app_config:

    app:

      baseUrl: https://tap-gui.INGRESS-DOMAIN/

    backend:

      baseUrl: https://tap-gui.INGRESS-DOMAIN/

      cors:

        origin: https://tap-gui.INGRESS-DOMAIN/

Tanzu Application Platform v1.4

VMware by Broadcom 1543



Where INGRESS-DOMAIN is the ingress domain you have configured for Tanzu Application Platform.

The installer determines acceptable values based on your tap_gui.ingressDomain or
shared.ingress_domain and the TLS status of the installation.

Updating a supply chain causes an error (Can not create edge...)

Symptom

Updating a supply chain causes an error (Can not create edge...) when an existing workload is
clicked in the Workloads table and that supply chain is no longer present.

Solution

Recreate the same workload to execute through the new or updated supply chain.

Catalog not found

Symptom

When you pull up Tanzu Application Platform GUI, you get the error Catalog Not Found.

Cause

The catalog plug-in can’t read the Git location of your catalog definition files.

Solution

1. Ensure you have built your own Backstage-compatible catalog or that you have
downloaded one of the Tanzu Application Platform GUI catalogs from VMware Tanzu
Network.

2. Ensure you defined the catalog in the values file that you input as part of installation. To
update this location, change the definition file:

Change the Tanzu Application Platform profile file if installed by using a profile.

Change the standalone Tanzu Application Platform GUI values file if you’re only
installing that package on its own.

    namespace: tap-gui

    service_type: SERVICE-TYPE

    app_config:

      catalog:

        locations:

          - type: url

            target: https://GIT-CATALOG-URL/catalog-info.yaml

3. Provide the proper integration information for the Git location you specified earlier.

    namespace: tap-gui

    service_type: SERVICE-TYPE

    app_config:

      app:

        baseUrl: https://EXTERNAL-IP:PORT

      integrations:

        gitlab: # Other integrations available

          - host: GITLAB-HOST

Tanzu Application Platform v1.4

VMware by Broadcom 1544

https://backstage.io/


            apiBaseUrl: https://GITLAB-URL/api/v4

            token: GITLAB-TOKEN

You can substitute for other integrations as defined in the Backstage documentation.

Issues updating the values file

Symptom

After updating the configuration of Tanzu Application Platform GUI, either by using a profile or as a
standalone package installation, you don’t know whether the configuration has reloaded.

Solution

1. Get the name you need by running:

kubectl get pods -n tap-gui

For example:

$ kubectl get pods -n tap-gui

NAME                      READY   STATUS    RESTARTS   AGE

server-6b9ff657bd-hllq9   1/1     Running   0          13m

2. Read the log of the pod to see if the configuration reloaded by running:

kubectl logs NAME -n tap-gui

Where NAME is the value you recorded earlier, such as server-6b9ff657bd-hllq9.

3. Search for a line similar to this one:

2021-10-29T15:08:49.725Z backstage info Reloaded config from app-config.yaml, a

pp-config.yaml

4. If need be, delete and re-instantiate the pod.

To delete and re-instantiate the pod, run:

kubectl delete pod -l app=backstage -n tap-gui

Pull logs from Tanzu Application Platform GUI

Symptom

You have a problem with Tanzu Application Platform GUI, such as Catalog: Not Found, and don’t
have enough information to diagnose it.

Caution

Depending on your database configuration, deleting, and re-instantiating
the pod might cause the loss of user preferences and manually registered
entities. If you have configured an external PostgreSQL database, tap-gui
pods are not stateful. In most cases, state is held in ConfigMaps, Secrets, or
the database. For more information, see Configuring the Tanzu Application
Platform GUI database and Register components.

Tanzu Application Platform v1.4

VMware by Broadcom 1545

https://backstage.io/docs/integrations/


Solution

Get timestamped logs from the running pod and review the logs:

1. Pull the logs by using the pod label by running:

kubectl logs -l app=backstage -n tap-gui

2. Review the logs.

Runtime Resources tab issues
Here are some common troubleshooting steps for errors presented in the Runtime Resources tab.

Error communicating with Tanzu Application Platform web server

Symptom

When accessing the Runtime Resource Visibility tab, the system displays Error communicating
with TAP GUI back end.

Causes

An interrupted Internet connection

Error with the back end service

Solution

1. Confirm that you have Internet access.

2. Confirm that the back-end service is running correctly.

3. Confirm the cluster configuration is correct.

No data available

Symptom

When accessing the Runtime Resource Visibility tab, the system displays

One or more resources are missing. This could be due to a label mismatch. \

Please make sure your resources have the label(s) "LABEL_SELECTOR".

Cause

No communications error has occurred, but no resources were found.

Solution

Confirm that you are using the correct label:

1. Verify the Component definition includes the annotation backstage.io/kubernetes-label-
selector.

2. Confirm your Kubernetes resources correspond to that label drop-down menu.

Errors retrieving resources

Tanzu Application Platform v1.4

VMware by Broadcom 1546



Symptom

When opening the Runtime Resource Visibility tab, the system displays One or more resources
might be missing because of cluster query errors.

The reported errors might not indicate a real problem. A build cluster might not have runtime CRDs
installed, such as Knative Service, and a run cluster might not have build CRDs installed, such as a
Cartographer workload. In these cases, 403 and 404 errors might be false positives.

You might receive the following error messages:

Access error when querying cluster CLUSTER_NAME for resource

KUBERNETES_RESOURCE_PATH (status: 401). Contact your administrator.

Cause: There is a problem with the cluster configuration.

Solution: Confirm the access token used to request information in the cluster.

Access error when querying cluster CLUSTER_NAME for resource

KUBERNETES_RESOURCE_PATH (status: 403). Contact your administrator.

Cause: The service account used doesn’t have access to the specific resource type
in the cluster.

Solution: If the cluster is the same where Tanzu Application Platform is running,
review the version installed to confirm it contains the desired resource. If the error
is in a watched cluster, review the process to grant access to it in Viewing resources
on multiple clusters in Tanzu Application Platform GUI.

Knative is not installed on CLUSTER_NAME (status: 404). Contact your

administrator.

Cause: The cluster does not have Cloud Native Runtimes installed.

Solution: Install the Knative components by following the instructions in Install
Cloud Native Runtimes.

Error when querying cluster CLUSTER_NAME for resource KUBERNETES_RESOURCE_PATH

(status: 404). Contact your administrator.

Cause: The package that contains the resource is not installed.

Solution: Install the missing package.

Accelerators page issues

Here are some common troubleshooting steps for errors displayed on the Accelerators page.

No accelerators

Symptom

When the app_config.backend.reading.allow section is configured in the tap-values.yaml file
during the tap-gui package installation, there are no accelerators on the Accelerators page.

Cause

This section in tap-values.yaml overrides the default configuration that gives Tanzu Application
Platform GUI access to the accelerators.

Solution

Tanzu Application Platform v1.4

VMware by Broadcom 1547



As a workaround, provide a value for Application Accelerator in this section. For example:

app_config:

  # Existing tap-values yaml above

  backend:

    reading:

      allow:

      - host: acc-server.accelerator-system.svc.cluster.local

Security Analysis plug-in issues

Here are troubleshooting steps for errors affecting the Security Analysis page.

Empty dashboard after upgrading from Tanzu Application Platform
v1.3

Symptom

After upgrading to Tanzu Application Platform v1.4 from v1.3, the Security Analysis GUI dashboard
appears empty.

Cause

From Tanzu Application Platform v1.4, the dashboard displays information from the Metadata Store.
Previously, the Security Analysis GUI dashboard polled the Kubernetes clusters for information.

Solution

Repopulate the dashboard by running new source scans and image scans. To do so, do one of the
following actions:

Trigger a workload to run with a new commit to the source code

Delete the relevant SourceScan or ImageScan on the Kubernetes cluster

Supply Chain Choreographer plug-in issues
These are troubleshooting steps for the Supply Chain Choreographer plug-in.

An error occurred while loading data from the Metadata Store

Symptom

In the Supply Chain Choreographer plug-in, you see the error message An error occurred while
loading data from the Metadata Store.

Tanzu Application Platform v1.4

VMware by Broadcom 1548



Cause

There are multiple potential causes. The most common cause is tap-values.yaml missing the
configuration that enables Tanzu Application Platform GUI to communicate with Supply Chain
Security Tools - Store.

Solution

See Supply Chain Choreographer - Enable CVE scan results for the necessary configuration to add
to tap-values.yaml. After adding the configuration, update your Tanzu Application Platform
deployment or Tanzu Application Platform GUI deployment with the new values.

Overview of Tanzu Application Platform Telemetry
Tanzu Application Platform Telemetry (commonly known as TAP Telemetry) is a set of objects that
collect data about the usage of Tanzu Application Platform (commonly known as TAP) and send it
back to VMware for product improvements.

A benefit of remaining enrolled in telemetry and identifying your company during Tanzu Application
Platform installation is that VMware can provide your organization with usage reports about Tanzu
Application Platform.

For more information about enrolling in telemetry reports, see Tanzu Application Platform usage
reports.

For more information about how to install the telemetry component, see Install Tanzu Application
Platform Telemetry.

Tanzu Application Platform usage reports
VMware offers the option to enroll in a usage reporting program that offers a summary of usage of
your Tanzu Application Platform. You can enroll in the program by providing the Entitlement
Account Number (EAN). An EAN is a unique ID assigned to all VMware customers. VMware uses
EAN to identify data about Tanzu Application Platform. See Locate the Entitlement Account
number for new orders for more details.

Tanzu Application Platform v1.4

VMware by Broadcom 1549

https://kb.vmware.com/s/article/2148565


After locating the EAN, pass the number under the telemetry header in the tap-values.yaml file as
a value for the customer_entitlement_account_number key.

tap_telemetry:

  customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER"

You must repeat the process for each Tanzu Application Platform Cluster included in the telemetry
report. For more information, see Full profile.

After enrollment, alert your VMware account team that you have configured the EAN field and
want telemetry reports. This allows VMware to identify who the newly added EAN belongs to.

The following screenshots show the sample telemetry reports.

Note

Usage report is only supported for non-airgapped deployments of Tanzu Application
Platform and the Cluster must participate in Tanzu Application Platform telemetry.
You are enrolled in telemetry by default. You can opt out of telemetry collection by
following the instructions in Opt out of telemetry collection.

Tanzu Application Platform v1.4

VMware by Broadcom 1550



Overview of Tanzu Application Platform Telemetry
Tanzu Application Platform Telemetry (commonly known as TAP Telemetry) is a set of objects that
collect data about the usage of Tanzu Application Platform (commonly known as TAP) and send it
back to VMware for product improvements.

A benefit of remaining enrolled in telemetry and identifying your company during Tanzu Application
Platform installation is that VMware can provide your organization with usage reports about Tanzu
Application Platform.

For more information about enrolling in telemetry reports, see Tanzu Application Platform usage
reports.

For more information about how to install the telemetry component, see Install Tanzu Application
Platform Telemetry.

Tanzu Application Platform usage reports
VMware offers the option to enroll in a usage reporting program that offers a summary of usage of
your Tanzu Application Platform. You can enroll in the program by providing the Entitlement
Account Number (EAN). An EAN is a unique ID assigned to all VMware customers. VMware uses
EAN to identify data about Tanzu Application Platform. See Locate the Entitlement Account
number for new orders for more details.

After locating the EAN, pass the number under the telemetry header in the tap-values.yaml file as
a value for the customer_entitlement_account_number key.

tap_telemetry:

  customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER"

You must repeat the process for each Tanzu Application Platform Cluster included in the telemetry
report. For more information, see Full profile.

After enrollment, alert your VMware account team that you have configured the EAN field and
want telemetry reports. This allows VMware to identify who the newly added EAN belongs to.

Note

Tanzu Application Platform v1.4

VMware by Broadcom 1551

https://kb.vmware.com/s/article/2148565


The following screenshots show the sample telemetry reports.

Usage report is only supported for non-airgapped deployments of Tanzu Application
Platform and the Cluster must participate in Tanzu Application Platform telemetry.
You are enrolled in telemetry by default. You can opt out of telemetry collection by
following the instructions in Opt out of telemetry collection.

Tanzu Application Platform v1.4

VMware by Broadcom 1552



Install Tanzu Application Platform Telemetry
This topic tells you how to install Tanzu Application Platform Telemetry from the Tanzu Application
Platform (commonly known as TAP) package repository.

Prerequisites

Before installing Tap Telemetry:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cert-manager on the cluster. For more information, see the cert-manager
documentation.

See Deployment Details and Configuration to review what resources will be deployed.

Install

To install Tanzu Application Platform Telemetry:

1. List version information for the package by running:

tanzu package available list tap-telemetry.tanzu.vmware.com --namespace tap-ins

tall

For example:

$ tanzu package available list tap-telemetry.tanzu.vmware.com --namespace tap-i

nstall

- Retrieving package versions for tap-telemetry.tanzu.vmware.com...

Note

Follow the steps in this topic if you do not want to use a profile to install Telemetry.
For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1553

https://cert-manager.io/next-docs/


  NAME                         VERSION       RELEASED-AT

  tap-telemetry.tanzu.vmware.com  0.3.1

2. (Optional) List all the available deployment configuration options:

tanzu package available get tap-telemetry.tanzu.vmware.com/VERSION --values-sch

ema -n tap-install

Where VERSION is the your package version number. For example, 0.3.1.

For example:

$ tanzu package available get tap-telemetry.tanzu.vmware.com/0.3.1 --values-sch

ema -n tap-install

| Retrieving package details for tap-telemetry.tanzu.vmware.com/0.3.1...

KEY                                  DEFAULT  TYPE    DESCRIPTION

kubernetes_distribution                       string  Kubernetes platform flavo

r where the tap-telemetry is being installed on. Accepted values are ['', 'open

shift']

customer_entitlement_account_number           string  Account number used to di

stinguish data by customer.

installed_for_vmware_internal_use             string  Indication of if the depl

oyment is for vmware internal user. Accepted values are ['true', 'false']

3. (Optional) Modify the deployment configurations by creating a configuration YAML with the
desired custom configuration values. For example, if you want to provide your Customer
Entitlement Number, create a tap-telemetry-values.yaml and configure the
customer_entitlement_account_number property:

---

customer_entitlement_account_number: "12345"

See Deployment details and configuration for more information about the configuration
options.

4. Install the package by running:

tanzu package install tap-telmetry \

  --package-name tap-telemetry.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file tap-telemetry-values.yaml

Where:

--values-file is an optional flag. Only use it to customize the deployment
configuration.

VERSION is the package version number. For example, 0.3.1.

For example:

$ tanzu package install tap-telmetry \

  --package-name tap-telemetry.tanzu.vmware.com \

  --version 0.3.1 \

  --namespace tap-install \

  --values-file tap-telemetry-values.yaml

  Installing package 'tap-telemetry.tanzu.vmware.com'

  Getting package metadata for 'tap-telemetry.tanzu.vmware.com'

  Creating service account 'tap-telemetry-tap-install-sa'

  Creating cluster admin role 'tap-telemetry-tap-install-cluster-role'

  Creating cluster role binding 'tap-telemetry-tap-install-cluster-rolebinding'

Tanzu Application Platform v1.4

VMware by Broadcom 1554



  Creating secret 'tap-telemetry-tap-install-values'

  Creating package resource

  Waiting for 'PackageInstall' reconciliation for 'tap-telemetry'

  'PackageInstall' resource install status: Reconciling

  'PackageInstall' resource install status: ReconcileSucceeded

  'PackageInstall' resource successfully reconciled

Added installed package 'tap-telemetry'

Deployment details and configurations of Tanzu Application
Platform Telemetry
Use this topic to learn the deployment details and configurations of your Tanzu Application Platform
Telemetry (commonly known as TAP Telemetry).

What is deployed
The installation creates the following in your Kubernetes cluster:

A deployment.

A pod.

A namespace tap-telemetry.

A service account with read-write privileges named informer, and a corresponding secret
for the service account. This secret is bound to a ClusterRole named tap-telemetry-admin.

A Role tap-telemetry-informer to retrieve the deployment ID, which is sent as sender ID
in heartbeat metrics.

A RoleBinding tap-telemetry-informer-admin that binds the informer service account to
the tap-telemetry-informer role.

A ClusterRole tap-telemetry-admin that has access to each Tanzu Application Platform
component to gather information from.

A ClusterRoleBinding tap-telemetry-informer-admin that binds the informer service
account to the tap-telemetry-informer cluster role.

Deployment configuration
customer_entitlement_account_number is the unique identifier to differentiate between the data
from your cluster and the data from other clusters. You can configure this property in your tap-
telemetry-values.yaml:

customer_entitlement_account_number: "12345"

It creates a config map named vmware-telemetry-identifiers in the vmware-system-telemetry
namespace, which is used internally to log your information.

Repeat these steps for the Build, Run, and View Cluster. For more information, see Install
multicluster Tanzu Application Platform profiles.

Overview of Tanzu Build Service

This topic provides you with an overview of VMware Tanzu Build Service in Tanzu Application
Platform (commonly known as TAP).

Tanzu Application Platform v1.4

VMware by Broadcom 1555



Overview

Tanzu Build Service automates container creation, management, and governance at enterprise
scale. Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn application
source code into container images. It executes reproducible builds aligned with modern container
standards and keeps images up to date.

For more information about Tanzu Build Service, see the Tanzu Build Service documentation. For
more information about Tanzu Buildpacks and their configuration, see the Tanzu Buildpack
documentation.

Tanzu Application Platform 1.4 includes Tanzu Build Service 1.9.

Overview of Tanzu Build Service

This topic provides you with an overview of VMware Tanzu Build Service in Tanzu Application
Platform (commonly known as TAP).

Overview

Tanzu Build Service automates container creation, management, and governance at enterprise
scale. Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn application
source code into container images. It executes reproducible builds aligned with modern container
standards and keeps images up to date.

For more information about Tanzu Build Service, see the Tanzu Build Service documentation. For
more information about Tanzu Buildpacks and their configuration, see the Tanzu Buildpack
documentation.

Tanzu Application Platform 1.4 includes Tanzu Build Service 1.9.

Install Tanzu Build Service

This topic describes how to install Tanzu Build Service from the Tanzu Application Platform
(commonly known as TAP) package repository by using the Tanzu CLI.

Before you begin

Use this topic if you do not want to use a Tanzu Application Platform profile that includes Tanzu
Build Service. The Full, Iterate, and Build profiles include Tanzu Build Service. For more information
about profiles, see Components and installation profiles.

The following procedure might not include some configurations required for your environment. For
advanced information about installing Tanzu Build Service, see the Tanzu Build Service
documentation.

Prerequisites

Before installing Tanzu Build Service:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

You must have access to a Docker registry that Tanzu Build Service can use to create
builder images. Approximately 10 GB of registry space is required when using the full
dependencies.

Your Docker registry must be accessible with user name and password credentials.

Tanzu Application Platform v1.4

VMware by Broadcom 1556

https://buildpacks.io/
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://buildpacks.io/
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html


Deprecated Features

Automatic dependency updates: For more information, see Configure automatic
dependency updates.

The Cloud Native Buildpack Bill of Materials (CNB BOM) format: For more information,
see Deactivate the CNB BOM format.

Install the Tanzu Build Service package

To install Tanzu Build Service by using the Tanzu CLI:

1. Get the latest version of the Tanzu Build Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

2. Gather the values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/VERSION --values-sche

ma --namespace tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved in the
previous step.

3. Create a tbs-values.yaml file using the following template:

---

kp_default_repository: "REPO-NAME"

kp_default_repository_username: "REPO-USERNAME"

kp_default_repository_password: "REPO-PASSWORD"

Where:

REPO-NAME is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Harbor has the form "my-harbor.io/my-project/build-service".

Docker Hub has the form "my-dockerhub-user/build-service" or
"index.docker.io/my-user/build-service".

Google Cloud Registry has the form "gcr.io/my-project/build-service".

REPO-USERNAME and REPO-PASSWORD are the username and password for the user that
can write to REPO-NAME. For Google Cloud Registry, use _json_key as the username
and the contents of the service account JSON file for the password.

4. If you are running on Openshift, add kubernetes_distribution: openshift to your tbs-
values.yaml file.

Note

If you do not want to use plaintext for these credentials, you can
configure them by using a secret reference or by using AWS IAM
authentication. For more information, see Use Secret References for
registry credentials or Use AWS IAM authentication for registry
credentials.

Tanzu Application Platform v1.4

VMware by Broadcom 1557



5. (Optional) Under the ca_cert_data key in the tbs-values.yaml file, provide a PEM-encoded
CA certificate for Tanzu Build Service. This certificate is used for accessing the container
image registry and is also provided to the build process.

For example:

---

kp_default_repository: "REPO-NAME"

kp_default_repository_username: "REPO-USERNAME"

kp_default_repository_password: "REPO-PASSWORD"

ca_cert_data: |

  -----BEGIN CERTIFICATE-----

  ...

  -----END CERTIFICATE-----

6. (Optional) Tanzu Build Service is bootstrapped with the lite set of dependencies. To
configure full dependencies, add the key-value pair exclude_dependencies: true to your
tbs-values.yaml file. This is to exclude the default lite dependencies from the installation.
For example:

---

kp_default_repository: "REPO-NAME"

kp_default_repository_username: "REPO-USERNAME"

kp_default_repository_password: "REPO-PASSWORD"

exclude_dependencies: true

For more information about the differences between full and lite dependencies, see
About lite and full dependencies.

7. Install the Tanzu Build Service package by running:

tanzu package install tbs -p buildservice.tanzu.vmware.com -v VERSION -n tap-in

stall -f tbs-values.yaml

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

For example:

$ tanzu package install tbs -p buildservice.tanzu.vmware.com -v VERSION -n tap-

install -f tbs-values.yaml

| Installing package 'buildservice.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'buildservice.tanzu.vmware.com'

| Creating service account 'tbs-tap-install-sa'

| Creating cluster admin role 'tbs-tap-install-cluster-role'

| Creating cluster role binding 'tbs-tap-install-cluster-rolebinding'

| Creating secret 'tbs-tap-install-values'

- Creating package resource

- Package install status: Reconciling

Note

If shared.ca_cert_data is configured in the tap-values.yaml file, Tanzu Build
Service inherits that value.

Configuring ca_cert_data key in the tbs-values.yaml file adds the CA
certificates at build time. To add CA certificates to the built image, see
Configure custom CA certificates for a single workload using service
bindings.

Tanzu Application Platform v1.4

VMware by Broadcom 1558



 Added installed package 'tbs' in namespace 'tap-install'

8. (Optional) Verify the cluster builders that the Tanzu Build Service installation created by
running:

tanzu package installed get tbs -n tap-install

9. If you configured full dependencies in your tbs-values.yaml file, install the full
dependencies by following the procedure in Install full dependencies.

(Optional) Alternatives to plaintext registry credentials

Tanzu Build Service requires credentials for the kp_default_repository and the Tanzu Network
registry.

You can apply them directly in-line in plaintext in the tbs-values.yaml or tap-values.yaml
configuration by using the kp_default_repository_username, kp_default_repository_password,
tanzunet_username, and tanzunet_password fields.

If you do not want credentials saved in plaintext, you can use existing secrets or IAM roles by using
secret references or AWS IAM authentication in your tbs-values.yaml or tap-values.yaml.

Use Secret references for registry credentials

You might not want to install Tanzu Build Service with passwords saved in plaintext in the tbs-
values.yaml.

To store these credentials in Secrets and reference them in the tbs-values.yaml:

1. Using the Tanzu CLI, create a secret of type kubernetes.io/dockerconfigjson containing
credentials for the writable repository in your registry (kp_default_repository):

tanzu secret registry add kp-default-repository-creds \

  --username "${USERNAME}" \

  --password "${PASSWORD}" \

  --server "${SERVER-NAME}" \

  --namespace tap-install

Where:

USERNAME and PASSWORD are the user name and password for the user that can write
to the kp_default_repository. For Google Cloud Registry, use _json_key as the
user name, and the contents of the service account JSON file for the password.

SERVER-NAME is the host name of the registry server for the kp_default_repository.
Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

2. Use the following alternative configuration for tbs-values.yaml:

Note

if you are installing Tanzu Build Service as part of a Tanzu Application
Platform profile, you configure this in your tap-values.yaml file under the
buildservice section.

Tanzu Application Platform v1.4

VMware by Broadcom 1559



---

kp_default_repository: "KP-DEFAULT-REPOSITORY"

kp_default_repository_secret:

  name: kp-default-repository-creds

  namespace: tap-install

Where:

KP-DEFAULT-REPOSITORY is a writable repository in your registry. Tanzu Build Service
dependencies are written to this location. Examples:

Harbor has the form "my-harbor.io/my-project/build-service".

Docker Hub has the form "my-dockerhub-user/build-service" or
"index.docker.io/my-user/build-service".

Google Cloud Registry has the form "gcr.io/my-project/build-service".

3. To apply this configuration, continue the installation steps.

Use AWS IAM authentication for registry credentials

Tanzu Build Service supports using AWS IAM roles to authenticate with Amazon Elastic Container
Registry (ECR) on Amazon Elastic Kubernetes Service (EKS) clusters.

To use AWS IAM authentication:

1. Configure an AWS IAM role that has read and write access to the repository in the
container image registry used when installing Tanzu Application Platform.

2. Use the following alternative configuration for tbs-values.yaml:

---

  kp_default_repository: "REPO-NAME"

  kp_default_repository_aws_iam_role_arn: "IAM-ROLE-ARN"

Where:

REPO-NAME is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location.

IAM-ROLE-ARN is the AWS IAM role Amazon Resource Name (ARN) for the role
configured in the previous step. For example, arn:aws:iam::xyz:role/my-install-
role.

3. The developer namespace requires configuration for Tanzu Application Platform to use
AWS IAM authentication for ECR. Configure an AWS IAM role that has read and write
access to the registry for storing workload images.

4. Using the supply chain service account, add an annotation including the role ARN
configured earlier by running:

kubectl annotate serviceaccount -n DEVELOPER-NAMESPACE SERVICE-ACCOUNT-NAME \

  eks.amazonaws.com/role-arn=IAM-ROLE-ARN

Where:

Note

if you are installing Tanzu Build Service as part of a Tanzu Application
Platform profile, you configure this in your tap-values.yaml file under the
buildservice section.

Tanzu Application Platform v1.4

VMware by Broadcom 1560



DEVELOPER-NAMESPACE is the namespace where workloads are created.

SERVICE-ACCOUNT-NAME is the supply chain service account. This is default if unset.

IAM-ROLE-ARN is the AWS IAM role ARN for the role configured earlier. For example,
arn:aws:iam::xyz:role/my-developer-role.

5. Apply this configuration by continuing the steps in Install the Tanzu Build Service package.

Install full dependencies

If you configured full dependencies in your tbs-values.yaml file, you must install the full
dependencies package.

For a more information about lite and full dependencies, see About lite and full dependencies.

To install full Tanzu Build Service dependencies:

1. If you have not done so already, add the key-value pair exclude_dependencies: true to
your tbs-values.yaml file. For example:

---

  kp_default_repository: "REPO-NAME"

  kp_default_repository_username: "REPO-USERNAME"

  kp_default_repository_password: "REPO-PASSWORD"

  exclude_dependencies: true

2. Get the latest version of the Tanzu Build Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

3. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

--to-repo INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps

Where:

VERSION is the version of the Tanzu Build Service package you retrieved in the
previous step.

INSTALL-REGISTRY-HOSTNAME is your container image registry.

TARGET-REPOSITORY is your target repository.

4. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

  --url INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps:VERSION \

  --namespace tap-install

Where:

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

Note

if you are installing Tanzu Build Service as part of a Tanzu Application
Platform profile, you configure this in your tap-values.yaml file under the
buildservice section.

Tanzu Application Platform v1.4

VMware by Broadcom 1561



INSTALL-REGISTRY-HOSTNAME is your container image registry.

TARGET-REPOSITORY is your target repository.

5. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

(Optional) Configure automatic dependency updates

You can configure Tanzu Build Service to update dependencies in the background as they are
released. This enables workloads to keep up to date automatically. For more information about
automatic dependency updates, see About automatic dependency updates (deprecated).

To configure automatic dependency updates, add the following to the contents of your tbs-
values.yaml:

  tanzunet_username: TANZU-NET-USERNAME

  tanzunet_password: TANZU-NET-PASSWORD

  descriptor_name: DESCRIPTOR-NAME

  enable_automatic_dependency_updates: true

Where:

TANZU-NET-USERNAME and TANZU-NET-PASSWORD are the email address and password to log in
to VMware Tanzu Network. You can also configure these credentials by using a secret
reference. For more information, see Use Secret references for registry credentials.

DESCRIPTOR-NAME is the name of the descriptor to import. For more information, see
Descriptors. Available options are:

lite is the default if not set. It has a smaller footprint, which enables faster
installations.

full is optimized to speed up builds and includes dependencies for all supported
workload types.

(Optional) Deactivate the CNB BOM format

The legacy CNB BOM format is deprecated, but is enabled by default in Tanzu Application Platform.

To manually deactivate the format, add include_legacy_bom=false to either the tbs-values.yaml
file, or to the tap-values.yaml file under the buildservice section.

Important

The automatic updates feature is being deprecated. The recommended way to
patch dependencies is by upgrading Tanzu Application Platform to the latest patch
version. For upgrade instructions, see Upgrading Tanzu Application Platform.

Note

If you are installing Tanzu Build Service as part of a Tanzu Application Platform
profile, you configure this in your tap-values.yaml file under the buildservice
section.

Tanzu Application Platform v1.4

VMware by Broadcom 1562



Install Tanzu Build Service on an air-gapped environment

This topic describes how to install Tanzu Build Service on a Kubernetes cluster and registry that are
air-gapped from external traffic.

Before you begin

Use this topic if you do not want to use a Tanzu Application Platform profile that includes Tanzu
Build Service.

The Full, Iterate, and Build profiles include Tanzu Build Service. For more information about
profiles, see Components and installation profiles.

Prerequisites

Before installing Tanzu Build Service:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

You must have access to a Docker registry that Tanzu Build Service can use to create
builder images. Approximately 10 GB of registry space is required when using the full
dependencies.

Your Docker registry must be accessible with user name and password credentials.

Deprecated Features

The Cloud Native Buildpack Bill of Materials (CNB BOM) format: For more information, see
Deactivate the CNB BOM format.

Install the Tanzu Build Service package

These steps assume that you have installed the Tanzu Application Platform packages in your air-
gapped environment.

To install the Tanzu Build Service package on an air-gapped environment:

1. Get the latest version of the Tanzu Build Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

2. Gather the values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/VERSION --values-sche

ma --namespace tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved in the
previous step.

3. Create a tbs-values.yaml file. The required fields for an air-gapped installation are as
follows:

---

kp_default_repository: REPO-NAME

kp_default_repository_username: REGISTRY-USERNAME

kp_default_repository_password: REGISTRY-PASSWORD

Tanzu Application Platform v1.4

VMware by Broadcom 1563



ca_cert_data: CA-CERT-CONTENTS

exclude_dependencies: true

Where:

REPO-NAME is the fully qualified path to a writeable repository in your internal registry.
Tanzu Build Service dependencies are written to this location. For example:

For Harbor: harbor.io/my-project/build-service

For Artifactory: artifactory.com/my-project/build-service

REPO-USERNAME and REPO-PASSWORD are the user name and password for the user that
can write to REPO-NAME.

CA-CERT-CONTENTS are the contents of the PEM-encoded CA certificate for the
internal registry.

4. Install the package by running:

tanzu package install tbs -p buildservice.tanzu.vmware.com -v VERSION -n tap-in

stall -f tbs-values.yaml

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

For example:

$ tanzu package install tbs -p buildservice.tanzu.vmware.com -v VERSION -n tap-

install -f tbs-values.yaml

| Installing package 'buildservice.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'buildservice.tanzu.vmware.com'

| Creating service account 'tbs-tap-install-sa'

| Creating cluster admin role 'tbs-tap-install-cluster-role'

| Creating cluster role binding 'tbs-tap-install-cluster-rolebinding'

| Creating secret 'tbs-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tbs' in namespace 'tap-install'

Install the Tanzu Build Service dependencies
By default, Tanzu Build Service is installed with lite dependencies.

When installing Tanzu Build Service on an air-gapped environment, the lite dependencies cannot
be used as they require Internet access. You must install the full dependencies.

To install full dependencies:

1. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

  --to-tar=tbs-full-deps.tar

# move tbs-full-deps.tar to environment with registry access

Note

If you do not want to use plaintext for these credentials, you can
instead configure these credentials by using a Secret reference. For
more information, see Use Secret references for registry credentials.

Tanzu Application Platform v1.4

VMware by Broadcom 1564



imgpkg copy --tar tbs-full-deps.tar \

  --to-repo=INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps

Where:

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

INSTALL-REGISTRY-HOSTNAME is your container registry.

TARGET-REPOSITORY is your target repository.

2. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

  --url INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps:VERSION \

  --namespace tap-install

Where:

INSTALL-REGISTRY-HOSTNAME is your container registry.

TARGET-REPOSITORY is your target repository.

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

3. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

Configure Tanzu Build Service properties on a workload
This topic tells you how to configure your workload with Tanzu Build Service properties.

Overview
Tanzu Build Service builds registry images from source code for Tanzu Application Platform. You
can configure these build configurations by using a workload.

Tanzu Build Service is only applicable to the build process. Configurations, such as environment
variables and service bindings, might require a different process for runtime.

Configure build-time service bindings
You can configure build-time service bindings for Tanzu Build Service.

Tanzu Build Service supports using the Service Binding Specification for Kubernetes for application
builds. For more information, see the service binding specification for Kubernetes in GitHub.

Service binding configuration is specific to the buildpack that is used to build the app. For more
information about configuring buildpack service bindings for the buildpack you are using, see the
VMware Tanzu Buildpacks documentation.

To configure a service binding for a Tanzu Application Platform workload, follow these steps:

1. Create a YAML file named service-binding-secret.yaml for a secret as follows:

apiVersion: v1

kind: Secret

metadata:

  name: settings-xml

  namespace: DEVELOPER-NAMESPACE

Tanzu Application Platform v1.4

VMware by Broadcom 1565

https://github.com/k8s-service-bindings/spec
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html


type: service.binding/maven

stringData:

  type: maven

  provider: sample

  settings.xml: |

  MY-SETTINGS

Where: - DEVELOPER-NAMESPACE is the namespace where workloads are created. - MY-
SETTINGS is the contents of your service bindings file.

2. Apply the YAML file by running:

kubectl apply -f service-binding-secret.yaml

3. Create the workload with buildServiceBindings configured by running:

tanzu apps workload create WORKLOAD-NAME \

  --param-yaml buildServiceBindings='[{"name": "settings-xml", "kind": "Secre

t"}]' \

  ...

Where WORKLOAD-NAME is the name of the workload you want to configure.

Configure environment variables
If you have build-time environment variable dependencies, you can set environment variables that
are available at build-time.

You can also configure buildpacks with environment variables. Buildpack configuration depends on
the specific buildpack being used. For more information about configuring environment variables
for the buildpack you are using, see the VMware Tanzu Buildpacks documentation.

For example:

tanzu apps workload create WORKLOAD-NAME \

  --build-env "ENV_NAME=ENV_VALUE" \

  --build-env "BP_MAVEN_BUILD_ARGUMENTS=-Dmaven.test.skip=true"

Where WORKLOAD-NAME is the name of the workload you want to configure.

Configure the service account

Using the Tanzu CLI, you can configure the service account used during builds. This service
account is the one configured for the developer namespace. If unset, default is used.

To configure the service account used during builds, run:

tanzu apps workload create WORKLOAD-NAME \

  --param serviceAccount=SERVICE-ACCOUNT-NAME \

Where:

WORKLOAD-NAME is the name of the workload you want to configure.

SERVICE-ACCOUNT-NAME is the name of the service account you want to use during builds.

Configure the cluster builder

To configure the ClusterBuilder used during builds:

1. View the available ClusterBuilds by running:

Tanzu Application Platform v1.4

VMware by Broadcom 1566

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html


kubectl get clusterbuilder

2. Set the ClusterBuilder used during builds by running:

tanzu apps workload create WORKLOAD-NAME \

  --param clusterBuilder=CLUSTER-BUILDER-NAME \

Where:

WORKLOAD-NAME is the name of the workload you want to configure.

CLUSTER-BUILDER-NAME is the ClusterBuilder you want to use.

Configure the workload container image registry

Using the Tanzu CLI, you can configure the registry where workload images are saved. The service
account used for this workload must have read and write access to this registry location.

To configure the registry where workload images are saved, run:

tanzu apps workload create WORKLOAD-NAME \

  --param-yaml registry={"server": SERVER-NAME, "repository": REPO-NAME}

Where:

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form "my-harbor.io".

Docker Hub has the form "index.docker.io".

Google Cloud Registry has the form "gcr.io".

REPO-NAME is where workload images are stored in the registry. Images are written to
SERVER-NAME/REPO-NAME/workload-name. Examples:

Harbor has the form "my-project/supply-chain".

Docker Hub has the form "my-dockerhub-user".

Google Cloud Registry has the form "my-project/supply-chain".

Configure custom CA certificates for a single workload
using service bindings

If the language family buildpack you are using includes the Paketo CA certificates buildpack, you
can use a service binding to provide custom certificates during the build and run process. For more
information about language family buildpacks, see the Tanzu Buildpacks documentation.

To create a service binding to provide custom CA certificates for a workload:

1. Create a YAML file named service-binding-ca-cert.yaml for a secret as follows:

apiVersion: v1

kind: Secret

metadata:

  name: my-ca-certs

data:

  type: ca-certificates

  provider: sample

  CA-CERT-FILENAME: |

    -----BEGIN CERTIFICATE-----

    ...

    -----END CERTIFICATE-----

Tanzu Application Platform v1.4

VMware by Broadcom 1567

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html


Where CA-CERT-FILENAME is the name of your PEM encoded CA certificate file. For
example, arbitrary-file-name.pem.

2. Apply the YAML file by running:

kubectl apply -f service-binding-ca-cert.yaml

3. To build with the custom certificate, create the workload with --param-yaml
buildServiceBindings flag:

tanzu apps workload create WORKLOAD-NAME \

  --param-yaml buildServiceBindings='[{"apiVersion": "v1", "kind": "Secret", "n

ame": "my-ca-certs"}]' \

  ...

Where WORKLOAD-NAME is the name of the workload you want to create.

4. To deploy with the custom certificate, create the workload with the --service-ref flag:

tanzu apps workload create WORKLOAD-NAME \

  --service-ref my-ca-certs=v1:Secret:my-ca-certs \

  ...

Where WORKLOAD-NAME is the name of the workload you want to create.

Using custom CA certificates for all workloads

To provide custom CA certificates to the build process for all workloads, see the optional step to
add the ca_cert_data key Install the Tanzu Build Service package.

Create a signed container image with Tanzu Build Service

This topic tells you how to create a Tanzu Build Service image resource that builds a container
image from source code signed with Cosign.

Prerequisites

Before you can configure Tanzu Build Service to sign your image builds, you must:

Install Tanzu Build Service. The Full, Iterate, and Build profiles include Tanzu Build Service
by default. If you have not installed Tanzu Application Platform with one of these profiles,
see Installing Tanzu Build Service.

Install Cosign. For instructions, see the Cosign documentation.

Have a Builder or ClusterBuilder resource configured.

Have an image resource configured.

Review the kpack tutorial. This topic builds upon the steps in this tutorial.

Configure Tanzu Build Service to sign your image builds

To configure Tanzu Build Service to sign your image builds:

1. Ensure that you are in a Kubernetes context where you are authenticated and authorized
to create and edit secret and service account resources.

2. Generate a Cosign keypair and store it as a Kubernetes secret by running:

Tanzu Application Platform v1.4

VMware by Broadcom 1568

https://github.com/sigstore/cosign#installation
https://docs.vmware.com/en/Tanzu-Build-Service/1.9/vmware-tanzu-build-service/managing-builders.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.9/vmware-tanzu-build-service/managing-images.html
https://github.com/pivotal/kpack/blob/main/docs/tutorial.md


cosign generate-key-pair k8s://NAMESPACE/COSIGN-KEYPAIR-NAME

Where:

NAMESPACE is the namespace to store the Kubernetes secret in.

COSIGN-KEYPAIR-NAME is the name of the Kubernetes secret.

For example:

cosign generate-key-pair k8s://default/tutorial-cosign-key-pair

3. Enter a password for the private key. Enter any password you want. After the command
has completed, you will see the following output:

Successfully created secret tutorial-cosign-key-pair in namespace default

Public key written to cosign.pub

You will also see a cosign.pub file in your current directory. Keep this file as you will need it
to verify the signature of the images that are built.

4. If you are using Docker Hub or a registry that does not support OCI media types, add the
annotation kpack.io/cosign.docker-media-types: "1" to the Cosign secret as follows:

apiVersion: v1

kind: Secret

type: Opaque

metadata:

  name: tutorial-cosign-key-pair

  namespace: default

  annotations:

    kpack.io/cosign.docker-media-types: "1"

data:

  cosign.key: PRIVATE-KEY-DATA

  cosign.password: COSIGN-PASSWORD

  cosign.pub: PUBLIC-KEY-DATA

For more information about configuring Cosign key pairs, see the Tanzu Build Service
documentation.

5. To enable Cosign signing, create or edit the service account resource that is referenced in
the image resource so that it includes the Cosign keypair secret created earlier. The service
account is in the same namespace as the image resource and is directly referenced by the
image or default if there isn’t one. The default is the default service account in the workload
namespace.

apiVersion: v1

kind: ServiceAccount

metadata:

  name: SERVICE-ACCOUNT-NAME

  namespace: default

secrets:

- name: REGISTRY-CREDENTIALS

- name: COSIGN-KEYPAIR-NAME

imagePullSecrets:

- name: REGISTRY-CREDENTIALS

Where:

SERVICE-ACCOUNT-NAME is the name of your service account resource. For example,
tutorial-cosign-service-account.

Tanzu Application Platform v1.4

VMware by Broadcom 1569

https://hub.docker.com/
https://docs.vmware.com/en/Tanzu-Build-Service/1.9/vmware-tanzu-build-service/managing-images.html#image-signing-with-cosign


COSIGN-KEYPAIR-NAME is the name of the Cosign keypair secret generated earlier.
For example, tutorial-cosign-key-pair.

REGISTRY-CREDENTIALS is the secret that provides credentials for the container
registry where application container images are pushed to.

6. Apply the service account resource to the cluster by running:

kubectl apply -f cosign-service-account.yaml

7. Create an image resource file named image-cosign.yaml. For example:

apiVersion: kpack.io/v1alpha2

kind: Image

metadata:

  name: tutorial-cosign-image

  namespace: default

spec:

  tag: IMAGE-REGISTRY

  serviceAccountName: tutorial-cosign-service-account

  builder:

    name: my-builder

    kind: Builder

  source:

    git:

      url: https://github.com/spring-projects/spring-petclinic

      revision: 82cb521d636b282340378d80a6307a08e3d4a4c4

Where:

IMAGE-REGISTRY with a writable repository in your registry. The secret referenced in
the service account is a secret providing credentials for the registry where
application container images are pushed to. For example:

Harbor has the form "my-harbor.io/my-project/my-repo"

Docker Hub has the form "my-dockerhub-user/my-repo" or
"index.docker.io/my-user/my-repo"

Google Cloud Registry has the form "gcr.io/my-project/my-repo"

8. If you are using Out of the Box Supply Chains, edit the respective ClusterImageTemplate to
enable signing in your supply chain. For more information, see Authoring supply chains.

9. Apply the image resource to the cluster by running:

kubectl apply -f image-cosign.yaml

10. After the image resource finishes building, you can get the fully resolved and built OCI
image by running:

kubectl -n default get image tutorial-cosign-image

Example output:

Important

VMware discourages referencing the service account using the
service_account value when installing the Out of the Box Supply Chain. This
is because it gives your run cluster access to the private signing key.

Tanzu Application Platform v1.4

VMware by Broadcom 1570



NAME                  LATESTIMAGE                                        READY

tutorial-cosign-image index.docker.io/your-project/app@sha256:6744b...   True

11. Verify image signature by running:

cosign verify --key cosign.pub LATEST-IMAGE-WITH-DIGEST

Where LATEST-IMAGE-WITH-DIGEST is the value of LATESTIMAGE you retrieved in the previous
step. For example: index.docker.io/your-project/app@sha256:6744b...

The expected output is similar to the following:

Verification for index.docker.io/your-project/app@sha256:6744b... --

The following checks were performed on each of these signatures:

- The cosign claims were validated

- The signatures were verified against the specified public key

- Any certificates were verified against the Fulcio roots.

12. Configure Supply Chain Security Tools for VMware Tanzu - Policy Controller to ensure that
only signed images are allowed in your cluster. For more information, see the Supply Chain
Security Tools for VMware Tanzu - Policy Controller documentation.

Tanzu Build Service Dependencies
This topic tells you about Tanzu Build Service dependencies.

To build OCI images, Tanzu Build Service has the following dependencies: Cloud Native Buildpacks,
Stacks, and Lifecycles.

How dependencies are installed
When Tanzu Application Platform is installed with Tanzu Build Service, it is bootstrapped with a set
of dependencies. No extra configuration is required. Each version of Tanzu Application Platform
and Tanzu Build Service contains new dependencies.

When Tanzu Application Platform is upgraded, new dependencies are installed which might cause
workload images to rebuild. To ensure dependency compatibility, Tanzu Build Service only releases
patches for dependencies in patch versions of Tanzu Application Platform. For upgrade instructions,
see Upgrade the full dependencies package.

To upgrade Tanzu Build Service dependencies outside of Tanzu Application Platform releases, use
the kpack CLI. This enables you to consume new versions of buildpacks and stacks and remediate
vulnerabilities more quickly. For more information, see Updating Build Service Dependencies.

By default, Tanzu Build Service is installed with the lite set of dependencies, which are smaller-
footprint and contain a subset of the buildpacks and stacks in the full set of dependencies. For a
comparison of lite and full dependencies, see Dependency comparison later in this topic.

View installed dependencies

Important

Ubuntu Bionic will stop receiving support in April 2023. The Bionic stack for Tanzu
Build Service is deprecated and will be removed in a future release. VMware
recommends that you migrate builds to Jammy stacks. For how to migrate builds,
see Use Jammy stacks for a workload.

Tanzu Application Platform v1.4

VMware by Broadcom 1571

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.10/vmware-tanzu-build-service/managing-builders.html#update-lifecycle
https://docs.vmware.com/en/Tanzu-Build-Service/1.9/vmware-tanzu-build-service/updating-deps.html#bulk-update


To view the set of dependencies installed with Tanzu Build Service, inspect the status of the cluster
builders by running:

kubectl get clusterbuilder -o yaml

Cluster builders contain stack and buildpack metadata.

Bionic and Jammy stacks

Tanzu Application Platform v1.3 and later supports Ubuntu v22.04 (Jammy) based builds. Ubuntu
Bionic will stop receiving support in April 2023. VMware recommends that you migrate builds to
Jammy.

For more information about support for Jammy stacks, see About lite and full dependencies later in
this topic.

Use Jammy stacks for a workload

To use the Jammy stacks or migrate an existing workload, configure the workload with a Jammy
builder by using the param flag, for example, --param clusterBuilder=base-jammy. For further
instructions, see Configure the cluster builder.

Default all workloads to Jammy stacks

By default, Tanzu Application Platform is installed with Bionic as the default stack.

To default all workloads to the Jammy stack, include the stack_configuration: jammy-only field
under the buildservice: section in tap-values.yaml. This installs Tanzu Application Platform and
Tanzu Build Service with no Bionic-based builders, and all workloads will be built with Jammy.

About lite and full dependencies
Each version of Tanzu Application Platform is released with two types of Tanzu Build Service
dependencies: lite and full. These dependencies consist of the buildpacks and stacks required for
application builds. Each type serves different use cases. Both types are suitable for production
workloads.

By default, Tanzu Build Service is installed with lite dependencies, which do not contain all
buildpacks and stacks. To use all buildpacks and stacks, you must install the full dependencies. For
instructions about installing full dependencies, see Install full dependencies.

For a table comparing the differences between full and lite dependencies, see Dependency
comparison.

Note

While upgrading apps to a newer stack, you might encounter the build platform
erroneously reusing the old build cache. If you encounter this issue, delete and
recreate the workload in Tanzu Application Platform, or delete and recreate the
image in Tanzu Build Service.

Important

Only use this configuration if you are sure all workloads can be safely built with
Jammy.

Tanzu Application Platform v1.4

VMware by Broadcom 1572



Lite dependencies

The lite dependencies are the default set installed with Tanzu Build Service.

lite dependencies contain a smaller footprint to speed up installation time, but do not support all
workload types. For example, lite dependencies do not contain the PHP buildpack and cannot be
used to build PHP workloads.

Lite dependencies: stacks

The lite dependencies contain the following stacks:

base (ubuntu Bionic)

default (identical to base)

base-jammy (ubuntu Jammy)

For more information, see Stacks in the VMware Tanzu Buildpacks documentation.

Lite dependencies: buildpacks

The lite dependencies contain the following buildpacks in Tanzu Application Platform v1.3:

Buildpack Version Supported Stacks

Java Buildpack for VMware Tanzu (Lite) 8.0.0 Bionic, Jammy

Java Native Image Buildpack for Tanzu (Lite) 6.39.0 Bionic, Jammy

.NET Core Buildpack for VMware Tanzu (Lite) 1.19.2 Bionic, Jammy

Node.js Buildpack for VMware Tanzu (Lite) 1.17.1 Bionic, Jammy

Python Buildpack for VMware Tanzu (Lite) 2.3.1 Bionic, Jammy

Go Buildpack for VMware Tanzu (Lite) 2.0.4 Bionic, Jammy

Web Servers Buildpack for VMware Tanzu (Lite) 0.4.1 Bionic, Jammy

Ruby Buildpack for VMware Tanzu (Lite) 1.5.0 Bionic, Jammy

Procfile Buildpack for VMware Tanzu (Lite) 5.4.0 Bionic, Jammy

And the following components:

Component Version Supported Stacks

CNB Lifecycle 0.14.3 Bionic, Jammy

Base Stack of Ubuntu Bionic for VMware Tanzu 1.2.34 Bionic

Base Stack of Ubuntu Jammy for VMware Tanzu 0.1.16 Jammy

Full dependencies

The Tanzu Build Service full set of dependencies contain more buildpacks and stacks, which allows
for more workload types.

The dependencies are pre-packaged, so builds do not have to download them from the Internet.
This can speed up build times and allows builds to occur in air-gapped environments. Due to the
larger footprint of full, installations might take longer.

The full dependencies are not installed with Tanzu Build Service by default, you must install them.
For instructions for installing full dependencies, see Install Tanzu Build Service with full
dependencies.

Tanzu Application Platform v1.4

VMware by Broadcom 1573

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html


Full dependencies: stacks

The full dependencies contain the following stacks, which support different use cases:

base (ubuntu Bionic)

default (identical to base)

full (ubuntu Bionic)

tiny (ubuntu Bionic)

base-jammy (ubuntu Jammy)

full-jammy (ubuntu Jammy)

tiny-jammy (ubuntu Jammy)

For more information, see Stacks in the VMware Tanzu Buildpacks documentation.

Full dependencies: buildpacks

The full dependencies contain the following buildpacks in Tanzu Application Platform v1.3:

Buildpack Version Supported Stacks

Java Buildpack for VMware Tanzu 8.0.0 Bionic, Jammy

Java Native Image Buildpack for Tanzu 6.39.0 Bionic, Jammy

.NET Core Buildpack for VMware Tanzu 1.19.2 Bionic, Jammy

Node.js Buildpack for VMware Tanzu 1.17.1 Bionic, Jammy

Python Buildpack for VMware Tanzu 2.3.1 Bionic, Jammy

Ruby Buildpack for VMware Tanzu 1.5.0 Bionic, Jammy

Go Buildpack for VMware Tanzu 2.0.4 Bionic, Jammy

PHP Buildpack for VMware Tanzu 2.0.0 Bionic, Jammy

Web Servers Buildpack for VMware Tanzu 0.4.1 Bionic, Jammy

Procfile Buildpack for VMware Tanzu 5.4.0 Bionic, Jammy

And the following components:

Component Version Supported Stacks

CNB Lifecycle 0.14.3 Bionic, Jammy

Tiny Stack of Ubuntu Bionic for VMware Tanzu 1.3.88 Bionic

Base Stack of Ubuntu Bionic for VMware Tanzu 1.2.34 Bionic

Full Stack of Ubuntu Bionic for VMware Tanzu 1.3.121 Bionic

Tiny Stack of Ubuntu Jammy for VMware Tanzu 0.1.17 Jammy

Base Stack of Ubuntu Jammy for VMware Tanzu 0.1.16 Jammy

Full Stack of Ubuntu Jammy for VMware Tanzu 0.1.38 Jammy

Dependency comparison

The following table compares the contents of the lite and full dependencies.

Tanzu Application Platform v1.4

VMware by Broadcom 1574

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html


lite full

Faster installation time Yes No

Dependencies pre-packaged (faster builds) No Yes

Supports air-gapped installation No Yes

Contains base stack Yes Yes

Contains full stack No Yes

Contains tiny stack No Yes

Contains Jammy stack Yes Yes

Supports Java workloads Yes Yes

Supports Node.js workloads Yes Yes

Supports Go workloads Yes Yes

Supports Python workloads Yes Yes

Supports Ruby workloads No Yes

Supports .NET Core workloads Yes Yes

Supports PHP workloads No Yes

Supports static workloads Yes Yes

Supports binary workloads Yes Yes

Supports web servers buildpack Yes Yes

About automatic dependency updates (deprecated)

You can configure Tanzu Build Service to update dependencies in the background as they are
released. This enables workloads to keep up to date automatically.

Descriptors (deprecated)

Tanzu Build Service descriptors are curated sets of dependencies that include stacks and
buildpacks. Descriptors are only used if Tanzu Build Service is configured for automatic dependency
updates. Descriptors are imported into Tanzu Build Service to update the entire cluster.

Descriptors are continuously released on the VMware Tanzu Network Build Service Dependencies
page to provide updated buildpack dependencies and updated stack images. This allows the use of
dependencies that have patched CVEs. For more information about buildpacks and stacks, see the
VMware Tanzu Buildpacks documentation.

There are two types of descriptor, lite and full. The different descriptors can apply to different
use cases and workload types. The differences between the full and lite descriptors are the
same as the the differences between full and lite dependencies. For a comparison of the lite
and full descriptors, see About lite and full dependencies.

Important

The automatic updates feature is being deprecated. The recommended way to
patch dependencies is by upgrading Tanzu Application Platform to the latest patch
version. For upgrade instructions, see Upgrading Tanzu Application Platform.

Tanzu Application Platform v1.4

VMware by Broadcom 1575

https://network.tanzu.vmware.com/products/tbs-dependencies/
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html


Security context constraint for OpenShift

This topic tells you about running Tanzu Build Service on OpenShift clusters.

On OpenShift clusters Tanzu Build Service must run with a custom Security Context Constraint
(SCC) to enable compliance. Tanzu Application Platform configures the following SCC for Tanzu
Build Service when you configure the kubernetes_distribution: openshift key in the tap-
values.yaml file.

---

kind: SecurityContextConstraints

apiVersion: security.openshift.io/v1

metadata:

  name: tbs-restricted-scc-with-seccomp

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities:

  - NET_BIND_SERVICE

defaultAddCapabilities: null

fsGroup:

  type: RunAsAny

groups: []

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

  - ALL

runAsUser:

  type: MustRunAsNonRoot

seLinuxContext:

  type: MustRunAs

seccompProfiles:

  - runtime/default

supplementalGroups:

  type: RunAsAny

users: []

volumes:

  - configMap

  - downwardAPI

  - emptyDir

  - persistentVolumeClaim

  - projected

  - secret

It also applies the following RBAC to allow Tanzu Build Service services to use the SCC:

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  labels:

    apps.tanzu.vmware.com/aggregate-to-workload: "true"

  annotations:

    rbac.authorization.kubernetes.io/autoupdate: "true"

  name: system:tbs:scc:restricted-with-seccomp

rules:

  - apiGroups:

      - security.openshift.io

    resourceNames:

      - tbs-restricted-scc-with-seccomp

Tanzu Application Platform v1.4

VMware by Broadcom 1576

https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constraints.html


    resources:

      - securitycontextconstraints

    verbs:

      - use

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: system:tbs:scc:restricted-with-seccomp

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: system:tbs:scc:restricted-with-seccomp

subjects:

  - kind: ServiceAccount

    namespace: build-service

    name: dependency-updater-serviceaccount

  - kind: ServiceAccount

    namespace: build-service

    name: dependency-updater-controller-serviceaccount

  - kind: ServiceAccount

    namespace: build-service

    name: secret-syncer-service-account

  - kind: ServiceAccount

    namespace: build-service

    name: warmer-service-account

  - kind: ServiceAccount

    namespace: build-service

    name: build-service-daemonset-serviceaccount

  - kind: ServiceAccount

    namespace: cert-injection-webhook

    name: cert-injection-webhook-sa

  - kind: ServiceAccount

    namespace: kpack

    name: kp-default-repository-serviceaccount

  - kind: ServiceAccount

    namespace: kpack

    name: kpack-pull-lifecycle-serviceaccount

  - kind: ServiceAccount

    namespace: kpack

    name: controller

  - kind: ServiceAccount

    namespace: kpack

    name: webhook

  - kind: ServiceAccount

    namespace: stacks-operator-system

    name: controller-manager

Troubleshoot Tanzu Build Service

This topic tells you how to troubleshoot Tanzu Build Service when used with Tanzu Application
Platform (commonly known as TAP).

Builds fail due to volume errors on EKS running Kubernetes
v1.23

Symptom

After installing or upgrading Tanzu Application Platform on an Amazon Elastic Kubernetes Service
(EKS) cluster running Kubernetes v1.23, build pods show:

Tanzu Application Platform v1.4

VMware by Broadcom 1577



'running PreBind plugin "VolumeBinding": binding volumes: timed out waiting

 for the condition'

Cause

This is due to the CSIMigrationAWS in this Kubernetes version, which requires users to install the
Amazon EBS CSI driver to use AWS Elastic Block Store (EBS) volumes. For more information about
EKS support for Kubernetes v1.23, see the Amazon blog post.

Tanzu Application Platform uses the default storage class which uses EBS volumes by default on
EKS.

Solution

Follow the AWS documentation to install the Amazon EBS CSI driver before installing Tanzu
Application Platform, or before upgrading to Kubernetes v1.23.

Smart-warmer-image-fetcher reports ErrImagePull due to
dockerd’s layer depth limitation

Symptom

When using dockerd as the cluster’s container runtime, you might see the smart-warmer-image-
fetcher pods report a status of ErrImagePull.

Cause

This error might be due to dockerd’s layer depth limitation, in which the maximum supported
image layer depth is 125.

To verify that the ErrImagePull status is due to dockerd’s maximum supported image layer depth,
check for event messages containing the words max depth exceeded. For example:

$ kubectl get events -A | grep "max depth exceeded"

  build-service        73s         Warning     Failed         pod/smart-warmer-image-f

etcher-wxtr8     Failed to pull image

  "harbor.somewhere.com/aws-repo/build-service:clusterbuilder-full@sha256:065bb361fd91

4a3970ad3dd93c603241e69cca214707feaa6

  d8617019e20b65e":  rpc error: code = Unknown desc = failed to register layer: max de

pth exceeded

Solution

To work around this issue, configure your cluster to use containerd or CRI-O as its default container
runtime. For instructions, refer to the following documentation for your Kubernetes cluster
provider.

For AWS, see:

The Amazon blog

The eksctl CLI documentation

For AKS, see:

The Microsoft Azure documentation

The Microsoft Azure blog

For GKE, see:

Tanzu Application Platform v1.4

VMware by Broadcom 1578

https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-kubernetes-1-23/
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/dockershim-deprecation.html
https://eksctl.io/usage/container-runtime/
https://docs.microsoft.com/en-us/azure/aks/cluster-configuration#container-runtime-configuration
https://techcommunity.microsoft.com/t5/apps-on-azure-blog/dockershim-deprecation-and-aks/ba-p/3055902


The GKE documentation

For OpenShift, see:

The Red Hat Hybrid Cloud blog

The Red Hat Openshift documentation

Nodes fail due to “trying to send message larger than max”
error

Symptom

You see the following error, or similar, in a node status:

Warning ContainerGCFailed 119s (x2523 over 42h) kubelet rpc error: code = ResourceExha

usted desc = grpc: trying to send message larger than max (16779959 vs. 16777216)

Cause

This is due to the way that the container runtime interface (CRI) handles garbage collection for
unused images and containers.

Solution

Do not use Docker as the CRI because it is not supported. Some versions of EKS default to Docker
as the runtime.

Build platform uses the old build cache after upgrade to
new stack

Symptom

While upgrading apps to a newer stack, you might encounter the build platform erroneously
reusing the old build cache.

Solution

If you encounter this issue, delete and recreate the workload in Tanzu Application Platform, or
delete and recreate the image in Tanzu Build Service.

Create a GitHub build action (Alpha)

This topic tells you how to use a GitHub action to create a Tanzu Build Service build on a cluster.

Prerequisites
Ensure that Tanzu Application Platform is installed.

Important

Alpha features are experimental and are not ready for production use. Configuration
and behavior is likely to change, and functionality might be removed in a future
release.

Tanzu Application Platform v1.4

VMware by Broadcom 1579

https://cloud.google.com/kubernetes-engine/docs/concepts/using-containerd
https://cloud.redhat.com/blog/containerd-support-for-windows-containers-in-openshift
https://docs.openshift.com/container-platform/3.11/crio/crio_runtime.html


Procedure

Developer namespace

1. Create a developer namespace where the build resource will be created.

kubectl create namespace DEVELOPER-NAMESPACE

2. Create a service account in the DEVELOPER-NAMESPACE that has access to the registry
credentials. This service account name will be used in the action.

Access to Kubernetes API server

The GitHub action talks directly to the Kubernetes API server, if you are running this on github.com
with the default action runners, ensure that your API server is accessible from GitHub’s IP ranges.
Alternatively, it might be possible to run the action on a custom runner within your firewall (with
access to the Tanzu Application Platform cluster).

Permissions Required

These are the minimum permissions required on the Tanzu Build Service cluster:

```bash

ClusterRole

 └ kpack.io

 └ clusterbuilders verbs=[get]

Role (DEVELOPER NAMESPACE)

 ├ ''

 │ ├ pods verbs=[get watch list] ✔

 │ └ pods/log verbs=[get] ✔

 └ kpack.io

 └ builds verbs=[get watch list create delete] ✔

```

This example contains the minimum required permissions:

```yaml

apiVersion: v1

kind: Namespace

metadata:

 name: DEVELOPER_NAMESPACE

apiVersion: v1

kind: ServiceAccount

metadata:

 namespace: DEVELOPER_NAMESPACE

 name: github-actions

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: github-actions

subjects:

 - kind: ServiceAccount

 namespace: DEVELOPER_NAMESPACE

 name: github-actions

roleRef:

 kind: ClusterRole

 name: github-actions

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

Tanzu Application Platform v1.4

VMware by Broadcom 1580

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/about-githubs-ip-addresses

kind: RoleBinding

metadata:

 name: github-actions

 namespace: DEVELOPER_NAMESPACE

subjects:

 - kind: ServiceAccount

 namespace: DEVELOPER_NAMESPACE

 name: github-actions

roleRef:

 kind: Role

 name: github-actions

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: github-actions

rules:

 - apiGroups: ['kpack.io']

 resources:

 - clusterbuilders

 verbs: ['get']

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: github-actions

 namespace: DEVELOPER_NAMESPACE

rules:

 - apiGroups: ['']

 resources: ['pods']

 verbs: ['get', 'watch', 'list']

 - apiGroups: ['']

 resources: ['pods/log']

 verbs: ['get']

 - apiGroups: ['kpack.io']

 resources:

 - builds

 verbs: ['get', 'watch', 'list', 'create', 'delete']

```

To access the values on Google Kubernetes Engine (steps might vary on other IaaS providers):

  ```console

 DEV_NAMESPACE=DEVELOPER_NAMESPACE

 SECRET=$(kubectl get sa github-actions -oyaml -n $DEV_NAMESPACE | yq '.secrets[0].na

me')

 CA_CERT=$(kubectl get secret $SECRET -oyaml -n $DEV_NAMESPACE | yq '.data."ca.crt"')

 NAMESPACE=$(kubectl get secret $SECRET -oyaml -n $DEV_NAMESPACE | yq .data.namespace

| base64 -d)

 TOKEN=$(kubectl get secret $SECRET -oyaml -n $DEV_NAMESPACE | yq .data.token | base6

4 -d)

 SERVER=$(kubectl config view --minify | yq '.clusters[0].cluster.server')

  ```

Create the required secrets on the repository through GitHub.com or through the gh CLI:

```bash

gh secret set CA_CERT --app actions --body "$CA_CERT"

gh secret set NAMESPACE --app actions --body "$NAMESPACE"

gh secret set TOKEN --app actions --body "$TOKEN"

gh secret set SERVER --app actions --body "$SERVER"

```

Tanzu Application Platform v1.4

VMware by Broadcom 1581

https://docs.github.com/en/actions/security-guides/encrypted-secrets#creating-encrypted-secrets-for-a-repository


Use the action

1. To use the action in a workflow, run the following YAML:

- uses: vmware-tanzu/build-image-action@v1-alpha

  with:

    ## Authorization

    # Host of the API server

    server: `${{ secrets.SERVER }}`

    # CA Certificate of the API Server

    ca_cert: `${{ secrets.CA_CERT }}`

    # Service Account token to access Kubernetes

    token: `${{ secrets.TOKEN }}`

    # _(required)_ The namespace to create the build resource in

    namespace: `${{ secrets.NAMESPACE }}`

    ## Image configuration

    # _(required)_ Destination for the built image

    # Example: gcr.io/<my-project>/<my-image>

    destination: ''

    # Optional list of build time environment variables

    env: ''

    # Name of the service account in the namespace, defaults to `default`

    serviceAccountName: ''

    # Name of the cluster builder to use, defaults to `default`

    clusterBuilder: ''

    # Max active time that the pod can run for in seconds, defaults to 3600

    timeout:

For example:

- name: Build Image

  id: build

  uses: vmware-tanzu/build-image-action@v1-alpha

  with:

    # Authorization

    server: ${{ secrets.SERVER }}

    token: ${{ secrets.TOKEN }}

    ca_cert: ${{ secrets.CA_CERT }}

    namespace: ${{ secrets.NAMESPACE }}

    # Image configuration

    destination: gcr.io/project-id/name-for-image

    serviceAccountName: my-sa-that-has-access-to-reg-credentials

    env: |

      BP_JAVA_VERSION=17

2. The previous step should output the full name, including the SHA of the built image. To use
the output in a subsequent step:

- name: Do something with image

  run:

    echo "${{ steps.build.outputs.name }}"

Debugging

To run this action in “debug” mode, add a secret called ACTIONS_STEP_DEBUG with the value set to
true as documented in the GitHub Action Docs.

Overview of Tekton

Tanzu Application Platform v1.4

VMware by Broadcom 1582

https://docs.github.com/en/actions/monitoring-and-troubleshooting-workflows/enabling-debug-logging


Tekton is a cloud-native, open-source framework for creating CI/CD systems. It allows developers
to build, test, and deploy across cloud providers and on-premises systems. For more information
about Tekton, see the Tekton documentation.

Overview of Tekton

Tekton is a cloud-native, open-source framework for creating CI/CD systems. It allows developers
to build, test, and deploy across cloud providers and on-premises systems. For more information
about Tekton, see the Tekton documentation.

Install Tekton

This topic tells you how to install Tekton Pipelines from the Tanzu Application Platform package
repository.

Prerequisites

Before installing Tekton Pipelines, complete all prerequisites to install Tanzu Application Platform.

Install Tekton Pipelines

To install Tekton Pipelines:

1. See the Tekton Pipelines package versions available to install by running:

tanzu package available list -n tap-install tekton.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install tekton.tanzu.vmware.com

\ Retrieving package versions for tekton.tanzu.vmware.com...

  NAME                     VERSION  RELEASED-AT

  tekton.tanzu.vmware.com  0.30.0   2021-11-18 17:05:37Z

2. Install Tekton Pipelines by running:

tanzu package install tekton-pipelines -n tap-install -p tekton.tanzu.vmware.co

m -v VERSION

Where VERSION is the desired version number. For example, 0.30.0.

For example:

$ tanzu package install tekton-pipelines -n tap-install -p tekton.tanzu.vmware.

com -v 0.30.0

- Installing package 'tekton.tanzu.vmware.com'

\ Getting package metadata for 'tekton.tanzu.vmware.com'

/ Creating service account 'tekton-pipelines-tap-install-sa'

/ Creating cluster admin role 'tekton-pipelines-tap-install-cluster-role'

/ Creating cluster role binding 'tekton-pipelines-tap-install-cluster-rolebindi

ng'

Note

Follow the steps in this topic if you do not want to use a profile to install Tekton
Pipelines. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.4

VMware by Broadcom 1583

https://tekton.dev/docs/
https://tekton.dev/docs/


/ Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'tekton-pipelines'

- 'PackageInstall' resource install status: Reconciling

 Added installed package 'tekton-pipelines'

3. Verify that you installed the package by running:

tanzu package installed get tekton-pipelines -n tap-install

For example:

$ tanzu package installed get tekton-pipelines -n tap-install

\ Retrieving installation details for tekton...

NAME:                    tekton-pipelines

PACKAGE-NAME:            tekton.tanzu.vmware.com

PACKAGE-VERSION:         0.30.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Configure a namespace to use Tekton Pipelines
This section covers configuring a namespace to run Tekton Pipelines. If you rely on a SupplyChain
to create Tekton PipelinesRuns in your cluster, skip this step because namespace configuration is
covered in Set up developer namespaces to use your installed packages. Otherwise, perform the
steps in this section for each namespace where you create Tekton Pipelines.

Service accounts that run Tekton workloads need access to the image pull secrets for the Tanzu
package. This includes the default service account in a namespace, which is created automatically
but is not associated with any image pull secrets. Without these credentials, PipelineRuns fail with a
timeout and the pods report that they cannot pull images.

To configure a namespace to use Tekton Pipelines:

1. Create an image pull secret in the current namespace and fill it from the tap-registry
secret. For more information, see Relocate images to a registry.

2. Create an empty secret, and annotate it as a target of the secretgen controller, by running:

kubectl create secret generic pull-secret --from-literal=.dockerconfigjson={} -

-type=kubernetes.io/dockerconfigjson

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secret=""

3. After you create a pull-secret secret in the same namespace as the service account, add
the secret to the service account by running:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "pull-s

ecret"}]}'

4. Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default

For example:

kubectl describe sa default

Name:                default

Tanzu Application Platform v1.4

VMware by Broadcom 1584



Namespace:           default

Labels:              <none>

Annotations:         <none>

Image pull secrets:  pull-secret

Mountable secrets:   default-token-xh6p4

Tokens:              default-token-xh6p4

Events:              <none>

For more details about Tekton Pipelines, see the Tekton documentation and the GitHub repository.

For information about getting started with Tekton, see the Tekton tutorial in GitHub and the
getting started guide in the Tekton documentation.

Note

The service account has access to the pull-secret image pull secret.

Note

Windows workloads are deactivated and cause an error if any Tasks try to use
Windows scripts.

Tanzu Application Platform v1.4

VMware by Broadcom 1585

https://tekton.dev/docs/
https://github.com/tektoncd/pipeline
https://github.com/tektoncd/pipeline/blob/main/docs/tutorial.md
https://tekton.dev/docs/getting-started/

	Contents
	Tanzu Application Platform v1.4
	Tanzu Application Platform overview
	Simplified workflows
	Notice of telemetry collection for Tanzu Application Platform

	Tanzu Application Platform release notes
	v1.4.13
	v1.4.13 Security fixes
	v1.4.13 Known issues

	v1.4.12
	v1.4.12 Security fixes
	v1.4.12 Known issues

	v1.4.11
	v1.4.11 Security fixes
	v1.4.11 Known issues

	v1.4.10
	v1.4.10 Security fixes
	v1.4.10 Known issues

	v1.4.9
	v1.4.9 Security fixes
	v1.4.9 Resolved issues
	v1.4.9 Resolved issues: Tanzu CLI and plug-ins

	v1.4.9 Known issues
	v1.4.9 Known issues: Tanzu Build Service


	v1.4.8
	v1.4.8 Security fixes
	v1.4.8 Resolved issues
	v1.4.8 Resolved issues: Tanzu Build Service

	v1.4.8 Known issues
	v1.4.8 Known issues: Tanzu Build Service


	v1.4.7
	v1.4.7 Security fixes
	v1.4.7 Known issues

	v1.4.6
	v1.4.6 Security fixes
	v1.4.6 Resolved issues
	v1.4.6 Resolved issues: Tanzu Developer Tools for IntelliJ
	v1.4.6 Resolved issues: Tanzu Developer Tools for Visual Studio
	v1.4.6 Resolved issues: Tanzu Developer Tools for VS Code

	v1.4.6 Known issues

	v1.4.5
	v1.4.5 Security fixes

	v1.4.4
	v1.4.4 Security fixes
	v1.4.4 Resolved issues
	v1.4.4 Resolved issues: Grype Scanner
	v1.4.4 Resolved issues: Source Controller

	v1.4.4 Known issues
	v1.4.4 Known issues: API Auto Registration
	v1.4.4 Known issues: Grype Scanner


	v1.4.2
	v1.4.2 Security fixes
	v1.4.2 Resolved issues
	v1.4.2 Resolved issues: Tanzu Build Service

	v1.4.2 Known issues
	v1.4.2 Known issues: Grype scanner


	v1.4.1
	v1.4.1 Security fixes
	v1.4.1 Security fixes: Tanzu Application Platform GUI

	v1.4.1 Resolved issues
	v1.4.1 Resolved issues: Source Controller
	v1.4.1 Resolved issues: Tanzu Application Platform GUI
	v1.4.1 Resolved issues: Tanzu Application Platform plug-ins
	API Validation and Scoring Toolkit plug-in
	Application Accelerator plug-in
	Application Live View plug-in
	Out of the Box Supply Chain Templates plug-in
	Security Analysis plug-in
	Supply Chain Choreographer plug-in
	Supply Chain Security Tools plug-in


	v1.4.1 Known issues
	v1.4.1 Known issues: Grype scanner
	v1.4.1 Known issues: Security Analysis GUI


	v1.4.0
	v1.4.0 Tanzu Application Platform new features
	v1.4.0 New features by component and area
	v1.4.0 Features: API Validation and Scoring Toolkit
	v1.4.0 Features: Application Single Sign-On (AppSSO)
	v1.4.0 Features: Application Accelerator
	v1.4.0 Features: Application Live View
	v1.4.0 Features: Apps plug-in for Tanzu CLI
	v1.4.0 Features: cert-manager
	v1.4.0 Features: Eventing
	v1.4.0 Features: External Secrets Operator (alpha)
	v1.4.0 Features: Services Toolkit
	v1.4.0 Features: Tanzu Application Platform GUI plug-ins
	Security Analysis Plug-in
	Supply Chain Choreographer plug-in

	v1.4.0 Features: Supply Chain Security Tools - Policy
	v1.4.0 Features: Supply Chain Security Tools - Scan
	v1.4.0 Features: Tanzu Developer Tools for IntelliJ
	v1.4.0 Features: Tanzu Developer Tools for Visual Studio
	v1.4.0 Features: Tanzu Developer Tools for Visual Studio Code

	v1.4.0 Breaking changes
	v1.4.0 Breaking changes: Application Single Sign-On (AppSSO)
	v1.4.0 Breaking changes: Out of the Box Supply Chain Templates
	v1.4.0 Breaking changes: Supply Chain Security Tools - Image Policy Webhook
	v1.4.0 Breaking changes: Supply Chain Security Tools - Policy Controller
	v1.4.0 Breaking changes: Tanzu Application Platform GUI
	v1.4.0 Breaking changes: Tanzu Developer Tools for IntelliJ
	v1.4.0 Breaking changes: Tanzu Developer Tools for Visual Studio Code

	v1.4.0 Security fixes
	v1.4.0 Security fixes: API Auto Registration
	v1.4.0 Security fixes: Contour
	v1.4.0 Security fixes: Supply Chain Security Tools - Grype
	v1.4.0 Security fixes: Remediated vulnerabilities
	Note about CVE-2022-4378

	v1.4.0 Resolved issues
	v1.4.0 Resolved issues: API Auto Registration
	v1.4.0 Resolved issues: Application Single Sign-On (AppSSO)
	v1.4.0 Resolved issues: Out of the Box Supply Chain Templates
	v1.4.0 Resolved issues: Tanzu CLI Apps Plug-in
	v1.4.0 Resolved issues: Tanzu Application Platform GUI plug-ins
	v1.4.0 Resolved issues: Supply Chain Choreographer plug-in


	v1.4.0 Known issues
	v1.4.0 Known issues: API Auto Registration
	v1.4.0 Known issues: Application Accelerator for Visual Studio Code
	v1.4.0 Known issues: Cloud Native Runtimes for VMware Tanzu
	v1.4.0 Known issues: Grype scanner
	v1.4.0 Known issues: Namespace Provisioner
	v1.4.0 Known issues: Out of the Box Supply Chain Templates
	v1.4.0 Known issues: Tanzu Application Platform GUI plug-ins
	Security Analysis plug-in
	Supply Chain Choreographer plug-in

	v1.4.0 Known issues: Tanzu Developer Tools for IntelliJ
	v1.4.0 Known issues: Tanzu Developer Tools for Visual Studio
	v1.4.0 Known issues: Tanzu Developer Tools for Visual Studio Code


	Deprecations
	Application Live View deprecations
	Application Single Sign-On (AppSSO) deprecations
	Services Toolkit deprecations
	Supply Chain Security Tools - Image Policy Webhook deprecations
	Supply Chain Security Tools - Scan deprecations
	Supply Chain Security Tools - Sign deprecations
	Tanzu Build Service deprecations
	Tanzu CLI Apps plug-in deprecations

	Linux Kernel CVEs

	Components and installation profiles for Tanzu Application Platform
	Tanzu Application Platform components
	Installation profiles in Tanzu Application Platform v1.4
	Packages: A to C
	Packages: D to R
	Packages: S to Z

	Language and framework support in Tanzu Application Platform
	Installing Tanzu Application Platform

	Install Tanzu Application Platform
	Install Tanzu Application Platform
	Prerequisites for installing Tanzu Application Platform
	VMware Tanzu Network and container image registry requirements
	DNS Records
	Tanzu Application Platform GUI

	Kubernetes cluster requirements
	Resource requirements
	Tools and CLI requirements
	Next steps

	Kubernetes version support for Tanzu Application Platform
	Install Tanzu CLI
	Accept the End User License Agreements
	Example of accepting the Tanzu Application Platform EULA

	Set the Kubernetes cluster context
	Install or update the Tanzu CLI and plug-ins
	Install the Tanzu CLI
	Install Tanzu CLI Plug-ins
	List the versions of each plug-in group available across Tanzu
	List the versions of the Tanzu Application Platform specific plug-in group
	Install the version of the Tanzu Application Platform plug-in group matching your target environment
	Verify the plug-in group list against the plug-ins that were installed



	Install Tanzu Application Platform (online)
	Install Tanzu Application Platform (online)
	Install Tanzu Application Platform package and profiles
	Relocate images to a registry
	Add the Tanzu Application Platform package repository
	Install your Tanzu Application Platform profile
	Full profile
	CEIP policy disclosure

	(Optional) Additional Build Service configurations
	(Optional) Configure your profile with full dependencies
	(Optional) Configure your profile with the Jammy stack only


	Install your Tanzu Application Platform package
	Install the full dependencies package
	Access Tanzu Application Platform GUI
	Exclude packages from a Tanzu Application Platform profile
	Next steps

	View possible configuration settings for your package
	Install individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Next steps

	Set up developer namespaces to use your installed packages
	Additional configuration for testing and scanning
	Legacy namespace setup
	Next steps

	Legacy manual developer namespace setup instructions
	Enable single user access
	Enable additional users with Kubernetes RBAC
	Additional configuration for testing and scanning

	Install Tanzu Developer Tools for your VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Install Tanzu Application Platform (offline)
	Install Tanzu Application Platform (offline)
	Install Tanzu Application Platform in your air-gapped environment
	Relocate images to a registry
	Prepare Sigstore Stack for air-gapped policy controller
	Install your Tanzu Application Platform profile
	Full Profile

	Install your Tanzu Application Platform package
	Next steps

	Install the Tanzu Build Service dependencies
	Next steps

	Configure custom certificate authorities for Tanzu Application Platform GUI
	Next steps

	Configure Application Accelerator
	Using a Git-Ops style configuration for deploying a set of managed accelerators
	Functional and Organizational Considerations

	Examples for creating accelerators
	A minimal example for creating an accelerator
	An example for creating an accelerator with customized properties
	Creating a manifest with multiple accelerators and fragments

	Configure tap-values.yaml with Git credentials secret
	Using non-public repositories
	Examples for a private Git repository
	Example using http credentials
	Example using http credentials with self-signed certificate
	Example using SSH credentials

	Examples for a private source-image repository
	Example using image-pull credentials


	Configure ingress timeouts when some accelerators take longer to generate
	Configure an ingress timeout overlay secret for each HTTPProxy
	Apply the timeout overlay secrets in tap-values.yaml

	Configuring skipping TLS verification for access to Source Controller
	Enabling TLS for Accelerator Server
	Configuring skipping TLS verification of Engine calls for Accelerator Server
	Enabling TLS for Accelerator Engine
	Next steps

	Use Grype in offline and air-gapped environments
	To enable Grype in offline air-gapped environments
	Troubleshooting
	ERROR failed to fetch latest cli version
	Solution

	Database is too old
	Solution

	Grype package overlays are not applied to scantemplates created by Namespace Provisioner
	Solution
	Debug Grype database in a cluster



	Set up developer namespaces to use your installed packages
	Additional configuration for testing and scanning
	Legacy namespace setup
	Next steps

	Install Tanzu Application Platform (AWS)
	Install Tanzu Application Platform (AWS)
	Create AWS Resources for Tanzu Application Platform
	Prerequisites
	Export environment variables
	Create an EKS cluster
	Install EBS CSI driver
	Create the container repositories
	Create the workload container repositories
	Create IAM roles

	Install Tanzu Application Platform package and profiles on AWS
	Relocate images to a registry
	Install your Tanzu Application Platform profile
	Full profile (AWS)
	(Optional) Configure your profile with full dependencies

	Install your Tanzu Application Platform package
	Install the full dependencies package
	Access Tanzu Application Platform GUI
	Exclude packages from a Tanzu Application Platform profile
	Next steps

	View possible configuration settings for your package
	Install individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Next steps

	Set up developer namespaces to use your installed packages
	Enable single user access
	Enable additional users access with Kubernetes RBAC
	Next steps

	Install Tanzu Developer Tools for your VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Install Tanzu Application Platform (OpenShift)
	Install Tanzu Application Platform (OpenShift)
	Install Tanzu Application Platform on your OpenShift clusters
	Relocate images to a registry
	Install your Tanzu Application Platform profile
	Full profile
	(Optional) Additional Build Service configurations
	(Optional) Configure your profile with full dependencies
	(Optional) Configure your profile with the Jammy stack only

	Security Context Constraints
	(Optional) Exclude components that require RedHat OpenShift privileged SCC


	Install your Tanzu Application Platform package
	Install the full dependencies package
	Access Tanzu Application Platform GUI
	Exclude packages from a Tanzu Application Platform profile

	View possible configuration settings for your package
	Install individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Next steps

	Set up developer namespaces to use your installed packages
	Additional configuration for testing and scanning
	Legacy namespace setup
	Next steps

	Install Tanzu Developer Tools for your VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Custom Security Context Constraint details for Tanzu Application Platform
	Application Accelerator on OpenShift
	Application Live View on OpenShift
	Application Single Sign-On for OpenShift cluster
	Contour for OpenShift cluster
	Developer Conventions for OpenShift cluster
	Tanzu Build Service for OpenShift cluster

	Customize your package installation
	Customize a package that was manually installed
	Customize a package that was installed by using a profile

	Upgrade your Tanzu Application Platform
	Prerequisites
	Update the new package repository
	Perform the upgrade of Tanzu Application Platform
	Upgrade instructions for Profile-based installation
	Upgrade the full dependencies package
	Multicluster upgrade order
	Upgrade instructions for component-specific installation

	Verify the upgrade

	Opt out of telemetry collection
	Overview of security and compliance in Tanzu Application Platform
	Overview of security and compliance in Tanzu Application Platform
	Overview of security and compliance in Tanzu Application Platform
	Secure Ingress certificates in Tanzu Application Platform
	Replacing the default ingress issuer
	Deactivating TLS for ingress
	Overriding TLS for components

	Use custom CA certificates in Tanzu Application Platform
	Use External Secrets Operator in Tanzu Application Platform (alpha)
	Installing the External Secrets Operator
	Using the External Secrets Operator
	Connecting to a secret manager
	Example : Google Secret Manager

	Create a sychronized secret
	Using a sychronized secret


	Assess Tanzu Application Platform against the NIST 800-53 Moderate Assessment
	Overview of multicluster Tanzu Application Platform
	Next steps

	Overview of multicluster Tanzu Application Platform
	Next steps

	Install multicluster Tanzu Application Platform profiles
	Prerequisites
	Multicluster Installation Order of Operations
	Install View cluster
	Install Build clusters
	Install Run clusters
	Install Iterate clusters
	Add Build, Run and Iterate clusters to Tanzu Application Platform GUI
	Next steps

	Get started with multicluster Tanzu Application Platform
	Prerequisites
	Start the workload on the Build profile cluster

	Install Tanzu Application Platform Build profile
	Prerequisites
	Example values.yaml

	Install Tanzu Application Platform Run profile
	Install Tanzu Application Platform View profile
	Install Tanzu Application Platform Iterate profile
	Get started with Tanzu Application Platform
	Prerequisites
	Next steps

	Get started with Tanzu Application Platform
	Prerequisites
	Next steps

	Create an accelerator
	What you will do
	Set up Visual Studio Code
	Create a simple project
	Set up the project directory
	Prepare the README.md and accelerator.yaml
	Test the accelerator

	Upload the project to a Git repository
	Register the accelerator to the Tanzu Application Platform and verify project generation output
	Verify project generation output by using Tanzu Application Platform GUI
	Learn more about Application Accelerator

	Create an accelerator
	What you will do
	Set up Visual Studio Code
	Create a simple project
	Set up the project directory
	Prepare the README.md and accelerator.yaml
	Test the accelerator

	Upload the project to a Git repository
	Register the accelerator to the Tanzu Application Platform and verify project generation output
	Verify project generation output by using Tanzu Application Platform GUI
	Learn more about Application Accelerator

	Add testing and scanning to your application
	What you will do
	Overview
	Install OOTB Supply Chain with Testing
	Tekton pipeline config example
	Workload update

	Install OOTB Supply Chain with Testing and Scanning
	Prerequisites
	Workload update
	Query for vulnerabilities

	Next steps

	Configure image signing and verification in your supply chain
	What you will do
	Configure your supply chain to sign and verify your image builds
	Next steps

	Set up services for consumption by developers
	What you will do
	Overview
	Prerequisites
	Set up a service
	Create a service instance
	Claim a service instance
	Further use cases and reading
	Next steps

	Deploy an app on Tanzu Application Platform
	What you will do
	Generate a new project using an application accelerator
	Deploy your application through Tanzu Application Platform GUI
	Add your application to Tanzu Application Platform GUI software catalog
	Next steps

	Deploy an app on Tanzu Application Platform
	What you will do
	Generate a new project using an application accelerator
	Deploy your application through Tanzu Application Platform GUI
	Add your application to Tanzu Application Platform GUI software catalog
	Next steps

	Iterate on your new app
	What you will do
	Prepare your IDE to iterate on your application
	Live update your application
	Debug your application
	Monitor your running application
	Next steps

	Consume services on Tanzu Application Platform
	What you will do
	Overview
	Prerequisites
	Bind an application workload to the service instance
	Further use cases and reading
	Next steps

	Deploy an air-gapped workload on Tanzu Application Platform
	What you will do
	Create a workload from Git
	Create a basic supply chain workload
	Create a testing supply chain workload
	Create a testing scanning supply chain workload

	Learn about Tanzu Application Platform
	Application accelerators on Tanzu Application Platform
	What are application accelerators
	Working with accelerators
	Next steps

	Supply chains on Tanzu Application Platform
	What are supply chains
	A path to production
	Available supply chains
	1: OOTB Basic (default)
	2: OOTB Testing
	3: OOTB Testing+Scanning

	Next steps

	Vulnerability scanning, storing, and viewing for your supply chain
	Features
	Components
	Next steps
	Troubleshooting


	About consuming services on Tanzu Application Platform
	Key concepts
	Service instances
	Service bindings
	Resource claims

	Services you can use with Tanzu Application Platform
	User roles and responsibilities
	Next steps

	Set up Tanzu Service Mesh
	Prerequisites
	Activate your Tanzu Service Mesh subscription
	Onboard clusters
	Set up Tanzu Application Platform
	End-to-end workload build and deployment scenario
	Apply a workload resource to a build cluster
	Configure egress for Tanzu Build Service
	Create a global namespace
	Run cluster deployment

	Deployment use case: Hungryman
	Create an initial set of configuration files from the accelerator
	Apply the workload resources to your build cluster
	Install service claim resources on the cluster
	Run cluster deployment
	Create a global namespace

	Deployment use case: ACME Fitness Store
	Deploy AppSSO
	Apply the workload resources to your build cluster
	Create the Istio ingress resources
	Deploy Redis
	Run cluster deployment
	Deploy Spring Cloud Gateway
	Install the Spring Cloud Gateway package

	Create a global namespace


	Set up Tanzu Service Mesh
	Prerequisites
	Activate your Tanzu Service Mesh subscription
	Onboard clusters
	Set up Tanzu Application Platform
	End-to-end workload build and deployment scenario
	Apply a workload resource to a build cluster
	Configure egress for Tanzu Build Service
	Create a global namespace
	Run cluster deployment

	Deployment use case: Hungryman
	Create an initial set of configuration files from the accelerator
	Apply the workload resources to your build cluster
	Install service claim resources on the cluster
	Run cluster deployment
	Create a global namespace

	Deployment use case: ACME Fitness Store
	Deploy AppSSO
	Apply the workload resources to your build cluster
	Create the Istio ingress resources
	Deploy Redis
	Run cluster deployment
	Deploy Spring Cloud Gateway
	Install the Spring Cloud Gateway package

	Create a global namespace


	Overview of workloads
	Workload features
	Available workload types

	Overview of workloads
	Workload features
	Available workload types

	Use web workloads
	Overview
	Use the web workload type
	Calling web workloads within a cluster
	Example of service to service communication for web and server workloads


	Use server workloads
	Overview
	Use the server workload type
	server-specific workload parameters
	Expose server workloads outside the cluster
	Manual configuration for HTTP workloads
	Define a workload type that exposes server workloads outside the cluster


	Use worker workloads
	Overview
	Use the worker workload type

	Parameter reference
	Workload Parameter Reference
	List of Supply Chain Resources for Workload Object
	source-provider
	GitRepository
	ImageRepository
	MavenArtifact

	source-tester
	source-scanner
	image-provider
	Kpack Image
	Runnable (TaskRuns for Dockerfile-based builds)
	Pre-built image (ImageRepository)

	image-scanner
	config-provider
	app-config
	service-bindings
	api-descriptors
	config-writer (git or registry)
	deliverable

	Deliverable Parameters Reference
	List of Cluster Delivery Resources for Deliverable Object
	source-provider
	GitRepository
	ImageRepository

	app deployer
	App



	Use functions (Beta)
	Overview
	Supported languages and frameworks

	Prerequisites
	Create a function project from an accelerator
	Create a function project using the Tanzu CLI
	Deploy your function

	Use functions (Beta)
	Overview
	Supported languages and frameworks

	Prerequisites
	Create a function project from an accelerator
	Create a function project using the Tanzu CLI
	Deploy your function

	Troubleshoot Tanzu Application Platform
	Troubleshoot Tanzu Application Platform
	Troubleshoot installing Tanzu Application Platform
	Developer cannot be verified when installing Tanzu CLI on macOS
	Access .status.usefulErrorMessage details
	“Unauthorized to access” error
	“Serviceaccounts already exists” error
	After package installation, one or more packages fails to reconcile
	Failure to accept an End User License Agreement error
	Ingress is broken on Kind cluster

	Troubleshoot using Tanzu Application Platform
	Use events to find possible causes
	Missing build logs after creating a workload
	Explanation
	Solution

	Workload creation stops responding with “Builder default is not ready” message
	Explanation
	Solution

	“Workload already exists” error after updating the workload
	Explanation
	Solution

	Workload creation fails due to authentication failure in Docker Registry
	Explanation
	Solution

	Telemetry component logs show errors fetching the “reg-creds” secret
	Explanation
	Solution

	Debug convention might not apply
	Explanation
	Solution

	Execute bit not set for App Accelerator build scripts
	Explanation
	Solution

	“No live information for pod with ID” error
	Explanation
	Solution

	“image-policy-webhook-service not found” error
	Explanation
	Solution

	“Increase your cluster resources” error
	Explanation
	Solution

	MutatingWebhookConfiguration prevents pod admission
	Explanation

	Solution
	Priority class of webhook’s pods preempts less privileged pods
	Explanation
	Solution

	CrashLoopBackOff from password authentication fails
	Explanation
	Solution

	Password authentication fails
	Explanation
	Solution

	metadata-store-db pod fails to start
	Explanation
	Solution

	Missing persistent volume
	Explanation
	Solution

	Failure to connect Tanzu CLI to AWS EKS clusters
	Explanation
	Solution

	Invalid repository paths are propagated
	Explanation
	Solution

	x509: certificate signed by unknown authority
	Explanation
	Solution
	Option 1: Configure the Shared Ingress Issuer’s Certificate Authority as a trusted Certificate Authority
	Option 2: Deactivate the shared ingress issuer



	Troubleshoot Tanzu Application Platform components
	Uninstall Tanzu Application Platform
	Delete the packages
	Delete the Tanzu Application Platform package repository
	Remove Tanzu CLI, plug-ins, and associated files
	Remove Cluster Essentials

	Component documentation for Tanzu Application Platform
	Component documentation for Tanzu Application Platform
	Overview of Tanzu CLI
	Tanzu CLI
	Tanzu CLI Architecture
	Tanzu CLI Installation
	Tanzu CLI Command Groups
	Install New Plug-ins
	Install Local Plug-ins

	Overview of Tanzu CLI
	Tanzu CLI
	Tanzu CLI Architecture
	Tanzu CLI Installation
	Tanzu CLI Command Groups
	Install New Plug-ins
	Install Local Plug-ins

	Overview of Tanzu CLI plug-ins
	Tanzu Apps CLI overview
	About workloads
	Tutorials
	How-to-guides

	Tanzu Apps CLI overview
	About workloads
	Tutorials
	How-to-guides

	Install Tanzu Apps CLI plug-in
	Prerequisites
	Install Tanzu Apps CLI plug-in
	Uninstall Apps CLI plug-in
	Change clusters
	Override the default kubeconfig
	Autocompletion
	Bash
	Zsh

	Create workloads
	Debug and troubleshoot workloads

	Create a workload
	Prerequisites
	Get started with an example workload
	Create a workload from GitHub repository
	Create a workload from local source code
	Exclude Files

	Create workload from an existing image
	Create a workload from Maven repository artifact

	Working with YAML files
	Bind a service to a workload
	Next steps

	Workload Examples
	Custom registry credentials
	–live-update and –debug
	Spring Boot application example

	–export
	–output
	–sub-path
	.tanzuignore file
	Example of a .tanzuignore file

	–dry-run
	–update-strategy

	Debug workloads
	Verify build logs
	Check build logs
	Get the workload status and details
	Common workload errors
	Local Path Development Error Cases
	WorkloadLabelsMissing/SupplyChainNotFound
	MissingValueAtPath
	TemplateRejectedByAPIServer

	Review supply chain steps
	Additional Troubleshooting References

	Tanzu Apps CLI commands
	Tanzu Apps CLI commands
	tanzu apps cluster-supply-chain
	Tanzu apps cluster supply chain list
	Default view
	Tanzu apps cluster supply chain get
	Default view


	tanzu apps workload apply
	Default view
	Workload Apply flags
	--annotation
	--app / -a
	--build-env
	--debug
	--dry-run
	--env / -e
	--file, -f
	--git-repo
	--git-branch
	--git-tag
	--git-commit
	--image / -i
	--label / -l
	--limit-cpu
	--limit-memory
	--live-update
	--local-path
	--maven-artifact
	--maven-group
	--maven-type
	--maven-version
	--source-image, -s
	--namespace, -n
	--param / -p
	--param-yaml
	--registry-ca-cert
	--registry-password
	--registry-token
	--registry-username
	--request-cpu
	--request-memory
	--service-account
	--service-ref
	--sub-path
	--tail
	--tail-timestamp
	--type / -t
	--update-strategy
	--wait
	--wait-timeout
	--yes, -y


	tanzu apps workload delete
	Default view
	Workload Delete flags
	--all
	--file, -f
	--namespace, -n
	wait
	--wait-timeout
	--yes, -f


	tanzu apps workload get
	Default view
	--export
	--output/-o
	--namespace/-n


	tanzu apps workload list
	Default view
	>Workload List flags
	--all-namespaces, -A
	--app
	--namespace, -n
	--output, -o


	tanzu apps workload tail
	Default view
	>Workload Tail flags
	--component
	--namespace, -n
	--since
	--timestamp, -t


	Tanzu Accelerator CLI overview
	Server API connections for operators and developers
	Installation
	Command reference

	Tanzu Accelerator CLI overview
	Server API connections for operators and developers
	Installation
	Command reference

	Install Tanzu Accelerator CLI
	Prerequisites
	Install

	Command reference
	Command reference
	tanzu accelerator
	Options
	SEE ALSO


	tanzu accelerator
	Options
	SEE ALSO


	tanzu accelerator apply
	tanzu accelerator apply
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator delete
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator fragment
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator fragment create
	Synopsis
	Example
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator fragment delete
	tanzu accelerator fragment delete
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator fragment get
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator fragment list
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator fragment update
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator generate
	tanzu accelerator generate
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	Tanzu accelerator generate-from-local
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	tanzu accelerator get
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator list
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator push
	tanzu accelerator push
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator update
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	Overview of Tanzu Insight plug-in
	Overview of Tanzu Insight plug-in
	Install your Tanzu Insight CLI plug-in
	Configure your Tanzu Insight CLI plug-in
	Set the target and certificate authority (CA) certificate

	Single Cluster setup
	Set Target
	Set the access token
	Verify the connection

	Query vulnerabilities, images, and packages
	Supported use cases
	Query using the Tanzu Insight CLI plug-in
	Example #1: What packages and CVEs does a specific image contain?
	Example #2: What packages and CVEs does my source code contain?
	Determining source code org, repo, and commit SHA
	Source code query with repo and org
	Source code query with commit SHA

	Example #3: What dependencies are affected by a specific CVE?
	Add data

	Add data to your Supply Chain Security Tools - Store
	Supported formats and file types
	Generate a CycloneDX file
	Add data with the Tanzu Insight plug-in
	Example #1: Add an image report
	Example #2: Add a source report

	Tanzu insight CLI plug-in command reference
	Synopsis
	Options
	See also

	tanzu insight config set-target
	tanzu insight config set-target
	Synopsis
	Examples
	Options
	See also


	tanzu insight config
	Options
	See also

	tanzu insight health
	tanzu insight health
	Synopsis
	Examples
	Options
	See also


	tanzu insight image
	Options
	See also

	tanzu insight image add
	Examples
	Options
	See also

	tanzu insight image get
	Synopsis
	Examples
	Options
	See Also

	tanzu insight image packages
	Synopsis
	Examples
	Options
	See also

	tanzu insight image vulnerabilities
	Examples
	Options
	See also

	tanzu insight package
	Options
	See also

	tanzu insight package get
	Synopsis
	Examples
	Options
	See also

	tanzu insight package images
	Synopsis
	Examples
	Options
	See also

	tanzu insight package sources
	Synopsis
	Examples
	Options
	See also

	tanzu insight package vulnerabilities
	Synopsis
	Examples
	Options
	See also

	tanzu insight source
	Options
	See also

	tanzu insight source add
	Examples
	Options
	See also

	tanzu insight source get
	Synopsis
	Examples
	Options
	See also

	tanzu insight source packages
	Synopsis
	Examples
	Options
	See also

	tanzu insight source vulnerabilities
	Synopsis
	Examples
	Options
	See also

	tanzu insight version
	Options
	See also

	tanzu insight vulnerabilities
	Options
	See also

	tanzu insight vulnerabilities get
	Synopsis
	Examples
	Options
	See also

	tanzu insight vulnerabilities images
	Synopsis
	Examples
	Options
	See also

	tanzu insight vulnerabilities packages
	Synopsis
	Examples
	Options
	See also

	tanzu insight vulnerabilities sources
	Synopsis
	Examples
	Options
	See also

	Overview of Default roles for Tanzu Application Platform
	Default roles
	Working with roles using the RBAC CLI plug-in
	Disclaimer

	Overview of Default roles for Tanzu Application Platform
	Default roles
	Working with roles using the RBAC CLI plug-in
	Disclaimer

	Set up authentication for your Tanzu Application Platform deployment
	Tanzu Kubernetes Grid

	Set up authentication for your Tanzu Application Platform deployment
	Tanzu Kubernetes Grid

	Install Pinniped on Tanzu Application Platform
	Prerequisites
	Environment planning
	Install Pinniped Supervisor by using Let’s Encrypt
	Create Certificates (letsencrypt or cert-manager)
	Create Ingress resources
	Create the pinniped-supervisor configuration
	Apply the resources
	Switch to production issuer (letsencrypt or cert-manager)

	Install Pinniped Supervisor Private CA
	Create Certificate Secret
	Create Ingress resources
	Create the pinniped-supervisor configuration
	Apply the resources

	Install Pinniped Concierge
	Log in to the cluster

	Integrate your Azure Active Directory
	Integrate Azure AD with a new or existing AKS without Pinniped
	Prerequisites
	Set up a platform operator
	Set up a Tanzu Application Platform default role group
	Set up kubeconfig

	Integrate Azure AD with Pinniped
	Prerequisites
	Set up the Azure AD app
	Set up the Tanzu Application Platform default role group
	Set up kubeconfig


	Role descriptions for Tanzu Application Platform
	app-editor
	app-viewer
	app-operator
	service-operator
	workload
	deliverable

	Role descriptions for Tanzu Application Platform
	app-editor
	app-viewer
	app-operator
	service-operator
	workload
	deliverable

	Detailed role permissions for Tanzu Application Platform
	Native Kubernetes Resources
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	App Accelerator
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	Cartographer
	apps.tanzu.vmware.com/aggregate-to-app-editor: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Cloud Native Runtimes
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	Convention Service
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Developer Conventions
	apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

	OOTB Templates
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-workload: "true"
	apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

	Service Bindings
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

	Services Toolkit
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Source Controller
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

	Supply Chain Security Tools — Scan
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	Tanzu Build Service
	apps.tanzu.vmware.com/aggregate-to-app-editor: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Tekton
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access


	Bind a user or group to a default role
	Prerequisites
	Install the Tanzu Application Platform RBAC CLI plug-in
	(Optional) Use a different kubeconfig location
	Add the specified user or group to a role
	Get a list of users and groups from a role
	Remove the specified user or group from a role
	Error logs
	Troubleshooting

	Log in to Tanzu Application Platform by using Pinniped
	Download the Pinniped CLI
	Generate and distribute kubeconfig to users
	Login with the provided kubeconfig

	Additional resources about Tanzu Application Platform authentication and authorization
	Install

	Additional resources about Tanzu Application Platform authentication and authorization
	Install

	Install default roles independently for your Tanzu Application Platform
	Prerequisites
	Install

	Overview of API Auto Registration
	Overview
	Getting started

	Overview of API Auto Registration
	Overview
	Getting started

	Key Concepts for API Auto Registration
	API Auto Registration Architecture
	APIDescriptor Custom Resource Explained
	With an Absolute URL
	With an Object Ref
	With an HTTPPRoxy Object Ref
	With a Knative Service Object Ref
	With an Ingress Object Ref
	APIDescriptor Status Fields


	Install API Auto Registration
	Tanzu Application Platform prerequisites
	Using with TLS
	Install

	Use API Auto Registration
	Generate OpenAPI Spec
	Using a Spring Boot app with a REST service
	Using App Accelerator Template
	Using an existing Spring Boot project using springdoc

	Create APIDescriptor Custom Resource
	Use Out-Of-The-Box (OOTB) supply chains
	Using Custom Supply Chains
	Using other GitOps processes or Manually

	Additional configuration
	Setting up CORS for OpenAPI specifications


	Troubleshoot API Auto Registration
	Debug API Auto Registration
	APIDescriptor CRD shows message of connection refused but service is up and running
	Configure CA Cert Data

	APIDescriptor CRD shows message of x509: certificate signed by unknown authority but service is running


	Overview of API Validation and Scoring
	Overview of API Validation and Scoring
	Install API Validation and Scoring
	Prerequisites
	Resource requirements
	Relocate images to a registry
	Add the API Validation and Scoring package repository
	Install
	Uninstall

	Use API Validation and Scoring to score your auto-registered API
	Use API Validation and Scoring to score your auto-registered API

	Overview of API portal for VMware Tanzu
	Getting started

	Overview of API portal for VMware Tanzu
	Getting started

	Install API portal for VMware Tanzu
	Prerequisites
	Install
	Update the installation values for the api-portal package

	Overview of Application Accelerator
	Overview
	Architecture
	How does Application Accelerator work?

	Next steps

	Overview of Application Accelerator
	Overview
	Architecture
	How does Application Accelerator work?

	Next steps

	Install Application Accelerator
	Prerequisites
	Configure properties and resource use
	Install
	Troubleshooting
	Verify installed packages
	Look at resource events


	Configure Application Accelerator
	Overview
	Using a Git-Ops style configuration for deploying a set of managed accelerators
	Functional and Organizational Considerations

	Examples for creating accelerators
	A minimal example for creating an accelerator
	An example for creating an accelerator with customized properties
	Creating a manifest with multiple accelerators and fragments

	Configure tap-values.yaml with Git credentials secret
	Using non-public repositories
	Examples for a private Git repository
	Example using http credentials
	Example using http credentials with self-signed certificate
	Example using SSH credentials

	Examples for a private source-image repository
	Example using image-pull credentials


	Configure ingress timeouts when some accelerators take longer to generate
	Configure an ingress timeout overlay secret for each HTTPProxy
	Apply the timeout overlay secrets in tap-values.yaml

	Configuring skipping TLS verification for access to Source Controller
	Enabling TLS for Accelerator Server
	Configuring skipping TLS verification of Engine calls for Accelerator Server
	Enabling TLS for Accelerator Engine
	Next steps

	Create accelerators
	Prerequisites
	Getting started
	Publishing the new accelerator
	Using local-path for publishing accelerators
	Using accelerator fragments
	Deploying accelerator fragments
	Next steps

	Create accelerators
	Prerequisites
	Getting started
	Publishing the new accelerator
	Using local-path for publishing accelerators
	Using accelerator fragments
	Deploying accelerator fragments
	Next steps

	Create an accelerator.yaml file in Application Accelerator
	Accelerator
	Accelerator metadata
	Accelerator options
	DependsOn and multi-value dataType

	Examples

	Engine
	Engine example
	Engine notation descriptions
	Advanced accelerator use


	Use transforms in Application Accelerator
	Why transforms?
	Combining transforms
	Chain
	Merge

	Shortened notation
	A Combo of one?

	A common pattern with merge transforms
	Conditional transforms
	Conditional ‘Merge’ transform
	Conditional ‘Chain’ transform
	A small gotcha with using conditionals in merge transforms

	Merge conflict
	Resolving “merge” conflicts
	File ordering

	Next steps

	Use custom types in Application Accelerator
	Limitations
	Interaction with SpEL
	Interaction with Composition

	Use fragments in Application Accelerator
	Introduction
	Introducing fragments
	| The imports section explained
	Using the InvokeFragment Transform
	Back to the imports section
	Using dependsOn in the imports section

	Discovering fragments using Tanzu CLI accelerator plug-in

	Transforms reference
	Available transforms
	See also

	Transforms reference
	Available transforms
	See also

	Combo transform
	Syntax reference
	Behavior
	Examples

	Include transform
	Syntax reference
	Examples
	See also

	Exclude transform
	Syntax reference
	Examples
	See also

	Merge transform
	Syntax reference
	See also

	Chain transform
	Syntax reference
	Behavior

	Let transform
	Syntax reference
	Execution
	See also

	Loop transform
	Syntax reference
	Behavior
	Examples

	InvokeFragment transform
	Syntax reference
	Behavior
	Variables
	</a/>Files

	Examples
	See also

	ReplaceText transform
	Syntax reference
	Examples
	See also

	RewritePath transform
	Syntax reference
	Examples
	Interaction with Chain and Include
	See also

	OpenRewriteRecipe transform
	Syntax reference
	Example

	YTT transform
	Syntax reference
	Execution
	Examples
	Basic invocation
	Using extraArgs


	UseEncoding transform
	Syntax reference
	Example use
	See also

	UniquePath transform
	Syntax reference
	Examples
	See also

	Conflict resolution
	Syntax reference
	Available strategies
	See also

	Use SpEL with Application Accelerator
	Variables
	Implicit variables
	Conditionals
	Rewrite path concatenation
	Regular expressions
	Dealing with string arrays

	Accelerator custom resource definition
	The Accelerator custom resource definition (CRD) defines any accelerator resources to be made
	API definitions
	Accelerator CRD Spec
	Fragment CRD Spec
	Excluding files

	Test accelerators in Application Accelerator
	Generating a project from local sources
	CI/CD Pipeline
	(Optional) Getting the Tanzu CLI in a CI/CD pipeline


	Use the Application Accelerator Visual Studio Code extension
	Dependencies
	Installation
	Configure the extension
	Using the extension
	Retrieving the URL for the Tanzu Application Platform GUI
	Known Issues

	Application Accelerator best practices
	Best practices for using accelerators
	Benefits of using an accelerator
	Design considerations
	Housekeeping rules
	Tests
	Application skeleton


	Best practices for using fragments
	Benefits of using Fragment
	Design considerations
	Housekeeping rules

	Troubleshoot Application Accelerator
	Development issues
	Failure to generate a new project
	URI is not absolute error


	Accelerator authorship issues
	General tips
	Speed up the reconciliation of the accelerator
	Use a source image with local accelerator source directory

	Expression evaluation errors

	Operations issues
	Check status of accelerator resources
	When Accelerator ready column is blank
	When Accelerator ready column is false
	REASON: GitRepositoryResolutionFailed
	REASON: GitRepositoryResolutionPending
	REASON: ImageRepositoryResolutionPending



	Overview of Application Live View
	Value proposition
	Intended audience
	Supported application platforms
	Multicloud compatibility
	Deployment

	Overview of Application Live View
	Value proposition
	Intended audience
	Supported application platforms
	Multicloud compatibility
	Deployment

	Install Application Live View
	Overview
	Prerequisites
	Install Application Live View
	Install Application Live View back end
	Install Application Live View connector
	Install Application Live View conventions
	Deprecate the sslDisabled key

	Enabling Spring Boot apps for Application Live View
	Enable Spring Boot apps
	Enable Spring Cloud Gateway apps
	Workload image NOT built with Tanzu Build Service

	Enabling Spring Boot apps for Application Live View
	Enable Spring Boot apps
	Enable Spring Cloud Gateway apps
	Workload image NOT built with Tanzu Build Service

	Enable Steeltoe apps for Application Live View
	Extend .NET Core Apps to Steeltoe Apps
	Enable Application Live View on Steeltoe Tanzu Application Platform workload

	Application Live View convention server
	Role of Application Live View convention
	Description of metadata labels
	Verify the applied labels and annotations

	Custom configuration for the connector
	Configure the developer workload in Tanzu Application Platform
	Deploy the workload
	Verify the label has propagated through the Supply Chain

	Custom configuration for application actuator endpoints
	Scaling Knative apps in Tanzu Application Platform
	Configure the developer workload in Tanzu Application Platform
	Deploy the workload
	Verify the annotation has propagated through the Supply Chain

	Application Live View on OpenShift
	Support for polyglot apps with Application Live View
	Application Live View internal architecture
	Component overview
	Design flow

	Troubleshoot Application Live View
	App is not visible in Application Live View UI
	App is not visible in Application Live View UI with actuator endpoints enabled
	The UI does not show any information for an app with actuator endpoints exposed at root
	No information shown on the Health page
	Stale information in Application Live View
	Unable to find CertificateRequests in Application Live View convention
	No live information for pod with ID
	Cannot override the actuator path in the labels
	Cannot configure SSL in appliveview-connector
	Verify the labels in your workload YAML file
	Override labels set by the Application Live View convention service
	Configure labels when management.endpoints.web.base-path and management.server.port are set

	Uninstall Application Live View
	Overview of Application Single Sign-On for VMware Tanzu® 3.0.0
	Overview of Application Single Sign-On for VMware Tanzu® 3.0.0
	Get started with Application Single Sign-On
	Prerequisites
	Key concepts
	Next steps

	Get started with Application Single Sign-On
	Prerequisites
	Key concepts
	Next steps

	Provision an AuthServer
	Prerequisites
	Provision an AuthServer
	The AuthServer spec in detail
	Metadata
	TLS & issuer URI
	Token Signature
	Identity providers
	Configuring storage


	Provision a client registration
	Prerequisites
	Creating the ClientRegistration
	Validating that the credentials are working

	Deploy an application with Application Single Sign-On
	Prerequisites
	Deploy a minimal application
	Deployment manifest
	OAuth2-Proxy

	Application Single Sign-On for Platform Operators
	Application Single Sign-On for Platform Operators
	Install Application Single Sign-On
	What’s inside
	Prerequisites
	Installation

	Configure Application Single Sign-On
	TAP values
	domain_name
	domain_template
	default_authserver_clusterissuer
	ca_cert_data
	kubernetes_distribution
	Configuration schema

	RBAC for Application Single Sign-On
	Application Single Sign-On for OpenShift clusters
	Upgrade Application Single Sign-On
	Migration guides
	v2.0.0 to v3.0.0
	v1.0.0 to v2.0.0


	Uninstall Application Single Sign-On
	Application Single Sign-On for Service Operators
	Application Single Sign-On for Service Operators
	Annotations and labels for AppSSO
	Labels
	Allowing client namespaces
	Unsafe configuration
	Unsafe identity provider
	Unsafe issuer URI


	Issuer URI and TLS for AppSSO
	Overview
	Configure TLS by using a (Cluster)Issuer
	Configure TLS by using a Certificate
	Configure TLS by using a Secret
	Deactivate TLS (unsafe)
	Allow Workloads to trust a custom CA AuthServer

	TLS scenario guides for AppSSO
	Overview
	Prerequisites
	Using a default issuer
	Using a ClusterIssuer
	Using an Issuer
	Using an existing Certificate
	Using an existing TLS certificate
	Using an existing wildcard TLS certificate

	CA certificates for AppSSO
	Configure workloads to trust a custom CA
	Overview
	Exporting custom CA certificate Secret
	Importing custom CA certificate Secret
	Appending custom CA certificate Secret reference to Workload

	Identity providers for AppSSO
	OpenID Connect providers
	Note for registering a client with the identity provider
	Supported token signing algorithms

	LDAP
	ActiveDirectory group search
	“Classic” group search
	Direct group search only
	Groups in sub-trees
	Nested group search


	SAML (experimental)
	Note for registering a client with the identity provider

	Internal users
	Generating a bcrypt hash from a plain-text password

	Restrictions

	Token signatures for AppSSO
	Overview
	Token signature 101
	Token signature of an AuthServer
	Creating keys
	Using secretgen-controller
	Using OpenSSL

	Rotating keys
	Revoking keys
	References and further reading

	Token settings for Application Single Sign-On
	Token expiry
	Constraints

	Verify token settings

	Storage for AppSSO
	Overview
	Securing Data at rest
	Configuring Redis
	Configuring Redis Server CA certificate
	Configuring a Redis Secret
	Attaching storage to an AuthServer
	Inspecting storage of an AuthServer

	Storage provided by default
	Data types
	Known limitations of storage providers
	Redis Cluster


	AuthServer readiness for AppSSO
	Client registration check
	Prerequisites
	Define and apply a test client
	Get an access token


	Scale AuthServer for AppSSO
	AuthServer audit logs for AppSSO
	Overview
	Authentication
	Token flows

	Application Single Sign-On for App Operators
	Application Single Sign-On for App Operators
	Register a workload
	Topics
	Client registration
	Workloads
	Prerequisites
	Configuring a Workload with AppSSO
	Create and apply a ClientRegistration resource
	Add a service resource claim to your Workload



	Configure grant types
	Topics
	Client Credentials Grant Type
	Authorization Code Grant Type


	Secure a workload
	Prerequisites
	Getting started
	Understanding the sample application
	The sample application’s ClientRegistration

	Understanding Workloads

	Deploying the sample application as a Workload
	Create workload namespace
	Apply required TAP workload configurations
	Apply the ClientRegistration
	Create a ClientRegistration service resource claim for the workload
	(Optional) Ensure Workload trusts AuthServer
	Deploy the workload

	Cleaning up

	ClientRegistration API for AppSSO
	Spec
	Status & conditions
	Example
	Configuring public clients

	ClientRegistration API for AppSSO
	Spec
	Status & conditions
	Example
	Configuring public clients

	AuthServer API for AppSSO
	Spec
	Status & conditions
	RBAC
	Example

	Troubleshoot Application Single Sign-on
	Why is my AuthServer not working?
	Find all AuthServer-related Kubernetes resources
	Logs of all AuthServers
	Change propagation
	My Service is not selecting the authorization server’s Deployment
	Redirect URIs are redirecting to http instead of https with a non-internal identity provider
	Misconfigured clientSecret
	Problem:
	Solution:

	Misconfigured redirect URI
	Problem:
	Solution:

	Unsupported id_token_signed_response_alg with openid identityProviders
	Problem:
	Solution:

	Misconfigured identity provider clientSecret
	Problem:
	Solution:

	Missing scopes
	Problem:
	Solution:

	Misconfigured sub claim
	Problem:
	Solution:


	Known Issues
	Unregistration by deletion
	Limited number of ClientRegistrations per AuthServer
	LetsEncrypt: domain name for Issuer URI limited to 64 characters maximum
	Redirect URIs change to http instead of https
	AuthServer only supports response_type=code

	Overview of Convention Service for VMware Tanzu
	Sample conventions

	Overview of Cartographer Conventions
	Overview
	About applying conventions
	Applying conventions by using image metadata
	Applying conventions without using image metadata


	Overview of Cartographer Conventions
	Overview
	About applying conventions
	Applying conventions by using image metadata
	Applying conventions without using image metadata


	Install Cartographer Conventions
	Create conventions with Cartographer Conventions
	Introduction
	Convention server
	How the convention server works

	Convention controller
	How the convention controller works


	Getting started
	Prerequisites

	Define convention criteria
	Define the convention behavior
	Matching criteria by labels or annotations
	Matching criteria by environment variables
	Matching criteria by image metadata

	Configure and install the convention server
	Deploy a convention server
	Next Steps

	Troubleshoot Cartographer Conventions
	No server in the cluster
	Symptoms
	Cause
	Solution

	Server with wrong certificates configured
	Symptoms
	Cause
	Solution

	Server fails when processing a request
	Symptoms
	Cause
	Solution

	Connection refused due to unsecured connection
	Symptoms
	Cause
	Solution

	Self-signed certificate authority (CA) not propagated to the Convention Service
	Symptoms
	Cause
	Solution

	No imagePullSecrets configured
	Symptoms
	Cause
	Solution


	Convention Service Resources for Cartographer Conventions
	Overview
	API Structure
	Template Status

	Chaining Multiple Conventions
	Collecting Logs from the Controller
	References

	Convention Service Resources for Cartographer Conventions
	Overview
	API Structure
	Template Status

	Chaining Multiple Conventions
	Collecting Logs from the Controller
	References

	ImageConfig for Cartographer Conventions
	Overview

	PodConventionContextSpec for Cartographer Conventions
	Overview

	PodConventionContextStatus for Cartographer Conventions
	Overview

	PodConventionContext for Cartographer Conventions
	Overview
	PodConventionContext Objects
	PodConventionContext Structure

	ClusterPodConvention for Cartographer Conventions
	Overview
	Define conventions

	PodIntent for Cartographer Conventions
	Overview

	BOM for Cartographer Conventions
	Overview
	Structure

	Overview of cert-manager
	Overview of cert-manager
	Install cert-manager
	Overview of Cloud Native Runtimes
	Overview of Cloud Native Runtimes
	Install Cloud Native Runtimes
	Prerequisites
	Install

	Overview of Contour
	Overview of Contour
	Install Contour
	Configure Cipher Suites and TLS version in Contour
	Configure Contour
	Smaller Clusters
	Larger Clusters
	Configuring Envoy as a Deployment

	Overview of Eventing
	Overview of Eventing
	Install Eventing
	Prerequisites
	Install

	Namespace Provisioner
	Description
	Component Overview
	Provisioner Carvel Application
	Desired Namespaces ConfigMap
	Example

	Namespace Provisioner Controller
	Default Resources Secret
	Expansion Template ConfigMap


	Install Namespace Provisioner
	Install using a Profile
	Customized Installation

	Provision namespace resources
	Using Namespace Provisioner Controller
	Prerequisites

	Provision a new developer namespace

	Using GitOps
	Prerequisites



	Customize Namespace Provisioner
	Data values templating guide
	GitOps Customizations
	Extending the default provisioned resources
	Add the resources required by the Out of the Box Testing and Scanning Supply Chain
	Customizing the default resources that get provisioned
	Control the Namespace Provisioner reconcile behavior for specific resources
	Control the desired-namespaces ConfigMap with GitOps
	Prerequisites



	Troubleshoot Namespace Provisioner
	Controller logs
	Provisioner application error
	Common errors
	Namespace selector malformed
	Carvel-YTT error in additional_sources
	Unable to delete namespace


	Namespace Provisioner Reference Guide
	Known Limitations
	Default resources mapping

	Overview of Spring Boot conventions
	Overview of Spring Boot conventions
	Install Spring Boot conventions
	Prerequisites
	Install Spring Boot conventions

	Configure and access Spring Boot actuators in Tanzu Application Platform
	Workload-level configuration
	Platform-level configuration

	Enable Application Live View for Spring Boot applications
	Verify the applied labels and annotations

	List of Spring Boot conventions
	Set a JAVA_TOOL_OPTIONS property for a workload
	Spring Boot convention
	Spring boot graceful shut down convention
	Spring Boot web convention
	Spring Boot Actuator convention
	Spring Boot Actuator Probes convention
	Service intent conventions
	Example


	Troubleshoot Spring Boot conventions
	Collect logs

	Overview of Service Bindings
	Supported service binding specifications

	Overview of Service Bindings
	Supported service binding specifications

	Install Service Bindings
	Prerequisites
	Install Service Bindings

	Troubleshoot Service Bindings
	Collect logs

	Service Bindings resource specification
	Overview of Services Toolkit
	Overview of Services Toolkit
	Install Services Toolkit
	Prerequisites
	Install Services Toolkit

	Overview of Flux CD Source Controller
	Overview of Flux CD Source Controller
	Install Flux CD Source Controller
	Prerequisites
	Configuration
	Installation
	Try fluxcd-source-controller
	Documentation

	Overview of Source Controller
	Overview of Source Controller
	Install Source Controller
	Prerequisites
	Install

	Troubleshoot Source Controller
	Collecting Logs from Source Controller Manager

	Source Controller reference
	ImageRepository
	MavenArtifact

	Overview of Developer Conventions
	Prerequisites
	Features
	Enabling Live Updates
	Enabling debugging

	Next steps

	Overview of Developer Conventions
	Prerequisites
	Features
	Enabling Live Updates
	Enabling debugging

	Next steps

	Install Developer Conventions
	Prerequisites
	Install
	Resource limits
	Uninstall

	Run Developer Conventions on an OpenShift cluster
	Overview of Learning Center for Tanzu Application Platform
	Use cases
	Use case requirements
	Platform architectural overview
	Next steps

	Overview of Learning Center for Tanzu Application Platform
	Use cases
	Use case requirements
	Platform architectural overview
	Next steps

	Install Learning Center
	Prerequisites
	Install Learning Center
	Install the Self-Guided Tour Training Portal and Workshop
	Supported Learning Center Values Configuration

	About Learning Center workshops
	Get started with Learning Center
	Installing Learning Center
	Get started

	Get started with Learning Center
	Installing Learning Center
	Get started

	Install and configure the Learning Center operator
	Installing and setting up Learning Center operator
	Cluster pod security policies
	Specifying the ingress domain
	Set the environment variable manually

	Enforcing secure connections
	Configuration YAML
	Create the TLS secret manually

	Specifying the ingress class
	Configuration YAML
	Set the environment variable manually

	Trusting unsecured registries

	Get started with Learning Center workshops
	Creating the workshop environment
	Requesting a workshop instance
	Deleting the workshop instance
	Deleting the workshop environment

	Get started with Learning Center training portals
	Working with multiple workshops
	Loading the workshop definition
	Creating the workshop training portal
	Accessing workshops via the web portal
	Deleting the workshop training portal

	Delete Learning Center
	Local install guides
	Local install guides
	Install Learning Center on Kind
	Prerequisites
	Kind cluster creation
	Ingress controller with DNS
	Install carvel tools
	Install Tanzu package repository
	Create a configuration YAML file for Learning Center package
	Using a nip.io DNS address
	Install Learning Center package onto a Kubernetes cluster
	Install workshop tutorial package onto a Kubernetes cluster
	Run the workshop
	Trusting insecure registries

	Install Learning Center on Minikube
	Trusting insecure registries
	Prerequisites
	Ingress controller with DNS
	Install carvel tools
	Install Tanzu package repository
	Create a configuration YAML file for the Learning Center package
	Using a nip.io DNS address
	Install Learning Center package onto a minikube cluster
	Install workshop tutorial package onto a minikube cluster
	Run the workshop
	Working with large images
	Limited resource availability
	Storage provisioner issue

	Create workshops for Learning Center
	Create workshops for Learning Center
	Configure your Learning Center workshop
	Specifying structure of the content
	Specifying the runtime configuration
	Next steps

	Create the image for your Learning Center workshop
	Templates for creating a workshop
	Workshop content directory layout
	Directory for workshop exercises

	Working on your Learning Center workshop content
	Deactivating reserved sessions
	Live updates to the content
	Custom workshop image changes
	Custom workshop image overlay
	Changes to workshop definition
	Local build of workshop image

	Build an image for your Learning Center workshop
	Structure of the Dockerfile
	Custom workshop base images
	Installing extra system packages
	Installing third-party packages

	Writing instructions for your Learning Center workshop
	Annotation of executable commands
	Annotation of text to be copied
	Extensible clickable actions
	Supported workshop editor
	Clickable actions for the dashboard
	Clickable actions for the editor
	Clickable actions for file download
	Clickable actions for the examiner
	Clickable actions for sections
	Overriding title and description
	Escaping of code block content
	Interpolation of data variables
	Adding custom data variables
	Passing environment variables
	Handling embedded URL links
	Conditional rendering of content
	Embedding custom HTML content

	Automate your Learning Center workshop runtime
	Predefined environment variables
	Running steps on container start
	Running background applications
	Terminal user shell environment
	Overriding terminal shell command

	Add presenter slides to your Learning Center workshop
	Use reveal.js presentation tool
	Use a PDF file for presenter slides

	Requirements for Learning Center in an air-gapped environment
	Workshop yaml changes
	Self-signed certificates
	Internet dependencies

	Define custom resources for Learning Center
	Workshop definition resource
	Workshop environment resource
	Workshop request resource
	Workshop session resource
	Training portal resource
	System profile resource
	Loading the workshop CRDs

	Define custom resources for Learning Center
	Workshop definition resource
	Workshop environment resource
	Workshop request resource
	Workshop session resource
	Training portal resource
	System profile resource
	Loading the workshop CRDs

	Configure the Workshop resource
	Workshop title and description
	Downloading workshop content
	Container image for the workshop
	Setting environment variables
	Overriding the memory available
	Mounting a persistent volume
	Resource budget for namespaces
	Patching workshop deployment
	Creation of session resources
	Overriding default role-based access control (RBAC) rules
	Running user containers as root
	Creating additional namespaces
	Shared workshop resources
	Workshop pod security policy
	Custom security policies for user containers
	Defining additional ingress points
	External workshop instructions
	Deactivating workshop instructions
	Enabling the Kubernetes console
	Enabling the integrated editor
	Enabling workshop downloads
	Enabling the test examiner
	Enabling session image registry
	Enabling ability to use Docker
	Enabling WebDAV access to files
	Customizing the terminal layout
	Adding custom dashboard tabs

	Configure the WorkshopEnvironment resource
	Specifying the workshop definition
	Overriding environment variables
	Overriding the ingress domain
	Controlling access to the workshop
	Overriding the login credentials
	Additional workshop resources
	Creation of workshop instances

	Configure the WorkshopRequest resource
	Specifying workshop environment
	Specifying required access token

	Configure the TrainingPortal resource
	Specifying the workshop definitions
	Limit the number of sessions
	Capacity of individual workshops
	Set reserved workshop instances
	Override initial number of sessions
	Setting defaults for all workshops
	Set caps on individual users
	Expiration of workshop sessions
	Updates to workshop environments
	Override the ingress domain
	Override the portal host name
	Set extra environment variables
	Override portal credentials
	Control registration type
	Specify an event access code
	Make a list of workshops public
	Use an external list of workshops
	Override portal title and logo
	Allow the portal in an iframe
	Collect analytics on workshops
	Track using Google Analytics

	Configure the SystemProfile resource
	Operator default system profile
	Defining configuration for ingress
	Defining container image registry pull secrets
	Defining storage class for volumes
	Defining storage group for volumes
	Restricting network access
	Running Docker daemon rootless
	Overriding network packet size
	Image registry pull through cache
	Setting default access credentials
	Overriding the workshop images
	Tracking using Google Analytics
	Overriding styling of the workshop
	Additional custom system profiles

	Configure the WorkshopSession resource
	Specifying the session identity
	Specifying the login credentials
	Specifying the ingress domain
	Setting the environment variables

	Enable anonymous access to a Learning Center training portal
	Enabling anonymous access
	Triggering workshop creation

	Enable anonymous access to a Learning Center training portal
	Enabling anonymous access
	Triggering workshop creation

	Use the Learning Center workshop catalog
	Listing available workshops

	Use session management for your Learning Center workshops
	Deactivating portal user registration
	Requesting a workshop session
	Associating sessions with a user
	Listing all workshop sessions

	Use client authentication for Learning Center
	Querying the credentials
	Requesting an access token
	Refreshing the access token

	Troubleshoot Learning Center
	Training portal stays in pending state
	image-policy-webhook-service not found
	Updates to Tanzu Application Platform values file not reflected in Learning Center Training Portal
	Increase your cluster’s resources
	Kubernetes Api Timeout error
	No URL returned to your trainingportal

	Overview of Supply Chain Choreographer for Tanzu
	Overview
	Out of the Box Supply Chains

	Overview of Supply Chain Choreographer for Tanzu
	Overview
	Out of the Box Supply Chains

	Install Supply Chain Choreographer
	Prerequisites
	Install

	Out of the Box Supply Chain Basic
	Prerequisites
	Developer Namespace
	Registries Secrets
	ServiceAccount
	RoleBinding

	Developer workload


	Out of the Box Supply Chain Basic
	Prerequisites
	Developer Namespace
	Registries Secrets
	ServiceAccount
	RoleBinding

	Developer workload


	Install Out of the Box Supply Chain Basic
	Prerequisites
	Install

	Out of the Box Supply Chain with Testing
	Prerequisites
	Developer Namespace
	Updates to the developer Namespace
	Tekton/Pipeline
	Allow multiple Tekton pipelines in a namespace


	Developer Workload

	Out of the Box Supply Chain with Testing
	Prerequisites
	Developer Namespace
	Updates to the developer Namespace
	Tekton/Pipeline
	Allow multiple Tekton pipelines in a namespace


	Developer Workload

	Install Out of the Box Supply Chain with Testing
	Prerequisites
	Install

	Out of the Box Supply Chain with Testing and Scanning
	Prerequisites
	Developer namespace
	Updates to the developer namespace
	ScanPolicy
	ScanTemplate
	Enable storing scan results
	Allow multiple Tekton pipelines in a namespace


	Developer workload
	CVE triage workflow
	Scan Images using a different scanner

	Out of the Box Supply Chain with Testing and Scanning
	Prerequisites
	Developer namespace
	Updates to the developer namespace
	ScanPolicy
	ScanTemplate
	Enable storing scan results
	Allow multiple Tekton pipelines in a namespace


	Developer workload
	CVE triage workflow
	Scan Images using a different scanner

	Install Out of the Box Supply Chain with Testing and Scanning
	Prerequisites
	Install

	Out of the Box Templates for Supply Chain Choreographer
	Out of the Box Templates for Supply Chain Choreographer
	Install Out of the Box Templates
	Prerequisites
	Install

	Out of the Box Delivery Basic
	Prerequisites
	Using Out of the Box Delivery Basic
	More information


	Out of the Box Delivery Basic
	Prerequisites
	Using Out of the Box Delivery Basic
	More information


	Install Out of the Box Delivery Basic
	Prerequisites
	Install

	How-to guides for Supply Chain Choreographer for Tanzu
	How-to guides

	Out of the Box Supply Chain with testing on Jenkins
	Prerequisites
	Making a Jenkins test job
	Example Jenkins Job

	Updates to the developer namespace
	Create a secret
	Create a Tekton pipeline
	Patch the Service Account


	Developer Workload

	Building container images with Supply Chain Choreographer
	Methods for building container images

	Building from source with Supply Chain Choreographer
	Git source
	Private GitRepository
	HTTP(S) Basic-authentication and Token-based authentication
	SSH authentication

	How it works
	Workload parameters

	Local source
	Authentication
	Developer
	Supply chain components

	How it works

	Maven Artifact
	Maven Repository Secret


	Use Dockerfile-based builds with Supply Chain Choreographer
	Use Dockerfile-based builds with Supply Chain Choreographer
	OpenShift

	Tanzu Build Service integration for Supply Chain Choreographer
	Use an existing image with Supply Chain Choreographer
	Requirements for prebuilt images
	Configure your workload to use a prebuilt image
	Examples
	Using a Dockerfile
	Using Spring Boot’s build-image Maven target

	About Out of the Box Supply Chains
	Understanding the supply chain for a prebuilt image

	Git authentication
	HTTP
	SSH
	Read more on Git

	Author your supply chains
	Providing your own supply chain
	Providing your own templates
	Modifying an Out of the Box Supply Chain
	Example

	Modifying an Out of the Box Supply template
	Example

	Live modification of supply chains and templates
	Adding custom behavior to Supply Chains

	Reference guides for Supply Chain Choreographer for Tanzu
	Reference guides

	Events reference for Supply Chain Choreographer
	Events
	StampedObjectApplied
	StampedObjectRemoved
	ResourceOutputChanged
	ResourceHealthyStatusChanged


	Workload Reference for Supply Chain Choreographer
	Standard Fields
	Labels
	Parameters
	Service Account

	Supply chains
	Source-to-URL
	Purpose
	Resources
	source-provider
	image-provider
	Common resources

	Parameters provided to all resources
	Package
	More information

	Source-Test-to-URL
	Resources
	source-provider
	source-tester
	image-provider
	Common resources

	Parameters provided to all resources
	Package
	More information

	Source-Test-Scan-to-URL
	Resources
	source-provider
	source-tester
	source-scanner
	image-provider
	image-scanner
	Common resources

	Parameters provided to all resources
	Package
	More information

	Basic-Image-to-URL
	Resources
	image-provider
	Common resources

	Parameters provided to all resources
	Package
	More information

	Testing-Image-to-URL
	Resources
	image-provider
	Common resources

	Parameters provided to all resources
	Package
	More information

	Scanning-image-scan-to-URL
	Resources
	image-provider
	image-scanner
	Common resources

	Parameters provided to all resources
	Package
	More information

	Source-to-URL-Package (experimental)
	Purpose
	Resources
	source-provider
	image-provider
	carvel-package
	package-config-writer
	Common resources

	Parameters provided to all resources
	Package
	More information

	Basic-Image-to-URL-Package (experimental)
	Resources
	image-provider
	carvel-package
	package-config-writer
	Common resources

	Parameters provided to all resources
	Package
	More information

	Resources common to all OOTB supply chains
	config-provider
	app-config
	service-bindings
	api-descriptors
	config-writer
	deliverable

	Parameters provided by all supply chains to all resources

	Template reference for Supply Chain Choreographer
	source-template
	Purpose
	Used by
	Creates
	GitRepository
	Parameters




	Template reference for Supply Chain Choreographer
	More information
	ImageRepository
	Parameters
	More information

	MavenArtifact
	Parameters
	More information

	testing-pipeline
	Purpose
	Used by
	Creates
	Parameters
	More information

	source-scanner-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	image-provider-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	kpack-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	kaniko-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	image-scanner-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	convention-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	config-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	worker-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	server-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	service-bindings
	Purpose
	Used by
	Creates
	Parameters
	More information

	api-descriptors
	Purpose
	Used by
	Creates
	Parameters
	More information

	config-writer-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	config-writer-and-pull-requester-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	deliverable-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	external-deliverable-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	delivery-source-template
	Purpose
	Used by
	Creates
	GitRepository
	Parameters
	More information

	ImageRepository
	Parameters
	More information



	app-deploy
	Purpose
	Used by
	Creates
	Parameters
	More information

	carvel-package (experimental)
	Purpose
	Used by
	Creates
	Parameters
	More information

	package-config-writer-template (experimental)
	Purpose
	Used by
	Creates
	Parameters
	More information

	package-config-writer-and-pull-requester-template (experimental)
	Purpose
	Used by
	Creates
	Parameters
	More information


	ClusterRunTemplate reference
	tekton-source-pipelinerun
	Purpose
	Used by
	Creates
	Inputs


	ClusterRunTemplate reference
	More information
	tekton-taskrun
	Purpose
	Used by
	Creates
	Inputs

	commit-and-pr-pipelinerun
	Purpose
	Used by
	Creates
	Inputs
	More information


	Delivery reference
	delivery-basic
	Purpose
	Resources
	source-provider
	Deployer

	Package
	More information


	Git
	Supported Git Repositories
	Related Articles

	GitOps versus RegistryOps
	GitOps
	Examples
	Deprecated parameters
	Examples

	Pull requests
	Authentication

	Authentication
	HTTP(S) Basic-auth or Token-based authentication

	SSH
	GitOps workload parameters
	Read more on Git

	RegistryOps

	Overview of Supply Chain Security Tools - Scan
	Overview
	Language support
	Use cases
	Supply Chain Security Tools - Scan features
	A Note on Vulnerability Scanners
	Missed CVEs
	False positives


	Overview of Supply Chain Security Tools - Scan
	Overview
	Language support
	Use cases
	Supply Chain Security Tools - Scan features
	A Note on Vulnerability Scanners
	Missed CVEs
	False positives


	Install Supply Chain Security Tools - Scan
	Prerequisites
	Configure properties
	Install
	Option 1: Install to multiple namespaces with the Namespace Provisioner
	Option 2: Install manually to each individual namespace


	Upgrade Supply Chain Security Tools - Scan
	Prerequisites
	General Upgrades for SCST - Scan
	Upgrading a scanner in all namespaces
	Installation by using Namespace Provisioner
	Manual installation

	Upgrade to Version v1.2.0

	Install another scanner for Supply Chain Security Tools - Scan
	Prerequisites
	Install
	Verify Installation
	Install scanner to multiple namespaces
	Configure Tanzu Application Platform Supply Chain to use new scanner
	Uninstall Scanner
	Other Available Scanner Integrations

	Prerequisites for Snyk Scanner for Supply Chain Security Tools - Scan (Beta)
	Prepare the Snyk Scanner configuration
	Supply Chain Security Tools - Store integration
	Sample ScanPolicy for Snyk in SPDX JSON format

	Prerequisites for Carbon Black Scanner for Supply Chain Security Tools - Scan(Beta)
	Prepare the Carbon Black Scanner configuration
	Supply Chain Security Tools - Store integration
	Using Supply Chain Security Tools - Store Integration
	Without Supply Chain Security Tools - Store Integration

	Sample ScanPolicy in CycloneDX format

	Prerequisites for Prisma Scanner for Supply Chain Security Tools - Scan (Alpha)
	Verify the latest alpha package version
	Relocate images to a registry
	Add the Prisma Scanner package repository
	Prepare the Prisma Scanner configuration
	Obtain Console url and Access Keys/Token
	Access key and secret authentication
	Access Token Authentication

	Create Prisma Secret
	Access Token Authentication
	Access Key Authentication


	Supply Chain Security Tools - Store integration
	Multiple Scanners installed
	Prisma Only Scanner Installed
	No Store Integration

	Prepare the ScanPolicy
	Sample ScanPolicy using Prisma Policies
	Sample ScanPolicy using Local Policies

	Install Prisma Scanner
	Self-Signed Registry Certificate
	Tanzu Application Platform Values Shared CA
	Secret within Developer Namespace

	Known Limits

	Spec reference
	About source and image scans
	About policy enforcement around vulnerabilities found

	Scan samples for Supply Chain Security Tools - Scan
	Scan samples for Supply Chain Security Tools - Scan
	Sample public image scan with compliance check for Supply Chain Security Tools - Scan
	Public image scan
	Define the ScanPolicy and ImageScan
	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Edit the ScanPolicy
	Clean up


	Sample public source code scan with compliance check for Supply Chain Security Tools - Scan
	Public source scan
	Run an example public source scan


	Sample private image scan for Supply Chain Security Tools - Scan
	Define the resources
	Set up target image pull secret
	Create the private image scan

	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Clean up
	View vulnerability reports

	Sample private source scan for Supply Chain Security Tools - Scan
	Define the resources
	(Optional) Set up a watch
	Deploy the resources
	View the scan status
	Clean up
	View vulnerability reports

	Sample public source scan of a blob for Supply Chain Security Tools - Scan
	Define the resources
	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Clean up
	View vulnerability reports

	Using Grype in air-gapped (offline) environments for Supply Chain Security Tools - Scan
	To enable Grype in offline air-gapped environments
	Troubleshooting
	ERROR failed to fetch latest cli version
	Solution

	Database is too old
	Solution

	Grype package overlays are not applied to scantemplates created by Namespace Provisioner
	Solution
	Debug Grype database in a cluster



	Triage and Remediate CVEs for Supply Chain Security Tools - Scan
	Confirm that Supply Chain stopped due to failed policy enforcement
	Triage
	Remediation
	Updating the affected component
	Amending the scan policy


	Observe Supply Chain Security Tools - Scan
	Observability

	Troubleshoot Supply Chain Security Tools - Scan
	Debugging commands
	Debugging Scan pods
	Debugging SourceScan and ImageScan
	Debugging Scanning within a SupplyChain
	Viewing the Scan-Controller manager logs

	Restarting Deployment
	Troubleshooting scanner to MetadataStore configuration
	Insight CLI failed to post scan results to metadata store due to failed certificate verification

	Troubleshooting issues
	Missing target SSH secret
	Missing target image pull secret
	Deactivate Supply Chain Security Tools (SCST) - Store
	Resolving Incompatible Syft Schema Version
	Resolving incompatible scan policy
	Could not find CA in secret
	Blob Source Scan is reporting wrong source URL
	Resolving failing scans that block a Supply Chain
	Policy not defined in the Tanzu Application Platform GUI
	Lookup error when connecting to SCST - Store
	Sourcescan error with SCST - Store endpoint without a prefix
	Deprecated pre-v1.2 templates
	Incorrectly configured self-signed certificate
	Unable to pull scan controller and scanner images from a specified registry
	Grype database not available


	Configure code repositories and image artifacts for Supply Chain Security Tools - Scan
	Prerequisite
	Deploy scan custom resources
	SourceScan
	ImageScan


	Configure code repositories and image artifacts for Supply Chain Security Tools - Scan
	Prerequisite
	Deploy scan custom resources
	SourceScan
	ImageScan


	Enforce compliance policy using Open Policy Agent
	Writing a policy template
	Rego file contract
	Define a Rego file for policy enforcement
	Further refine the Scan Policy for use
	Enable Tanzu Application Platform GUI to view ScanPolicy Resource
	Deprecated Rego file Definition

	Create a ScanTemplate with Supply Chain Security Tools - Scan
	Overview
	Output Model
	ScanTemplate Structure
	Sample Outputs

	View scan status conditions for Supply Chain Security Tools - Scan
	Viewing scan status
	Understanding conditions
	Condition types for the scans
	Scanning
	Succeeded
	SendingResults
	PolicySucceeded


	Understanding CVECount
	Understanding MetadataURL
	Understanding Phase
	Understanding ScannedBy
	Understanding ScannedAt

	Overview of Supply Chain Security Tools for VMware Tanzu - Policy Controller
	Overview of Supply Chain Security Tools for VMware Tanzu - Policy Controller
	Install Supply Chain Security Tools - Policy Controller
	Prerequisites
	Install

	Install Sigstore Stack
	Download Stack Release Files
	Migrate Images onto Internal Registry
	Copy Release Files to Cluster Accessible Machine
	Prepare Patching Fulcio Release File
	OIDCIssuer
	MetaIssuers
	Applying the patch for Fulcio release file

	Patch Knative-Serving
	Create OIDC Reviewer Binding
	Install Trillian
	Install Rekor
	Install Fulcio
	Install Certificate Transparency Log (CTLog)
	Install TUF
	Update Policy Controller with TUF Mirror and Root
	Uninstall Sigstore Stack

	Migration From Supply Chain Security Tools - Sign
	Enable Policy Controller on Namespaces
	Policy Controller ClusterImagePolicy
	Excluding Namespaces
	Specifying Public Keys
	Specifying Image Matching
	Specifying policy mode

	Configuring Supply Chain Security Tools - Policy
	Admission of Images
	Including Namespaces
	Create a ClusterImagePolicy resource
	mode
	images
	match
	authorities
	static.action


	Provide credentials for the package
	Provide secrets for authentication in your policy

	Verify your configuration

	Overview of Supply Chain Security Tools for VMware Tanzu - Sign
	Overview of Supply Chain Security Tools for Tanzu – Store
	Overview
	Using the Tanzu Insight CLI plug-in
	Multicluster configuration
	Integrating with Tanzu Application Platform GUI
	Additional documentation

	Overview of Supply Chain Security Tools for Tanzu – Store
	Overview
	Using the Tanzu Insight CLI plug-in
	Multicluster configuration
	Integrating with Tanzu Application Platform GUI
	Additional documentation

	Configure your target endpoint and certificate for Supply Chain Security Tools - Store
	Overview
	Using Ingress

	Single Cluster setup
	Set Target
	Next Step
	Additional Resources

	Configure your access tokens for Supply Chain Security Tools - Store
	Setting the Access Token
	Additional Resources

	Security details for Supply Chain Security Tools - Store
	Application security
	TLS encryption
	Cryptographic algorithms

	Access controls
	Authentication
	Authorization


	Container security
	Non-root user

	Security scanning
	Static Application Security Testing (SAST)
	Software Composition Analysis (SCA)


	Additional documentation for Supply Chain Security Tools - Store
	Use and operate
	Troubleshooting and logging
	Configuration
	Access control
	Certificates
	Database

	Other

	Additional documentation for Supply Chain Security Tools - Store
	Use and operate
	Troubleshooting and logging
	Configuration
	Access control
	Certificates
	Database

	Other

	API reference for Supply Chain Security Tools - Store
	Information
	Version

	Content negotiation
	URI Schemes
	Consumes
	Produces

	All endpoints
	images
	Operations
	Packages
	Sources
	v1artifact_groups
	v1images
	v1packages
	v1sources
	v1vulnerabilities
	vulnerabilities

	Paths
	Create an artifact group with specified labels and entity (CreateArtifactGroup)
	Parameters
	All responses
	Responses
	201 - ArtifactGroupPostResponse
	Schema

	400 - ErrorMessage
	Schema

	Default Response
	Schema



	Create a new image report. Related packages and vulnerabilities are also created. (CreateImageReport)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema



	Create a new source report. Related packages and vulnerabilities are also created. (CreateSourceReport)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema



	Search image by ID (GetImageByID)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	List the packages in an image. (GetImagePackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	List packages of the given image. (GetImagePackagesQuery)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	List vulnerabilities from the given image. (GetImageVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	Search image by id, name or digest . (GetImages)
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema



	Search package by ID (GetPackageByID)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	List the images that contain the given package. (GetPackageImages)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema



	List the sources containing the given package. (GetPackageSources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema



	List vulnerabilities from the given package. (GetPackageVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	Search packages by id, name and/or version. (GetPackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	Search source by ID (GetSourceByID)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	get source packages (GetSourcePackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	List packages of the given source. (GetSourcePackagesQuery)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	get source vulnerabilities (GetSourceVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	List vulnerabilities of the given source. (GetSourceVulnerabilitiesQuery)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	Search for sources by ID, repository, commit sha and/or organization. (GetSources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema



	Search for vulnerabilities by CVE id. (GetVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	Search vulnerability by ID (GetVulnerabilityByID)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	List the images that contain the given vulnerability. (GetVulnerabilityImages)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema



	List packages that contain the given CVE id. (GetVulnerabilityPackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	List sources that contain the given vulnerability. (GetVulnerabilitySources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema



	health check (HealthCheck)
	All responses
	Responses
	200
	Schema

	Default Response
	Schema



	Query for a list of artifact group that contains image(s) with specified digests, and or source(s) with specified shas. At least one image digest or source sha must be provided. This query can be further refined by matching images and sources with a specific combination of package name and/or cve id. (SearchArtifactGroups)
	Parameters
	All responses
	Responses
	200 - PaginatedArtifactGroupResponse
	Schema

	400 - ErrorMessage
	Schema

	Default Response
	Schema



	Search for how many artifact groups are affected by vulnerabilities associated with the specified image(s) digests, and/or source(s) shas. At least one image digest or source sha must be provided. (SearchArtifactGroupsVulnReach)
	Parameters
	All responses
	Responses
	200 - PaginatedArtifactGroupVulnReachResponse
	Schema

	400 - ErrorMessage
	Schema

	Default Response
	Schema



	Search for all vulnerabilities associated with an artifact group that contains image(s) with specified digests, and/or source(s) with specified shas. At least one image digest or source sha must be provided. (SearchArtifactGroupsVulnerabilities)
	Parameters
	All responses
	Responses
	200 - PaginatedArtifactGroupVulnerabilityResponse
	Schema

	400 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for images. If no parameters are given, this endpoint will return all images. (V1GetImages)
	Parameters
	All responses
	Responses
	200 - PaginatedImageResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for packages with images parameters. If no parameters are given, this endpoint will return all packages related to images. (V1GetImagesPackages)
	Parameters
	All responses
	Responses
	200 - PaginatedPackageResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for vulnerabilities with image parameters. If no parameters are give, this endpoint will return all vulnerabilities. (V1GetImagesVulnerabilities)
	Parameters
	All responses
	Responses
	200 - PaginatedVulnerabilityResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for packages. If no parameters are given, this endpoint will return all packages. (V1GetPackages)
	Parameters
	All responses
	Responses
	200 - PaginatedPackageResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for sources. If no parameters are given, this endpoint will return all sources. (V1GetSources)
	Parameters
	All responses
	Responses
	200 - PaginatedSourceResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for packages with source parameters. If no parameters are given, this endpoint will return all packages related to sources. (V1GetSourcesPackages)
	All responses
	Responses
	200 - PaginatedPackageResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for vulnerabilities with source parameters. If no parameters are given, this endpoint will return all vulnerabilities. (V1GetSourcesVulnerabilities)
	Parameters
	All responses
	Responses
	200 - PaginatedVulnerabilityResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema




	Models
	ArtifactGroupPostRequest
	ArtifactGroupResponse
	ArtifactGroupSearchFilters
	ArtifactGroupVulnReachFiltersPostRequest
	ArtifactGroupVulnReachPostResponse
	ArtifactGroupVulnSearchFilters
	DeletedAt
	Entity
	ErrorMessage
	Image
	MethodType
	Model
	NullTime
	Package
	PaginatedArtifactGroupVulnReachResponse
	PaginatedResponse
	Rating
	RatingResponse
	Source
	StringArray
	VulnResponse
	Vulnerability
	artifactGroupPostEntity
	artifactGroupPostResponse
	artifactGroupVulnArtifactGroup
	artifactGroupVulnEntity
	artifactGroupVulnPackage
	artifactGroupVulnResult
	paginatedArtifactGroupResponse
	paginatedArtifactGroupVulnerabilityResponse
	paginatedImageResponse
	paginatedPackageResponse
	paginatedSourceResponse
	paginatedVulnerabilityResponse
	responseImage
	responsePackage
	responseSource
	responseVulnerability


	API walkthrough for Supply Chain Security Tools - Store
	Using curl to post an image report

	Connect to the PostgreSQL database
	Deployment details and configuration for Supply Chain Security Tools - Store
	What is deployed
	Deployment configuration
	Supported Network Configurations
	App service type
	Ingress support

	Database configuration
	Using AWS RDS PostgreSQL database
	Using external PostgreSQL database
	Custom database password

	Service accounts

	Exporting certificates

	Configure your AWS RDS PostgreSQL configuration
	Prerequisites
	Setup certificate and configuration

	Use external PostgreSQL database for Supply Chain Security Tools - Store
	Prerequisites
	Set up certificate and configuration
	Validation

	Database backup recommendations for Supply Chain Security Tools - Store
	Backup
	Restore

	Log configuration and usage for Supply Chain Security Tools - Store
	Verbosity levels
	Error Logs

	Obtaining logs
	API endpoint log output
	Format
	Key-value pairs
	Common to all logs
	Logging query and path parameter values
	API payload log output



	SQL Query log output
	Format


	Connect to the PostgreSQL database
	Troubleshooting Supply Chain Security Tools - Store
	Querying by insight source returns zero CVEs even though there are CVEs in the source scan
	Symptom
	Solution

	Persistent volume retains data
	Symptom
	Solution

	Missing persistent volume
	Symptom
	Solution

	Builds fail due to volume errors on EKS running Kubernetes v1.23
	Symptom
	Explanation
	Solution

	Certificate Expiries
	Symptom
	Explanation
	Solution

	Troubleshooting errors from Tanzu Application Platform GUI related to SCST - Store
	An error occurred while loading data from the Metadata Store
	Symptom
	Cause
	Solution



	Troubleshoot upgrading Supply Chain Security Tools - Store
	Database deployment does not exist
	Invalid checkpoint record
	Upgraded pod hanging

	Failover, redundancy, and backups for Supply Chain Security Tools - Store
	API Server
	Database

	Custom certificate configuration for Supply Chain Security Tools - Store
	Default configuration
	(Optional) Setting up custom ingress TLS certificate
	Place the certificates in secret
	Update tap-values.yaml

	Additional resources

	TLS configuration for Supply Chain Security Tools - Store
	Setting up custom ingress TLS ciphers
	Example custom TLS settings
	Additional resources

	Certificate rotation for Supply Chain Security Tools - Store
	Certificates
	Certificate duration setting

	Ingress support for Supply Chain Security Tools - Store
	Ingress configuration
	Get the TLS CA certificate
	Additional Resources

	Use your LoadBalancer with Supply Chain Security Tools - Store
	Configure LoadBalancer
	Port forwarding
	Edit your /etc/hosts file for Port Forwarding

	Configure the Insight plug-in

	Use your NodePort with Supply Chain Security Tools - Store
	Overview
	Edit your /etc/hosts file for Port Forwarding

	Configure the Insight plug-in

	Multicluster setup for Supply Chain Security Tools - Store
	Overview
	Prerequisites
	Procedure summary
	Copy SCST - Store CA certificate from View cluster
	Copy SCST - Store authentication token from the View cluster
	Apply the CA certificate and authentication token to a new Kubernetes cluster
	Install Build profile
	More information about how Build profile uses the configuration

	Configure developer namespaces
	Exporting SCST - Store secrets to a developer namespace in a Tanzu Application Platform multicluster deployment

	Additional resources

	Developer namespace setup for Supply Chain Security Tools - Store
	Overview
	Single cluster - Using the Tanzu Application Platform values file
	Multicluster - Using SecretExport
	Next steps

	Retrieve access tokens for Supply Chain Security Tools - Store
	Overview
	Retrieving the read-write access token
	Retrieving the read-only access token
	Using an access token
	Additional Resources

	Retrieve and create service accounts for Supply Chain Security Tools - Store
	Overview
	Create read-write service account
	Create a read-only service account
	With a default cluster role
	With a custom cluster role

	Additional Resources

	Create a service account with a custom cluster role for Supply Chain Security Tools - Store
	Example service account
	Additional Resources

	Install Supply Chain Security Tools - Store independent from Tanzu Application Platform profiles
	Prerequisites
	Install

	Overview of Tanzu Developer Tools for Visual Studio
	Extension Features

	Overview of Tanzu Developer Tools for Visual Studio
	Extension Features

	Install Tanzu Developer Tools for Visual Studio
	Prerequisites
	Install
	Uninstall
	Next steps

	Use Tanzu Developer Tools for Visual Studio
	Configure settings
	Workload Actions
	Apply a workload
	Delete a workload
	Start debugging on the cluster

	Live Update
	Start Live Update
	Stop Live Update

	Tanzu Workloads panel
	Stop Remote Debug

	Extension logs

	Troubleshoot Tanzu Developer Tools for Visual Studio
	Erroneous WorkloadNotRunningState error message
	Symptom
	Solution

	Live Update fails to update remote app
	Symptom
	Cause
	Solution

	Delete workload command fails to delete workload
	Symptom
	Cause
	Solution

	Live Update does not work with the Jammy ClusterBuilder
	Symptom
	Solution

	Frequent application restarts
	Symptom
	Cause
	Solution


	Overview of Tanzu Developer Tools for VS Code
	Extension features

	Overview of Tanzu Developer Tools for VS Code
	Extension features

	Install Tanzu Developer Tools for your VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Get started with Tanzu Developer Tools for VS Code
	Prerequisite
	Set up Tanzu Developer Tools
	Create the workload.yaml file
	Create the catalog-info.yaml file
	Create the Tiltfile file
	Create a .tanzuignore file

	View an example project
	Next steps

	Use Tanzu Developer Tools for VS Code
	Configure for multiple projects in the workspace
	Apply a workload
	Debugging on the cluster
	Start debugging on the cluster
	Stop Debugging on the cluster
	Debug apps in a microservice repository

	Live Update
	Start Live Update
	Stop Live Update
	Deactivate Live Update
	Live Update status
	Live Update apps in a microservices repository

	Delete a workload
	Switch namespaces
	Tanzu Workloads panel
	Working with Microservices in a Monorepo
	Recommended structure: Microservices that can be built independently
	Alternative structure: Services with build-time interdependencies


	Pinniped compatibility
	OAuth
	LDAP

	Integrate Live Hover by using Spring Boot Tools
	Prerequisites
	Activate the Live Hover feature
	Deploy a Workload to the Cluster

	Use Memory View in Spring Boot Dashboard
	Prerequisites
	Deploy a workload
	View memory use in Spring Boot Dashboard

	Troubleshoot Tanzu Developer Tools for VS Code
	Unable to view workloads on the panel when connected to GKE cluster
	Symptom
	Cause
	Solution

	Live Update fails with UnsupportedClassVersionError
	Symptom
	Cause
	Solution

	Timeout error when Live Updating
	Symptom
	Cause
	Solution

	Task-related error when running a Tanzu Debug launch configuration
	Symptom
	Cause
	Solution

	Frequent application restarts
	Symptom
	Cause
	Solution


	Overview of Tanzu Developer Tools for IntelliJ
	Extension features
	Next steps

	Overview of Tanzu Developer Tools for IntelliJ
	Extension features
	Next steps

	Install Tanzu Developer Tools for IntelliJ
	Prerequisites
	Install
	Update
	Uninstall
	Next steps

	Get Started with Tanzu Developer Tools for IntelliJ
	Prerequisite
	Run Tanzu Developer Tools for IntelliJ
	Set up Tanzu Developer Tools
	Create the workload.yaml file
	Create the catalog-info.yaml file
	Create the Tiltfile file
	Create the .tanzuignore file
	View an example project
	Next steps

	Use Tanzu Developer Tools for IntelliJ
	Apply a workload
	Delete a workload
	Debugging on the cluster
	Start debugging on the cluster
	Stop Debugging on the Cluster

	Live Update
	Start Live Update
	Stop Live Update

	Tanzu Workloads panel
	Working with microservices in a monorepo
	Recommended structure: Microservices that can be built independently
	Alternative structure: Services with build-time interdependencies


	Glossary of terms
	Live Update
	Tiltfile
	Debugging on the cluster
	YAML file format
	workload.yaml file
	catalog-info.yaml file
	Code snippet
	Source image
	Local path
	Kubernetes context
	Kubernetes namespace

	Troubleshoot Tanzu Developer Tools for IntelliJ
	Tanzu Debug re-applies the workload when namespace field is empty
	Symptoms
	Cause
	Solution

	Workload is wrongly re-applied because of debug configuration selected from the launch configuration drop-down menu
	Symptoms
	Cause
	Solution

	Unable to view workloads on the panel when connected to GKE cluster
	Symptom
	Cause
	Solution

	Deactivated launch controls after running a launch configuration
	Symptom
	Cause

	Starting a Tanzu Debug session fails with Unable to open debugger port
	Symptom
	Cause
	Solution

	Timeout error when Live Updating
	Symptom
	Cause
	Solution

	Tanzu Panel empty when using a GKE cluster on macOS
	Symptom
	Cause
	Solution

	The Describe action in the Activity panel fails when used on PodIntent resources
	Symptom
	Cause
	Solution

	Tanzu panel shows workloads but doesn’t show Kubernetes resources
	Symptom
	Cause
	Solution

	Live Update does not work with the Jammy ClusterBuilder
	Symptom
	Solution

	Frequent application restarts
	Symptom
	Cause
	Solution


	Overview of Tanzu Application Platform GUI
	Overview of Tanzu Application Platform GUI
	Install Tanzu Application Platform GUI
	Prerequisites
	Procedure


	Runtime configuration options for Tanzu Application Platform GUI
	Identify the Tanzu Application Platform GUI version you have available
	Display the possible values options for Tanzu Application Platform GUI

	Customize the Tanzu Application Platform GUI portal
	Customize branding
	Customize the Software Catalog page
	Customize the name of the organization
	Prevent changes to the software catalog

	Customize the Authentication page
	Customize the default view

	Customize the Tanzu Application Platform GUI portal
	Customize branding
	Customize the Software Catalog page
	Customize the name of the organization
	Prevent changes to the software catalog

	Customize the Authentication page
	Customize the default view

	Customize the Support menu
	Overview
	Customizing
	Structure of the support configuration
	URL
	Items
	Title
	Icon
	Links



	Access Tanzu Application Platform GUI
	Access with the LoadBalancer method (default)
	Access with the shared Ingress method

	Catalog operations
	Adding catalog entities
	Users and groups
	Systems
	Components

	Update software catalogs
	Register components
	Deregister components
	Add or change organization catalog locations

	Install demo apps and their catalogs
	Yelb system
	Install Yelb
	Install the Yelb catalog



	View resources on multiple clusters in Tanzu Application Platform GUI
	Set up a Service Account to view resources on a cluster
	Update Tanzu Application Platform GUI to view resources on multiple clusters
	View resources on multiple clusters in the Runtime Resources Visibility plug-in

	Set up authentication for Tanzu Application Platform GUI
	View your Backstage Identity
	Configure an authentication provider
	(Optional) Allow guest access
	(Optional) Customize the login page

	View resources on remote clusters
	View resources on remote clusters
	View resources on remote EKS clusters
	Set up the OIDC provider
	Configure the Kubernetes cluster with the OIDC provider
	Configure the Tanzu Application Platform GUI
	Upgrade the Tanzu Application Platform GUI package

	View resources on remote GKE clusters
	Leverage an external OIDC provider
	Set up the OIDC provider
	Configure the GKE cluster with the OIDC provider
	Configure visibility of the remote cluster
	Update the tap-gui package to finish leveraging the external OIDC provider

	Leverage Google’s OIDC provider
	Add redirect configuration on the OIDC side
	Configure visibility of the remote GKE cluster
	Update the tap-gui package to finish leveraging the Google OIDC provider


	View runtime resources on authorization-enabled clusters
	Globally-scoped components
	Namespace-scoped components

	Assign roles and permissions on Kubernetes clusters
	Create roles
	Cluster-scoped roles
	Namespace-scoped roles

	Create users
	Assign users to their roles

	Add Tanzu Application Platform GUI integrations
	Add a GitHub provider integration
	Add a Git-based provider integration that isn’t GitHub
	Add a non-Git provider integration
	Update the package profile

	Configure the Tanzu Application Platform GUI database
	Configure a PostgreSQL database
	Edit tap-values.yaml
	(Optional) Configure extra parameters

	Update the package profile


	Generate and publish TechDocs
	Create an Amazon S3 bucket
	Configure Amazon S3 access
	Create an AWS IAM user group
	Create an AWS IAM user

	Find the catalog locations and their entities’ namespace, kind, and name
	Use the TechDocs CLI to generate and publish TechDocs
	Update the techdocs section in app-config.yaml to point to the Amazon S3 bucket

	Overview of Tanzu Application Platform GUI plug-ins
	Overview of Tanzu Application Platform GUI plug-ins
	Runtime resources visibility in Tanzu Application Platform GUI
	Prerequisite
	If you have a metrics server
	Visualize Workloads on Tanzu Application Platform GUI
	Navigate to the Runtime Resources Visibility screen
	Resources

	Resources details page
	Overview card
	Status card
	Ownership card
	Annotations and Labels

	Selecting completed supply chain pods
	Navigating to the pod Details page
	Overview of pod metrics

	Navigating to Application Live View
	Viewing pod logs
	Pausing and resuming logs
	Filtering by container
	Filtering by date and time
	Changing log levels
	Line wrapping
	Downloading logs
	Connection interruptions


	Application Live View in Tanzu Application Platform GUI
	Overview
	Entry point to Application Live View plug-in

	Application Live View in Tanzu Application Platform GUI
	Overview
	Entry point to Application Live View plug-in

	Application Live View for Spring Boot applications in Tanzu Application Platform GUI
	Details page
	Health page
	Environment page
	Log Levels page
	Threads page
	Memory page
	Request Mappings page
	HTTP Requests page
	Caches page
	Configuration Properties page
	Conditions page
	Scheduled Tasks page
	Beans page
	Metrics page
	Actuator page
	Troubleshooting

	Application Live View for Spring Cloud Gateway applications in Tanzu Application Platform GUI
	API Success Rate page
	API Overview page
	API Authentications By Path page
	Troubleshooting

	Application Live View for Steeltoe applications in Tanzu Application Platform GUI
	Details page
	Health page
	Environment page
	Log Levels page
	Threads page
	Memory page
	Request Mappings page
	HTTP Requests page
	Metrics page
	Actuator page
	Troubleshooting

	Application Accelerator in Tanzu Application Platform GUI
	Overview
	Access Application Accelerator
	Configure project generation
	Create the project
	Develop your code
	Next steps

	Application Accelerator in Tanzu Application Platform GUI
	Overview
	Access Application Accelerator
	Configure project generation
	Create the project
	Develop your code
	Next steps

	Install Application Accelerator
	Prerequisites
	Configure properties and resource use
	Install
	Troubleshooting
	Verify installed packages
	Look at resource events


	Create an Application Accelerator Git repository during project creation
	Overview
	Supported Providers
	Configure
	(Optional) Deactivate Git repository creation in the Application Accelerator extension for VS Code

	Create a Project

	API documentation plug-in in Tanzu Application Platform GUI
	Overview
	Use the API documentation plug-in
	Create a new API entry
	Manually create a new API entry
	Automatically create a new API entry


	API documentation plug-in in Tanzu Application Platform GUI
	Overview
	Use the API documentation plug-in
	Create a new API entry
	Manually create a new API entry
	Automatically create a new API entry


	Get started with the API documentation plug-in
	API entries
	About API entities
	Add a demo API entity to the Tanzu Application Platform GUI software catalog
	Update your demo API entry

	Validation Analysis of API specifications
	About the Validation Analysis card
	Automatic OpenAPI specification validation


	Security Analysis in Tanzu Application Platform GUI
	Overview
	Installing and configuring
	Accessing the plug-in
	Viewing vulnerability data
	Viewing CVE and package details

	Supply Chain Choreographer in Tanzu Application Platform GUI
	Overview
	Prerequisites
	Enable CVE scan results
	Enable GitOps Pull Request Flow
	Supply Chain Visibility
	View Vulnerability Scan Results

	Overview of enabling TLS for Tanzu Application Platform GUI
	Concepts
	Certificate delegation
	cert-manager, certificates, and ClusterIssuers

	Guides

	Overview of enabling TLS for Tanzu Application Platform GUI
	Concepts
	Certificate delegation
	cert-manager, certificates, and ClusterIssuers

	Guides

	Configure a TLS certificate by using an existing certificate
	Prerequisites
	Procedure

	Configure a TLS certificate by using a self-signed certificate
	Prerequisite
	Procedure

	Configure a TLS certificate by using cert-manager and a ClusterIssuer
	Prerequisites
	Procedure

	Upgrade Tanzu Application Platform GUI
	Considerations
	Upgrade within a Tanzu Application Platform profile
	Upgrade Tanzu Application Platform GUI individually

	Troubleshoot Tanzu Application Platform GUI
	General issues
	Tanzu Developer Portal reports that the port range is not valid
	Symptom
	Cause
	Solution

	Tanzu Application Platform GUI does not load the catalog
	Symptom
	Cause
	Solution

	Updating a supply chain causes an error (Can not create edge...)
	Symptom
	Solution

	Catalog not found
	Symptom
	Cause
	Solution

	Issues updating the values file
	Symptom
	Solution

	Pull logs from Tanzu Application Platform GUI
	Symptom
	Solution


	Runtime Resources tab issues
	Error communicating with Tanzu Application Platform web server
	Symptom
	Causes
	Solution

	No data available
	Symptom
	Cause
	Solution

	Errors retrieving resources
	Symptom


	Accelerators page issues
	No accelerators
	Symptom
	Cause
	Solution


	Security Analysis plug-in issues
	Empty dashboard after upgrading from Tanzu Application Platform v1.3
	Symptom
	Cause
	Solution


	Supply Chain Choreographer plug-in issues
	An error occurred while loading data from the Metadata Store
	Symptom
	Cause
	Solution



	Overview of Tanzu Application Platform Telemetry
	Tanzu Application Platform usage reports

	Overview of Tanzu Application Platform Telemetry
	Tanzu Application Platform usage reports

	Install Tanzu Application Platform Telemetry
	Prerequisites
	Install

	Deployment details and configurations of Tanzu Application Platform Telemetry
	What is deployed
	Deployment configuration

	Overview of Tanzu Build Service
	Overview

	Overview of Tanzu Build Service
	Overview

	Install Tanzu Build Service
	Before you begin
	Prerequisites
	Deprecated Features
	Install the Tanzu Build Service package
	(Optional) Alternatives to plaintext registry credentials
	Use Secret references for registry credentials
	Use AWS IAM authentication for registry credentials

	Install full dependencies
	(Optional) Configure automatic dependency updates
	(Optional) Deactivate the CNB BOM format

	Install Tanzu Build Service on an air-gapped environment
	Before you begin
	Prerequisites
	Deprecated Features
	Install the Tanzu Build Service package
	Install the Tanzu Build Service dependencies

	Configure Tanzu Build Service properties on a workload
	Overview
	Configure build-time service bindings
	Configure environment variables
	Configure the service account
	Configure the cluster builder
	Configure the workload container image registry
	Configure custom CA certificates for a single workload using service bindings
	Using custom CA certificates for all workloads

	Create a signed container image with Tanzu Build Service
	Prerequisites
	Configure Tanzu Build Service to sign your image builds

	Tanzu Build Service Dependencies
	How dependencies are installed
	View installed dependencies

	Bionic and Jammy stacks
	Use Jammy stacks for a workload
	Default all workloads to Jammy stacks

	About lite and full dependencies
	Lite dependencies
	Lite dependencies: stacks
	Lite dependencies: buildpacks

	Full dependencies
	Full dependencies: stacks
	Full dependencies: buildpacks

	Dependency comparison

	About automatic dependency updates (deprecated)
	Descriptors (deprecated)


	Security context constraint for OpenShift
	Troubleshoot Tanzu Build Service
	Builds fail due to volume errors on EKS running Kubernetes v1.23
	Symptom
	Cause
	Solution

	Smart-warmer-image-fetcher reports ErrImagePull due to dockerd’s layer depth limitation
	Symptom
	Cause
	Solution

	Nodes fail due to “trying to send message larger than max” error
	Symptom
	Cause
	Solution

	Build platform uses the old build cache after upgrade to new stack
	Symptom
	Solution


	Create a GitHub build action (Alpha)
	Prerequisites
	Procedure
	Developer namespace
	Access to Kubernetes API server
	Permissions Required

	Use the action

	Debugging

	Overview of Tekton
	Overview of Tekton
	Install Tekton
	Prerequisites
	Install Tekton Pipelines
	Configure a namespace to use Tekton Pipelines




